Math 220 - Section 3.2 Solutions

1. The general equation we use for mixing problems is:

$$
\frac{d x}{d t}=r_{i} c_{i}-r_{o} \frac{x}{V_{0}+\left(r_{i}-r_{o}\right) t}
$$

In this problem,

$$
r_{i}=r_{o}=8 \frac{\mathrm{~L}}{\min }, c_{i}=0.05 \frac{\mathrm{~kg}}{\mathrm{~L}}, V_{0}=100 \mathrm{~L}
$$

After simplifying, the differential equation is:

$$
\frac{d x}{d t}+0.08 x=0.4
$$

This equation is first order, linear, and separable. Therefore, we can use two methods to solve it. Let's compute the integrating factor:

$$
\mu(t)=\exp \left(\int 0.08 d t\right)=\exp (0.08 t)=e^{0.08 t}
$$

The solution is:

$$
\begin{aligned}
& x(t)=\frac{1}{\mu(t)}\left[\int \mu(t) Q(t)+C\right] \\
& x(t)=e^{-0.08 t}\left[\int 0.4 e^{0.08 t} d t+C\right] \\
& x(t)=5+C e^{-0.08 t}
\end{aligned}
$$

The initial condition is $x(0)=0.5 \mathrm{~kg}$. Using this to solve for C we get:

$$
\begin{aligned}
0.5 & =5+C e^{-0.08(0)} \\
C & =-4.5
\end{aligned}
$$

Therefore, the mass of salt as a function of time is:

$$
x(t)=5-4.5 e^{-0.08 t}
$$

The concentration of salt is:

$$
c=\frac{\text { mass }}{\text { volume }}
$$

To determine when $c=0.02 \mathrm{~kg} / \mathrm{L}$, we must solve the following equation for t :

$$
\begin{aligned}
0.02 & =\frac{x(t)}{V(t)} \\
0.02 & =\frac{5-4.5 e^{-0.08 t}}{100}
\end{aligned}
$$

Using some algebra, we find that:

$$
t=-\frac{\ln \frac{3}{4.5}}{0.08}=5.07 \mathrm{~min}
$$

3. This was done in class. Check your notes for the solution.
4. The general equation we use for mixing problems is:

$$
\frac{d x}{d t}=r_{i} c_{i}-r_{o} \frac{x}{V_{0}+\left(r_{i}-r_{o}\right) t}
$$

In this problem,

$$
r_{i}=4 \frac{\mathrm{~L}}{\min }, r_{o}=3 \frac{\mathrm{~L}}{\min }, c_{i}=0.2 \frac{\mathrm{~kg}}{\mathrm{~L}}, V_{0}=100 \mathrm{~L}
$$

After simplifying, the differential equation is:

$$
\frac{d x}{d t}+\frac{3}{100+t} x=0.8
$$

This equation is first order and linear. Let's compute the integrating factor:

$$
\mu(t)=\exp \left(\int \frac{3}{100+t} d t\right)=\exp (3 \ln (100+t))=(100+t)^{3}
$$

The solution is:

$$
\begin{aligned}
& x(t)=\frac{1}{\mu(t)}\left[\int \mu(t) Q(t)+C\right] \\
& x(t)=(100+t)^{-3}\left[\int 0.8(100+t)^{3} d t+C\right] \\
& x(t)=(100+t)^{-3}\left[0.2(100+t)^{4}+C\right] \\
& x(t)=0.2(100+t)+C(100+t)^{-3}
\end{aligned}
$$

The initial condition is $x(0)=0 \mathrm{~kg}$ since the tank initially contained pure water. Using this to solve for C we get:

$$
\begin{aligned}
0 & =0.2(100+0)+C(100+0)^{-3} \\
0 & =20+\frac{C}{100^{3}} \\
C & =-20(100)^{3}
\end{aligned}
$$

Therefore, the mass of salt as a function of time is:

$$
x(t)=0.2(100+t)-20\left(\frac{100}{100+t}\right)^{3}
$$

The concentration of salt is:

$$
c=\frac{\text { mass }}{\text { volume }}
$$

To determine when $c=0.1 \mathrm{~kg} / \mathrm{L}$, we must solve the following equation for t :

$$
\begin{aligned}
0.1 & =\frac{x(t)}{V(t)} \\
0.1 V(t) & =x(t) \\
0.1(100+t) & =0.2(100+t)-20\left(\frac{100}{100+t}\right)^{3}
\end{aligned}
$$

After some algebra, we find that:

$$
t=100(\sqrt[4]{2}-1)=18.92 \mathrm{~min}
$$

