Math 220 - Section 3.4 Solutions

1. Using $m=5 \mathrm{~kg}, v_{0}=0 \mathrm{~m} / \mathrm{s}$, and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}, b=50 \mathrm{~kg} / \mathrm{s}$, the equation of motion of the object is:

$$
\begin{aligned}
& x(t)=\frac{m g}{b} t+\frac{m}{b}\left(v_{0}-\frac{m g}{b}\right)\left(1-e^{-b t / m}\right) \\
& x(t)=\frac{(5)(9.81)}{50} t+\frac{5}{50}\left(0-\frac{(5)(9.81)}{50}\right)\left(1-e^{-50 t / 5}\right) \\
& x(t)=0.981 t-0.0981\left(1-e^{-10 t}\right)
\end{aligned}
$$

To determine when the ball hits the ground, we must find the value of t such that $x(t)=1000$. That is, we must solve the equation:

$$
0.981 t-0.0981\left(1-e^{-10 t}\right)=1000
$$

Assuming that t will be "large", we ignore the exponential term and solve:

$$
\begin{aligned}
0.981 t-0.0981(1-0) & =1000 \\
0.981 t & =1000+0.0981 \\
t & =1019.47 \mathrm{sec}
\end{aligned}
$$

2. Using $m=400 / 32$ slugs, $v_{0}=0 \mathrm{ft} / \mathrm{s}$, and $g=32 \mathrm{ft} / \mathrm{s}^{2}, b=10 \mathrm{slugs} / \mathrm{s}$, the equation of motion of the object is:

$$
x(t)=40 t-50\left(1-e^{-0.8 t}\right)
$$

To determine when the ball hits the ground, we must find the value of t such that $x(t)=500$. That is, we must solve the equation:

$$
40 t-50\left(1-e^{-0.8 t}\right)=500
$$

Assuming that t will be "large", we ignore the exponential term and solve:

$$
\begin{aligned}
40 t-50(1-0) & =500 \\
40 t & =500+50 \\
t & =13.75 \mathrm{sec}
\end{aligned}
$$

7. During the first part of the motion, we have:

$$
m=75 \mathrm{~kg}, v_{0}=0 \mathrm{~m} / \mathrm{s}, b_{1}=30 \mathrm{~kg} / \mathrm{s}
$$

Therefore, the velocity and position functions are:

$$
\begin{aligned}
& v(t)=24.525-24.525 e^{-0.4 t} \\
& x(t)=24.525 t-61.3125\left(1-e^{-0.4 t}\right)
\end{aligned}
$$

The time when the velocity is $20 \mathrm{~m} / \mathrm{s}$ is:

$$
\begin{aligned}
24.525-24.525 e^{-0.4 t} & =20 \\
t & =-\frac{\ln \frac{4.525}{24.525}}{0.4} \\
t & =4.225 \mathrm{sec}
\end{aligned}
$$

At this time, the position is:

$$
x(4.225)=53.62 \mathrm{~m}
$$

Once the chute is open, we have:

$$
b_{2}=90 \mathrm{~kg} / \mathrm{s}, v_{0}=20 \mathrm{~m} / \mathrm{s}
$$

The new equation of motion is:

$$
\begin{aligned}
& x(t)=\frac{m g}{b_{2}} t+\frac{m}{b_{2}}\left(v_{0}-\frac{m g}{b_{2}}\right)\left(1-e^{-b_{2} t / m}\right) \\
& x(t)=8.175 t+9.854\left(1-e^{-1.2 t}\right)
\end{aligned}
$$

The parachutist has already fallen 53.62 m . The remaining distance to the ground is $2000-53.62=$ 1946.38 m . Therefore, to find the time when the parachutist hits the ground we solve:

$$
8.175 t+9.854\left(1-e^{-1.2 t}\right)=1946.38
$$

Again, assuming that t will be "large", we ignore the exponential term and solve:

$$
\begin{aligned}
8.175 t+9.854(1-0) & =1946.38 \\
t & =236.88 \mathrm{sec}
\end{aligned}
$$

Adding this to the time it took for the velocity to reduce to $20 \mathrm{~m} / \mathrm{s}$, the total time is:

$$
\text { time }=4.225+236.88=241.11 \mathrm{sec}
$$

8. During the first part of the motion, we have:

$$
m=100 \mathrm{~kg}, v_{0}=0 \mathrm{~m} / \mathrm{s}, b_{3}=20 \mathrm{~kg} / \mathrm{s}
$$

Therefore, the velocity and position functions are:

$$
\begin{aligned}
& v(t)=49.05-49.05 e^{-0.2 t} \\
& x(t)=49.05 t-245.25\left(1-e^{-0.2 t}\right)
\end{aligned}
$$

After 30 sec , the velocity and position are:

$$
\begin{aligned}
& v(30)=49.05 \\
& x(30)=1226.25
\end{aligned}
$$

Once the chute is open, we have:

$$
b_{4}=100 \mathrm{~kg} / \mathrm{s}, v_{0}=49.05 \mathrm{~m} / \mathrm{s}
$$

The new equation of motion is:

$$
\begin{aligned}
& x(t)=\frac{m g}{b_{4}} t+\frac{m}{b_{4}}\left(v_{0}-\frac{m g}{b_{4}}\right)\left(1-e^{-b_{4} t / m}\right) \\
& x(t)=9.81 t+39.24\left(1-e^{-t}\right)
\end{aligned}
$$

The parachutist has already fallen 1226.25 m . The remaining distance to the ground is $3000-1226.25=$ 1773.75 m . Therefore, to find the time when the parachutist hits the ground we solve:

$$
9.81 t+39.24\left(1-e^{-t}\right)=1773.75
$$

Again, assuming that t will be "large", we ignore the exponential term and solve:

$$
\begin{aligned}
9.81 t+39.24(1-0) & =1773.25 \\
t & =176.81 \mathrm{sec}
\end{aligned}
$$

Adding this to the 30 seconds of free fall, the total time is:

$$
\text { time }=30+176.81=196.81 \mathrm{sec}
$$

If the parachutist opens the chute 60 seconds after leaving the helicopter, the total time is:

$$
t=86.81 \mathrm{sec}
$$

