Math 220 - Section 4.2 Solutions

1. The general solution to $2 y^{\prime \prime}+7 y^{\prime}-4 y=0$ is

$$
y=c_{1} e^{t / 2}+c_{2} e^{-4 t}
$$

2. The general solution to $y^{\prime \prime}+6 y^{\prime}+9 y=0$ is

$$
y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}
$$

3. The general solution to $y^{\prime \prime}+5 y^{\prime}+6 y=0$ is

$$
y=c_{1} e^{-3 t}+c_{2} e^{-2 t}
$$

4. The general solution to $y^{\prime \prime}-y^{\prime}-2 y=0$ is

$$
y=c_{1} e^{2 t}+c_{2} e^{-t}
$$

14. The auxiliary equation for $y^{\prime \prime}+y^{\prime}=0$ is

$$
r^{2}+r=0
$$

The solutions are $r=0$ and $r=-1$. Therefore, the general solution and its first derivative are:

$$
\begin{aligned}
y & =c_{1}+c_{2} e^{-t} \\
y^{\prime} & =-c_{2} e^{-t}
\end{aligned}
$$

The initial conditions are $y(0)=2, y^{\prime}(0)=1$. The resulting system of equations are:

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
-c_{2} & =1
\end{aligned}
$$

The solution is $c_{1}=3, c_{2}=-1$. Therefore, the solution is:

$$
y=3-e^{-t}
$$

17. The auxiliary equation for $z^{\prime \prime}-2 z^{\prime}-2 z=0$ is

$$
r^{2}-2 r-2=0
$$

The solutions are $r=1 \pm \sqrt{3}$. Therefore, the general solution and its first derivative are:

$$
\begin{aligned}
z & =c_{1} e^{(1+\sqrt{3}) t}+c_{2} e^{(1-\sqrt{3}) t} \\
z^{\prime} & =(1+\sqrt{3}) c_{1} e^{(1+\sqrt{3}) t}+(1-\sqrt{3}) c_{2} e^{(1-\sqrt{3}) t}
\end{aligned}
$$

The initial conditions are $z(0)=0, z^{\prime}(0)=3$. The resulting system of equations are:

$$
\begin{array}{r}
c_{1}+c_{2}=0 \\
(1+\sqrt{3}) c_{1}+(1-\sqrt{3}) c_{2}=3
\end{array}
$$

The solution is $c_{1}=\frac{\sqrt{3}}{2}, c_{2}=-\frac{\sqrt{3}}{2}$. Therefore, the solution is:

$$
y=\frac{\sqrt{3}}{2} e^{(1+\sqrt{3}) t}-\frac{\sqrt{3}}{2} e^{(1-\sqrt{3}) t}
$$

28. The Wronskian of $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-4 t}$ is:

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)=\left|\begin{array}{rr}
e^{3 t} & e^{-4 t} \\
3 e^{3 t} & -4 e^{-4 t}
\end{array}\right| \\
& W\left(y_{1}, y_{2}\right)=-4 e^{-t}-3 e^{-t} \\
& W\left(y_{1}, y_{2}\right)=-7 e^{-t}
\end{aligned}
$$

There is no value of t on the interval $[0,1]$ that will make the Wronskian zero. Therefore, y_{1} and y_{2} are linearly independent.
29. The Wronskian of $y_{1}(t)=t e^{2 t}$ and $y_{2}(t)=e^{2 t}$ is:

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)=\left|\begin{array}{rr}
t e^{2 t} & e^{2 t} \\
2 t e^{2 t}+e^{2 t} & 2 e^{2 t}
\end{array}\right| \\
& W\left(y_{1}, y_{2}\right)=2 t e^{4 t}-2 t e^{4 t}-e^{4 t} \\
& W\left(y_{1}, y_{2}\right)=-e^{4 t}
\end{aligned}
$$

There is no value of t on the interval $[0,1]$ that will make the Wronskian zero. Therefore, y_{1} and y_{2} are linearly independent.

