Math 220 - Section 4.3 Solutions

1. The general solution to $y^{\prime \prime}+9 y=0$ is

$$
y=c_{1} \cos 3 t+c_{2} \sin 3 t
$$

3. The general solution to $z^{\prime \prime}-6 z^{\prime}+10 z=0$ is

$$
z=e^{3 t}\left(c_{1} \cos t+c_{2} \sin t\right)
$$

4. The general solution to $y^{\prime \prime}-10 y^{\prime}+26 y=0$ is

$$
y=e^{5 t}\left(c_{1} \cos t+c_{2} \sin t\right)
$$

9. The general solution to $y^{\prime \prime}-8 y^{\prime}+7 y=0$ is

$$
y=c_{1} e^{t}+c_{2} e^{7 t}
$$

13. The general solution to $y^{\prime \prime}+2 y^{\prime}+5 y=0$ is

$$
y=e^{-t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)
$$

23. The general solution and its first derivative for the equation $w^{\prime \prime}-4 w^{\prime}+2 w=0$ are:

$$
\begin{aligned}
w & =c_{1} e^{(2+\sqrt{2}) t}+c_{2} e^{(2-\sqrt{2}) t} \\
w^{\prime} & =(2+\sqrt{2}) c_{1} e^{(2+\sqrt{2}) t}+(2-\sqrt{2}) c_{2} e^{(2-\sqrt{2}) t}
\end{aligned}
$$

Using the initial conditions $w(0)=0$ and $w^{\prime}(0)=1$ we have:

$$
\begin{array}{r}
c_{1}+c_{2}=0 \\
(2+\sqrt{2}) c_{1}+(2-\sqrt{2}) c_{2}=1
\end{array}
$$

The solution is $c_{1}=\frac{\sqrt{2}}{4}, c_{2}=-\frac{\sqrt{2}}{4}$. Therefore,

$$
y=\frac{\sqrt{2}}{4} e^{(2+\sqrt{2}) t}-\frac{\sqrt{2}}{4} e^{(2-\sqrt{2}) t}
$$

