Math 220 - Section 4.4 Solutions

11. The auxiliary equation for $2 z^{\prime \prime}+z=9 e^{2 t}$ is $2 r^{2}+1=0$. Its roots are $r= \pm \frac{i}{\sqrt{2}}$. Therefore, the homogeneous solution is:

$$
z_{h}(t)=c_{1} \cos \left(\frac{t}{\sqrt{2}}\right)+c_{2} \sin \left(\frac{t}{\sqrt{2}}\right)
$$

The form of the particular solution and its first two derivatives are:

$$
\begin{aligned}
& z_{p}(t)=A e^{2 t} \\
& z_{p}^{\prime}(t)=2 A e^{2 t} \\
& z_{p}^{\prime \prime}(t)=4 A e^{2 t}
\end{aligned}
$$

Plugging these into the ODE we get:

$$
\begin{aligned}
2 z^{\prime \prime}+z & =9 e^{2 t} \\
2\left(4 A e^{2 t}\right)+A e^{2 t} & =9 e^{2 t} \\
9 A e^{2 t} & =9 e^{2 t} \\
9 A & =9 \\
A & =1
\end{aligned}
$$

Therefore, the particular solution is:

$$
z_{p}(t)=e^{2 t}
$$

12. The auxiliary equation for $2 x^{\prime}+x=3 t^{2}$ is $2 r+1=0$. Its root is $r=-\frac{1}{2}$. Therefore, the homogeneous solution is:

$$
x_{h}(t)=c e^{-t / 2}
$$

The form of the particular solution and its first derivative are:

$$
\begin{aligned}
& x_{p}(t)=A+B t+C t^{2} \\
& x_{p}^{\prime}(t)=B+2 C t
\end{aligned}
$$

Plugging these into the ODE we get:

$$
\begin{aligned}
2 x^{\prime}+x & =3 t^{2} \\
2(B+2 C t)+\left(A+B t+C t^{2}\right) & =3 t^{2} \\
(2 B+A)+t(4 C+B)+t^{2}(C) & =3 t^{2}
\end{aligned}
$$

Equating the coefficients of t^{n} on both sides, we get the following system of equations:

$$
\begin{array}{rr}
t^{2}: & C=3 \\
t^{1}: & 4 C+B=0 \\
t^{0}: & 2 B+A
\end{array}
$$

The solution is $C=3, B=-12$, and $A=24$. Therefore, the particular solution is:

$$
x_{p}(t)=24-12 t+3 t^{2}
$$

24. The auxiliary equation for $y^{\prime \prime}+y=4 x \cos x$ is $r^{2}+1=0$. Its roots are $r= \pm i$. Therefore, the homogeneous solution is:

$$
y_{h}(x)=c_{1} \cos x+c_{2} \sin x
$$

The form of the particular solution and its first two derivatives are:

$$
\begin{aligned}
y_{p}(x)= & x^{1}\left[\left(A_{0}+A_{1} x\right) \sin x+\left(B_{0}+B_{1} x\right) \cos x\right] \\
= & \left(A_{0} x+A_{1} x^{2}\right) \sin x+\left(B_{0} x+B_{1} x^{2}\right) \cos x \\
y_{p}^{\prime}(x)= & \left(A_{0} x+A_{1} x^{2}\right) \cos x+\left(A_{0}+2 A_{1} x\right) \sin x-\left(B_{0} x+B_{1} x^{2}\right) \sin x+\left(B_{0}+2 B_{1} x\right) \cos x \\
= & \left(B_{0}+\left(A_{0}+2 B_{1}\right) x+A_{1} x^{2}\right) \cos x+\left(A_{0}+\left(2 A_{1}-B_{0}\right) x-B_{1} x^{2}\right) \sin x \\
y_{p}^{\prime \prime}(x)= & -\left(B_{0}+\left(A_{0}+2 B_{1}\right) x+A_{1} x^{2}\right) \sin x+\left(A_{0}+2 B_{1}+2 A_{1} x\right) \cos x+ \\
& \left(A_{0}+\left(2 A_{1}-B_{0}\right) x-B_{1} x^{2}\right) \cos x+\left(2 A_{1}-B_{0}-2 B_{1} x\right) \sin x \\
= & \left(2 A_{1}-2 B_{0}-\left(A_{0}+4 B_{1}\right) x-A_{1} x^{2}\right) \sin x+\left(2 A_{0}+2 B_{1}+\left(4 A_{1}-B_{0}\right) x-B_{1} x^{2}\right) \cos x
\end{aligned}
$$

Note that we need an extra x^{1} in the particular solution because $0+i$ is a root of the auxiliary equation. Plugging these into the ODE we get:

$$
\begin{aligned}
& y^{\prime \prime}+y=4 x \cos x \\
&\left(2 A_{1}-2 B_{0}-\left(A_{0}+4 B_{1}\right) x-A_{1} x^{2}\right) \sin x+\left(2 A_{0}+2 B_{1}+\left(4 A_{1}-B_{0}\right) x-B_{1} x^{2}\right) \cos x \\
&+\left(A_{0} x+A_{1} x^{2}\right) \sin x+\left(B_{0} x+B_{1} x^{2}\right) \cos x=4 x \cos x \\
&\left(2 A_{1}-2 B_{0}\right) \sin x+\left(-4 B_{1}\right) x \sin x+\left(2 A_{0}+2 B_{1}\right) \cos x+\left(4 A_{1}\right) x \cos x=4 x \cos x
\end{aligned}
$$

Equating the coefficients of $x^{n} \sin x$ and $x^{n} \cos x$ on both sides, we get the following system of equations:

$$
\begin{array}{rr}
x \sin x: & -4 B_{1}=0 \\
\sin x: & 2 A_{1}-2 B_{0}=0 \\
x \cos x: & 4 A_{1}=4 \\
\cos x: & 2 A_{0}+2 B_{1}=0
\end{array}
$$

The solution is $A_{1}=1, B_{1}=0, A_{0}=0$, and $B_{0}=1$. Therefore, the particular solution is:

$$
y_{p}(x)=x^{2} \sin x+x \cos x
$$

27. The homogeneous solution for $y^{\prime \prime}+9 y=4 t^{3} \sin 3 t$ is:

$$
y_{h}(t)=c_{1} \cos 3 t+c_{2} \sin 3 t
$$

The form of the particular solution is then:

$$
y_{p}(t)=t^{1}\left[\left(A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}\right) \sin 3 t+\left(B_{0}+B_{1} t+B_{2} t^{2}+B_{3} t^{3}\right) \cos 3 t\right]
$$

Note that we need an extra t^{1} in the particular solution because $0+3 i$ is a root of the auxiliary equation.
28. The form of the particular solution to $y^{\prime \prime}+3 y^{\prime}-7 y=t^{4} e^{t}$ is:

$$
y_{p}(t)=\left(A+B t+C t^{2}+D t^{3}+E t^{4}\right) e^{t}
$$

30. The form of the particular solution to $y^{\prime \prime}-2 y^{\prime}+y=7 e^{t} \cos t$ is:

$$
y_{p}(t)=e^{t}(A \sin t+B \cos t)
$$

