Math 220 - Section 4.7 Solutions

2. The differential equation

$$
t(t-3) y^{\prime \prime}+2 t y^{\prime}-y=t^{2}
$$

written in standard form is

$$
y^{\prime \prime}+\frac{2}{t-3} y^{\prime}-\frac{1}{t(t-3)} y=\frac{t}{t-3}
$$

We identify the functions p, q, and g as

$$
p(t)=\frac{2}{t-3}, q(t)=\frac{1}{t(t-3)}, g(t)=\frac{t}{t-3}
$$

The functions p and g are continuous everywhere except $t=3$. The function q is continuous everywhere except $t=0,3$. By the existence and uniqueness theorem, we know that there is a unique solution on the interval $(0,3)$ since the initial conditions are $y(1)=Y_{0}$ and $y^{\prime}(1)=Y_{1}$.
10. The given differential equation is

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-6 y=0
$$

The characteristic equation and its roots are:

$$
\begin{aligned}
r(r-1)+2 r-6 & =0 \\
r^{2}-r+2 r-6 & =0 \\
r^{2}+r-6 & =0 \\
(r+3)(r-2) & =0 \\
r=-3, r & =2
\end{aligned}
$$

The solution is then

$$
y(t)=c_{1} t^{-3}+c_{2} t^{2}
$$

12. The given differential equation is

$$
t^{2} z^{\prime \prime}+5 t z^{\prime}+4 z=0
$$

The characteristic equation and its roots are:

$$
\begin{aligned}
r(r-1)+5 r+4 & =0 \\
r^{2}-r+5 r+4 & =0 \\
r^{2}+4 r+4 & =0 \\
(r+2)^{2} & =0 \\
r & =-2
\end{aligned}
$$

The solution is then

$$
y(t)=c_{1} t^{-2}+c_{2} t^{-2} \ln t
$$

15. The given differential equation is

$$
y^{\prime \prime}-\frac{1}{t} y^{\prime}+\frac{5}{t^{2}} y=0
$$

Multiplying the equation by t^{2} we get

$$
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0
$$

The characteristic equation and its roots are:

$$
\begin{aligned}
r(r-1)-r+5 & =0 \\
r^{2}-r-r+5 & =0 \\
r^{2}-2 r+5 & =0 \\
r & =-1 \pm 2 i
\end{aligned}
$$

The solution is then

$$
y(t)=t^{-1}\left(c_{1} \cos (2 \ln t)+c_{2} \sin (2 \ln t)\right)
$$

