Math 220 - Section 5.2 Solutions

3. To solve

$$
\begin{align*}
x^{\prime}+2 y & =0 \tag{1}\\
x^{\prime}-y^{\prime} & =0 \tag{2}
\end{align*}
$$

from Equation (2) we have $x^{\prime}=y^{\prime}$. Plugging this into Equation (1) we have

$$
y^{\prime}+2 y=0
$$

The solution to this equation is

$$
y(t)=c_{1} e^{-2 t}
$$

Since $x^{\prime}=y^{\prime}$ we have:

$$
\begin{aligned}
x^{\prime} & =y^{\prime} \\
x^{\prime} & =-2 c_{1} e^{-2 t} \\
x(t) & =\int-2 c_{1} e^{-2 t} d t \\
x(t) & =c_{1} e^{-2 t}+c_{2}
\end{aligned}
$$

5. we did this in class
6. To solve

$$
\begin{align*}
x^{\prime}+y^{\prime}+2 x & =0 \tag{3}\\
x^{\prime}+y^{\prime}-x-y & =\sin t \tag{4}
\end{align*}
$$

subtract the two equations to get

$$
\begin{equation*}
3 x+y=-\sin t \Rightarrow y=-3 x-\sin t \tag{5}
\end{equation*}
$$

Plugging this into Equation (3) we have

$$
\begin{aligned}
x^{\prime}+y^{\prime}+2 x & =0 \\
x^{\prime}+(-3 x-\sin t)^{\prime}+2 x & =0 \\
x^{\prime}-3 x^{\prime}-\cos t+2 x & =0 \\
-2 x^{\prime}+2 x & =\cos t \\
x^{\prime}-x & =-\frac{1}{2} \cos t
\end{aligned}
$$

The solution to the above equation is

$$
x(t)=C e^{t}+\frac{1}{4} \cos t-\frac{1}{4} \sin t
$$

Then from Equation (5) we have

$$
y(t)=-3 C e^{t}-\frac{3}{4} \cos t-\frac{1}{4} \sin t
$$

Note that there is only one unknown constant C because x and y are related by $y=-3 x-\sin t$. If we know $x(0)$, then $y(0)=-3 x(0)-\sin 0=-3 x(0)$.
19. The initial value problem is

$$
\begin{align*}
& \frac{d x}{d t}=4 x+y, \quad x(0)=1 \tag{6}\\
& \frac{d y}{d t}=-2 x+y, \quad y(0)=0 \tag{7}
\end{align*}
$$

From Equation (6) we have

$$
\begin{equation*}
y=x^{\prime}-4 x \tag{8}
\end{equation*}
$$

Plugging this into Equation (7) we have

$$
\begin{aligned}
y^{\prime} & =-2 x+y \\
\left(x^{\prime}-4 x\right)^{\prime} & =-2 x+\left(x^{\prime}-4 x\right) \\
x^{\prime \prime}-4 x^{\prime} & =-2 x+x^{\prime}-4 x \\
x^{\prime \prime}-5 x^{\prime}+6 x & =0
\end{aligned}
$$

The solution to the above equation is

$$
x(t)=c_{1} e^{3 t}+c_{2} e^{2 t}
$$

Plugging this into Equation (8) we have

$$
y(t)=x^{\prime}-4 x=-c_{1} e^{3 t}-2 c_{2} e^{2 t}
$$

Using the initial conditions, we get the following system of equations

$$
\begin{array}{r}
x(0)=c_{1}+c_{2}=1 \\
y(0)=-c_{1}-2 c_{2}=0
\end{array}
$$

The solution to the system is $c_{1}=2$ and $c_{2}=-1$. Therefore, the solution to the IVP is

$$
x(t)=2 e^{3 t}-e^{2 t}, \quad y(t)=-2 e^{3 t}+c_{2} e^{2 t}
$$

