Math 220 - Section 5.4 Solutions

7. Find the phase plane equation for the system

$$
\begin{align*}
& \frac{d x}{d t}=y-1 \tag{1}\\
& \frac{d y}{d t}=e^{x+y} \tag{2}
\end{align*}
$$

To do this, we will divide Equation (2) by Equation (1) and rearrange terms

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{e^{x+y}}{y-1} \\
\frac{d y}{d x} & =\frac{e^{x} e^{y}}{y-1} \\
\frac{y-1}{e^{y}} d y & =e^{x} d x \\
\left(y e^{-y}-e^{-y}\right) d y & =e^{x} d x
\end{aligned}
$$

Integrating both sides we get

$$
-y e^{-y}=e^{x}+C
$$

11. Solve the phase plane equation for

$$
\begin{align*}
& \frac{d x}{d t}=2 y \tag{3}\\
& \frac{d y}{d t}=2 x \tag{4}
\end{align*}
$$

and sketch several representative trajectories. To do this, we will divide Equation (4) by Equation (3) and rearrange terms

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x}{2 y} \\
\frac{d y}{d x} & =\frac{x}{y} \\
y d y & =x d x
\end{aligned}
$$

Integrating both sides we get

$$
\begin{aligned}
\frac{1}{2} y^{2} & =\frac{1}{2} x^{2}+C \\
y^{2}-x^{2} & =K
\end{aligned}
$$

A few solutions are plotted below:

13. Solve the phase plane equation for

$$
\begin{align*}
& \frac{d x}{d t}=(y-x)(y-1) \tag{5}\\
& \frac{d y}{d t}=(x-y)(x-1) \tag{6}
\end{align*}
$$

and sketch several representative trajectories. To do this, we will divide Equation (6) by Equation (5) and rearrange terms

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x-y)(x-1)}{(y-x)(y-1)} \\
\frac{d y}{d x} & =\frac{-(x-1)}{y-1} \\
(y-1) d y & =-(x-1) d x
\end{aligned}
$$

Integrating both sides we get

$$
\begin{aligned}
\frac{1}{2}(y-1)^{2} & =-\frac{1}{2}(x-1)^{2}+C \\
(x-1)^{2}+(y-1)^{2} & =K
\end{aligned}
$$

A few solutions are plotted below:

