Math 220 - Section 8.5 Solutions

2. To find the general solution to $2 x^{2} y^{\prime \prime}+13 x y^{\prime}+15 y=0$ we solve for the roots of the indicial equation:

$$
\begin{aligned}
2 r(r-1)+13 r+15 & =0 \\
2 r^{2}+11 r+15 & =0 \\
(2 r+5)(r+3) & =0 \\
\Rightarrow \quad r=-\frac{5}{2}, r & =-3
\end{aligned}
$$

The roots are real and distinct. Therefore, the general solution is:

$$
y(x)=c_{1} x^{-5 / 2}+c_{2} x^{-3}
$$

4. To find the general solution to $x^{2} y^{\prime \prime}+2 x y^{\prime}-3 y=0$ we solve for the roots of the indicial equation:

$$
\begin{aligned}
r(r-1)+2 r-3 & =0 \\
r^{2}+r-3 & =0 \\
r & =\frac{-1 \pm \sqrt{1^{2}-4(-3)(1)}}{2} \\
r & =\frac{-1 \pm \sqrt{13}}{2}
\end{aligned}
$$

The roots are real and distinct. Therefore, the general solution is:

$$
y(x)=c_{1} x^{(-1+\sqrt{13}) / 2}+c_{2} x^{(-1-\sqrt{13}) / 2}
$$

5. Rewriting the ODE we have:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{5}{x} \frac{d y}{d x}-\frac{13}{x^{2}} y \\
& x^{2} y^{\prime \prime}-5 x y^{\prime}+13 y=0
\end{aligned}
$$

The roots of the indicial equation are:

$$
\begin{aligned}
r(r-1)-5 r+13 & =0 \\
r^{2}-6 r+13 & =0 \\
r & =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(13)(1)}}{2} \\
r & =\frac{6 \pm \sqrt{-16}}{2} \\
r & =3 \pm 2 i
\end{aligned}
$$

The roots are complex with $\alpha=3$ and $\beta=2$. Therefore, the general solution is:

$$
y(x)=x^{3}\left[c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)\right]
$$

15. The initial value problem is:

$$
t^{2} x^{\prime \prime}-12 x=0, x(1)=3, x^{\prime}(1)=5
$$

The indicial equation and its roots are:

$$
\begin{aligned}
r(r-1)-12 & =0 \\
r^{2}-r-12 & =0 \\
(r-4)(r+3) & =0 \\
\Rightarrow \quad r=4, r & =-3
\end{aligned}
$$

The roots are real and distinct. Therefore, the general solution is:

$$
x(t)=c_{1} t^{4}+c_{2} t^{-3}
$$

Before we plug in the initial conditions, we must compute x^{\prime} :

$$
x^{\prime}(t)=4 c_{1} t^{3}-3 c_{2} t^{-4}
$$

Plugging in the initial conditions, we get the system of equations:

$$
\begin{array}{r}
x(1)=c_{1}+c_{2}=3 \\
x^{\prime}(1)=4 c_{1}-3 c_{2}=5
\end{array}
$$

The solution to this system is $c_{1}=2$ and $c_{2}=1$. Therefore, the solution is:

$$
x(t)=2 t^{4}+t^{-3}
$$

