Math 220 - Section 9.5 Solutions

1. First, we find the eigenvalues of the matrix:

$$
\begin{aligned}
|A-\lambda I| & =0 \\
\left|\begin{array}{cc}
-4-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right| & =0 \\
(-4-\lambda)(-1-\lambda)-(2)(2) & =0 \\
\lambda^{2}+5 \lambda+4-4 & =0 \\
\lambda^{2}+5 \lambda & =0 \\
\lambda(\lambda+5) & =0 \\
\lambda=0, \lambda & =-5
\end{aligned}
$$

Now we find the corresponding eigenvectors for each eigenvalue. Start with $\lambda=0$:

$$
\begin{aligned}
(A-0 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{rc}
-4-0 & 2 \\
2 & -1-0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{rr}
-4 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow 2 x_{1}-x_{2} & =0
\end{aligned}
$$

We let $x_{2}=2$ so that $x_{1}=1$. Thus, an eigenvector for $\lambda=0$ is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Now we find an eigenvector for $\lambda=-5$:

$$
\begin{aligned}
(A+5 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{ccc}
-4+5 & 2 & \\
2 & -1+5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow \quad x_{1}+2 x_{2} & =0
\end{aligned}
$$

We let $x_{2}=1$ so that $x_{1}=-2$. Thus, an eigenvector for $\lambda=-5$ is $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$.
3. First, we find the eigenvalues of the matrix:

$$
\begin{aligned}
|A-\lambda I| & =0 \\
\left|\begin{array}{cc}
1-\lambda & -1 \\
2 & 4-\lambda
\end{array}\right| & =0 \\
(1-\lambda)(4-\lambda)-(-1)(2) & =0 \\
\lambda^{2}-5 \lambda+4+2 & =0 \\
\lambda^{2}-5 \lambda+6 & =0 \\
(\lambda-2)(\lambda-3) & =0 \\
\lambda=2, \lambda & =3
\end{aligned}
$$

Now we find the corresponding eigenvectors for each eigenvalue. Start with $\lambda=2$:

$$
\begin{aligned}
(A-2 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{cc}
1-2 & -1 \\
2 & 4-2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{rr}
-1 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow x_{1}+x_{2} & =0
\end{aligned}
$$

We let $x_{2}=1$ so that $x_{1}=-1$. Thus, an eigenvector for $\lambda=2$ is $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
Now we find an eigenvector for $\lambda=3$:

$$
\begin{aligned}
(A-3 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{cc}
1-3 & -1 \\
2 & 4-3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{rr}
-2 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow 2 x_{1}+x_{2} & =0
\end{aligned}
$$

We let $x_{2}=2$ so that $x_{1}=-1$. Thus, an eigenvector for $\lambda=3$ is $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$.
12. The eigenvalues and eigenvectors of the given matrix are:

$$
\lambda=7,\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; \lambda=-5,\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

The general solution to $\overrightarrow{\mathrm{x}}^{\prime}=A \overrightarrow{\mathrm{x}}$ is then:

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{7 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-5 t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

31. The eigenvalues and eigenvectors of the given matrix are:

$$
\lambda=4,\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \lambda=-2,\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

The general solution to $\overrightarrow{\mathbf{x}}^{\prime}=A \overrightarrow{\mathbf{x}}$ is then:

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Now use the initial conditions to solve for c_{1} and c_{2} :

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}
3 \\
1
\end{array}\right] & =c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& \Rightarrow 3
\end{aligned}
$$

The solution to the above system of equations is $c_{1}=-1$ and $c_{1}=2$. Therefore, the solution is:

$$
\overrightarrow{\mathbf{x}}(t)=-e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2 e^{-2 t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

32. The eigenvalues and eigenvectors of the given matrix are:

$$
\lambda=3,\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \lambda=4,\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

The general solution to $\overrightarrow{\mathrm{x}}^{\prime}=A \overrightarrow{\mathrm{x}}$ is then:

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Now use the initial conditions to solve for c_{1} and c_{2} :

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{r}
-10 \\
-6
\end{array}\right] & =c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
\Rightarrow-10 & =c_{1}+3 c_{2} \\
-6 & =c_{1}+2 c_{2}
\end{aligned}
$$

The solution to the above system of equations is $c_{1}=2$ and $c_{2}=-4$. Therefore, the solution is:

$$
\overrightarrow{\mathbf{x}}(t)=2 e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-4 e^{4 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

