Summer, 2007 - Exam 1 Solutions

1. (15 pts) Solve the following initial value problem (leave your answer in implicit form):

$$
\frac{d y}{d x}=\frac{y \cos x}{1+2 y^{2}}, \quad y(0)=1
$$

Solution: The equation is separable but not linear. So we must solve by separation of variables:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y \cos x}{1+2 y^{2}} \\
\frac{1+2 y^{2}}{y} d y & =\cos x d x \\
\int\left(\frac{1}{y}+2 y\right) d y & =\int \cos x d x \\
\ln |y|+y^{2} & =\sin x+C
\end{aligned}
$$

Use the initial condition $y(0)=1$ to solve for C :

$$
\begin{aligned}
\ln |1|+1^{2} & =\sin 0+C \\
0+1 & =0+C \\
C & =1
\end{aligned}
$$

The solution is:

$$
\ln |y|+y^{2}=\sin x+1
$$

2. (15 pts) Consider the initial value problem:

$$
y^{\prime}=x^{2}+y^{2}, \quad y(0)=1
$$

Use Euler's method with step size $h=\frac{1}{4}$ to find the approximate value of $y\left(\frac{1}{2}\right)$.
Solution: Here we have $x_{0}=0, y_{0}=1, f(x, y)=x^{2}+y^{2}$, and $h=\frac{1}{4}$. The first step of Euler's Method gives us:

$$
\begin{aligned}
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =1+\left(\frac{1}{4}\right)\left(0^{2}+1^{2}\right) \\
& =1+\frac{1}{4} \\
& =\frac{5}{4} \\
x_{1} & =x_{0}+h \\
& =0+\frac{1}{4} \\
& =\frac{1}{4}
\end{aligned}
$$

One more step gives us:

$$
\begin{aligned}
y_{2} & =y_{1}+h f\left(x_{1}, y_{1}\right) \\
& =\frac{5}{4}+\left(\frac{1}{4}\right)\left[\left(\frac{1}{4}\right)^{2}+\left(\frac{5}{4}\right)^{2}\right] \\
& =\frac{5}{4}+\left(\frac{1}{4}\right)\left(\frac{26}{16}\right) \\
& =\frac{106}{64} \\
x_{2} & =x_{1}+h \\
& =\frac{1}{4}+\frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

The approximate value of $y\left(\frac{1}{2}\right)$ is $\frac{106}{64}=\frac{53}{32}=1.65625$.
3. (25 pts) A salt water solution with a concentration of $1 \mathrm{~kg} / \mathrm{L}$ flows at a constant rate of $2 \mathrm{~L} / \mathrm{min}$ into a large tank that initially holds 100 L of pure water. The solution inside the tank is kept well-stirred and flows out of the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$.
(a) Determine $V(t)$, the volume of solution in the tank at time t.
(b) At what time will the tank be empty?
(c) Set up and solve the initial value problem (ODE + initial condition) that governs how much salt $x(t)$ is in the tank at time t.

Solution:

(a) The volume is given by:

$$
V(t)=V_{0}+\left(r_{i}-r_{o}\right) t=100+(2-4) t=100-2 t
$$

(b) The tank will be empty when $V(t)=0$:

$$
0=100-2 t \Rightarrow t=50 \mathrm{~min}
$$

(c) The ODE that governs $x(t)$ is:

$$
\begin{aligned}
\frac{d x}{d t} & =\text { rate in }- \text { rate out } \\
\frac{d x}{d t} & =r_{i} c_{i}-r_{o} c_{o} \\
\frac{d x}{d t} & =(2)(1)-(4) \frac{x}{100-2 t} \\
\frac{d x}{d t} & =2-\frac{2}{50-t} x \\
\frac{d x}{d t}+\frac{2}{50-t} x & =2
\end{aligned}
$$

The ODE is linear but not separable. Therefore, we solve by first computing the integrating factor:

$$
\begin{aligned}
\mu(t) & =\exp \left(\int \frac{2}{50-t} d t\right) \\
& =\exp (-2 \ln (50-t)) \\
& =\exp \left(\ln (50-t)^{-2}\right) \\
& =(50-t)^{-2}
\end{aligned}
$$

Multiplying the ODE by $\mu(t)$ and simplifying we get:

$$
\begin{aligned}
\frac{d x}{d t}(0-t)^{-2}+\frac{2}{50-t}(50-t)^{-2} x & =2(50-t)^{-2} \\
\frac{d}{d t}\left[(50-t)^{-2} x(t)\right] & =2(50-t)^{-2} \\
\int d\left[(50-t)^{-2} x(t)\right] & =\int 2(50-t)^{-2} d t \\
(50-t)^{-2} x(t) & =\frac{2}{50-t}+C
\end{aligned}
$$

We use the initial condition, $x(0)=0$, to find C :

$$
\begin{aligned}
(50-0)^{-2}(0) & =\frac{2}{50-0}+C \\
0 & =\frac{1}{25}+C \\
C & =-\frac{1}{25}
\end{aligned}
$$

Thus, the solution is:

$$
x(t)=2(50-t)-\frac{1}{25}(50-t)^{2}
$$

4. (20 pts) Complete each of the following:
(a) Find the general solution to: $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
(b) Write the form of the particular solution to:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=x^{3}+2 x+3 e^{x}
$$

(Do not solve for the coefficients!)

Solution:

(a) The auxiliary equation is $r^{2}+5 r+6=0$. Its solutions are $x=-3,-2$. Therefore, the general solution is:

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{-2 x}
$$

(b) From the method of undetermined coefficients, the form of the particular solution is:

$$
y_{p}(x)=A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}+B e^{x}
$$

5. (25 pts) Find the general solution to the following nonhomogeneous ODE:

$$
y^{\prime \prime}+9 y=\cos 3 x
$$

Solution: The auxiliary equation is $r^{2}+9=0$. Its solutions are $x= \pm 3 i$. Therefore, the homogeneous solution is:

$$
y_{h}(x)=c_{1} \cos 2 x+c_{2} \sin 3 x
$$

To obtain the particular solution, we use the method of undetermined coefficients. The guess for the particular solution in this case is:

$$
y_{p}(x)=x(A \cos 3 x+B \sin 3 x)
$$

where the extra x is included because $\cos 3 x$ is part of the homogeneous solution. Taking two derivatives of $y_{p}(x)$ we get:

$$
\begin{aligned}
y_{p}^{\prime}(x) & =A \cos 3 x+B \sin 3 x+x(-3 A \sin 3 x+3 B \cos 3 x) \\
y_{p}^{\prime \prime}(x) & =-3 A \sin 3 x+3 B \cos 3 x+(-3 A \sin 3 x+3 B \cos 3 x)+x(-9 A \cos 3 x+9 B \sin 3 x) \\
& =-6 A \sin 3 x+6 B \cos 3 x+x(-9 A \cos 3 x+9 B \sin 3 x)
\end{aligned}
$$

Plugging into the ODE we get:

$$
\begin{aligned}
y_{p}^{\prime \prime}+y_{p} & =\cos 3 x \\
-6 A \sin 3 x+6 B \cos 3 x+x(-9 A \cos 3 x+9 B \sin 3 x)+9 x(A \cos 3 x+B \sin 3 x) & =\cos 3 x \\
-6 A \sin 3 x+6 B \cos 3 x & =\cos 3 x
\end{aligned}
$$

We obtain the following two equations by equating the coefficients of $\sin 3 x$ and $\cos 3 x$ on the left and right hand sides of the above equation:

$$
\begin{aligned}
-6 A & =0 \\
6 B & =1
\end{aligned}
$$

The solution is $A=0$ and $B=\frac{1}{6}$. The total solution is:

$$
y(x)=c_{1} \cos 3 x+c_{2} \sin 3 x+\frac{1}{6} x \sin 3 x
$$

