Summer, 2007 – Exam 1 Solutions

1. (20 pts) Find the general solution to:

$$\frac{dx}{dt} = x - y$$
$$\frac{dy}{dt} = 2x + 4y$$

Solution: Let's use the elimination method here. We'll take the first equation and solve for y:

$$y = x - x'$$

Then we'll plug this into the second equation:

$$y' = 2x + 4y$$
$$(x - x')' = 2x + 4(x - x')$$
$$x' - x'' = 2x + 4x - 4x'$$
$$x'' - 5x' + 6x = 0$$

The auxiliary equation is $r^2 - 5r + 6 = 0$ and the solutions are r = 2, 3. Therefore, the general solution for x(t) is:

$$x(t) = c_1 e^{2t} + c_2 e^{3t}$$

We then obtain y(t) from the first equation:

$$y(t) = x(t) - x'(t)$$

$$y(t) = c_1 e^{2t} + c_2 e^{3t} - (c_1 e^{2t} + c_2 e^{3t})'$$

$$y(t) = c_1 e^{2t} + c_2 e^{3t} - 2c_1 e^{2t} - 3c_2 e^{3t}$$

$$y(t) = -c_1 e^{2t} - 2c_2 e^{3t}$$

2. (20 pts) Compute the following expressions:

(a)
$$\mathcal{L}\left\{te^t + e^{-3t}\sin t\right\}$$

(b)
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s+5}\right\}$$

Solution:

(a) We use the property that $\mathscr{L}\{f(t)e^{at}\}=F(s-a)$ for both terms to get:

$$\boxed{\frac{1}{(s-1)^2} + \frac{1}{(s+3)^2 + 1}}$$

(b) We first complete the square to get:

$$\frac{s}{s^2 + 2s + 5} = \frac{s}{(s+1)^2 + 4}$$

Then we rewrite the numerator to get:

$$\frac{s}{(s+1)^2+4} = \frac{s+1-1}{(s+1)^2+4} = \frac{s+1}{(s+1)^2+4} - \frac{1}{2} \frac{2}{(s+1)^2+4}$$

The inverse Laplace transform of the above expression is:

$$e^{-t}\cos 2t - \frac{1}{2}e^{-t}\sin 2t$$

3. (20 pts) Consider the following piecewise-defined function:

$$f(t) = \begin{cases} 1, & 0 < t < 1 \\ t, & 1 < t < 2 \\ 0, & t > 2 \end{cases}$$

- (a) Write f(t) in terms of step functions.
- (b) Compute $\mathcal{L}\{f(t)\}$.

Solution:

(a) Written in terms of step functions, the function is:

$$f(t) = 1 + (t-1)u(t-1) - tu(t-2)$$

(b) The Laplace Transform of f(t) is:

$$\begin{split} \mathcal{L}\{f(t)\} &= \mathcal{L}\{1\} + \mathcal{L}\{(t-1)u(t-1)\} - \mathcal{L}\{tu(t-2)\} \\ &= \frac{1}{s} + \frac{e^{-s}}{s^2} - \mathcal{L}\{(t-2)u(t-2)\} - 2\mathcal{L}\{u(t-2)\} \\ &= \left[\frac{1}{s} + \frac{e^{-s}}{s^2} - \frac{e^{-2s}}{s^2} - \frac{2e^{-2s}}{s}\right] \end{split}$$

4. (20 pts) Find the solution x(t) to the following initial value problem:

$$x'' - 3x' + 2x = \delta(t - 1), \ x(0) = 0, \ x'(0) = 1$$

Solution: We solve by taking the Laplace transform of the equation to obtain X(s):

$$x'' - 3x' + 2x = \delta(t - 1)$$

$$\mathcal{L}\{x''\} - 3\mathcal{L}\{x'\} + 2\mathcal{L}\{x\} = \mathcal{L}\{\delta(t - 1)\}$$

$$s^{2}X(s) - sx(0) - x'(0) - 3(sX(s) - x(0)) + 2X(s) = e^{-s}$$

$$s^{2}X(s) - 1 - 3sX(s) + 2X(s) = e^{-s}$$

$$X(s)(s^{2} - 3s + 2) = 1 + e^{-s}$$

$$X(s) = \frac{1}{s^{2} - 3s + 2} + \frac{e^{-s}}{s^{2} - 3s + 2}$$

The solution x(t) is the inverse Laplace transform of X(s). In order to perform this calculation we must use partial fraction decomposition:

$$\frac{1}{s^2 - 3s + 2} = \frac{1}{(s - 2)(s - 1)} = \frac{1}{s - 2} - \frac{1}{s - 1}$$

Therefore, we have:

$$x(t) = \mathcal{L}^{-1}\{F(s)\}\$$

$$x(t) = \mathcal{L}^{-1}\left\{\frac{1}{s-2} - \frac{1}{s-1}\right\} + \mathcal{L}^{-1}\left\{e^{-s}\left(\frac{1}{s-2} - \frac{1}{s-1}\right)\right\}$$

$$x(t) = e^{2t} - e^t + \left[e^{2(t-1)} - e^{t-1}\right]u(t-1)$$

5. (20 pts) Find the Taylor Polynomial of degree 3 that approximates the solution to:

$$y' = xy^2, \ y(0) = 1$$

Solution: The Taylor polynomial of degree 3 is of the form:

$$P_3(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3$$

We're given that y(0) = 1. We must now find the remaining derivatives evaluated at x = 0. First, let's use the ODE to compute y', y'', and y''':

$$y' = xy^{2}$$

$$y'' = y^{2} + 2xyy'$$

$$y''' = 2yy' + 2yy' + 2xy'y' + 2xyy''$$

Evaluating at x = 0 we get:

$$y'(0) = (0)y(0)^{2} = 0$$

$$y''(0) = y(0)^{2} + 2(0)y(0)y'(0) = 1$$

$$y'''(0) = 2y(0)y'(0) + 2y(0)y'(0) + 2(0)y'(0)y'(0) + 2(0)y(0)y''(0) = 0$$

Therefore, the Taylor polynomial of degree 3 that approximates the solution is:

$$y(x) \approx P_3(x) = 1 + 0x + \frac{1}{2}x^2 + 0x^3$$