
MATH 417 Homework 4

Instructor: D. Cabrera Due July 7

1. Find all values of each expression below.

(a) (1 − i)i

(b) cos(1 − i)

(c) sin−1(2)

Solution:

(a) Here we use the formula

zc = ec log z

(1 − i)i = ei log(1−i)

The modulus of 1−i is r =
√

2 and the principal argument is Θ = −π

4
. Therefore,

log(1 − i) = ln
√

2 + i
(

−π

4
+ 2kπ

)

, k = 0,±1,±2, . . .

Multiplying log(1 − i) by i we get

i log(1 − i) = i
[

ln
√

2 + i
(

−π

4
+ 2kπ

)]

i log(1 − i) =
(π

4
+ 2kπ

)

+ i
(

ln
√

2
)

Finally, we exponentiate i log(1 − i) to get

(1 − i)i = eπ/4+2kπ+i ln
√

2

(1 − i)i = eπ/2+2kπei ln
√

2

(1 − i)i = eπ/4+2kπ
[

cos
(

ln
√

2
)

+ i sin
(

ln
√

2
)]

where k = 0,±1,±2, . . ..

(b) Here we can use either

cos z =
eiz + e−iz

2

cos(1 − i) =
ei(1−i) + e−i(1−i)

2

cos(1 − i) =
e1+i + e−1−i

2



or

cos z = cosh x cos y − i sinh x sin y

cos(1 − i) = cosh 1 cos(−1) − i sinh 1 sin(−1)

cos(1 − i) = cosh 1 cos 1 + i sinh 1 sin 1

(c) Here we use the formula

sin−1 z = −i log
[

iz + (1 − z2)1/2
]

sin−1 2 = −i log
[

2i ±
√

3i
]

sin−1 2 = −i log
[

(2 ±
√

3)i
]

If we take the positive root, then we have

sin−1 2 = −i log
[

(2 +
√

3)i
]

sin−1 2 = −i
[

ln(2 +
√

3) + i
(π

2
+ 2kπ

)]

sin−1 2 =
π

2
+ 2kπ − i ln(2 +

√
3)

If we take the negative root, then we have

sin−1 2 = −i log
[

(2 −
√

3)i
]

sin−1 2 = −i
[

ln(2 −
√

3) + i
(π

2
+ 2kπ

)]

sin−1 2 =
π

2
+ 2kπ − i ln(2 −

√
3)

where k = 0,±1,±2, . . ..

2. Prove that sin(2z) = 2 sin z cos z by using the definitions of sin z and cos z.

Solution: Using the definition of sin z we have

sin(2z) =
ei(2z) − e−i(2z)

2i

sin(2z) =
(eiz − e−iz)(eiz + e−iz)

2i

sin(2z) = 2

(

eiz − e−iz

2i

) (

eiz + e−iz

2

)

sin(2z) = 2 sin z cos z

where in the last step, we used the definitions of sin z and cos z.



3. Find the values of z for which cos z = 0 by using the fact that

| cos z|2 = cos2 x + sinh2 y where sinh y =
ey − e−y

2

Solution: If cos z = 0 then | cos z| = 0. So it must be the case that both

cos x = 0 and sinh y = 0

happen simultaneously. From the first equation we have

x =
(2k + 1)π

2
, k = 0,±1,±2, . . .

From the second equation we have y = 0. Therefore, cos z = 0 when

z =
(2k + 1)π

2
, k = 0,±1,±2, . . .

4. Show that f(z) = sin(z̄) is analytic nowhere.

Solution: The function can be written as

sin(z̄) = sin(x − iy)

sin(z̄) = sin x cosh(−y) + i cos x sinh(−y)

sin(z̄) = sin x cosh y − i cos x sinh y

Letting u = sin x cosh y and v = − cos x sinh y and computing their first partial deriva-
tives we get

ux = cos x cosh y, vy = − cos x cosh y

uy = sin x sinh y, vx = sin x sinh y

In order for the Cauchy-Riemann equations (ux = vy, uy = −vx) to be satisfied, we
need

cos x cosh y = 0 and sin x sinh y = 0

to occur simultaneously. From the first equation we can only have cos x = 0 since
cosh y > 0 for all y. Therefore,

x =
(2k + 1)π

2
, k = 0,±1,±2, . . .

From the second equation we must have sinh y = 0 because sin x and cos x cannot be
0 simultaneously. Therefore, y = 0.

Thus, since the first partial derivatives of u and v are continuous everywhere in the

complex plane and the Cauchy-Riemann equations are satisfied for z =
(2k + 1)π

2
,

f ′(z) exists for these values of z. However, at each point there is no neighborhood
throughout which f(z) is analytic. Therefore, f(z) = sin(z̄) is analytic nowhere.



5. Evaluate the integral
∫

C

ez dz

where C is the contour consisting of the two straight-line segments: (1) from z = i to
z = 1 + i and (2) from z = 1 + i to z = 1 − 2i.

Solution: To evaluate the integral we integrate over each line segment and then add
the results. On the first segment we have the parametrization

z(t) = t + i, 0 ≤ t ≤ 1

Therefore, the integral of f(z) over this segment is

∫

C1

f(z) dz =

∫ 1

0

f(z(t))z′(t) dt

=

∫ 1

0

et+i(1) dt

= et+i
∣

∣

∣

1

0

= e1+i − ei

On the second segment we have the parametrization

z(t) = 1 + it, −2 ≤ t ≤ 1

Therefore, the integral of f(z) over this segment is

∫

C2

f(z) dz =

∫ −2

1

f(z(t))z′(t) dt

=

∫ −2

1

e1+it(i) dt

= e1+it
∣

∣

∣

−2

1

= e1−2i − e1+i

The value of the integral is then

∫

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz

∫

C

f(z) dz = e1+i − ei + e1−2i − e1+i

= e1−2i − ei = e(cos 2 − i sin 2) + e(cos 1 + i sin 1)

= e [(cos 2 + cos 1) + i (sin 1 − sin 2)]



Note: Instead of using parametrizations, we could have said that f(z) is entire so it
has an antiderivative F (z) = ez and the value of the integral is

∫

C

ez dz = F (1 − 2i) − F (i) = e1−2i − ei

which is exactly what we obtained above.

6. Evaluate the integral
∫

C

(z2 − 1) dz

where C is the semicircle z = eit, −π

2
≤ t ≤ π

2
oriented counterclockwise.

Solution: The value of the integral is

∫

C

f(z) dz =

∫ b

a

f(z(t))z′(t) dt

∫

C

(z2 − 1) dz =

∫ π/2

−π/2

(

e2it − 1
)

ieit dt

= i

∫ π/2

−π/2

(

e3it − eit
)

dt

= i

[

1

3i
e3it − 1

i
eit

]π/2

−π/2

=

(

1

3
ei(3π/2) − ei(π/2)

)

−
(

1

3
ei(−3π/2) − ei(−π/2)

)

= −1

3
i − i − 1

3
i − i

= −8

3
i

Note: Instead of using the parametrization, we could have said that f(z) is entire so

it has an antiderivative F (z) =
1

3
z3 − z and the value of the integral is

∫

C

(z2−1) dz = F (i)−F (−i) =

(

1

3
i3 − i

)

−
(

1

3
(−i)3 − (−i)

)

= −1

3
i−i−1

3
i−i = −8

3
i

which is exactly what we obtained above.

7. Show that
∣

∣

∣

∣

∫

C

2z + 1

z2 − 4
dz

∣

∣

∣

∣

≤ π



where C is the upper half of the circle |z| = 1 oriented counterclockwise. Justify your
answer.

Solution: The length of the contour is L = π. Now we must find an upper bound on
|f(z)|. Using the triangle inequality |z1 + z2| ≤ |z1| + |z2| on the numerator we have

|2z + 1| ≤ 2|z| + 1 = 2 + 1 = 3

Using the triangle inequality |z1 − z2| ≥ ||z1| − |z2|| on the denominator we have

|z2 − 4| ≥ ||z|2 − 4| = |1 − 4| = 3

Thus, the modulus of f(z) satisfies the inequality

|f(z)| =

∣

∣

∣

∣

2z + 1

z2 − 4

∣

∣

∣

∣

≤ 3

3
= 1

Choosing M = 1 and using the formula for the ML-Bound we have

∣

∣

∣

∣

∫

C

2z + 1

z2 − 4
dz

∣

∣

∣

∣

≤ ML = π

8. Find an upper bound on
∣

∣

∣

∣

∫

C

dz

z2 + 1

∣

∣

∣

∣

where C is the circle |z − i| = 1 oriented counterclockwise. Justify your answer.

Solution: The length of the contour is L = 2π. To find an upper bound on |f(z)|
we’ll factor z2 + 1 and take the modulus to get

∣

∣

∣

∣

1

z2 + 1

∣

∣

∣

∣

=
1

|z − i||z + i| =
1

1 · |(z − i) + 2i| =
1

|(z − i) + 2i|

Now we use the triangle inequality |z1 + z2| ≥ ||z1| − |z2|| on the denominator to get

|(z − i) + 2i| ≥ ||z − i| − |2i|| = |1 − 2| = 1

Thus, we have
∣

∣

∣

∣

1

z2 + 1

∣

∣

∣

∣

≤ 1

1
= 1

Choosing M = 1 and using the ML-Bound formula we have

∣

∣

∣

∣

∫

C

dz

z2 + 1

∣

∣

∣

∣

≤ ML = 2π


