1. Find an equation of the plane passing through the following three points: $P = (2, -1, 4)$, $Q = (1, 1, -1)$, $R = (-4, 1, 1)$.

Solution: Let $\vec{u} = \overrightarrow{PQ} = (-1, 2, -5)$ and $\vec{v} = \overrightarrow{QR} = (-5, 0, 2)$. The cross product of \vec{u} and \vec{v} results in a vector normal to the plane containing P, Q, and R.

$$\vec{u} \times \vec{v} = \langle 4, 27, 10 \rangle.$$

A plane containing a point (x_0, y_0, z_0) with normal vector $\langle a, b, c \rangle$ has the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

Using $P = (2, -1, 4)$ as a point in the plane we have

$$4(x - 2) + 27(y + 1) + 10(z - 4) = 0.$$
2. Let the position vector be given by \(\mathbf{r}(t) = 2t^3 \mathbf{i} + (t^2 - t) \mathbf{j} - 8t \mathbf{k} \). Find the angle between the velocity and acceleration vectors at time \(t = 0 \).

Solution: The velocity and acceleration vectors are the first and second derivatives of \(\mathbf{r}(t) \), respectively.

\[
\mathbf{r}'(t) = \langle 6t^2, 2t - 1, -8 \rangle, \quad \mathbf{r}''(t) = \langle 12t, 2, 0 \rangle.
\]

The vectors evaluated at \(t = 0 \) are

\[
\mathbf{r}'(0) = \langle 0, -1, -8 \rangle, \quad \mathbf{r}''(0) = \langle 0, 2, 0 \rangle.
\]

The angle between two vectors can be computed via the dot product. That is,

\[
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}.
\]

Letting \(\mathbf{u} = \langle 0, -1, -8 \rangle \) and \(\mathbf{v} = \langle 0, 2, 0 \rangle \) we find that

\[
\cos \theta = \frac{-2}{2\sqrt{65}} \iff \theta = \arccos \left(-\frac{1}{\sqrt{65}} \right).
\]
3. Let $z = \sin x \cos y$, where $x = s + t$, $y = s - t$. Use the chain rule to compute the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Solution: The Chain Rule formulas for a function $z = z(x,y)$ where $x = x(s,t)$ and $y = y(s,t)$ are

$$
\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s},
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.
$$

Using the fact that $z = \sin x \cos y$ we have

$$
\frac{\partial z}{\partial x} = \cos x \cos y, \quad \frac{\partial z}{\partial y} = -\sin x \sin y.
$$

Furthermore, since $x = s + t$ and $y = s - t$ we have

$$
\frac{\partial x}{\partial s} = 1, \quad \frac{\partial x}{\partial t} = 1, \quad \frac{\partial y}{\partial s} = 1, \quad \frac{\partial y}{\partial t} = -1.
$$

Using the Chain Rule formulas we get

$$
\frac{\partial z}{\partial s} = \cos x \cos y - \sin x \sin y = \cos(x + y),
\frac{\partial z}{\partial t} = \cos x \cos y + \sin x \sin y = \cos(x - y).
$$

Using the fact that $x + y = 2s$ and $x - y = 2t$ we arrive at our answers in terms of s and t

$$
\frac{\partial z}{\partial s} = \cos(2s), \quad \frac{\partial z}{\partial t} = \cos(2t).
$$
4. Let $f(x, y) = \ln(2x + y)$.

(a) Write the equation of the tangent plane to the graph of $f(x, y)$ at $(-1, 3)$.

(b) Use part (a) to estimate $f(-1.1, 2.9)$.

Solution:

(a) For a function written explicitly as a function of x and y we have the following formula for the tangent plane at the point (x_0, y_0):

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

The first partial derivatives of $f(x, y)$ are

$$f_x = \frac{2}{2x + y}, \quad f_y = \frac{1}{2x + y}.$$

The values of f and the first partial derivatives of f at $(-1, 3)$ are

$$f(-1, 3) = 0, \quad f_x(-1, 3) = 2, \quad f_y(-1, 3) = 1.$$

Thus, an equation for the tangent plane at $(-1, 3)$ is

$$z = 2(x + 1) + (y - 3).$$

(b) An estimate for $f(a, b)$ may be taken as the value of $L(a, b)$, the linearization of $f(x, y)$ at a point near (a, b). Since the linearization and the tangent plane are one in the same, we know that

$$L(x, y) = 2(x + 1) + (y - 3).$$

Evaluating L at $(-1.1, 2.9)$ we get

$$L(-1.1, 2.9) = 2(-1.1 + 1) + (2.9 - 3) = -0.3.$$
5. Evaluate the triple integral
\[\iiint_D y \, dV, \]
where \(D \) is the region inside the cylinder \(x^2 + y^2 = 9 \) above the plane \(z = x - 2 \) and below the plane \(z = 2 - x \).

Solution: The region \(D \) can be described in Cartesian coordinates as follows:
\[
D = \left\{ (x, y, z) : x - 2 \leq x \leq 2 - x, \quad -\sqrt{9 - x^2} \leq y \leq \sqrt{9 - x^2}, \quad -3 \leq x \leq 2 \right\}
\]
The inequalities that describe \(x \) and \(y \) are determined by the projection of \(D \) onto the \(xy \)-plane, which is pictured below.

Thus, the integral is set up and evaluated as follows:
\[
\iiint_D y \, dV = \int_{-3}^{2} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{x-2}^{2-x} y \, dz \, dy \, dx,
\]
\[
= \int_{-3}^{2} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} y \left[\frac{2}{2} x - 2 \right] dy \, dx,
\]
\[
= \int_{-3}^{2} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} y(4 - 2x) \, dy \, dx,
\]
\[
= \int_{-3}^{2} (4 - 2x) \left[\frac{1}{2} y^2 \right]_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \, dx,
\]
\[
= \int_{-3}^{2} (4 - 2x) \left[\frac{1}{2}(9 - x^2) - \frac{1}{2}(9 - x^2) \right] \, dx,
\]
\[
= 0.
\]
6. Find a potential function for the vector field \(\mathbf{F}(x, y) = xe^{x^2+y^2} \mathbf{i} + ye^{x^2+y^2} \mathbf{j} \). Compute the line integral of \(\mathbf{F} \) along any path from \((0, 1)\) to \((1, 2)\).

Solution: By inspection, a potential function for \(\mathbf{F} \) is

\[
\varphi(x, y) = \frac{1}{2} e^{x^2+y^2}.
\]

Using the Fundamental Theorem of Line Integrals, the line integral of \(\mathbf{F} \) along any path from \((0, 1)\) to \((1, 2)\) has the value

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \varphi(1, 2) - \varphi(0, 1) = \frac{1}{2} e^5 - \frac{1}{2} e^1 = \frac{1}{2} e(e^4 - 1).
\]
Math 210, Final Exam, Fall 2011
Problem 7 Solution

7. Let $R = \{(x, y) : x^2 \leq y \leq x\}$. Compute the following integral, using Green’s theorem or otherwise

\[\oint_C \mathbf{F} \cdot d\mathbf{r}, \]

where $\mathbf{F} = x^3 \mathbf{i} + xy^2 \mathbf{j}$, and C is a counterclockwise oriented boundary of R.

Solution: Using Green’s Theorem we have

\[
\begin{align*}
\oint_C \mathbf{F} \cdot d\mathbf{r} &= \iint_R \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA, \\
&= \int_0^1 \int_{x^2}^x \left(\frac{\partial}{\partial x} xy^2 - \frac{\partial}{\partial y} x^3 \right) dy \, dx, \\
&= \int_0^1 \int_{x^2}^x y^2 \, dy \, dx, \\
&= \int_0^1 \left[\frac{1}{3} y^3 \right]_{x^2}^x \, dx, \\
&= \frac{1}{3} \int_0^1 \left(x^3 - x^6 \right) \, dx, \\
&= \frac{1}{3} \left[\frac{1}{4} x^4 - \frac{1}{7} x^7 \right]_0^1, \\
&= \frac{1}{3} \left(\frac{1}{4} - \frac{1}{7} \right), \\
&= \frac{1}{28}.
\end{align*}
\]
8. Consider the region \(R = \{(x, y) : x + y \geq 0, y \leq 0, x \leq 1\} \) and the transformation
\[
T : u = x + y, \ v = x.
\]

(a) Compute the Jacobian \(J(u, v) \).

(b) Find the image of \(R \) in the \(uv \)-plane under the transformation \(T \).

(c) Using (a) and (b) evaluate
\[
\int\int_{R} x^3 \sqrt{x+y} \, dA.
\]

Solution:

(a) The Jacobian of the transformation is
\[
J(u, v) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1.
\]

(b) The region \(R \) is a triangle with vertices at \((0, 0)\), \((1, 0)\), and \((1, -1)\). Since \(T \) is a linear transformation and the boundary of \(R \) consists of line segments, we know that the image of \(R \) may be determined by finding the images of the vertices of \(R \).
\[
T(0, 0) = (0 + 0, 0) = (0, 0)
\]
\[
T(1, 0) = (1 + 0, 1) = (1, 1)
\]
\[
T(1, -1) = (1 - 1, 1) = (0, 1)
\]

Thus, the image of \(R \) is the triangular region with vertices at \((0, 0)\), \((1, 1)\), and \((0, 1)\), i.e.
\[
D = \text{Image}(R) = \{(u, v) : 0 \leq u \leq v, \ 0 \leq v \leq 1\}
\]

(c) The Change of Variables formula for computing a double integral is
\[
\int\int_{R} f(x, y) \, dA = \int\int_{D} f(x(u, v), y(u, v))|J(u, v)| \, du \, dv
\]
Since \(f(x, y) = x^3 \sqrt{x+y} \) we have
\[
f(x(u, v), y(u, v)) = v^3 \sqrt{u}.
\]
Thus, the integral has the value

\[
\int \int_{R} f(x, y) \, dA = \int \int_{D} f(x(u, v), y(u, v)) \vert J(u, v) \vert \, du \, dv
\]

\[
= \int_{0}^{1} \int_{0}^{v} v^{3} \sqrt{u} \vert - 1 \vert \, du \, dv,
\]

\[
= \int_{0}^{1} v^{3} \left[\frac{2}{3} u^{3/2} \right]_{0}^{v} \, dv,
\]

\[
= \frac{2}{3} \int_{0}^{1} v^{3} \cdot v^{3/2} \, dv,
\]

\[
= \frac{2}{3} \int_{0}^{1} v^{9/2} \, dv,
\]

\[
= \frac{2}{3} \left[\frac{2}{11} v^{11/2} \right]_{0}^{1},
\]

\[
= \frac{4}{33}
\]