Math 442 / David Dumas / Fall 2010

Midterm Solutions

(1) Prove that if two regular surfaces intersect at only one point, then they have the same tangent plane at that point. (That is, if \(S_1 \cap S_2 = \{p\} \) then \(T_pS_1 = T_pS_2 \).

Solution. It is enough to show that if two regular surfaces \(S_1, S_2 \) intersect at \(p \) and \(T_pS_1 \neq T_pS_2 \), then the set \(S_1 \cap S_2 \) contains more than one point. In fact we will show that \(S_1 \cap S_2 \) contains a curve through \(p \).

For \(i = 1, 2 \), represent \(S_i \) in a neighborhood of \(p \) as \(\{(x, y, z) \mid f_i(x, y, z) = 0\} \) where \(f_i \) is a differentiable function with 0 as a regular value (so in particular \(\nabla f_i(p) \neq 0 \)).

The tangent plane of \(S_i \) at \(p \) is the plane through \(p \) with normal vector \(\nabla f_i(p) \). Since the tangent planes are different, the vectors \(\nabla f_1(p) \) and \(\nabla f_2(p) \) are linearly independent.

Let \(f_3(x, y, z) \) be a differentiable function defined in a neighborhood of \(p \) such that \(f_3(p) = 0 \) and \(\{\nabla f_1(p), \nabla f_2(p), \nabla f_3(p)\} \) is a basis of \(\mathbb{R}^3 \). (For example, complete the linearly independent set \(\{\nabla f_1(p), \nabla f_2(p)\} \) to a basis by adding a vector \(v \), and then let \(f_3(q) = (p - q) \cdot v \).

Define \(F(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z)) \). Then \(F(p) = 0 \) and the rows of \(dF_p \) are linearly independent, so by the inverse function theorem \(F \) is a diffeomorphism from a neighborhood of \(p \) to a neighborhood of \((0, 0, 0)\). Let \(G \) denote the inverse of this map. Then for all \(t \in \mathbb{R} \) with \(|t| \) sufficiently small, \(G(0, 0, t) \) is defined and lies on both \(S_1 \) and \(S_2 \) (since \(f_i(G(0, 0, t)) = 0 \) for \(i = 1, 2 \)). Since \(G \) is a diffeomorphism, all of the points obtained this way are distinct. This shows that \(S_1 \cap S_2 \) is infinite.

Comment. The intuition behind this solution is the following: Two distinct planes through a point \(p \) in \(\mathbb{R}^3 \) intersect in a line. Locally, regular surfaces are well-approximated like their tangent planes, so if \(T_pS_1 \neq T_pS_2 \), then \(S_1 \cap S_2 \) is approximately a line. In fact, \(S_1 \cap S_2 \) is a regular curve near \(p \) whose tangent line at \(p \) is \(T_pS_1 \cap T_pS_2 \).

(2) Determine the set of all positive real numbers \(A \) such that the equation
\[
(x + y + z)^3 = A \left(x^3 + y^3 + z^3 \right)
\]
defines a regular surface in \(\mathbb{R}^3 - \{(0, 0, 0)\} \).

Solution. Let \(F(x, y, z) = (x + y + z)^3 - A(x^3 + y^3 + z^3) \). We want to know when \(F^{-1}(0) \) is a regular surface in \(\mathbb{R}^3 - \{(0, 0, 0)\} \). Note that \(F \) is symmetric in \(x, y, \) and \(z \). We first determine the critical points of \(F \). We have
\[
\frac{\partial F}{\partial x} = 3 \left[(x + y + z)^2 - Ax^2 \right]
\]
\[
\frac{\partial F}{\partial y} = 3 \left[(x + y + z)^2 - Ay^2 \right]
\]
\[
\frac{\partial F}{\partial z} = 3 \left[(x + y + z)^2 - Az^2 \right]
\]
so critical points are defined by \(x^2 = y^2 = z^2 = \frac{1}{3}(x + y + z)^2 \). In particular, \(x, y, \) and \(z \) are equal up to sign at any critical point.
Consider the case \(x = y = z = s \). In order for this to be a critical point we must have \(A s^2 = (3s)^2 \), so when \(A \neq 9 \), the only critical point on this line is \((0,0,0)\). If however \(A = 9 \), then every point on the line \(x = y = z \) is critical.

Now consider \(x = y = -z = s \). In order for this to be a critical point we must have \(A s^2 = (s + s - s)^2 = s^2 \), so when \(A \neq 1 \) the only critical point on this line is \((0,0,0)\). If however \(A = 1 \), then every point on the line \(x = y = -z \) is critical.

By symmetry we get a similar conclusion for the cases \(x = -y = z \) and \(-x = y = z \), and to summarize:

- If \(A \notin \{1, 9\} \), then \(F \) has no critical points other than \((0,0,0)\).
- If \(A = 9 \), then the critical set of \(F \) is the line \(x = y = z \).
- If \(A = 1 \), then the critical set of \(F \) is the union of the three lines \(x = y = -z \), \(x = -y = z \), \(-x = y = z \).

We immediately conclude that for \(A \notin \{1, 9\} \), zero is a regular value of \(F(x, y, z) \) on \(\mathbb{R}^3 - \{(0,0,0)\} \) and \(F = 0 \) defines a regular surface. It remains to analyze the cases \(A = 1 \) and \(A = 9 \) separately.

Case \(A = 1 \): We have
\[
F(x, y, z) = (x + y + z)^3 - x^3 - y^3 - z^3
= 3x^2y + 3xy^2 + 3x^2z + 3y^2z + 3xyz + 3yz^2 + 6xyz
= 3(x + y)(x + z)(y + z)
\]
So \(F^{-1}(0) \) is the union of three distinct planes that meet at \((0,0,0)\). This is not a regular surface, because near a line of intersection of two of these planes (say, in an arbitrarily small neighborhood of \((1,−1,0)\)) the set does not project injectively onto any of the coordinate planes.

Case \(A = 9 \): Suppose \(S = F^{-1}(0) \) were a regular surface in \(\mathbb{R}^3 - \{(0,0,0)\} \). In this case \(F(s,s,s) = (3s)^3 - 9(3s^3) = 0 \) so the entire line \(\ell = \{(x,y,z) \mid x = y = z\} \) is contained in \(S \). Therefore at any point \(p \in \ell \), the tangent plane \(T_p S \) must contain \(\ell \). The cyclic permutation \((x,y,z) \mapsto (y,z,x) \) rotates \(\mathbb{R}^3 \) around \(\ell \) by angle \(2\pi/3 \), but this permutation does not affect the value of \(F \) so it preserves \(S \) and fixes every point of \(\ell \). Therefore, the tangent plane to \(S \) at \(p \in \ell \) must be invariant under this rotation.

Since no plane in \(\mathbb{R}^3 \) containing \(\ell \) is invariant under rotation by \(2\pi/3 \) around \(\ell \), this is a contradiction, and \(S \) is not a regular surface.

Summary. The equation \((x + y + z)^3 = A(x^3 + y^3 + z^3) \) defines a regular surface in \(\mathbb{R}^3 - \{(0,0,0)\} \) for all real numbers \(A \) except \(A = 1 \) and \(A = 9 \).

(3) (a) Define the torsion function \(\tau \) of a space curve.

Solution. Parameterize the curve by arc length and let \(t(s) = \alpha'(s) \), \(n(s) = t'(s)/|t'(s)| \), and \(b(s) = t(s) \wedge n(s) \). Then the torsion \(\tau(s) \) is the real-valued function such that \(b'(s) = \tau(s)n(s) \) for all \(s \).

(b) Let \(\alpha : I \to \mathbb{R}^3 \) denote a regular parameterized space curve without inflection points. Show that \(\alpha(I) \) lies in a plane if and only if the torsion of \(\alpha \) is identically zero.

Solution. If the curve lies in a plane \(P \), then all of its derivatives are parallel to that plane. Therefore \(t(s) \) and \(n(s) \) are parallel to \(P \), hence they span it, and \(b(s) \) is a unit normal vector to \(P \). There are two such unit normals, but by continuity,
$b(s)$ can only assume one of these values. So $b(s)$ is a constant function, and $b'(s) = 0$. This gives $\tau(s) = 0$.

Conversely, suppose the torsion is identically zero. Then $b(s)$ is a constant function; let N denote its value. Then for all s, we have $t(s) \cdot N = n(s) \cdot N = 0$. Consider the real-valued function $f(s) = (\alpha(s) - \alpha(s_0)) \cdot N$. Then $f(s_0) = 0$ and using $t(s) \cdot N = 0$ gives $f'(s) = 0$. Therefore the function $f(s)$ is identically zero, which shows that α is contained in the plane \{ $p \mid (p - \alpha(s_0)) \cdot N = 0$ \}.

(4) (a) Define the curvature function κ of a plane curve.

Solution. Parameterize the curve by arc length and let $t(s) = \alpha'(s)$. Define $n(s)$ to be the unit vector such that $t(s) \cdot n(s) = 0$ and so that the ordered basis $(t(s), n(s))$ is positively oriented. Then the curvature $\kappa(s)$ is the real-valued function such that $t'(s) = \kappa(s)n(s)$.

(b) Determine the curvature function of the cycloid

$$\alpha(t) = (at - b\sin(t), a - b\cos(t))$$

where $a, b \in \mathbb{R}$ are constants and $a \neq 0$.

Solution. Note that the given curve is not parameterized by arc length. Up to sign the curvature is given by

$$\left\| \frac{\alpha'(t) \wedge \alpha''(t)}{|\alpha'(t)|^3} \right\|.$$

The correct sign (taking into account the definition of curvature for a plane curve) is given by replacing the numerator with $\det \left(\begin{array}{c} \alpha'(t) \\ \alpha''(t) \end{array} \right)$. We calculate:

$$\alpha'(t) = (a - b\cos(t), b\sin(t))$$
$$\alpha''(t) = (b\sin(t), b\cos(t))$$
$$|\alpha'(t)|^2 = a^2 + b^2 - 2ab\cos(t)$$
$$\det \left(\begin{array}{c} \alpha'(t) \\ \alpha''(t) \end{array} \right) = b(a\cos(t) - b)$$

and therefore

$$\kappa(t) = \frac{b(a\cos(t) - b)}{(a^2 + b^2 - 2ab\cos(t))^{3/2}}.$$

Note that if $a = b$, the curvature is not defined for $t \in 2\pi\mathbb{Z}$.
The surface \((x + y + z)^3 = A(x^3 + y^3 + z^3)\) for several values of \(A\).

Several cycloids.