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1. Introduction

The set of complex projective structures on a compact Riemann sur-
face X is parameterized by the vector space Q(X) of holomorphic qua-
dratic differentials. Each projective structure has an associated holonomy
representation, which defines a point in X(Π), the SL2(C) character vari-
ety of the fundamental group Π := π1(X). The resulting holonomy map
hol : Q(X)→ X(Π) is a proper holomorphic embedding.

In this paper we relate the large-scale behavior of the holonomy map to
the geometry of quadratic differentials on X. In particular we study the
accumulation points of hol(Q(X)) in the Morgan-Shalen compactification of
X(Π). Such an investigation was proposed by Gallo, Kapovich, and Marden
in [GKM, Sec. 12.4].

Boundary points in the Morgan-Shalen compactification are projective
equivalence classes [`] of length functions ` : Π → R+. Each such function
` arises as the translation length function of an isometric action of Π on an
R-tree T ; we say such a tree T represents [`].

Associated to each φ ∈ Q(X) there is an R-tree Tφ, which is the space of
leaves of the horizontal measured foliation of φ lifted to the universal cover
of X. Our main result shows that this tree predicts the Morgan-Shalen
limit points of holonomy representations associated to the ray R+φ, or more
generally, of any divergent sequence that converges to φ after rescaling. More
precisely, we show:

Theorem A. If φn ∈ Q(X) is a divergent sequence with projective limit
φ, then any accumulation point of hol(φn) in the Morgan-Shalen boundary
is represented by an R-tree T that admits an equivariant, surjective straight
map Tφ → T .

The notion of a straight map is discussed in Section 6.5. For the moment
we simply note that such a map is a morphism of R-trees but it may not be
an isometry because certain kinds of folding are permitted. For differentials
with simple zeros, however, we can rule out this behavior:
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Theorem B. If φn ∈ Q(X) is a divergent sequence that converges pro-
jectively to a quadratic differential φ with only simple zeros, then hol(φn)
converges in the Morgan-Shalen compactification to the length function as-
sociated with the dual tree Tφ.

In particular there is an open, dense, co-null subset of Q(X) consisting of
differentials φ for which Tφ is the unique minimal limit action on an R-tree
arising from sequences with Q(X) with projective limit φ.

In order to pass from uniqueness of the limiting length function to a unique
limit action on a tree, the proof of this theorem uses a result of Culler and
Morgan [CM]: The tree representing a length function is determined up to
equivariant isometry except possibly when ` is an abelian length function of
the form `(γ) = |χ(γ)|, where χ : Π→ R is a homomorphism.

For abelian length functions, the description of the isometry classes of
representing R-trees is more complicated [Br]. However, in this case we can
say more about the corresponding quadratic differentials:

Theorem C. Let χ : Π → R be a homomorphism. If hol(φn) converges in
the Morgan-Shalen sense to the abelian length function |χ|, then the sequence
φn converges projectively to ω2, where ω ∈ Ω(X) is a holomorphic 1-form
whose imaginary part is the harmonic representative of [χ] ∈ H1(X,R).

We remark that the existence of sequences satisfying the hypotheses of
Theorem C is itself an open question. Using the results of [GKM] one can
construct a sequence of projective structures on surfaces of a fixed genus
converging to an abelian length function, however it is not clear whether
one can also arrange for the underlying Riemann surface to remain constant.
Naturally it would be interesting to resolve this issue, ideally with either an
explicit construction or a geometrically meaningful obstruction to existence;
we hope to return to this in future work.

Rate of divergence. A key step in understanding the limiting behavior
of the holonomy representations is to understand the rate at which they
diverge as φ→∞. When equipped with the metric |φ|, the Riemann surface
X becomes a singular Euclidean surface whose diameter is comparable to
‖φ‖1/2. We show that this is the natural scale to use in understanding the
action of hol(φ) on H3 by isometries:

Theorem D. The scale of the holonomy representation hol(φ) is comparable

to ‖φ‖1/2, i.e.

(1) The translation length of any element of Π in hol(φ) acting on H3

is O(‖φ‖1/2), and
(2) There is an element γ ∈ Π whose translation length in hol(φ) is at

least c‖φ‖1/2, where c > 0 is a uniform constant.

These statements are made precise in Theorem 5.3 below.
Ultimately, our understanding of translation lengths of elements of hol(φ)

acting on H3 comes from the construction of a well-behaved map X̃ → H3
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that takes nonsingular |φ|-geodesics to nearly-geodesic paths in H3 param-
eterized with nearly-constant speed. (These maps are discussed in some-
what more detail below, with the actual construction appearing in Section
3.) When applied to a nonsingular |φ|-geodesic axis of an element γ ∈ Π,
equivariance of the construction shows that |φ|-length of γ in X, which is

comparable to ‖φ‖1/2, is also comparable to the translation length in H3.
Theorem D gives another proof of the properness of the holonomy map on

Q(X) (see also [GKM, Thm. 11.4.1], [Tan2]) which is effective in the sense
that it includes an explicit growth estimate. In Theorem 5.2 we describe
this effective properness result in terms of an affine embedding of X(Π) and
an arbitrary norm on Q(X).

Equivariant surfaces in H3. The proofs of the main theorems are based
on the analysis of surfaces in hyperbolic 3-space associated to complex pro-
jective structures. The basic construction is due to Epstein [Eps]: Starting
from an open domain embedded in CP1 and a conformal metric, one forms
a surface in H3 from the envelope of a family of horospheres. The metric
can be recovered from this surface by a “visual extension” procedure.

A natural generalization of this construction applies to a Riemann surface
that immerses (rather than embeds) in CP1 and a conformal metric on
the surface. In our variant of Epstein’s construction, a single holomorphic
quadratic differential φ ∈ Q(X) provides both of these data; the immersion
is the developing map of the projective structure with Schwarzian derivative
φ, and the conformal metric is a multiple of the singular Euclidean metric

|φ|. The resulting Epstein-Schwarz map Σφ : X̃ → H3 is equivariant with
respect to hol(φ).

Using an explicit formula for the Epstein-Schwarz map we show that when
‖φ‖ is large, this map shares key geometric properties with the projection of

X̃ onto the dual tree Tφ. Namely, vertical trajectories of φ are mapped near
geodesics in H3, while compact segments on horizontal trajectories of φ are
collapsed to sets of small diameter. These estimates are uniform outside a
small neighborhood of the zeros of φ.

The main theorems are derived from these properties of Epstein-Schwarz
maps using a description of the Morgan-Shalen compactification in terms of
asymptotic cones of H3 (as in [KL], [Chi]). We show that the sequence of
Epstein-Schwarz maps to H3 converge in a suitable sense to a limit map into
an R-tree representing the limit of holonomy representations, and that the
local collapsing behavior described above leads to the global straight map
Tφ → T from Theorem A.

Comparison with other techniques. The technique of relating the tra-
jectory structure and Euclidean geometry of a quadratic differential to the
collapsing behavior of an associated map has been used extensively in the
study of harmonic maps from hyperbolic surfaces to negatively curved spaces
(including H2, H3, and R-trees), beginning with the work of Wolf [Wol1]
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[Wol2] on the Thurston compactification of Teichmüller space. More re-
cently, Daskalopoulos, Dostoglou, and Wentworth [DDW] studied the Morgan-
Shalen compactification of the SL2(C) character variety using harmonic
maps, and our analysis of geometric limits of Epstein-Schwarz maps fol-
lows a similar outline to their investigation of equivariant harmonic maps to
H3.

While harmonic maps techniques have been useful in the study of com-
plex projective structures (e.g. [Tan1] [Tan2] [SW] [D1]), for the purposes
of Theorems A–D the Epstein-Schwarz maps have the advantage of a direct
connection to the parameterization of the space of projective structures by
quadratic differentials. In addition, while harmonic maps are implicitly de-
fined by minimization of a functional (or solution of an associated PDE), the
Epstein-Schwarz map is given by an explicit formula which can be analyzed
directly, simplifying the derivation of our geometric estimates.

Relating compactifications. Our results show that it is natural to com-
pare the compactification by raysQ(X) = Q(X)tP+Q(X), where P+Q(X) =
(Q(X)\{0})/R+, with the closure of hol(Q(X)) in the Morgan-Shalen com-

pactification X(Π). In terms of these compactifications, Theorem B can be
rephrased as

Corollary E. There is an open, dense, full-measure subset of ∂Q(X) to
which hol extends continuously as a map into the Morgan-Shalen compact-
ification X(Π). On this subset, the extension of hol sends a ray [φ] of qua-
dratic differentials to the length function of the action of Π on the dual tree
of φ.

We also note that this extension is injective: A holomorphic quadratic
differential φ is determined by its horizontal measured lamination λ [HM],
and λ is determined by its intersection function (γ 7→ i(λ, γ))γ∈Π, which is
the length function of Π acting on the dual tree of φ.

While this gives a description of the limiting behavior of hol at most
boundary points, our results leave open the possibility that there exist di-
vergent sequences having the same projective limit in Q(X) but whose asso-
ciated holonomy representations have distinct limits in the Morgan-Shalen
compactification of X(Π). While we suspect that this phenomenon occurs
for some sequences (necessarily converging to differentials with higher-order
zeros), we do not know of any explicit examples of this behavior.

Applications and related results. The space ML(X) of measured geo-
desic laminations embeds in the Morgan-Shalen boundary of X(Π), with im-
age consisting of the length functions associated to the trees {Tφ |φ ∈ Q(X)}.
In [DK], Kent and the author showed that the closure of hol(Q(X)) in the
Morgan-Shalen compactification contains ML(X) by examining the count-
able subset of Q(X) whose associated holonomy representations are Fuch-
sian. Theorem B (or Corollary E) gives an alternate proof of this result.



HOLONOMY LIMITS OF CP1 STRUCTURES 5

As in [DK], our investigation of hol(Q(X)) was motivated in part by a
connection to Thurston’s skinning maps of hyperbolic 3-manifolds. In [D3],
the results of this paper are used in the proof of:

Theorem. Skinning maps are finite-to-one.

Briefly, the connection between this result and holonomy of projective
structures is as follows: If the skinning map of a 3-manifold M with in-
compressible boundary S had an infinite fiber, then there would be a con-
formal structure X on S and an analytic curve C ⊂ Q(X) consisting of
projective structures whose holonomy representations extend from π1(S) to
π1(M). This extension condition constrains the limit points of hol(C) in the
Morgan-Shalen compactification, and Theorem A is a key step in translating
this into a constraint on C itself. Using analytic and symplectic geometry
in Q(X), it is shown that these constraints are not satisfied by any analytic
curve, giving the desired contradiction.

Outline. Section 2 contains background material on quadratic differen-
tials and projective structures, as well as some simple estimates related
to geodesics of quadratic differential metrics.

In Section 3 we introduce Epstein maps and specialize to the case of
interest, the Epstein-Schwarz map associated to a quadratic differential.
The asymptotic behavior of sequences of such maps is studied in Section 4.

In Section 5 we discuss the character variety and then apply the estimates
of the previous section to bound the size of the holonomy representation.
We also give a new proof of the properness of the holonomy map.

Finally, in Section 6 we discuss the Morgan-Shalen compactification, dual
trees of quadratic differentials, and straight maps. We then assemble the
proofs of the main theorems from results of sections 2–4.

Acknowledgments. The author thanks Peter Shalen and Richard Went-
worth for helpful conversations, and Richard Kent for asking interesting
questions about skinning maps that motivated some of this work. The au-
thor also thanks the anonymous referees for their careful reading and helpful
comments.

2. Projective structures and quadratic differentials

2.1. Projective structures. LetX be a compact Riemann surface of genus
g > 2. A (complex) projective structure on X is a maximal atlas of conformal
charts mapping open sets in X into CP1 whose transition functions are the
restrictions of Möbius transformations. Equivalently, a CP1 structure on X

can be specified by a locally injective holomorphic map f : X̃ → CP1, the

developing map, such that for all γ ∈ Π and x ∈ X̃, we have

f(γ · x) = ρ(γ) · f(x)

where ρ : Π→ PSL2(C) is a homomorphism, called the holonomy represen-
tation. The pair (f, ρ) is uniquely determined by the projective structure
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up to an element A ∈ PSL2(C), which acts by (f, ρ) → (A ◦ f,AρA−1).
For further discussion of projective structures and their moduli see [Kap2,
Ch. 7] [Gun] [D2].

While the holonomy representation naturally takes values in PSL2(C),
the representations that arise from projective structures admit lifts to the
covering group SL2(C) [GKM, Sec. 1.3]. Furthermore, by choosing a spin
structure on X it is possible to lift the holonomies of all projective structures
consistently (and continuously). We will assume from now on that such a
structure has been fixed and so we consider only maps to SL2(C).

2.2. Parameterization by quadratic differentials. The space P (X) of
projective structures on X is naturally an affine space modeled on the vector
space Q(X) of holomorphic quadratic differentials on X. The identification

of the universal cover X̃ with the upper half-plane H induces the standard
Fuchsian projective structure, and this basepoint gives a well-defined home-
omorphism P (X)→ Q(X).

This map sends a projective structure to the quadratic differential φ ∈
Q(X) whose lift φ̃ to the universal cover X̃ ' H satisfies

φ̃ = S(f) =

((
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
)
dz2.

Here S(f) is the Schwarzian derivative of a developing map f of the projec-
tive structure.

2.3. Developing a quadratic differential. The inverse map Q(X) →
P (X) can be constructed as follows (following [And, Ch. 2]; see also [Thu]).

Given a quadratic differential φ ∈ Q(X) with lift φ̃ ∈ Q(H), we have the
associated sl2(C)-valued holomorphic 1-form

ωφ =
1

2
φ̃(z)

(
−z 1
−z2 z

)
dz.

This form satisfies the structural equation dωφ + 1
2 [ωφ, ωφ] = 0 because a

Riemann surface does not admit any nonzero holomorphic 2-forms. Thus

there exists a map Mφ : X̃ → SL2(C) whose Darboux derivative is ωφ (see
[Sha, Thm. 7.14] for details), i.e. such that

ωφ = M−1
φ dMφ.

This map is unique up to translation by an element of SL2(C).
The developing map of φ is the holomorphic map fφ : H → CP1 defined

by

fφ(z) = Mφ(z) · z
where in this expression Mφ(z) is considered as acting on CP1 as a Möbius
transformation. Of course the map fφ is only defined up to composition
with a Möbius map, but we speak of the developing map when the particular
choice is not important.
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The map fφ satisfies S(fφ) = φ̃ and is equivariant with respect to the
holonomy representation ρφ that is defined by the condition

ρφ(γ)Mφ(z) = Mφ(γ · z)ρ0(γ)

for all γ ∈ Π and any z ∈ H. That the choice of z does not matter follows
from the invariance of ωφ under the action of Π coming from the deck action

on X̃ and the Ad ◦ρ0-action on sl2(C). One can think of ρφ(γ) as the “non-
abelian period” of the 1-form ωφ along the loop γ in X.

2.4. Conformal and Riemannian metrics. Given a Riemann surface X
with canonical line bundle K, a conformal metric on X is a continuous,

nonnegative section σ of K1/2 ⊗K1/2 with the property that the function
dσ(x, y) = infγ:([0,1],0,1)→(X,x,y)

∫
γ σ defines a metric on X. With respect

to a local complex coordinate chart z in which σ is nonzero, we can write
σ = eη(z)|dz| where η is the log-density of σ. The metrics we consider will
only vanish at finitely many points, and we extend η to these points by
defining η(z) = −∞ if σ(z) = 0.

A conformal metric is of class Ck if it is nonzero and its log-density
function in any chart is k times continuously differentiable. The Gaussian
curvature of a C2 conformal metric is given by

K(z) = −4e−2ηηzz̄

where subscripts denote differentiation. Further discussion of conformal
metrics on Riemann surfaces can be found in [Hub] [Ahl, Sec. 1.5, 4.1] [Jos,
Sec. 2.3].

For any φ ∈ Q(X), the line element |φ|1/2 defines a conformal metric on
X that is C∞ and flat (K = 0) away from the set of zeros Zφ = φ−1(0); this
is a quadratic differential metric. (See [Str, Ch. III] for detailed discussion
of such metrics.) The total area is

‖φ‖ =

∫
X
|φ|,

which is the conformally natural L1 norm on Q(X). A zero of φ of order k

is a cone point of the metric |φ|1/2 with cone angle (k + 2)π.
For brevity we will sometimes refer to either the area form |φ| or the

length element |φ|1/2 as the φ-metric.

2.5. Quadratic differentials foliations and development. Away from
a zero of φ ∈ Q(X), there is always a local natural coordinate z such that
φ = dz2. Such a coordinate is unique up to translation and z 7→ −z.
Pulling back the lines in C parallel to eiθR gives the foliation of angle θ,
denoted Fθ(φ), which extends to a singular foliation of X with (k+2)-prong
singularities at the zeros of φ of order k.

The special cases θ = 0, π/2 are the horizontal and vertical foliations,
respectively. We sometimes abbreviate F(φ) = F0(φ). Each of these folia-
tions has a transverse measure coming from the natural coordinate charts
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(e.g. the vertical variation measure |dy| for the horizontal foliation). Given
a curve in X, we refer to its total measure with respect to the horizontal
foliation (resp. vertical foliation) as its height (resp. width).

A path γ : [0, 1] → X with interior disjoint from the zeros of φ can be
developed into C using local natural coordinate charts. The difference be-
tween the images of γ(1) and γ(0) is the holonomy of γ, which is well-defined
up to sign. For example, the holonomy of a line segment with height h and
width w is ±(w + ih). Note that this holonomy construction is equivalent
to integrating the locally-defined 1-form

√
φ; this should be contrasted with

the integration of the 1-form ωφ used to construct the developing map fφ.
The interplay between these two integration constructions is an underlying
theme in our analysis of the Epstein-Schwarz map in later sections.

2.6. Quadratic differential geodesics. Each free homotopy class of sim-
ple closed closed curves on X can be represented by a length-minimizing
geodesic for the metric |φ|, which consists of a finite number of line seg-
ments joining zeros of φ. The geodesic representative is unique unless it is
a closed leaf of Fθ(φ) for some θ ∈ S1, in which case there is a cylinder
foliated by parallel geodesic representatives. In the latter case we say the
the geodesic is periodic.

Similarly, any pair of points in X̃ can be joined by a unique geodesic

segment for the lifted singular Euclidean metric |φ̃|, which again consists
of line segments joining the zeros. If such a geodesic segment does not

contain any zeros, it is nonsingular. Thus any geodesic segment in X̃ can
be expressed as a union of nonsingular pieces.

We will need to extend some of these considerations to meromorphic qua-
dratic differentials with finitely many second-order poles. With respect to
the singular Euclidean structure, each second-order pole has a neighbor-
hood that is isometric to a half-infinite cylinder. If φ has local expression
az−2 +O(z−1) in a local coordinate chart, then a is the residue of the pole
and and 2π|a| is the circumference of the associated cylinder. As in the case
of holomorphic differentials, an Euclidean line segment in X (or its universal
cover) is a length-minimizing geodesic.

Additional discussion of quadratic differential metrics and geodesics can
be found in [Str] [Min, Sec. 4].

2.7. Periodic geodesics. Every quadratic differential metric has many pe-
riodic geodesics: Masur showed that for any φ ∈ Q(X), there is a dense set
of directions θ ∈ S1 for which Fθ(φ) has a closed leaf [Mas]. More generally,
we have:

Theorem 2.1 (Boshernitzan, Galperin, Kruger, and Troubetzkoy [BGKT]).
For any φ ∈ Q(X), tangent vectors to periodic φ-geodesics are dense in the

unit tangent bundle of X.

Because a periodic geodesic for a quadratic differential metric always sits
in a parallel family foliating an annulus, any homotopy class that can be
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represented by a periodic φ-geodesic is also periodic for all ψ ∈ Q(X) suf-
ficiently close to φ. Combining this with the density of periodic directions,
we have:

Theorem 2.2. For any ε > 0 there is a constant w0 and finite set P ⊂ Π
such that for any φ ∈ Q(X) with φ 6= 0 there exists γ ∈ P that is freely
homotopic to a periodic φ-geodesic that is nearly vertical, i.e. it is a leaf of
Fθ(φ) for some θ ∈ (π/2− ε, π/2+ ε), and such that the flat annulus foliated

by parallels of the geodesic has width at least w0‖φ‖1/2. The set P can be
taken to depend only on X and ε.

Proof. The statement is invariant under scaling so we can restrict attention
to the unit sphere in Q(X). By Theorem 2.1 for each such φ there exists
a nearly-vertical periodic geodesic. This periodic geodesic persists (and
remains nearly-vertical) in an open neighborhood Uφ of φ. Shrinking Uφ if
necessary we can also assume that the width of the flat annulus is bounded
below throughout Uφ. The unit sphere in Q(X) is compact so it has a finite
cover by these sets. Choosing a representative in Π for the periodic curve in
each element of the cover gives the desired set P , and taking the minimum
of the width of the annuli over these sets gives w0. �

Further discussion of periodic trajectories for quadratic differential met-
rics can be found in [MT, Sec. 4].

2.8. Comparing geodesic segments. If two quadratic differentials are
close, then away from the zeros, a geodesic segment for one of them is nearly
geodesic for the other. We make this idea precise in the following lemmas,
which are used in Section 4.

Note that throughout this section, the holonomy of a path refers to the
Euclidean development of a quadratic differential as defined in Section 2.5
above.

Lemma 2.3. Let U ⊂ C be an open set and ψ = ψ(z)dz2 a holomorphic
quadratic differential on U satisfying

|ψ(z)− 1| < δ <
1

2
.

If J is a line segment in U with holonomy zJ with respect to dz2, then
the holonomy wJ of J with respect to ψ satisfies |zJ − wJ | < δ|zJ |, and in
particular wJ 6= 0 if zJ 6= 0.

Proof. By hypothesis the function ψ(z) does not have zeros in U , so there

is a unique branch of ψ(z)1/2 with positive real part, which satisfies

|ψ(z)1/2 − 1| < δ.

Here we have used that δ < 1
2 to ensure that ψ(z) 7→ ψ(z)1/2 is contracting.

Since holonomy is obtained by integrating ψ(z)1/2, the inequality above gives

|zJ − wJ | 6
∫
J
|ψ(z)1/2 − 1||dz| < δ|zJ |.



10 DAVID DUMAS

�

Lemma 2.4. Let φ ∈ Q(X) be a holomorphic quadratic differential and
U ⊂ Q(X) an open, contractible, φ-convex set that does not contain any
zeros of φ. If ψ is a holomorphic quadratic differential on U satisfying

|ψ − φ|
|φ|

< δ <
1

4
,

then:

(i) Any natural coordinate for ψ is injective on U .
(ii) For any p, q ∈ U we have

dφ(p, q) > 4/5dψ(p, q).

Furthermore, if J is a φ-geodesic segment in U of length L that is not too
close to ∂U , i.e.

dφ(J, ∂U) > 4δL,

then we also have:

(iii) The endpoints of J are joined by a nonsingular ψ-geodesic segment
J ′ ⊂ U ,

(iv) The segment J ′ satisfies dψ(J ′, ∂U) > 1
4dφ(J, ∂U) and dφ(J ′, ∂U) >

1
4dφ(J, ∂U).

(v) The width w′, height h′, and length L′ of J ′ with respect to ψ satisfy

max(|L′ − L|, |w′ − w|, |h′ − h|) < δL,

where L,w, and h are the corresponding quantities for J with respect
to φ.

Proof. Identify U with its image by a natural coordinate z for φ. Then
ψ = ψ(z)dz2 satisfies |ψ(z)−1| < δ. Now we repeatedly apply the holonomy
estimate from Lemma 2.3.

(i) By Lemma 2.3, any line segment in U has nonzero ψ-holonomy and
U is convex, so U develops injectively by a natural coordinate ζ for ψ.

(ii) Again using Lemma 2.3 we have

(2.1) |(z(p)− z(q))− (ζ(p)− ζ(q))| < δ|z(p)− z(q)|

from which it follows that |z(p)− z(q)| > (1 + δ)−1|ζ(p)− ζ(q)|. Convexity
implies that dφ(p, q) = |z(p) − z(q)| while the injectivity of ζ on U gives
dψ(p, q) 6 |ζ(p) − ζ(q)|. Noting that (1 + δ)−1 > 4/5 gives the desired
estimate.

(iii) Equation (2.1) also gives the bound

|ζ(p)− ζ(q)| > (1− δ)|z(p)− z(q)|

however we can only equate the left hand side with the distance dψ(p, q)
in cases where p and q are joined by a ψ-segment in U . However, since U



HOLONOMY LIMITS OF CP1 STRUCTURES 11

injects into the ζ-plane, the minimum distance from J to ∂U is realized by
such a segment, and we have

dψ(J, ∂U) > (1− δ)dφ(J, ∂U) > 4δ(1− δ)L.

Let {j0, j1} denote the endpoints of J and translate the coordinates z and
ζ so that z(j0) = ζ(j0) = 0. Parameterize J by α(t) so that z(α(t)) = tz(j1).
Then any point on ζ(J) has the form ζ(α(t)), while a point on the segment
I in C joining ζ(j0) to ζ(j1) has the form tζ(j1) for t ∈ [0, 1]. We estimate

|tζ(j1)− ζ(α(t))| 6 |tζ(j1)− tz(j1)|+ |z(α(t))− ζ(α(t))|.

Each term on the right is the difference in φ- and ψ-holonomy vectors of
a path of φ-length at most L (with a coefficient of t in the first term).
By Lemma 2.3 each term is at most δL, so the segment I lies in a 2δL-
neighborhood of ζ(J).

Since 2δ < 4δ(1 − δ), we have I ⊂ ζ(U) and J ′ = ζ−1(I) defines a
nonsingular ψ-geodesic segment.

(iv) From (iii) we have dψ(J ′, ∂U) > (1 − δ)dφ(J, ∂U) − 2δL, and by
hypothesis 2δL < (1/2)dφ(J, ∂U). Combining these and using (1/2 − δ) >
1/4 gives the desired estimate.

(v) The φ-holonomy of J is w + ih, while the ψ-holonomy is w′ + ih′.
The comparison of these quantities therefore follows immediately from the
holonomy estimate. �

2.9. The Schwarzian derivative of a conformal metric. Given two
conformal metrics σi = eηi |dz|, i = 1, 2, the Schwarzian derivative of σ2

relative to σ1 is the quadratic differential

(2.2) B(σ1, σ2) =
[
(η2)zz − (η2)2

z − (η1)zz + (η1)2
z

]
dz2.

Note that this differential is not necessarily holomorphic. This generalization
of the classical Schwarzian derivative was introduced by Osgood and Stowe
[OS] (though in their construction the result is a symmetric real tensor
which has the expression above as the (2, 0) part). The classical Schwarzian
derivative can be recovered from the metric version as follows: If f : Ω→ C
is a locally injective holomorphic function on a domain Ω, then

S(f) = 2B(|dz|, f∗(|dz|)).

We will use the following properties of the generalized Schwarzian derivative,
each of which follows easily from the formula above.

(B1) Cocycle: For any triple of conformal metrics (σ1, σ2, σ3) on a given
domain, we have

B(σ1, σ3) = B(σ1, σ2) + B(σ2, σ3).

(B2) Naturality: If f : Ω→ Ω′ is a conformal map of domains in C (or
CP1), and (σ1, σ2) are metrics on Ω′, then we have

B(f∗σ1, f
∗σ2) = f∗B(σ1, σ2)
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(B3) Flatness: If a conformal metric σ0 on a domain in C satisfies
B(|dz|, σ0) = 0, then there exist k > 0 and A ∈ SL2(C) such that
kA∗σ0 is the restriction of one of the following metrics:
(a) The hyperbolic metric 2(1− |z|2)−1|dz| on ∆.
(b) The Euclidean metric |dz| on C.
(c) The spherical metric 2(1 + |z|2)−1 on CP1.

The metrics described in (B3) will be called Möbius flat. It follows from
(B1) that the Schwarzian derivative of a metric σ = eη|dz| relative to |dz|
is equal to its Schwarzian derivative relative to any Möbius flat metric σflat,
and is given by

(2.3) B(|dz|, eη|dz|) = B(σflat, e
η|dz|) =

(
ηzz − (ηz)

2
)
dz2.

We also note that property (B2) implies that the Schwarzian is well-defined
for pairs of conformal metrics on a Riemann surface.

Lemma 2.5. Let σ be a conformal metric of constant curvature. Then the
differential B(σ, σ′) is holomorphic if and only if the curvature of σ′ is also
constant.

Proof. An elementary calculation using (2.2) gives

∂̄B(σ, σ′) = Kzσ
2 −K ′zσ′2,

where K (respectively K ′) is the Gaussian curvature function of σ (resp. σ′).
By hypothesis Kz ≡ 0, and σ′2 is a nondegenerate area form, so the expres-
sion above vanishes if and only if K ′ is constant. �

2.10. Metrics associated to a CP1 structure. As before let X be a
compact Riemann surface and let (f, ρ) be a projective structure on X with
Schwarzian φ ∈ Q(X). Associated to these data are three conformal metrics:

• The hyperbolic metric σhyp on X,

• The singular Euclidean metric |φ|1/2, and

• The pullback metric f∗σCP1 on X̃, where σCP1 is a spherical metric
on CP1.

Taking pairs of these metrics gives three associated Schwarzian deriva-
tives, which by Lemma 2.5 are holomorphic except possibly at the zeros of
φ. By (B2) we have:

φ = 2B(σhyp, f
∗σCP1),

and for the other pairs we introduce the notation

φ̂ = 2B(|φ|1/2, f∗σCP1),

β = 2B(σhyp, |φ|1/2).

Note that f∗σCP1 is actually a metric on the universal cover rather than on
X itself. However, by (B2) its Schwarzian relative to any Π-invariant metric
is a Π-invariant quadratic differential, so in the expressions above we have
implicitly identified this differential with the one it induces on X.
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By (B1) the differentials φ,φ̂,β have a linear relationship:

(2.4) φ̂ = φ− β.

Near a zero of φ, one can choose coordinates so that φ = zkdz2. Calcu-
lating in these coordinates and using the explicit expression for B(�, �), it is
easy to check that β extends to a meromorphic differential on X with poles
of order 2 at the zeros of φ. At a zero of φ of order k, the residue of β is

−k(k+4)
8 . Of course by (2.4), the differential φ̂ also has poles of order 2 at

the zeros of φ and is holomorphic elsewhere.

We will be interested in comparing the geometry of φ and φ̂ when φ is
“large”. Note that β is independent of scaling andQ(X) is finite-dimensional,

so (φ− φ̂) = β ranges over a compact set of meromorphic differentials. Thus

when φ has large norm, one expects |β/φ| to be small and for φ and φ̂ to be
nearly the same away from the zeros of φ. Quantifying this in terms of the
geometry of |φ|, we have:

Lemma 2.6 (Bounding β). For any φ ∈ Q(X) we have

(2.5)

∣∣∣∣β(z)

φ(z)

∣∣∣∣ 6 6

d(z)2
,

where d(z) is the φ-distance from z to Zφ. Furthermore, if ∇ denotes the

gradient with respect to the metric |φ|1/2, then we also have

(2.6)

∣∣∣∣∇(β(z)

φ(z)

)∣∣∣∣ 6 48

d(z)3
.

Proof. We work in a natural coordinate z for φ and use this coordinate
to identify differentials with holomorphic functions, i.e. β(z)/φ(z) becomes
β(z).

By applying a translation it suffices to consider the point z = 0. By
definition of the function d(z), we can also assume that the z-coordinate
neighborhood contains an open Euclidean disk D of radius d = d(0) centered
at 0. If d is greater than the φ-injectivity radius of X, we work in the
universal cover but suppress this distinction in our notation.

Let h : D → H be a developing map for the hyperbolic metric of X
restricted to D, so β = S(h). Since h is a univalent map on D, the Nehari-
Kraus theorem gives |S(h)(0)| 6 6/d2, which is (2.5).

Since β(z) is holomorphic and we are working in the natural coordinate
for φ, the gradient is given by |∇β(z)| = |β′(z)|. The estimate (2.6) then
follows immediately from the Cauchy integral formula applied to a circle of
radius d(z)/2 centered at z. �
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3. Epstein maps

In this section we review a construction of C. Epstein (from the unpub-
lished paper [Eps]) which produces surfaces in hyperbolic space from do-
mains in CP1 equipped with conformal metrics. We analyze the local geom-
etry of these surfaces, first for general conformal metrics and then for the
special case of a quadratic differential metric. While at several points we
mention results and constructions from [Eps], our treatment is self-contained
in that we provide proofs of the properties of these surfaces that are used in
the sequel.

3.1. The construction. For each p ∈ H3, following geodesic rays from p
out to the sphere at infinity ∂∞H3 ' CP1 defines a diffeomorphism UpH3 →
CP1, where UH3 denotes the unit tangent bundle of H3. Let Vp denote
pushforward of the metric on UpH3 by this map, which we call the visual
metric from p. For example, in the unit ball model of H3, the visual metric
from the origin is the usual spherical metric of S2 ' CP1.

Theorem 3.1 (Epstein [Eps]). Let X be a Riemann surface equipped with
a C1 conformal metric σ, and let f : X → CP1 be a locally injective holo-
morphic map. Then there is a unique continuous map Ep(f, σ) : X → H3

such that for all z ∈ X, we have

(f∗VEp(f,σ)(z))(z) = σ(z).

Furthermore, the point Ep(f, σ)(z) depends only on the 1-jet of σ at z, and
if σ is Ck, then Ep(f, σ) is Ck−1.

We call Ep(f, σ) the Epstein map associated to (X, f, σ), and sometimes
refer to its image as an Epstein surface. However, note that Ep(f, σ) is
not necessarily an immersion, and could even be a constant map (e.g. if
σ = f∗(Vp)).

The Epstein map has a natural lift Êp(f, σ) : X → UH3 as follows. For
p ∈ H3 and x ∈ CP1, let vp→x denote the unit tangent vector to the geodesic
ray from p that has ideal endpoint x. We define

Êp(f, σ)(z) =
(
Ep(f, σ)(z), vEp(f,σ)(z)→f(z)

)
.

Clearly π ◦ Êp(f, σ) = Ep(f, σ), where π : UH3 → H3 is the projection.

Furthermore, since f is locally injective, the same is true of ̂Ep(f, σ).
Epstein also shows that if Ep(f, σ) is an immersion in a neighborhood of

z, then there is a neighborhood U of z such that Ep(f, σ)(U) is a convex

embedded surface in H3, and Êp(f, σ)(U) is its set of unit normal vectors.

3.2. Explicit formula. An explicit formula for Ep(f, σ) is given in the unit
ball model of H3 in [Eps]. We will now describe the same map in model-
independent terms. Since the construction is local and equivariant with
respect to Möbius transformations, it suffices to consider the case of a C1

conformal metric σ = eη|dz| on an open set Ω ⊂ C (an affine chart of CP1),
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and to determine a formula for the Epstein map of (Ω, σ, Id). In what follows
we write Ep for Ep(f, σ), with the dependence on σ (and its log-density η)
being implicit.

Define a map Ẽp : Ω→ SL2(C) by

Ẽp(z) =

(
e−η/2(1 + zηz) eη/2z

e−η/2ηz eη/2

)
=

(
1 z
0 1

)(
1 0
ηz 1

)(
e−η/2 0

0 eη/2

)(3.1)

where subscripts denote differentiation, and we have written η instead of
η(z) for brevity.

Our choice of an affine chart C ⊂ CP1 ' ∂∞H3 distinguishes the ideal
points 0,∞ and the geodesic joining them. Let P0 ∈ H3 denote the point
on this geodesic so that the visual metric VP0 and the Euclidean metric |dz|
induce the same norm on the tangent space at 0. (In the standard upper
half-space model of H3, we have P0 = (0, 0, 2).)

The Epstein map of σ is the P0-orbit map of Ẽp, i.e.

Ep(z) = Ẽp(z) · P0.

Similarly, the lift Êp(z) is the orbit map of the unit vector vP0→0 ∈ UP0H3.
This description of Ep(z) can be derived from Epstein’s formula ([Eps,

Eqn. 2.4]) by a straightforward calculation, or the visual metric property of
Theorem 3.1 can be checked directly. However, since we will not use the
visual metric property directly, we take (3.1) as the definition of the Epstein
map. This formula will be used in all subsequent calculations.

Recall that the unit tangent bundle of a Riemannian manifold has a
canonical contact structure, and lifting a co-oriented locally convex hyper-
surface by its unit normal field gives a Legendrian submanifold. The follow-

ing property of Epstein maps shows that Êp can be seen as providing a unit
normal vector for Ep, even at points where the latter is not an immersion.

Lemma 3.2. The map Êp is a Legendrian immersion into UH3.

Proof. As before we work locally, in a domain Ω ⊂ C. Using v = vP0→0 as a
basepoint, the SL2(C)-action identifies the unit tangent bundle of H3 with

the homogeneous space SL2(C)/A where A = Stab(v) =
{(

eiθ 0
0 e−iθ

)}
. Let

g denote sl2(C) = Lie(SL2(C)) and a := Lie(A).
The set of Killing vector fields on H3 (i.e. elements of g) that are orthog-

onal to v at P0 descends to a codimension-1 subspace of g/a ' TP0UH3,
and the corresponding SL2(C)-equivariant distribution on TUH3 is the con-
tact structure. In coordinates, this orthogonality condition determines the
subspace {

(
a b
c −a

)
| Re(a) = 0} ⊂ g.
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Therefore, to check that Êp is Legendrian it suffices to show that the

(Darboux) derivative Ẽp
−1
dẼp : TΩ→ g takes values in this space. Differ-

entiating formula 3.1 gives an expression of the form

Ẽp
−1
dẼp =

1

2

(
i (ηxdy − ηydx) eη(dx+ idy)

∗ −i (ηxdy − ηydx)

)
where z = x + iy. Since the upper-left entry is purely imaginary, the map

Êp is tangent to the contact distribution. Since the upper-right entry is
injective (as a linear map TzΩ → C), the map is an immersion and thus
Legendrian. �

3.3. First derivative and first fundamental form. In this section we
assume that the conformal metric σ is C2. Using the formula (3.1) and
the expression for the hyperbolic metric in the homogeneous model H3 '
SL2(C)/ SU(2), it is straightforward to calculate the first fundamental form
I of the Epstein surface. In complex coordinates, the result is:

I = (ηzz − η2
z)(1 + 4e−2ηηzz̄)dz

2

+
(
4e−2η|ηzz − η2

z |2 + 1
4e

2η(1 + 4e−2ηηzz̄)
2
)
dzdz̄

+ (ηz̄z̄ − η2
z̄)(1 + 4e−2ηηzz̄)dz̄

2

Notice that (ηzz − η2
z) represents the Schwarzian B(σCP1 , σ) of the metric

σ = eη|dz|, where σCP1 denotes a Möbius flat metric on CP1 (see (2.3)).
Recall that the Gaussian curvature of the metric σ is K = −4e−2ηηzz̄. In
terms of these quantities, we have

(3.2) I =
4

σ2
|B(σCP1 , σ)|2 +

1

4
(1−K)2σ2 + 2(1−K) Re(B(σCP1 , σ))

3.4. Second fundamental form and parallel flow. The Epstein surface
for the metric etσ (with log-density η + t) is the result of applying the
time-t normal flow to the surface for σ itself. In such a parallel flow, the
first fundamental form evolves according to İ = −2II where II is the second
fundamental form. (Here and below we use the notation ẋ for dx

dt

∣∣
t=0

.)
In order to simplify the expressions for these derivatives we work in a

local conformal coordinate z and introduce the 1-forms:

θ = eη+tdz

χ =
2

θ
B(σCP1 , σ) +

θ̄

2
(1−K)

Note that θ is (1, 0) form of unit norm with respect to etσ. In terms of these
quantities we can rewrite (3.2) as I = χχ̄, and so we have II = −Re(χ̇χ̄).

Since θ̇ = θ, K̇ = −2K, and d
dtB(σCP1 , etσ) = 0, the 1-form χ satisfies

−χ̇ =
2

θ
B(σCP1 , σ) +

θ̄

2
(1 +K)
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Substituting, we obtain

(3.3) II =
4

σ2
|B(σCP1 , σ)|2 − 1

4
(1−K2)σ2 − 2K Re(B(σCP1 , σ))

3.5. The Epstein-Schwarz map. Let X be a compact Riemann surface
and φ ∈ Q(X) a quadratic differential. In this section we will often need
to work on the surface X ′ = X \ Zφ obtained by removing the zeros of φ.
Let (f, ρ) denote the developing map and holonomy representation of the
projective structure on X satisfying S(f) = φ.

The developing map f and the conformal metric |2φ|1/2 on X ′ induce an
Epstein map

Σφ := Ep(f, |2φ|1/2) : X̃ ′ → H3

which we call the Epstein-Schwarz map. Similarly, we have the lift Σ̂φ :

X̃ ′ → UH3 to the unit tangent bundle. Note that X̃ ′ denotes the comple-

ment of Z̃φ = φ̃−1(0) in X̃, rather than the universal cover of X ′ itself. The

factor of
√

2 in the definition of Σφ arises naturally when considering the
first and second fundamental forms of the image surface (e.g. Lemma 3.4
and Example 1 below).

Recall from Section 2.10 that associated to φ = 2B(σhyp, σCP1) we have the

meromorphic differentials φ̂ = 2B(|φ|1/2, f∗σCP1) and β = 2B(σhyp, |φ|1/2).
We now calculate the first and second fundamental forms of the Epstein-
Schwarz map in terms of these quantities.

Lemma 3.3 (Calculating I and II). The first fundamental form of the
Epstein-Schwarz map Σφ is

(3.4) I =
|φ̂|2 + |φ|2

2|φ|
− Re φ̂

This map is an immersion at x if and only if

|φ̂(x)| 6= |φ(x)|,
and at any such point, the second fundamental form is

(3.5) II =
|φ̂|2 − |φ|2

2|φ|

Furthermore, using the unit normal lift Σ̂ to define the derivative of the
unit normal at points where Σ is not an immersion, the formula for above
extends to all of X ′.

Proof. Substituting K = 0, B(σCP1 , σ) = −1
2 φ̂, and σ2 = 2|φ| into (3.2)-

(3.3) gives the formulas for I and II, so we need only determine where Σφ is
an immersion and justify that the formula for II holds even when it is not.

The 1-form χ defined above reduces to

χ =
1√
2

(
φ̂

φ1/2
+ φ̄1/2

)
,
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where φ1/2 is a locally-defined square root of φ. The Epstein map fails to
be an immersion when the first fundamental form I = χχ̄ is degenerate,
i.e. when χ and χ̄ are proportional by a complex constant of unit modulus.

By the expression above this occurs when φ̂/φ1/2 = aφ1/2 for some a ∈ C
with |a| = 1. This is equivalent to |φ̂| = |φ|.

Finally, in calculating the second fundamental form above, we used the
equation İ = −2II for the normal flow of an immersed surface. The same
formula holds for the flow associated to an immersed Legendrian surface in

UH3, so by Lemma 3.2 it applies to Epstein lift Σ̂φ. Thus, formula (3.3)
gives the second fundamental form of Σφ in this generalized sense. �

We see from this lemma that the pullback metric I is not compatible

with the conformal structure of the Riemann surface X; its (2, 0) part φ̂
represents the failure of Σ to be a conformal mapping onto its image. On
the other hand, II is a quadratic form of type (1, 1) and so it induces a metric
compatible with X.

We will now use these expressions for the fundamental forms of the Ep-
stein surface to derive estimates based on the relative difference between the
differentials φ̂ and φ.

More precisely bounds will be based on the function ε : X ′ → R give by

ε(x) =

∣∣∣∣β(x)

φ(x)

∣∣∣∣ ,
for which we already have some estimates by Lemma 2.6.

Lemma 3.4. The first and second fundamental forms I, II of the Epstein-
Schwarz map Σ = Σφ satisfy the following:

(i) The principal directions of the quadratic form I, relative to a back-
ground metric on X compatible with its conformal structure, are
given by the horizontal and vertical directions of the quadratic differ-

ential φ̂. Here the horizontal direction corresponds to the maximum
of I on a unit circle in a tangent space.

(ii) The images of the horizontal and vertical foliations of φ̂ are the lines
of curvature of the Epstein surface.

(iii) Let ξh and ξv denote unit horizontal and vertical vectors for |φ̂| at
x ∈ X ′. If ε(x) < 1

2 , then the images of these vectors satisfy

‖Σ∗(ξh)‖ < ε(x)
√

2 < ‖Σ∗(ξv)‖ <
√

2 + ε(x).

(iv) Let κh, κv denote the principal curvatures of Σ associated to the hor-

izontal and vertical directions of φ̂ at x, respectively. If ε(x) < 1
2 ,
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then

|κh| >
1

ε(x)

|κv| =
1

κh
< ε(x)

Remark. Parts of this lemma could also be derived from results in [Eps]:

(1) Epstein shows that the vertical and horizontal foliations of (ηzz −
η2
z)dz

2 are mapped to lines of curvature by the Epstein map of eη|dz|.
This includes part (ii) of the lemma above as a special case.

(2) Epstein also relates the curvature 2-forms of the conformal metric
and of the first fundamental form of the associated Epstein surface;
in the case of a flat metric this implies that the principal curvatures
satisfy κ1κ2 = 1.

Proof.

(i) Since the principal directions are orthogonal, it suffices to consider one
of them. By (3.4), the only part of I that varies on a conformal circle in

a tangent space of X is the term Re φ̂(v). Thus the norm is maximized

for vectors such that φ̂(v) is real and positive, which is equivalent to v

being tangent to the horizontal foliation of φ̂, as desired.

(ii) Since II is real and has type (1, 1), the eigenspaces of the shape operator
I−1II are the principal directions of the quadratic form I, which by (i)

are the vertical and horizontal directions of φ̂. Thus any vertical or

horizontal leaf of φ̂ is a line of curvature.

(iii) First of all, it will be convenient to estimate |β/φ̂|, using the hypothesis
that ε(x) < 1

2 :∣∣∣∣β
φ̂

∣∣∣∣ =
|β|
|φ− β|

6
|β|

|φ| − |β|
<
|β|
1
2 |φ|

= 2ε(x).

Let nh = ‖Σ∗ ξh‖ and nv = ‖Σ∗ ξv‖. Using formula (3.4) and the

fact that ξh(x) and ξv(x) are unit with respect to |φ̂|, we calculate

n2
h = I(ξh) =

(
|φ̂| − |φ|

)2

2|φφ̂|

n2
v = I(ξv) =

(
|φ̂|+ |φ|

)2

2|φφ̂|
= 2 + n2

h

(3.6)

Since φ̂ = φ−β, we have ||φ̂|−|φ|| 6 |β|. Substituting into the expression
for n2

h gives

n2
h 6

|β|2

2|φφ̂|
< ε(x)2
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and the estimate on nh follows. By the last equality of (3.6) we have

√
2 < nv =

√
2 + n2

h <
√

2 + nh <
√

2 + ε(x)

as required.

(iv) Using (3.4)-(3.5) we find κhκv = det(I−1II) = 1, so we need only estimate
κv. By (ii) the curvatures are obtained by multiplying the eigenvalues

of I−1 by |φ̂|
2−|φ|2
2|φ| , and we have

(3.7) κv =
|φ̂|2 − |φ|2

(|φ̂|+ |φ|)2
=
|φ̂| − |φ|
|φ̂|+ |φ|

As before we use ||φ̂| − |φ|| 6 |β|, giving

|κv| 6
|β|

|φ|+ |φ̂|
6 ε(x).

�

Lemma 3.5 (Curvature of vertical leaves). Let L̂ denote a leaf of the vertical

foliation of φ̂, parameterized by |φ̂|-length, and for any x ∈ L̂ let k(x) denote

the curvature of Σφ(L̂) at Σφ(x). Let d(x) denote the φ-distance from x to

Zφ. Then for any x such that d(x) > 2
√

3 we have

k(x) < 15d(x)−2.

Proof. All estimates in this proof involve tensors evaluated at a single point

x ∈ L̂, so we abbreviate d = d(x), φ = φ(x), etc.. By Lemma 2.6 the

hypothesis d > 2
√

3 gives ε = |β/φ| < 1/2 and 1/2 < |φ̂/φ| < 3/2. In
particular this means that the estimates of Lemma 3.4 apply.

The image of L̂ is a line of curvature of Σφ corresponding to the principal
curvature κv. Splitting the curvature of its image in H3 into tangential and
normal components, we have have k2 = κ2

g + κ2
v where κg is the geodesic

curvature of L̂ at x with respect to I. By Lemma 3.4 we have

κv < |β/φ| < 6d−2.

Let ξh, ξv denote unit vertical and horizontal vectors of φ̂ at x, which are
tangent to the principal curvature directions. As in the proof of Lemma 3.4,
we denote by nh the norm of ξh with respect to I. By an elementary calcu-
lation in Riemannian geometry, the geodesic curvature of a line of curvature
satisfies

(3.8) |κg| =
|ξh(κv)|

nh |κv − κh|
,

where ξh(κv) denotes the derivative of the function κv with respect to the
vector ξh.
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Applying (3.7), we have

κh − κv =
1

κv
− κv =

4|φφ̂|
|φ̂|2 − |φ|2

,

and similarly for the derivative,

ξh(κv) = ξh

(
|φ̂| − |φ|
|φ̂|+ |φ|

)
= ξh

(
1− 2

|φ̂/φ|+ 1

)

= 2

(
|φ|

|φ̂|+ |φ|

)2

ξh

(
|φ̂/φ|

)
Since |φ̂/φ| = |1 − β/φ|, we have |ξh(|φ̂/φ|)| 6 |ξh(β/φ)|. Using the bound
on the norm of the |φ|-gradient of β/φ from Lemma 2.6 and the fact that

the φ-norm of ξh is |φ/φ̂|1/2, we obtain

|ξh(β/φ)| 6 48d−3|φ/φ̂|1/2.

Recall from (3.6) that n2
h = (|φ| − |φ̂|)2/(2|φφ̂|). Substituting these ex-

pressions into (3.8) and simplifying gives

|κg(x)| = |φ|+ |φ̂|
2
√

2 |φφ̂|1/2
ξh(|φ̂/φ|) < 24

√
2

[
|φ|2

|φ̂|(|φ|+ |φ̂|)

]
d−3

Since 1/2 < |φ̂/φ| < 3/2 it follows that the bracketed expression is bounded
by 4/3, so finally we have

|κg(x)| < 32
√

2 d−3.

Returning to the curvature function k, we combine the bounds for κg and

κv above and use d > 2
√

3 to obtain

k = (κ2
g+κ

2
v)

1/2 <
(

(32
√

2 d−3)2 + (6d−2)2
)1/2

<

(
512

3
+ 36

)1/2

d−2 < 15d−2.

�

Next we combine the above results concerning the derivative and the
curvature of the Epstein-Schwarz map to estimate lengths of images of seg-
ments. The following theorem is the only result in this section which is used
in the sequel.

Theorem 3.6 (Collapsing). There exist D0 > 0 and C0 > 0 such that for
all φ ∈ Q(X) we have

(i) For any d > D0, the restriction of Σφ to X \ Nd(Zφ) is locally

(
√

2 + C0d
−2)-Lipschitz with respect to the φ-metric.

(ii) If [y1, y2] is a segment on a vertical leaf of φ̂ and d = dφ([y1, y2], Zφ) >
D0, then

(
√

2− C0d
−2) dφ(y1, y2) < dH3(Σφ(y1),Σφ(y2)) < (

√
2 + C0d

−2) dφ(y1, y2).
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(iii) If [x1, x2] is a segment on a horizontal leaf of φ̂ and d = dφ([x1, x2], Zφ) >
D0, then

dH3(Σφ(y1),Σφ(y2)) < C0d
−2dφ(x1, x2).

Proof. The proof will show that one can take D0 = 4 and C0 = 28.

Since vertical segments are geodesics in the φ̂-metric, the upper bound
from (ii) follows from (i).

We first consider upper bounds on distances. We can integrate a bound on
the derivative of Σφ over a path to obtain an upper bound on the length of

the image, and thus on the distance between endpoints. Since d > D0 > 2
√

3
we can apply the derivative estimates from Lemma 3.4 and combining them
with Lemma 2.6 we obtain

dH3(Σφ(z1),Σφ(z2)) < (
√

2 + 6d−2) dφ(z1, z2)

for any z1, z2 that are joined by a minimizing geodesic in X \Nd(Zφ). This
implies (i) and, since vertical segments are minimizing geodesics, the upper
bound from (ii). For a horizontal segment [x1, x2], these lemmas give

dH3(Σφ(x1),Σφ(x2)) < 6d−2 dφ(x1, x2)

and (iii) follows.
To complete the lower bound for case (ii), we note that the lower bound

on the derivative of Σφ in the vertical direction from Lemma 3.4 implies

Length(Σφ([y1, y2])) > (
√

2− 6d−2)dφ(y1, y2).

Recall that a path in H3 with curvature bounded above by k < 1 and pa-
rameterized by arc length is 1/

√
1− k2-bi-Lipschitz embedded (see e.g. [Lei,

App. A]). Since d > D0 = 4, Lemma 3.5 implies that the image of a vertical
leaf segment has curvature k < 15d−2 < 1. Combining this with the length
estimate and using that

√
1− k2 > 1− k for k < 1, we obtain

dH3(Σφ(y1),Σφ(y2)) > (1− 15d−2)(
√

2− 6d−2)dφ(y1, y2)

> (
√

2− 28d−2)dφ(y1, y2)

completing the proof of (ii). �

3.6. Quasigeodesics. Let I denote a closed interval, half-line, or R. Recall
that a parameterized path γ : I → M in a metric space M is a (K,C)-
quasigeodesic if for all a, b ∈ I we have

K−1|b− a| − C 6 d(γ(a), γ(b)) 6 K|b− a|+ C.

The following property of quasigeodesics in H3 is well-known (see e.g. [Kap2]
[Rat, Sec 11.8]).

Lemma 3.7. For all K > 1 and C > 0 there exists L = L(K,C) > 0
with the following property: If γ : I → H3 is a (K,C)-quasigeodesic, and if
J is the geodesic segment in H3 with the same endpoints as γ(I), then the
Hausdorff distance between J and γ(I) is at most L(K,C).
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�

The lemma applies to quasigeodesic rays and lines, where the “endpoints”
of γ(I) and J are allowed to lie on the sphere at infinity.

We will also want to recognize quasigeodesics using the local criterion
provided by the following lemma.

Lemma 3.8. For all K > 1 and C > 0 there exist R(K,C) > 0, K ′(K,C) >
1, and C ′(K,C) > 0 with following property: If γ : I → H3 is a (K,C)-
quasigeodesic when restricted to each interval of length R(K,C), then γ is
a (K ′(K,C)), C ′(K,C))-quasigeodesic (globally). Furthermore, these quan-
tities can be chosen to satisfy

(3.9)

K ′(K,C)→ 1

C ′(K,C)→ 0

R(K,C) bounded

 as (K,C)→ (1, 0).

Without the claim about limits of K ′, C ′, R, this lemma represents a well-
known property of quasigeodesics in H3 (and more generally, in δ-hyperbolic
metric spaces). Proofs can be found in [Gro, Sec. 7] [CDP, Sec. 3.1].
We therefore concern ourselves with the limiting behavior of K ′, C ′, R as
(K,C)→ (1, 0).

Proof of (3.9). A (K,C)-quasigeodesic is also a (1 + ε, ε)-quasigeodesic for
some ε that goes to zero as (K,C) → (1, 0). We assume from now on that
γ : I → H3 is a (1 + ε, ε)-quasigeodesic on segments of length 1 (i.e. we set
R = 1). We will compare γ(I) to the piecewise geodesic path formed by the
images of regularly spaced points in I; in order to obtain good estimates we
will need for the spacing of these points will be much larger than ε, but to
still go to zero as ε→ 0.

Consider the triangle in H3 formed by a = γ(t), b = γ(t + ε1/8), c =

γ(t + 2ε1/8) for some t such that [t, t + 2ε1/8] ⊂ I. Assume that 2ε1/8 < 1,

so the path γ is a (1 + ε, ε)-quasigeodesic on [t, t+ 2ε1/8] and we have

d(a, b), d(b, c) ∈ [ε
1
8 (1 + ε)−1 − ε, ε

1
8 (1 + ε) + ε],

d(a, c) ∈ [2ε
1
8 (1 + ε)−1 − ε, 2ε

1
8 (1 + ε) + ε].

For small ε it follows that d(a, c) ≈ d(a, b)+d(a, c) and the triangle is nearly
degenerate; a calculation using the hyperbolic law of cosines shows that such
a hyperbolic triangle has interior angle at b satisfying θ > π − 5ε7/16.

Let V = {k ∈ ε1/8Z | (k ± ε1/8) ∈ I}, and consider the path in H3

obtained by joining successive elements of γ(V ) by geodesic segments. By
the estimates above this piecewise geodesic path has segments of length at
least s and angles between adjacent segments greater than π − δ, where

s = ε1/8/2 < (ε1/8(1 + ε)−1 − ε)

δ = 5ε7/16
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By [CEG, Thm. I.4.2.10], if we have s sin(s − δ) > δ then such a piecewise
geodesic path is k-bi-Lipschitz embedded for k = cos(s). For the values

given above we find s sin(s − δ) ∼ 1
4ε

1/4 as ε → 0. Comparing exponents
(i.e. 1/4 < 7/16) we find that the condition is satisfied for ε sufficiently
small. Thus the path is bi-Lipschitz embedded with

k = cos(ε1/8/2).

Note that k → 1 as ε→ 0.
For any p, q ∈ I there exist p′, q′ ∈ V with |p− p′|, |q − q′| < 2ε1/8. Using

the k-Lipschitz property of γ(V ′) and the fact that γ is (1+ε, ε)-quasigeodesic

on segments of length 2ε1/8, we have

k−1(|p−q|−4ε
1
8 )−4ε

1
8 (1+ε)−2ε 6 d(γ(p), γ(q)) 6 k(|p−q|+4ε

1
8 )+4ε

1
8 (1+ε)+2ε.

Thus we take K ′ = k and C ′ = 4ε1/8(k + 1 + ε) + 2ε, and (3.9) follows. �

3.7. Height and distance. So far our analysis of the Epstein-Schwarz map

has focused on leaves of the foliations of the quadratic differential φ̂, which is
the sum of the Schwarzian of the projective structure (i.e. φ) and a correction
term (−β). We will now use Theorem 3.6, Lemma 2.6, and the quasigeodesic
estimates of the previous section to study the restriction of Σφ to a geodesic
of the φ-metric.

The following theorem shows that the height of a φ-geodesic segment
provides a good estimate for the distance between the endpoints of its image
by Σφ, as long as the segment is far from Zφ.

Theorem 3.9. There exists M > 0 and decreasing functions K ′(m) > 1,
C ′(m) > 0 defined for m > M with the following property: Let φ ∈ Q(X)
and let J = [x0, x1] be a nonsingular and non-horizontal φ-geodesic segment

in X̃ with height h and length L. If d = dφ(J, Zφ) > m(1 +
√
L) for some

m >M , then
(3.10)

K ′(m)−1
√

2h− C ′(m) < dH3(Σφ(x0),Σφ(x1)) < K ′(m)
√

2h+ C ′(m).

Furthermore, we have (K ′(m), C ′(m))→ (1, 0) as m→∞.

Because of this constant factor of
√

2 in the estimate above, it will be help-
ful in the proof and subsequent discussion to sometimes use the following
terminology: Suppose J is a nonsingular φ-geodesic segment. We say that a
parameterization J(t) of this segment is a parameterization by 2φ-height if
the φ-height of J([t1, t2]) is equal to 1√

2
|t2 − t1| for all t1, t2 in the domain.

This is equivalent to the condition that the height of J([t1, t2]) with respect
to the quadratic differential 2φ is |t2 − t1|. Of course any non-horizontal
segment has a parameterization by 2φ-height. Theorem 3.9 shows that un-
der the stated hypotheses, the Epstein-Schwarz map Σφ sends a segment
parameterized by 2φ-height to a path in H3 that is (K,C)-quasi-geodesic
with K ≈ 1 and C ≈ 0 when m is large.
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Proof. We will make several assumptions of the form m > c, where c is a
constant. At the end we take M to be the supremum of these constants.

Let U denote the d/2-neighborhood of J with respect to the φ-metric, so
dφ(U,Zφ) = d/2 > m/2. Define

δ = sup
U

|φ̂− φ|
|φ|

= sup
U

|β|
|φ|
.

Using the bound on |β|/|φ| from Lemma 2.6 and d > m we obtain

δ <
24

m2
.

and similarly, using d > m
√
L, we have

4δL <
96L

d2
<

96

m2
.

We now assume m > 16 which by the above estimates is more than sufficient
to ensure δ < 1/4 and dφ(J, ∂U) = d/2 > 4δL, so Lemma 2.4 applies to U

and any subsegment J1 of J . In particular U contains a nonsingular φ̂-

geodesic segment Ĵ1 with the same endpoints as J1 and which satisfies

dφ(Ĵ1, ∂U) >
d

8
, and

max(|ĥ1 − h1|, |ŵ1 − w1|) < δL <
24

d2
< 1,

where h1, w1 are the φ-height and width of J1, and and ĥ1, ŵ1 are the φ̂-

height and width of Ĵ1.

Now suppose that the subsegment J1 has height at most d/16. Then Ĵ1

has height bounded by 1+d/16 < d/8 < dφ(Ĵ1, ∂U) and there are φ̂-vertical

and horizontal geodesic segments contained in U that together with Ĵ1 form

a right triangle T̂ that lies in U . Taking m > 2D0 we can apply Theorem

3.6 to the vertical and horizontal sides of T̂ in order to estimate the distance
between the Σφ-images of the endpoints {y0, y1} of J1, obtaining(√

2− 4C0

d2

)
ĥ1 −

4C0

d2
ŵ1 6

dH3(Σφ(y0),Σφ(y1))

6

(√
2 +

4C0

d2

)
ĥ1 +

4C0

d2
ŵ1

Using |ĥ1 − h1| < 24/d2 and ŵ1 < L + 24/d2, and the fact that these
estimates can be applied to any subsegment of J1, we find that Σφ maps the
parameterization of J1 by 2φ-height to a (K,C)-quasigeodesic path in H3

with

(3.11) K =

(
1− 4C0√

2 d2

)−1

, C =
4C0(L+ 48d−2) + 24

√
2

d2
.
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From these expressions it is clear that for m large enough, the assumptions
d > m and d > m

√
L give upper bounds for K,C, and that these decrease

toward 1, 0, respectively, as m→∞. Since this quasigeodesic property holds
on each subsegment of J whose height is at most d/16 > m/16, by taking
m large enough we can apply Lemma 3.8, and the parameterization of J
by 2φ-height is mapped by Σφ to a (K ′(m), C ′(m))-quasigeodesic path in
H3, where K ′(m) → 1 and C ′(m) → 0 as m → ∞. The estimate (3.10) for
dH3(Σφ(x0),Σφ(x1)) follows. �

For horizontal segments, the above proof applies up to (3.11), and we can
take J1 = J since the condition that h1 < d/16 is vacuous. We conclude:

Corollary 3.10 (of proof). There exist M > 0 and a decreasing function
C ′(m) > 0 defined for m > M with the following property: Let φ ∈ Q(X)

and let J = [x0, x1] be a nonsingular horizontal φ-geodesic segment in X̃

with length L. If d = dφ(J, Zφ) > m(1 +
√
L) for some m >M , then

(3.12) Length(Σφ(J)) 6 C ′(m)

Furthermore, we have C ′(m)→ 0 as m→∞.

�

3.8. Examples. Because the construction of the Epstein-Schwarz map as-
sociated to a quadratic differential is purely local, we can consider the be-
havior for some simple differentials on the complex plane to illustrate the
geometric properties studied in Theorems 3.6 and 3.9.

Example 1. Consider the quadratic differential φ = dz2 on C. Note that

|φ|1/2 = |dz|1/2 is Möbius flat, so β = 0, φ̂ = φ, and Theorem 3.6 applies to
the trajectories of φ.

The covering map f : C→ C∗ given by f(z) = exp(i
√

2z) satisfies S(f) =
φ, so we can use this as a model for the associated developing map. The
metric

√
2|φ|1/2 on C pushes forward to the metric |dz|/|z| on C∗. In the

standard unit ball model of H3, this metric agrees with the spherical metric
on the equator, so the image of the equator by the Epstein map is the origin.
Invariance of |dz|/|z| under the action of R+ by dilation then shows that the
full Epstein map of this metric on C∗ is the orthogonal projection of ∂∞H3

onto the geodesic g0,∞ joining the ideal points 0,∞.
Therefore the Epstein-Schwarz map Σφ : C → H3 is the composition

of f with this projection, or equivalently, Σφ(z) = g(Im(z)) where g(t) is
an arc length parameterization of g0,∞. We see the behavior predicted by
letting d→∞ in the estimates of Theorem 3.6, reflecting the fact that this
quadratic differential is complete and has no zeros: Each vertical trajectory
(i.e. each vertical line in C) maps to a geodesic in H3 parameterized by arc
length, while each horizontal trajectory is collapsed to a point.

Example 2. Next we consider φ = zdz2 on C. While in this case it is
possible to find closed-form expressions for the developing map (in terms of
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Figure 1. Left to right: Vertical and horizontal trajectories of zdz2; the images of
vertical trajectories under the Epstein-Schwarz map approximate an ideal triangle,
as shown here in the unit ball model of H3; segments on horizontal trajectories are
contracted to sets of small diameter.

Figure 2. The image of a small neighborhood of the origin under the Epstein-
Schwarz map of zdz2 in the unit ball model of H3. The ideal point (0, 0,−1) corre-
sponds to the image of 0 under the developing map.

Airy functions) and for the Epstein-Schwarz map, we will only discuss the
qualitative features seen in Figures 1–2. Here the origin is a simple zero of
φ which corresponds to a cone point of angle 3π for the φ-metric. Centered
at the origin we can construct a regular right-angled geodesic hexagon of
alternating vertical and horizontal sides. By Theorem 3.9, if this hexagon is
far enough from the origin then the Epstein-Schwarz map sends its vertical
sides to long near-geodesic segments in H3, while the horizontal sides are
mapped to sets of small diameter. Thus the image of the hexagon itself
approximates an ideal triangle. Note that avoiding a small neighborhood of
the origin also ensures that the trajectories of φ = zdz2 are close to those

of φ̂ = (z + 5
8z2

)dz2, so the images of these curves approximate lines of
curvature on the Epstein surface.

Near the origin (i.e. for small d) the behavior of the Epstein-Schwarz
surface is quite different. A small punctured neighborhood of 0 maps to
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the “bubble” shown in Figure 2—a properly embedded, infinite area surface

whose induced metric is approximately isometric to |φ̂|/|φ|1/2 ∼ |z|−5/2|dz|
(by Lemma 3.3). The corresponding surface in H3 approaches the developed
image of 0 tangentially, eventually leaving every horoball based at that point.

4. Sequences of Epstein-Schwarz maps

In the previous section we considered the geometry of the Epstein-Schwarz
map for a single complex projective structure on a surface. We now analyze
how these results apply to a divergent sequence of projective structures
whose associated quadratic differentials converge projectively. Specifically,
throughout this section we assume:
(4.1)

(fn, ρn) is a sequence of projective structures on X

φn ∈ Q(X) is the associated sequence of Schwarzian derivatives

φn →∞ as n→∞
limn→∞

φn
‖φn‖ = φ

The theme we develop is that the foliation and transverse measure of the
projective limit φ governs the large-scale geometry of Σφn for large n.

4.1. Nonsingular segments. Let φ̃ and φ̃n denote the lifts of φ and φn to

X̃, and let Z̃φ denote the set of zeros of φ̃. By compactness of X and the
convergence of φn/‖φn‖ we have

(4.2)
|φ̃n − φ̃|
|φ̃|

→ 0

uniformly on compact subsets of X̃ − Z̃φ.

Theorem 4.1. Let I ⊂ X̃ denote a nonsingular and non-horizontal φ-
geodesic segment. Then there exists N > 0 and sequences Kn → 1 and
Cn → 0 as n → ∞ such that for each n > N and any x0, x1 ∈ I with
φ-height difference h, we have

(4.3) K−1
n ‖2φn‖1/2h− Cn 6 dH3(Σφn(x0),Σφn(x1)) 6 Kn‖2φn‖1/2h+ Cn.

The constants N,Kn, Cn can be taken to depend only on φn and dφ(I, Zφ).
Furthermore, the same estimate holds for any non-horizontal half- or bi-
infinite geodesic I with the property that dφ(J, Zφ) > 0.

Before starting the proof, we remark that since the quantity ‖2φn‖1/2h
appearing in this estimate exactly the (2‖φn‖φ)-height of I, an equivalent
statement is that the (2‖φn‖φ)-height parameterization of I maps to a quasi-
geodesic in H3 with constants (K,C) converging to (1, 0) as n→∞.

Proof. Let L(1) denote the length of a subsegment of I that has height 1.
Let J ⊂ I denote a subsegment of length L < L(1), which therefore has
height L/L(1).
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Let U denote the d/2-neighborhood of J in the φ-metric, where d =
dφ(J, Zφ). Let φ0

n = φn/‖φn‖. By uniform convergence of the differentials
φ0
n, for each k ∈ N there exists N(k) ∈ N such that for n > N(k) we can

apply Lemma 2.4 to J and U with δ = d/(16kL(1)). Thus for such n there
is a φ0

n-geodesic segment with endpoints {x0, x1}, and we have

max(|L0
n − L|, |h0

n − h|) <
dL

4kL(1)
=
dh

4k

dφ0n(J ′, Zφn) > dφ0n(J ′, ∂U) >
d

8

(4.4)

where L0
n and h0

n are the φ0
n-length and height of the φ0

n-geodesic segment
J ′ with endpoints {x0, x1}. Letting Ln = ‖φn‖1/2L0

n and hn = ‖φn‖1/2h0
n

denote the corresponding quantities for J ′ with respect to φn, and writing
dn := dφn(J ′, Zφn) > ‖φn‖1/2d/k, we have

dn√
Ln

>
‖φn‖1/4d

8L0
n

>
‖φn‖1/4d

8(L− d/(4k))

again for all k and n > N(k). By taking n and k large enough it follows
that dn and dn/

√
Ln can be made arbitrarily large.

For any m > 0, let N ′(m) be such that dn/(1 +
√
Ln) > m for all n >

N ′(m). Then for m > M and n > N ′(m) we apply Theorem 3.9 to J ′,
concluding that

K ′(m)−1
√

2hn − C ′(m) < dH3(Σφn(x0),Σφn(x1)) < K ′(m)
√

2hn + C ′(m).

Thus the parameterization of J by 2φn-height is mapped by Σφn to a
(K ′(m), C ′(m))-quasigeodesic. Note that the 2φn-height of J tends to ∞
as n→∞.

If the length of I is greater than L(1) (e.g. if it is a ray or infinite geodesic),
then for n sufficiently large we can apply Lemma 3.8 to J and conclude that
in any case, the 2φn-height parameterization of I maps to a (K ′′(m), C ′′(m))-
quasigeodesic, where (K ′′(m), C ′′(m))→ (1, 0) as m→∞.

Finally we must consider the effect of changing from the 2φn-height pa-
rameterization to the 2φ-height. For the remainder of the proof let x0, x1 ∈ I
be an arbitrary pair of points and let L denote the φ-length of the segment
[x0, x1] ⊂ I. Note that it is no longer assumed that L < L(1).

By applying (4.4) dL/L(1)e times we conclude that the φn-height differ-
ences hn and φ-height difference h between x0 and x1 satisfy

|
√

2hn − ‖2φ‖1/2h| <
‖2φn‖1/2dL

4kL(1)
=

(
d

4k

)
‖2φn‖1/2h,

where in the last step we have used that L/L(1) = h. Therefore, changing
from the 2φn-height to the (‖2φn‖φ)-height parameterization of I introduces

a multiplicative error in the distance estimate that is o(‖φn‖1/2h) as k →∞,
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and (4.3) follows with

N = N ′(M),

Kn = K ′′(m0(n)) + d/4k0(n),

Cn = C ′′(m0(n)),

where

k0(n) = max{k |N(k) < n},
m0(n) = max{m |N ′(m) < n}.

�

Complementing Theorem 4.1 we have the following estimate for horizontal
segments:

Theorem 4.2. Let I ⊂ X̃ denote a nonsingular φ-horizontal segment. Then
we have

Diam(Σφn(I)) = o(‖φn‖1/2) as n→∞.

As with Theorem 4.1, the above estimate for the geometry of the image
is not uniform—it depends on the particular segment I.

Proof. We proceed in much the same way as the previous proof, but using
the whole segment instead of a subsegment of height 1.

Denote by Ln the φn-length of the φn-geodesic I ′ with the same endpoints
as I and by dn the φn-distance from I ′ to Zφn . For large n we can apply
Lemma 2.4 to a d/2-neighborhood I in the φ-metric with δ = d/(16kL),
where L is the φ-length of I. Then as in the previous proof we have mn →∞
as n, k →∞, where

mn :=
dn

1 +
√
Ln

.

We also have h0
n <

d
4k , or equivalently,

√
2hn < d‖2φn‖1/2/(4k).

Let x0, x1 be the endpoints of I, which are also the endpoints of I ′. Ap-
plying Corollary 3.10 if I ′ is φn-horizontal, and Theorem 3.9 if it is not, we
conclude

dH3(Σφn(x0),Σφn(x1)) 6 K ′(mn)
√

2hn + C ′(mn)

6
K ′(m)d

4k
‖2φn‖1/2 + C ′(mn),

for n > N(k), and using k = k0(n) as in the proof of Theorem 4.1 we find

that the right hand side is o(‖φn‖1/2) as n→∞.
Finally, we note that a subsegment of I is shorter and its distance from

Zφ is no less than that of I. Decreasing L and increasing d preserve (or
improve) all of the estimates above, so the distance estimate above applies
to all pairs x0, x1 ∈ I. This gives the desired bound on the diameter of
Σφn(I). �



HOLONOMY LIMITS OF CP1 STRUCTURES 31

4.2. Periodic geodesics. Given an element g ∈ SL2 C let

`(g) = inf
x∈H3

d(x, g · x)

denote its translation length when acting as an isometry of H3. Thus `(g) >
0 if and only if g is a hyperbolic element, in which case g translates along
its geodesic axis by distance `(g).

Theorem 4.3. If γ ∈ Π is represented by a periodic φ-geodesic of height h,
then

(4.5) lim
n→∞

`(ρn(γ))

‖2φn‖1/2
= h.

In particular if h > 0 then ρn(γ) is hyperbolic for all sufficiently large n.

Proof. Recall that Σφn(γ · x) = ρn(γ) · Σφn(x).

First suppose h > 0. Applying Theorem 4.1 to a nonsingular φ̃-geodesic

axis of γ in X̃, we find that ρn(γ) preserves a (Kn, Cn)-quasigeodesic axis
in H3 along which it moves points distance dn, where

K−1
n ‖2φn‖1/2h− Cn < dn < K−1

n ‖2φn‖1/2h+ Cn.

By Lemma 3.7, this quasigeodesic axis lies in a uniformly bounded neigh-
borhood of the geodesic axis of ρn(γ). The translation length of `(ρn(γ))
is therefore dn + O(1) as n → ∞, and since (Kn, Cn) → (1, 0), the desired
estimate follows.

If h = 0 then we apply Theorem 4.2 to the horizontal φ̃-geodesic fixed
by γ to get a pairs of points in H3 related by ρn(γ) and separated by

distance o(‖φn‖1/2). This distance is an upper bound for `(ρn(γ)) hence

limn→∞
`(ρn(γ))

‖2φn‖1/2
= 0 as required. �

5. The character variety and growth rates

In this section we show how the results and techniques of Sections 3–4
can be used to study the growth rate of the holonomy representation as a
function of the Schwarzian.

5.1. The character variety and holonomy map. The SL2(C)-representation
variety of Π is the set R(Π) = Hom(Γ,SL2(C)). Choosing a finite generating

set Σ for Π realizes R(Π) as a closed algebraic subset of (SL2(C))|Σ|, giving
it the structure of an algebraic variety.

The SL2(C)-character variety of Π, denoted X(Π), is an affine algebraic
variety consisting of the characters (traces) of representations in R(Γ); there
is a natural algebraic map R(Γ) → X(Γ) taking a representation to its
character. We denote this map by ρ 7→ [ρ]. The character variety can also
be described as an algebraic quotient

X(Γ) = R(Γ)//SL2(C)
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where SL2(C) acts by conjugating representations. See [CS] and [MS1,
Sec. II.4] for details about these constructions.

As mentioned in the introduction, there is holomorphic map

hol : Q(X)→ X(Π),

the holonomy map, which associates to a projective structure on X the
character of its holonomy representation (which is well-defined, since the
representation itself is well-defined up to conjugation).

5.2. Properness. Gallo, Kapovich, and Marden showed that the holonomy
map Q(X) → X(Π) is a proper map [GKM, Thm. 11.4.1], following an
outline presented in [Kap1, Sec. 7.2]. A geometric approach to properness
using pleated surfaces can be found in [Tan2]. The same result also follows
easily from Theorem 4.3:

Theorem 5.1. The map hol : Q(X)→ X(Π) is proper.

Proof. Let φn ∈ Q(X) be a divergent sequence. By passing to a subsequence
we can assume that φn converges projectively, i.e. φn/‖φn‖ → φ. Let γ ∈ Π
be freely homotopic to a periodic φ-geodesic. The translation length of the
image of γ under a representation ρ : Π → SL2(C) defines a continuous
function `γ : X(Π)→ R. By Theorem 4.3 we have `γ(hol(φn))→∞, so the
image of the sequence {hol(φn)} is not contained in a compact set. �

5.3. Growth estimate. This approach to proving properness of the ho-
lonomy map also lends itself to effective estimates of the growth rate of
holonomy representations. In fact, Theorem 4.3 can be seen as an estimate
of this kind, where translation length of the action on H3 is used to measure
the “size” of a representation. Since translation length grows logarithmically
with respect to trace coordinates on X(Π), the holonomy map itself has ex-
ponential growth in these coordinates. Making this coordinate-independent,
we have the following:

Theorem 5.2 (Effective properness). For any affine embedding X(Π) ↪→ Cn
and any norm ‖�‖ on Cn there are constants A > 0 and B such that

(5.1) A−1‖φ‖1/2 −B < log(1 + ‖ hol(φ)‖) < A‖φ‖1/2 +B.

In [Sim], Simpson uses harmonic maps techniques to obtain a similar
bound for the growth rate of the map from the de Rham moduli space of rank-
2 systems of ordinary differential equations over a compact Riemann surface
to the character variety of the fundamental group. It would be interesting
to know whether the set of projective structures is properly embedded in
this moduli space of ODEs, and thus to see if the growth rate of holonomy
in terms of the norm of the Schwarzian can also be estimated by Simpson’s
technique.

The proof of Theorem 5.2 will depend on an estimate that is a direct
analog of Theorem 4.3, but where we consider a fixed homotopy class of
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curves and an arbitrary quadratic differential, instead of a fixed sequence of
quadratic differentials and an arbitrary homotopy class.

Theorem 5.3. For each γ ∈ Π there exists constants C > 0 and N > 0
such that if φ ∈ Q(X) satisfies ‖φ‖ > N then

`(ρφ(γ)) 6 C‖φ‖1/2.

Furthermore, if γ is represented by a periodic φ-geodesic of height h, angle
θ > 0, and whose associated flat annulus has width at least w‖φ‖1/2, then

`(ρφ(γ)) > c‖φ‖1/2,

where in this case c and N also depend on γ, θ, and w.

Proof. The unit sphere in Q(X) corresponds to a compact family of metrics
on X. Thus the free homotopy class of an element γ ∈ Π can be realized
by a curve of uniformly bounded length and height with respect to any φ
such that ‖φ‖ = 1. Increasing length and height by a bounded amount we
can further assume that each such realization avoids a fixed neighborhood
of Zφ.

Scaling to obtain φ ∈ Q(X) of any norm, we conclude that γ is represented

by a closed curve in X of length bounded by C ′‖φ‖1/2 and which avoids

a δ‖φ‖1/2-neighborhood of Zφ, for some constants C ′, δ. We can lift this

closed curve to a path in X̃ whose endpoints are identified by the action of
γ. Choosing N large enough we can apply Lemma 3.6 to conclude that Σφ

is uniformly Lipschitz on this path, so the image in H3 has length bounded
by C ′′‖φ‖1/2. Since the endpoints of the image are identified by ρφ(γ), this
gives the desired upper bound for `(ρφ(γ)).

For the periodic case we can again use compactness of the unit sphere in
Q(X) and the angle θ to obtain a lower bound on the φ-height of a periodic

geodesic homotopic to γ of the form h > c′‖φ‖1/2, where c′ depends on γ

and θ. Of course the length estimate L < C ′‖φ‖1/2 applies as above. Using
the geodesic representative in the center of the flat annulus, the distance
from this geodesic to the nearest zero of φ is at least d = 1

2w‖φ‖
1/2.

For ‖φ‖ > N and N sufficiently large (now depending on γ, θ, and w),

we have d > M(1 +
√
L) where M is the constant from Theorem 3.9. Then

(3.10) shows that the lift of the periodic geodesic to X̃ maps by Σφ to
a uniformly quasigeodesic axis for ρφ(γ) in H3 on which the translation
length is bounded below by a multiple of the height h. Using the stability
of quasigeodesics in H3 (Lemma 3.7) we obtain a lower bound of the form
`(ρφ(γ)) > c′′‖φ‖ − D. The lower bound on ‖φ‖ allows us to remove the
additive constant by changing the multiplicative factor slightly, and the
Theorem follows. �

Proof of Theorem 5.2. Let P ⊂ Π and w0 be as in Theorem 2.2. Since traces
of elements of Π are regular functions on X(Π), the traces of elements of P
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have a uniformly polynomial upper bound in the coordinates of the affine
embedding. Thus there are constants C, k such that for all γ ∈ P we have

|Tr(ρφ(γ))| 6 C(1 + ‖ hol(φ)‖)k.

For each φ ∈ Q(X) there exists γ ∈ P that is represented by a periodic
φ-geodesic that is nearly vertical and thus has height bounded below by
c‖φ‖1/2 for some positive constant c. Since we also have a uniform lower
bound on the widths of the corresponding flat annuli, Theorem 5.3 and the
relation between trace and translation length give

|Tr(ρφ(γ))| > exp(c′‖φ‖1/2)

for some c′ > 0, as long as ‖φ‖ > M . Here we have uniform constants
because P is finite. Combining this with the previous inequality and taking
logarithms gives the lower bound on ‖hol(φ)‖ from (5.1), where adjusting
the additive constant B allows us to remove the requirement that ‖φ‖ is
large.

The upper bound from (5.1) is similar, but easier: The ring of regular
functions on X(Π) is generated by the trace functions of finitely many ele-
ments of Π (see [CS, Sec. 1.4]), so ‖ hol(φ)‖ has a polynomial upper bound
in terms of these traces. Applying the upper bound on translation length
from Theorem 5.3 to these elements and again taking logarithms completes
the proof. �

6. The Morgan-Shalen compactification and straight maps

6.1. The compactification. Consider the map X(Π)→ (R+)Π given by

[ρ] 7→ (log(|Tr ρ(γ)|+ 2))γ∈Π .

Let P(R+)Π denote the space of rays in (R+)Π and consider the projectivized
map X(Π)→ P(R+)Π. The image of X(Π) is precompact and the closure of
the image defines the Morgan-Shalen compactification of X(Π). If ` : Π →
R+ is a function whose projective class [`] is a boundary point of X(Π), then
there exists an R-tree T and an isometric action of Π on T such that

`(γ) = inf
x∈T

d(x, γ · x),

that is, ` is the translation length function of an action of Π on an R-tree.
As in the introduction we say in this case that T represents [`].

This compactification was introduced in [MS1] where a tree representing
a boundary point is described in terms of a valuation on the function field of
X(Π). For our purposes it will be important to construct such a tree directly
from the action of a representation on hyperbolic space, so we will use an
alternative construction of representing trees based on the asymptotic cone.
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6.2. Asymptotic cone construction. Bestvina [B] and Paulin [Pau] used
geometric limit constructions to build R-trees representing limit points of
sequences of representations in the Morgan-Shalen compactification. Later,
Chiswell [Chi] and Kapovich-Leeb [KL] described how these limit construc-
tions can be interpreted in terms of asymptotic cones of hyperbolic spaces.
We now review this approach, mostly following the exposition of [Kap2,
Ch. 9–10].

Fix a non-principal ultrafilter ω on N and denote by limω an the ω-limit
of a sequence of real numbers {an}. Given a metric space X, a sequence of
points cn ∈ X, and a sequence εn → 0 of positive reals, we denote by

lim
ω

(εnX, cn)

the asymptotic cone of X based at xn with scale factors εn; this is the
quotient metric space associated with the set of sequences

{x = (xn) | xn ∈ X, lim
ω
εnd(cn, xn) <∞}

and the pseudometric

d(x, y) = lim
ω
εnd(xn, yn).

If X is a CAT(κ) space for some κ < 0 (for example, X = H3) then
limω (εnX, cn) is an R-tree.

Now fix a finite generating set Σ for Π. If ρ : Π→ Isom(X) is an isometric
action, we define the local scale of ρ at x to be the quantity

R(ρ, x) = max
γ∈Σ

d(x, ρ(γ) · x).

Specializing to the case of X = H3, the basic link between the asymptotic
cone construction and the Morgan-Shalen compactification is the following
(see [Kap2, Sec. 10.4]):

Theorem 6.1. Consider a sequence ρn ∈ X(Π) and identify it with a se-
quence of isometric actions of Π on H3 using the covering SL2 C→ PSL2 C '
Isom+(H3). Let cn ∈ H3 be a sequence of points and εn → 0 a sequence of
positive reals.

(i) If limω εnR(ρn, xn) <∞, then the action

γ : (xn) 7→ (ρn(γ) · xn)

of Π on sequences in H3 induces an isometric action of Π on the
R-tree T := limω (εnH3, cn).

(ii) If the action of Π on T does not have a global fixed point, and if the
sequence [ρn] converges in the Morgan-Shalen compactification, then
T represents the Morgan-Shalen limit.

�

The result above is proved in [Kap2, Sec. 10.4], though the statements
of the theorems in that section are structured somewhat differently from



36 DAVID DUMAS

the one above. Kapovich makes a specific choice of basepoints cn, but this
choice is only used to show the resulting action has no global fixed point,
which we do not claim here. (That an arbitrary sequence of basepoints can
be used is also established in [B, Prop. 4.8].) Similarly, while Kapovich fixes
εn = R(ρn, cn)−1, the arguments use only that limω εnR(ρn, xn) <∞.

A key feature of this construction of a limit tree is that it gives a notion
of convergence of a sequence xn ∈ H3 to a point in T , which is simply a
restatement of the definition: A point x∞ ∈ T is an equivalence class of
sequences in H3, and we say xn → x∞ if the sequence (xn) lies in that
equivalence class. This allows us to consider the question of whether a
sequence of maps into H3 converges pointwise to a map into T .

6.3. Convergence of Epstein-Schwarz maps. We return to the hypothe-
ses of (4.1), that is, considering a divergent sequence of projective structures
with holonomy representations ρn and quadratic differentials φn converg-
ing projectively to φ. We suppose also that [ρn] converges in the Morgan-
Shalen compactification to the projective equivalence class [`] of a function
` : Π→ R+.

Recall also that Z̃φ ⊂ X̃ is the discrete subset of the universal cover of X

consisting of points that project to zeros of φ, and similarly for Z̃φn and φn.

Theorem 6.2. Fix a point z0 ∈ X̃\Z̃φ and use its Σφn-images as basepoints
to construct the asymptotic cone

T = lim
ω

(‖2φn‖−1/2H3,Σφn(z0)).

Then:

(i) The sequence of maps Σφn : X̃ \ Z̃φn → H3 converges (pointwise) to

a continuous map Σ∞ : X̃ → T .

(ii) For any pair of points x, y ∈ X̃ that are endpoints of a nonsingular

φ̃-geodesic segment of height h, the map Σ∞ satisfies

d(Σ∞(x),Σ∞(y)) = h.

(iii) The sequence ρn induces an isometric action of Π on T which rep-
resents the Morgan-Shalen limit [`], and Σ∞ is equivariant for this
action.

Note that in statement (i) the domains of the maps Σφn vary with n so
the limit is a priori only defined on

lim inf
n→∞

(X̃ \ Z̃φn),

which contains X̃ \ Z̃φ since φn/‖φn‖ → φ. However we will show that the

limit map on X̃ \ Z̃φ has a unique continuous extension to X̃.

Proof. Suppose z, z′ ∈ X̃ \ Z̃φ. Join these points by a polygonal path in

X̃ \ Z̃φ that is a finite union of nonsingular φ-geodesic segments. Applying
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Theorems 4.1 and 4.2 to the segments and using the triangle inequality we
find

(6.1) lim sup
n→∞

‖2φn‖−1/2d(Σφn(z),Σφn(z′)) 6 h̄

where h̄ is the sum of the φ-heights of the segments. Furthermore, if there
is only one segment then the limit exists and is equal to h̄.

Applying this to z′ = z0 it follows that limω ‖2φn‖−1/2d(Σφn(z),Σφn(z0))
is finite, thus the sequence Σ∞(z) := (Σφn(z)) represents a point of the

asymptotic cone T . This gives the desired pointwise limit map on X̃ \ Z̃φ.
Equality of the limit (6.1) in the one-segment case is exactly statement (ii).

The polygonal path chosen above can be taken to agree with the minimiz-

ing φ̃-geodesic joining z to z′ except in an arbitrarily small neighborhood Z̃φ
where the polygonal path must make short detours to avoid the zeros. As a

result, we can assume that h̄ is as close as we like to the φ̃-height of the mini-

mizing geodesic, which is itself a lower bound for the φ̃-distance from z to z′.

Therefore, the estimate above also shows that the limit Σ∞ : (X̃ \ Z̃φ)→ T
is 1-Lipschitz for that metric, and in particular continuous. Furthermore,
the asymptotic cone T is a complete metric space (see e.g. [BH, Lem. 5.53])
so the Lipschitz map Σ∞ extends uniquely and continuously to the metric

completion of its domain, which is X̃. Statement (i) follows.
From the asymptotic cone construction it is immediate that a limit of

equivariant maps is equivariant, as long as the group action is defined on the
asymptotic cone. Thus statement (iii) is exactly the conclusion of Theorem
6.1 once we establish the relevant hypotheses, i.e.

(1) limω ‖2φn‖−1/2R(ρn,Σφn(z0)) <∞
(2) Π acts on T without global fixed points.

Estimate (1) follows from (6.1) since each element of the finite generat-

ing set for Π can be represented by a polygonal path in X̃ \ Z̃φ based
at z0. The total height of this collection of paths is then a bound for
lim supn→∞ ‖2φn‖−1/2R(ρn,Σφn(z0)) and thus for the ω-limit as well. Hence
Π acts on T .

Now suppose for contradiction that there is a point x ∈ T fixed by
Π. Then x is the equivalence class of a sequence (xn) ⊂ H3 such that

limω ‖2φn‖−1/2d(xn, ρn(γ) · xn) = 0 for all γ ∈ Π. Thus

lim inf
n→∞

‖2φn‖−1/2`(ρn(γ)) 6 lim inf
n→∞

‖2φn‖1/2d(xn, ρn(γ) · xn) = 0.

But this contradicts Theorem 4.3 for any γ ∈ Π which can be represented by
a periodic and non-horizontal φ-geodesic, and such elements exist by The-
orem 2.1. This contradiction shows (2), completing the proof of statement
(iii). �

6.4. Dual trees of quadratic differentials. Given a measured foliation
of a surface, we can lift the foliation to the universal cover and consider the
space of leaves; the transverse measure of the foliation induces a metric on
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this leaf space, making it an R-tree on which Π acts by isometries (see [MS2]
[Kap2, Sec. 11.12] for details). Applying this construction to the horizontal
foliation F(φ) of a quadratic differential φ ∈ Q(X) gives the dual tree Tφ.

By construction we also have a projection map π : X̃ → Tφ.

6.5. Straight maps. A nonsingular |φ|-geodesic segment in X̃ of height h
maps by π to a geodesic segment of length h (or a point, if h = 0) in Tφ.
We say that a segment in Tφ is nonsingular if it arises in this way. (Note
that a nonsingular segment in Tφ might also arise as the image of a geodesic

in X̃ that contains singularities, because a given path in Tφ can have many
geodesic lifts through π.)

We say that a map F : Tφ → T is straight if its restriction to every
nonsingular segment in Tφ is an isometric embedding. Evidently an isometry
is a straight map, though the converse does not hold (see e.g. Lemma 6.5

below). Because any segment in Tφ can be lifted to a path in X̃ that is
piecewise geodesic, straight maps are morphisms of R-trees in the sense of
[Sko].

We will use the following criterion for recognizing straight maps:

Lemma 6.3. Let T be an R-tree and f : X̃ → T a continuous map such

that for every nonsingular φ-geodesic segment J in X̃ with height h and
endpoints x, y, we have

(6.2) d(f(x), f(y)) = h.

Then the map f factors as f = F ◦ π where F : Tφ → T is straight and

π : X̃ → Tφ is the projection. Furthermore, if f is equivariant with respect
to an action of Π on T , then F is also equivariant.

Proof. Condition (6.2) implies that f it is constant on all nonsingular hori-
zontal leaf segments. By continuity, it is also constant on segments of hori-
zontal leaf segments with endpoints at zeros, and therefore on all horizontal
leaves (including those which pass through zeros of φ). By construction

of π : X̃ → Tφ as a quotient map, this is equivalent to having a unique
factorization f = F ◦ π where F : Tφ → T is continuous.

The parameterization of a φ-geodesic in X̃ by height maps by π to a
geodesic segment in Tφ parameterized by arc length. Thus (6.2) shows that
F is an isometric embedding when restricted to a nonsingular segment in
Tφ, i.e. the map F is straight.

Equivariance of F follows from that of f by uniqueness of the factoriza-
tion. �

6.6. Proof of Theorem A. We have a divergent sequence φn with projec-
tive limit φ and an accumulation point [`] of hol(φn) in the Morgan-Shalen
boundary of X(Π). Pass to a subsequence (still called φn) so that hol(φn)
converges to [`]. Theorem 6.2 gives an R-tree representing [`], which we de-

note by T0, and an equivariant map Σ∞ : X̃ → T0. Let T = Σ∞(X̃) denote
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Figure 3. A geodesic passing through a simple zero can be pushed to a nonsingular
segment by an isotopy that moves along leaves of the horizontal foliation.

the image of this map, which by equivariance is also an R-tree carrying an
isometric action of Π. Passing to an invariant subtree does not change the
translation length function of a group action ([MS1, II.2.2 and II.2.12]), so
T also represents [`]. Part (ii) of Theorem 6.2 shows that the surjective

map Σ∞ : X̃ → T satisfies the hypotheses of Lemma 6.3 and hence gives a
surjective, equivariant straight map Tφ → T . �

6.7. Simple zeros. For dual trees of quadratic differentials with only simple
zeros, straight maps are isometric:

Lemma 6.4. If φ ∈ Q(X) has only simple zeros, then any straight map
F : Tφ → T is an isometric embedding. In particular, if Π acts minimally
on T and F is equivariant, then T is equivariantly isometric to Tφ.

The proof rests on a well-known technique of deforming a φ-geodesic so
that it avoids a neighborhood of the zeros (compare e.g. [Wol1, Lem. 4.6]),
which for simple zeros can be accomplished without changing the image in
the dual tree. The specific construction we use here closely parallels that of
Farb-Wolf in [FW, Sec. 5.2].

Proof. A local homeomorphism from an interval in R to an R-tree is in fact
a homeomorphism and its image is a geodesic. Consider a pair of points

x, y ∈ Tφ and lifts x̃, ỹ ∈ X̃ through the projection π : X̃ → Tφ. Let J be
the φ-geodesic joining x̃ and ỹ, which consists of a sequence of nonsingular
segments that meet at zeros of φ.

Since F is straight, its restriction to π(J) maps each nonsingular segment
onto a geodesic in T , and the sum of the lengths of these geodesics is d(x, y).
If we show that F |π(J) is also locally injective near the image of a zero

of φ, then f(J) is the geodesic from f(x) to f(y) and we conclude that
d(x, y) = d(f(x), f(y)) for all x, y ∈ T .

If a φ-geodesic J ⊂ X̃ passes through a zero z of φ, then sum of the
angles on either side of J at z is (k + 2)π, where k is the order of the zero.
Thus at a simple zero, there is a side on which the angle is less than 2π.



40 DAVID DUMAS

On this side, we can push the part of J near z to a nonsingular segment
of a vertical leaf by an isotopy that moves along horizontal leaves of φ (see
Figure 3). In particular the segment of π(J) near π(z) is also the image

of a nonsingular segment in X̃. Since a straight map is injective on such
segments, we conclude that F |π(J) is locally injective, as desired. �

6.8. Proof of Theorem B. Let [`] be an accumulation point of hol(φn).
Theorem A gives a tree T representing [`] and a straight map Tφ → T . By
Lemma 6.4 the straight map is an isometric embedding and hence [`] is the
length function of the action of Π on Tφ. In particular there is only one
accumulation point of this sequence in the Morgan-Shalen compactification.
Furthermore, by [CM, Thm. 3.7], any R-tree on which Π acts isometrically
with this length function has a unique minimal invariant subtree equivari-
antly isometric to Tφ.

The set of quadratic differentials that have a zero of multiplicity at least 2
is a closed algebraic subvariety of Q(X) ' C3g−3, so this set is nowhere dense
and null for the Lebesgue measure class. This gives the required properties
for the set of differentials with only simple zeros. �

6.9. Abelian actions and straight maps. An abelian action of Π on an
R-tree is one which has nonzero translation length function ` : Π → R of
the form `(g) = |χ(g)| where χ : Π→ R is a homomorphism. (See [AB] for
detailed discussion of such actions.) The homomorphism χ can be recovered,
up to sign, from the length function `. The action of Π on R by translations
given by g · x = x+ χ(g), is an example of an abelian action, which we call
the shift induced by χ.

An abelian action on an R-tree fixes an end of the tree, and the Busemann
function of this end gives an equivariant map b : T → R that intertwines
the action of Π on T with the shift induced by χ. Thus the shift is “final”
among actions with a given abelian length function.

Straightness is also preserved by composition with the Busemann function
of an abelian action:

Lemma 6.5. Let T be an R-tree equipped with an abelian action of Π by
isometries, and let b : T → R denote the Busemann function of a fixed end.
If F : Tφ → T is an equivariant straight map, then b ◦ F is also straight.

Proof. Let γ ∈ Π be an element represented by a periodic φ-geodesic. This

periodic geodesic lifts to a complete geodesic axis L̃ ⊂ X̃ on which γ acts as
a translation, and L := π(L) ⊂ Tφ is the axis of the action of γ on Tφ.

Because F is φ-straight, it maps L homeomorphically to the geodesic axis
of γ in T . Since F (L) is γ-invariant, in one direction it is asymptotic to the
fixed end of Π on T , and the restriction of b to F (L) is an isometry. Thus
b ◦ f maps any segment along L of height h to an interval in R of length h.

Now consider an arbitrary nonsingular φ-geodesic segment J ⊂ X̃ with
endpoints x̃, ỹ and height h. By Theorem 2.1, periodic φ-geodesics are dense
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in the unit tangent bundle of X, so we can approximate J by a segment on

an axis of some element γ ∈ Π in X̃. More precisely, we can find such L̃ and

a pair of points x̃′, ỹ′ ∈ L̃ such that the pairs (x̃, x̃′) and (ỹ, ỹ′) determine
nonsingular horizontal φ-geodesic segments. Let x = π(x̃) and similarly
for y, x′, and y′. Then F (x) = F (x′), F (y) = F (y′), and by the previous
argument we have |b(F (x)) − b(F (y))| = h. Thus π(J) maps by b ◦ F to a
segment of length h, and b ◦ F is straight. �

Lemma 6.6. Let T be an R-tree equipped with an abelian action of Π by
isometries with length function ` = |χ|. If there exists a φ-straight map

f : X̃ → T , then φ = ω2 where ω is the holomorphic 1-form on X whose
imaginary part is the harmonic representative the cohomology class of χ :
Π→ R.

Note that this lemma is an analog for straight maps of the properties
of harmonic maps established in [DDW, Thm. 3.7], and our technique is a
straightforward adaptation of their argument.

Proof. By the previous lemma, we can assume that T = R with the shift

action induced by χ. In this case it suffices to show that f : X̃ → R is a

harmonic function with φ̃ = 4(∂f)2, for then ω̃ = 2∂f is Π-invariant and
descends to a 1-form on X which, by construction, has periods (and thus
cohomology class) given by the translation action of χ.

Away from the zeros of φ̃, we have a local conformal coordinate z for

X̃ in which φ̃ = dz2. Restricting f to such a coordinate neighborhood
and considering it as a function of z, the φ-straightness condition implies
that f if constant on horizontal lines and on a vertical line it has the form
± Im(z) + C for some constant c. In particular f is a real linear function

and ∂f = ±2dz. Thus in a neighborhood of any point in X̃ that is not a

zero of φ̃, we can express f as the composition of the conformal coordinate

map z and a real linear function, which is harmonic. Since the zeros of φ̃
are isolated and f is continuous (thus bounded in a neighborhood of each

zero), the function f : X̃ → R is harmonic. The equation φ̃ = 4(∂f)2, which
we have verified away from the zeros, also extends by boundedness of f . �

6.10. Proof of Theorem C. We have a divergent sequence φn such that
hol(φn) converges in the Morgan-Shalen sense to an abelian length function
|χ|. Consider any subsequence φnk that converges projectively, to φ ∈ Q(X).
As in the proof of Theorem A, there is a subsequence of hol(φnk) giving a
limit action on an R-tree T∞ representing |χ| and an equivariant straight
map F : Tφ → T∞. By Lemma 6.6 we have φ = ω2 where ω is the harmonic
representative of [χ].

Since we have shown that this is the unique projective accumulation point
of the original sequence, we conclude that φn converges projectively to ω2.
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