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1. INTRODUCTION

The set of complex projective structures on a compact Riemann sur-
face X is parameterized by the vector space Q(X) of holomorphic qua-
dratic differentials. Each projective structure has an associated holonomy
representation, which defines a point in X(II), the SLy(C) character vari-
ety of the fundamental group II := m1(X). The resulting holonomy map
hol : Q(X) — X(II) is a proper holomorphic embedding.

In this paper we relate the large-scale behavior of the holonomy map to
the geometry of quadratic differentials on X. In particular we study the
accumulation points of hol(Q(X)) in the Morgan-Shalen compactification of
X(IT). Such an investigation was proposed by Gallo, Kapovich, and Marden
in [GKM, Sec. 12.4].

Boundary points in the Morgan-Shalen compactification are projective
equivalence classes [(] of length functions ¢ : IT — R™. Each such function
0 arises as the translation length function of an isometric action of II on an
R-tree T'; we say such a tree T' represents [{].

Associated to each ¢ € Q(X) there is an R-tree Ty, which is the space of
leaves of the horizontal measured foliation of ¢ lifted to the universal cover
of X. Our main result shows that this tree predicts the Morgan-Shalen
limit points of holonomy representations associated to the ray R™¢, or more
generally, of any divergent sequence that converges to ¢ after rescaling. More
precisely, we show:

Theorem A. If ¢, € Q(X) is a divergent sequence with projective limit
¢, then any accumulation point of hol(¢y,) in the Morgan-Shalen boundary
is represented by an R-tree T that admits an equivariant, surjective straight
map Ty, — T

The notion of a straight map is discussed in Section 6.5. For the moment
we simply note that such a map is a morphism of R-trees but it may not be
an isometry because certain kinds of folding are permitted. For differentials
with simple zeros, however, we can rule out this behavior:
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Theorem B. If ¢, € Q(X) is a divergent sequence that converges pro-
jectively to a quadratic differential ¢ with only simple zeros, then hol(¢y,)
converges in the Morgan-Shalen compactification to the length function as-
sociated with the dual tree Ty.

In particular there is an open, dense, co-null subset of Q(X) consisting of
differentials ¢ for which Ty is the unique minimal limit action on an R-tree
arising from sequences with Q(X) with projective limit ¢.

In order to pass from uniqueness of the limiting length function to a unique
limit action on a tree, the proof of this theorem uses a result of Culler and
Morgan [CM]: The tree representing a length function is determined up to
equivariant isometry except possibly when £ is an abelian length function of
the form £(v) = |x ()|, where x : IT — R is a homomorphism.

For abelian length functions, the description of the isometry classes of
representing R-trees is more complicated [Br]. However, in this case we can
say more about the corresponding quadratic differentials:

Theorem C. Let x : I = R be a homomorphism. If hol(¢,) converges in
the Morgan-Shalen sense to the abelian length function |x|, then the sequence
én converges projectively to w?, where w € Q(X) is a holomorphic 1-form
whose imaginary part is the harmonic representative of [x] € Hl(X, R).

We remark that the existence of sequences satisfying the hypotheses of
Theorem C is itself an open question. Using the results of [GKM] one can
construct a sequence of projective structures on surfaces of a fixed genus
converging to an abelian length function, however it is not clear whether
one can also arrange for the underlying Riemann surface to remain constant.
Naturally it would be interesting to resolve this issue, ideally with either an
explicit construction or a geometrically meaningful obstruction to existence;
we hope to return to this in future work.

Rate of divergence. A key step in understanding the limiting behavior
of the holonomy representations is to understand the rate at which they
diverge as ¢ — oo. When equipped with the metric |¢|, the Riemann surface
X becomes a singular Euclidean surface whose diameter is comparable to
|¢[|*/2. We show that this is the natural scale to use in understanding the
action of hol(¢) on H? by isometries:

Theorem D. The scale of the holonomy representation hol(¢) is comparable
to ||p||Y/2, i.e.
(1) The translation length of any element of I in hol(¢) acting on H?
is O([|¢||'/?), and
(2) There is an element v € II whose translation length in hol(¢) is at
least c||¢||'/?, where ¢ > 0 is a uniform constant.

These statements are made precise in Theorem 5.3 below.
Ultimately, our understanding of translation lengths of elements of hol(¢)

acting on H? comes from the construction of a well-behaved map X — H3
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that takes nonsingular |¢|-geodesics to nearly-geodesic paths in H? param-
eterized with nearly-constant speed. (These maps are discussed in some-
what more detail below, with the actual construction appearing in Section
3.) When applied to a nonsingular |¢|-geodesic axis of an element v € II,
equivariance of the construction shows that |¢|-length of v in X, which is
comparable to ||¢||*/?, is also comparable to the translation length in H?.

Theorem D gives another proof of the properness of the holonomy map on
Q(X) (see also [GKM, Thm. 11.4.1], [Tan2]) which is effective in the sense
that it includes an explicit growth estimate. In Theorem 5.2 we describe
this effective properness result in terms of an affine embedding of X(II) and
an arbitrary norm on Q(X).

Equivariant surfaces in H>. The proofs of the main theorems are based
on the analysis of surfaces in hyperbolic 3-space associated to complex pro-
jective structures. The basic construction is due to Epstein [Eps|: Starting
from an open domain embedded in CP! and a conformal metric, one forms
a surface in H? from the envelope of a family of horospheres. The metric
can be recovered from this surface by a “visual extension” procedure.

A natural generalization of this construction applies to a Riemann surface
that immerses (rather than embeds) in CP' and a conformal metric on
the surface. In our variant of Epstein’s construction, a single holomorphic
quadratic differential ¢ € Q(X) provides both of these data; the immersion
is the developing map of the projective structure with Schwarzian derivative
¢, and the conformal metric is a multiple of the singular Euclidean metric
|¢|. The resulting Epstein-Schwarz map ¥4 : X — H? is equivariant with
respect to hol(¢).

Using an explicit formula for the Epstein-Schwarz map we show that when
||| is large, this map shares key geometric properties with the projection of
X onto the dual tree Ty. Namely, vertical trajectories of ¢ are mapped near
geodesics in H?, while compact segments on horizontal trajectories of ¢ are
collapsed to sets of small diameter. These estimates are uniform outside a
small neighborhood of the zeros of ¢.

The main theorems are derived from these properties of Epstein-Schwarz
maps using a description of the Morgan-Shalen compactification in terms of
asymptotic cones of H3 (as in [KL], [Chi]). We show that the sequence of
Epstein-Schwarz maps to H? converge in a suitable sense to a limit map into
an R-tree representing the limit of holonomy representations, and that the
local collapsing behavior described above leads to the global straight map
Ty — T from Theorem A.

Comparison with other techniques. The technique of relating the tra-
jectory structure and Euclidean geometry of a quadratic differential to the
collapsing behavior of an associated map has been used extensively in the
study of harmonic maps from hyperbolic surfaces to negatively curved spaces
(including H?2, H3, and R-trees), beginning with the work of Wolf [Woll]
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[Wol2] on the Thurston compactification of Teichmiiller space. More re-
cently, Daskalopoulos, Dostoglou, and Wentworth [DDW] studied the Morgan-
Shalen compactification of the SLo(C) character variety using harmonic
maps, and our analysis of geometric limits of Epstein-Schwarz maps fol-
lows a similar outline to their investigation of equivariant harmonic maps to
H3.

While harmonic maps techniques have been useful in the study of com-
plex projective structures (e.g. [Tanl] [Tan2] [SW] [D1]), for the purposes
of Theorems A—D the Epstein-Schwarz maps have the advantage of a direct
connection to the parameterization of the space of projective structures by
quadratic differentials. In addition, while harmonic maps are implicitly de-
fined by minimization of a functional (or solution of an associated PDE), the
Epstein-Schwarz map is given by an explicit formula which can be analyzed
directly, simplifying the derivation of our geometric estimates.

Relating compactifications. Our results show that it is natural to com-
pare the compactification by rays Q(X) = Q(X)UPTQ(X), where PTQ(X) =
(Q(X)\{0})/R*, with the closure of hol(Q(X)) in the Morgan-Shalen com-
pactification X(IT). In terms of these compactifications, Theorem B can be
rephrased as

Corollary E. There is an open, dense, full-measure subset of 0Q(X) to
which hol extends continuously as a map into the Morgan-Shalen compact-
ification X(II). On this subset, the extension of hol sends a ray [¢] of qua-
dratic differentials to the length function of the action of Il on the dual tree

of ¢.

We also note that this extension is injective: A holomorphic quadratic
differential ¢ is determined by its horizontal measured lamination A\ [HM],
and A\ is determined by its intersection function (v — i(A, 7)) which is
the length function of II acting on the dual tree of ¢.

While this gives a description of the limiting behavior of hol at most
boundary points, our results leave open the possibility that there exist di-
vergent sequences having the same projective limit in Q(X) but whose asso-
ciated holonomy representations have distinct limits in the Morgan-Shalen
compactification of X(II). While we suspect that this phenomenon occurs
for some sequences (necessarily converging to differentials with higher-order
zeros), we do not know of any explicit examples of this behavior.

~vell

Applications and related results. The space ML(X) of measured geo-
desic laminations embeds in the Morgan-Shalen boundary of X(II), with im-
age consisting of the length functions associated to the trees {Ty|¢ € Q(X)}.
In [DK], Kent and the author showed that the closure of hol(Q(X)) in the
Morgan-Shalen compactification contains ML (X) by examining the count-
able subset of Q(X) whose associated holonomy representations are Fuch-
sian. Theorem B (or Corollary E) gives an alternate proof of this result.



HOLONOMY LIMITS OF CP! STRUCTURES 5

As in [DK], our investigation of hol(Q(X)) was motivated in part by a
connection to Thurston’s skinning maps of hyperbolic 3-manifolds. In [D3],
the results of this paper are used in the proof of:

Theorem. Skinning maps are finite-to-one.

Briefly, the connection between this result and holonomy of projective
structures is as follows: If the skinning map of a 3-manifold M with in-
compressible boundary S had an infinite fiber, then there would be a con-
formal structure X on S and an analytic curve € C Q(X) consisting of
projective structures whose holonomy representations extend from 1 (S) to
m1(M). This extension condition constrains the limit points of hol(€) in the
Morgan-Shalen compactification, and Theorem A is a key step in translating
this into a constraint on € itself. Using analytic and symplectic geometry
in Q(X), it is shown that these constraints are not satisfied by any analytic
curve, giving the desired contradiction.

Outline. Section 2 contains background material on quadratic differen-
tials and projective structures, as well as some simple estimates related
to geodesics of quadratic differential metrics.

In Section 3 we introduce Epstein maps and specialize to the case of
interest, the Epstein-Schwarz map associated to a quadratic differential.
The asymptotic behavior of sequences of such maps is studied in Section 4.

In Section 5 we discuss the character variety and then apply the estimates
of the previous section to bound the size of the holonomy representation.
We also give a new proof of the properness of the holonomy map.

Finally, in Section 6 we discuss the Morgan-Shalen compactification, dual
trees of quadratic differentials, and straight maps. We then assemble the
proofs of the main theorems from results of sections 2—4.

Acknowledgments. The author thanks Peter Shalen and Richard Went-
worth for helpful conversations, and Richard Kent for asking interesting
questions about skinning maps that motivated some of this work. The au-
thor also thanks the anonymous referees for their careful reading and helpful
comments.

2. PROJECTIVE STRUCTURES AND QUADRATIC DIFFERENTIALS

2.1. Projective structures. Let X be a compact Riemann surface of genus
g = 2. A (complex) projective structure on X is a maximal atlas of conformal
charts mapping open sets in X into CP! whose transition functions are the
restrictions of Mobius transformations. Equivalently, a CP! structure on X
can be specified by a locally injective holomorphic map f : X > CP!, the
developing map, such that for all v € Il and = € )Z', we have

fly-z)=p(y)- f(2)
where p : II — PSL2(C) is a homomorphism, called the holonomy represen-
tation. The pair (f,p) is uniquely determined by the projective structure
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up to an element A € PSLy(C), which acts by (f,p) — (Ao f, ApA~1).
For further discussion of projective structures and their moduli see [Kap2,
Ch. 7] [Gun] [D2].

While the holonomy representation naturally takes values in PSLo(C),
the representations that arise from projective structures admit lifts to the
covering group SLy(C) [GKM, Sec. 1.3]. Furthermore, by choosing a spin
structure on X it is possible to lift the holonomies of all projective structures
consistently (and continuously). We will assume from now on that such a
structure has been fixed and so we consider only maps to SLa(C).

2.2. Parameterization by quadratic differentials. The space P(X) of
projective structures on X is naturally an affine space modeled on the vector
space Q(X) of holomorphic quadratic differentials on X. The identification
of the universal cover X with the upper half-plane H induces the standard
Fuchsian projective structure, and this basepoint gives a well-defined home-
omorphism P(X) — Q(X).

This map sends a projective structure to the quadratic differential ¢ €
Q(X) whose lift ¢ to the universal cover X ~ H satisfies

=5(f) = ((fp)—; (§>2> 0.

Here S(f) is the Schwarzian derivative of a developing map f of the projec-
tive structure.

2.3. Developing a quadratic differential. The inverse map Q(X) —
P(X) can be constructed as follows (following [And, Ch. 2]; see also [Thu]).
Given a quadratic differential ¢ € Q(X) with lift gz~5 € Q(H), we have the
associated sly(C)-valued holomorphic 1-form

1~ —z 1
we = §¢(z) <—22 z) dz.
This form satisfies the structural equation dwy + %[w¢,w¢] = 0 because a

Riemann surface does not admit any nonzero holomorphic 2-forms. Thus

there exists a map My : X — SLy(C) whose Darboux derivative is wg (see
[Sha, Thm. 7.14] for details), i.e. such that

Wp = M(;ldM¢.

This map is unique up to translation by an element of SLy(C).

The developing map of ¢ is the holomorphic map fy : H — CP! defined
by

fo(2) = My(2) - 2

where in this expression My(z) is considered as acting on CP' as a Mobius
transformation. Of course the map fy4 is only defined up to composition
with a Mobius map, but we speak of the developing map when the particular
choice is not important.
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The map f, satisfies S(fy) = &5 and is equivariant with respect to the
holonomy representation pg that is defined by the condition

po(V)My(2) = My (v - 2)po(7)
for all v € IT and any z € H. That the choice of z does not matter follows
from the invariance of wg under the action of II coming from the deck action

on X and the Ad opg-action on sly(C). One can think of pe(7y) as the “non-
abelian period” of the 1-form w, along the loop 7 in X.

2.4. Conformal and Riemannian metrics. Given a Riemann surface X
with canonical line bundle K, a conformal metric on X is a continuous,

nonnegative section o of K2 @ K1/2 with the property that the function
do(z,y) = inf.(j0,1],0,1)=(X2p) fya defines a metric on X. With respect
to a local complex coordinate chart z in which ¢ is nonzero, we can write
o = €"?)|dz| where 7 is the log-density of 0. The metrics we consider will
only vanish at finitely many points, and we extend n to these points by
defining 7n(z) = —c if o(2) = 0.

A conformal metric is of class C* if it is nonzero and its log-density
function in any chart is k times continuously differentiable. The Gaussian
curvature of a C? conformal metric is given by

K(2) = —de "M

where subscripts denote differentiation. Further discussion of conformal
metrics on Riemann surfaces can be found in [Hub] [Ahl, Sec. 1.5, 4.1] [Jos,
Sec. 2.3].

For any ¢ € Q(X), the line element |¢|'/? defines a conformal metric on
X that is C* and flat (K = 0) away from the set of zeros Zs = ¢~ 1(0); this
is a quadratic differential metric. (See [Str, Ch. III] for detailed discussion
of such metrics.) The total area is

6]l = /X 6],

which is the conformally natural L' norm on Q(X). A zero of ¢ of order k
is a cone point of the metric |¢|'/? with cone angle (k + 2)7.

For brevity we will sometimes refer to either the area form |¢p| or the
length element |p|'/? as the ¢-metric.

2.5. Quadratic differentials foliations and development. Away from
a zero of ¢ € Q(X), there is always a local natural coordinate z such that
¢ = dz?. Such a coordinate is unique up to translation and z — —z.
Pulling back the lines in C parallel to ¢’R gives the foliation of angle 6,
denoted Fy(¢), which extends to a singular foliation of X with (k+2)-prong
singularities at the zeros of ¢ of order k.

The special cases § = 0,7/2 are the horizontal and wvertical foliations,
respectively. We sometimes abbreviate F(¢) = Fo(¢). Each of these folia-
tions has a transverse measure coming from the natural coordinate charts



8 DAVID DUMAS

(e.g. the vertical variation measure |dy| for the horizontal foliation). Given
a curve in X, we refer to its total measure with respect to the horizontal
foliation (resp. vertical foliation) as its height (resp. width).

A path v : [0,1] — X with interior disjoint from the zeros of ¢ can be
developed into C using local natural coordinate charts. The difference be-
tween the images of (1) and (0) is the holonomy of ~, which is well-defined
up to sign. For example, the holonomy of a line segment with height A and
width w is £(w + ih). Note that this holonomy construction is equivalent
to integrating the locally-defined 1-form +/¢; this should be contrasted with
the integration of the 1-form wyg used to construct the developing map fs.
The interplay between these two integration constructions is an underlying
theme in our analysis of the Epstein-Schwarz map in later sections.

2.6. Quadratic differential geodesics. Each free homotopy class of sim-
ple closed closed curves on X can be represented by a length-minimizing
geodesic for the metric |¢|, which consists of a finite number of line seg-
ments joining zeros of ¢. The geodesic representative is unique unless it is
a closed leaf of Fy(¢) for some 6 € S, in which case there is a cylinder
foliated by parallel geodesic representatives. In the latter case we say the
the geodesic is periodic. N

Similarly, any pair of points in X can be joined by a unique geodesic
segment for the lifted singular Euclidean metric |¢|, which again consists
of line segments joining the zeros. If such a geodesic segment does not
contain any zeros, it is nonsingular. Thus any geodesic segment in X can
be expressed as a union of nonsingular pieces.

We will need to extend some of these considerations to meromorphic qua-
dratic differentials with finitely many second-order poles. With respect to
the singular Euclidean structure, each second-order pole has a neighbor-
hood that is isometric to a half-infinite cylinder. If ¢ has local expression
az=2 + O(z71) in a local coordinate chart, then a is the residue of the pole
and and 27|al is the circumference of the associated cylinder. As in the case
of holomorphic differentials, an Euclidean line segment in X (or its universal
cover) is a length-minimizing geodesic.

Additional discussion of quadratic differential metrics and geodesics can
be found in [Str] [Min, Sec. 4].

2.7. Periodic geodesics. Every quadratic differential metric has many pe-
riodic geodesics: Masur showed that for any ¢ € Q(X), there is a dense set
of directions § € S* for which Fy(¢) has a closed leaf [Mas]. More generally,
we have:

Theorem 2.1 (Boshernitzan, Galperin, Kruger, and Troubetzkoy [BGKT]).
For any ¢ € Q(X), tangent vectors to periodic ¢-geodesics are dense in the
unit tangent bundle of X.

Because a periodic geodesic for a quadratic differential metric always sits
in a parallel family foliating an annulus, any homotopy class that can be
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represented by a periodic ¢-geodesic is also periodic for all ¢ € Q(X) suf-
ficiently close to ¢. Combining this with the density of periodic directions,
we have:

Theorem 2.2. For any € > 0 there is a constant wqy and finite set P C 11
such that for any ¢ € Q(X) with ¢ # 0 there exists v € P that is freely
homotopic to a periodic ¢-geodesic that is nearly vertical, i.e. it is a leaf of
Fo(¢p) for some § € (1/2—¢€,m/2+¢€), and such that the flat annulus foliated
by parallels of the geodesic has width at least wo| ¢||/?. The set P can be
taken to depend only on X and e.

Proof. The statement is invariant under scaling so we can restrict attention
to the unit sphere in Q(X). By Theorem 2.1 for each such ¢ there exists
a nearly-vertical periodic geodesic. This periodic geodesic persists (and
remains nearly-vertical) in an open neighborhood Uy of ¢. Shrinking Uy if
necessary we can also assume that the width of the flat annulus is bounded
below throughout Uyg. The unit sphere in Q(X) is compact so it has a finite
cover by these sets. Choosing a representative in II for the periodic curve in
each element of the cover gives the desired set P, and taking the minimum
of the width of the annuli over these sets gives wy. O

Further discussion of periodic trajectories for quadratic differential met-
rics can be found in [MT, Sec. 4].

2.8. Comparing geodesic segments. If two quadratic differentials are
close, then away from the zeros, a geodesic segment for one of them is nearly
geodesic for the other. We make this idea precise in the following lemmas,
which are used in Section 4.

Note that throughout this section, the holonomy of a path refers to the
Euclidean development of a quadratic differential as defined in Section 2.5
above.

Lemma 2.3. Let U C C be an open set and ¢ = 1(2)dz* a holomorphic
quadratic differential on U satisfying

b(z) = 1] < 5 < %

If J is a line segment in U with holonomy zj with respect to dz?, then
the holonomy wy of J with respect to v satisfies |z5 —wy| < 0|zz|, and in
particular wy # 0 if z5 # 0.

Proof. By hypothesis the function ¢ (z) does not have zeros in U, so there
is a unique branch of (z)'/? with positive real part, which satisfies

()% — 1] <.

Here we have used that § < % to ensure that ¢(z) — ¥ (z)'/? is contracting.
Since holonomy is obtained by integrating v (z)'/2, the inequality above gives

2 —wy| < / ()2 — 1]|dz| < 8]].
J
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O

Lemma 2.4. Let ¢ € Q(X) be a holomorphic quadratic differential and
U C Q(X) an open, contractible, ¢-convex set that does not contain any
zeros of ¢. If 1 is a holomorphic quadratic differential on U satisfying

then:

(i) Any natural coordinate for 1 is injective on U.
(ii) For any p,q € U we have

dy(p,q) > 4/5dy(p,q)-

Furthermore, if J is a ¢-geodesic segment in U of length L that is not too
close to U, i.e.

dy(J,0U) > 40L,
then we also have:

(iii) The endpoints of J are joined by a nonsingular 1p-geodesic segment
J cU,

(iv) The segment J' satisfies dy(J',0U) > 1dy(J,0U) and dg(J',0U) >
1dy(J,0U).

(v) The width w', height b/, and length L' of J' with respect to v satisfy

max(|L — L|,|w" —w|,|h’ — h|) < L,

where L,w, and h are the corresponding quantities for J with respect

to ¢.

Proof. Identify U with its image by a natural coordinate z for ¢. Then
Y = 1(2)dz? satisfies [1(2) — 1| < 6. Now we repeatedly apply the holonomy
estimate from Lemma 2.3.

(i) By Lemma 2.3, any line segment in U has nonzero t-holonomy and
U is convex, so U develops injectively by a natural coordinate ¢ for .

(ii) Again using Lemma 2.3 we have

(2.1) [(2(p) — 2(q)) — (C(p) — ()] < d]2(p) — 2(q)|

from which it follows that |z(p) — z(q)| > (1 +6)71|¢(p) — ¢(q)|. Convexity
implies that dy(p,q) = |2(p) — 2(¢)| while the injectivity of ( on U gives
dy(p,q) < |¢(p) — ¢(q)]- Noting that (1 + d)~' > 4/5 gives the desired
estimate.

(iii) Equation (2.1) also gives the bound

[¢(p) — (@) > (1 = 6)|z(p) — 2(q)]

however we can only equate the left hand side with the distance dy(p, q)
in cases where p and ¢ are joined by a i-segment in U. However, since U
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injects into the (-plane, the minimum distance from J to QU is realized by
such a segment, and we have

dy(J,0U) > (1= 6)dy(J,0U) > 46(1 — 6)L.

Let {jo, 71} denote the endpoints of J and translate the coordinates z and
¢ so that z(jo) = ((jo) = 0. Parameterize J by a(t) so that z(«a(t)) = tz(j1).
Then any point on ¢(J) has the form ((«(t)), while a point on the segment
I in C joining ¢(jo) to ¢(j1) has the form t((j;) for t € [0,1]. We estimate

[t¢(j1) = Cle®))] < [6C () — t2(j1)| + [2(a(t)) — C(a(t))].

Each term on the right is the difference in ¢- and -holonomy vectors of
a path of ¢-length at most L (with a coefficient of ¢ in the first term).
By Lemma 2.3 each term is at most JL, so the segment I lies in a 2§ L-
neighborhood of {(J).

Since 2§ < 46(1 — §), we have I C ((U) and J' = (~!(I) defines a
nonsingular 1-geodesic segment.

(iv) From (iii) we have dy(J',0U) > (1 — 0)dy(J,0U) — 20L, and by
hypothesis 20L < (1/2)dy(J,0U). Combining these and using (1/2 — §) >
1/4 gives the desired estimate.

(v) The ¢-holonomy of J is w + ih, while the t-holonomy is w’ 4 ih’'.
The comparison of these quantities therefore follows immediately from the
holonomy estimate. O

2.9. The Schwarzian derivative of a conformal metric. Given two
conformal metrics o; = e"|dz|, i = 1,2, the Schwarzian derivative of o9
relative to o7 is the quadratic differential

(2.2) B(o1,02) = [(n2)z2 — (m2)2 — (1) 2= + (m)3] dz*.

Note that this differential is not necessarily holomorphic. This generalization
of the classical Schwarzian derivative was introduced by Osgood and Stowe
[OS] (though in their construction the result is a symmetric real tensor
which has the expression above as the (2,0) part). The classical Schwarzian
derivative can be recovered from the metric version as follows: If f: Q — C
is a locally injective holomorphic function on a domain €2, then

S(f) = 2B(|dz], f*(|dz])).
We will use the following properties of the generalized Schwarzian derivative,
each of which follows easily from the formula above.
(B1) Cocycle: For any triple of conformal metrics (01,092, 03) on a given
domain, we have
B(Ul, 03) = B(O’l, 0'2) + B(O’Q, 0'3).

(B2) Naturality: If f: Q — ' is a conformal map of domains in C (or
CP'), and (01, 09) are metrics on €, then we have

B(f*o1, ffo2) = f*B(0o1,02)
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(B3) Flatness: If a conformal metric ogp on a domain in C satisfies
B(|dz|,00) = 0, then there exist £k > 0 and A € SLy(C) such that
kA*o( is the restriction of one of the following metrics:

(a) The hyperbolic metric 2(1 — |z|?)~!|dz| on A.

(b) The Euclidean metric |dz| on C.

(c) The spherical metric 2(1 + |z|?)~! on CP!.
The metrics described in (B3) will be called Mdébius flat. It follows from
(B1) that the Schwarzian derivative of a metric o = €"|dz| relative to |dz]|
is equal to its Schwarzian derivative relative to any Mobius flat metric ogag,
and is given by

(2.3) B(|dz|, e"|dz|) = B(ogat, €"|dz|) = (1. — (n.)?) d2°.

We also note that property (B2) implies that the Schwarzian is well-defined
for pairs of conformal metrics on a Riemann surface.

Lemma 2.5. Let o be a conformal metric of constant curvature. Then the
differential B(o,c") is holomorphic if and only if the curvature of o' is also
constant.

Proof. An elementary calculation using (2.2) gives
OB(o,0') = K,0% — K.o",

where K (respectively K') is the Gaussian curvature function of o (resp. o”).
By hypothesis K, = 0, and 0’2 is a nondegenerate area form, so the expres-
sion above vanishes if and only if K’ is constant. O

2.10. Metrics associated to a CP! structure. As before let X be a
compact Riemann surface and let (f, p) be a projective structure on X with
Schwarzian ¢ € Q(X). Associated to these data are three conformal metrics:
e The hyperbolic metric oy, on X,
e The singular Euclidean metric |¢|'/?

, and
e The pullback metric f*orp1 on X, where ocp1 is a spherical metric
on CP'.

Taking pairs of these metrics gives three associated Schwarzian deriva-
tives, which by Lemma 2.5 are holomorphic except possibly at the zeros of
¢. By (B2) we have:

¢ = 2B(Uhypu f*U(C]P’l)a

and for the other pairs we introduce the notation
& =2B(|¢]'?, f*ocp),
B = 2B(onyp, |¢’1/2)-

Note that f*ocp1 is actually a metric on the universal cover rather than on
X itself. However, by (B2) its Schwarzian relative to any II-invariant metric
is a II-invariant quadratic differential, so in the expressions above we have
implicitly identified this differential with the one it induces on X.
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By (B1) the differentials ¢,$,B have a linear relationship:

(24) o=0¢—p.

Near a zero of ¢, one can choose coordinates so that ¢ = zFdz2. Calcu-
lating in these coordinates and using the explicit expression for B(x,+), it is
easy to check that 8 extends to a meromorphic differential on X with poles
of order 2 at the zeros of ¢. At a zero of ¢ of order k, the residue of 3 is
—@. Of course by (2.4), the differential gg also has poles of order 2 at
the zeros of ¢ and is holomorphic elsewhere.

We will be interested in comparing the geometry of ¢ and gg when ¢ is
“large”. Note that f is independent of scaling and Q(X) is finite-dimensional,
so (¢p— qub) = B ranges over a compact set of meromorphic differentials. Thus
when ¢ has large norm, one expects |3/¢| to be small and for ¢ and 4/5 to be
nearly the same away from the zeros of ¢. Quantifying this in terms of the

geometry of |¢|, we have:

Lemma 2.6 (Bounding ). For any ¢ € Q(X) we have

(25) |

where d(z) is the ¢-distance from z to Zy. Furthermore, if V denotes the
gradient with respect to the metric \¢|1/2, then we also have

o ¥ (660)] <

Proof. We work in a natural coordinate z for ¢ and use this coordinate
to identify differentials with holomorphic functions, i.e. 3(z)/¢(z) becomes
B(2).

By applying a translation it suffices to consider the point z = 0. By
definition of the function d(z), we can also assume that the z-coordinate
neighborhood contains an open Euclidean disk D of radius d = d(0) centered
at 0. If d is greater than the ¢-injectivity radius of X, we work in the
universal cover but suppress this distinction in our notation.

Let h : D — H be a developing map for the hyperbolic metric of X
restricted to D, so = S(h). Since h is a univalent map on D, the Nehari-
Kraus theorem gives |S(h)(0)| < 6/d?, which is (2.5).

Since (z) is holomorphic and we are working in the natural coordinate
for ¢, the gradient is given by |V3(z)| = |#'(z)|. The estimate (2.6) then
follows immediately from the Cauchy integral formula applied to a circle of
radius d(z)/2 centered at z. O
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3. EPSTEIN MAPS

In this section we review a construction of C. Epstein (from the unpub-
lished paper [Eps]) which produces surfaces in hyperbolic space from do-
mains in CP! equipped with conformal metrics. We analyze the local geom-
etry of these surfaces, first for general conformal metrics and then for the
special case of a quadratic differential metric. While at several points we
mention results and constructions from [Eps|, our treatment is self-contained
in that we provide proofs of the properties of these surfaces that are used in
the sequel.

3.1. The construction. For each p € H?, following geodesic rays from p
out to the sphere at infinity 0.,H> ~ CP! defines a diffeomorphism UpH3 —
CP!, where UH? denotes the unit tangent bundle of H®. Let V), denote
pushforward of the metric on UpH3 by this map, which we call the visual
metric from p. For example, in the unit ball model of H?, the visual metric
from the origin is the usual spherical metric of S? ~ CP*.

Theorem 3.1 (Epstein [Eps]). Let X be a Riemann surface equipped with
a C' conformal metric o, and let f : X — CP' be a locally injective holo-
morphic map. Then there is a unique continuous map Ep(f,o) : X — H?
such that for all z € X, we have

(F " Vip(f.0)(2)(2) = o(2).
Furthermore, the point Ep(f,o)(z) depends only on the 1-jet of o at z, and
if o is CF, then Ep(f,o) is C* 1.

We call Ep(f, o) the Epstein map associated to (X, f,0), and sometimes
refer to its image as an Epstein surface. However, note that Ep(f,o) is
not necessarily an immersion, and could even be a constant map (e.g. if
o= F*(Vy). R

The Epstein map has a natural lift Ep(f,o) : X — UH? as follows. For
p € H? and = € CP!, let Up—z denote the unit tangent vector to the geodesic
ray from p that has ideal endpoint x. We define

Ep(f,0)(z) = (Ep(f,0)(2), VEp(£.0)(2)— £(2)) -
Clearly 7 o ]:_Tf)(f, o) = Ep(f,0), where 7 : UH® — H? is the projection.
Furthermore, since f is locally injective, the same is true of Ep(f, o).
Epstein also shows that if Ep(f, o) is an immersion in a neighborhood of

z, then there is a neighborhood U of z such that Ep(f,o)(U) is a convex
embedded surface in H?, and Ep(f,c)(U) is its set of unit normal vectors.

3.2. Explicit formula. An explicit formula for Ep(f, o) is given in the unit
ball model of H? in [Eps]. We will now describe the same map in model-
independent terms. Since the construction is local and equivariant with
respect to Mobius transformations, it suffices to consider the case of a C!
conformal metric o = €7|dz| on an open set Q C C (an affine chart of CP!),
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and to determine a formula for the Epstein map of (2, o, 1d). In what follows
we write Ep for Ep(f, o), with the dependence on o (and its log-density 7)
being implicit.

Define a map Ep : © — SLy(C) by

—~ 6_77/2 1 + 2N, 677/22
EP(Z) = ( 6(77/2772 ) en/2

(1 2\ (1 0\ [e ™ 0
N0 1 N, 1 Oen/2

where subscripts denote differentiation, and we have written 7 instead of
n(z) for brevity.

Our choice of an affine chart C ¢ CP! ~ 9, H?® distinguishes the ideal
points 0,00 and the geodesic joining them. Let Py € H? denote the point
on this geodesic so that the visual metric Vp, and the Euclidean metric |dz|
induce the same norm on the tangent space at 0. (In the standard upper
half-space model of H3, we have Py = (0,0,2).)

The Epstein map of ¢ is the Py-orbit map of Ef), ie.

(3.1)

Ep(z) = Ep(z) - P.

Similarly, the lift E})(z) is the orbit map of the unit vector vp, o € Up,H3.

This description of Ep(z) can be derived from Epstein’s formula ([Eps,
Eqn. 2.4]) by a straightforward calculation, or the visual metric property of
Theorem 3.1 can be checked directly. However, since we will not use the
visual metric property directly, we take (3.1) as the definition of the Epstein
map. This formula will be used in all subsequent calculations.

Recall that the unit tangent bundle of a Riemannian manifold has a
canonical contact structure, and lifting a co-oriented locally convex hyper-
surface by its unit normal field gives a Legendrian submanifold. The follow-
ing property of Epstein maps shows that Ep can be seen as providing a unit
normal vector for Ep, even at points where the latter is not an immersion.

Lemma 3.2. The map 1:3}) is a Legendrian immersion into UH3.

Proof. As before we work locally, in a domain @ C C. Using v = vp,—0 as a
basepoint, the SLy(C)-action identifies the unit tangent bundle of H? with
the homogeneous space SLy(C)/A where A = Stab(v) = {(eée 6_01-9 ) } Let
g denote sly(C) = Lie(SL2(C)) and a := Lie(A).

The set of Killing vector fields on H? (i.e. elements of g) that are orthog-
onal to v at Py descends to a codimension-1 subspace of g/a ~ Tp UH3,
and the corresponding SLa(C)-equivariant distribution on TUH? is the con-
tact structure. In coordinates, this orthogonality condition determines the
subspace {(2 %) | Re(a) =0} C g.

c —a
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Therefore, to check that ﬁ) is Legendrian it suffices to show that the

—~ 1 ~
(Darboux) derivative Ep dEp : TQ) — g takes values in this space. Differ-
entiating formula 3.1 gives an expression of the form

-1 .~ 1 (i(ngdy —nydzx)  e"(dx + idy)
Fpdbp =3 ( . —i (nedy — nyde)

where z = = + 4y. Since the upper-left entry is purely imaginary, the map
E}) is tangent to the contact distribution. Since the upper-right entry is
injective (as a linear map 7,02 — C), the map is an immersion and thus
Legendrian. ([

3.3. First derivative and first fundamental form. In this section we
assume that the conformal metric o is C2?. Using the formula (3.1) and
the expression for the hyperbolic metric in the homogeneous model H? ~
SLo(C)/SU(2), it is straightforward to calculate the first fundamental form
I of the Epstein surface. In complex coordinates, the result is:

I= (1 — 772)(1 + 46_2n7722)dz2
+ (46_277’?722 -2+ %6277(1 + 46_2"77Z5)2) dzdz
+ (22 — 12)(1 + de™*Mrp.z)dz”

Notice that (1., — n?) represents the Schwarzian B(ogp1, o) of the metric
o = €"|dz|, where ocp1 denotes a Mobius flat metric on CP! (see (2.3)).
Recall that the Gaussian curvature of the metric o is K = —46_2777’]Zg. In
terms of these quantities, we have

(32) 1= %\B(awl,a)ﬂ + (= K0 4201~ K)Re(B(ocer, o)

3.4. Second fundamental form and parallel flow. The Epstein surface
for the metric el (with log-density n + t) is the result of applying the
time-f normal flow to the surface for o itself. In such a parallel flow, the
first fundamental form evolves according to I = —2I where I is the second
fundamental form. (Here and below we use the notation & for Z—ﬂ —0°)

In order to simplify the expressions for these derivatives we work in a
local conformal coordinate z and introduce the 1-forms:

0 =e"tdz
2 0
x = 5Blogpr, o) + 5 (1 - K)
6 2
Note that 6 is (1,0) form of unit norm with respect to e'o. In terms of these
quantities we can rewrite (3.2) as I = x¥, and so we have I = — Re(xY).

Since § = 0, K = —2K, and %B(le,e%) = 0, the 1-form y satisfies

2 0
—X = gB(UCPhU) + 5(1 + K)
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Substituting, we obtain

(3.3)  T— %\B(%Pl,a)ﬁ _ 3(1 _ K%)0? — 2K Re(B(oep, )
3.5. The Epstein-Schwarz map. Let X be a compact Riemann surface
and ¢ € Q(X) a quadratic differential. In this section we will often need
to work on the surface X’ = X \ Z, obtained by removing the zeros of ¢.
Let (f,p) denote the developing map and holonomy representation of the
projective structure on X satisfying S(f) = ¢.

The developing map f and the conformal metric ]2(;5\1/ 2 on X’ induce an
Epstein map .

S = Ep(f,[2¢]'/?) : X' — H?

which we call the Epstein-Schwarz map. Similarly, we have the lift §]¢ :

X' —=-U ]I;}I?’ to the unit tangent bundle. Note that X’ denotes the comple-
ment of Z, = ¢~1(0) in X, rather than the universal cover of X’ itself. The
factor of /2 in the definition of Y4 arises naturally when considering the
first and second fundamental forms of the image surface (e.g. Lemma 3.4
and Example 1 below).

Recall from Section 2.10 that associated to ¢ = 2B(0nyp, ocpt ) we have the
meromorphic differentials ¢ = 2B(|¢|Y/2, f*ocpt) and B = 2B(0nyp, |6]'/2).
We now calculate the first and second fundamental forms of the Epstein-
Schwarz map in terms of these quantities.

Lemma 3.3 (Calculating I and ). The first fundamental form of the
Epstein-Schwarz map X4 is
_ 12 + 1o >

(3.4) =g ~Red

This map is an immersion at x if and only if

[6(2)] # |6(x)],

and at any such point, the second fundamental form is

[0 — P
(3.5) I=——
2|¢|
Furthermore, using the unit normal lift S to define the derivative of the
unit normal at points where ¥ is not an immersion, the formula for above

extends to all of X'.

Proof. Substituting K = 0, B(ogpt,0) = —%qg, and o2 = 2|¢| into (3.2)-

(3.3) gives the formulas for I and II, so we need only determine where ¥ is

an immersion and justify that the formula for I holds even when it is not.
The 1-form y defined above reduces to
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where ¢!/2 is a locally-defined square root of ¢. The Epstein map fails to
be an immersion when the first fundamental form I = xx is degenerate,
i.e. when y and x are proportional by a complex constant of unit modulus.
By the expression above this occurs when qAS/ $Y/2 = a¢p!/? for some a € C
with |a| = 1. This is equivalent to |¢| = |@).

Finally, in calculating the second fundamental form above, we used the
equation I = —2I for the normal flow of an immersed surface. The same
formula holds for the flow associated to an immersed Legendrian surface in
UH?3, so by Lemma 3.2 it applies to Epstein lift ip. Thus, formula (3.3)
gives the second fundamental form of ¥4 in this generalized sense. O

We see from this lemma that the pullback metric I is not compatible
with the conformal structure of the Riemann surface X; its (2,0) part ¢
represents the failure of ¥ to be a conformal mapping onto its image. On
the other hand, 1 is a quadratic form of type (1, 1) and so it induces a metric
compatible with X.

We will now use these expressions for the fundamental forms of the Ep-
stein surface to derive estimates based on the relative difference between the
differentials ¢ and ¢.

More precisely bounds will be based on the function € : X’ — R give by

I

for which we already have some estimates by Lemma 2.6.

Lemma 3.4. The first and second fundamental forms I, 11 of the Epstein-
Schwarz map ¥ = Xy satisfy the following:

(i) The principal directions of the quadratic form 1, relative to a back-
ground metric on X compatible with its conformal structure, are
given by the horizontal and vertical directions of the quadratic differ-
ential $ Here the horizontal direction corresponds to the maximum
of I on a unit circle in a tangent space.

(ii) The images of the horizontal and vertical foliations 0f<$ are the lines
of curvature of the Epstein surface.

(iii) Let &, and &, denote unit horizontal and vertical vectors for \$| at
ze X' Ife(x) < %, then the images of these vectors satisfy

| 2x (&)l < e(z)
V2 < || S (&)l < V2 +e(a).

(iv) Let kp, Ky denote the principal curvatures of ¥ associated to the hor-
izontal and vertical directions of ¢ at x, respectively. If e(x) < %,
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then

e(x)

1
=<
wol = = < <(e)

Remark. Parts of this lemma could also be derived from results in [Eps|:

(1) Epstein shows that the vertical and horizontal foliations of (1,, —
n?)dz? are mapped to lines of curvature by the Epstein map of e”|dz|.
This includes part (ii) of the lemma above as a special case.

(2) Epstein also relates the curvature 2-forms of the conformal metric
and of the first fundamental form of the associated Epstein surface;
in the case of a flat metric this implies that the principal curvatures
satisfy k1Ko = 1.

Proof.

(i) Since the principal directions are orthogonal, it suffices to consider one
of them. By (3.4), the only part of I that varies on a conformal circle in
a tangent space of X is the term Re qg(v) Thus the norm is maximized
for vectors such that a(v) is real and positive, which is equivalent to v
being tangent to the horizontal foliation of &5, as desired.

(ii) Since I is real and has type (1,1), the eigenspaces of the shape operator
[T are the principal directions of the quadratic form I, which by (i)
are the vertical and horizontal directions of <Z Thus any vertical or
horizontal leaf of QAS is a line of curvature.

(iii) First of all, it will be convenient to estimate |3/ ng5|, using the hypothesis
that e(z) < 3:

B 18 _ 13
[0 =Bl "ol =181 ~ zl9|

Let np, = || &, and n, = || X4 &, ||. Using formula (3.4) and the
fact that &, (x) and &,(z) are unit with respect to |¢|, we calculate

(191~ 1¢])”

= 2¢(x).

7.
¢

2
ng, = 1(&) = =
2
e 161+ 101) .
n, =1(&) = ——="— = n
2/ 69| "

Since $ = ¢— 03, we have ]\$I—|¢H < |B|. Substituting into the expression
for n% gives
2
PO

< = < eg(x)?
2199 <
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and the estimate on nj, follows. By the last equality of (3.6) we have

V2 <ny=1/2+n7 <V2+n, < V2+e(a)

as required.

(iv) Using (3.4)-(3.5) we find xpk, = det(I7HI) = 1, so we need only estimate
Ky. By (ii) the curvatures are obtained by multiplying the eigenvalues

of I7! by %, and we have
L 1R—leR 1319
(gl + 10D 18] + 19|
As before we use H(Z! — ||| < |B], giving

B
1+ 19|

(3.7)

().

|/€v‘ <

O

Lemma 3.5 (Curvature of vertical leaves). Let L denote a leaf of the vertical
foliation of $, parameterized by |g/i>\|—length, and for any x € L let k(z) denote
the curvature of E¢(E) at Xg(x). Let d(x) denote the ¢-distance from x to
Zg. Then for any x such that d(z) > 2v/3 we have

k(x) < 15d(z) 2.

Proof. All estimates in this proof involve tensors evaluated at a single point
x € L, so we abbreviate d = d(z), ¢ = ¢(z), etc.. By Lemma 2.6 the
hypothesis d > 2v/3 gives ¢ = [3/¢| < 1/2 and 1/2 < |¢/¢| < 3/2. In
particular this means that the estimates of Lemma 3.4 apply.

The image of L is a line of curvature of Y4 corresponding to the principal
curvature k,. Splitting the curvature of its image in H? into tangential and
normal components, we have have k% = 1{3 + K2 where kg is the geodesic

curvature of L at x with respect to I. By Lemma 3.4 we have
Ky < |B/p| < 6d72.

Let &, &, denote unit vertical and horizontal vectors of $ at x, which are
tangent to the principal curvature directions. As in the proof of Lemma 3.4,
we denote by ny, the norm of &, with respect to I. By an elementary calcu-
lation in Riemannian geometry, the geodesic curvature of a line of curvature
satisfies

(3.8) kgl = ————,

where &, (k,) denotes the derivative of the function k, with respect to the
vector &j,.
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Applying (3.7), we have

L 4l¢d|

— — Ry = =",
v 61> — [o]?

Rp — Ry =

and similarly for the derivative,

131 - 14| 2
v) = — | = l— ———
lr) = & (|¢>r n |¢r> fh< 13/9] +1>

2
(1 -
2 <‘$| : |¢|) & (18/91)

Since |6/¢| = |1 — B/¢|, we have [¢(|¢/8])| < |€x(8/¢)|. Using the bound
on the norm of the |¢|-gradient of 3/¢ from Lemma 2.6 and the fact that

the ¢-norm of &, is \¢/q§|1/2, we obtain
€n(8/9)] < 48476 /9[>,
Recall from (3.6) that n? = (|¢| — |QA5|)2/(2\¢¢A5|) Substituting these ex-
pressions into (3.8) and simplifying gives
ol + 19l s
|kg(@)] = 212 = =~
2v2 g [2l([¢] + [])

Since 1/2 < |¢/¢| < 3/2 it follows that the bracketed expression is bounded
by 4/3, so finally we have

-3

&n(lo/0l) < 24V2 [

kg(z)] < 32v2d73.
Returning to the curvature function k, we combine the bounds for x, and
Ky above and use d > 2v/3 to obtain

2 2\1/2 3\2 —2\2 1/2 512 12 —2 —2
k= (k24+r2)V% < ((32\/§d’) + (6d )) < <3+36> d~% < 1542,

0

Next we combine the above results concerning the derivative and the
curvature of the Epstein-Schwarz map to estimate lengths of images of seg-
ments. The following theorem is the only result in this section which is used
in the sequel.

Theorem 3.6 (Collapsing). There exist Dy > 0 and Cy > 0 such that for
all p € Q(X) we have
(i) For any d > Dy, the restriction of X4 to X \ Ng¢(Zy) is locally
(V2 4 Cod—?)-Lipschitz with respect to the ¢-metric.
(i1) If [y1,y2] is a segment on a vertical leaf of 6 and d = de([y1, 2], Zg) >
Dy, then

(V2 — Cod™2) dy(y1,y2) < dis (S (1), B (y2)) < (V2 + Cod™2) dy(y1,y2)-



22 DAVID DUMAS

(iii) If [x1, x2] is a segment on a horizontal leaf of ¢ and d = de([x1,22], Zy) >
Dg, then

dis (24 (y1), Se(y2)) < Cod ™ 2dy(x1, 2).

Proof. The proof will show that one can take Dy = 4 and Cy = 28.

Since vertical segments are geodesics in the (E—metric, the upper bound
from (ii) follows from (i).

We first consider upper bounds on distances. We can integrate a bound on
the derivative of 34 over a path to obtain an upper bound on the length of
the image, and thus on the distance between endpoints. Since d > Dy > 2v/3
we can apply the derivative estimates from Lemma 3.4 and combining them
with Lemma 2.6 we obtain

dH3 (E¢<21), Ed)(ZQ)) < (\/5 + 6d_2) d¢(2’1, ZQ)

for any z1, 22 that are joined by a minimizing geodesic in X \ N4(Z4). This
implies (i) and, since vertical segments are minimizing geodesics, the upper
bound from (ii). For a horizontal segment [z1,z2], these lemmas give

dpp3 (2¢($1), Z¢(:L’2)) < 6d72 d¢(:v1,:c2)

and (iii) follows.
To complete the lower bound for case (ii), we note that the lower bound
on the derivative of X4 in the vertical direction from Lemma 3.4 implies

Length(Z4([y1,2])) > (V2 = 6d*)dy(y1,2).

Recall that a path in H? with curvature bounded above by k < 1 and pa-
rameterized by arc length is 1/v/1 — k2-bi-Lipschitz embedded (see e.g. [Lei,
App. A]). Since d > Dy = 4, Lemma 3.5 implies that the image of a vertical
leaf segment has curvature k < 15d~2 < 1. Combining this with the length
estimate and using that /1 — k2 > 1 —k for k < 1, we obtain

digs (S4(y1), g (y2)) > (L = 15d7%)(V2 = 6d2)dy(y1, y2)
> (V2 — 28d72)dy(y1,y2)
completing the proof of (ii). O
3.6. Quasigeodesics. Let I denote a closed interval, half-line, or R. Recall

that a parameterized path 7 : I — M in a metric space M is a (K,C)-
quasigeodesic if for all a,b € I we have

Kb~ a| - C < d(v(a),y(b)) < Kb~ a| + C.

The following property of quasigeodesics in H? is well-known (see e.g. [Kap2]
[Rat, Sec 11.8]).

Lemma 3.7. For all K > 1 and C > 0 there exists L = L(K,C) > 0
with the following property: If v : I — H? is a (K, C)-quasigeodesic, and if
J is the geodesic segment in H> with the same endpoints as y(I), then the
Hausdorff distance between J and vy(I) is at most L(K,C).
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O

The lemma applies to quasigeodesic rays and lines, where the “endpoints”
of v(I) and J are allowed to lie on the sphere at infinity.

We will also want to recognize quasigeodesics using the local criterion
provided by the following lemma.

Lemma 3.8. Forall K > 1 and C > 0 there exist R(K,C) > 0, K'(K,C) >
1, and C'(K,C) > 0 with following property: If v : I — H? is a (K,C)-
quasigeodesic when restricted to each interval of length R(K,C'), then ~y is
a (K'(K,C)),C'"(K,C))-quasigeodesic (globally). Furthermore, these quan-
tities can be chosen to satisfy

K'(K,C)—1
(3.9) C'(K,C)—=0 as (K,C) — (1,0).
R(K,C) bounded

Without the claim about limits of K’, C’, R, this lemma represents a well-
known property of quasigeodesics in H? (and more generally, in §-hyperbolic
metric spaces). Proofs can be found in [Gro, Sec. 7] [CDP, Sec. 3.1].
We therefore concern ourselves with the limiting behavior of K',C’, R as
(K,C) — (1,0).

Proof of (3.9). A (K, C)-quasigeodesic is also a (1 + ¢, €)-quasigeodesic for
some € that goes to zero as (K,C) — (1,0). We assume from now on that
v : I — H3is a (1 + €, €)-quasigeodesic on segments of length 1 (i.e. we set
R =1). We will compare () to the piecewise geodesic path formed by the
images of regularly spaced points in [; in order to obtain good estimates we
will need for the spacing of these points will be much larger than e, but to
still go to zero as € — 0.

Consider the triangle in H® formed by a = ~(t), b = ~(t + €/8), ¢ =
v(t + 2€'/8) for some t such that [t,t + 2¢'/8] € I. Assume that 2¢!/8 < 1,
so the path 7 is a (1 + €, €)-quasigeodesic on [t,t + 2¢'/%] and we have

d(a,b),d(b,c) € [e5(1+¢) " —¢, e5(1+€) + ¢,
d(a,c) € [26%(1 +e)7t—¢ 26%(1 +€) + €.

For small € it follows that d(a, c¢) = d(a,b)+d(a,c) and the triangle is nearly
degenerate; a calculation using the hyperbolic law of cosines shows that such
a hyperbolic triangle has interior angle at b satisfying § > m — 5¢7/16.

Let V.= {k € ¢/%Z | (k + ¢'/8) € I}, and consider the path in H?
obtained by joining successive elements of v(V') by geodesic segments. By
the estimates above this piecewise geodesic path has segments of length at
least s and angles between adjacent segments greater than = — ¢, where

s=e/8/2 < (31 +e) =)
§ = 5¢7/10
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By [CEG, Thm. 1.4.2.10], if we have ssin(s — d) > § then such a piecewise
geodesic path is k-bi-Lipschitz embedded for & = cos(s). For the values
given above we find ssin(s — §) ~ %61/4 as € — (. Comparing exponents
(i.e. 1/4 < 7/16) we find that the condition is satisfied for e sufficiently
small. Thus the path is bi-Lipschitz embedded with

k= cos(¢'/8/2).
Note that £k — 1 as ¢ — 0.

For any p, q € I there exist p/,¢’ € V with |p — p'|,|q — ¢/| < 2¢!/®. Using
the k-Lipschitz property of v(V’) and the fact that + is (1+¢, €)-quasigeodesic
on segments of length 2¢'/8
k! (=gl —4e)—4es (14+€)=2¢ < d(v(p),7(0) < K(lp—ql-+4es)+es (1+¢)+2e.

Thus we take K’ = k and C’ = 4€'/8(k 4+ 1 + €) + 2¢, and (3.9) follows. O

, we have

3.7. Height and distance. So far our analysis of the Epstein-Schwarz map
has focused on leaves of the foliations of the quadratic differential ¢, which is
the sum of the Schwarzian of the projective structure (i.e. ¢) and a correction
term (—f). We will now use Theorem 3.6, Lemma 2.6, and the quasigeodesic
estimates of the previous section to study the restriction of ¥4 to a geodesic
of the ¢-metric.

The following theorem shows that the height of a ¢-geodesic segment
provides a good estimate for the distance between the endpoints of its image
by X4, as long as the segment is far from Z.

Theorem 3.9. There exists M > 0 and decreasing functions K'(m) > 1,
C’(m) > 0 defined for m > M with the following property: Let ¢ € Q(X)
and let J = [xg,x1] be a nonsingular and non-horizontal ¢-geodesic segment
in X with height h and length L. If d = dy(J, Zy) > m(1 + VL) for some
m > M, then
(3.10)

K'(m)™"W2h — C'(m) < ds(Zg(0), Bp(21)) < K'(m)V2h + C'(m).

Furthermore, we have (K'(m),C’(m)) — (1,0) as m — oo.

Because of this constant factor of v/2 in the estimate above, it will be help-
ful in the proof and subsequent discussion to sometimes use the following
terminology: Suppose J is a nonsingular ¢-geodesic segment. We say that a
parameterization J(t) of this segment is a parameterization by 2¢-height if
the ¢-height of J([t1,t2]) is equal to %ﬁg — t1] for all #1,t5 in the domain.
This is equivalent to the condition that the height of J([t1,t2]) with respect
to the quadratic differential 2¢ is |ta — ¢1|. Of course any non-horizontal
segment has a parameterization by 2¢-height. Theorem 3.9 shows that un-
der the stated hypotheses, the Epstein-Schwarz map Y4 sends a segment
parameterized by 2¢-height to a path in H? that is (K, C)-quasi-geodesic
with K ~ 1 and C = 0 when m is large.
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Proof. We will make several assumptions of the form m > ¢, where c is a
constant. At the end we take M to be the supremum of these constants.

Let U denote the d/2-neighborhood of J with respect to the ¢-metric, so
dy(U, Zy) = d/2 > m/2. Define

6 = sup ¢ — 4| :sup@.
9] v |9l
Using the bound on |3|/|¢| from Lemma 2.6 and d > m we obtain
24
§ < -

and similarly, using d > m+v/L, we have

96L 96
We now assume m > 16 which by the above estimates is more than sufficient
to ensure § < 1/4 and dy(J,0U) = d/2 > 4L, so Lemma 2.4 applies to U
and any subsegment J; of J. In particular U contains a nonsingular ¢-

geodesic segment .J; with the same endpoints as J; and which satisfies
~ d
d¢(J1,8U) > g, and
—~ _ 24
max(|h1 — h1|, |w1 — w1|) < oL < ﬁ <1,

where hi,w; are the ¢-height and width of J;, and and ﬁl,zﬂl are the qAﬁ—
height and width of Jp.

Now suppose that the subsegment J; has height at most d/16. Then jl
has height bounded by 1+d/16 < d/8 < d¢(j1, 0U) and there are p-vertical
and horizontal geodesic segments contained in U that together with jl form
a right triangle T that lies in U. Taking m > 2Dg we can apply Theorem
3.6 to the vertical and horizontal sides of T' in order to estimate the distance
between the Y4-images of the endpoints {yo,y1} of Ji, obtaining

4C)\ ~  4Cy __
(\/5 - d2) hi — ?wl <
dpzs (X (Y0), X (y1))

4Cy\ ~  4Cy -

Using |a — hi| < 24/d?® and W, < L + 24/d?, and the fact that these
estimates can be applied to any subsegment of J;, we find that ¥4 maps the

parameterization of J; by 2¢-height to a (K, C)-quasigeodesic path in H3
with

(3.11) K:<1 400) o AL 480 +243

— N P
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From these expressions it is clear that for m large enough, the assumptions
d > m and d > m+/L give upper bounds for K,C, and that these decrease
toward 1, 0, respectively, as m — oo. Since this quasigeodesic property holds
on each subsegment of J whose height is at most d/16 > m/16, by taking
m large enough we can apply Lemma 3.8, and the parameterization of J
by 2¢-height is mapped by X4 to a (K'(m),C’'(m))-quasigeodesic path in
H3, where K'(m) — 1 and C’(m) — 0 as m — oo. The estimate (3.10) for
st (E¢(CL‘0), E¢(£C1)) follows. |

For horizontal segments, the above proof applies up to (3.11), and we can
take J; = J since the condition that h; < d/16 is vacuous. We conclude:

Corollary 3.10 (of proof). There exist M > 0 and a decreasing function
C'(m) > 0 defined for m > M with the following property: Let ¢ € Q(X)

and let J = [xg,x1] be a nonsingular horizontal ¢-geodesic segment in X
with length L. If d = dg(J, Zy) > m(1 + VL) for some m > M, then
(3.12) Length(34(J)) < C'(m)

Furthermore, we have C'(m) — 0 as m — oo.
O

3.8. Examples. Because the construction of the Epstein-Schwarz map as-
sociated to a quadratic differential is purely local, we can consider the be-
havior for some simple differentials on the complex plane to illustrate the
geometric properties studied in Theorems 3.6 and 3.9.

Example 1. Consider the quadratic differential ¢ = dz? on C. Note that
|p|'/2 = |dz|"/? is M&bius flat, so 8 = 0, gg = ¢, and Theorem 3.6 applies to
the trajectories of ¢.

The covering map f : C — C* given by f(z) = exp(iv/2z) satisfies S(f) =
¢, so we can use this as a model for the associated developing map. The
metric v/2|$|'/2 on C pushes forward to the metric |dz|/|z| on C*. In the
standard unit ball model of H?, this metric agrees with the spherical metric
on the equator, so the image of the equator by the Epstein map is the origin.
Invariance of |dz|/|z| under the action of RT by dilation then shows that the
full Epstein map of this metric on C* is the orthogonal projection of 0, H?
onto the geodesic gy~ joining the ideal points 0, co.

Therefore the Epstein-Schwarz map Y4 : C — H? is the composition
of f with this projection, or equivalently, ¥4(2) = g(Im(z)) where g(t) is
an arc length parameterization of gp ... We see the behavior predicted by
letting d — oo in the estimates of Theorem 3.6, reflecting the fact that this
quadratic differential is complete and has no zeros: Each vertical trajectory
(i.e. each vertical line in C) maps to a geodesic in H? parameterized by arc
length, while each horizontal trajectory is collapsed to a point.

Example 2. Next we consider ¢ = zdz? on C. While in this case it is
possible to find closed-form expressions for the developing map (in terms of
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Figure 1. Left to right: Vertical and horizontal trajectories of zdz?; the images of
vertical trajectories under the Epstein-Schwarz map approzimate an ideal triangle,
as shown here in the unit ball model of H?; segments on horizontal trajectories are
contracted to sets of small diameter.

Figure 2. The image of a small neighborhood of the origin under the Epstein-
Schwarz map of zdz? in the unit ball model of H3. The ideal point (0,0,—1) corre-
sponds to the image of 0 under the developing map.

Airy functions) and for the Epstein-Schwarz map, we will only discuss the
qualitative features seen in Figures 1-2. Here the origin is a simple zero of
¢ which corresponds to a cone point of angle 37 for the ¢-metric. Centered
at the origin we can construct a regular right-angled geodesic hexagon of
alternating vertical and horizontal sides. By Theorem 3.9, if this hexagon is
far enough from the origin then the Epstein-Schwarz map sends its vertical
sides to long near-geodesic segments in H?, while the horizontal sides are
mapped to sets of small diameter. Thus the image of the hexagon itself
approximates an ideal triangle. Note that avoiding a small neighborhood of
the origin also ensures that the trajectories of ¢ = zdz? are close to those
of ¢ = (z + 8%)d22, so the images of these curves approximate lines of
curvature on the Epstein surface.

Near the origin (i.e. for small d) the behavior of the Epstein-Schwarz
surface is quite different. A small punctured neighborhood of 0 maps to
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the “bubble” shown in Figure 2—a properly embedded, infinite area surface
whose induced metric is approximately isometric to |gg|/ 19|12 ~ |2 75/2|dz|
(by Lemma 3.3). The corresponding surface in H? approaches the developed
image of 0 tangentially, eventually leaving every horoball based at that point.

4. SEQUENCES OF EPSTEIN-SCHWARZ MAPS

In the previous section we considered the geometry of the Epstein-Schwarz
map for a single complex projective structure on a surface. We now analyze
how these results apply to a divergent sequence of projective structures
whose associated quadratic differentials converge projectively. Specifically,
throughout this section we assume:

(4.1)
(fn, pn) is a sequence of projective structures on X
¢n € Q(X) is the associated sequence of Schwarzian derivatives

¢n — 00 aS N — 00

; P _

o0 gy = ¢
The theme we develop is that the foliation and transverse measure of the
projective limit ¢ governs the large-scale geometry of ¥4, for large n.

4.1. Nonsingular segments. Let 5 and @n denote the lifts of ¢ and ¢,, to
X, and let Z; denote the set of zeros of ¢. By compactness of X and the
convergence of ¢, /| ¢n| we have

250

9]

uniformly on compact subsets of X — Zb'

Theorem 4.1. Let I C X denote a nonsingular and non-horizontal ¢-
geodesic segment. Then there exists N > 0 and sequences K, — 1 and
Cn — 0 as n — oo such that for each n > N and any xg,z1 € I with
¢-height difference h, we have

(4.3) K;1||2¢n||1/2h —Ch < dH?’(de (o), X (z1)) < Kn||2¢n||1/2h + Ch.

The constants N, Ky, Cy, can be taken to depend only on ¢ and dy(I,Zy).
Furthermore, the same estimate holds for any mon-horizontal half- or bi-
infinite geodesic I with the property that dy(J, Zy) > 0.

Before starting the proof, we remark that since the quantity ||2¢,[/*/?h
appearing in this estimate exactly the (2|/¢p||¢)-height of I, an equivalent
statement is that the (2]|¢y,||¢)-height parameterization of I maps to a quasi-
geodesic in H3 with constants (K, C)) converging to (1,0) as n — oc.

Proof. Let LM denote the length of a subsegment of I that has height 1.
Let J C I denote a subsegment of length L < L), which therefore has
height L/L().
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Let U denote the d/2-neighborhood of J in the ¢-metric, where d =
dy(J, Zy). Let ¢0 = ¢,/ /¢nll. By uniform convergence of the differentials
0, for each k € N there exists N(k) € N such that for n > N(k) we can

apply Lemma 2.4 to J and U with § = d/(16kL™)). Thus for such n there
is a ¢0-geodesic segment with endpoints {xg, 1}, and we have

dL dh

0 0 _ _dL - dh

max(|L, — L|, |h;, — h|) < IO = In
(4.4) i
dgo (J', Zy,) = %g(J',@U) > 3

where LY and hY are the ¢O-length and height of the ¢2-geodesic segment
J' with endpoints {zo,z1}. Letting L, = ||¢n|"/?LY and h, = ||¢n'/?h
denote the corresponding quantities for J' with respect to ¢,, and writing
dy = dg, (J', Z4,) > ||6n/2d/k, we have

Ao gnll1d _l6ul*d
VL.~ 8L 8(L — d/(4k))

again for all k£ and n > N (k). By taking n and k large enough it follows
that d,, and d,,//L,, can be made arbitrarily large.

For any m > 0, let N’(m) be such that d, /(1 + +/L,) > m for all n >
N'(m). Then for m > M and n > N'(m) we apply Theorem 3.9 to J',
concluding that

K'(m) V2 hy, — C'(m) < dgs (S, (20), B4, (1)) < K'(m)V2 by + C'(m).

Thus the parameterization of J by 2¢,-height is mapped by X4 to a
(K'(m),C’"(m))-quasigeodesic. Note that the 2¢,-height of J tends to co
as n — oo.

If the length of I is greater than L(!) (e.g. if it is a ray or infinite geodesic),
then for n sufficiently large we can apply Lemma 3.8 to J and conclude that
in any case, the 2¢,,-height parameterization of I maps to a (K" (m),C"(m))-
quasigeodesic, where (K" (m),C”(m)) — (1,0) as m — oo.

Finally we must consider the effect of changing from the 2¢,-height pa-
rameterization to the 2¢-height. For the remainder of the prooflet xg,x1 €
be an arbitrary pair of points and let L denote the ¢-length of the segment
[z0, 1] C I. Note that it is no longer assumed that L < L),

By applying (4.4) [L/L™M] times we conclude that the ¢,,-height differ-
ences h, and ¢-height difference h between xg and z; satisfy

20, |11/2dL d
V2t~ 211 /20] < 2L 08— (2 hag o,

where in the last step we have used that L/ L) = h. Therefore, changing
from the 2¢,-height to the (||2¢,||¢)-height parameterization of I introduces
a multiplicative error in the distance estimate that is o(||¢,||*/2h) as k — oo,
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and (4.3) follows with
N = N'(M),
K, = K" (mg(n)) + d/4ko(n),
Cpn = C"(myp(n)),
where
ko(n) = max{k | N(k) < n},
mo(n) = max{m |N'(m) < n}.
(]

Complementing Theorem 4.1 we have the following estimate for horizontal
segments:

Theorem 4.2. Let I C X denote a nonsingular ¢-horizontal segment. Then
we have

Diam (24, (I)) = o(||¢n]|V/?) as n — oo.

As with Theorem 4.1, the above estimate for the geometry of the image
is not uniform—it depends on the particular segment I.

Proof. We proceed in much the same way as the previous proof, but using
the whole segment instead of a subsegment of height 1.

Denote by L, the ¢,-length of the ¢,-geodesic I’ with the same endpoints
as I and by d, the ¢,-distance from I’ to Z,,. For large n we can apply
Lemma 2.4 to a d/2-neighborhood I in the ¢-metric with 6 = d/(16kL),
where L is the ¢-length of I. Then as in the previous proof we have m,, — oo
as n, k — oo, where

dn
my = ————.
"1+ VL,
We also have hY < &, or equivalently, v/2 h,, < d||2¢,||"/?/(4k).

Let g,z be the endpoints of I, which are also the endpoints of I’. Ap-
plying Corollary 3.10 if I’ is ¢,-horizontal, and Theorem 3.9 if it is not, we
conclude

dps (34, (20), X, (1)) < K/(mn)\@hn +C'(my)

K'(m)d
S z(ug) 12601172 + C'(mn),

for n > N(k), and using k = ko(n) as in the proof of Theorem 4.1 we find
that the right hand side is o(||¢n||/?) as n — oc.

Finally, we note that a subsegment of I is shorter and its distance from
Zg is no less than that of I. Decreasing L and increasing d preserve (or
improve) all of the estimates above, so the distance estimate above applies
to all pairs xg,x1 € I. This gives the desired bound on the diameter of
Yo, (I). O
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4.2. Periodic geodesics. Given an element g € SLo C let
l(g) = inf d(x,g-
(9) = inf d(z,g- )

denote its translation length when acting as an isometry of H3. Thus ¢(g) >
0 if and only if g is a hyperbolic element, in which case g translates along
its geodesic axis by distance ¢(g).

Theorem 4.3. If v € 11 is represented by a periodic ¢-geodesic of height h,
then

i ()

4.5
( ) n—00 H2¢nH1/2

= h.

In particular if h > 0 then p,(7) is hyperbolic for all sufficiently large n.

Proof. Recall that ¥4 (v ) = pn(7) - X4, ().

First suppose h > 0. Applying Theorem 4.1 to a nonsingular g—geodesic
axis of 7 in X, we find that pn(7y) preserves a (K, Cy)-quasigeodesic axis
in H? along which it moves points distance d,,, where

K H200]|Y2h — Cp < dyy < K7Y|200]Y20 + C.

By Lemma 3.7, this quasigeodesic axis lies in a uniformly bounded neigh-
borhood of the geodesic axis of p,(7y). The translation length of ¢(p, (7))
is therefore d,, + O(1) as n — oo, and since (K,,Cy) — (1,0), the desired
estimate follows. N

If h = 0 then we apply Theorem 4.2 to the horizontal ¢-geodesic fixed
by v to get a pairs of points in H? related by p,(vy) and separated by

distance o(||¢y||'/?). This distance is an upper bound for ¢(p, (7)) hence

lim,, oo ||£§§Zfﬂ)/)2 = 0 as required. O

5. THE CHARACTER VARIETY AND GROWTH RATES

In this section we show how the results and techniques of Sections 3—4
can be used to study the growth rate of the holonomy representation as a
function of the Schwarzian.

5.1. The character variety and holonomy map. The SLs(C)-representation
variety of IT is the set R(IT) = Hom(I", SL2(C)). Choosing a finite generating
set ¥ for IT realizes R(IT) as a closed algebraic subset of (SLo(C))™!, giving
it the structure of an algebraic variety.

The SLy(C)-character variety of II, denoted X(II), is an affine algebraic
variety consisting of the characters (traces) of representations in R(I"); there
is a natural algebraic map R(I') — X(I') taking a representation to its
character. We denote this map by p — [p]. The character variety can also
be described as an algebraic quotient

X(T') = R(I")// SLa(C)
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where SLo(C) acts by conjugating representations. See [CS] and [MS1,
Sec. I1.4] for details about these constructions.
As mentioned in the introduction, there is holomorphic map

hol : Q(X) — %X(II),

the holonomy map, which associates to a projective structure on X the
character of its holonomy representation (which is well-defined, since the
representation itself is well-defined up to conjugation).

5.2. Properness. Gallo, Kapovich, and Marden showed that the holonomy
map Q(X) — X(II) is a proper map [GKM, Thm. 11.4.1], following an
outline presented in [Kapl, Sec. 7.2]. A geometric approach to properness
using pleated surfaces can be found in [Tan2|. The same result also follows
easily from Theorem 4.3:

Theorem 5.1. The map hol : Q(X) — X(II) is proper.

Proof. Let ¢, € Q(X) be a divergent sequence. By passing to a subsequence
we can assume that ¢, converges projectively, i.e. ¢, /||¢n| — ¢. Let v € II
be freely homotopic to a periodic ¢-geodesic. The translation length of the
image of 4 under a representation p : II — SLy(C) defines a continuous
function ¢, : X(II) — R. By Theorem 4.3 we have £, (hol(¢,)) — 0o, so the
image of the sequence {hol(¢y,)} is not contained in a compact set. O

5.3. Growth estimate. This approach to proving properness of the ho-
lonomy map also lends itself to effective estimates of the growth rate of
holonomy representations. In fact, Theorem 4.3 can be seen as an estimate
of this kind, where translation length of the action on H? is used to measure
the “size” of a representation. Since translation length grows logarithmically
with respect to trace coordinates on X (II), the holonomy map itself has ex-
ponential growth in these coordinates. Making this coordinate-independent,
we have the following:

Theorem 5.2 (Effective properness). For any affine embedding X(II) — C"
and any norm on C™ there are constants A > 0 and B such that

(5.1) A7 6)M? = B <log(1 + || hol(¢)])) < All¢|'/* + B.

In [Sim], Simpson uses harmonic maps techniques to obtain a similar
bound for the growth rate of the map from the de Rham moduli space of rank-
2 systems of ordinary differential equations over a compact Riemann surface
to the character variety of the fundamental group. It would be interesting
to know whether the set of projective structures is properly embedded in
this moduli space of ODEs, and thus to see if the growth rate of holonomy
in terms of the norm of the Schwarzian can also be estimated by Simpson’s
technique.

The proof of Theorem 5.2 will depend on an estimate that is a direct
analog of Theorem 4.3, but where we consider a fixed homotopy class of
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curves and an arbitrary quadratic differential, instead of a fixed sequence of
quadratic differentials and an arbitrary homotopy class.

Theorem 5.3. For each v € 11 there exists constants C > 0 and N > 0
such that if ¢ € Q(X) satisfies ||p|| > N then

Ups(r)) < Cll]I

Furthermore, if v is represented by a periodic ¢p-geodesic of height h, angle
0 > 0, and whose associated flat annulus has width at least w||¢||*/?, then

Ups(v)) = cllgll'?,

where in this case ¢ and N also depend on v, 8, and w.

Proof. The unit sphere in Q(X) corresponds to a compact family of metrics
on X. Thus the free homotopy class of an element v € II can be realized
by a curve of uniformly bounded length and height with respect to any ¢
such that ||¢|| = 1. Increasing length and height by a bounded amount we
can further assume that each such realization avoids a fixed neighborhood
of Z¢.

Scaling to obtain ¢ € Q(X) of any norm, we conclude that +y is represented
by a closed curve in X of length bounded by C’||¢||'/? and which avoids
a 6]|¢||'/?-neighborhood of Z, for some constants C’,5. We can lift this

closed curve to a path in X whose endpoints are identified by the action of
7. Choosing N large enough we can apply Lemma 3.6 to conclude that ¥,
is uniformly Lipschitz on this path, so the image in H? has length bounded
by C"[|¢||/2. Since the endpoints of the image are identified by py(7), this
gives the desired upper bound for £(pg4(7)).

For the periodic case we can again use compactness of the unit sphere in
Q(X) and the angle 6 to obtain a lower bound on the ¢-height of a periodic
geodesic homotopic to v of the form h > ¢||$||'/?, where ¢’ depends on v
and 6. Of course the length estimate L < C’||¢||'/? applies as above. Using
the geodesic representative in the center of the flat annulus, the distance
from this geodesic to the nearest zero of ¢ is at least d = %w||¢||1/2.

For ||¢|| > N and N sufficiently large (now depending on 7, 6, and w),
we have d > M (1 4+ /L) where M is the constant from Theorem 3.9. Then
(3.10) shows that the lift of the periodic geodesic to X maps by Y4 to
a uniformly quasigeodesic axis for ps(y) in H® on which the translation
length is bounded below by a multiple of the height h. Using the stability
of quasigeodesics in H? (Lemma 3.7) we obtain a lower bound of the form
Upg(v)) > ||| — D. The lower bound on ||¢|| allows us to remove the
additive constant by changing the multiplicative factor slightly, and the
Theorem follows. O

Proof of Theorem 5.2. Let P C Il and wq be as in Theorem 2.2. Since traces
of elements of II are regular functions on X(II), the traces of elements of P
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have a uniformly polynomial upper bound in the coordinates of the affine
embedding. Thus there are constants C, k such that for all v € P we have

| Tr(po(7))] < C(1+ || hol(¢) )"

For each ¢ € Q(X) there exists v € P that is represented by a periodic
¢-geodesic that is nearly vertical and thus has height bounded below by
c||¢||*/? for some positive constant ¢. Since we also have a uniform lower
bound on the widths of the corresponding flat annuli, Theorem 5.3 and the
relation between trace and translation length give

| Tr(pp(7))] > exp(¢']| 0| /?)

for some ¢ > 0, as long as ||¢|| > M. Here we have uniform constants
because P is finite. Combining this with the previous inequality and taking
logarithms gives the lower bound on | hol(¢)| from (5.1), where adjusting
the additive constant B allows us to remove the requirement that ||¢|| is
large.

The upper bound from (5.1) is similar, but easier: The ring of regular
functions on X(II) is generated by the trace functions of finitely many ele-
ments of II (see [CS, Sec. 1.4]), so || hol(¢)| has a polynomial upper bound
in terms of these traces. Applying the upper bound on translation length
from Theorem 5.3 to these elements and again taking logarithms completes
the proof. O

6. THE MORGAN-SHALEN COMPACTIFICATION AND STRAIGHT MAPS

6.1. The compactification. Consider the map X(IT) — (R*)! given by
[p] = (log(| Tr p(V)| + 2)) yers -

Let P(R)! denote the space of rays in (RT)! and consider the projectivized
map X(IT) — P(RT)Y. The image of X(II) is precompact and the closure of
the image defines the Morgan-Shalen compactification of X(IT). If £ : II —
R is a function whose projective class [¢] is a boundary point of X(IT), then
there exists an R-tree T" and an isometric action of IT on T such that

Uy) = inf d(z, v ),

that is, £ is the translation length function of an action of II on an R-tree.
As in the introduction we say in this case that T' represents [¢].

This compactification was introduced in [MS1] where a tree representing
a boundary point is described in terms of a valuation on the function field of
X(IT). For our purposes it will be important to construct such a tree directly
from the action of a representation on hyperbolic space, so we will use an
alternative construction of representing trees based on the asymptotic cone.
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6.2. Asymptotic cone construction. Bestvina [B] and Paulin [Pau] used
geometric limit constructions to build R-trees representing limit points of
sequences of representations in the Morgan-Shalen compactification. Later,
Chiswell [Chi] and Kapovich-Leeb [KL] described how these limit construc-
tions can be interpreted in terms of asymptotic cones of hyperbolic spaces.
We now review this approach, mostly following the exposition of [Kap2,
Ch. 9-10].

Fix a non-principal ultrafilter w on N and denote by lim, a,, the w-limit
of a sequence of real numbers {a,}. Given a metric space X, a sequence of
points ¢, € X, and a sequence ¢, — 0 of positive reals, we denote by

lim (e,X, ¢)

the asymptotic cone of X based at x, with scale factors €,; this is the
quotient metric space associated with the set of sequences

{z = () |z € X, lime,d(cp,xn) < 00}
and the pseudometric
d(z,y) = lim e, d(zp, yn).

If X is a CAT(k) space for some k < 0 (for example, X = H?) then
lim,, (e, X, ¢p,) is an R-tree.

Now fix a finite generating set 3 for II. If p : IT — Isom(X) is an isometric
action, we define the local scale of p at x to be the quantity

R(p,z) = max d(z, p(v) - ).

Specializing to the case of X = H?, the basic link between the asymptotic
cone construction and the Morgan-Shalen compactification is the following
(see [Kap2, Sec. 10.4]):

Theorem 6.1. Consider a sequence p, € X(II) and identify it with a se-
quence of isometric actions of Il on H? using the covering SLy C — PSLy C ~
Isom™ (H®). Let ¢, € H? be a sequence of points and €, — 0 a sequence of
positive reals.

(i) If limy, €, R(pp, xyn) < 00, then the action

v («Tn) = (pn(’Y) : xn)
of I1 on sequences in H? induces an isometric action of I on the
R-tree T := lim,, (e,H?, ¢;,).
(ii) If the action of I1 on T does not have a global fized point, and if the
sequence [py] converges in the Morgan-Shalen compactification, then
T represents the Morgan-Shalen limit.

O

The result above is proved in [Kap2, Sec. 10.4], though the statements
of the theorems in that section are structured somewhat differently from
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the one above. Kapovich makes a specific choice of basepoints ¢,, but this
choice is only used to show the resulting action has no global fixed point,
which we do not claim here. (That an arbitrary sequence of basepoints can
be used is also established in [B, Prop. 4.8].) Similarly, while Kapovich fixes
én = R(pn,cn) !, the arguments use only that lim,, €, R(pp, z,) < o0o.

A key feature of this construction of a limit tree is that it gives a notion
of convergence of a sequence z,, € H? to a point in 7, which is simply a
restatement of the definition: A point xo, € T is an equivalence class of
sequences in H?, and we say z, — Zo if the sequence (z,) lies in that
equivalence class. This allows us to consider the question of whether a
sequence of maps into H? converges pointwise to a map into 7.

6.3. Convergence of Epstein-Schwarz maps. We return to the hypothe-
ses of (4.1), that is, considering a divergent sequence of projective structures
with holonomy representations p, and quadratic differentials ¢, converg-
ing projectively to ¢. We suppose also that [p,] converges in the Morgan-
Shalen compactification to the projective equivalence class [¢] of a function
:11 — RT. N N

Recall also that Z, C X is the discrete subset of the universal cover of X
consisting of points that project to zeros of ¢, and similarly for Zén and ¢,.

Theorem 6.2. Fiz a point zg € )?\Zb and use its Xy, -1mages as basepoints
to construct the asymptotic cone

T = lim (12602 HP, 55, (20).

Then:
(i) The sequence of maps ¥g, : X\ Zﬁn — H3 converges (pointwise) to
a continuous map o : X —T.
(ii) For any pair of points x,y € X that are endpoints of a nonsingular
qZ—geodesz'c segment of height h, the map Y satisfies

d(zoo(x)a Zoo(y)) = h.

(iii) The sequence py, induces an isometric action of Il on T which rep-
resents the Morgan-Shalen limit [{], and Y is equivariant for this
action.

Note that in statement (i) the domains of the maps ¥4, vary with n so
the limit is a priori only defined on

liminf (X \ Zg,),

n—oo

which contains X \ Zp since ¢, /||pn|| — ¢. However we will show that the
limit map on X \ Z, has a unique continuous extension to X.

Proof. Suppose z,z € X \ Z¢. Join these points by a polygonal path in
X \ Z, that is a finite union of nonsingular ¢-geodesic segments. Applying
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Theorems 4.1 and 4.2 to the segments and using the triangle inequality we
find

(6.1) fim sup 12607 2d(Es,(2), B4, () < B

where h is the sum of the ¢-heights of the segments. Furthermore, if there
is only one segment then the limit exists and is equal to h.

Applying this to 2’ = zg it follows that limy, [|2¢,]~'/2d(24, (), X4, (20))
is finite, thus the sequence ¥ (z) = (X4,(2)) represents a point of the
asymptotic cone T'. This gives the desired pointwise limit map on X \ Z¢.
Equality of the limit (6.1) in the one-segment case is exactly statement (ii).

The polygonal path chosen above can be taken to agree with the minimiz-
ing ¢-geodesic joining z to 2’ except in an arbitrarily small neighborhood Z
where the polygonal path must make short detours to avoid the zeros. As a
result, we can assume that A is as close as we like to the ¢-height of the mini-
mizing geodesic, which is itself a lower bound for the ¢-distance from z to 2.
Therefore, the estimate above also shows that the limit ¥ : (X \ Zy) = T
is 1-Lipschitz for that metric, and in particular continuous. Furthermore,
the asymptotic cone T is a complete metric space (see e.g. [BH, Lem. 5.53])
so the Lipschitz map X extends uniquely and continuously to the metric
completion of its domain, which is X. Statement (i) follows.

From the asymptotic cone construction it is immediate that a limit of
equivariant maps is equivariant, as long as the group action is defined on the
asymptotic cone. Thus statement (iii) is exactly the conclusion of Theorem
6.1 once we establish the relevant hypotheses, i.e.

(1) limg, |26 ]|~ /2 R(pp, T4, (20)) < 00

(2) II acts on T without global fixed points.
Estimate (1) follows from (6.1) since each element of the finite generat-
ing set for Il can be represented by a polygonal path in X \ Z¢) based
at zg. The total height of this collection of paths is then a bound for
lim sup,,_, o 1200 "2 R(pn, X4, (20)) and thus for the w-limit as well. Hence
II acts on 7.

Now suppose for contradiction that there is a point x € T fixed by
II. Then z is the equivalence class of a sequence (x,) C H? such that
limy, ||2¢n ||~/ 2d(zn, pu(7) - 2,) = 0 for all v € II. Thus

lim inf (|26, | ~/2£(pn(7)) < liminf |26,/ 2d(2n, pu(y) - 20) = 0.

But this contradicts Theorem 4.3 for any v € II which can be represented by
a periodic and non-horizontal ¢-geodesic, and such elements exist by The-
orem 2.1. This contradiction shows (2), completing the proof of statement
(iii). O
6.4. Dual trees of quadratic differentials. Given a measured foliation
of a surface, we can lift the foliation to the universal cover and consider the
space of leaves; the transverse measure of the foliation induces a metric on
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this leaf space, making it an R-tree on which IT acts by isometries (see [MS2]
[Kap2, Sec. 11.12] for details). Applying this construction to the horizontal
foliation JF(¢) of a quadratic differential ¢ € Q(X) gives the dual tree Ty.

By construction we also have a projection map m : X — Tj.

6.5. Straight maps. A nonsingular |¢|-geodesic segment in X of height h
maps by 7 to a geodesic segment of length A (or a point, if h = 0) in Tj.
We say that a segment in Ty is nonsingular if it arises in this way. (Note
that a nonsingular segment in Tj might also arise as the image of a geodesic
in X that contains singularities, because a given path in Ty can have many
geodesic lifts through 7.)

We say that a map F' : Ty — T is straight if its restriction to every
nonsingular segment in T is an isometric embedding. Evidently an isometry
is a straight map, though the converse does not hold (see e.g. Lemma 6.5
below). Because any segment in Ty can be lifted to a path in X that is
piecewise geodesic, straight maps are morphisms of R-trees in the sense of
[Sko].

We will use the following criterion for recognizing straight maps:

Lemma 6.3. Let T be an R-tree and f : X >Ta continuous map such
that for every nonsingular ¢-geodesic segment J in X with height h and
endpoints x,y, we have

(6.2) d(f(x), f(y)) = h.
Then the map f factors as f = F ow where F' : Ty — T 1s straight and

m: X — Ty is the projection. Furthermore, if f is equivariant with respect
to an action of Il on T, then F is also equivariant.

Proof. Condition (6.2) implies that f it is constant on all nonsingular hori-
zontal leaf segments. By continuity, it is also constant on segments of hori-
zontal leaf segments with endpoints at zeros, and therefore on all horizontal
leaves (including those which pass through zeros of ¢). By construction

of m: X — T, as a quotient map, this is equivalent to having a unique
factorization f = F om where F': Ty — T is continuous.

The parameterization of a ¢-geodesic in X by height maps by 7 to a
geodesic segment in Ty parameterized by arc length. Thus (6.2) shows that
F' is an isometric embedding when restricted to a nonsingular segment in
Ty, i.e. the map F' is straight.

Equivariance of F' follows from that of f by uniqueness of the factoriza-
tion. O

6.6. Proof of Theorem A. We have a divergent sequence ¢,, with projec-
tive limit ¢ and an accumulation point [¢] of hol(¢,) in the Morgan-Shalen
boundary of X(II). Pass to a subsequence (still called ¢,) so that hol(¢y,)
converges to [¢]. Theorem 6.2 gives an R-tree representing [¢], which we de-

note by Tp, and an equivariant map X, : X — Tp. Let T' = 3 (X) denote
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Figure 3. A geodesic passing through a simple zero can be pushed to a nonsingular
segment by an isotopy that moves along leaves of the horizontal foliation.

the image of this map, which by equivariance is also an R-tree carrying an
isometric action of II. Passing to an invariant subtree does not change the
translation length function of a group action ([MS1, II.2.2 and I1.2.12]), so
T also represents [¢]. Part (ii) of Theorem 6.2 shows that the surjective
map Yo : X — T satisfies the hypotheses of Lemma 6.3 and hence gives a
surjective, equivariant straight map Tjy — T'. O

6.7. Simple zeros. For dual trees of quadratic differentials with only simple
zeros, straight maps are isometric:

Lemma 6.4. If ¢ € Q(X) has only simple zeros, then any straight map
F : Ty — T is an isometric embedding. In particular, if I1 acts minimally
on T and F is equivariant, then T' is equivariantly isometric to Ty.

The proof rests on a well-known technique of deforming a ¢-geodesic so
that it avoids a neighborhood of the zeros (compare e.g. [Woll, Lem. 4.6]),
which for simple zeros can be accomplished without changing the image in
the dual tree. The specific construction we use here closely parallels that of
Farb-Wolf in [FW, Sec. 5.2].

Proof. A local homeomorphism from an interval in R to an R-tree is in fact
a homeomorphism and its image is a geodesic. Consider a pair of points
x,y € Ty and lifts z,y € X through the projection m : X — Ty. Let J be
the ¢-geodesic joining T and g, which consists of a sequence of nonsingular
segments that meet at zeros of ¢.

Since F' is straight, its restriction to 7(.J) maps each nonsingular segment
onto a geodesic in T', and the sum of the lengths of these geodesics is d(z, ).
If we show that F |7r( 7) is also locally injective near the image of a zero
of ¢, then f(J) is the geodesic from f(z) to f(y) and we conclude that
d(z,y) = d(f(z), f(y)) for all z,y € T.

If a ¢-geodesic J C X passes through a zero z of ¢, then sum of the
angles on either side of J at z is (k + 2)m, where k is the order of the zero.
Thus at a simple zero, there is a side on which the angle is less than 2.
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On this side, we can push the part of J near z to a nonsingular segment
of a vertical leaf by an isotopy that moves along horizontal leaves of ¢ (see
Figure 3). In particular the segment of 7(J) near 7(z) is also the image
of a nonsingular segment in X. Since a straight map is injective on such
segments, we conclude that F| (J) is locally injective, as desired. ([l

6.8. Proof of Theorem B. Let [/] be an accumulation point of hol(¢y,).
Theorem A gives a tree T representing [¢| and a straight map Ty, — 7. By
Lemma 6.4 the straight map is an isometric embedding and hence [{] is the
length function of the action of Il on Ty. In particular there is only one
accumulation point of this sequence in the Morgan-Shalen compactification.
Furthermore, by [CM, Thm. 3.7], any R-tree on which II acts isometrically
with this length function has a unique minimal invariant subtree equivari-
antly isometric to Tg.

The set of quadratic differentials that have a zero of multiplicity at least 2
is a closed algebraic subvariety of Q(X) ~ C3973, so this set is nowhere dense
and null for the Lebesgue measure class. This gives the required properties
for the set of differentials with only simple zeros. O

6.9. Abelian actions and straight maps. An abelian action of II on an
R-tree is one which has nonzero translation length function ¢ : II — R of
the form ¢(g) = |x(g)| where x : I — R is a homomorphism. (See [AB] for
detailed discussion of such actions.) The homomorphism y can be recovered,
up to sign, from the length function ¢. The action of IT on R by translations
given by ¢g-x =z + x(g), is an example of an abelian action, which we call
the shift induced by .

An abelian action on an R-tree fixes an end of the tree, and the Busemann
function of this end gives an equivariant map b : T — R that intertwines
the action of Il on T with the shift induced by x. Thus the shift is “final”
among actions with a given abelian length function.

Straightness is also preserved by composition with the Busemann function
of an abelian action:

Lemma 6.5. Let T be an R-tree equipped with an abelian action of 11 by
isometries, and let b: T — R denote the Busemann function of a fixed end.
If F: Ty — T is an equivariant straight map, then bo F is also straight.

Proof. Let v € II be an element represented by a periodic ¢-geodesic. This
periodic geodesic lifts to a complete geodesic axis L C X on which ~ acts as
a translation, and L := (L) C T} is the axis of the action of vy on Ty.
Because F' is ¢-straight, it maps L homeomorphically to the geodesic axis
of vin T'. Since F(L) is y-invariant, in one direction it is asymptotic to the
fixed end of IT on T, and the restriction of b to F'(L) is an isometry. Thus
bo f maps any segment along L of height h to an interval in R of length h.
Now consider an arbitrary nonsingular ¢-geodesic segment J C X with
endpoints Z, y and height h. By Theorem 2.1, periodic ¢-geodesics are dense
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in the unit tangent bundle of X, so we can approximate J by a segment on
an axis of some element 7 € lL'in X. More precisely, we can find such L and
a pair of points &',y € L such that the pairs (z,2’) and (y,y’) determine
nonsingular horizontal ¢-geodesic segments. Let z = 7(z) and similarly
for y, 2/, and y/. Then F(z) = F(2'), F(y) = F(y'), and by the previous
argument we have |b(F(z)) — b(F(y))| = h. Thus 7(J) maps by bo F to a
segment of length h, and b o F' is straight. (]

Lemma 6.6. Let T be an R-tree equipped with an abelian action of 11 by
isometries with length function ¢ = |x|. If there exists a ¢-straight map
f: X = T, then ¢ = w? where w is the holomorphic 1-form on X whose

imaginary part is the harmonic representative the cohomology class of x :
II—R.

Note that this lemma is an analog for straight maps of the properties
of harmonic maps established in [DDW, Thm. 3.7], and our technique is a
straightforward adaptation of their argument.

Proof. By the previous lemma, we can assume that 7" = R with the shift
action induced by x. In this case it suffices to show that f : X 5 Risa
harmonic function with 5 = 4(0f)?, for then @ = 20f is Il-invariant and
descends to a 1-form on X which, by construction, has periods (and thus
cohomology class) given by the translation action of x.

Away from the zeros of 5, we have a local conformal coordinate z for
X in which 5 = dz?. Restricting f to such a coordinate neighborhood
and considering it as a function of z, the ¢-straightness condition implies
that f if constant on horizontal lines and on a vertical line it has the form
+1Im(z) + C for some constant c. In particular f is a real linear function
and 0f = +2dz. Thus in a neighborhood of any point in X that is not a
zero of ¢~$, we can express f as the composition of the conformal coordinate
map z and a real linear function, which is harmonic. Since the zeros of ¢
are isolated and f is continuous (thus bounded in a neighborhood of each
zero), the function f : X — R is harmonic. The equation ¢ = 4(0f)?, which
we have verified away from the zeros, also extends by boundedness of f. [J

6.10. Proof of Theorem C. We have a divergent sequence ¢,, such that
hol(¢,) converges in the Morgan-Shalen sense to an abelian length function
|x|. Consider any subsequence ¢,, that converges projectively, to ¢ € Q(X).
As in the proof of Theorem A, there is a subsequence of hol(¢y,, ) giving a
limit action on an R-tree T, representing |x| and an equivariant straight
map I : Ty — T. By Lemma 6.6 we have ¢ = w? where w is the harmonic
representative of [x].

Since we have shown that this is the unique projective accumulation point

of the original sequence, we conclude that ¢, converges projectively to w?.
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