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Abstract. The generalized Rikuna polynomials are an iterative generalization of Rikuna’s generic cyclic

polynomials, which themselves generalize Shanks’ cubic polynomials. In this paper we study Galois proper-

ties of the generalized Rikuna polynomials under specialization.

1. Introduction

The arithmetic of iterated polynomials and rational functions is a vast subject with deep connections to

many areas of number theory and algebraic geometry. One of the prototypical examples comes from the

arithmetic theory of elliptic curves. Let E be an elliptic curve defined over Q without complex multiplication,

` a rational prime, and [`] : E −→ E the multiplication-by-` isogeny. For all but finitely many `, the `-

division fields Q(E[`]) have Galois group isomorphic to GL2(Z/`). Moreover, the iterates [`](n) = [`n] of

[`] produce a compatible family of GL2(Z/`n)-extensions of Q. These iterated towers not only have small

Galois groups, but have restricted ramification: the criterion of Néron, Ogg, and Shafarevich tells us that the

only primes ramifying in the tower
⋃
n Q(E[`n]) are `, and the primes of bad reduction for E. Related to the

small Galois group and restricted ramification is that the associated Lattès map ϕ`(x) is postcritically finite.

The phenomenon of “small” Galois group, restricted ramification, and postcritically finite towers manifests

itself more generally in the m-division fields of abelian varieties defined over global fields.

Another common problem in arithmetic is the behavior of function field extensions under specialization.

Given a finite Galois extension L(t)/K(t) of function fields with Galois group G(t), the specialization map

t 7→ t0 ∈ K can produce interesting results. On one hand, under suitably general hypotheses, the Hilbert

Irreducibility Theorem tells us that for “most” t0 ∈ K we have [L(t) : K(t)] = [L(t0) : K(t0)] and the

extension remains Galois. The set of reducible specializations is thin in the sense of Serre [8], and it may

be very difficult to determine this set explicitly. Even if L(t0)/K(t0) remains Galois upon specialization,

the specialized Galois group G(t0) (“decomposition group” at t0) may be a proper subgroup of G(t). It

may be difficult to determine – or to bound, in the case of infinite extensions – the index of specialization

[G(t) : G(t0)] as t0 ∈ K ranges over all irreducible specializations.

In this paper we take up these questions in the context of the generalized Rikuna polynomials. These

polynomials were introduced in [2] as iterated generalizations of Rikuna’s generic cyclic polynomials [7],

which are defined in the following way. Let ` > 2 be a positive integer and K a field such that ζ` 6∈ K, where

ζ` is a primitive `th root of unity, but that ζ` + ζ−1
` ∈ K. Define polynomials p(x), q(x) ∈ K[x] via

p(x) =
ζ−1
` (x− ζ`)` − ζ`(x− ζ−1

` )`

ζ−1
` − ζ`

and q(x) =
(x− ζ`)` − (x− ζ−1

` )`

ζ−1
` − ζ`

,

and set r(x, t) = p(x)− tq(x). When ` = 3, these are the cubic polynomials of Shanks [9]. If ` is odd, then

it was shown in [4] that r(x, t) is generically cyclic in the sense that if L/K is a cyclic-` extension, then

L ' K[x]/(r(x, t0)) for some t0 ∈ K.

We generalize this construction as follows. Let ϕ(x) = p(x)/q(x) ∈ K(x) and write ϕ(n)(x) = pn(x)/qn(x)

for the nth iterated of ϕ(x), written in lowest terms. Define the nth generalized Rikuna polynomial to be

rn(x, t) = pn(x)− tqn(x) ∈ K(t)[x],

so that r1(x, t) = r(x, t) as above. In this paper we study the reducibility and Galois-theoretic properties of

these polynomials under specialization. We restrict to the following setup. Let ` be an odd prime number,
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and fix a primitive `th root of unity ζ` ∈ Q. Write ζ+` = ζ` + ζ−1
` and take K = Q(ζ+` ). Then K is

the maximal real subfield of the `th cyclotomic field and is the minimal field of definition for r(x, t) in

characteristic 0.

These geometric Galois groups were computed in [2] and it was shown that Gal rn(x, t) ' Z/`noZ/`n−1.

In particular, these Galois groups are very small, but still non-abelian. In this paper we give certain geometric

characterizations of the reducible specializations and of the specializations with smaller Galois group (we call

these exceptional specializations) and put forth some conjectures for future study. These specialized Galois

groups have the interesting property that they give examples of some of the smallest non-abelian transitive

subgroups of S`n . In the case ` = 3 we have K = Q and this serves as the basis for some conjectures when

` > 3.

The structure of the paper is as follows. In the next section we recall the results of [2] and give some further

properties of the iterated geometric Galois groups. Next, we describe some of the basic dynamical properties

of ϕ. We then take up the questions of specialization. In Section 4 we study the reducible specializations

and in Section 5 the irreducible specializations with smaller Galois group.

What remains unclear is whether there is a suitably “geometric” interpretation of the generalized Rikuna

polynomials. In the case of Lattès maps, the underlying geometry is that of the elliptic curve. It would

be interesting to determine whether the generalized Rikuna polynomials are naturally associated to certain

algebraic groups or more general schemes, in a similar fashion to the Lattès maps.

Acknowledgements: We would like to thank Farshid Hajir for helpful discussions and the referee and editors

for their suggestions which simplified many of the proofs and improved the exposition of the paper.

2. The Geometric Galois Group

Here we collect the main results of [2] in the context of our setup. Recall that we take ` to be an odd prime

number and K = Q(ζ+` ). Fix a compatible system of primitive `nth roots of unity such that ζ``n = ζ`n−1 ; in

other words fix a primitive element of the Tate module Z`(1). We use this compatible system to construct

the following tower of fields:

`2

`2

L3(t)

2 `3

`2 `

K3(t)

`2

L2(t)

`2
`22

K(t)(ζ`3)

`

K2(t)

`2

L1(t)

2 `

2`

K(t)(ζ`2)

`

K1(t)

`

K(t)(ζ`)

2

K(t)

Here, Kn(t) is the splitting field of the nth generalized Rikuna polynomial rn(x, t) and Ln(t) ' Kn(t)(ζ`).

Note that [K1(t) : K(t)] = ` is consistent with Rikuna’s original polynomials. In [2], the Galois groups of the

Kn(t)/K(t) and the Ln(t)/K(t) were determined by explicitly determining the Galois action on the roots of

the rn(x, t). We briefly recall that action here.

The polynomial rn(x, t) ∈ K(t)[x] has degree `n with roots that are easy to describe. Set α(t) = ζ`−t
ζ−1
` −t

and for each n ≥ 1 fix a compatible family of `n-roots `n
√
α(t) of α(t). Then, for each 0 ≤ c ≤ `n − 1, the
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roots of rn(x, t) are given by

θ(n)c (t) :=
ζ` − ζc`n `n

√
α(t)

1− ζ`ζc`n `n
√
α(t)

;

that is, rn(θ
(n)
c (t), t) = 0 for all 0 ≤ c ≤ `n − 1. We define L0(t) = K(t)(ζ`) = K(t)(α(t)) so that the fields

Ln(t) can be described as Ln(t) = K(t)(ζ`n ,
`n
√
α(t)) for all n ≥ 0.

For the Galois groups, set Γn(t) = Gal(Ln(t)/K(t)) and Gn(t) = Gal(Kn(t)/K(t)) so that Gn(t) is a

quotient of Γn(t). It was determined in [2] that these Galois groups are generated as follows:

Γn(t) = 〈ρn, γn | ρ2`
n−1

n = γ`
n

n = 1, ρnγn = γ1−`n ρn〉

Gn(t) = 〈σn, τn | σ`
n−1

n = τ `
n

n = 1, σnτn = τ1−`n σn〉,

where the individual automorphisms are defined by the following actions:

ρn : ζ`n 7→ ζ
(`−1)`

bn−1

`n , `n
√
α(t) 7→ 1

`n
√
α(t)

and γn : ζ`n 7→ ζ`n ,
`n
√
α(t) 7→ ζ`n

`n
√
α(t),

and σn and τn are given by restriction. In particular, #Γn(t) = 2 · `2n−1 and #Gn(t) = `2n−1 and these

groups are clearly non-abelian. The following two properties follow from the main results of [2], but were

never made explicit. For completeness we briefly state them here.

Lemma 2.1. The group Gn(t) admits the filtration 1 C G1(t) C G2(t) C · · · C Gn−1(t) C Gn(t), where

G1(t) is cyclic of order ` and Gj(t)/Gj−1(t) ' Z/`× Z/` for all j in the range 2 ≤ j ≤ n.

Proof. That the sequence is normal follows from the fact that for all j, Gj(t) is the Galois group of rj(x, t)

over K(t). When j = 1, it was proved in [7] that the Galois group is cyclic of order `. For j = 2, . . . , n, we

appeal to the field diagram:

Kj(t)

` `
`

`

Kj−1(t)(θ
(j)
0 (t))

`

. . . . . .

`

Kj−1(t)(θ
(j)
`−1(t))

`

Kj−1(t)(ζ+`j )

`

Kj−1(t)

The extension Kj(t)/Kj−1(t) is Galois of degree `2 and has `+ 1 distinct intermediate extensions; see [2] for

details of this construction. �

Let p be a prime. Recall that an extra-special p-group is a p-group P such that its center Z(P ) has order

p and the quotient P/Z(P ) is elementary abelian. It is well-known that the order of an extra-special p-group

is equal to p1+2r, where r ∈ Z≥1. Moreover, every non-abelian group of order p3 is extra-special. The groups

Gn(t) for n ≥ 2 are candidates for being extra-special `-groups, but as we will see, only G2(t) is extra-special.

Proposition 2.2. The group G2(t) is extra-special, but for all n ≥ 3, Gn(t) is not extra-special.

Proof. Since G2(t) is a non-abelian group of order `3 it is automatically extra-special. For all n ≥ 1, the

center Zn(t) of Gn(t) is cyclic of order `. This is clear for n = 1 since #G1(t) = `. When n ≥ 2, we claim that

#Zn(t) = ` and that Kn−1(t)(ζ`n) is the fixed-field of Zn(t). Using the presentation of Gn(t) above, it is not

hard to see that Zn(t) = 〈τ `n−1〉, hence has order `. By considering the `+ 1 distinct index-` subextensions

of Kn(t), only the field Kn−1(t)(ζ+`n) is Galois over K(t), hence must be the fixed-field of Zn(t). It remains

to show that Gn(t)/Zn(t) is not elementary abelian for n ≥ 3. But if it were, then all of its quotients would

be abelian, contradicting the fact that Gn−1(t) is non-abelian. �
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3. Ramification and Dynamics

The discriminant of an irreducible polynomial bounds the number of primes ramifying in the extension

generated by that polynomial. Let k be a field and recall that a rational function f(x) ∈ k(x) is called

postcritically finite if the forward orbit under f of the critical points of f is a finite set. If k is a number

field and ϕ(x) ∈ k(x) is a postcritically finite rational function, then it was shown in [1, 3] that if kn,t0 is the

splitting field of ϕ(n)(x) − t0 (assuming irreducibility), then only finitely many primes of Ok ramify in the

tower
⋃
n≥1 kn,t0 . Take k = K = Q(ζ+` ) as above and set ϕ(x) = p(x)/q(x). In [2] it was shown that

disc pn(x)− tqn(x) = `n`
n

(ζ` − ζ−1
` )(`

n−1)(`n−2)(t2 − ζ+` t+ 1)`
n−1.(1)

In this way the restricted ramification of the Kn(t) tower is linked to the dynamical properties of ϕ(x).

Under the specialization t 7→ t0, this formula gives an explicit description of the primes of OK = Z[ζ`+ζ
−1
` ]

which could ramify in a specialized tower. In Section 5 we study the size of the specialized Galois group in

this context. In particular, we are interested in creating non-abelian towers with very few primes ramifying.

We start with a simple observation.

Lemma 3.1. If f(t) = t2 − ζ+` t+ 1, then f(t) = f(−t+ ζ+` ).

This observation has the following consequence: since Q(ζ+` ) ⊆ R, it inherits a total ordering. The sym-

metry of Lemma 3.1 then implies that for the purposes of ramification, it suffices to consider specializations

t0 ≥ ζ+` /2.

Lemma 3.2. For all t0 ∈ K the discriminant of rn(x, t0) is non-zero. Hence there are no specializations

having repeated roots.

Proof. Note that disc rn(x, t0) = 0 if and only if t20 − ζ+` t0 + 1 = 0. However, since ζ` 6∈ K, it follows that

disc rn(x, t0) 6= 0 for any t0 ∈ K. �

In the special case ` = 3 we have K = Q and can determine all specializations such that the polynomial

discriminant is a power of 3.

Lemma 3.3. Let f(t) = t2 + t+ 1. Then f(t) is a power of 3 if and only if t ∈ {−2,−1, 0, 1}.

Proof. Suppose t ∈ Q with t2 + t + 1 = 3n and apply the quadratic formula to see that 4 · 3n − 3 must be

a rational square. When n ≥ 2 this is impossible because of the power of 3 and when n = 0 or 1 we get

t = −2,−1, 0, 1; if n < 0, then the discriminant is negative. �

The dynamics of ϕ are closely related to the reducibility of rn(x, t0) for K-rational values of t0. For

example, if ϕ has a K-rational fixed point t0, then rn(x, t0) is reducible for all n. Moreover, for all n ≥ 1 it

is clear that rn(x, t0) has a linear factor since ϕ(n)(t0) = t0 means that x = t0 is a solution to ϕ(n)(x) = t.

Similarly, if t0 is a K-rational point with period m, then rkm(x, t0) has a linear factor for any positive integer

value of k because t0 is a rational root of ϕ(km)(x) = t0.

Proposition 3.4. The only K-rational fixed point of ϕ is ζ+` /2.

Proof. Suppose x0 is a fixed point of ϕ so that p(x0)− x0q(x0) = 0. Rewriting in terms of the definitions of

p(x) and q(x), we get

(x0 − ζ`)(x0 − ζ−1
` )

(
(x0 − ζ−1)`−1 − (x0 − ζ`)`−1

)
= 0.

Two of the solutions are ζ` and ζ−1
` , which do not belong to K. For the remaining factor, we have

(x0 − ζ−1)`−1 − (x0 − ζ`)`−1 = 0 =⇒
(
x0 − ζ`
x0 − ζ−1

)l−1

= 1,

which we can write as α(x0) = η, where η is an (`− 1)-th root of unity. Since ` is odd, two of the roots are

1 and −1. When η = 1 we get no solutions, while when η = −1 we get x0 = ζ+` /2.

To see that x0 = ζ+` /2 is the only solution, suppose η is a non-real (`− 1)-th root of unity. Let k be the

least positive integer such that ηk = 1 and note that k must divide `− 1 and must be greater than 2. Since
4



K(t)(α(t)) = K(t)(ζ`), it follows that α(x0) ∈ K(ζ`) = Q(ζ`). Since x0 ∈ K, we have η ∈ K. But ` is prime

and η is a primitive kth root of unity, where k | `− 1, so this is impossible. �

Due to the deep connections between the complex dynamics of a rational map and the arithmetic it

encodes, for the rest of this section we consider ϕ : P1
C −→ P1

C as a self-map of the Riemann sphere.

Lemma 3.5. If z is in the upper (resp. lower) half plane, then ϕ(z) is in the upper (resp. lower) half plane;

if z ∈ R, then so is ϕ(z).

Proof. For any z ∈ C, to determine the region of P1
C to which ϕ(z) belongs, it suffices to consider

p(z)q(z) = (ζ−1
` (z − ζ`)` − ζ`(z − ζ−1

` )`)((z − ζ`)` − (z − ζ−1
` )`)

=
(
ζ−1
` ‖(z − ζ`)

`‖2 + ζ`‖(z − ζ−1
` )`‖2

)
−
(
ζ`(z − ζ−1

` )`(z − ζ`)` + ζ−1
` (z − ζ`)`(z − ζ−1

` )`
)
.

The second term in parentheses is real (complex conjugation acts trivially), so we look to the first. If

Im z > 0, then ‖(z − ζ`)‖ < ‖(z − ζ−1
` )‖, and therefore Imϕ(z) > 0; similarly if Im(z) < 0, then so is

Imϕ(z). Finally, if Im z = 0, then ‖(z − ζ`)‖ = ‖(z − ζ−1
` )‖, and therefore ϕ(z) is real. �

Proposition 3.6. Let ϕ : P1
C −→ P1

C be as above. Then the Julia set of ϕ is R∪{∞}.

Proof. Partition P1
C = h+

∐
h−
∐
J into the upper half-plane, lower half-plane, and J := R∪{∞}. By

Lemma 3.5, ϕ is fully (forward and backward) invariant over each of these three subsets. The Julia set is the

smallest fully invariant closed set with at least 3 points and so it follows that the Julia set of ϕ is a subset

of J .

It is easy to check that ϕ has two critical points: z = ζ±1
` (each of which is fixed by ϕ), and therefore has

at most two Fatou domains. It follows that each of h+ and h− are contained in different Fatou domains, and

since they each contain a fixed critical point, they are components containing an attracting point. Finally,

since J is fully invariant under ϕ it follows that no subset of J can be in the Fatou set and that therefore

the Julia set is all of J . �

4. Reducible Specializations

If k(t) is a function field defined over a number field k and f(x, t) ∈ k(t)[x] is an irreducible polynomial,

then the Hilbert Irreducibility Theorem [8, Prop. 3.3.5] states that for all but a thin set of specializations

t0 ∈ k, the polynomial f(x, t0) ∈ k[x] is also irreducible. While it is may be difficult to characterize the

reducible set explicitly, we can at least say that in the case of the generalized Rikuna polynomials that the

reducible set is infinite.

Lemma 4.1. For each n ≥ 1, the polynomial rn(x, t) has infinitely many reducible specializations.

Proof. Let x0 ∈ K with qn(x0) 6= 0. Since rn(x, t) is a linear polynomial in t, there exists t0 ∈ K for which

rn(x0, t0) = 0. Thus rn(x, t0) has the factor (x − x0), hence is reducible. Since there are infinitely many

choices for x0 ∈ K and only finitely many x0 for which rn(x0, t0) = 0 with t0 fixed, we deduce that there

are infinitely many t0 ∈ K for which rn(x, t0) is reducible. �

We are more interested in the values t0 which determine the specialization, rather than the parameters

x0 which generate them. Thus, it will be more convenient to focus on only one of the coordinates. To that

end, let π : A2
K −→ AK be the projection-to-t map and define Ti := π(Ci(K)). Then Ti is precisely the set

of K-rational specializations parametrized by Ci (which in turn parameterizes the K-rational linear factors

of ri(x, t)).

Due to the iterative nature of our family of polynomials, the specializations in Ti are reducible for rn even

when i < n. The natural problem is to determine how rn(x, t) factors when t ∈ Ti for i ≤ n. We start with

a simple observation.

Lemma 4.2. If r(x, t0) is reducible, then it splits completely into linear factors.

Proof. The extension K1(t)/K(t) is cyclic, hence if one root is defined over K1(t0), they all are. �
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Lemma 4.3. Let i ≤ j ∈ Z>0. Then Tj ⊆ Ti.

Proof. If t0 ∈ Tj then there exists an x0 ∈ K such that (x0, t0) ∈ Cj(K). Then

t0 = ϕ(j)(x0) = ϕ(i)
(
ϕ(j−i)(x0)

)
,

so that
(
ϕ(j−i)(x0), t0

)
∈ Ci(K) and hence t0 ∈ Ti. �

Next we introduce some notation that more accurately describes the factorization of rn(x, t0) at reducible

specializations t0 ∈ K.

Definition. We say that rn(x, t0) has an (α1, α2, α3, . . . , αm)-factorization, where αi ∈ Z>0, α1 ≤ · · · ≤ αm,

and
∑
i αi = `n if

rn(x, t0) = f1(x)f2(x)f3(x) · · · fm(x),

is a factorization of rn(x, t0) into irreducibles with deg(fi) = αi.

Using the dominance order �, these partitions of `n form a poset. Any reducible specialization gives rise to

a (non-Galois) automorphism group Aut(Kn(t0)/K) which is an intransitive subgroup of Gal(Kn(t)/K(t)).

Even though Aut(Kn(t0)/K) is intransitive, it is still an `-group, hence the αi describing the factorization

type are all powers of `. For example, if t0 ∈ T1, then rn(x, t0) admits an (`n−1, . . . , `n−1)-factorization. The

following more precisely characterizes the allowable factorizations.

Proposition 4.4. Let 0 ≤ i ≤ n− 1 and t0 ∈ Tn−i. Then if rn(x, t0) admits an (α1, . . . , αm)-factorization,

we have

(α1, α2, . . . , αm) � (`i, `i, . . . , `i︸ ︷︷ ︸
` times

, `i+1, `i+1, . . . , `i+1︸ ︷︷ ︸
`− 1 times

, . . . , `n−1, `n−1, . . . , `n−1︸ ︷︷ ︸
`− 1 times

).

Proof. Let s = ϕ(n−1)(x). Then

rn(x, t0) = pn(x)− t0qn(x)

= q`n−1(x) [p(s)− t0q(s)]

= q`n−1(x) [(s− y1)(s− y2) · · · (s− y`)]
(

by Lemma 4.2, since t0 = ϕ
(
ϕ(n−i−1)(x0)

))
= (qn−1(x)s− y1qn−1(x))(qn−1(x)s− y2qn−1(x)) · · · (qn−1(x)s− y`qn−1(x))

= (pn−1(x)− y1qn−1(x))(pn−1(x)− y2qn−1(x)) · · · (pn−1(x)− y`qn−1(x))
(

since s = ϕ(n−1)(x)
)

= rn−1(x, y1)rn−1(x, y2) · · · rn−1(x, y`).

If i = n − 1 we are done, since the factor has degree `n−1. Otherwise, by Lemma 4.2, since t0 =

ϕ
(
ϕ(n−i−1)(x0)

)
, at least one the yi must equal ϕ(n−i−1)(x0) and it follows that one of the rn−1 is fur-

ther reducible. We can repeat this procedure n − i times, each time leaving alone ` − 1 of the polynomials

and further factoring one of them, which, since we are reducing the degree by a factor of ` at every step,

gives us the desired factorization. �

4.1. Special Case: ` = 3, n = 2. We make a brief digression for the special case ` = 3 and n = 2. In this

case we can say more precisely which factorizations occur.

Proposition 4.5. Let ` = 3. Suppose r2(x, t0) has a rational root. Then r2(x, t0) factors over Q into the

product of three linear polynomials and two irreducible cubics.

Proof. Writing t0 = ϕ(2)(x0) for some x0 ∈ Q yields the factorization

ϕ(ϕ(x))− ϕ(ϕ(x0)) =

(
ϕ(x) +

1

ϕ(x0) + 1

)(
ϕ(x) +

ϕ(x0) + 1

ϕ(x0)

)
(ϕ(x)− ϕ(x0))

=

(
ϕ(x) +

1

ϕ(x0) + 1

)(
ϕ(x) +

ϕ(x0) + 1

ϕ(x0)

)(
x+

1

x0 + 1

)(
x+

x0 + 1

x0

)
(x− x0).
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We will be done if we can show that the two equations

ϕ(x) = − 1

ϕ(x0) + 1

ϕ(x) = −ϕ(x0) + 1

ϕ(x0)

have no rational solutions. Apply the definition of ϕ to unwind these equations into the following two

equations relating x and x0, respectively:

f(x, x0) := x3 +
9x20 + 9x0
x30 + 3x20 − 1

x2 +
−3x30 + 9x0 + 3

x30 + 3x20 − 1
x− 1 = 0

g(x, x0) := x3 +
3x30 + 9x20 − 3

x30 − 3x0 − 1
x2 +

9x20 + 9x0
x30 − 3x0 − 1

x− 1 = 0.

We will show that f has no rational roots (the argument for g is similar). Write x0 = a/b in lowest terms to

get

f(x, a/b) = 0⇔ (a3 + 3ba2 − b3)x3 + (9ba2 + 9b2a)x2 + (−3a3 + 9b2a+ 3b3)x+ (−a3 − 3ba2 + b3) = 0.

It is easy to check that this polynomial is irreducible modulo 5 for all values of a and b, whence f(x, x0) is

irreducible over Q. �

The main consequence of this Proposition is that there are only three possible factorization types for

specializations when ` = 3 and n = 2, namely:

(1, 1, 1, 3, 3)︸ ︷︷ ︸
T2

� (3, 3, 3)︸ ︷︷ ︸
T1

� (9).

In particular, there do not exist rational specializations of r2(x, t) that split completely into linear factors

over Q. For higher n and ` we expect similar restrictions on the factorizations to hold, though a proof along

the same lines is probably not possible, even in the case of ` = 5, for the following reason.

Recall that given an abelian variety At defined over the function field K(t) where K is a number field, it

is known that for all but finitely many specializations t0 ∈ K there is an injection of Mordell-Weil groups

At(K(t)) ↪→ At0(K).

Moreover, for all but finitely many good primes p ∈ SpecOK , there is an injective map of finite groups

At0(K)tors ↪→ At0(Fp),

where At0 denotes the reduction modulo p of At0 . In particular, if we consider the hyperelliptic curve H

defined by

y2 = rn(x, t0)

and embed H into its Jacobian JacH, then the 2-torsion subgroup of JacH (K) is generated by the zeroes

of rn(x, t0). For a prime of good reduction p ∈ SpecOK , one could (in theory) compute the number of

Fp-rational points on JacH mod p and show that this number is odd (our proof of Proposition 4.5 amounts

to showing that the elliptic curves y2 = f(x, x0) and y2 = g(x, x0) have trivial 2-torsion for all x0 ∈ Q).

While this approach is out of reach currently, we pose the following conjecture based on computations in

Magma, Pari, and Sage.

Conjecture 4.6. Let 0 < i ≤ n and t0 be a reducible specialization such that t0 ∈ Ti, but t0 6∈ Ti+1. Then

the factorization type of rn(x, t0) is (`i, `i, . . . , `i︸ ︷︷ ︸
` times

`i+1, `i+1, . . . , `i+1︸ ︷︷ ︸
`− 1 times

, . . . , `n−1`n−1 . . . , `n−1︸ ︷︷ ︸
`− 1 times

).
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5. Exceptional Specializations

In this section we study the behavior of the Galois group Gn(t) at the irreducible specializations. While

Gn(t0) is a subgroup of Gn(t) for all t0 ∈ K (at reducible specializations it is an intransitive subgroup), it is

not immediately clear which specializations give rise to proper subgroups and, as a finer measure, the index

[Gn(t) : Gn(t0)] of specialization. We start with a definition.

Definition. Let n ≥ 1. With all notation as above, let t0 be an irreducible specialization of rn(x, t). We say

that t0 ∈ K is an exceptional specialization if [Gn(t) : Gn(t0)] > 1 and define the defect of the specialization

δn(t0) to be

δn(t0) = log` [Gn(t) : Gn(t0)].

If δn(t0) = n − 1, then we say the specialization has maximal defect ; note that rn(x, t0) is an irreducible

polynomial of degree `n, hence the defect cannot exceed n− 1.

An interesting problem in algebraic number theory is to create high-degree, non-abelian extensions of

number fields ramified at very few primes (in particular, those ramified at a single prime). The generalized

Rikuna polynomials are one path to creating such extensions. The difficulty lies in finding specializations

t0 ∈ Q(ζ+` ) that simultaneously satisfy: 1) (t20 − ζ+` t0 + 1) is a unit in Z[ζ+` ] (ensuring that only the prime

above ` is ramified); 2) rn(x, t0) is irreducible; and 3) Gal rn(x, t0) is non-abelian. If all three conditions are

satisfied, then the rn(x, t0) give rise to non-abelian `-extensions of Q(ζ+` ) ramified only above `. Of course,

it is not necessary that t20 − ζ+` t0 + 1 be a unit in order for the extension to be unramified outside `, but it

is sufficient.

The irreducible specializations rn(x, t0) also have the property that their Galois groups over Q(ζ+` ) are

some of the smallest transitive `-subgroups of S`n . Indeed, a Sylow-` subgroup of S`n is a transitive subgroup

of order `(`
n−1)/(`−1), while the Galois group of an irreducible specialization of rn(x, t) is a transitive subgroup

of order dividing `2n−1 and divisible by `n. In what follows in this section we will give computational as

well as theoretical evidence for some conjectures on the relation between the defect of the specialization and

the primes ramifying in the extension, focusing mainly on the case ` = 3 for examples and motivation. To

begin, we show the existence of specializations of maximal defect.

Lemma 5.1. Let n ≥ 1. If t0 ∈
{
ζ−1
` ζc2` − ζ`
ζc2` − 1

| 1 ≤ c ≤ 2`− 1

}
is an irreducible specialization of rn(x, t),

then t0 has maximal defect.

Proof. The t0 listed in the statement of the Lemma all belong to Q(ζ+` ) and represent the values of t for

which α(t) is an `th or 2`th root of unity (excluding 1). Let t0 be such an irreducible specialization. Then

we have Ln(t0) = Q(ζ+` )(ζ`n ,
`n
√
α(t0)) ' Q(ζ`n+1). The irreducibility of rn(x, t0) ensures that Kn(t0) is the

maximal real subfield of Q(ζ`n+1), namely Kn(t0) ' Q(ζ+`n+1) which has degree `n over Q(ζ+` ). Therefore t0
is a specialization of maximal defect. �

Of the 2` − 1 values of t0 listed in the Lemma, note that some may be reducible specializations. For

instance, if c = ` then t0 = ζ+` /2 is a fixed-point of ϕ and so r(ζ+` /2, ζ
+
` /2) = 0, whence rn(x, ζ+` /2) is

reducible for all n ≥ 1. On the other hand, there exist irreducible specializations given by the lemma as well.

For example, let c = 4 so that t0 = 0. Then α(0) = ζ2` so that

Ln(0) = Q(ζ+` )(ζ`n ,
`n
√
ζ2` ) ' Q(ζ`n+1).

The field inclusion Kn(0) ⊂ Ln(0) induces the factorization

2`n = [Ln(0) : Q(ζ+` )] = [Ln(0) : Kn(0)][Kn(0) : Q(ζ+` )],

where Gal Ln(0)/Q(ζ+` ) ' Z/2`n and [Ln(0) : Kn(0)] ≥ 2. But the roots of rn(x, 0) are given by

θ(n)c =
ζ` − ζc`n `n

√
ζ2`

1− ζ`ζc`n `n
√
ζ2`
, 0 ≤ c ≤ `n − 1,
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none of which are fixed by the unique subgroup of Z/2`n of order `. We therefore conclude that the root

fields Q(ζ+` )(θ
(n)
c ) have degree `n over Q(ζ+` ) and, because all are contained in Ln(0), that Kn(0) ' Q(ζ+`n+1).

It is also useful to exhibit irreducible specializations of positive, non-maximal defect, which we present in

the following example.

Example. Let ` = 3. A computer search for integer specializations of t0 such that r3(x, t0) is irreducible

and r2(x, t0) has Galois group of order 9 returns, among others, t0 = 18. One checks that

• K1(18) ' Q(ζ+9 ) (though α(18) is not a 3rd or 6th root of unity);

• K2(18) 6' Q(ζ+27);

• Gal r2(x, 18) ' Z/9.

The Galois group of r3(x, 18) is non-abelian of order 81 and the tower of associated subfields has the following

shape (for ease of notation, we write Ki
j−1(t0) for Kj−1(t0)(θ

(j)
i (t0))):

K3(18)

K2(18))(ζ+27) K0
2 (18) K1

2 (18) K2
2 (18)

K2(18)

Z/9K1(18) ' Q(ζ+9 )

Q

Next, apply the discriminant formula rn(x, t) (equation (1) of Section 3) to the case ` = 3 and t = 18 to get

disc rn(x, 18) = 3n3
n+(3n−1)(3n−2)/2 · 73(3

n−1),

so the only primes that can ramify in the ring of integers OKn(18) are 3 and 7. Thus, the specialization at

t0 = 18 produces a non-abelian (once n ≥ 3) tower of 3-power degree with restricted ramification.

In light of this example, it would be interesting to study the ramification in the specialized towers of

positive defect. However, this problem appears to be quite subtle, even in the case ` = 3. For instance, some

specializations of maximal defect may be isomorphic to the maximal real subfield of the cyclotomic tower

(e.g. t0 = 0), while others may not (e.g. K2(18) is not isomorphic to Q(ζ+27)). The specializations of positive,

non-maximal defect are then interesting examples of non-abelian `-extensions with restricted ramification

and should be worthy of future study.

We conclude with an observation on the nature of certain specializations of maximal defect in the case

` = 3. If t0 is an irreducible specialization of rn(x, t) with Kn(t0) ' Q(ζ+3n+1), then rj(x, t0) is irreducible for

all 1 ≤ j < n and the subfield structure of Q(ζ+3n+1) forces Kj(t0) ' Q(ζ+3j+1) for all 1 ≤ j < n. Therefore,

we can give a sufficient condition such that a given specialization t0 is not cyclotomic. In particular, if

K1(t0) 6' Q(ζ+9 ) then Kn(t0) 6' Q(ζ+3n+1) for all n ≥ 1. To do this, we will briefly recall Dedekind’s criterion,

adopting the notation of [6].

Let L be a number field with number ring OL and take x0 ∈ OL so that L = Q(x0). Let Of =

Z[x0] = Z[x]/(f(x)), where f(x) is the minimal polynomial of x0 over Q. Fix a rational prime p and

let f = g1
c1 . . . gr

cr be the reduction of f into irreducible monics modulo p. Group these irreducibles by
9



exponent: set e1 < e2 < · · · < es and let fj be the product of all irreducible factors gi of f with ci = ej ; thus

f = f (mod p) = g1
c1 · · · grcr = f1

e1 · · · fs
es
.

Choose polynomials gi, fj ∈ Z[x] with gi ≡ gi (mod p) and fj ≡ fj (mod p). Then Dedekind’s criterion for

Of to be isomorphic to OL is given by

Theorem 5.2 (Dedekind’s criterion). Let h = 1
p (fe11 . . . fess − f). Then OL = Of if and only if h (mod p)

is relatively prime to all factors fj with ej > 1.

We will apply Dedekind’s criterion to the linear shift rn(x+ t, t) of the generalized Rikuna polynomials.

We start with a lemma.

Lemma 5.3. Let ` = 3. For all n ≥ 1, the polynomial rn(x+ t, t) satisfies the congruence rn(x+ t, t) ≡ x3n

(mod t2 + t+ 1).

Proof. The proof is by induction where the case n = 1 follows from the binomial expansion of r(x, t). If

rn(x+ t, t) ≡ x3n (mod t2 + t+ 1), then write

ϕ(n)(x+ t)− t ≡ x3
n

qn(x+ t)
(mod t2 + t+ 1) =⇒ ϕ(n+1)(x+ t) ≡ ϕ

(
x3

n

qn(x+ t)

)
(mod t2 + t+ 1).

A simple computation shows that the right-hand side is congruent to zero modulo t2 + t+ 1. �

Theorem 5.4. Let ` = 3. Let t0 ∈ Q be an irreducible specialization of rn(x, t) such that there exists a

prime p 6= 3 dividing t20 + t0 + 1 exactly once. Then K1(t0) 6' Q(ζ+9 ).

Proof. It suffices to show that a prime p as in the statement of the theorem ramifies in OK1(t0). We use the

linear shift as in Lemma 5.3. Suppose p 6= 3 divides t20 + t0 + 1 exactly once, and apply the machinery above

to our setup. Then r = x3 and we choose h(x) = (r(x+ t0, t0)− x3)/p. It is clear that h(x) is coprime to x

since h(0) = r(t0, t0) = −(2t0 + 1)(t20 + t0 + 1), and if p divides (t20 + t0 + 1) exactly once, then p - 2t0 + 1. By

Dedekind’s criterion, OK1(t0) ' Or and the prime decomposition of p can thus be read off the factorization

modulo p of r(x+ t0, t0) (it is totally ramified). But the only prime ramifying in Z[ζ+9 ] is 3, hence the fields

cannot be isomorphic. �

From a computational point of view, it is relatively easy to find such specializations; all we need is a prime

p 6= 3 dividing t20 + t0 + 1 exactly once. See Appendix A for sample code to check for possible exceptional

specializations.

Appendix A. Sample Computations

To get a sense of the paucity of exceptional specializations, the following code was used in the computer-

algebra package Sage to test for values of t0 for which t20 + t0 + 1 is divisible only by primes with exponent

greater than or equal to 2. The computations were performed online at http://www.sagemath.org and

took roughly two hours. The data are displayed in the table below:

for a in [-100000000..100000000]:

for b in [1,100000000]:

t = a/b

exps = []

if not t^2+t+1 == 0:

n = factor(numerator(QQ(t^2+t+1)))

for item in list(n):

if item[1] == 1:

exps.append(item[1])

if exps == []:

pair = [t, factor(QQ(t^2+t+1))]

print pair
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t0 t20 + t0 + 1 t0 t20 + t0 + 1

−5421/6400 2−16 · 5−4 · 72 · 8532 −1 1

−33/40 2−6 · 5−2 · 372 0 1

−63/80 2−8 · 5−2 · 732 18 73

−2451/3200 2−14 · 5−4 · 132 · 2232 88, 916 72 · 133 · 2712

−5/8 2−6 · 72 33/800 2−10 · 5−4 · 192 · 432

−19, 337/32, 000 2−16 · 5−6 · 1032 · 2712 21/320 2−12 · 5−2 · 3312

−943/1600 2−12 · 5−4 · 72 · 1992 19/80 2−8 · 5−2 · 72 · 132

−91/160 2−10 · 5−2 · 1392 847/3200 2−14 · 5−4 · 36972

−69/160 2−10 · 5−2 · 1392 4553/16, 000 2−14 · 5−6 · 72 · 26712

−657/1600 2−12 · 5−4 · 72 · 1992 5/16 2−8 · 192

−12, 663/32, 000 2−16 · 5−6 · 1032 · 2712 819/1600 2−12 · 5−4 · 21312

−3/8 2−6 · 72 87/160 2−10 · 5−2 · 72 · 312

−749/32, 000 2−14 · 5−4 · 132 · 2232 3/5 5−2 · 72
−17/80 2−8 · 5−2 · 732 26, 779/32, 000 2−16 · 5−6 · 50, 9712

−7/40 2−6 · 5−2 · 372 7/8 2−6 · 132

−979/6400 2−16 · 5−4 · 72 · 8532 377/400 2−8 · 5−4 · 6732

−88, 917 72 · 133 · 2712 629/640 2−14 · 5−2 · 72 · 1572

−19 73

Figure 1. The set of all t0 = a/b with −100, 000, 000 ≤ a ≤ 100, 000, 000 and 1 ≤ b ≤
100, 000, 000 for which t20 + t0 + 1 is divisible only by primes to powers greater than 1 along

with the corresponding factorizations for t20 + t0 + 1.

For these values of t0 we cannot apply Theorem 7.6 and have to check whether Kn(t0) is isomorphic to

Q(ζ3n+1) for any n by other means. For these values we find, using the nfisisom command implemented

in Pari, that the only ones for which K1(t0) ' Q(ζ+9 ) are t0 = −19,−1, 0, 18. Of these, we have seen that

t0 = −1, 0 are maximal defect specializations for all n since they specialize to the cyclotomic tower.
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