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1 Introduction

In this paper, we further develop a technique from [RY] and apply it to study the
Kobayashi Conjecture, 0-cycles on hypersurfaces of general type, and Seshadri
constants of very general hypersurfaces. The idea of the technique is to translate
results about very general points on very general hypersurfaces to results about
arbitrary points on very general hypersurfaces.

Our first application is to hyperbolicity. Recall that a complex variety is
Brody hyperbolic if it admits no holomorphic maps from C.

Conjecture 1.1 (Kobayashi Conjecture). A very general hypersurface X of
degree d in Pn is Brody hyperbolic if d is sufficiently large. Moreover, the com-
plement Pn \X is also Brody hyperbolic for large enough d.

First conjectured in 1970 [K], the Kobayashi Conjecture has been the subject
of intense study, especially in recent years [S, De, B, D2]. The suspected optimal
bound for d is approximately d ≥ 2n−1. However, the best current bound is for
d greater than about (en)2n+2 [D2]. A related conjecture is the Green-Griffiths-
Lang Conjecture.

Conjecture 1.2 (Green-Griffiths-Lang Conjecture). If X is a variety of general
type, then there is a proper subvariety Y ⊂ X containing all the entire curves
of X.

The Green-Griffiths-Lang Conjecture says that holomorphic images of C
under nonconstant maps do not pass through a general point of X. Conjecture
1.2 is well-studied for general hypersurfaces, as it is a natural result to prove on
the way to proving Conjecture 1.1. We provide a new proof of the Kobayashi
Conjecture using previous results on the Green-Griffiths-Lang Conjecture.

Theorem 1.3. A general hypersurface in Pn of degree d admits no nonconstant
holomorphic maps from C for d ≥ d2n−3, where d2 = 286, d3 = 7316 and

dn =

⌊
n4

3
(n log(n log(24n)))n

⌋
.
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Our proof appears to be substantially simpler than the previous proofs (com-
pare with [S, De, B, D2]), and can be adapted in a straightforward way as
others use jet bundles to obtain better bounds for Conjecture 1.2. Unfortuna-
tely, the bound of about (2n log(n log(n)))2n+1 that we obtain is slightly worse
than Demailly’s bound of (en)2n. However, assuming the optimal result on the
Green-Griffiths-Lang Conjecture, our technique allows us to prove the conjec-
tured bound of d ≥ 2n− 1 for the Kobayashi Conjecture.

Our second application concerns the Chow equivalence of points on very ge-
neral complete intersections. Chen, Lewis, and Sheng [CLS] make the following
conjecture, which is inspired by work of Voisin [V1, V2, V3].

Conjecture 1.4. Let X ⊂ Pn be a very general complete intersection of mul-
tidegree (d1, . . . , dk). Then for every p ∈ X, the space of points of X rationally

equivalent to p has dimension at most 2n−k−
∑k

i=1 di. If 2n−k−
∑k

i=1 di < 0,
we understand this to mean that p is equivalent to no other points of X.

If this Conjecture holds, then the result is sharp [CLS]. Voisin [V1, V2, V3]
proves Conjecture 1.4 for hypersurfaces in the case 2n−d−1 < −1. Chen, Lewis,
and Sheng [CLS] extend the result to 2n−d−1 = −1, and also prove the analog of
Voisin’s bound for complete intersections. Both papers use fairly involved Hodge
theory arguments. Roitman [R1, R2] proves the 2n− k−

∑k
i=1 di = n− 2 case.

Using Roitman’s result, we prove all but the 2n − k −
∑k

i=1 di = −1 case of
Conjecture 1.4, and in this case we prove the result holds with the exception of
possibly countably many points.

Theorem 1.5. If X ⊂ Pn is a very general complete intersection of multidegree
(d1, . . . , dk), then no two points of X are rationally Chow equivalent if 2n− k−∑k

i=1 di < −1. If 2n − k −
∑k

i=1 di = −1, then the set of points rationally
equivalent to another point of X is a countable union of points. If 2n − k −∑k

i=1 di ≥ 0, then the space of points of X rationally equivalent to a fixed point

p ∈ X has dimension at most 2n− k −
∑k

i=1 di in X.

Our method appears substantially simpler than the previous work of Voi-
sin [V1, V2, V3] and Chen, Lewis, and Sheng [CLS], although in the case of
hypersurfaces, we do not recover the full strength of Chen, Lewis, and Sheng’s
result.

The third result relates to Seshadri constants. Let ε(p,X) be the Seshadri
constant of X at the point p, defined to be the infimum of degC

multp C over all curves

C in X passing through p. Let ε(X) be the Seshadri constant of X, defined to
be the infimum of the ε(p,X) as p varies over the hypersurface.

Theorem 1.6. Let r > 0 be a real number. If for a very general hypersurface
X0 ⊂ P2n−1 of degree d the Seshadri constant ε(p,X0) of X0 at a general point
p is at least r, then for a very general X ⊂ Pn of degree d, the Seshadri constant
ε(X) of X is at least r.

The layout of the paper is as follows. In Section 2, we lay out our general
technique, and immediately use it to prove Theorem 1.6. In Section 3, we discuss
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how to use the results of Section 2 to prove hyperbolicity results. In Section 4,
we discuss how to prove Theorem 1.5.
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2 The Technique

We set some notation. Let B be the moduli space of complete intersections of
multidegree (d1, . . . , dk) in Pn+k and Un,d ⊂ Pn+k × B be the variety of pairs
([p], [X]) with [X] ∈ B and p ∈ X. We refer to elements of Un,d as pointed
complete intersections. When we talk about the codimension of a countable
union of subvarieties of Un,d, we mean the minimum of the codimensions of
each component.

We need the following result from [RY].

Proposition 2.1. Let C ⊂ G(r − 1,m) be a nonempty family of r − 1-planes
of codimension ε > 0, and let B ⊂ G(r,m) be the space of r planes that contain
some r − 1-plane c with [c] ∈ C. Then codim(B ⊂ G(r,m)) ≤ ε− 1.

Proof. For the reader’s convenience, we sketch the proof. Consider the incidence-
correspondence I = {([b], [c])| [c] ∈ C, [b] ∈ B} ⊂ G(r − 1,m) × G(r,m). The
fibers of π1 are all Pm−r’s, while for a general [b] ∈ B, the fiber π−12 ([b]) has
codimension at least 1 in the Pr of r−1-planes contained in b (since otherwise it
can be shown that C = G(r,m)). The result follows by a dimension count.

We need a few other notions for the proof. A parameterized r-plane in Pm is a
degree one map Λ : Pr → Pm. Let Gr,m,p be the space of parameterized r-planes
in Pm that pass through p. If (p,X) is a pointed hypersurface in Pm, a pointed,
parameterized r-plane section of (p,X) is a pair (Λ−1(p),Λ−1(X)) =: φ∗(p,X),
where Λ : Pr → Pm is a parameterized r-plane whose image does not lie entirely
in X. We say that Λ : Pr → Pm contains Λ′ : Pr−1 → Pm if Λ(Pr) contains
Λ′(Pr−1).

Corollary 2.2. If C ⊂ Gr−1,m,p is a nonempty subvariety of codimension ε > 0
and B ⊂ Gr,m,p is the subvariety of parameterized r-planes that contain some
r − 1-plane [c] ∈ C, then codim(B ⊂ Gr,m,p) ≤ ε− 1.

Let Xn,d ⊂ Un,d be an open subset. For instance, Xn,d might be equal to
Un,d or it might be the universal complete intersection over the space of smooth
complete intersections. Our main technical tool is the following.

Theorem 2.3. Suppose we have an integer m and for each n ≤ n0 we have
Zn,d ⊂ Xn,d a countable union of locally closed varieties satisfying:
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1. If (p,X) ∈ Zn,d and is a parameterized hyperplane section of (p′, X ′), then
(p′, X ′) ∈ Zn+1,d.

2. Zm−1,d has codimension at least 1 in Xm−1,d.

Then the codimension of Zm−c,d in Xm−c,d is at least c.

Proof of Theorem 2.3. We adopt the method from [RY]. In order to prove our
result, we prove that for a very general point (p0, X0) of a component of Zm−c,d,
there is a variety Fm−c and a map φ : Fm−c → Um−c,d with (p0, X0) ∈ φ(Fm−c)
and codim(φ−1(Zm−c,d) ⊂ Fm−c) ≥ c. This suffices to prove the result.

So, let (p0, X0) be a general point of a component of Zm−c,d, and let (p1, X1) ∈
Xm−1,d be very general, so that (p1, X1) is not in the closure of any component
of Zm−1,d by hypothesis 2. Choose (p, Y ) ∈ XN,d for some sufficiently large N
where (p0, X0) and (p1, X1) are pointed, parameterized linear sections of (p, Y ).
Then for all n < N , let Fn be the space of all parameterized n-planes in PN pas-
sing through p such that for Λ ∈ Fn, Λ∗(p, Y ) is in Xn,d. This means that Fn is
an open subset of Gn,N,p. Let φ : Fn → Xn,d be the map sending Λ : Pn → PN

to Λ∗(p, Y ).
We prove that codim(φ−1(Zm−c,d) ⊂ Fm−c) ≥ c by induction on c. For

the c = 1 case, we see by construction that φ−1(Zm−1,d) has codimension at
least 1 in Fm−1, since (p1, X1) is a parameterized m− 1-plane section of (p, Y )
but is not in the closure of any component of Zm−1,d. Now suppose we know
that codim(φ−1(Zm−c,d) ⊂ Fm−c) ≥ c. We use Corollary 2.2 with C equal to
φ−1(Zm−c−1,d). By hypothesis 1, we see that B is contained in φ−1(Zm−c,d).
It follows from this that

c ≤ codim(φ−1(Zm−c,d) ⊂ Fm−c)) ≤ codim(B ⊂ Fm−c)

≤ codim(C ⊂ Fm−c−1)− 1.

Rearranging, we see that

codim(φ−1(Zm−c−1,d) ⊂ Fm−c−1) = codim(C ⊂ Fm−c−1) ≥ c+ 1.

The result follows.

As an immediate application, we prove Theorem 1.6.

Proof of Theorem 1.6. Let r be given. Let Zm,d ⊂ Um,d be the set of pairs
(p,X) where ε(p,X) < r. We apply Theorem 2.3 to Zm,d. We see that Zm,d is
a countable union of algebraic varieties, and by hypothesis, Z2n−1,d ⊂ U2n−1,d
has codimension at least 1. Now suppose that (p0, X0) ∈ Zm,d. Then there is

some curve C in X0 with degC
multp0 C < r. Thus, for any X containing p, we see

that the Seshadri constant of X at p is at most degC
multp0 C < r. This shows that

the Zm,d satisfy the conditions of Theorem 2.3, which shows that Zn,d ⊂ Un,d
has codimension at least n. By dimension reasons, this means that Un,d cannot
dominate the space of hypersurfaces, so the result follows.
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3 Hyperbolicity

Let Xn,d be the universal hypersurface in Pn over the open subset U in the
moduli space of all degree d hypersurfaces in Pn consisting of all smooth hy-
persurfaces. Many people have developed a technique for bounding the entire
curves contained in a fiber of the map π2 : Xn,d → U . See the article of De-
mailly for a detailed description of many of the techniques [D2]. For a variety
X, let ev : Jk(X) → X be the space of k-jets of X. Then, if X ⊂ Pn is a
smooth degree d hypersurface, there is a vector bundle EGG

k,mT
∗
X whose sections

act on Jk(X). Global sections of EGG
k,mT

∗
X⊗O(−H) vanish on the k-jets of entire

curves. This means that sections of EGG
k,mT

∗
X ⊗O(−H) cut out a closed subva-

riety S′k,m(X) ⊂ Jk(X) such that any entire curve is contained in ev(S′k,m(X)).
In fact, it can be shown that any entire curve is contained in the closure of
ev(Sk,m(X)), where Sk,m(X) ⊂ Jk(X) is S′k,m(X) minus the space of singular
k-jets.

The construction is functorial. In particular, if V is the relative tangent
bundle of the map π2, they construct a vector bundle EGG

k,mV
∗ whose restriction

to each fiber of π2 is EGG
k,mT

∗
X . Let Yn,d ⊂ Xn,d be the locus of (p,X) ∈ Xn,d such

that p ∈ ev(Sk,m(X)). Then by functoriality, Yn,d is a finite union of locally
closed varieties.

Theorem 3.1. Suppose that Yr−1,d ⊂ Xr−1,d is codimension at least 1. Then
Yr−c,d ⊂ Xr−c,d is codimension at least c. In particular, if Y2n−3,d is codimen-
sion at least 1 in X2n−3,d and d ≥ 2n− 1, then a very general X ⊂ Pn of degree
dn is hyperbolic.

Proof. We check that Yr−1,d satisfies both conditions of Theorem 2.3. Condi-
tion 2 is a hypothesis. Condition 1 follows by the functoriality of Demailly’s
construction. Namely, if (p,X0) is a parameterized linear section of (p,X), then
the natural map X0 → X induces a pullback map on sections

H0(EGG
k,mT

∗
X ⊗O(−H))→ H0(EGG

k,mT
∗
X0
⊗O(−H)),

compatible with the natural inclusion of jets Jk(X0) → Jk(X). In particular,
if some section of H0(EGG

k,mT
∗
X ⊗O(−H)) takes a nonzero value on a jet in the

image Jk(X0) → Jk(X), then its restriction to X0 takes a nonzero value on
the original jet in Jk(X0). Thus, if X0 has a nonsingular k-jet at p which is
annihilated by every section in H0(EGG

k,mT
∗
X0
⊗O(−H)), X has such a k-jet as

well.
To see the second statement, observe that by Theorem 2.3, Yn,d has codi-

mension in Xn,d at least 2n − 3 − n + 1 = n − 2. It follows that a general X
of degree d in Pn satisfies that the image of any entire curve is contained in an
algebraic curve. Since d ≥ 2n−1, by a theorem of Voisin [V2, V3], any algebraic
curve in X is of general type. The result follows.

The current best bound for the Green-Griffiths-Lang Conjecture is from
Demailly [D1, D2]. The version we use comes out of Demailly’s proof, instead
of the statement of any particular theorem.
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Theorem 3.2 ([D2], Section 10). We have that Yn,d ⊂ Xn,d is codimension at
least 1 for d ≥ dn, where d2 = 286, d3 = 7316 and

dn =

⌊
n4

3
(n log(n log(24n)))n

⌋
.

Using this bound, we obtain the following.

Corollary 3.3. The Kobayashi Conjecture holds for d ≥ d2n−3, where d2 =
286, d3 = 7316 and

dn =

⌊
n4

3
(n log(n log(24n)))n

⌋
.

This bound of about (2n log(n log n))2n+1 is slightly worse than the best
current bound for the Kobayashi Conjecture from [D2], which is about (en)2n+2.
However, our technique is strong enough to allow us to prove the optimal bound
from the Kobayashi Conjecture, provided one could prove the optimal result for
the Green-Griffiths-Lang Conjecture.

Corollary 3.4. If Yd−2,d has codimension at least 1 in Xd−2,d (as we would
expect from the Green-Griffiths-Lang Conjecture), then a very general hypersur-
face of degree d ≥ 2n− 1 in Pn is hyperbolic.

Proof. We apply Theorem 3.1. We know that if Y2n−3,d is codimension at least
1 in X2n−3,d, then the Kobayashi Conjecture holds for hypersurfaces in Pn of
degree d. We apply this result with d = 2n− 1.

4 0-cycles

Let RP1,X,p = {q ∈ X|Nq ∼ Np for some integer N}, where the relation ∼
means Chow equivalent. The goal of this section is to prove all but the 2n −∑k

i=1(di − 1) = −1 case of the following conjecture of Chen, Lewis and Sheng
[CLS].

Conjecture 4.1. Let X ⊂ Pn be a very general complete intersection of multi-
degree (d1, . . . , dk). Then for every p ∈ X, dimRP1,X,p ≤ 2n− k −

∑k
i=1 di.

Here, we adopt the convention that dimRP1,X,p is negative if RP1,X,p =
{p}. Chen, Lewis and Sheng consider the more general notion of Γ equivalence,
although we are unable to prove the Γ equivalence version here. The special case∑

i di = n+1 is a theorem of Roitman [R1, R2] and the case 2n−k−
∑k

i=1 di ≤
−2 is a theorem of Chen, Lewis and Sheng [CLS] building on work of Voisin
[V1, V2, V3], who proves the result only for hypersurfaces. Chen, Lewis and
Sheng prove Conjecture 4.1 for hypersurfaces and for arbitrary Γ in the case
2n−k−

∑k
i=1 di = −1 in [CLS]. The case 2n−k−

∑k
i=1 di = −1 appears to be

the most difficult, and is the only one we cannot completely address with our
technique.
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We provide an independent proof of all but the 2n− k−
∑k

i=1 di = −1 case
of Conjecture 4.1. Aside from Roitman’s result, this is the first result we are
aware of addressing the case 2n − k −

∑k
i=1 di ≥ 0. We rely on the result of

Roitman in our proof, but not the results of Voisin [V1, V2] or Chen, Lewis,
and Sheng [CLS].

Let En,d ⊂ Un,d be the set of (p,X) such that RP1,X,p has dimension at least
1. Let Gn,d ⊂ Un,d be the set of (p,X) such that RP1,X,p is not equal to {p}.
Both En,d and Gn,d are countable unions of closed subvarieties of Un,d. When
we talk about the codimension of En,d or Gn,d in Un,d, we mean the minimum
of the codimensions of each component. We prove Conjecture 4.1 by proving
the following theorem.

Theorem 4.2. The codimension of En,d in Un,d is at least −n+
∑

i di and the
codimension of Gn,d in Un,d is at least −n− 1 +

∑
i di.

Corollary 4.3. Conjecture 4.1 holds for 2n− k−
∑k

i=1 di 6= −1. In the special

case 2n− k−
∑k

i=1 di = −1, the space of p ∈ X Chow-equivalent to some other
point of X has dimension 0 (i.e., is a countable union of points) but might not
be empty as Conjecture 4.1 predicts.

Proof. First we consider the case 2n − k −
∑

i di ≥ 0. Let π1 : Un,d → B be
the projection map. If π1|En,d

is not dominant, then the result holds trivially.
Thus, we may assume that the very general fiber of π1|En,d

has dimension n−
k−codim(En,d ⊂ Un,d). If the bound on En,d from Theorem 4.2 holds, then the
space of points p of X with positive-dimensional RP1,X,p has dimension at most
2n− k −

∑
i di, which implies Conjecture 4.1 in the case 2n− k −

∑
i di ≥ 0.

Now we consider the situation for 2n − k −
∑

i di ≤ −1. Conjecture 4.1
states that π1|Gn,d

is not dominant for this range. By Theorem 4.2, we see that
the dimension of Gn,d is less than the dimension of B if 2n − k −

∑
i di ≤ −2,

proving Conjecture 4.1. In the case 2n−k−
∑

i di = −1, the dimension of Gn,d

is at most that of B, which shows that there are at most finitely many points
of X equivalent to another point of X. This proves the result.

Our technique would prove Conjecture 4.1 in all cases if we knew that Gn,d

had codimension −n+
∑k

i=1 di in Un,d. However, this is not true for Calabi-Yau
hypersurfaces.

Proposition 4.4. A general point of a very general Calabi-Yau hypersurface
X is rationally equivalent to at least one other point of the hypersurface.

Proof. Let X be a very general Calabi-Yau hypersurface. Then we claim that
a general point of X is Chow equivalent to another point of X. To see this,
observe that any point p of X has finitely many lines meeting X to order d−1 at
p. Such a line meets X in a single other point. Moreover, every point of X has
a line passing through it that meets X at another point of X with multiplicity
d − 1. Thus, let q1 be a general point of X, let `1 be a line through p meeting
X at a second point, p to order d− 1, and `2 be a different line meeting X at p
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to order d− 1. Let q2 be the residual intersections of `2 with X. Then q1 ∼ q2,
and since q1 can be taken to be general, this proves the result.

Proof of Theorem 4.2. First consider the bound on En,d. By Roitman’s Theo-
rem plus the fact that RP1,X,p is a countable union of closed varieties, we see
that E−1+

∑k
i=1 di,d

has codimension at least one in U−1+∑k
i=1 di,d

. We note that

if p ∼ q as points of Y , and Y ⊂ Y ′, then p ∼ q as points of Y ′ as well. The
rest of the result follows from Theorem 2.3 using Zn,d = En,d.

Now consider Gn,d. From Roitman’s theorem, it follows that a very general
point of a Calabi-Yau complete intersection X is equivalent to at most countably
many other points of X. Thus, a very general hyperplane section of such an
X satisfies the property that the very general point is equivalent to no other
points of X. From this, we see that G−2+

∑k
i=1 di,d

has codimension at least 1

in U−2+∑k
i=1 di,d

. Together with Theorem 2.3, this implies the result.
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