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Abstract

We show that a general irreducible nodal plane curve is uniquely determined
by its bitangents, the collection of lines which are tangent to it in two distinct
points. Caporaso and Sernesi showed this result for curves of some curves of
degree 4, in particular for the curves with singularities no worse than nodes.
We extend their argument to all such curves of arbitrary degree. In particular,
we give a proof that the 6-nodal quintic is determined by its bitangents, and we
then use this fact to prove that all general nodal plane quintics are determined
by their bitangents. We proceed analogously for nodal sextics, and then show
that all other higher-degree cases are determined trivially.

1 Introduction

It is a clear fact that the collection of tangent lines of a plane curve determines the
curve; this is the statement that projective duality is reflexive. What is perhaps more
interesting is whether or not a finite subsets of distinguished tangent lines determines
a plane curve. A natural way to choose these tangent lines (for curves of degree four
or higher) is to consider the lines which are tangent to a curve in more than one point.
We informally refer to these lines as bitangents.

The Plücker formulas, a collection of equations relating invariants of a curve to
those of its dual, give a way of systematically computing the number of lines bitangent
to a smooth plane curve of degree greater than three. It is easy to show by Bézout’s
theorem that a smooth curve of degree greater than four is necessarily determined
by its bitangents. Indeed, we notice that bitangents of a smooth curve X correspond
to nodes of its dual curve qX, so two curves with the same bitangents must have
corresponding dual curves sharing the same nodes. Now, by the Plücker formulas, we
see that two curves of degree greater than four which share the same bitangent lines
must have the same dual curves, as the number of intersection points given by the
nodes of the dual exceeds the square of the degree of the dual curve. We will show
this result explicitly in the next section.

For curves of degree four, this argument no longer holds. The Plücker formulas
give that a smooth plane quartic has 28 bitangents, too few to apply Bézout’s theorem.
However, smooth plane curves are still determined by their bitangents. In their 2001
paper [1], Caporaso and Sernesi prove that the general smooth quartic is determined
by its bitangent lines. A natural next step is to generalize this result for the singular
curves. In this paper, we examine the curves with the simplest singularities: nodal
curves. The argument above is no longer well-defined for curves which fail to be
smooth. For one, consider a line which passes through two nodes of a curve. Each of
these intersections has multiplicity 2, so there is a sense in which it is a “bitangent”.
On the other hand, it does not correspond to a node of the dual curve as we have
come to expect. To resolve this conundrum, we introduce a few definitions. We say
that a line l is a theta line of a curve C if it intersect the curve with multiplicity
higher than 1 at two distinct points. l is said to be of type k if it passes through k
nodes of the curve. Thus, our true bitangents, the lines corresponding to nodes of
the dual curve, are the type 0 theta lines, distinct from the type 2 theta line example
given above. The collection of all theta lines of a plane curve is called its theta curve.

With this structure, we can finally articulate the main claim of this paper.

Theorem 1.1. A general plane curve of degree d with δ-nodes is determined by its
theta curve.

2 Preliminaries

One of the gems of classical projective geometry is the notion of projective duality.
Two distinct points in the projective plane uniquely determine a line which contains
them, and two lines in P2 uniquely determine a point of intersection. This gives
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the collection of distinct lines in the projective plane qP2 an induced geometry: the
“points” of qP2 are the lines of P2, and the “lines” of qP2 are the points of P2. In
particular, if p1, p2 P P2 correspond to l1, l2 P qP2, then the line p1p2 in P2 corresponds
to the point l1 X l2 in qP2.

Another way of expressing this duality is by working directly with vector spaces.
Let V be a vector space of dimension three. The projectivization of V , denoted PV ,
is the collection of one-dimensional subspaces of V . But V also determines another
vector space of dimension three: its dual space qV . Thus, by the same construction,
we can consider PqV . A line in PV corresponds to a two dimensional subspace of V ;
we naturally consider the set of all linear functionals qv P qV which kill this subspace.
This is clearly a one dimensional subspace of qV , defining a unique point rqvs P PqV .
Thus, by duality of vector spaces, we have a natural association between points and
lines of a projective space and its dual.

The first real example of projective duality is in the case of plane curves of P2.
Thus, it makes sense to consider how a plane curve X transforms under projective
duality. To any general point on X we assign the tangent line at that point. The
closure of the collection of all such lines a variety in qP2, which we call the dual curve
of X, and denote by qX.

What would we expect the degree of X to be? If X is smooth, we need to compute
the number of intersection points of qX with a general line in qP2. Equivalently, we
want to compute the number of tangent lines of X passing through a general point
p in P2. Without loss of generality, let p “ r0 : 0 : 1s. Any line passing through p
which is tangent to X satisfies the two equations

BF

BZ2

“ 0, F “ 0 (1)

where F pZ0, Z1, Z2q is the polynomial which cuts out X. If F has degree d, then the
number of tangents of X passing through p is the intersection of F with a polynomial
of degree d ´ 1. Therefore by Bézout’s theorem, the degree of qX is dpd ´ 1q.

For our purposes, we need to consider a few singular cases. This paper deals
mainly with nodal curves, but for the sake of the Plücker formulas, we require some
understanding of cusps as well. Let X be a plane curve of degree d with δ nodes and
κ cusps. If we choose p to be as above, then we expect to get dpd ´ 1q tangents of X
passing through p. However, some of those so-called tangents are not as we generally
imagine them. Instead, they pass through the singular points of X, thereby acquiring
a higher intersection multiplicity. Indeed, a line through p intersects a node with
multiplicity 2, and intersects a cusp with multiplicity 3. Thus, the true number of
tangent lines of X corresponding to points on the dual curve qX is

d˚
“ dpd ´ 1q ´ 2δ ´ 3κ. (2)

The duality of curves is reflexive, such that X is the dual curve of qX. Thus, by the
reasoning above, we get the formula

d “ d˚
pd˚

´ 1q ´ 2δ˚
´ 3κ˚, (3)

where δ˚ is the number of nodes of qX and κ˚ is the number of cusps of qX. But
what exactly are these singularities of qX? A node of qX corresponds to a line in P2

which is tangent to X in two points. These are the bitangents of X. A cusp of qX
corresponds to a flex line of X; we do not deal with them in this paper. Because we
have quite a few numbers which are not necessarily determined a priori, we need to
produce another formula for counting the singularities of X and qX.

Given a smooth plane curve X over C, the underlying set of complex points UpXq

has the structure of a Riemann surface. In particular, the genus of X is exactly the
genus of this Riemann surface. Consider the projection from a point p not contained
in X,

πp : X ÝÑ P1, x ÞÑ px X P1. (4)
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This gives a cover of P1 with branch points corresponding to the tangents to X
passing through p. The Riemann-Hurwitz formula, relating the Euler characteristic
of a surface that of a ramified covering, implies that χpXq “ d ¨ χpP1q ´ dpd ´ 1q.
Equivalently, if g is the genus of X, we know that 2g ´ 2 “ dpd ´ 1q ´ 2d, so we get
the following formula for the genus of X:

g “
1

2
pd ´ 1qpd ´ 2q. (5)

For the case of a singular X, the argument above must be modified. Singular
curves are not manifolds of any kind, so we give the following definition to generalize
the notion of genus to singular curves.

Definition 2.1. The geometric genus of a plane curve X is the genus of its normal-
ization Xν.

We can now extend our construction above to the case of a plane curveX of degree
d with δ nodes and κ cusps. We project from a point p not on X; away from the
singular locus, the ramification is dpd ´ 1q ´ 2δ ´ 3κ by our computation above. The
nodes are separated in the normalization, so they are ramified; the cusps, on the other
hand, correspond to a unique tangent line through p in the normalization. Thus, the
total ramification of this covering is dpd ´ 1q ´ 2δ ´ 2κ. By the Riemann-Hurwitz
formula,

χpXν
q “ d ¨ χpP1

q ´ dpd ´ 1q ` 2δ ` 2κ. (6)

Equivalently, 2g ´ 2 “ dpd ´ 1q ´ 2δ ´ 2κ ´ 2d, and we get the following formula for
the geometric genus:

g “
1

2
pd ´ 1qpd ´ 2q ´ δ ´ κ. (7)

It turns out that the geometric genus of qX is equal to that of X. Indeed, by the
Riemann-Hurwitz formula, there are no (non-trivial) rational maps from a curve of

lower genus to a curve of higher genus, thus gpXq ď gp qXq ď gpXq. Therefore the
following formula comes from duality:

g “
1

2
pd˚

´ 1qpd˚
´ 2q ´ δ˚

´ κ˚. (8)

Thus, we get two equations which are linear in δ˚ and κ˚. Solving them gives the
Plücker formulas.

Theorem 2.1 (Plücker Formulas). Let X be a plane curve of degree d with δ nodes

and κ cusps. Let δ˚ and κ˚ denotethe number of nodes and cusps of qX. We have the
following formulas:

κ˚
“ 3dpd ´ 2q ´ 6δ ´ 8κ (9)

δ˚
“

1

2
d4´d3´

ˆ

9

2
` 2δ ` 3κ

˙

d2`p9`2δ`3κqd`2δ2`3δκ`
9

2
κ2

`10δ`
23

2
κ (10)

Recall that δ˚ is the number of bitangents of X. We see that if we fix the number
of nodes and cusps of X, the number of bitangents gets very large as the degree d
increases. For smooth curves X of degree d, we give bitangent counts in Table 1.

The number of bitangents grows very quickly as the degree of the curve increases.
We expect this from the Plücker formula (10), but this gives us a sense of scale.
Bitangents of smooth curves manifest as distinguished points on the dual curves, so
we expect that such large quantities of bitangents should completely determine a
curve. After all, how many curves can possibly share the same 1320 bitangents? The
following well-known theorem partially confirms this reasoning.

Theorem 2.2. A general plane curve of degree greater than four is determined by its
bitangents.
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Table 1: Bitangent Counts of Smooth Curves

Degree Genus Number of Bitangents
d g δ˚

4 3 28
5 6 120
6 10 324
7 15 700
8 21 1320
...

...
...

d 1
2
pd ´ 1qpd ´ 2q 1

2
dpd ´ 2qpd2 ´ 9q

Proof. Let X, Y be two general plane curves of degree d with the same bitangent
lines, and denote the curve which is the union of these lines by Θ Ă P2. Consider the
images of X and Y in dual projective space qP2; we get two new plane curves qX, qY
of degree dpd ´ 1q. Each of the bitangent lines in Θ is sent to a common node of qX

and qY . Consequently, the two curves qX, qY have 1
2
dpd ´ 2qpd2 ´ 9q common nodes.

Each nodal intersection is an intersection of multiplicity at least 4, so counting with
multiplicity, qX intersects qY in at least 2dpd ´ 2qpd2 ´ 9q points.

Bézout’s Theorem gives us an upper bound on the number of intersections between
two distinct plane curves of degrees r, r1: namely, the product of their respective
degrees rr1. In our case, the upper bound on the intersections of qX and qY is d2pd´1q2.

But d2pd´1q2 is less than 2dpd´2qpd2´9q, the number of node intersections of qX and
qY , for all values of d greater than four. Therefore qX “ qY and X “ Y , as required.

For plane quartics, the final inequality d2pd´ 1q2 ă 2dpd´ 2qpd2 ´ 9q fails to hold,
so we must adopt much more clever arguments. It turns out, however, that general
plane quartics are also determined by their bitangents, as proven in Caporaso and
Sernesi’s paper [1]. Their argument is that if a general quartic can be deformed to
one which is determined by its bitangents, it too must be determined. In particular,
this gives us the following theorem:

Theorem 2.3. A general plane curve of degree greater than three is determined by
its bitangents.

Having answered this question for general plane curves, we now turn our attention
to nodal plane curves. It is shown in [1] that general one-nodal, two-nodal, and three-
nodal quartics are determined by their bitangents. In this paper, we seek to replicate
their argument to show that general nodal plane curves are determined by their
bitangents.

3 General Structure

Let X be a (smooth or nodal) plane curve of degree d. Let V be the set of irreducible
plane curves of degree d with singularities no worse than nodes, and let V 0 Ă V be
the set of smooth plane curves of degree d.

Definition 3.1. A line L Ă P2 is said to be a theta line of X if the scheme X XL is
everywhere non-reduced. If L contains i nodes of X, we say that L is a theta line of
type i.

We also define the notion of a theta curve of X. Let n “ 1
2
dpd ´ 2qpd2 ´ 9q. The

theta map
θ : V 0

ÝÑ Symn
pqP2

q (11)

sends every smooth S P V 0 to its set of n bitangents θpSq. We claim that θ extends
to a proper morphism of V .
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Lemma 3.1. There exists an extension of θ to V such that for all X P V the com-
ponents of θpXq are theta lines of X.

Proof. It is apparent that X has finitely many theta lines, since all points of X have
multiplicity no greater than 2. Consider

J0
“
␣

pS, θpSqq | S P V 0
(

Ă V 0
ˆ Symn

pqP2
q; (12)

Let J “ ClpJ0q in V ˆ Symn
pqP2q, equipped with the canonical projections

π1 : V ˆ Symn
pqP2

q Ñ V, π2 : V ˆ Symn
pqP2

q Ñ Symn
pqP2

q. (13)

Then any to any X in V we can assign a set of n lines, not necessarily distinct, via
pl1 ¨ l2 ¨ ¨ ¨ lnq P π2

`

π´1
1 pXq

˘

. It is also clear that each li is a theta line of X, as any
deformation of elements of V0 to X sends bitangent lines to li. In particular, X has
only finitely many theta lines, so π2

`

π´1
1 pXq

˘

is finite. For S P V0, π1 is one-to-one.
Moreover, J is irreducible because V0 and J0 are irreducible. Thus by the Zariski
Connectedness Principle, the fibers of π1 must be connected. But the only connected
sets with finitely many elements are point sets, so π1 is a bijection. Therefore

π2 ˝ π´1
1 “ θ : V ÝÑ Symn

pqP2
q (14)

is a proper morphism.

Thus the theta curve of X P V is defined to be θpXq. For the sake of formality,
we finally specify what it means for X to be determined by its bitangents.

Definition 3.2. A curve X P V is said to have the theta property if for all X 1 P V ,
θpXq “ θpX 1q ðñ X “ X 1.

We dedicate the rest of this paper to proving Theorem 1.1. However, we can
rule out some cases right away. As we discussed earlier, general irreducible nodal
quartics have the theta property. We claim that curves with d ě 7 also have the
theta property. To see this, we simply rely on our former trick with Bézout’s theorem
on the dual curve. The smallest (real) root of the polynomial 4δ˚ ´ pd˚q2 is less than
7, regardless of which value we choose for δ. Thus, to prove this theorem, we need
only consider quintics and sextics.

4 Nodal Quintics

Recall that we have separated the theta lines of singular plane curves into distinct
classes based on how many singularities they contain. We will now classify the various
types of nodal quintics, as well as their respective theta curves.

A smooth quintic S P V 0 has only type 0 theta lines, all 120 of which are distinct.
As we showed above, S has the theta property. Thus, we are most interested in δ-
nodal quintics, δ “ 1, . . . , 6. The following lemma will help us resolve some of these
cases right away.

Lemma 4.1. The number of type 0 theta lines of a general δ0-nodal quintic is 120 ´

30δ0 ` 2δ20.

Proof. The dual curve qX of X has degree d˚ “ dpd ´ 1q ´ 2δ0 “ 20 ´ 2δ0. We have
by the Plücker degree formula (3) that

d “ d˚
pd˚

´ 1q ´ 2b0 ´ 3f “ 380 ´ 78δ0 ` 4δ20 ´ 2b0 ´ 3f (15)

where b0 is the number of type 0 theta lines of X and f is the number of flex lines of
X. f is known by the Plücker formula (9) to be

f “ 3dpd ´ 2q ´ 6δ0 “ 45 ´ 6δ0. (16)
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Table 2: Counts of Theta Lines for Nodal Quintics

Nodes Type 0 lines Type 1 lines Type 2 lines
δ b0 b1 b2
0 120 0 0
1 92 14 0
2 68 24 1
3 48 30 3
4 32 32 6
5 20 30 10
6 12 24 15

Thus, (15) becomes

5 “ 380 ´ 78δ0 ` 4δ20 ´ 2b0 ´ 3p45 ´ 6δ0q, (17)

and we get the required form for the type 0 theta lines:

b0 “ 120 ´ 30δ0 ` 2δ20 (18)

We can now narrow down the types of quintics we look at. For sufficiently smooth
quintics, there are enough type 0 theta lines to completely determine the curve via
Bézout’s theorem. This yields the theorem below.

Theorem 4.1. Let X be a general δ0-nodal quintic, δ0 ď 2. Then X has the theta
property.

Proof. We proceed as before by using Bézout’s theorem on the dual curve. Let X, X 1

be two δ0-nodal quintics with θpXq “ θpX 1q. Their dual curves qX, |X 1 share the same
b0 “ 120 ´ 30δ0 ` 2δ20 nodes; thus they share at least 4b0 common points, counting
multiplicities. On the other hand, the upper bound on the number of intersection
points between qX and |X 1 is pd˚q2 “ 400 ´ 80δ0 ` 4δ20. For δ0 “ 1, 2, the number
of common intersections given by the nodes exceeds this upper bound. Therefore
qX “ qX 1 and X “ X 1, as required.

Even if this method of proving the theta property breaks down for larger δ, Lemma
4.1 still gives us valuable information about the theta curve of X P V . It is clear that
θpXq contains only theta lines of type 0, type 1, and type 2, which we will denote by
b0, b1, and b2 respectively. We have already computed b0; b2 is even more trivial, given
by

`

δ
2

˘

. b1 can be computed based on the Riemann-Hurwitz formula for the degree
three projection to P1 from one of the nodes, giving b1 “ 16δ ´ 2δ2. Table 2 displays
the breakdown of the theta lines of all irreducible δ-nodal quintics.

Notice that b0 ` b1 ` b2 is generally not equal to 120, like we may have expected.
This is because type 1 and type 2 theta lines appear with higher multiplicities in
Sym120

pqP2q. In fact, we claim that the type of the theta line completely determines
its multiplicity.

Lemma 4.2. Let X P V . Type i theta lines of X have multiplicity 2i in θpXq.

The proof of this fact is given in Lemma 3.3.1 of [1]. Although they prove this
in the case of quartics, they use local properties of the singularities to show this, so
their proof is applicable for nodal quintics as well.

This lemma is crucial, in part because it implies that the nodes of a curve X P V
are completely determined by θpXq. Indeed, we can right away determine the types
of all the theta lines in θpXq by counting their multiplicities; knowing the type 2
theta lines is the same as knowing the nodes of X.
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Now we can finally get started on proving the non-trivial part. We begin with
the worst case: the 6-nodal quintic. To complete this argument, we start with a
lemma which will give us the needed bijection between 6-nodal quintics and their
theta curves.

Lemma 4.3. There are finitely many 6-nodal quintics which share the same theta
lines.

Proof. The type 2 theta lines of a nodal quintic determine its nodes, so any two 6-
nodal quintics with the same theta lines share the same nodes. Let X be any 6-nodal
quintic in V ; label its nodes n1, . . . , n6. Now consider the blow-up of P2 at those six
points:

π : Bln1,...,n6pP2
q ÝÑ P2. (19)

Let Bl π˚Op5q be a total transform of the pullback of Op5q; the corresponding strict
transform gives a complete linear series via

|Op5q ´ 2E1 ´ ¨ ¨ ¨ ´ 2E6| : Bln1,...,n6pP2
q ÝÑ P2. (20)

Here E1, . . . , E6 denote the exceptional divisors corresponding to the nodes of X.
This rational map sends all 6-nodal quintics in |Op5q ´ 2E1 ´ ¨ ¨ ¨ ´ 2E6| to lines in
P2. Denote by LX the image of X under (20). The type 1 theta lines of X are in
|Op1q ´ Ei|, and are sent to cubics in |Op3q| which remain tangent to LX . Now,
consider the unique conics through any of the five nodes of X, say n1, . . . , n5. The
type 1 theta lines through ni all intersect this conic in two distinct points. But under
the map above, |Op2q ´ E1 ´ ¨ ¨ ¨ ´ xEi ´ ¨ ¨ ¨ ´ E5| is contracted to a point in P2, so
the image of the theta lines through ni intersect a point of P2 with multiplicity 2.
Therefore the image of any type 1 theta line is a unique nodal cubic which is tangent
to LX . This gives us 24 nodal cubics tangent to the same line LX in P2.

In the dual projective space qP2 we have, by the degree formula (2), 24 plane
quartics intersecting at a common point, namely the image of LX . Now suppose that
Y is another 6-nodal quintic in |Op5q ´ 2E1 ´ ¨ ¨ ¨ ´ 2E6| with θpY q “ θpXq. Denoting
by LY its image under the rational map, we see that the type 1 theta lines of Y ,
previously sent to nodal cubics tangent to LX , are also tangent to LY . In the dual
space, we get a second point at which the 24 quartics also all meet. However, since
two quartics intersect in at most 16 distinct points, there can only be at most 16
distinct 6-nodal quintics Y in P2 with θpY q “ θpXq.

We now know that a general 6-nodal quintic shares its theta lines with finitely
many other curves. The next step is to show that the only way you can have n curves
with the same theta lines is if n “ 1. To do this, we once again employ Zariski
Connectedness.

Theorem 4.2. The general 6-nodal quintic is determined by its bitangents.

Proof. Consider the incidence correspondence J , defined in Lemma 3.1. In the proof
of this lemma, we argued by the Zariski Connectedness Principle that the fibers of
π1 : V ˆSymn

pqP2q ÝÑ V are connected because J itself is connected and irreducible.

The same rhetoric applies to π1 : V ˆ Symn
pqP2q ÝÑ Symn

pqP2q, so in particular, we
can be sure that for any curve X in V there is a connected fiber of curves Xt in V with
θpXq “ θpXtq. But by the previous lemma, the fiber of π2 corresponding to a 6-nodal
quintic is finite. Because the only connected finite sets are those with cardinality zero
or one, we can be sure that X is the only curve with the theta curve θpXq.

From here on out, we will proceed by deforming smooth quintics to the 6-nodal
case. We will show that if there exists a deformation of a general δ-nodal quintic to
a 6-nodal quintic, then the general δ-nodal quintic must have the theta property.

Theorem 4.3. The general 5-nodal plane quintic has the theta property.
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Proof. Suppose the contradiction that the statement is false. Let X ÝÑ T be a
family over a smooth curve T with a distinguished point t0 P T such that away from
t0, the fiber Xt P V has five nodes at fixed points e1, . . . , e5 P P2. The special fiber
X0 has, in addition to the five aforementioned nodes, a sixth node e0 P P2. By our
assumption, we may suppose that Xt does not have the theta property; thus, we
construct a second family Y ÝÑ T with Yt P V such that θpXtq “ Θt “ θpYtq.

First, notice that Yt is also a five-nodal quintic with nodes at e1, . . . , e5, with a
sixth node e0 at t0. Notice also that the special fibers X0 and Y0 are equal, since they
have the same theta curves and since they have the theta property. Denote by W the
linear subspace of P20 consisting of quintics with singularities at e1, . . . , e5. Then we
may consider the map

θ|W : W X V ÝÑ Sym120
pqP2

q. (21)

We claim that θ|W is an immersion at X0. This implies that Xt “ Yt, a contradiction.
We start by considering the normalization of any point X, given by ν : Xν ÝÑ X.

By Zariski [2], we have that

TXW – H0
pXν , ν˚

pOXp5q b OXp´2e1 ´ 2e2 ´ 2e3 ´ 2e4 ´ 2e5qqq . (22)

If L “ ν˚pOXp5q bOXp´2e1 ´2e2 ´2e3 ´2e4 ´2e5qq, then deg L “ 25´4 ¨5 “ 5. Let
l1, l2, l3 be three theta lines of type 0 in Θ0, and let Wl1,l2,l3 be the subset of curves
in W bitangent to l1, l2, and l3. If p1, p2, . . . , p6 P P2 are the points of intersection of
l1, l2, l3 with X0, then we have once again by Zariski’s theory

TX0Wl1,l2,l3 “ H0
pXν ,L b Op´p1 ´ p2 ´ p3 ´ p4 ´ p5 ´ p6qq. (23)

In particular, since deg L b Op´p1 ´ ¨ ¨ ¨ ´ p6q ă 0, we have that the tangent space
TX0Wl1,l2,l3 “ 0. Finally, observe that

TX0θ|
´1
W pΘ0q Ă TX0Wl1,l2,l3 “ 0, (24)

so that TX0θ|
´1
W pΘ0q “ 0, and therefore θ|W is an immersion at X0, as required.

We prove the 4-nodal case analogously.

Theorem 4.4. A general 4-nodal quintic has the theta property.

Proof. Define X ,Y ÝÑ T as above, except that the common nodes are now e2, e3, e4, e5 P

P2. At the distinguished t0, X0 (and Y0) are six-nodal quintics with two new nodes
e0, e1. By the same argument as above, X0 “ Θ0 “ Y0. Let W be the linear subspace
of P20 consisting of curves with singularities at e1, e2, e3, e4. We will show that θ|W is
an immersion at X0.

As before, for any X and its normalization Xν ,

TXW – H0
pXν ,Lq (25)

where L “ ν˚pOXp5q bOXp´2e1 ´2e2 ´2e3 ´2e4qq has degree 9. Choose l1, . . . , l5 to
be theta lines of type 0 in Θ0, tangent to X0 at points p1, . . . , p10. Then if Wl1,...,l5 is
the subset of curves in W bitangent to l1, . . . , l5, then deg L b Op´p1 ¨ ¨ ¨ ´ p10q ă 0,
so

TX0Wl1,...,l5 “ H0
pXν ,L b Op´p1 ¨ ¨ ¨ ´ p10qq “ 0 (26)

and therefore θ|W is an immersion at X0.

Even the 3-nodal case follows essentially the same argument.

Theorem 4.5. A general 3-nodal quintic has the theta property.

Proof. We need a bit more preparation for this case. Suppose that the general 3-
nodal quintic does not have the theta property. Fix two lines L,K P qP2, and consider
a family of smooth quintics X ÝÑ T such that away from a distinguished t0 P T , Xt

has fixed nodes e3, e4, e5 P P2, and such that at t0, X0 has three additional nodes:
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e1 P L, e2 P K, e0 “ LXK. For if VL,K is the subset of V whose quintics have L and
K in their theta curves. We may consider the following (dominant) rational map:

VL,K 99K Sym2
pLq ˆ Sym2

pKq (27)

which sends a quintic in VL,K to its two tangent points with L and K respectively.
The general fiber of this map is a P12 of quintics in V , determined by fixing four
tangent points. This shows that VL,K is a 16 dimensional irreducible subvariety of V ,
and our deformation is well-defined.

Thus suppose that Xt does not have the theta property away from t0. Let Y ÝÑ T
be a second family with θpXtq “ θpYtq. Then as above, X0 “ Y0, and Yt is 3-nodal
away from Y0, with nodes at e3, e4, e5. Let

θL,K “ θ|VL,K
: VL,K ÝÑ Sym120

pqP2
q. (28)

We claim that θL,K is an immersion at X0. Indeed, if X is tangent to L and K at
p1, . . . , p4, then

TX0VL,K “ H0
pXν

0 , ν
˚OX0p5q b OX0p´e0 ´ ¨ ¨ ¨ ´ e5qq (29)

where the relevant line bundle is denoted by L, and has degree 13. Recall that Θ0 has
12 theta lines of type 0. Let l1, . . . , l7 be seven of them, tangent to X0 at p1, . . . , p14.
Then if VL,K,l1,...,l7 is the subset of VL,K bitangent to l1, . . . , l7,

TX0VL,K,l1,...,l7 Ă H0
pXν ,L b ν˚OX0p´p1 ¨ ¨ ¨ ´ p14qq “ 0 (30)

the second equation being an evident consequence of the negative degree of the line
bundle. Finally,

TX0θ
´1
L,KpΘ0q Ă TX0VL,K,l1,...,l7 “ 0 (31)

implies that θL,K is an immersion at X0, as required.

5 Nodal Sextics

The final cases to consider are the nodal sextics.
A smooth sextic S P V 0 has only type 0 theta lines, all 324 of which are distinct.

As we showed before, S has the theta property. Thus, we are most interested in
δ-nodal sextics, δ “ 1, . . . , 10. As in the previous section, we resolve most cases with
a structure lemma. This follows from the Plücker formulas, with a proof identical to
that of Lemma 4.1.

Lemma 5.1. A plane δ-nodal sextic has 324 ´ 50δ ` 2δ2 theta lines of type 0.

We can now use Bézout’s theorem on the dual curve to great effect.

Theorem 5.1. All δ0-nodal cubics, δ0 ď 8, have the theta property.

Proof. Recall that a dual curve is determined by Bézout’s theorem if 4b0 ą pd˚q2. In
our case, b0 “ 324 ´ 50δ0 ` 2δ20. For all values of δ0 ď 8,

4p324 ´ 50δ0 ` 2δ20q ą p30 ´ 2δ0q
2. (32)

As in the previous section, we know the number of type 2 theta lines to be
`

δ
2

˘

.
Similarly, we can use Riemann-Hurwitz to to verify that the number of type 1 theta
lines is 2δp13 ´ δq. Table 3 summarizes the counts of the theta lines of nodal sextics.

Once again, theta lines of type 0, 1, and 2 appear with multiplicities 1, 2, and 4
respectively. We can therefore determine all the nodes of the relevant curves by their
theta curves. We can now set up analogous arguments for the two cases which are
not covered by Bézout’s theorem. We start with the 10-nodal sextic.
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Table 3: Theta Lines Counts of Nodal Sextics

Nodes Type 0 lines Type 1 lines Type 2 lines
δ b0 b1 b2
0 324 0 0
1 276 24 0
...

...
...

...
8 52 80 28
9 36 72 36
10 24 60 45

Theorem 5.2. An irreducible 10-nodal sextic has the theta property.

Proof. Two distinct 10-nodal quintics sharing the same theta curves also share the
same nodes. Thus, they intersect in 40 points, counting by multiplicity. But by
Bézout’s theorem, they may intersect at only 36 points, a contradiction.

Now all that is left is the 9-nodal sextic. By now, the proof scheme should be
quite clear. We will outline it one last time.

Theorem 5.3. A general 9-nodal plane sextic has the theta property.

Proof. Assume the contradiction that the statement above is false. Construct two
families X ,Y ÝÑ T of sextics which share the same theta curves and which share the
same nine nodes e1, . . . , e9, such that they converge to 10-nodal sextics X0, Y0. By
the theorem above, X0 “ Y0. Denote the tenth node e10. Let W be the subspace of
P27 consisting of sextics with nodes at e1, . . . , e9. The map θ|W to Sym324

pqP2q will be
shown to be an immersion, thereby proving the theorem.

To any X in X assign its normalization Xν ; we have that

TXW – H0
pXν , ν˚

pOXp5q b OXp´2e1 ´ ¨ ¨ ¨ ´ 2e9qqq. (33)

If L “ ν˚pOXp5q b OXp´2e1 ´ ¨ ¨ ¨ ´ 2e9qq, then deg L “ 36 ´ 36 “ 0. Let l be any
theta line of type 0 in the theta curve of X0; let Wl be the subset of W bitangent to
l. If p1, p2 P P2 are the points of tangency of l with X0, we have

TX0Wl “ H0
pXν ,L b Op´p1 ´ p2qq “ 0. (34)

Thus TX0θ|
´1
W pθpX0qq Ă TX0Wl “ 0, so θ|W is an immersion at X0.

6 Questions

We have proven that a general irreducible curve of arbitrary degree greater than 3
and with arbitrarily many nodes has the theta property. This is, however, far weaker
than the desired result for irreducible curves. Thus, we pose the following questions.

‚ Given an irreducible plane curve with a fixed number of nodes, do we know
that it has the theta property? Theorem 2.2, Theorem 4.1, and Theorem 5.2
do not make any assumption of starting with a general nodal curve. They are
based on Bézout’s theorem, and hold regardless of your choice of curve. By
the same argument, we know that an irreducible nodal plane curve of degree
greater than 6 must have the theta property. However, our proofs for some of
the special quintic and sextics, which we in part adopted from Caporaso and
Sernesi’s proofs for quartics, assume that you start with a general δ-nodal curve
of degree d. It would be best if the proofs were modified in such a way that
we did not need the given nodal curve to be general. Alternatively, if it turns
out that there are irreducible curves which do not have the theta property, the
degree and number of nodes may only belong to a finite list. (See Table 4.)
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‚ Do all of these reducible curves have the theta property? By restricting ourselves
to the case of irreducible curves, we have missed many interesting cases. For
example, Caporaso and Sernesi prove that the quartic consisting of two conics
has the theta property when the two conics are distinct. Similarly, one can
consider the union of a conic with a cubic, the union of two cubics, and so on.

‚ Are all irreducible curves with fixed singularity types determined by their bitan-
gents? There are many types of singularities for curves. In this paper, we have
considered nodal curves, but we can consider worse singularities, such as cusps
and tacnodes. For example, a general plane sextic of genus three has the theta
property, but Bézout’s theorem does not guarantee this for a sextic with four
nodes and three cusps.

‚ Which curves are determined by their type 0 theta lines? We used the term
‘theta line’ to generalize a bitangent for a singular curve. However, one can
make the case that a theta line of type greater than zero is not a true bitangent.
This problem can be examined by fixing points on the dual curve as we did in
Theorem 2.2 and the like. Are there two curves which share the same type zero
theta lines but are not equal?

‚ Given two curves of degree d, how many bitangents can they share before they
are guaranteed to be equal? If we can restrict our focus to just bitangents,
can we perhaps restrict our focus to a subset of bitangents? In particular, this
generalizes to the following question:

‚ Is there ever a finite number of curves of degree d sharing the same k bitangents,
or does the number jump from an infinite family to one unique curve?

When we chose which divisors of the dual curve to look at, we made the de-
batable decision to examine the nodes; this gave us a collection of lines in P2

which we initially called the bitangents. However, we can just as easily look
at another class of divisors. For example, let C be a smooth cubic in P2. qC is
determined by the Plücker formulas (2) and (9) to be a sextic with nine cusps
and zero nodes. Hence, C has nine flex lines. This gives the following natural
question:

‚ Do the flex lines of a cubic curve determine it? If not, are there two cubics with
the same configuration of flex lines?

A nodal cubic C 1 can be examined in the same way. Its dual curve |C 1 is a
three-cuspidal quartic; thus, C 1 has three distinct flex lines.

‚ Do the three flex lines of C 1 determine it, or is there another nodal cubic which
has the same flex lines? By the same reasoning, as cuspidal cubic has a single
unique flex line; how many other cuspidal cubics share this flex line?

‚ Can two curves of degree d share the same bitangent conics? How many bitan-
gent conics does it take to determine a unique curve of degree d? After all, we
do not even need to restrict ourselves to tangent lines. Steiner’s conic problem
asks for the number of smooth conics tangent to five general conics in P2; the
answer comes out to 3264, a large but finite number. Perhaps some part of this
problem can be adopted to show that the tangent (or bitangent) conics to a
curve determine it.

In full generality, this problem can be extended to surfaces in Pn. We know
by duality that a surface is determined by its tangent hyperplanes; any such
hyperplane intersects the surface in a singular curve. As such, we may consider
the Severi variety of nodal curves on the surface.

‚ To what extent does this variety determine the surface?
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Degree Nodes
d δ
4 0
4 1
4 2
5 3
5 4
5 5
6 9

Table 4: Curves which may fail to have the theta property
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