Higgs Bundles

November 20, 2024

These are notes I wrote up for my own comprehension while reading Simpson's paper. Let X be a compact Kähler manifold with Kähler metric ω . We let E be a vector bundle (either smooth or holomorphic, depending on the context) with associated sheaf of sections \mathcal{E} .

Definition 1. A Higgs bundle is a holomorphic vector bundle E on X, equipped with a holomorphic map

$$\theta: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_X, \qquad \theta \wedge \theta = 0 \in \operatorname{End}(E) \otimes \Omega^2_X.$$
(1)

We may write θ in local coordinates z_1, \ldots, z_n as $\sum_i \theta_i dz_i$, for some θ_i holomorphic endomorphisms of E. Observe that the condition that $\theta \wedge \theta = 0$ grants us that

$$\theta_i \theta_j dz_i \wedge dz_j - \theta_j \theta_i dz_i \wedge dz_j = 0, \tag{2}$$

so that the matrices θ_i, θ_j commute for every i, j.

Alternatively, we may think of E as a C^{∞} -bundle equipped with a first-order operator. The holomorphic structure of E comes from an operator $\overline{\partial} : \mathcal{E} \to \mathcal{E} \otimes \mathcal{A}_X^{0,1}$, annihilating precisely the holomorphic sections of E. With this perspective, we may think of θ as a similar operator

$$\theta: \mathcal{E} \to \mathcal{E} \otimes \mathcal{A}_X^{1,0}. \tag{3}$$

we may combine our two operators to form $D'' := \theta + \overline{\partial}$. Conversely, an operator D'' as above defines a Higgs bundle precisely when it satisfies the two conditions

$$D''(fs) = \overline{\partial}(f)s + fD''(s), \qquad (D'')^2 = 0.$$
 (4)

Indeed, the integrability condition gives us a holomorphic structure via $\overline{\partial}^2 = 0$, forces θ to be holomorphic by $\overline{\partial}(\theta) = 0$, and yields $\theta \wedge \theta = 0$, as needed.

Next, let us establish the correspondence between flat bundles and Higgs bundles. Let V be a flat bundle with sheaf of sections \mathcal{V} . A metric K on E or V is a positive definite Hermitian form $(\cdot, \cdot)_K$ on every fiber, varying smoothly over the base. To globalize this construction, we note that a Hermitian form is the same data as an isomorphism

$$K: E \to \overline{E}^{\vee}, \qquad s \mapsto K(s, -).$$
 (5)

Theorem 2. K defines a correspondence between vector bundles with connection (V, D) and vector bundles with an endomorphism-valued one-form (E, θ) .

Proof. Given a Higgs bundle (E, D'') with Hermitian metric K, define the following three analogous operators: ∂_K is the unique operator such that $\overline{\partial} + \partial_K$ preserves K:

$$(\overline{\partial}e, f) + (e, \partial_K f) = \overline{\partial}(e, f), \tag{6}$$

 $\bar{\theta}_K$ is the K-adjoint to θ :

$$(\theta e, f) = (e, \theta_K f), \tag{7}$$

and $D'_K = \partial_K + \bar{\theta}_K$. Finally, set $D_K = D'_K + D''$; we claim that D_K is a connection. Indeed,

$$D_{K}(ae) = D'_{K}(ae) + D''(ae)$$

= $\partial_{K}(ae) + \overline{\partial}_{K}(ae) + \overline{\partial}(a)e + aD''(e)$
= $\partial(a)e + a\partial_{K}(e) + a\overline{\partial}_{K}(e) + \overline{\partial}(a)e + aD''(e)$
= $d(a)e + aD'_{K}(e) + aD''(e)$
= $d(a)e + aD_{K}(e).$

In particular, we get a flat structure if and only if the connection is integrable.

Conversely, let (V, D) be a flat bundle with metric K. Decomposing D into d' + d'' its (1,0) and (0,1) parts respectively, we may define two new operators δ'' and δ' such that $d' + \delta''$ and $\delta' + d''$ preserve K in the sense of (6). Now define our Higgs structure by

$$\partial = (d' + \delta')/2, \quad \overline{\partial} = (d'' + \delta'')/2, \quad \theta = (d' - \delta')/2, \quad \overline{\theta} = (d'' - \delta'')/2.$$
 (8)

We may describe this structure locally by fixing a flat frame $\{v_i\}$ on \mathcal{V} . Define $h_{ij} := (v_i, v_j)_K$, and express θ as

$$\theta = \theta_k^{ij} \otimes v_i \otimes v_j^* \otimes dz_k.$$
⁽⁹⁾

Then contraction with v_m allows us to solve for the coefficients of θ :

$$\frac{\partial h_{jm}}{\partial z_k} = \sum_i \theta_k^{ij} h_{im}.$$
(10)

Set $D''_K = \overline{\partial} + \theta$. Then we have

$$D_K''(av) = \overline{\partial}(a)v + aD''(v), \tag{11}$$

so D''_K is Leibniz, and defines a Higgs bundle if and only if it is integrable. To see that this is a correspondence, it is helpful to consider the associated operator

$$D_K^c = D_K'' - D_K' = \delta'' - \delta'.$$
(12)

In particular, one notes that $D''_K = (D + D^c_K)/2$.

Now suppose that $f: X \to Y$ were a morphism of complex manifolds. Then if E is a Higgs bundle on Y with metric K, f^*E is a Higgs bundle on X, f^*K is a metric, and $f^*D_K = D_{f^*K}$. One can do analogously for flat bundles on Y.

If E and F are Higgs bundles, we may define a Higgs bundle structure on their tensor product by the Leibniz rule:

$$D''(e \otimes f) = D''e \otimes f + e \otimes D''f.$$
⁽¹³⁾

Explicitly, the Higgs structure on $E \otimes F$ has associated one-form $\theta_E \otimes 1 + 1 \otimes \theta_F$. Once again, one can do the same procedure to put a flat connection on a tensor product of flat bundles. Moreover, if J and K are metrics on E and F which relate the Higgs operators D''with the connections D, we claim that the metric on $E \otimes F$ relating the induced operator with the induced flat connection is

$$J \otimes K : (e \otimes f, e' \otimes f') \mapsto (e, e')_J \cdot (f, f')_K.$$
(14)

Indeed, write $D'' = \overline{\partial} + \theta$, and define a $D''_C = \overline{\partial} - \theta$. Then $D'_{E \otimes F}$ is defined by the equation

$$(D'_{E\otimes F}(e\otimes f), e'\otimes f') + (e\otimes f, D''_C(e'\otimes f')) = \overline{\partial}(e\otimes f, e'\otimes f').$$
(15)

Now observe that the operator $D'_{J,K} = D'_J \otimes 1 + 1 \otimes D'_K$ also satisfies this equation, and $D = D'' + D'_{J \otimes K}$, as needed.

We may also define a Higgs structure on the dual bundle E^{\vee} . If D'' is a Higgs operator on E, define D'' on E^{\vee} by

$$D''(\lambda)(e) + \lambda(D''e) = \overline{\partial}(\lambda e).$$
(16)

In particular, the associated endomorphism-valued one-form on E^{\vee} is $-\theta^T$. This insures that $\mathcal{O}_X \to E \otimes E^{\vee} \to \mathcal{O}_X$ are morphisms of Higgs bundles. We may analogously define a flat connection on the dual of a flat bundle V, and force $\mathbb{C} \to V \otimes V^{\vee} \to \mathbb{C}$ to be morphisms of flat bundles.

Theorem 3 (Kähler Identities). If (E, D'', K) is a Higgs bundle, D'_K is the unique operator satisfying

$$(D'_K)^* = -i[\Lambda, D''], \qquad (D'')^* = -i[\Lambda, D'_K].$$
 (17)

Recall from Theorem 2 that while a Higgs bundle always defines a connection and a flat bundle always defines an operator D'', they may fail to satisfy the integrability condition $(D'')^2 = D^2 = 0$. We may measure this failure with and endomorphism valued two-form.

Definition 4. The curvature of (E, D'', K) is the form $F_K = (D_K)^2 = D'_K D'' + D'' D'_K$.

This equality follows from the fact that $(D'_K)^2 = 0$. Moreover, for the same reason, F_K satisfies the Bianchi identities

$$D''F_K = D'_K F_K = 0. (18)$$

For flat bundles, we have the analogous definition.

Definition 5. The pseudocurvature of (V, D, K) is the form

$$G_K = (D_K'')^2 = (DD_K^c + D_K^c D)/4.$$

As before, $(D_K^c)^2 = 0$, giving us the Bianchi identities

$$DG_K = D_K^c G_K = 0. (19)$$

Thus, we see that our correspondence depends on the choice of a metric K satisfying the equations $F_K = G_K = 0$. As there may be many such choices, we need a canonical one.

Definition 6. For E a Higgs bundle, a metric K is called Hermitian-Yang-Mills if for for some λ depending only on the slope of E we have $\Lambda F_K = \lambda$ Id. For V a flat bundle, a metric K is harmonic if $\Lambda G_K = 0$.

Theorem 7 (Siu, Sampson, Corlette, Deligne). If K is a harmonic metric, then $G_K = 0$ and V comes from a Higgs bundle.

With this in mind, we refer to as a harmonic metric a metric K on a Higgs bundle for which $F_K = 0$.

Definition 8. A harmonic bundle (E, K) is a C^{∞} -bundle equipped with a Higgs structure and a flat structure related by a harmonic metric K.

As before, harmonicity respects pullbacks, tensors, and duals.

Definition 9. We say that a Higgs bundle *E* is stable if for every subsheaf $M \subseteq E$ preserved by θ with $0 < \operatorname{rk} M < \operatorname{rk} E$,

$$\frac{\deg M}{\operatorname{rk} M} < \frac{\deg E}{\operatorname{rk} E}.$$

When this inequality fails to be sharp, we say that E is semistable. When E is a direct sum of stable Higgs bundles with the same slope, we say that E is polystable.

Theorem 10. Simple objects in the categories of Higgs bundles and flat bundles are related in the following way:

- (1) A flat bundle V admits a harmonic metric if and only if it is semi-simple.
- (2) A Higgs bundle E admits a Hermitian-Yang-Mills metric if and only if it is polystable. Such a metric is harmonic if and only if

$$ch_1(E).[\omega]^{n-1} = ch_2(E).[\omega]^{n-2} = 0.$$
 (20)

For V a flat bundle, we may consider $H^0_{dR}(X, V)$ the space of sections v with Dv = 0. Analogously, for E a Higgs bundle, we may consider $H^0_{Dol}(X, E)$ the space of holomorphic sections v with $\theta e = 0$, or equivalently the space of smooth sections v with D''v = 0.

Theorem 11. Suppose that E is a harmonic bundle. Then $H^0_{Dol}(X, E) \simeq H^0_{dR}(X, E)$.

Proof. Suppose that e is a section with D''e = 0. Then by Theorem 3 and the anticommutativity of D' with D'',

$$(D')^*D'e = i\Lambda D''D'e = -i\Lambda D'D''e = 0.$$

Thus

$$||D'e||^2 = \int_X (D'e, D'e) = \int_X ((D')^*D'e, e) = 0.$$

In particular, De = D'e + D''e = 0. The converse follows by making the same argument with $(D^c)^*D^c$.

Theorem 12 (Non-Abelian Hodge Theorem I). The categories of semi-simple flat bundles on X, polystable Higgs bundles on X satisfying (20), and harmonic bundles on X are all categorically equivalent.

Proof. Apply Theorem 11 to get an isomorphism of Hom sets

$$\operatorname{Hom}_{\operatorname{dR}}(E,F) = H^0_{\operatorname{dR}}(X, E^* \otimes F) \simeq H^0_{\operatorname{Dol}}(X, E^* \otimes F) = \operatorname{Hom}_{\operatorname{Dol}}(E,F).$$