Summary of Lectures

Definition 1. A matching in a graph G is a set of non-loop edges with no shared
endpoints. The vertices incident to the edges of a matching M are saturated by M,
the others are unsaturated (we say M-saturated and M-unsaturated). A perfect

matching in a graph is a matching that saturates every vertex.

Example 2 (Perfect matchings in K, ,). Consider K, , with partite sets X =
{z1,...,z,} and Y = {y1,...,yn}. A perfect matching defines a bijection from X

to Y. Successively finding mates for x, xo, ... yields n! perfect matchings.

Each matching is represented by a permutation of [n], mapping ¢ to j when z; is
matched to y;. We can express the matchings as matrices. With X and Y indexing
the rows and columns, we let position 7, j be 1 for each edge z;y; in a matching M

to obtain the corresponding matrix. There is one 1 in each row and each column.
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Definition 3. A maximal matching in a graph is a matching that cannot be

enlarged by adding an edge. A maximum matching is a matching of maximum

size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge already

in M. Every maximum matching is a maximal matching, but the converse need not

hold.

Example 4 (Maximal # maximum). The smallest graph having a maximal match-
ing that is not a maximum matching is P,. If we take the middle edge, then we can

all no other, but the two end edges form a larger matching. Below we show this

phenomenon in P, and in Fs.
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In Example 4, replacing the bold edges by the solid edges yields a larger matching.

This gives us a way to look for larger matchings.
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Definition 5. Given a matching M, an M-alternating path is a path that al-
ternates between edges in M and edges not in M. An M-alternating path whose

enpoints are unsaturated by M is an M-augmenting path.

Definition 6. If G and H are graphs with vertex set V', then the symmetric
defference G A H is the graph with vertex set V' whose edges are all those edges
appearing in exactly one of G and H. We also use this notation for sets of edges; in

particular, if M and M’ are matchings, then M A M' = (M — M') U (M' — M).

Lemma 7. Every component of the symmetric difference of two matchings is a path

or an even cycle.

Proof. Let M and M’ be matchings, and let ' = M A M’. Since M and M’ are
matchings, every vertex has at most one incident edge from each of them. Thus F
has at most two edges at each vertex. Since A(F') < 2, every component of F' is
a path or a cycle. Furthermore, every path or cycle in F' alternates between edges
of M — M’ and edges of M’ — M. Thus each cycle has even length, with an equal

number of edges from M and from M'. O

Theorem 8 (Berge [1957]). A matching M in a graph G is a maximum matching

in GG if and only if G has no M-augmenting path.

Proof. We prove the contrapositive of each direction; GG has a matching larger than
M if and only if G has an M-augmenting path. We have observed that an M-

augmenting path can be used to produce a matching larger than M.



For the converse, let M’ be a matching in G larger than M; we costruct an
M-augmenting path. Let F' = M A M’. By Lemma 7, F' consists of paths and even
cycles; the cycles have the same number of edges from M and M'. Since |M'| > |M],
F must have a component with more edges of M’ than of M. Such a component can
only be a path that starts and ends with an edge of M’; thus it is an M-augmenting

path in G. O

Hall’s matching condition:
Consider an X, Y-bigraph (bipartite graph with bipartition X,Y’), we seek a match-

ing that satures X.

If a matching M satures X, then for every S C X, there must be at least |S]
vertices that have neighbors in S, because the vertices matched to S must be chosen
from that set. We use Ng(S) or simply N(S) to denote the set of vertices having
neighbors in S. Thus |N(S)| > |S] is a necessary condition. The condition “For all
S C X, |IN(S)| > |S]” is Hall’s Condition. Hall proved that this obvious necessary

condition is also sufficient.

Theorem 9 (Hall’s Theorem). An XY bigraph G has a matching that satures X

if and only if [N(S)| > |S| for all S C X.

Proof. Necessity: The |S| vertices matched to S must lie in N(.5).

Sufficiency: Assume to the cotrary, there is no matching that satures X. If M



is a maximum matching in G, then it does not sature X. Let u € X be a vertex
unsaturated by M. Define S the set of all vertices in X reachable from u by M-
alternating paths in G. Note that u € S. Also define T" the set of all vertices in
Y reachable from u by M-alternating paths in G. We claim that M matches T
with S — {u}. The M-alternating paths from u reach Y along edges not in M and
return to X along edges in M. Hence every vertex of S — {u} is reached by an
edge in M from a vertex in 7. Since there is no M-augmenting path, every vertex
of T is saturated. (Note that the reason that there is no M-augmenting path is
immediate by Berge’s theorem, also the reason that every vertex of T is saturated is
that otherwise we get M-augmenting path). Thus an M-alternating path reaching
y € T extends via M to a vertex of S. Hence these edges of M yield a bijection

from T to S — {u}, and we have |T'| = |S — {u}|.

This implies |T'| = |S — {u}|. The matching between T and S — {u} yields
T C N(S). In fact, T'= N(S). Suppose that y € Y — T has a neighbor v € S. The
edge vy cannot be in M, since u is unsaturated and the rest of S is matched to T' by
M. Thus adding vy to an M-alternating path reaching v yields an M-alternating

path to y. This contradicts y ¢ T', and hence vy cannot exist.

With T'= N(S), we have proved |N(S)| = |T| = |S| — 1 < |S], for this choice of

S. This completes the proof of the contrapositive. n

When the sets of the bipartition have the same size, Hall’s Theorem is the Mar-



riage Theorem, proved originally by Frobenius [1917]. The name arises from the
setting of the compatibility relation between a set of n men and a set of n women.
If every man is compatible with & women and every woman is compatible with k
men, then a perfect matching must exist. Again multiple edges are allowed, which

enlarge the scope of applications.

Theorem 10 (Marriage Theorem). Consider an X, Y-bigraph G with | X| = |Y].

Then G has a perfect matching if and only if |S| < |[N(S)], for any S C X.

Corollary 11. For k£ > 0, every k-regular bipartite graph has a perfect matching.

Proof. Let G be a k-regular X,Y-bigraph. Counting the edges by endpoints in X
and by endpoints in Y shows that k|X| = k|Y|, so |X| = |Y|. Hence it suffices to
verify Hall’s Condition; a matching that saturates X will also saturate ¥ and be a

perfect matching.

Consider S C X. Let m be the number of edges from S to N(S). Since G is
k-regular, m = k|S|. These m edges are incident to N(S), so m < k|N(S)|. Hence
kS| < k|N(S)|, which yields |N(S)| > |S|, when & > 0. Having chosen S C X

arbitrarily, we have established Hall’s Condition. [

Definition 12. A vertex cover of a graph G is a set @ C V(@) that contains at

least one endpoint of every edge. The vertices in @ cover E(G).

Example 13 (Matchings and vertex covers). In the graph on the left below we mark

a vertex cover of size 2 and show a matching of size 2 in bold. The vertex cover of
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size 2 prohibits matchings with more than 2 edges, and illustrated on the right, the

optimal values differ by 1 for an odd cycle. The difference can be arbitrarily large.

Theorem 14 (Konig [1931], Egervdy [1931]). If G is a bipartite graph, then the

maximum size of a matching in G equals the minimum size of a vertex cover of G.

Proof. Let G be an X, Y-bigraph. Since distinct vertices must be used to cover the
edges of a matching, |@Q| > | M| whenever @ is a vertex cover and M is a matching
in G. Given a smallest vertex cover @) of G, we construct a matching of size |Q| to

prove that equality can always be achieved.

Partition @ by letting R = QN X and T = QNY. Let H and H' be the
subgraphs of G induced by RU (Y —T') and T'U (X — R). We use Hall’s Theorem
to show that H has a matching that saturates R into Y — 7T and H’ has a matching
that saturates 7. Since H and H' are disjoint, the two matchings together form a

matching of size |Q] in G.

Since RU T is a vertex cover, G has no edge from Y — T to X — R. For each

S C R, we consider Ng(S), which is contained in Y — T. If |[Ny(S)| < |S], then
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we can substitute Ny (S) for S in @ to obtain a smaller vertex cover, since Ny (.S)

covers all edges incident to S that are not covered by 7'

The minimality of @ thus yields Hall’s Condition in H, and hence H has a
matching that saturates R. Applying the same argument to H’ yields the matching

that saturates 7. O

r Ny (5)

An application of Hall Theorem:
Recall that a permutation matrix is a square matrix that has exactly one entry of
1 in each row and each column and zero elsewhere. Now, we define a more general

family of matrices called doubly stochastic as mentioned in Section 77.

Definition 15. A matrix with no negative entries whose column (rows) sums are
1 is called a column stochastic (row stochastic) matrix. In some references column
stochastic (row stochastic) matrix is called a stochastic matrix. Both types of these

matrices are also called Markov matrices.



Definition 16. A doubly stochastic matrix is a square matrix A = [a;;] of non-

negative real entries, each of whose rows and columns sum 1, i.e.

Zaij:Zaij: 1.
i J

The set of all n x n doubly stochastic matrices is denoted by €2,,. If we denote all

n X n permutation matrices by P, then clearly P, C €1,.

Definition 17. A subset A of a real finite-dimensional vector space is said to be
convex if Ax + (1 — \)y € A, for all vectors x,y € A and all scalars A € [0, 1]. Via
induction, this can be seen to be equivalent to the requirement that » ;. , \;ix; € A,
for all vectors xi,...,x, € A and all scalars A\{,..., A\, > 0 with Z?:l A= 1
A point x € A is called an extreme point of A if y,z € A, 0 < t < 1, and
x =ty + (1 —1t)z imply x = y = z. We denote by ext A the set of all extreme points
of A. With these restrictions on \;’s, an expression of the form Z?:l A\;X; 1s said to
be a convex combination of x1,...,x,. The convex hull of a set B C V is defined as
{doAx;: x;€ B, A; > 0and ) A\; = 1}. The convex hull of B can also be defined

as the smallest convex set containing B. (Why?) It is denoted by conv B.
Theorem 18 (Krein-Milman). Let A C R™ be a nonempty compact convex set.
Then

1. The set of all extreme points of A is non-empty.

2. The convex hull of the set of all extreme points of A is A itself.



The following theorem is a direct application of matching theory to express the

relation between two sets of matrices P,, and (2,,.

Theorem 19 (Birkhoff). Every doubly stochastic matrix can be written as a convex

combination of permutation matrices.

Proof. We use Philip Hall Theorem to prove this theorem. We associate to our
doubly stochastic matrix A = [a;;] a bipartite graph as follows. We represent each
row and each column with a vertex and we connect the vertex representing row i

with the vertex representing row j if the entry a;; is non-zero.

7 5
1 Vo1
For example if A = % % % , the graph associated to A is given in the picture
1 1 1
4 2 1
below.
row 1 column 1
row 2 column 2
row 3 column 3

We claim that the associated graph of any doubly stochastic matrix has a perfect
matching. Assume to the contrary, A has no perfect matching. Then, by Philip
Hall Theorem there is a subset E of the vertices in one part such that the set R(FE)
of all vertices connected to some vertex in E has strictly less than #FE elements.
Without loss of generality, we may assume that A is a set of vertices representing

rows, the set R(A) consists then of vertices representing columns. Consider now the
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sum » . Bjer(E) Yij = #E, the sum of all entries located in columns belonging to
R(E). (by the definition of the associated graph). Thus
Z aij = #E
i€E,jER(E)
Since the graph is doubly stochastic and the sum of elements located in any of given
#FE rows is #F. On the other hand, the sum of all elements located in all columns
belonging to R(E) is at least }_,.p ;cp(p) @ij, since the entries not belonging to a
row in E are non-negative. Since the matrix is doubly stochastic, the sum of all
elements located in all columns belonging to R(E) is also exactly #R(E). Thus, we

obtain

> a <HRE)<H#E= > ay

i€E,jER(E) i€E,jER(E)

a contradiction. Then, A has a perfect matching.

Now, we are ready to prove the theorem. We proceed by induction on the number
of non-zero entries in the matrix. As we proved, associated graph of A has a perfect
matching. Underline the entries associated to the edges in the matching. For ex-
ample in the associated graph above, {(1,3),(2,1),(3,2)} is a perfect matching so
we underline a3, asz and ass. Thus, we underline exactly one element in each row
and each column. Let g be the minimum of the underlined entries. Let P, be the
permutation matrix that has a 1 exactly at the position of the underlined elements.
If g = 1, then all underlined entries are 1, and A = P, is a permutation matrix. If
ap < 1, then the matrix A — agFy has non-negative entries, and the sum of the en-

tries in any row or any column is 1 — «y. Dividing each entry by (1 —ap) in A— Py
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gives a doubly stochastic matrix A;. Thus, we may write A = agPy + (1 — ap) Ay,
where A; is not only doubly stochastic but has less non-zero entries than A. By our
induction hypothesis, A; may be written as A; = ay P+ - -+, P,, where Py, ..., P,
are permutation matrices, and ay P, + - - - + «,, P, is a convex combination. But then
we have

A=aooPo+ (1 — )1 PL + -+ (1 — o)y P,
where Fy, P, ..., P, are permutation matrices and we have a convex combination.

Since ag > 0, each (1 — ap)cy is non-negative and we have
ag+(1—apg)ag+---+(1—ap)a, =ap+ (1 —ag)(ar+...+a,) =ap+ (1 —ap) = 1.

In our example

00 1

F=1100

010

and oy = %. Thus, we get
7 1 7 3
1 01 1w 0 i
1 1 6

— —_ = = — 1 1 = 3 2
4 1_%(‘4 6P0> 510 3 3 0 5 5
1 1 1 3 2 3
|1 3 1] (10 5 10

The graph associated to A; is the following:

1 1
2 2
3 3
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A perfect matching is {(1,1), (2,2), (3,3)}, the associated permutation matrix is
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