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Phylogenetic tree
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Reconstruction of the Phylogenetic tree with n taxa

Given n leaves of a tree, taxa
Find a best tree with internal vertices of degree 3 with given taxa
Branching pattern of the tree is called the topology

The evolution of the tree is modeled by Markov chain
Evolution- random substitution of one nucleotide of DNA A,G,C,T
at individual sites

The topology of the tree gives rise to the joint distribution of the taxa
X = (X1, . . . ,Xn), Xi ∈ {A,G,C,T} = {1,2,3,4}, i = 1, . . . ,n

Joint distribution of X is tensor T = [ti1...in ] ∈ ⊗n[0,1]
Basic problem of algebraic statistics:
Characterize the variety which is a closure of all T corresponding to a
given tree
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Specific problem

One parent, (the root) 3 descendants, (taxa): x , y , z

Main technical assumption on the joint distribution of X ,Y ,Z

T = πAxA⊗yA⊗zA+πCxC⊗yC⊗zC +πGxG⊗yG⊗zG+πT xT ⊗yT ⊗zT

xA, . . . , zT ,π = (πA, πC , πG, πT )
> probability vectors in R4

Problem:Characterize the variety of all tensors in
C4×4×4 = C4 ⊗ C4 ⊗ C4 of border rank 4 at most

T ∈ C4×4×4 has a border at most k
if it is a limit of tensors of rank k at most
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Ranks of tensor 1

T = [tijk ]
m,n,l
i=j=k=1 ∈ Cm×n×l general 3-tensor

Tk ,3 = [tijk ]
m,n
i=j=1 ∈ Cm×n, k = 1, . . . , l called k -3-sections of T .

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

rank T is the minimal dimension of a subspace containing W and
spanned by rank one matrices

grank(m,n, l) the rank of most of tensors in Cm×n×l .

grank(m,n, l) = l for l ∈ [(m − 1)(n − 1) + 1, l]

Reason: A generic space W ⊂ Cm×n,dim W = (m − 1)(n − 1) + 1
intersects the variety of all matrices of rank 1: Cm ×Cn ⊂ Cm×n at least
at (m − 1)(n − 1) + 1 linearly independent rank one matrices
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Ranks of tensors 2

Generic subspace W ⊂ S(m,C),dim W = m(m−1)
2 + 1 intersects variety

of symmetric matrices of rank 1 at least at m(m−1)
2 + 1 lin. ind. mat.

Cor.: generic T ∈ C3×3×4 symmetric in the first two indices has rank 4

Strassen 1983: a. grank(3,3,3) = 5

b. variety of all tensors in C3×3×3 of at most rank 4 is a hypersurface of
degree 9

1
det Z

det (X (adj Z )Y − Y (adj Z )X ) = 0

X ,Y ,Z are three sections of T
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Tensors of rank m in Cm×m×l

T ∈ Cm×m×l , rank T = m, W = span(T1,3, . . . ,Tl,3) ∈ Cm×m

spanned by u1v>1 , . . . ,umv>m.

generic case: ∃P,Q ∈ GL(m,C) PWQ subspace of commuting
diagonal matrices ⇐⇒ Z−1W a subspace of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfy
X (adjZ )Y = Y (adjZ )X - equations of degree 5 for m = 4

similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-
equations of degree 6 for m = 4

Strassen’s condition hold for any 3× 3× 3 subtensor of T ∈ C4×4×4:
equations of degree 9

[3] one needs equations of degree 16
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16 degree conditions 1

Manivel-Landsberg: Cor. 5.6: to determine completely the variety of
tensors of border rank at most 4 in C4×4×4 one needs in addition to
above conditions to determine the the variety of tensors of border rank
at most 4 in C3×3×4

Prf. is wrong as Prop. 5.4 wrong. I had to reprove Cor. 5.6

generic subspace spanned by four rank one matrices in C4×4:
span(u1v>1 , . . . ,u4v>4 ) where any three vectors out of
u1, . . . ,u4, v1, . . . ,v4 linearly independent

∃P,Q ∈ GL(3,C): Pui = Qvi = (δi1, δi2, δi3)
>, i = 1,2,3, Pu4 = Qv4

⇐⇒ PWQ ⊂ S(3,C) ⇐⇒

∃0 6= S,T ∈ C3×3 s.t. SW,WT ⊂ S(3,C)
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16 degree conditions 2

W = span(W1, . . . ,W4)

SWi −W>
i S> = 0, i = 1, . . . ,4, WiT − T>W>

i = 0, i = 1, . . . ,4

existence of nontrivial solutions S,T , each system in 9 variables,
(entries of) S,T implies that any 9× 9 minor of the coefficient matrix of
two systems vanishes

generic case: T ,S determined uniquely up to nonzero multiplicative
scalar, invertible: ST = TS = tI.

expressing all possible solutions S,T in terms of 8× 8 minors of
coefficient matrices, the conditions ST = TS = λI are given by
vanishing of the corresponding 16− th degree polynomials
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Sufficiency of all conditions

If W ⊂ C4×4,dim W = 4 contains an invertible matrix then
commutativity conditions X (adj Z )Y − Y adj(Z )X = 0 imply that border
rank of T ∈ C4×4×4 at most 4.
need to use fact: variety of commuting matrices (A1,A2,A3) ⊂ (C3×3)3

is irreducible [5]

If subspace spanned by each p = 1,2,3 sections of T does not
contain an invertible matrix then by change of basis in each factor and
possibly permute the factors T ∈ C3×3×4.

W = span(T1,3, . . . ,T4,3) ⊂ C3×3. If dim W ≤ 3 use Strassen’s condition

dim W = 4 use symmetrization condition. If S or T invertible
brankT ≤ 4.

If S,T singular, analyze different cases to show that brankT ≤ 4.
Some of them use the 16 degree condition
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5,6,9 degree equations suffice: Friedland-Gross

Degree 16 needed in condition A.I.3 to eliminate the case:
R,L rank one and either R>L 6= 0 or LR> 6= 0

FG: after change of bases in C3 frontal section of T L = e3e>3
R ∈ {e3e>3 ,e3e>2 ,e2e>3 }

For R = e3e>2 ,e2e>3 border rank T ≤ 4.

For R = e3e>3 4 frontal section of T are

 ∗ ∗ 0
∗ ∗ 0
0 0 ∗


Tk ,3 =

 x11,k x12,k 0
x21,k x22,k 0

0 0 x33,k

 = diag(Xk , x33,k ) i = 1,2,3,4

10 invariant pol. degree 6: det(X1,X2,X3,X4)x33,px33,q 1 ≤ p ≤ q ≤ 4

Their vanishing yields bd T ≤ 4.
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Details from papers

1. [3]: Thm. 4.5

2. [4]: §3

3. [3] §5, §3
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