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Foreword

In the past ten years, tensors again became a hot topic of research in
pure and applied mathematics. In applied mathematics it is driven by
data which has a few parameters. In pure math. it is quantum
information theory, and multilinear algebra. There are many interesting
numerical and theoretical problems that need to be resolved. Tensors
are related to matrices one one hand and on the other hand are
related to polynomial maps.
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Foreword

In the past ten years, tensors again became a hot topic of research in
pure and applied mathematics. In applied mathematics it is driven by
data which has a few parameters. In pure math. it is quantum
information theory, and multilinear algebra. There are many interesting
numerical and theoretical problems that need to be resolved. Tensors
are related to matrices one one hand and on the other hand are
related to polynomial maps.

To paraphrase Max Noether:
Matrices were created by God and tensors by Devil.
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Overview

Ranks of 3-tensors
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© Complexity.

© Matrix multiplication

© Results and conjectures
Approximations of tensors

@ Rank one approximation.

@ Perron-Frobenius theorem
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@ Rank one approximation.

@ Perron-Frobenius theorem

© Rank (Ry, Ro, R3) approximations

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Overview

Ranks of 3-tensors

@ Basic facts.

© Complexity.

© Matrix multiplication

© Results and conjectures
Approximations of tensors

@ Rank one approximation.

@ Perron-Frobenius theorem

© Rank (Ry, Ro, R3) approximations

© CUR approximations

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Overview

Ranks of 3-tensors

@ Basic facts.

© Complexity.

© Matrix multiplication

© Results and conjectures
Approximations of tensors

@ Rank one approximation.

@ Perron-Frobenius theorem

© Rank (Ry, Ro, R3) approximations

© CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,
columns and depth sums
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Overview

Ranks of 3-tensors

@ Basic facts.

© Complexity.

© Matrix multiplication

© Results and conjectures
Approximations of tensors

@ Rank one approximation.

@ Perron-Frobenius theorem

© Rank (Ry, Ro, R3) approximations

© CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,
columns and depth sums

Characterization of tensor in C4*4*4 of border rank 4
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Basic notions

scalar a € T, vector X = (x1,...,X,)" € F", matrix A = [aj] € F™",
3-tensor T = [t;; k] € F™"™/, p-tensor T = [t; ;] € FM "~
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Abstractly U := Uy ® Us @ U3 dimU; = m;, i =1,2,3, dmU = mymomy
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Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,
T. Levi-Civita: 1900, A. Einstein: General relativity 1915
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Basic notions

scalar a € T, vector X = (x1,...,X,)" € F", matrix A = [aj] € F™",
3-tensor T = [t;; k] € F™"™/, p-tensor T = [t; ;] € FM "~

Abstractly U := Uy ® Us @ U3 dimU; = m;, i =1,2,3, dmU = mymomy
Tensor 7 € Uy @ Up ® Us

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,
T. Levi-Civita: 1900, A. Einstein: General relativity 1915
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Basic notions

scalar a € T, vector X = (x1,...,X,)" € F", matrix A = [aj] € F™",
3-tensor T = [t;; k] € F™"™/, p-tensor T = [t; ;] € FM "~

Abstractly U := Uy ® Us @ U3 dimU; = m;, i =1,2,3, dmU = mymomy
Tensor 7 € Uy @ Up ® Us

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,
T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = X,'ijk, (i,j, k) = (1 s 1, 1), RN (m1 , Mo, m3)
or decomposable tensor xRy ® z
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Basic notions

scalar a € T, vector X = (x1,...,X,)" € F", matrix A = [aj] € F™",
3-tensor T = [t;; k] € F™"™/, p-tensor T = [t; ;] € FM "~

Abstractly U := Uy ® Us @ U3 dimU; = m;, i =1,2,3, dmU = mymomy
Tensor 7 € Uy @ Up ® Us

HISTORY: Tensors-as now W. Voigt 1898
Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,
T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = X,'ijk, (i,j, k) = (1 s 1, 1), RN (m1 , Mo, m3)
or decomposable tensor xRy ® z

basis of Uj:  [uy,...,Um1j=1,2,3

basisof U: w1 ®@Upo®Us,ji=1,...,m;,j=1,2.3,
my,Mmo,m.
T= Zi11:i2iisi1 by ip,ip Uiy 1 @ Ujp 2 @ U 3
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Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:
dimension of row or column subspace spanned in direction 1

mo,m: P
Ti,1 = [ti,j,k]j7/§:13 S szxmsal =1,...,m
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:
dimension of row or column subspace spanned in direction 1

mo,m :

Tig = [tijulj gy’ € BT i =1, my
m . .

T =", Ti1e; (convenient notation)
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:
dimension of row or column subspace spanned in direction 1

mo,m f

T,'71 = [ti,j,k]j7/?:13 c szxmii,l =1,...,m
T = 2721 T; 1e;1 (convenient notation)
R; :=dim span(Tm, ey Tm171).
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:

dimension of row or column subspace spanned in direction 1
mo,m :

Tiv = [t R0 € FMXM i=1,....m

T = 2721 T; 1e;1 (convenient notation)

R; :=dim span(Tm, ey Tm171).

Similarly, unfolding in directions 2, 3
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:
dimension of row or column subspace spanned in direction 1

mo,m: P
Ti,1 = [ti,j,k]j7/§:13 S szxmsal =1,...,m

T = 2721 T; 1e;1 (convenient notation)
R; :=dim span(Tm sy Tm171 )
Similarly, unfolding in directions 2, 3

rank 7 minimal r:

T: ff(x17y17z17"’7xf7yl‘7zf) = 2;21 Xi®yi®zi7
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [t 4] view as a matrix Ay = [t; (j ] € F™*(mms)

Ry :=rank Ay:
dimension of row or column subspace spanned in direction 1

mo,m: P
Ti,1 = [ti,j,k]j7/§:13 S szxmsal =1,...,m

T = 2721 T; 1e;1 (convenient notation)
R; :=dim span(Tm sy Tm171 )
Similarly, unfolding in directions 2, 3

rank 7 minimal r:

T: ff(x17y17z17"’7xf7yl‘7zf) = 2;21 Xi®yi®zi7
(CANDEC, PARFAC)
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FACT I: rank 7 > max(R, Rz, Rs)
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FACT I: rank 7 > max(R1, Rz, R3)
Reason Us ® Uz ~ FMeXMs = FM2Ms

Shmuel Friedland Univ. lllinois at Chicago () Tensors



FACT I: rank 7 > max(R1, Rz, R3)
Reason Us ® Uz ~ FMeXMs = FM2Ms

Note:
@ Ry, Ry, Rs are easily computable
@ |t is possible that Ry # Ro # Rs

Shmuel Friedland Univ. lllinois at Chicago () Tensors



FACT I: rank 7 > max(R1, Rz, R3)
Reason Us ® Uz ~ FMeXMs = FM2Ms

Note:
@ Ry, Ry, Rs are easily computable
@ |t is possible that Ry # Ro # Rs

FACT Il : For r = T = [t; 4] let

Tk’3 = [tj’j,k]ﬁ:’qnz c FMm>xm k=1, .., m3. Thenrank 7 =
minimal dimension of subspace L c F™*™ gpanned by rank one
matrices containing Ty 3,..., Tm, 3.
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FACT I: rank 7 > max(R1, Rz, R3)
Reason Us ® Uz ~ FMeXMs = FM2Ms

Note:
@ Ry, Ry, Rs are easily computable
@ |t is possible that Ry # Ro # Rs

FACT Il : For r = T = [t; 4] let

Tk’3 = [tj’j,k]ﬁ:’qnz c FMm>xm k=1, .., m3. Thenrank 7 =
minimal dimension of subspace L c F™*™ gpanned by rank one
matrices containing Ty 3,..., Tm, 3.

COR rank 7 < min(mn, ml, nl)
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Complexity of rank of 3-tensor
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Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and
NP-hard for rational numbers
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Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field and
NP-hard for rational numbers

PRF: 3-sat with n variables m clauses
satisfiable iff rank 7 = 4n+2m, T € FR+3m)x(3n)x(3n+m))
otherwise rank is larger
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Generic and typical ranks
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Generic and typical ranks

Re(m,n,l) c F™"<I: all tensors of rank < r

Rr(m, n,l) not closed variety for r > 2

Border rank of 7 the minimum k s.t. 7 is a limit of 7;,j € N, rank T; = k.
generic rank is the rank of a random tensor 7 € C™*"</: grank(m, n, /)
typical rank is a rank of a random tensor 7 € R™*"*/

typical rank takes all the values k = grank(m, n, /), ..., mtrank(m, n, [)

In all the examples we know mtrank(m, n, /) < grank(m, n, /) + 1
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Generic rank of Cmxnx/

THM: granks(m, n,[) = min(/, mn) for (m—1)(n—1)+1 < /.
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Generic rank of Cmxnx!

THM: granks(m, n,[) = min(/, mn) for (m—1)(n—1)+1 < /.

Reason: For I = (m—1)(n— 1) 4+ 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"
at least at / lines which contain / linearly independent matrices

Shmuel Friedland Univ. lllinois at Chicago ()

Tensors



Generic rank of Cmxnx!

THM: granks(m, n, ) = min(/,mn) for (m—1)(n—1) +1 <.
Reason: For I = (m—1)(n— 1) + 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"

at least at / lines which contain / linearly independent matrices

COR: grank(2,n,l) = min(/,2n) for2 < n </
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Generic rank of Cmxnx!

THM: granks(m, n, ) = min(/,mn) for (m—1)(n—1) +1 <.

Reason: For I = (m—1)(n— 1) + 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"
at least at / lines which contain / linearly independent matrices

COR: grank(2,n,l) = min(/,2n) for2 < n </

Dimension countfor F=Cand2<m<n</<(m—-1)(n—1)+1:
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Generic rank of Cmxnx/
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dimension / in C™*" intersect the variety of rank one matrices in C™*"
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Generic rank of Cmxnx/

THM: granks(m, n, ) = min(/,mn) for (m—1)(n—1) +1 <.

Reason: For I = (m—1)(n— 1) + 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"
at least at / lines which contain / linearly independent matrices

COR: grank(2,n,l) = min(/,2n) for2 < n </

Dimension countfor F=Cand2<m<n</<(m—-1)(n—1)+1:

fr (C"xC"xCH - Ccmm™l xeyoz=(ax)® (by)® ((ab)~'2)
>

grankc(m, n, )(m +n+ 1 —2) > mnl = grankg(m, n, 1) > [ Gt

Shmuel Friedland Univ. lllinois at Chicago () Tensors




Generic rank of Cmxnx/

THM: granks(m, n,[) = min(/, mn) for (m—1)(n—1)+1 < /.

Reason: For I = (m—1)(n— 1) 4+ 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"
at least at / lines which contain / linearly independent matrices

COR: grank(2,n,l) = min(/,2n) for2 < n </
Dimension countforF=Cand2<m<n</<(m-1)(n—1)+1:

fr (C"xC"xCH - Ccmm™l xeyoz=(ax)® (by)® ((ab)~'2)
grank-(m, n,l)(m+ n+1—2) > mnl = granks(m, n,l) >

Conjecture granks(m, n, ) = ’—(m+£l/,2)—|

for2<m<n<l<(m-1)(n—1)and (3,n/)# 3,20+ 1,20+ 1)

/
[ |
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Generic rank of Cmxnx/

THM: granks(m, n,[) = min(/, mn) for (m—1)(n—1)+1 < /.

Reason: For I = (m—1)(n— 1) 4+ 1 a generic subspace of matrices of
dimension / in C™*" intersect the variety of rank one matrices in C™*"
at least at / lines which contain / linearly independent matrices

COR: grank(2,n,l) = min(/,2n) for2 < n </
Dimension countforF=Cand2<m<n</<(m-1)(n—1)+1:

fr (C"xC"xCH - Ccmm™l xeyoz=(ax)® (by)® ((ab)~'2)
grank-(m, n,l)(m+ n+1—2) > mnl = granks(m, n,l) >

Conjecture granke(m, n, 1) = [ o=
for2<m<n<l<(m —1)(n—1)and (3 nl)# 3,20+ 1,2p+1)

Fact: grankg(3,2p+1,2p+ 1) = [2 42,51; 1 +1

/
[ |
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W

[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W

[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W

S(Uj, V) = Dok_y tijkWk, T = [tij] € F™
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
S(Uj, V) = Dok_y tijkWk, T = [tij] € F™

T:Z;:1Xa®ya®za,r:rank’]'
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
Ui V)) =Sy q b j kWi, T = [t ] € B!

T = Z;:1 Xg®YaR2g r=rank T

¢(c,d) =0 4(c™x)(dy)za, € = 3, cu;d = Y7 d;
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
Ui V)) =Sy q b j kWi, T = [t ] € B!

T = Z;:1 Xg®YaR2g r=rank T

¢(e,d) =3, 4(c™x)(d"y)za, ¢ =3, cud =37 dv;
Complexity: r-products
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
Ui V)) =Sy q b j kWi, T = [t ] € B!

T = Z;:1 Xg®YaR2g r=rank T

¢(e,d) =3, 4(c™x)(d"y)za, ¢ =3, cud =37 dv;
Complexity: r-products

Matrix product 7 : FMXN » pNxL _ mMxL (A B) — AB
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
Ui V)) =Sy q b j kWi, T = [t ] € B!

T = Z;:1 Xg®YaR2g r=rank T

¢(e,d) =3, 4(c™x)(d"y)za, ¢ =3, cud =37 dv;
Complexity: r-products

Matrix product 7 : FMXN » pNxL _ mMxL (A B) — AB

M=N=L=2, grank(4,4,4) = [ 75525 ] = [6.4] =7
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Bilinear maps and product of matrices

bilinear map: ¢ : U xV —- W
[u,...,Um],[V1,...,Vn], [Wy,...,w/] bases in U,V,W
Ui V)) =Sy q b j kWi, T = [t ] € B!

T = Z;:1 Xg®YaR2g r=rank T

¢(e,d) =3, 4(c™x)(d"y)za, ¢ =3, cud =37 dv;
Complexity: r-products

Matrix product 7 : FMXN » pNxL _ mMxL (A B) — AB

M=N=L=2, grank(4,4,4) = [ 75525 ] = [6.4] =7

Product of two 2 x 2 matrices is done by 7 multiplications
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Known cases of rank conjecture
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Known cases of rank conjecture

grank(3,2p, 2p) = uﬁﬁ] and grank(3,2p—1,2p— 1) = [3(25:})2] +1
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Known cases of rank conjecture

grank(3, 2p, 2p) = uﬁﬁ] and grank(3,2p—1,2p—1) = [3(25:})2] +1

(n,n,n+2)if n# 2 (mod 3),
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Known cases of rank conjecture
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Known cases of rank conjecture

grank(3, 2p, 2p) = [ 122

4p+1] and grank(3,2p—1,2p—1) =
(n,n,n+2)if n# 2 (mod 3),
(n—1,n,n)if n=0 (mod 3),

(4, m;m) if m> 4,

Shmuel Friedland Univ. lllinois at Chicago ()

Tensors

(S~

3(2p-1)2
4p—1

1+ 1




Known cases of rank conjecture
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(1,2p,2q) if | < 2p < 2q and and 525, is integer

Easy to compute grank-(m, n, I):
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Pick at random w, := (X1,¥1,21,...,X, Y5, 2Z;) € (R™ x R x R/)
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Known cases of rank conjecture

grank(3, 2p, 2p) = uﬁﬁﬁ and grank(3,2p—1,2p—1) = [3(25:})2] +1
(n,n,n+2)if n# 2 (mod 3),
(n—1,n,n)if n=0 (mod 3),
(4, m;m) if m> 4,
(n,n,n)ifn>4

(1,2p,2q) if | < 2p < 2q and and 525, is integer

Easy to compute grank-(m, n, I):

Pick at random w, := (X1,¥1,21,...,X, Y5, 2Z;) € (R™ x R x R/)
The minimal r > (%1 s.t. rank J(f,)(w,) = mnl

is granks(m, n, I) (Terracini Lemma 1915)
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grank(3, 2p, 2p) = uﬁﬁﬁ and grank(3,2p—1,2p—1) = [3(25:})2] +1
(n,n,n+2)if n# 2 (mod 3),
(n—1,n,n)if n=0 (mod 3),
(4, m;m) if m> 4,
(n,n,n)ifn>4

(1,2p,2q) if | < 2p < 2q and and 525, is integer

Easy to compute grank-(m, n, I):

Pick at random w, := (X1,¥1,21,...,X, Y5, 2Z;) € (R™ x R x R/)
The minimal r > (%1 s.t. rank J(f,)(w,) = mnl

is granks(m, n, I) (Terracini Lemma 1915)

Avoid round-off error:
W, € (Z™ x Z" x Z!) find rank J(f,)(W,) exact arithmetic
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Known cases of rank conjecture

grank(3, 2p, 2p) = uﬁﬁﬁ and grank(3,2p—1,2p—1) = [3(25:})2] +1
(n,n,n+2)if n# 2 (mod 3),
(n—1,n,n)if n=0 (mod 3),
(4, m;m) if m> 4,
(n,n,n)ifn>4

(1,2p,2q) if | < 2p < 2q and and 525, is integer

Easy to compute grank-(m, n, I):

Pick at random w, := (X1,¥1,21,...,X, Y5, 2Z;) € (R™ x R x R/)
The minimal r > (%1 s.t. rank J(f,)(w,) = mnl

is granks(m, n, I) (Terracini Lemma 1915)

Avoid round-off error:
W, € (Z™ x Z" x Z!) find rank J(f,)(W,) exact arithmetic
| checked the conjecture up to m,n,/ < 14
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For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.
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For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.
Closure(uZ™™Ny — gmxnx

rank 7 = grank(m, n, /) for each 7 € V4

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.
Closure(uZ™™Ny — gmxnx

rank 7 = grank(m, n, /) for each 7 € V4
rank 7 = p; foreach 7 € V;
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Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.

Closure(uZ™™Ny — gmxnx

rank 7 = grank(m, n, /) for each 7 € V4

rank 7 = p; foreach 7 € V;

1Pt pe(mnnt = {grank(m, n, 1), ... mtrank(m, n, 1)}

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.

Closure(uZ™™Ny — gmxnx

rank 7 = grank(m, n, /) for each 7 € V4

rank 7 = p; foreach 7 € V;

1Pt pe(mnnt = {grank(m, n, 1), ... mtrank(m, n, 1)}

mtrank(2, n, /) = grank(2, n,/) = min(/,2n) if 2 < n < | - one typical rank
mtrank(2, n,n) = grank(2,n,n) +1 = n+1if 2 < n - two typical ranks
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Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.
For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.

Closure(uZ™™Ny — gmxnx

rank 7 = grank(m, n, /) for each 7 € V4

rank 7 = p; foreach 7 € V;

1Pt pe(mnnt = {grank(m, n, 1), ... mtrank(m, n, 1)}

mtrank(2, n, /) = grank(2, n,/) = min(/,2n) if 2 < n < | - one typical rank
mtrank(2, n,n) = grank(2,n,n) +1 = n+1if 2 < n - two typical ranks

Forl=(m—1)(n—1)+13m,n:
c(m,n,l) > 1, mtrank(m, n, ) > grank(m, n,[) + 1
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Generic rank Il - the real case

For mn < | mtrank(m, n, I) = grank(m, n, /) = mn.

For2<m<n</l<mn-1,thereexist Vi,..., Vo(mn C RM*nx1
pairwise distinct open connected semi-algebraic sets s.t.

Closure(uZ™™Ny — gmxnx
rank 7 = grank(m, n, /) for each 7 € V4
rank 7 = p; foreach 7 € V;

{p1 Y Pc(m,n,l)} = {grank(mv n, /)7 s ,mtrank(m, n, /)}

mtrank(2, n, /) = grank(2, n,/) = min(/,2n) if 2 < n < | - one typical rank
mtrank(2, n,n) = grank(2,n,n) +1 = n+1if 2 < n - two typical ranks

Forl=(m—1)(n—1)+13m,n:
c(m,n,l) > 1, mtrank(m, n, ) > grank(m, n,[) + 1

Examples [3]
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Rank one approximations

Rmxnxl IPS: <_A7 B> = Enljn Ik a,Jk e ”T” - <T> T>
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Rank one approximations

R IPS: (A, B) = ST, ayjkbijk, |71l = /(T,T)
xoyozuovaw) = UuTx)(vy)(w'z)
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Rank one approximations

RM*nx! |PS: (A, B) = Z;l]”:lk ajjkbijk, I T =

(T,T)
xoyezuzvew) = (u'x)(vy)(w'z)

X subspace of R™ <! x, ... X, an orthonormal basis of X
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Rank one approximations

R IPS: (A, B) = ST, ayjkbijk, |71l = /(T,T)
xoyozuovaw) = UuTx)(vy)(w'z)

X subspacedof R™*M -y Xy an orthc?normal basis of X
Px(T) = XL (T, X)X, |Px(T)|? = XL4(T, )2
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Rank one approximations

RanX/ IPS <A7 B> = an]n lk ah/ kbi,j,ka ”T” = <Ta T>
xoyozuovew) = U x)vy)(w'z)

X subspacedof R™*M -y Xy an orthc?normal basis of X
PX(TZ) >im 1<72, i) Xi, ||Px(7'22||2 = Y (7, X)?
I71[= = [IPx(T)I* + [T — Px(T)||
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Rank one approximations

R IPS: (A, B) = ST, ayjkbijk, |71l = /(T,T)
xeyozugvew) = (u'x)(vy)(w'z)

X subspace of R™ ! x, ... X, an orthonormal basis of X
P(T) = Iyl 1<72, X)X, [P(T)P = XL (T, )

171% = IIPx(T)II* + 17 — Px(T)|

Best rank one approximation of 7:
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Rank one approximations

RanX/ IPS <A7 B> = an]n lk ah/ kbi,j,ka HT” = <Ta T>
xoyozuovew) = U x)vy)(w'z)

X subspacedof R™*M -y Xy an orthc?normal basis of X
Px(72) >im 1<72, i) Xi, ||Px(7'22||2 = Y (7, X)?
I71[= = [IPx(T)I* + [T — Px(T)||

Best rank one approximation of 7:
Minxyz [7 =X @Y @2 = Minjx—jy|=zj=1.2 [T —ax @y 22|
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Rank one approximations

R IPS: (A, B) = ST, ayjkbijk, |71l = /(T,T)
xeyozugvew) = (u'x)(vy)(w'z)

X subspace of R™ ! x, ... X, an orthonormal basis of X
P(T) = > 1<72, X)X, [Px(T)| = SLAT, X))

1T = [[Px(T)II* + |7 — Px(T)l

Best rank one approximation of 7:
Minxyz [7 =X @Y @2 = Minjx—jy|=zj=1.2 [T —ax @y 22|

. . m,n,|
Equivalent: max) x| —jiy|=|zl|=1 2_izj— ik Xi¥jZk
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R IPS: (A, B) = ST, ayjkbijk, |71l = /(T,T)
xeyozugvew) = (u'x)(vy)(w'z)

X subspace of R™ ! x, ... X, an orthonormal basis of X
P(T) = > 1<72, X)X, [Px(T)| = SLAT, X))

1T = [[Px(T)II* + |7 — Px(T)l

Best rank one approximation of 7:
Minxyz [7 =X @Y @2 = Minjx—jy|=zj=1.2 [T —ax @y 22|

. . m,n,|
Equivalent: max) x| —jiy|=|zl|=1 2_izj— ik Xi¥jZk

Lagrange multipliers: 7T xy® z := Zj:k:1 tijkYiZk = AX
TXXRZ=)Y, T XXRQRY =)z
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Rank one approximations

RanX/ IPS <A7 B> = an]n lk ah/ kbi,j,ka HT” = <Ta T>
xoyozuovew) = U x)vy)(w'z)

X subspacedof R™*M -y Xy an orthc?normal basis of X
Px(72) >im 1<72, i) Xi, ||Px(7'22||2 = Y (7, X)?
I71[= = [IPx(T)I* + [T — Px(T)||

Best rank one approximation of 7:
Minxyz [7 =X @Y @2 = Minjx—jy|=zj=1.2 [T —ax @y 22|

: . m,n,|
Equivalent: maXj—y| =zt 2 i—jx likXi¥jZk
Lagrange multipliers: 7T xy® z := Zj:k:1 tijkYiZk = AX

TXXRZ=)Y, T XXRQRY =)z
A singular value, X, Yy, z singular vectors
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Rank one approximations

RanX/ IPS <A7 B> = an]n lk ah/ kbi,j,ka ”T” = <Ta T>
xoyozuovew) = U x)vy)(w'z)

X subspacedof R™*M -y Xy an orthc?normal basis of X
PX(TZ) >im 1<72, i) Xi, ||Px(7'22||2 = Y (7, X)?
I71[= = [IPx(T)I* + [T — Px(T)||

Best rank one approximation of 7:
Minxyz [7 =X @Y @2 = Minjx—jy|=zj=1.2 [T —ax @y 22|

. . m,n,|
Equivalent: max) x| —jiy|=|zl|=1 2_izj— ik Xi¥jZk

Lagrange multipliers: 7T xy® z := Zj:k:1 tijkYiZk = AX
TXXRZ=)Y, T XXRQRY =)z

A singular value, X, Yy, z singular vectors

How many distinct singular values are for a generic tensor?
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¢, maximal problem and Perron-Frobenius
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¢, maximal problem and Perron-Frobenius

10t - xn) Tl == (27 1XlP)

Tl=
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¢, maximal problem and Perron-Frobenius

Tl=

10t - xn) Tl == (27 1XlP)

. mn,l o .
Problem: max| x| = |y|p=zll,=1 2_izj—k lijkXi¥jZk
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¢, maximal problem and Perron-Frobenius

1
(615 %) Tllp i= (7 [XilP)P

. mn,l o .
Problem: max| x| = |y|p=zll,=1 2_izj—k lijkXi¥jZk

Lagrange multipliers: T xy ®2z:= Y, tijk¥jZk = AXP~"
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¢, maximal problem and Perron-Frobenius

1
16, xn) Tl == (27 [XilP)?
. m,n,|
Problem: max x| ,=|ly|l,=lizllo=1 2_izjk ik Xi¥jZk

Lagrange multipliers: T xy @z := Y, 4 ti;, kyjzk = \xP1
Txx@z=XyP', Txxey=X2""" (p=525,t,seN)
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¢, maximal problem and Perron-Frobenius

1
16, xn) Tl == (27 [XilP)?
. ) 7/
Problem: max x| ,=lylo=lzllp=1 ik likXi¥jZk

Lagrange multipliers: T xy @z := Y, 4 ti;, kyjzk = \xP1
Txx@z=XyP', Txxey=X2""" (p=525,t,seN)

p = 3 is most natural in view of homogeneity
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¢, maximal problem and Perron-Frobenius

1
16, xn) Tl == (27 [XilP)?
. m,n,|
Problem: max x| ,=|ly|l,=lizllo=1 2_izjk ik Xi¥jZk

Lagrange multipliers: T xy @z := Y, 4 ti;, kyjzk = \xP1
Txx@z=XyP', Txxey=X2""" (p=525,t,seN)

p = 3 is most natural in view of homogeneity
Assume that 7 > 0. Then x,y,z >0

For which values of p we have an analog of Perron-Frobenius
theorem?

Yes, for p > 3, No, for p < 3,
Friedland-Gauber-Han [1]
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(R4, Rz, R3)-rank approximation of 3-tensors

Shmuel Friedland Univ. lllinois at Chicago () Tensors



(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'

Relaxation method:
Optimize on Uy, Uy, Uz by fixing all variables except one at a time
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'

Relaxation method:
Optimize on Uy, Uy, Uz by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'

Relaxation method:

Optimize on Uy, Uy, Uz by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix Up, Uz. Then V = Uy ® (U ® Ug) € RM > (Me:ms)
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'

Relaxation method:

Optimize on Uy, Uy, Uz by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix Up, Uz. Then V = Uy ® (U ® Ug) € RM > (Me:ms)

maxy, ||Pv(7)]| is an approximation in 2-tensors=matrices
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(R4, Rz, R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast 7 € R™>*M2*Ms py rank (Ry, Rz, R3)
3-tensor.

Best (R4, Ro, R3) approximation problem:
Find U; c F™ of dimension R; for i = 1,2, 3 with maximal
HPU1®U2®U3(T)H'

Relaxation method:

Optimize on Uy, Uy, Uz by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix Up, Uz. Then V = Uy ® (U ® Ug) € RM > (Me:ms)

maxy, ||Pv(7)]| is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]
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Fast low rank approximation I:
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Fast low rank approximations II:
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART

Faster choice: U = A[l, J]'
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART

Faster choice: U = A[l, J]'
(corresponds to best CUR approximation on the entries read)
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART

Faster choice: U = A[l, J]'
(corresponds to best CUR approximation on the entries read)

For given A € R™<"<I F ¢ RM<P E ¢ R™9, G e R*',
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART
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Fast low rank approximations II:

Approximate A € R™" by CUR where C € R™*P_R € RI*"
for some submatrices of A.

MiNyeccexa ||A — CUR||r achieved for U = CTART

Faster choice: U = A[l, J]'
(corresponds to best CUR approximation on the entries read)

For given A € R™<"<I F ¢ RM<P E ¢ R™9, G e R*',
where (p) C (n) x (I),{(q) C (m) x (I}, {r) C (m) x ()

MiNycopxaxr || A —U x F x E x G||r achieved fortd = A x Et x FT x Gf

CUR approximation of A obtained by choosing E, F, G submatrices of
unfolded A in the mode 1,2, 3.
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Face recognition
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List of applications

Face recognition
Video tracking

Factor analysis
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Scaling of nonnegative tensors to tensors with given

row, column and depth sums

0 < T = [t;j«] € R™"™! has given row, column and depth sums:
r=(,....,tm)",c=(cy,...,cn)",d=(d4,...,d)" >0:
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r=(,....,tm)",c=(cy,...,cn)",d=(d4,...,d)" >0:
Zj,k lijk="ri> 0, Zi,k lijk=C> Oin,j tijk = dc >0
!
Sl =306 = Yk Ak

Find nec. and suf. conditions for scaling:

T' = [t € 1¥it2],X,y,z such that 7’ has given row, column and
depth sum

Solution: Convert to the minimal problem:
MiNgTy—cTy—dTz—0 Ir(X,¥,2), fr(X,y,2) =37, ;  tij k€2

Any critical point of fr on S := {r'x =c'y =d'z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
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Scaling of nonnegative tensors to tensors with given

row, column and depth sums

0 < T = [t;j«] € R™"™! has given row, column and depth sums:
r=(,....,tm)",c=(cy,...,cn)",d=(d4,...,d)" >0:

Zj,k tijk=1r>0, Zi,k lijk=C> Oin,j tijk = dx >0
Silirn=3l 6= >kt Ok

Find nec. and suf. conditions for scaling:

T' = [t € 1¥it2],X,y,z such that 7’ has given row, column and
depth sum

Solution: Convert to the minimal problem:

MiNgTy—cTy—dTz—0 Ir(X,¥,2), fr(X,y,2) =37, ;  tij k€2

Any critical point of fr on S := {r'x =c'y =d'z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
fr is convex
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Scaling of nonnegative tensors to tensors with given

row, column and depth sums

0 < T = [t;j«] € R™"™! has given row, column and depth sums:
r=(,....,tm)",c=(cy,...,cn)",d=(d4,...,d)" >0:
Zj,k lijk="ri> 0, Zi,k lijk=C> Oin,j tijk = dc >0
!
Sl =306 = Yk Ak

Find nec. and suf. conditions for scaling:

T' = [t € 1¥it2],X,y,z such that 7’ has given row, column and
depth sum

Solution: Convert to the minimal problem:

MiNeTx_cTy—dTz—0 IT(X,¥,2), FT(X,¥,2) = 37,  bij k€ 5Vit2

Any critical point of fr on S := {r'x =c'y =d'z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
fr is convex

fr is strictly convex implies 7 is not decomposable: 7 # 71 ® 7».
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if 7 is strictly convex and is oo on 88, fr achieves its unique minimum

Equivalent to: the inequalities x; + y; + zx < 0 if ; j x > 0 and equalities
r'x=c'y=d’'z=0implyx =0,y =0,,z=0,.
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Equivalent to: the inequalities x; + y; + zx < 0 if ; j x > 0 and equalities
r'x=c'y=d’'z=0implyx =0,y =0,,z=0,.

Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.
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Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function
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Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
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r'x=c’'y=d’'z=0implyx=0,,,y=0,2=0,.

Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
True for matrices too
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if 7 is strictly convex and is oo on 88, fr achieves its unique minimum

Equivalent to: the inequalities x; + y; + zx < 0 if ; j x > 0 and equalities
r'x=c’'y=d’'z=0implyx=0,,,y=0,2=0,.

Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Scaling of nonnegative tensors |l

if 7 is strictly convex and is oo on 88, fr achieves its unique minimum

Equivalent to: the inequalities x; + y; + zx < 0 if ; j x > 0 and equalities
r'x=c’'y=d’'z=0implyx=0,,,y=0,2=0,.

Fact: Forr =1,,¢ =1,,d = 1, Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?
Yes for Menon, unknown for Brualdi
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Characterization of tensor in C**4*4 of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Characterization of tensor in C**4*4 of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]

W c C**4 subspace spanned by four sections of 7 e C4*4x4

Shmuel Friedland Univ. lllinois at Chicago () Tensors



Characterization of tensor in C**4*4 of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]

W c C**4 subspace spanned by four sections of 7 e C4*4x4
If W contains identity matrix then W space of commuting matrices
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phylogenic trees and their invariants [1]

W c C**4 subspace spanned by four sections of 7 e C4*4x4
If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X, Y € W satisfy
X(adjZ)Y = Y(adjZ)X - equations of degree 5
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X(adj2)Y = Y(ad_]Z)X equations of degree 5
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W c C**4 subspace spanned by four sections of 7 e C4*4x4
If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X, Y € W satisfy
X(adj2)Y = Y(ad_]Z)X equations of degree 5

similarly Ca(X)Ca(Z)Ca(¥) = Ca(Y)Ca(Z)Ca(2)-

equations of degree 6

Strassen’s condition hold for any 3 x 3 x 3 subtensor of 7:
det(U(adjW)V — V(adjW)U) =0, U, V, W ¢ C3*3x3
equations of degree 9
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Characterization of tensor in C**4*4 of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]

W c C**4 subspace spanned by four sections of 7 e C4*4x4
If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X, Y € W satisfy
X(adj2)Y = Y(ad_]Z)X equations of degree 5

similarly Co(X)Ca(Z)Ca(Y) = Ca(Y)Ca(Z)Ca(Z)-
equations of degree 6

Strassen’s condition hold for any 3 x 3 x 3 subtensor of 7:
det(U(adjW)V — V(adjW)U) =0, U, V, W ¢ C3*3x3
equations of degree 9

Friedland [5] one needs a equations of degree 16
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