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Abstract. We describe the convex set of the eigenvalues of hermitian matrices which are majorized by
sum of m hermitian matrices with prescribed eigenvalues. We extend our characterization to selfadjoint
nonnegative (definite) compact operators on a separable Hilbert space. We give necessary and sufficient
conditions on the eigenvalue sequence of a selfadjoint nonnegative compact operator of trace class to be a
sum of m selfadjoint nonnegative compact operators of trace class with prescribed eigenvalue sequences.

§0. Introduction

The spectacular works of Klyachko [Kly] and Knutson-Tao [K-T] characterized completely the convex
set of the eigenvalues of a sum of two hermitian matrices with prescribed eigenvalues. The work of Klyachko
uses classical Schubert calculus, modern algebraic geometry: stable bundles over P2 and Donaldson theory,
and representation theory. The work of Knutson and Tao combines combinatorial and geometrical tools
using the honey comb model of Berenstein-Zelevensky [B-Z] to prove the saturation conjecture. The results
of Klyachko and Knutson-Tao verified Horn conjecture from the sixties [Hor].

Our aim was to try to generalize the above results to selfadjoint compact operators in a separable
Hilbert space. It turned out that to do that we needed to characterize the set of the eigenvalues of hermitian
matrices, which are majorized by the sum of m hermitian matrices with prescribed eigenvalues. The above
set is a polyhedron, which is characterized by the inequalities specified by Klyachko and an additional set of
inequalities. This set of additional inequalites is induced by the exreme rays of a certain natural polyhedron
associated with the original set of the eigenvalues of sum of two n × n hermitian matrices with prescribed
eigenvalues. We do not know if this cone is related to the representation theory. For n = 2 one does not
need this additional set of inequalities. We do believe that for n ≥ 3 one needs additional inequalities and
we give examples of such inequalities.

We then show that our results generalize naturally to selfadjoint nonnegative compact operators in
a separable Hilbert space. These conditions is a set of countable inequalities which is the union of the
inequalities for the n× n hermitian matrices for n = 2, ...,. It is an open question if in this setting we need
additional set of inequalities as described above. Finally, we have a version of Klyachko theorem for selfadjoint
nonnegative compact operators in the trace class. Our tools are basic results in linear programming and
theory of selfadjoint operators.

§1. Statement of the results

Let
Rn
≥ := {x : x = (x1, ..., xn) ∈ Rn, x1 ≥ x2 ≥ · · · ≥ xn}.

Set < n >:= {1, ..., n} and denote by |I| the cardinality of the set I ⊂< n >. Let

xI :=
∑

i∈I

xi, x ∈ Rn, I ⊂< n >, |I| ≥ 1.
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Let Hn,Sn denote the set of n×n Hermitian and real symmetric matrices respectively. Assume that A ∈ Hn.
Denote by λ(A) := (λ1(A), ..., λn(A)) ∈ Rn

≥ the eigenvalue vector corresponding to A. That is each λi(A)
is an eigenvalue of A, and the multiplicity of an eigenvalue t of A is equal to the number of coordinates of
λ(A) equal to t. We say that A is nonnegative definite and denote it by A ≥ 0 iff λn(A) ≥ 0. For A, B ∈ Hn

we say that A is majorized by B and denote it by A ≤ B iff B −A ≥ 0.
In [Kly] Klyachko stated the necessary and sufficient conditions on the m + 1 sets of vectors

λj := (λj
1, ..., λ

j
n) ∈ Rn

≥, j = 0, ...,m, (1)

such that there exist m + 1 Hermitian matrices A0, ..., Am ∈ Hn with the following properties: The vector
λj is the eigenvalue vector of Aj for j = 0, ...,m and

A0 =
m∑

j=1

Aj . (2)

Assume the nontrivial case m,n > 1. First, one has the trace condition

λ0
<n> =

m∑

j=1

λj
<n>. (3)

Second, there exists a finite collection of sets with the following properties:

I0,k, ..., Im,k ⊂< n >,

|I0,k| = |I1,k| = · · · |Im,k| ≤ n− 1,

k = 1, ..., N(n,m),
(4)

such that

λ0
I0,k

≤
m∑

j=1

λj
Ij,k

, k = 1, ..., N(n,m). (5)

The collections of sets (4) are characterized in terms of Schubert calculus. The special case m = 2 has
a long history. Here the sets (4) were conjectured recursively by Horn [Hor]. This conjecture was recently
proved by A. Knutson and T. Tao [K-T]. See Fulton [Ful] for the nice exposition of this subject. Fulton
also notices that Klyachko theorem extends to the case where A0, ..., Am ∈ Sn. See also J. Day, W. So and
R. C. Thompson [D-S-T] for an earlier survey on the Horn conjecture.

To state our results it is convenient to introduce an equivalent statement of (5). First observe that the
Wielandt inequalities [Wie] imply that for each I ⊂< n >, 0 < |I| < n there exists at least one I0,k = I for
some k ∈< N(n,m) >. (See §2.) Let

aI := min
(I1,k,...,Im,k),I0,k=I

m∑

j=1

λj
Ij,k

, I ⊂< n >, 0 < |I| < n,

a<n> :=
m∑

j=1

λj
<n>.

(6)

Then (5) is equivalent to
λ0

I ≤ aI , I ⊂< n >, 0 < |I| < n. (5′)

First we extend Klyachko theorem in finite dimension as follows:

Theorem 1. For m, n > 1 the following conditions are equivalent:
(a) The vectors (1) for j = 0, ..., m satisfy the conditions (5′), the condition

λ0
<n> ≤ a<n>, (3′)
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and the conditions
n∑

i=1

wl
iλ

0
i ≤ −a<n> +

∑

I⊂<n>,0<|I|<n

ul
IaI , l = 1, ..., M(n), (3′′)

where wl
i, u

l
I are given nonnegative numbers for i = 1, ..., n, I ⊂< n >, l = 1, ...,M(n).

(b) There exist a Hermitian matrix Aj with the eigenvalue vector λj ∈ Rn
≥ for j = 0, ...,m such that

A0 ≤
m∑

j=1

Aj . (2′)

Note that if B ≥ A and trace B = trace A then B = A. Hence Klyachko theorem follows from Theorem
1. Furthermore, if λ0 satisfies (3) and (5) then (3′′) hold. The inequalities (3′′) are determined by the
extreme rays of a certain natural cone in Rp, p = 2n + 2n − 1, which is described in the next section. For
n = 2 the conditions (3′′) are not needed. We believe that (3′′) are needed for n > 2. Theorem 1 is closely
related to the Completion Problem described in the beginning of §3.

The main purpose of this note to extend our Theorem 1 to the case where A0, ..., Am are compact,
selfadjoint nonnegative operators in a separable Hilbert space H. Let A,B : H → H be linear, bounded,
selfadjoint operators. We let A ≤ B (A < B) iff 0 ≤ B − A (0 < B − A), i.e. B − A is nonnegative
(respectively positive). Let A : H → H be a bounded, selfadjoint, nonnegative, compact operator on a
separable Hilbert space. Then H has an orthonormal basis {ei}∞1 such that

Aei = λiei, λi ≥ 0, i = 1, ...,

λ1 ≥ λ2 ≥ · · · ≥ λn · · · ,
lim

n→∞
λi = 0.

(7)

We say that {λi}∞i=1 is the eigenvalue sequence of A. (Note that a nonnegative A has a finite range iff λi = 0
for some i ≥ 1.) A (as above) is said to be in the trace class [Kat, X.1.3] if

∑∞
i=1 λi < ∞. Then trace

A :=
∑∞

i=1 λi.

Theorem 2. For m > 1 the following conditions are equivalent:
(a) For j = 0, ...,m, let {λj

i}∞i=1 be decreasing sequences of nonnegative numbers converging to zero, such
that (5′), (3′) and (3′′) holds for m + 1 vectors λj := (λj

1, ..., λ
j
n), j = 0, ..., m for any n > 1.

(b) There exist a linear, bounded, selfadjoint, nonnegative, compact operators Aj : H → H with the
eigenvalue sequence {λj

i}∞i=1 for j = 0, ...m, such that (2′) holds.

Klyachko theorem can be extended to the infinite dimensional case as follows:

Theorem 3. For m > 1 the following conditions are equivalent:
(a) For j = 0, ...,m, let {λj

i}∞i=1 be decreasing sequences of nonnegative numbers converging to zero, such
that (5′), (3′) and (3′′) holds for m + 1 vectors λj := (λj

1, ..., λ
j
n), j = 0, ..., m for any n > 1. Furthermore

∞∑

i=1

λ0
i =

m∑

j=1

∞∑

i=1

λj
i < ∞ (8)

(b) There exist a linear, bounded, selfadjoint, nonnegative, compact operators in the trace class Aj : H → H
with the eigenvalue sequence {λj

i}∞i=1 for j = 0, ...m, such that (2) holds.

Remark 1. All the matrices and operators in Theorems 1, 2 and 3 can be presented as finite or inifinite real
symmetric matrices in corresponding orthornomal bases.
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It is an open problem whether the conditions (3′′) in part (a) of Theorems 2 and 3 can be omitted. It
is easy to show that in part (a) of Theorems 2 and 3 it is enough to assume the validity of (5′), (3′) and (3′′)
for any infinite increasing sequence 1 < n1 < n2 < · · · instead for any n > 1.

We describe briefly the organization of the paper. In §2 we prove Theorem 1. In §3 we prove the
implication (b) ⇒ (a) in Theorem 2, and we deduce Theorem 3 from Theorem 2. The use of functional
analysis in §3 was kept to the minimum. Our main tool is the convoy principle, e.g. [Fri] and the references
therein. In §4 we prove the implication (a) ⇒ (b) of Theorem 2. This needs the spectral decomposition
theorem for a linear, bounded, selfadjoint operator and the notion of the weak convergence.

We remark that it is straightforward to rephrase our results to the nonpositive analogs of Theorems 2
and 3. However, difficulties arise when one tries to generalize Theorems 2 and 3 to indefinite, selfadjoint,
compact operators. Similar problems arise in the joint paper of G. Porta and the author in [F-P].

§2. Finite dimensional case

The following result is well known, e.g. [Gan, §X.7], and it follows from the Weyl’s inequalities

λ0
i+j−1 ≤ λ1

i + λ2
j for i + j − 1 ≤ n,

which are a special case of (5):

Lemma 1. The following are equivalent:
(a) The vectors λ0, λ1 ∈ Rn

≥ satisfy λ0 ≤ λ1.
(b) There exist a Hermitian matrix Aj ∈ Hn with the eigenvalue vector λj for j = 0, 1 such that A0 ≤ A1.

The following remark will be useful in the sequel:

Remark 2. Let λ0 = (λ0
1, ..., λ

0
n) ∈ Rn

≥ be the eigenvalue vector of A0. Then A0 = U diag(λ0
1, ..., λ

0
n) U∗

for some unitary matrix U . Assume that λ1 satisfy the condition (a) of Lemma 1. Then λ1 is the eigenvalue
vector of A1 := U diag(λ1

1, ..., λ
1
n) U∗ and A0 ≤ A1.

Let A, B ∈ Hn. Then Wielandt inequalities state [Wie]:

λI(A + B) ≤ λI(A) + λ<|I|>(B)

for any nonempty subset I of < n >. In particular

λI(
m∑

j=1

Aj) ≤ λI(A1) +
m∑

j=2

λ<|I|>(Aj).

Hence, each strict subset I of < n > is equal to some I0,k given in (4) as we claimed.
Let y = (y1, ..., yn) ∈ Rn satisfy the inequalities

−yi + yi+1 ≤ 0, i = 1, ..., n− 1,

yI ≤ aI , ∅ 6= I ⊂< n > .
(9)

The above system of inequalities can be written as

UyT ≤ bT ,

where U is an (2n + n− 2)× n matrix with entries in the set {0, 1,−1} induced by the above inequalities in
the above order. More precisely, UT = (UT

1 , UT
2 ), b = (0, a), where U1, U2, b are (n− 1)×n, (2n− 1)×n and

1× (2n + n− 2) matrices respectively. Moreover,

a := (aI)I⊂<n>,0<|I| ∈ R2n−1
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is a row vector. Note that the first n− 1 inequalities (9) are equivalent to the condition that y ∈ Rn
≥. Then

next 2n − 2 conditions are the inequalities of the type (5′). The last inequality of (9) is of the type (3′).
Klyachko’s conditions for the vector x = (x1, ..., xn) = λ0 are equivalent to:

UxT ≤ bT ,

−x<n> ≤ −a<n>.
(9′)

Lemma 2. Let λ1, ..., λm ∈ Rn
≥ be given. Assume that b = (0, a), where the coordinates of the vector

a ∈ R2n−1 are given by (6). Let y ∈ Rn
≥. Then there exist A0, A1, ..., Am ∈ Hn with the corresponding

eigenvalue vectors y, λ0, ..., λm satisfying (2′) iff the following system in x is solvable:

UxT ≤ bT ,

−x<n> ≤ −a<n>,

−xi ≤ −yi, i = 1, ..., n.

(10)

Proof. Suppose first that (2′) holds. Let Ã0 :=
∑m

j=1 Aj and assume that x is the eigenvalue vector of Ã0.
Then Klyachko’s theorem yields the inequalities (9′). As A0 ≤ Ã0 Lemma 1 yields the inequalities x ≥ y.
Hence (10) holds.

Assume now that x satisfies (10). Then x satisfies (9′). Klyachko’s theorem yields that there exists
Ã0, A1, ..., Am ∈ Hn with the respective eigenvalue vectors x, λ1, ..., λm such that Ã0 =

∑m
j=1 Aj . Note that

the last n conditions of (10) state that x ≥ y. A trivial variation of Remark 2 yields the existence of A0 ≤ Ã0

so that y is the eigenvalue vector of A0. ¦.

System (10) of can be written in a matrix form as

V xT ≤ cT ,

V T = (UT ,−eT ,−I), c = (b,−a<n>,−y), e = (1, ..., 1) ∈ Rn.
(10′)

A variant of Farkas lemma, [Sch, 7.3] yields that the solvability of the above system is equivalent to the
implication

z ≥ 0, zV = 0 ⇒ zcT ≥ 0. (11)

Here z = (t, u, v, w) is a row vector which partitioned as V . Hence

t = (t1, ..., tn−1), u = (uI)I⊂<n>,0<|I|, v ∈ R, w = (w1, ..., wn).

Lemma 3. Any solution z = (t, u, v, w) to the system zV = 0 is equivalent to the identity in n variables
x = (x1, ..., xn):

∑

I⊂<n>,0<|I|
uIxI =

n−1∑

i=1

ti(xi − xi+1) +
n∑

i=1

(wi + v)xi. (12)

The cone of nonnegative solutions zV = 0, z ≥ 0 is finitely generated by the extremal vectors of the following
three types

zl,1 := (tl,1, ul,1, 0, wl,1), l = 1, ..., M1(n),

zl,2 := (tl,2, ul,2, 1, 0), l = 1, ..., M2(n),

zl,3 := (tl, ul, 1, wl), ul
<n> = 0, wl 6= 0, l = 1, ..., M(n).

(13)

The number of nonzero coordinates in any extremal vector of the form (13) is at most n + 1. Furthemore,
the set of extremal vectors of the form zl,3 is empty for n = 2.
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Proof. Let z = (t, u, v, w) satisfy (12). Equate the coefficient of xi in (12) to deduce that the i − th
coordinate of the vector zV is equal to zero. Hence zV = 0. Similarly zV = 0 implies the identity (12). The
Farkas-Minkowski-Weyl theorem [Sch., 7.2] yields that the cone zV = 0, z ≥ 0 is finitely generated. First
we divide the extreme vectors z = (t, u, v, w) to two sets v = 0 and v 6= 0. We normalize the second set by
letting v = 1. We divide the second set to the subsets w = 0 and w 6= 0. Note that the subset w = 0 contains
an extremal vector ζ = (0, v, 1, 0) where v<n> = 1 and all other coordinates are equal to zero. Hence the
extremal vector in the second subset (tl, ul, 1, wl), wl 6= 0 satisfies ul

<n> = 0.
Let z be an extremal ray of the cone zV = 0, z ≥ 0. Assume that z has exactly p nonvanishing

coordinates. Let Û be p × n submatrix of U corresponding to the nonzero elements of z. Let wV = 0 and
assume that wi = 0 if zi = 0. Then the nonzero coordinates of w satisfy n equations. As z is an extremal
ray it follows that w = αz for some α ∈ R. Hence the p columns of Û span p− 1 dimensional subspace, i.e.
rank Û = p− 1 ≤ n.

Consider an extremal vector zl,3. By the definition v = 1, wl 6= 0 and ul
<n> = 0. Use (12) to deduce

that ul 6= 0. Assume first that n = 2. Since zl,3 has at most 3 nonzero coordinates, we deduce that each
vector ul, vl = 1, wl has exactly one nonzero coordinate. As ul

<2> = 0 (12) can not hold. ¦

Lemma 4. Let n > 1 and a := (aI)I⊂<n>,1≤|I| be a given vector. Define

K(a) := {x ∈ Rn
≥ : xI ≤ aI , I ⊂< n >, 0 < |I| < n, x<n> = a<n>}.

Assume that K(a) is nonempty. Define

K ′(a) := {y ∈ Rn
≥ : ∃x ∈ K(a), y ≤ x}.

Then K ′(a) is polyhedral set given by the (5′), (3′) and (3′′) with y = λ0.

Proof. Farkas lemma yields that y ∈ K ′(a) iff (11) holds, where c is defined in (10′). Assume first that
y ∈ K ′(a). Then (5′), (3′) hold. The system zV = 0 is equivalent to (t, u)U = ve + w, where U is the matrix
representing the system (9). Hence

zcT =(t, u)bT − va<n> − wyT =

(t, u)bT − va<n> − ((t, u)U − ve)yT = (t, u)(bT − UyT ) + v(eyT − a<n>),

zcT =uaT − va<n> − wyT .

(14)

Use (11) and the second equality of (14) for the vectors zl,3, l = 1, ..., M(n) to deduce (3′′).
Assume now that y satisfies (5′), (3′) and (3′′). Observe that (5′), (3′) are equivalent to bT ≥ UyT . We

claim that (11) holds. Suppose first that z = (t, v, 0, w) ≥ 0. From the last part of the first equality (14) we
deduce that zcT ≥ 0. Assume next that z = (t, v, 1, 0). Choose y ∈ K(a). Clearly, y ∈ K ′(a). Then (11)
holds for this particular choice of y. Use the second equality of (14) to get uaT − va<n> ≥ 0. Thus, it is
enough to prove (11) for the extreme points of the cone zV = 0, z ≥ 0 of the third type zl,3, l = 1, ..., M(n).
These are exactly the conditions (3′′). ¦

Proof of Theorem 1. Assume the condition (b) of Theorem 1. Let Ã0 :=
∑m

j=1 Aj and λ̃0 be the eigenvalue
vector of Ã0. Then Lemma 1 yields λ̃0 ≥ λ0. Use Klyacko theorem and Lemma 4 to deduce the conditions
(a) of Theorem 1.

Assume the conditions (a) of Theorem 1. Lemma 4 implies the existence of λ̃0 ∈ K(a) such that λ0 ≤ λ̃0.
Lemma 2 yields the condition (b) of Theorem 1. ¦

Proposition 1. Let n ≥ 3 and assume that I, J be two proper subsets of < n > such that

I ∪ J =< n >, I ∩ J = {i}, 1 ≤ i ≤ n.

Then the equality
xI + xJ = x<n> + xi
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corresponds to an extremal ray zl,3 = (0, u, 1, wl), where u has two nonzero coordinates (equal to 1 and
corresponding to sets I, J) and w has one nonzero coordinate (wi = 1). Hence the corresponding inequality
(3′′) is given by:

λ0
i ≤ −a<n> + aI + aJ . (3IJ )

Proof. It is ehough to show that that 4 × n matrix Û appearing in the proof of Lemma 3 has rank 3.
Without the loss of generality we may assume that {1, 2} ⊂ I1, {2, 3} ⊂ I2, i.e. i = 2. It is enough to show
that the 4× 3 submatrix Ũ , composed of the first three columns of Û has rank 3. That is, one may assume
that n = 3 and a straightforward calculation shows that rank Û = 3. Use the above extremal ray zl,3 in (3′′)
to obtain (3IJ ). ¦

We believe that for any n ≥ 3 at least one of the inequalities of the form (3IJ) does not follow from (5′)
and (3′).

§3. Convoy principle

Let H be a separable Hilbert space with an inner product < u, v >∈ C for u, v ∈ H. Let A : H → H
be a linear, bounded, selfadjoint operator. Let V ⊂ H be an n-dimensional subspace. Pick an orthonormal
basis f1, ..., fn ∈ V . Denote by A(f1, ..., fn) ∈ Hn the n× n matrix whose (i, j) entry is < Afi, fj >. Let

λ1(A, V ) ≥ λ2(A, V ) ≥ · · · ≥ λn(A, V )

be the n eigenvalues of the Hermitian matrix (< Afi, fj >)n
1 . Clearly, the above eigenvalues do not depend

on a particular choice of an orthonormal basis f1, ..., fn of V . We now recall the convoy principle, e.g. [Fri].

Lemma 5. Let A : H → H be a bounded, linear, selfadjoint, nonnegative, compact operator with the
eigenvalue sequence {λi}∞i=1. Let n ≥ k ≥ 1 be any integers. Assume that V ⊂ H is any n-dimensional
subspace. Then λk(A, V ) ≤ λk and this inequality is sharp.

Proof. Choose an orthonormal basis f1, ..., fn of V so that (< Afi, fj >)n
1 is the diagonal matrix diag

(λ1(A, V ), ..., λn(A, V )). Let f =
∑k

i=1 αifi 6= 0 such < f, ei >= 0, i = 1, ..., k − 1, where {ei}∞1 is an
orthonormal basis of H given in (7). Deduce from (7) and from the choice of f1, ..., fn that

λk(A, V ) ≤ < Af, f >

< f, f >
≤ λk.

For V =span(e1, ..., en) we obtain that λk(A, V ) = λk. ¦

The Completion Problem. Let λ0, ..., λm ∈ Rn
≥ be given. Find θ0, ..., θm ∈ Rl

≥ for some l ≥ 1 with the
following properties:
(a) Each row vector (λj , θj) belongs to Rn+l

≥ for j = 0, ..., m.
(b) There exists Aj ∈ Hn+l such that (λj , θj) is its eigenvalue vector for j = 0, ..., m and A0 =

∑m
j=1 Aj .

Proposition 2. Assume that the Completion Problem is solvable. Then (5′), (3′), (3′′) hold.

Proof. Without loss of generality assume that A0 = diag (λ0
1, ..., λ

0
n, θ0

1, ..., θ
0
l ). Let Bj be the principal

submatrix of Aj corresponding to the first n row and columns for j = 0, ..., m. Clearly, B0 =
∑m

j=1 Bj

and λ0 = λ(B0). The convoy principle yields λ(Bj) ≤ λj , j = 1, ...,m. Remark 2 implies the existence of
Cj ∈ Hn such that λ(Cj) = λj and Cj ≥ Bj for j = 1, ..., m. Hence B0 ≤

∑m
j=1 Cj and (5′), (3′), (3′′) follow

from Theorem 1. ¦
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It is an open problem if the conditions (5′), (3′), (3′′) imply always the solvability of the Completion
Problem. We refer to [D-S-T, §3.7] for a related completion problem.

Proof (b) ⇒ (a) in Theorem 2. Denote by (5′n), (3′n), (3′′n) the inequalities (5′), (3′), (3′′) respectively.
Assume that {ei}∞i=1 is an orthonormal basis of H so that

A0ei = λ0
i ei, λi ≥ 0, i = 1, ..., .

Let Vn :=span(e1, ..., en) and set

Bk := (< Akei, ej >)n
1 ∈ Hn, k = 0, ..., m.

The assumption A0 ≤
∑m

k=1 Aj yields B0 ≤
∑m

k=1 Bj . Recall that the eigenvalue vector of Bj is λ(Bj) :=
(λ1(Aj , Vn), ..., λn(Aj , Vn)) for j = 0, ..., m. Note that the choice of Vn yield that λi(A0, Vn) = λ0

i , i = 1, ..., n.
Use Lemma 5 for upper estimates of {λi(Aj , Vn)}n

1 to deduce that λj := (λj
1, ..., λ

j
n) ≥ λ(Bj) for j = 1, ...,m.

Remark 2 yields the existence of Cj ∈ Hn, with the eigenvalue vector λj , such that Cj ≥ Bj for j = 1, ...,m.
Hence B0 ≤

∑m
j=1 Cj . Theorem 1 yields part (a) of Theorem 2. ¦

We defer the proof of the implication (a) ⇒ (b) to the next section. To show that Theorem 3 is a simple
corollary of Theorem 2 we bring the proof of the following Lemma, which is well known to the experts:

Lemma 6. Let A : H → H be a linear, bounded, selfadjoint, nonnegative, compact operator given by (7).
Then A is in trace class iff for some orthonormal basis {fi}∞1 the nonnegative series

∑∞
i=1 < Afi, fi >

converges. Furthermore, if A is in the trace class then

∞∑

i=1

< Afi, fi >=
∞∑

i=1

λi.

Proof. Let Vn =span(f1, ..., fn), n = 1, ...,. Assume first that A is in the trace class. Lemma 5 yields

n∑

i=1

< Afi, fi >=
n∑

i=1

λi(A, Vn) ≤
n∑

i=1

λi ≤ trace A.

Hence the nonnegative series
∑∞

i=1 < Afi, fi > converges. Assume now that the nonnegative series
∑∞

i=1 <
Afi, fi > converges. Since limn→∞ dist (Vn, ek) = 0 a straightforward argument yields (or see Lemma 7)

lim
n→∞

λk(A, Vn) = λk, k = 1, ..., .

Lemma 5 yields that the sequence {λk(A, Vn)}∞n=k is a nondecreasing sequence that converges to λk for any
k ≥ 1. Hence, for a given positive integer k and ε > 0 there exists N(k, ε) so that

k∑

i=1

λi ≤ ε +
k∑

i=1

λi(A, Vn) ≤ ε +
n∑

i=1

λi(A, Vn) = ε +
n∑

i=1

< Afi, fi >≤ ε +
∞∑

i=1

< Afi, fi >

for any n > N(k, ε). Fix k. We then deduce

k∑

i=1

λi ≤
∞∑

i=1

< Afi, fi > .

As k is arbitrary we obtain

trace A ≤
∞∑

i=1

< Afi, fi > .
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Hence A is in the trace class. Assume that A is in the trace class. The above arguments yield the equality
in the above inequality. ¦

Proof of Theorem 3. We assume the validity of Theorem 2.
(a) ⇒ (b). Theorem 2 yields the existence of A0, ..., Am selfadjoint, nonnegative, compact operators with
the prescribed eigenvalue sequences so that A0 ≤

∑m
j=1 Aj . Assumption (8) yields that A0, ..., Am are in

the trace class. Let A :=
∑m

j=1 Aj −A0. Then A is a selfadjoint, nonnegative, compact operator. Lemma 6
yields that A is in the trace class. Then (8) implies that trace A = 0, hence A = 0.
(b) ⇒ (a). Theorem 2 yields (5′n), (3′n), (3′′n), n = 1, ...,. As A0, ..., Am are in the trace class and A0 =

∑m
j=1 Aj

Lemma 6 yields (8). ¦

§4. Completion of the Proof of Theorem 2.

Recall that ||x|| := √
< x, x > is the standard norm on H induced by its inner product. Let A : H → H

be a linear, bounded, selfadjoint operator. Let ||A|| := sup||x||≤1 ||Ax|| be the norm of A. Then for any
n-dimensional subspace V ⊂ H we have that

|λi(A, V )| ≤ ||A||, i = 1, ..., n.

Let
λk(A,H) := sup

V⊂H,dimV =k
λk(A, V ), k = 1, ..., .

For a nonnegative compact A of the form (7) Lemma 5 yields that

λk(A,H) = λk, k = 1, ..., .

Lemma 7. Let A : H → H be a linear, bounded, selfadjoint operator. Then the sequence {λi(A,H)}∞1
is a nonincreasing sequence which lies in [−||A||, ||A||]. Let {fi}∞1 be any orthonormal basis in H. Set
Vn=span(f1, ..., fn) for n = 1, ...,. Then the sequence {λk(A, Vn)}∞n=k is an incresing sequence which con-
verges to λk(A,H) for each k = 1, 2, ...,.

Proof. Fix a complete flag

W1 ⊂ W2 ⊂ · · · ⊂ Wi · · · , dim Wi = i, i = 1, ...,

of subspaces in H. Then the convoy principle for matrices yields that

λi(A,Wi+1) ≥ λi(A, Wi) ≥ λi+1(A,Wi+1), i = 1, 2, ..., .

(These inequalities are natural extensions of the Cauchy interlacing inequalites for matrices.) Hence the
sequence {λi(A,H)}∞1 is a nonincreasing sequence which lies in [−||A||, ||A||]. Furthermore we obtain that
{λk(A, Vn)}∞n=k is a nondecreasing sequence. From the definition of λk(A,H) we immediately deduce that

λk(A, Vn) ≤ λk(A,H), n = k, k + 1, ..., .

Let
λ̃k := lim

n→∞
λk(A, Vn), k = 1, ..., .

Hence λ̃k ≤ λk(A,H), k = 1, ...,. We claim that for any k-dimensional subspace W ⊂ H

λ̃k ≥ λk(A,W ).

9



Assume that g1, ..., gk is an orthonormal basis in W so that the matrix (< Agi, gj >)k
1 is the diagonal matrix

diag(λ1(A, W ), ..., λk(A,W )). Let Pn : H → Vn be the orthogonal projection on Vn. That is

Pnx =
n∑

i=1

< x, fi > fi.

Then limn→∞ Pnx = x for every x ∈ H, i.e. Pn converges in the strong topology. Hence, for n > N ,
Png1, ..., Pngk are linearly idependent. Let g1,n, ....gk,n ∈ Vn be the k orthonormal vectors obtained from
Png1, ...., Pngn using the Gram-Schmidt process. We can renormalize g1,n, ..., gk,n (by multiplying them by
suitable complex numbers of length 1) so that

lim
n→∞

gi,n = gi, i = 1, ..., k.

Hence the matrix (< Agi,n, gj,n >)k
i,j=1 converges the diag (λ1(A,W ), ..., λk(A,W )). Let Wn = span

(g1,n, ..., gk,n). Then
lim

n→∞
λk(A,Wn) = λk(A,W ).

As Wn ⊂ Vn the convoy principle implies

λk(A,Wn) ≤ λk(A, Vn) ≤ λ̃k.

Hence
λk(A, W ) ≤ λ̃k ⇒ λk(A,H) ≤ λ̃k ⇒ λk(A,H) = λ̃k.

¦

Let A satisfy the assumption of Lemma 7. Denote by σ(A) the spectrum of A. Then σ(A) is a compact
set located in the closed interval [−||A||, ||A||]. Recall the spectral decomposition of A:

A =
∫

[−||A||,||A||]
xdE(x).

Here E(x), x ∈ R, 0 ≤ E(x) ≤ I is the resolution of the identity of commuting increasing family of orthogonal
projections induced by A, which is continuous from the right. Hence E(−||A||− 0) = 0 and E(||A||+0) = I.
Consult for example with the classical book [A-N] or a modern book [R-S]. Note that

I =
∫

[−||A||,||A||]
dE(x)

For a measurable set T ⊂ R denote by P (A, T ) the spectral projection of A on T :

P (A, T ) :=
∫

T

dE(x).

We let dim P (A, T ) be the dimension of the closed subspace P (A, T )H. Note that 0 ≤ dim P (A, T ) ≤ ∞.
Observe that dim P (A, (a, b)) is finite and positive iff σ(A)∩ (a, b) consists of a finite number of eigenvalues
of A, each one with a finite dimensional eigenspaces. We say that µ(A) is the first accumulation point of the
spectrum of A if

dim P (A, (µ(A) + ε,∞)) < ∞, dim P ((µ(A)− ε,∞)) = ∞
for every positive ε. µ(A) must be either a point of the continuous spectrum or a point spectrum with an
infinite corresponding eigenspace. (It is a maximal point in σ(A) with this property.)

Lemma 8. Let A : H → H be a linear, bounded, selfadjoint operator. Then the nonincreasing sequence
{λi(A,H)}∞1 converges to µ(A).
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Proof. Suppose first that dim P (A, (a, b)) > 0. Let

A(a, b) :=
∫

(a,b)

xdE(x).

Then
a ≤ < Ax, x >

< x, x >
≤ b, 0 6= x ∈ P (A, (a, b))H.

Let ε > 0. Let f1, ..., fk−1 be an orthonormal basis V = P (A, (µ(A) + ε,∞))H. (If k = 1 then V = 0.)
Hence V ⊥ = P (A, (−∞, µ(A) + ε])H. Let W ⊂ H be any subspace of dimension k. Then V ⊥ ∩W contains
a nonzero vector x ∈ P (A, (−∞, µ(A) + ε])H. Then convoy principle and the above observation yield that

λk(A,W ) ≤ µ(A) + ε.

Hence
λk(A,H) ≤ µ(A) + ε.

Recall that U := P (A, (µ(A) − ε,∞))H is infinite dimenisonal. Let W ⊂ U , dim W = l. Then the convoy
principle and the above observation yield that

λl(A,W ) ≥ µ(A)− ε.

Hence λl(A,H) ≥ µ(A)− ε. This inequality true for any l. Hence

lim
l→∞

λl(A,H) ≥ µ(A)− ε.

Since ε was an arbitrary positive number we deduce the lemma. ¦

Corollary. Let A : H → H be a linear, bounded, selfadjoint, nonnegative operator. Then A is compact iff
the nonincreasing sequence {λi(A,H)}∞1 converges to 0.

Proof of (a) ⇒ (b) in Theorem 2. Fix an orthonormal basis {ei}∞i=1 ofH. Assume the condition (a) of The-
orem 2. Theorem 1 yields the existence of m+1 n×n Hermitian (real symmetric) matrices Bj,n, j = 0, ..., m

with the eigenvalues {λj
i}n

i=1, j = 0, ..., m respectively, such that B0,n ≤
∑m

j=1 Bj,n. Note that any entry of
the matrix Bj,n is bounded in absolute value by λj

1. Moreover we assume that B0,n =diag(λ0
1, ..., λ

0
n). Define

a nonnegative, compact operators with a finite range by infinite block diagonal matrix Aj,n :=diag(Bj,n, 0)
in the orhonormal basis {ei}∞1 for j = 0, ..., m. We still have the inequality A0,n ≤

∑m
j=1 Aj,n. The first

n eigenvalues of Aj,n are {λj
i}n

i=1 while others eigenvalues are 0. As the entry of each matrix Bj,n is uni-
formly bounded, there exists a subsequence nl → ∞ so that each (p, q) entry of Aj,nl

converges a complex
number apq,j as l →∞. We claim that each infinite Hermitian matrix Cj := (apq,j)∞p,q=1 represents a linear,
bounded, selfadjoint, and nonnegative operator. This trivially holds for C0, which is an infinite diagonal
matrix diag(λ0

1, ...). Since any principal submatrix of Aj,n is nonnegative and its norm is bounded above by
λj

1, each principal submatrix of Cj is nonnegative and its norm is bounded above by λj
1. [A-N, §26] yields

that C1, ..., Cm represent linear, bounded, selfadjoint and nonnegative operators. Let Vk =span(e1, ..., ek).
From the definition of C1, ..., Ck we deduce

λi(Cj , Vk) ≤ λj
i , i = 1, ..., k.

Lemma 7 yields that
λi(Cj ,H) ≤ λj

i , i = 1, ..., j = 1, ..., m.

Corollary to Lemma 8 yields that C1, ..., Cm are compact. As any principal submatrix of A0,n is majorized
by the corresponding sum of submatrices Aj,n, j = 1, ...,m we deduce that any principal submatrix of C0 is
majorized by the corresponding sum of submatrices Cj , j = 1, ..., m. Hence C0 ≤

∑m
j=1 Cj . Let

Cjei,j = λi(Cj ,H)ei,j , i = 1, ...,

11



be eigenvectors and the eigenvalues of Cj such that {ei,j}∞i=1 is an orthonormal basis of H. Let A0 = C0 and
define Aj by the equality

Ajei,j = λj
iei,j , i = 1, ..., j = 1, ..., m.

Then each Aj ≥ Cj , j = 1, ...,m and part (b) of Theorem 2 follows. ¦
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