1 HOMEWORK ASSIGNMENT 1
Assigned 1-9-12 – Due 1-18-12

Do the following problems from [5]: p’18: 1, 2, 3, 5, 6; p’ 312: 1,2. Note about Petersen’s notation: Mat$_{m,n}$ is $\mathbb{C}^{m \times n}$; $|A|$ is det A, the determinant of $A \in \mathbb{F}^{n \times n}$.

Additional problem. Let $z_1, z_2, \ldots, z_n \in \mathbb{C}$. The Vandermonde matrix is given as

$V(z_1, \ldots, z_n) := \begin{bmatrix}
1 & z_1 & z_1^2 & \cdots & z_1^{n-1} \\
1 & z_2 & z_2^2 & \cdots & z_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z_n & z_n^2 & \cdots & z_n^{n-1}
\end{bmatrix} \in \mathbb{C}^{n \times n}.$

Show that det $V(z_1, \ldots, z_n)$, called the Vandermonde determinant is equal to $\prod_{1 \leq i < j \leq n}(z_j - z_i)$.

2 HOMEWORK ASSIGNMENT 2
Assigned 1-23-12 – Due 2-3-12

a. 2 problems from §1.4.1, 4 problems from §1.4.2 from [1].

b. Let $\sigma \in S_5$ be defined as $\sigma(1) = 3, \sigma(2) = 5, \sigma(3) = 1, \sigma(4) = 4, \sigma(5) = 2$. Find sign($\sigma$).

c. $A, B \in \mathbb{F}^{m \times m}$ are called congruent if $A = TBT^T$ for some $T \in \text{GL}(n, \mathbb{F})$. Show

1. Congruence in $\mathbb{F}^{n \times n}$ is an equivalence relation.

2. Show that any two congruent matrices have the same rank

d. Assume that if $A \in \mathbb{F}^{n \times n}$ is a skew symmetric matrix.

1. Show that if n is odd and \mathbb{F} has characteristic not equal to 2, i.e. $2 \neq 0$ in \mathbb{F}, then det $A = 0$.

1
2. Show that if F has characteristic not equal to 2, then A is congruent to a block diagonal matrix $B = \text{diag}(B_1, \ldots, B_k)$, where each block is either $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ or 1×1 identity matrix. **Hint:** Use a sequence of "elementary conjugation" given by EAE^\top where E is an elementary matrix.

3. Show that if F has characteristics 2, then A is congruent to a block diagonal matrix $B = \text{diag}(B_1, \ldots, B_k)$, where each block is either or 1×1 identity matrix or $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. (Note that $-1 = 1$ in F.)

4. Given an example of $n \times n$ skew symmetric matrix, for a field with characteristic 2, whose determinant is nonzero for each $n \in \mathbb{N}$.

5. Assume that $F = \mathbb{R}$. Then $\det A \geq 0$.

3 HOMEWORK ASSIGNMENT 3
Assigned 2-2-12 – Due 2-10-12

Problems 2-8, §1.6.1, (page 16) in [1]; Problems 1-8, (page 18) in [1].

4 HOMEWORK ASSIGNMENT 4
Assigned 2-6-12 – Due 2-15-12

Do the following problems

1. Let $u = (1, -1, 1, -1)^\top$, $v = (2, 0, -2, 1)^\top$. Find

 (a) The cosine of the angle between u and v.
 (b) The scalar and the vector projection of v on u.
 (c) A basis to the orthogonal complement of $U := \text{span}(u, v)$.
 (d) The projection of the vector $(1, 1, 0, 0)^\top$ on U and U^\perp.

2. Let $A \in \mathbb{R}^{4 \times 3}$. Assume that the vector $(1, -1, 1, -1)^\top$ is a vector in the column space of A. Is it possible that a vector $(2, 0, -2, 1)^\top$ is in the null space of A^\top?
 If yes give an example of such a matrix. If not, justify why.

3. Consider the overdetermined system

 \[
 \begin{align*}
 x_1 + x_2 + x_3 &= 4 \\
 -x_1 + x_2 + x_3 &= 0 \\
 -x_2 + x_3 &= 1 \\
 x_1 + x_3 &= 2
 \end{align*}
 \]

 (a) Is this system solvable?
 (b) Find the least squares solution of this system.
 (c) Find the projection of $(4, 0, 1, 2)^\top$ on the column space of the coefficient matrix $A \in \mathbb{R}^{4 \times 3}$ of this system.
4. Let \((-1, 0), (0, 1), (1, 3), (2, 9)\) be four points in the plane \((x, y)\) Find

(a) The best least squares fit by a linear function \(y = ax + b\).
(b) The best least squares by a quadratic polynomial \(y = ax^2 + bx + c\).
(c) Explain briefly why there exist a unique cubic polynomial \(y = ax^3 + bx^2 + cx + d\) passing through these four points.

5. Let \(a \leq t_1 < t_2 < \ldots < t_n \leq b\) be \(n\) points in the interval \([a, b]\). For any two continuous functions \(f, g \in C[a, b]\) define \(\langle f, g \rangle := \sum_{i=1}^{n} f(t_i)g(t_i)\). Let \(P_m\) be the vector space of all polynomials of degree at most \(m - 1\).

(a) Show that for \(m \leq n\) \(\langle \cdot, \cdot \rangle\) is an inner product on \(P_m\).
(b) Is \(\langle \cdot, \cdot \rangle\) an inner product on \(P_{n+1}\)? Justify!

6. For the inner product \(\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)dx\) on \(C[-1, 1]\) Find the cosine of the angle between \(f(x) = 1\) and \(g(x) = e^x\).

Do the following problems from “Schaum’s Outline of Linear Algebra” by S. Lipschutz and M. Lipson, 4th edition, pages 258-261: 7.58, 7.60, 7.64, 7.71.

5 \hspace{1cm} HOMEWORK ASSIGNMENT 5
Assigned 2-14-12 – Due 2-22-12

Do the following problems. The problems in Schaum are from pages 260–262.

1. Problem 7.75 from Schaum. In addition do the following
 (a) Find the QR decomposition of the matrix \(A = [v_1 \ v_2 \ v_3]\).
 (b) Complete the orthonormal basis you found using the Gram-Schmidt problem to an orthonormal basis of \(\mathbb{R}^4\).

2. Problem 7.76 part a in Schaum.
4. Problem 7.91 in Schaum.
5. Problem 7.94 in Schaum.
6. Problem 1 page 23 in [1].
7. Problem 3 page 23 in [1]. \textbf{Hint}: try \(a_{pq} = z^{pq}\), where \(z = e^{\frac{2\pi i}{n}}\).
8. Problem 5 page 23 in [1].

6 \hspace{1cm} HOMEWORK ASSIGNMENT 6
Assigned 2-22-12 – Due 2-29-12

[1]: §2.3 page 28–29, Problems: 9(a,b,c), (special orthogonal means determinant one), 10a, 12.
[3]: §6.4 p’363-365, Problems: 4(a-f); 5(a,b,c,f),6,10,12,14.
7 HOMEWORK ASSIGNMENT 7
Assigned 2-26-12 – Due 3-7-12

I. Assume that A a real symmetric matrix. Denote by \(i_+(A) \) be the number of positive eigenvalues, \(i_0(A) \) the number of zero eigenvalues, \(i_-(A) \) be the number of negative eigenvalues. Denote \(i(A) := (i_+(A), i_0(A), i_-(A)) \). Show.

1. Show that \(i_+(A) \) is the dimension of the unique subspace \(U \subset \mathbb{R}^n \) such that \(x^\top Ax > 0 \) for each nonzero \(x \) in \(U \). \textbf{(Hint: Use the convoy principle.)}

2. Show that \(i_-(A) \) is the dimension of the unique subspace \(U \subset \mathbb{R}^n \) such that \(x^\top Ax < 0 \) for each nonzero \(x \) in \(U \).

3. \(\text{rank } A = i_+(A) + i_0(A) + i_-(A) \).

4. A symmetric \(B \in \mathbb{R}^{n \times n} \) is called congruent to \(A \) if \(B = QAQ^\top \) for some invertible matrix \(Q \). Show that two symmetric matrices are congruent if and only if \(i(A) = i(B) \). (This result is called the Sylvester law of inertia.)

II. State and prove the similar results in Problem I for a hermitian matrix. (This is the content of Problems 6 and 7 in [1, p’35-36].)

III. Let \(A = [a_{pq}] \in \mathbb{C}^{n \times n} \) be a hermitian matrix. Rearrange the diagonal entries of \(A, a_{11}, a_{22}, \ldots, a_{nn} \) in a nonincreasing way: \(\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n \). Show

1. \(\lambda_1(A) \geq \alpha_1, \lambda_n(A) \leq \alpha_n \). \textbf{Hint:} Use the maximum and minimum characterization of \(\lambda_1(A), \lambda_n(A) \).

2. Show that \(\sum_{i=1}^k \alpha_i \leq \sum_{i=1}^n \lambda_i(A) \) for \(k = 1, \ldots, n \). What happens for \(k = n \)? \textbf{Hint:} Use the convoy principle.

3. Show that \(|\lambda_j(A)| \leq \sqrt{\sum_{p=q=1}^n |a_{pq}|^2} \) for each \(j = 1, \ldots, n \). For which kind of matrices and for which \(j \) we have equality in this inequality?

[1]: §2.5 page 34–35, Problems: 1,3.

IV. Let \(A = \begin{bmatrix} 1 & 1 + i & 2 - 3i \\ 1 - i & 3 & 3 - 2i \\ 2 + 3i & 3 + 2i & 2 \end{bmatrix} \).

1. Estimate from below and above \(\lambda_1(A) \) using the results of Problem III.

2. Find the eigenvalues of \(2 \times 2 \) hermitian submatrix of \(A \) composed of the last two rows and columns of \(A \).

3. Estimate from below \(\lambda_1(A) \) using the Cauchy interlacing theorem, (Problem 3a on page 34 in [1]), and the results of part 2. Which estimate is better?

4. Use the Cauchy interlacing theorem and the results of part 2 to show that \(\lambda_3(A) \) is negative. Use the inequalities in Problem III to estimate from below \(\lambda_3(A) \).

5. Estimate \(\lambda_2(A) \) from below and above using Cauchy interlacing theorem by considering the eigenvalues of \(2 \times 2 \) hermitian submatrix of \(A \) composed of the first two rows and columns of \(A \). Compare this estimate with the estimate using the results of part 2.
V. For the following symmetric matrices find a diagonal matrix which is congruent to it. In each case determine how many positive negative and zero eigenvalues A has. Furthermore determine if there exist a lower triangular matrix L with one on the diagonal such that $A = LDL^\top$

\[
\begin{bmatrix}
1 & 0 & 2 \\
0 & 3 & 6 \\
2 & 6 & 7
\end{bmatrix}
, \quad \begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & 3 \\
1 & 3 & 2
\end{bmatrix}
, \quad \begin{bmatrix}
1 & -1 & 0 & 2 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 2 \\
2 & 0 & 2 & -1
\end{bmatrix}
\]

8 HOMEWORK ASSIGNMENT 8
Assigned 3-09-12 – Due 3-16-12

1. Problem 1 [1, p’ 41].

2. Problems 3,4,9 [1, p’ 45], (In 9 you can assume that A is a normal matrix.)

3. Problems 1-6,8 [3, p’ 380-382].

9 HOMEWORK ASSIGNMENT 9
Assigned 3-13-12 – Due 3-30-12

1. Problems 1, 3, 4, 5, 9 [1, p’ 45–46].

2. Problems 1, 2,3 [1, p’ 54],

3. Problems 1-6,8 [3, p’ 380-382]. (If you did not do them yet!)

10 HOMEWORK ASSIGNMENT 10
Assigned 3-31-12 – Due 4-6-12

Problems 1, 5, page 58 in [1],
Problems 1c, 2, 4 page 64 in [1]. (A is called noderogatory if the minimal polynomial of A equal to the characteristic polynomial of A.)

Additional problems:

1. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$. Assume that $f, g \in \mathbb{F}[t]$ are the minimal polynomials of A, B respectively. Form $C = \text{diag}(A, B) := \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$. Let h be gcd, the greatest common divisor, of f and g, which is assumed to be monic. Show that $\frac{f}{h}$ is the minimal polynomial of C.

2. Find the characteristic and the minimal polynomials of the following matrices

\[
\begin{bmatrix}
2 & 2 & -5 \\
3 & 7 & -15 \\
1 & 2 & -4
\end{bmatrix}
, \quad \begin{bmatrix}
2 & 5 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 \\
0 & 0 & 3 & 5 & 0 \\
0 & 0 & 0 & 0 & 7
\end{bmatrix}
\]
3. Show that two similar matrices have the same minimal polynomial.

4. Let \[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad \begin{bmatrix}
2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix}
\]
be different characteristic polynomials, but the same minimal polynomial.

5. Show that the square matrices \(A\) and \(A^\top\) have the same minimal polynomial.

6. Let \(A \in \mathbb{F}^{n \times n}\) and assume that \(f(t) \in \mathbb{F}[t]\) is an irreducible monic polynomial for which \(f(A) = 0\). Show that \(f\) is the minimal polynomial of \(A\).

11 HOMEWORK ASSIGNMENT 11
Assigned 4-8-12 – Due 4-16-12

Problems 1–3, 4b. (Weyr characteristic is defined Definition 3.28 on p’68 of [1]).

Problem 1. Suppose that the characteristic and the minimal polynomial of a linear operator \(T\) are as below. Find all possible Jordan canonical forms of \(T\).

1. \(f(t) = (t - 2)^4(t - 5)^3, g(t) = (t - 2)^4(t - 5)^3\),
2. \(f(t) = (t - 2)^4(t - 5)^3, g(t) = (t - 2)^2(t - 5)^3\),
3. \(f(t) = (t - 2)^4(t - 5)^3, g(t) = (t - 2)(t - 5)\).

Problem 2. Find all possible Jordan forms for all 8 × 8 matrices having \(x^2(x - 1)^3\) as a minimal polynomial.

Problem 3.

a. Show that if the characteristic polynomial of \(A \in \mathbb{F}^{n \times n}\) splits to linear factors in \(\mathbb{F}\), i.e. \(\det(zI - A) = \prod_{j=1}^n(z - \lambda_j)\), then \(A\) is similar to \(A^\top\).

b. Try to prove that for any \(A \in \mathbb{F}^{n \times n}\), \(A\) is similar to \(A^\top\). (Hint: Let \(\mathbb{F}_1\) be a finite extension of \(\mathbb{F}\), where \(\det(zI - A)\) splits to linear factors. Then by part a, show that \(A\) and \(A^\top\) are similar over \(\mathbb{F}_1\). So there exists a matrix \(X \in \mathbb{F}_1^{n \times n}\) such that \(AX - XA^\top = 0\) and \(\det X \neq 0\). Deduce now that one can choose \(X\) in \(\mathbb{F}^{n \times n}\) such that \(\det X \neq 0\).)

Problem 4. Recall that a matrix \(A \in \mathbb{F}^{n \times n}\) is called diagonable if \(A\) is similar to a diagonal matrix over \(\mathbb{F}\). A linear operator \(T : V \to V\) is called diagonable if there is a basis in \(V\) such that \(T\) is represented by a diagonal matrix. Show

1. \(A\) is diagonable over \(\mathbb{F}\) if and only if \(\det(zI - A)\) splits to linear factors over \(\mathbb{F}\), and the minimal characteristic polynomial of \(A\) has simple roots.
2. \(A\) is diagonable if the roots of \(\det(zI - A)\) are in \(\mathbb{F}\) whenever \((T - \lambda I)^m v = 0\), for some positive integer \(m\), then \((T - \lambda I)v = 0\).
3. Suppose that the linear operator \(T\) is a projection, i.e. \(T^2 = T\). Then \(T\) is diagonable.
4. Assume that \(T, Q \in \mathbb{F}^{n \times n}\) are projections. Then \(T\) and \(Q\) are similar if and only if \(\text{rank } T = \text{rank } Q\).
5. Let \(n > 1 \) be an integer, and consider the matrices \(A = 11^\top \in \mathbb{F}^{n \times n} \), \(1 = (1, \ldots, 1)^\top \in \mathbb{F}^n \) and the diagonal matrix \(\text{diag}(n, 0, \ldots, 0) \in \mathbb{F}^{n \times n} \). Then \(A \) and \(B \) are similar if and only if the characteristics of \(\mathbb{F} \) does not divide \(n \).

12 HOMEWORK ASSIGNMENT 12
Assigned 4-16-12 – Due 4-25-12

A. Problem 1 on page 82 in [1]. (The system \(x_l = A_l x_{l-1} \) is homogeneous.)

B. For the following matrices find the components of \(A \) as defined in Theorem 4.1 on page 75 in [1], find \(A^{100} \) and \(e^{At} \) using the components of \(A \).

1. \[
\begin{bmatrix}
1 & 1 \\
-1 & 3
\end{bmatrix},
\]

2. \[
\begin{bmatrix}
0 & 2 & -1 \\
0 & -1 & 1 \\
0 & -2 & 2
\end{bmatrix},
\]

3. \[
\begin{bmatrix}
2 & 1 & -1 & 0 \\
0 & 5 & -6 & -1 \\
0 & 3 & -4 & -1 \\
0 & 0 & 0 & -1
\end{bmatrix}.
\]

C. \(A \in \mathbb{R}^{n \times n} \) is called a stochastic matrix if all entries of \(A \) are nonnegative and the sum of each row is 1. (I.e. each row of \(A \) is a probability vector.) Show

1. for each positive integer \(k \) \(A^k \) is a stochastic matrix.

2. \(A \) is power bounded. (See Definition 4.5 in [1].)

3. 1 is an eigenvalue of \(A \).

4. Each Jordan block corresponding to eigenvalue of 1 is of order 1.

5. Each eigenvalue \(\lambda \) of \(A \) satisfies \(|\lambda| \leq 1 \).

6. \(A \) is power convergent iff and only if each eigenvalue \(\lambda \) of \(A \) different from 1, \(|\lambda| < 1 \). (See Definition 4.5 in [1].)

References

