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Abstract. We give sufficient conditions for a group of homeomorphisms of a compact
Hausdorff space to have an invariant probability measure. For a complex projective space
CPn we give a necessary condition for a subgroup of Aut(CPn) to have an invariant
probability measure. We discuss two approaches to Auslander’s conjecture.

§0. Introduction

Let X be a compact Hausdorff space, B its Borel σ algebra generated by open sets
and Π(X) the set of all σ-additive probability measures on X. Assume that T : X → X
is a continuous transformation. Then Krylov-Bogolyubov’s theorem claims that T has an
invariant probability measure µ ∈ Π(X). Assume that G is a group of homeomorphisms
of X. The main problem discussed here is when G has an invariant probability measure.
In Section 1 we recall the known result that G has an invariant measure if G is amenable.
See [Gre] or [Zim]. We show that for our particular problem one can relax slightly the
amenability conditions on G. That is, it is enough assume that G is an amenable extension
of G0 which has an invariant measure.

We then study necessary conditions for G ⊂ Aut(CPn) to have an invariant mea-
sure. These conditions give rise to sufficient conditions on finitely generated group Γ ⊂
GLn+1(C) to have a free subgroup on two generators. In the last section we discuss
Auslander’s conjecture.

§1. Invariant measures

Let G be a group. Denote by B(G) the space of all bounded complex-valued function
on G equipped with the sup norm ‖f‖∞. Then G acts from the left on B(G). G is called
amenable if it has a nonnegative bounded linear functional µ : B(G) :→ R, µ(1G) = 1 which
is invariant under the (left) action of G. (This functional is called a left invariant mean
LIM.) This notion was introduced by von Neumann [Neu] to overcome the Hausdorff-
Banach-Tarski paradox [B-T]. Von Neumann showed that:
(I) any abelian group is amenable;
(II) subgroups, factor groups, groups extensions and direct union of amenable groups are
amenable.
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In particular any solvable group is amenable. It is known that an amenable group can
not have a free subgroup on two generators.

Let G be a topological group. A continuous function f : G :→ C is called right
uniformly continuous if, given ε > 0, there exists a neighborhood U(ε) of identity such
that:

|f(x)− f(yx)| < ε ∀x ∈ G, y ∈ U(ε).

Denote by UCBr(G) the Banach space of right uniformly continuous bounded functions
on G. We say that G has the fixed point property if, whenever G acts affinely on a compact
convex set S in a locally convex convex space E, with the map G × S → S continuous,
there is a point s0 fixed under the action of G. Rickert [Ric] showed that a locally compact
group G has a fixed point property iff G has LIM on UCBr(G). Thus, locally compact
group G is called amenable iff it has a fixed point property. (Compare with [Zim].) It
then follows that the properties (I-II) hold.

Definition 1.1. Let G be a locally compact group and G0 its subgroup. G is called an
amenable extension of G0 if there exists a normal subgroup H ⊂ G0 which is normal in G
so that G/H is amenable.

Theorem 1.2. Let G be a locally compact group which acts affinely on a compact convex
set S in a locally convex space E. Assume that s0 ∈ S is a fixed point of T ⊂ G. Let G0 be
a subgroup generated by T . If G is an amenable extension of G0 then G has a fixed point
in S.

Proof. Let H ⊂ G0 be a normal subgroup of G such that G/H is amenable. Set S0 = {s :
s = gs0, g ∈ G}. As H fixes s0 and is normal in G it follows that H fixes every element in
S0. Let S′ ⊂ S be the closure of the convex hull of S0. Thus H fixes every element in S′.
Hence, G1 = G/H is a locally compact group which acts affinely on a compact convex set
S′. As G1 can be assumed to be amenable we deduce that G1 has a fixed point s1 ∈ S′.
Clearly, s1 is a fixed point of G in S. ¦

As any finite group is amenable we deduce.

Corollary 1.3. Let G be a locally compact group which acts affinely on a compact convex
set S in a locally convex space E. Assume that G0 ⊂ G is a subgroup of a finite index.
Then G has a fixed point in S iff G0 has a fixed point in S.

In what follows we consider the following situation. (Compare with [Zim].) Let
X be a compact Hausdorff space. Let C(X) be the Banach space of complex valued
continuous functions on X with the sup norm and let C∗(X) be its conjugate space. Riesz
representation theorem claims that any φ ∈ C∗(X) is represented by the unique finite
σ-additive measure µ on (X,B):

φ(f) =
∫

X

f(x)dµ(x) = µ(f), f ∈ C(X).
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Furthermore, |φ| - the norm of φ is equal to |µ| - the total variation of µ. Let Π(X) be the
set of all probability measures on X. Then Π(X) is a convex compact set in w∗ topology
(the weak∗ topology). Consult for example with [D-S, Ch. 5]. If X is a compact metric
space then C(X) is separable and Π(X) is a compact convex metrisable space, e.g. [Wal,
Ch. 6]. Thus, we are studying the case where S = Π(X) and E = C(X)∗ with w∗ topology.

Assume that T : X → X is a continuous transformation. Then T induces the linear
transformation T̂ : C(X) → C(X) by the natural action (T̂ f)(x) = f(Tx). Note that
|T̂ | = 1. Let T̂ ∗ : C(X)∗ → C(X)∗ be the induced conjugate operator. Thus, for any finite
σ-additive measure µ, T̂ ∗µ is a finite σ-additive measure. Furthermore,

T̂ ∗µ(f) = µ(T̂ f) =
∫

X

f(Tx)dµ(x), f ∈ C(X).

Clearly, |T̂ ∗| = 1. Set

Pn(T ) =
∑n

1 (T̂ ∗)i

n
: C∗(X) → C∗(X), n = 1, ..., .

For simplicity of notation we identify T̂ , T̂ ∗ with T and no ambiguity will arise. Note if µ is a
probability measure then Pn(T )µ is also a probability measure. Hence |Pn(T )| = 1. Denote
Π(X,T ) ⊂ Π(X) the set of all T invariant probability measures. Krylov-Bogolyubov
theorem claims that Π(X, T ) is nonempty. Hence, Π(X, T ) is a convex w∗ compact set.
The Krein-Milman theorem yields that Π(X, T ) is the w∗ closure of the convex hall of
its extremal points E(X,T ). If X is a compact metric space then E(X, T ) is the set of
all µ ∈ E(X,T ) for which T is an ergodic measure-preserving transformation of (X,B, µ)
[Wal, Ch. 6].

Let S be a set of continuous transformations of X to itself. We say that µ ∈ Π(X)
is an S-invariant measure if Tµ = µ, ∀T ∈ S. Denote by Π(X,S) = ∩T∈SΠ(X, T ) the set
of all S-invariant probability measures. Π(X,S) can be empty. Assume that Π(X,S) is
nonnempty. Then Π(X,S) is a convex compact set in w∗ topology. Denote by E(X,S)
the set of the extreme points of Π(X,S). Let µ ∈ Π(X,S). We say that S is µ− ergodic if
for any S-invariant set A ∈ B, i.e. T−1A = A, T ∈ S, the condition µ(A) = 0, 1 is satisfied.
The following lemma generalizes the the characterization of Π(X,S).

Lemma 1.4. Let X be a compact Hausdorff space and assume that S is a set of continuous
transformations of X to itself. Assume that Π(X,S) is nonempty. Then E(X,S) consists
of all µ ∈ Π(X,S) for which S is ergodic.

Proof. Let µ ∈ Π(X,S). Assume that S is not µ-ergodic. Then there exists an invariant
set E ∈ B so that 0 < µ(E) < 1. Let µ1, µ2 ∈ Π(X) be the probability measures obtained
by the restriction of µ to E, X\E respectively, i.e.

µ1(C) =
µ(C ∩ E)

µ(E)
, µ2(C) =

µ(C ∩X\E)
µ(X\E)

, C ∈ B.
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As E is an S-invariant set it follows that µ1, µ2 ∈ Π(X,S). Thus µ = µ(E)µ1+(1−µ(E))µ2

and we deduce that µ 6∈ E(X,S).
Assume now that S is µ-ergodic. Assume to the contrary that µ 6∈ E(X,S). Let

µ = pµ1 + (1− p)µ2, µ1 6= µ2 ∈ Π(X,S), 0 < p < 1.

We obtain a contradiction by showing that µ1 = µ. As pµ1 ≤ µ, i.e. pµ1(C) ≤ µ(C), ∀C ∈
B it follows that µ1 is absolutely continuous with respect to µ. Set f = dµ1

dµ to be the
Radon-Nykodim derivative. As µ, µ1 ∈ Π(X,S) it follows that f is S invariant. That
is, f(Tx) = f(x) almost µ-everywhere for all T ∈ S. As S is µ−ergodic we deduce that
f = Constant almost µ−everywhere. Finally, since µ, µ1 are probability measures we get
that f = 1 ⇒ µ1 = µ contrary to our assumptions. ¦

Let S be a set of continuous maps of X to itself so that each pair T1, T2 ∈ S commutes.
It is well known that S has an invariant probability measure µ on (X,µ). See for example
[D-S, VI.9.41]. (This is the semigroup version property (I) of amenable groups.) We now
give a generalization of this fact.

Lemma 1.5. Let X be a compact Hausdorff space. Assume that S is a semigroup of
continuous transformations of X to itself. (T1, T2 ∈ S ⇒ T1T2, T2T1 ∈ S.) Suppose that
there exists a probability measure on (X,B) so that

T1T2µ = T2T1µ, ∀T1, T2 ∈ G.

If either S is countable or X is a compact metric space then S has an invariant probability
measure on (X,B).

Proof. We first show that for any finite subset {T1, ..., Tk} ⊂ S there exists a probability
measure ν which is invariant under {T1, ..., Tk}. Using the assumption that S is a semigroup
and the ”commutativity” of S with repect to µ we easily deduce

T i1
1 T i2

2 ...T ik

k µ = T i2
2 ...T ik

k T i1
1 µ = ... = T ik

k T i1
1 T i2

2 ...T
ik−1
k−1 µ,

1 ≤ i1, ..., ik ∈ Z.

It then follows that

Pn(T1)Pn(T2)...Pn(Tk)µ = Pn(T2)...Pn(Tk)Pn(T1)µ = ...

= P (Tk)Pn(T1)...Pn(Tk−1)µ = µn.

Note that µn is a probability measure. Let ν ∈ Π(X) lie in the w∗ closure of the sequence
{µi}∞1 . That is, for a given f ∈ C(X) there exists a subsequence µni , i = 1, ..., so that

ν(f) = lim
i→∞

µni(f), ν(Tjf) = lim
i→∞

µni(Tjf), j = 1, ..., k.
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Observe next that

Tjµn = TjPn(Tj)Pn(Tj+1)...µ = Pn(Tj)Pn(Tj+1)...µ +
Tn+1

j − Tj

n
Pn(Tj+1)...µ.

Hence
|Tjµn − µn| ≤ 2

n
.

We therefore deduce that ν(Tjf) = ν(f), j = 1, ..., k. As f was an arbitrary continuous
function it follows that Tjν = ν, j = 1, ..., k. Thus, if S is finite, we deduce the existence
of invariant measure with respect to S. Assume that S is infinite and let {Ti}∞1 ⊂ S. Let
νk be an invariant probability measure for the set {T1, ..., Tk}, k = 1, ...,. Let ν ∈ Π(X) be
in the w∗ closure of the sequence {νi}∞1 . It then follows that ν is an invariant measure for
{Ti}∞1 . This argument proves the lemma in the case S is countable.

Assume that S is not countable and X is a compact metric space. Then C(X) is
separable, e.g. [D-S, V.7.12]. Let {fi}∞1 ⊂ C(X) be a dense set in the unit ball of C(X).
As C(X) is separable it follows that for each i the family of functions Tfi, T ∈ S contains
a sequence of of functions T̃jfi, T̃j ∈ S, j = 1, ..., so that the closure of this sequence
contains all the functions Tfi, T ∈ S. Hence, there exists a sequence {Tj}∞1 ⊂ S so that
the closure of the sequence T1fi, T2fi, ..., contains all the functions Tfi, T ∈ S for each
i = 1, ...,. Let ν be an invariant probability measure for the sequence {Tj}∞1 . Hence,
ν(Tjfi) = ν(fi), j = 1, 2, ...,. As the closure of the sequence T1fi, T2fi, ..., contains all the
functions Tfi, T ∈ S we deduce that ν(Tfi) = ν(fi) for any T ∈ S and any i. As f1, f2, ...,
is dense in the unit ball of C(X) it follows that ν(Tf) = ν(f), ∀f ∈ C(X). Thus, ν is an
invariant probability measure for S. ¦

We shall use the following result in the sequel. Assume that a group Γ has a faithful
representation in GLn(k) for some field k of 0 characteristic. Then Tits alternative [Tit]
yields that either Γ contains a free subgroup on two generators or Γ is virtually solvable.
(Here we use the standard terminology that a group Γ has a virtual property (P ) if it has
a subgroup of a finite index which has the property (P ).)

§2. Invariant measures of automorphisms of complex projective spaces

Let F be a field. The n dimensional projective space FPn is given by a canonical
projection

π : Fn+1\{0} → FPn, π(αx) = π(x), x = (x1, ..., xn+1)T ∈ Fn+1\{0}, α ∈ F∗.

Note that Fn is isomorphic to an open set in Zariski topology in FPn. (Set xn+1 = 1 in
a canonical projection.) Thus, FPn is a compactification of Fn respectively. Recall that
GLPn(F) : FPn → FPn is the group of projective automorphisms induced by the action of
GLn+1(F) on the covering space Fn+1. Thus, GLPn(F) ∼ GLn+1(F)/F∗I. Equivalently,

GLPn(F) ∼ SGLn+1(F)/Cn+1, Cn+1 = {λI, λn+1 = 1}.
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Here, SGLn+1(F) is the group of all n + 1 × n + 1 matrices over F with determinant
equal to 1. For A ∈ GLn+1(F) we let T = π(A) ∈ Aut(FPn) be the automorphism T
induced by a canonical projection π : Fn+1\{0} → FPn. In what follows we let F = C
although some of the notions will be still valid for general fields. Denote by Un+1 ⊂
GLn+1(C), SUn+1 ⊂ SGLn+1(C) the groups of n + 1× n + 1 unitary and special unitary
matrices. Let UPn ⊂ GLPn(C) be the subgroup of all automorphisms of CPn induced by
Un+1 or SUn+1. (Note that UPn ∼ SUn+1/Cn+1.)

A subset L ⊂ CPn is a called a linear subspace of CPn of dimension k if its homoge-
neous coordinates describe the set L′\{0} = π−1(L) where L′ ⊂ Cn+1 is k +1 dimensional
subspace of Cn+1. Vice versa, any k+1 dimensional subspace L′ ⊂ Cn+1 induces a unique
k dimensional linear subspace L = π(L′\{0}) ⊂ CPn. Note that L ∼ CPk, L′ ∼ Ck+1.
Let S1 = {ζ, ζ ∈ C, |ζ| = 1} be the unit circle. We view S1 and S1 × ... × S1 ⊂ Cm

as compact abelian groups and tori of dimension 1 and m respectively. A compact set
A ⊂ CPn is called a compact abelian group if there exists a linear k dimensional sub-
space L ⊂ CPn, a canonical projection φ : Ck+1\{0} → L, a compact abelian group
A′ ⊂ S1 × ... × S1 ⊂ Ck+1 so that A = φ(A′). Let A′′ be obtained from A′ by dividing
any vector in A′ by its last coordinate. It then follows that A′′ ⊂ S1 × ...× S1 ⊂ Ck+1 is
also a compact abelian group. Furthermore, φ(A′′) = A. The normalization that the last
coordinate of any vector in A′′ is equal to 1 means that A′′ ∼ A and we identify A′′ with
A and no ambiguity will arise. Let A0 be the connected component of A containing the
identity. Then A0 is an r dimensional torus. We call r the dimension of A. Thus, A is a
union of N r dimensional tori. By the Haar measure of A we mean the unique probability
measure of A which is invariant under the action of A on itself.

Fix a canonical projection. For z = (z1, ..., zn+1)T ∈ Cn+1 set |z| = (
∑n+1

1 |zi|2) 1
2 .

Let

ω =
√−1
2π

∂∂̄|z|2, z ∈ Cn+1\{0}
be the (1, 1) form corresponding to the above projection. Recall that for 1 ≤ k ≤ n the
form [ωk

k! ] represents a generator of H2k(CPn,Z) = Z. (The odd cohomology (homology)
classes of CPn over Z are trivial.) Note that ωn

n! = dµ, µ ∈ Π(CPn). Let Aut(CPn) be
the group of (complex) automorphisms of n dimensional complex projective space CPn.
It is well known that it is given by GLPn(C), e.g. [G-H]. Assume that T ∈ Aut(CPn).
Denote by T ∗ω the pull back of ω by T . Clearly,

[
ωk

k!
] = [

(T ∗ω)k

k!
], k = 1, ..., n.

Lemma 2.1. Let T ∈ Aut(CPn) be represented by A ∈ GLn+1(C) with respect to a fixed
projection π : Cn+1\{0} → CPn. Assume that ω is the (1, 1) form induced by the above
projection. Then for a fixed 1 ≤ k ≤ n

ωk = (T ∗ω)k ⇐⇒ A = λU, λ ∈ C∗, U ∈ Un+1.

In particular, UPn is the subgroup of all automorphisms of CPn which preserves the prob-
ability measure ωn

n! .
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Proof. Assume that T is represented by U ∈ Un+1. As |Uz| = |z|, z ∈ Cn+1 it follows
that ω = T ∗ω. Recall that any A ∈ GLn+1(C) is of the form A = UDV, U, V ∈ Un+1, D =
diag(d1, ..., dn+1). Hence, it is enough to prove the lemma in the case T is represented by
a diagonal matrix D. In that case a straightforward calculation shows that ωk = (T ∗ω)k

iff d1 = ... = dn+1 = d, i.e. D = dI. Choose k = n to deduce the last claim of the theorem.
¦

We note that UPn is not virtually solvable. Indeed, assume to the contrary that UPn

is virtually solvable. It then follows that SUn+1 is virtually solvable. As SUn+1 connected
we deduce that SUn+1 must be solvable. This is equivalent to the statement that the Lie
algebra of SUn+1 is solvable which is false. Thus, UPn, viewed as a discrete group, is not
amenable but does have a fixed point in Π(CPn).

The following theorem is a more precise version of some Furstenberg’s results in [Fur].

Theorem 2.2. Let T ∈ Aut(CPn) be represented by A ∈ GLn+1(C) with respect to a
fixed projection π : Cn+1\{0} → CPn. Then the recurrent set R(T ) is equal to the union
of k pairwise disjoint linear subspaces

Li = Li(T ) ⊂ CPn, dim(Li) = ni, i = 1, ..., k = k(T ).

Let L′i ⊂ Cn+1 be the corresponding linear subspace of dimension ni + 1. Then L′i is
spanned by all eigenvectors of A corresponding to all eigenvalues of A situated on some
circle |ζ| = r > 0, ζ ∈ C. In particular,

∑k
1 ni ≤ n + 1 − k and any T -invariant measure

µ ∈ Π(CPn, T ) is supported on R(T ). Any extreme measure µ ∈ E(CPn, T ) is the Haar
measure of a compact abelian group A ⊂ Li which is a closure of {T jx}∞j=0 for some
x ∈ Li.

Proof. We first show that any point x ∈ Li is in R(T ). Let π(z) = x, z = e1 + ... + ep

where e1, ..., ep are p linearly independent eigenvectors of A - Aei = λiei, i = 1, ..., p, |λ1| =
... = |λp| = r > 0. Let A′ = 1

r A. Since A′ represents also T we may assume that
r = 1. Thus, Aiz =

∑p
j=1 λi

jej . That is, the coordinates of Aiz are represented by a
point (λi

1, ..., λ
i
p) ⊂ S1× · · · ×S1 ⊂ Cp. It then follows that all the limit points of {Aiz}∞1

form a compact abelian group A′ which contains the point z (corresponding to the identity
element in A′). Hence, the closure of orbT (x) = {T jx}∞0 is the compact abelian group
A ⊂ Li. In particular, ∪k

1Li ⊂ R(T ).
We now prove the containment ∪k

1Li ⊃ R(T ). Fix 0 6= z ∈ Cn+1 and consider
the sequence {Ajz}∞0 . Note that all the vectors in this sequence lie in the cyclic space
W = span{z, Az, ..., Anz}. Assume that dimW = m and let B = A|W . Choose a basis
e1, ..., em so that so that B is represented in this basis as a Jordan matrix, i.e. is a
basis composed of generalized eigenvectors of B. That is, each ei satisifies the equality
(B − λiI)liei = 0. Assume that mi is the minimal integer for which the above equality
holds. Then mi is called the index of ei and denoted by index(ei) If index(ei) = 1 then
ei is an eigenvector of B with corresponding eigenvalue λi. If index(ei) > 1 then ei is
called a generalized eigenvalue corresponding to the eigenvalue λi. As usual, let spec(B)
denote the spectrum of B. Assume λ ∈ spec(B), i.e. λ is an eigenvalue of B. Then
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j = index(λ) is the maximal index of all generalized eigenvectors cooresponding to λ. Let
z =

∑m
1 ξiei. Assume that index(ei) = index(λi). As e1, ..., em is a Jordan basis and

the dimension of the cyclic space generated by x is m it follows that ξi 6= 0, e.g. [Gan].
Let ρ(B) be the spectral radius of B. Denote by domspec(B) ⊂ spec(B) the dominant
spectrum of B. That is, it is the set of all eigenvalues λ ∈ spec(B) which lie on the
maximal circle |ζ| = ρ(B) and which have the maximal index τ among all eigenvalues on
the maximal circle. Equivalently, domspec(B) is the set of all eigenvalues of B lying on
the maximal circle to which correspond the maximal Jordan blocks of length τ . Assume
that the number of these blocks is β. (Here, domspec(B) is counted with multiplicites,
according to the number of maximal Jordan blocks. That is, domspec(B) has exactly
τβ eigenvalues.) It is straightforward to show, e.g. use the explicit formulas for Bj in
[Gan, Ch. 5], that the sequence Bjx

jτ−1ρ(B)j is bounded. Furthermore, all the accumulation
points of this sequence correspond to a compact abelian group A′ ⊂ Cβ in the subspace
whose basis consists of β eigenvectors corresponding to β maximal Jordan blocks of the β
eigenvalues in domspec(B). (Note that this eigenvectors are determined uniquely.) This
shows that the limit points any orbit {T ix}∞0 , x ∈ CPn is a compact abelian group A such
that A ⊂ Li for some Li. A is generated in the way we described in the beginning of the
proof. We thus showed that R(T ) = ∪k

1Li(T ) and it is a closed set.
It is known that for any µ ∈ Π(CPn, T ) one has the equality µ(R(T )) = 1. See for

example [Wal, §6.4] (the remark after Cor. 6.15.1). Hence all the invariant measures of
T are supported on ∪k

1Li(T ). Let µ ∈ Π(CPn, T ). Then µ is a convex combination of
the restrictions of µ to those Li(T ) for which µ(Li(T )) > 0. Thus any µ ∈ E(CPn, T ) is
supported exactly on one Li(T ). As TLi(T ) = Li(T ) w.l.o.g. we may assume that Li(T ) =
CPm. To simplify our notation we assume that m = n. Choose a canonical projection so
that the representation matrix A is a diagonal matrix D = diag(d1, ..., dn+1), 1 = |di|, i =
1, ..., n + 1. Let µ ∈ E(CPn, T ). Let x ∈ supp(µ). That is, for any open set U ⊂ CPn so
that x ∈ U we deduce that µ(U) > 0. Let

z =
l∑
1

ξieni , ξi 6= 0, i = 1, ..., l, 1 ≤ n1 < ... < nl ≤ n, π(z) = x.

By considering D′ = 1
dn1

D we may assume that dn1 = 1. Then the closure of the group
generated by (dn1 , ..., dnl

) correspond to the compact abelian group A(x) ⊂ CPn which
we identify with Closure(orbT (x)). Clearly, A(x) ⊂ supp(µ). Note that the topology of
A(x) depends only on the set {n1, ..., nl}. Hence, CPn is foliated by A(x). This foliation
correspond to a very simple stratification of CPn to a tree of subspaces spanned by subset
of e1, ..., en+1. Hence, supp(µ) foliated also by A(x). We now point out how this foliation
shows that all measures in E(CPn, T ) are supported on someA(x). Assume to the contrary
that

supp(µ) = ∪i∈IA(xi), |I| > 1,A(xi) ∩ A(xj) = ∅, i 6= j.

Let
I = I1 ∪ I2, I1 ∩ I2 = ∅, 1 ≤ |I1|, |I2|,∪i∈IjA(xi) ∈ B, j = 1, 2.

We claim that
µ(∪i∈I1A(xi))µ(∪i∈I2A(xi)) = 0. (2.3)
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Otherwise let

µj(E) =
µ(E ∩ (∪i∈Ij

A(xi))
µ(∪i∈Ij

A(xi))
, j = 1, 2.

By the construction µ1, µ2 ∈ Π(CPn, T ). Clearly, µ is a convex combination of µ1, µ2 which
contradicts the assumption that µ ∈ E(CPn, T ). We thus deduce (2.3). It is not difficult
to show that (2.3) yields that |I| = 1 contrary to our assumption. Hence, supp(µ) = A(x).
We showed that A(x) is isomorphic to the closure of the group (di

n1
, ..., di

nl
), i ∈ Z, dn1 = 1.

Denote this closure by A. The action of T of A(x) is equivalent to the multiplication by
(dn1 , ..., dnl

) on A. Hence µ is the Haar measure on A. ¦

Note that the proof of the above theorem yields that if T ∈ Aut(CPn) preserves the
measure µ, dµ = ωn

n! , the transformation T is not µ-ergodic.
Let T ∈ Aut(CPn), µ ∈ Π(CPn, T ). We say that µ is strictly supported on

Y = ∪k(T,µ)
1 Li(T, µ) if the following conditions hold. First, supp(µ) ⊂ Y ⊂ R(T ). Second,

L1(T, µ), ..., Lk(T, µ), k = k(T, µ) are k pairwise disjoint linear subspaces of CPn. The
last condition is that Y is minimal with respect to first two conditions. As the intersection
of two linear subspaces in CPn is either empty or linear subspace from Theorem 2.2 we
deduce the existence of Y . We call Y the T -linear support of µ and denote it by lsupp(µ, T ).
Let T ⊂ Aut(CPn) be a nonempty set. Consider the set

∩T∈T (∪k(T )
1 Li(T )).

Here, k = k(T ), L1(T ), ..., Lk(T ) are defined as in Theorem 2.2. Suppose that the above
intersection is nonempty. Hence

∅ 6= ∩T∈T (∪k(T )
1 Li(T )) = ∪k(T )

1 Li(T ). (2.4)

Here L1(T ), ..., Lk(T ), k = k(T ) are k pairwise disjoint linear subspaces of CPn. That is,
for each 1 ≤ i ≤ k(T ) and each T ∈ T we have Li(T ) ⊂ Lj(T ) for some j, 1 ≤ j ≤ k(T ).
The following result follows straightforward from Theorem 2.2.

Corollary 2.5. Let G ⊂ Aut(CPn) be a group having an invariant measure µ ∈ Π(CPn).
Then (2.4) holds (T = G). Furthermore, G acts on {L1(G), ..., Lk(G)(G)}. (TLi(G) =
Lj(G), j = j(T ), T ∈ G.) More precisely

∅ 6= ∩T∈G lsupp(µ, T ) = ∪k(G,µ)
1 Li(G, µ)

and G acts on {L1(G, µ), ..., Lk(G,µ)(G, µ)}.

In our recent paper [Fri1] we give necessary and sufficient conditions for
G ⊂ Aut(CPn) to have an invariant measure µ ∈ Π(CPn). Let G ⊂ GLn+1(C) be a
lifting of G, i.e. π(G) = G. Then G has an invariant measure µ ∈ Π(CPn) iff there a lifting
G with the following property. There exists a nontrivial G-invariant subspace L ⊂ Cn+1

such that G
∣∣L is a bounded group. Equivalently, one can choose an inner product on L so

that G∣∣π(L) ⊂ UP (π(L)).
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For A ∈ GLn+1(C), T = π(A) set R(T ) = ∪k(T )
1 Li(T ). We then let Li(A) ⊂ Cn+1

be the linear subspace so that π(Li(A)\{0}) = Li(T ), i = 1, ..., k(T ) = k(A). Assume that
G′ ⊂ GLn+1(C) is a group. Clearly, G′ is virtually solvable iff G = π(G′) ⊂ Aut(CPn) is
virtually solvable.

Theorem 2.6. Let
T1 ⊂ GLn+1(C), T2 ⊂ Aut(CPn)

be finite sets. Denote by G1,G2 the groups generated by T1, T2 respectively. If

{0} = ∩A∈T1(∪k(A)
1 Li(A)),

∅ = ∩T∈T2(∪k(T )
1 Li(T ))

then G1 and G2 contain a free subgroup on two generators.

Proof. Consider first G1. The Tits alternative [Tit] claims that either G1 is virtually
solvable or G1 contains a free subgroup on two generators. Assume to the contrary that
G1 does not contain a free subgroup on two generators. Then G1 is virtually solvable. Set

T ′1 = π(T1),G′1 = π(G1), T ′1 ,G′1 ∈ Aut(CPn).

Note that the intersection condition for T ′1 holds. As G′1 is also virtually solvable G′1
have an invariant probability measure by Corollary 1.3. The intersection property for T ′1
contradicts Corollary 2.5. Hence, G1 contains a free subgroup on two generators. In a
similar way, G2 contains a free subgroup on two generators. ¦

We remark that one can give similar conditions on the invariant mesures of T ∈
GLPn(R) and on G ⊂ GLPn(R) to have an invariant probability measure. We just have
to combine the pairs of conjugate eigenvalues and eigenvectors of A ∈ GLn+1(R). In some
applications it is advantageous to consider the containments

Rn+1 ⊂ Cn+1,RPn ⊂ CPn, GLn+1(R) ⊂ GLn+1(C), GLPn(R) ⊂ GLPn(C).

We now bring one application to a subgroup of Möbius transformations of n-hyperbolic
space. Consult for example with [Bea] for good reference on this subject. Let Bn ⊂ Rn

be the closed n-dimensional unit ball centered at the origin. Denote by Hn the interior
of Bn. Then Hn has the standard Poincaré metric of n-hyperbolic space. Consider the
group of Möbius transformation Mn of Hn. Mn are orientation preserving isometries of
Hn. Also Mn can be viewed as a group of homeomorphisms of Bn which map Sn−1, the
boundary of Bn, onto itself. We view Mn as a group of homeomorphisms of Bn. It is
well known that Mn can be represented as subgroup of GLn+1(R). (Mn preserves the
Lorentzian cone.) Let T ∈ Mn. Then T is called loxodromic if T has exactly two fixed
points located on Sn−1. T is called parabolic if T has exactly one fixed point on Sn−1.
T is called elliptic if T has at least one fixed point in Hn. For a loxodromic or parabolic
T the recurrence set R(T ) is equal to Fix(T ) the set of the fixed points of T , e.g. [Wal,
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§6.4]. If T is loxodromic then Π(Bn, T ) is a convex combination of two Dirac measures
concentrated on Fix(T ). If T is parabolic then Π(Bn, T ) consists of the Dirac measure
concentrated at Fix(T ). Recall that a group Γ ⊂Mn is called elementary if Γ has a finite
invariant set K ⊂ Bn. The following lemma is well known and it can be deduced from the
arguments above.

Lemma 2.7. Let Γ ⊂ Mn act on Bn as a group of homeomorphisms. Assume that Γ
does not consists entirely of elliptic elements. Then Γ has an invariant measure iff Γ is
elementary. That is, either all elements of Γ have a common fixed point ξ ∈ Sn−1 (δξ is
the invariant measure) or all the elements of Γ fix some set of two points {ξ, η} ⊂ Sn−1

( δξ+δη

2 is the invariant measure).

It is not hard to show that if Γ ⊂Mn consists entirely of elliptic elements then T−1ΓT
is a subgroup of orthogonal rotations of Bn around the origin for some T ∈ Mn. In that
case Γ has an invariant measure. (The Lebesgue measure of Sn−1 is an invariant measure
for T−1ΓT .)

Theorem 2.8. Let Γ ⊂Mn be a nonelementary group which does not consists entirely of
elliptic elements. Then Γ contains a free subgroup on two generators.

Proof. Pick up a nonelliptic element T1. Since Γ is nonelementary it easy to show that
there exists exists T2 ∈ Γ such that T 2

2 does not fix Fix(T1). Then Γ1 generated by T1, T2

is nonelementary. Since Γ has a faithful representation in GLn+1(R) Tits alternative
claims that either Γ1 is virtually solvable or Γ1 contains a free group on two generators.
Use Theorem 1.2 and Lemma 2.7 to deduce that Γ1 contains a free subgroup on two
generators. ¦

§3. Auslander’s conjecture

Let F be a field. Then any affine invertible transformation on Fn is given by u →
Au + a, A ∈ GLn(F), a, u = (u1, ..., un)T ∈ Fn. This induces a corresponding linear
transformation (uT , un+1)T → ((Au + aun+1)T , un+1)T . Denote by Affn(F) the group of
affine invertible transformations of Fn. Thus, we have the monomorphism

ψ : Affn(F) → GLn+1(F), ψ((A, a)) = Â = (Âij)21, Â11 = A, Â12 = a, Â21 = 0, Â22 = 1.

Note that ψ : Affn(F) → GLn+1(F) induces the monomorphism ψ̂ : Affn(F) →
GLPn(F). Finally we view GLPn(R) as a subgroup of GLPn(C) = Aut(CPn).

A complete affinely flat manifold M of dimension n is equal to Rn/Γ, where Γ is a dis-
crete group of the group of affine transformation Affn(R) which acts freely and properly
discontinously on Rn, e.g. [Mil]. (Recall that Γ acts freely if γ(x) = x, γ ∈ Γ ⇒ γ = id for
any x ∈ Rn. Γ acts properly discontinuously if for any compact K ⊂ Rn the set of γ ∈ Γ
with γ(K) ∩ K 6= ∅ is finite.) In [Aus] Auslander ”proved” that if M is compact then
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π1(M) ∼ Γ is virtually solvable. Unfortunately, Auslander’s proof has a gap. The above
statement is commonly referred as Auslander’s conjecture. As Affn(R) has a faithful rep-
resentation in GLn+1(R) it follows that any discrete solvable Γ ⊂ Affn(R) is polycyclic,
e.g. [Wol]. Milnor [Mil] showed that if a countable group G is torsion-free and virtually
polycyclic then G is isomorphic to π1(M) for some complete affinely flat manifold. He
asked if π1(M) of any completely affinely flat manifold is virtually polycyclic. Auslan-
der’s conjecture was proved for dim(M) = 2, 3 by Fried and Goldman [F-G]. Goldman
and Kamishima [G-K] proved Auslander’s conjecture for any dimension on condition that
the linear part of Γ preserves a Lorentzian form. Tomanov [Tom] extended the result
of [G-K] to Γ whose linear part of Γ preserves a generalized Lorentzian form. Recently,
Margulis [Mar3] proved Auslander’s conjecture for n = 4, 5. On the negative side, Mar-
gulis [Mar1-2] constructed a noncompact 3 dimensional complete affinely flat manifold
M whose fundamental group contains a free subgroup on two generators. See also [D-G].

Suppose that Γ is virtually solvable. Consider L(Γ) - the linear of Γ. Clearly, L(Γ) is
also virtually solvalbe. Viewing L(Γ) as a subgroup of Aut(CPn−1) we deduce that L(Γ)
has an invariant measure on CPn−1. Since Γ acts freely and properly discontinuously on
Rn it follows that invariant measures of ψ̂(Γ) are supported on RPn−1(CPn−1). (Recall
Malcev’s theorem [Mal] that Γ is virtually similar to a subgroup of upper triangular
matrices over complexes.) Thus, a weaker form of Auslander’s conjecture is that if M =
Rn/Γ is an affinely flat compact manifold then L(Γ) ⊂ Aut(CPn−1) has an invariant
probability measure. We call this conjecture the weak Auslander conjecture. We do not
know if the weak Auslander conjecture is equivalent to Auslander’s conjecture. We are
convinced that the solution of the weak Auslander conjecture is a major step toward
proving the original conjecture. We now discuss two approaches to the weak Auslander
conjecture.

Compactify Rn to Bn - the closed unit ball in Rn. Let Bo
n be the interior of Bn.

Then

φ : Rn → Bo
n, φ(x) =

x

1 + |x| , x ∈ Rn, ψ : Bo
n → Rn, ψ(y) =

y

1− |y| , y ∈ Bo
n.

Thus, an invertible affine transformation (A, a) ∈ Affn(R) acts on Sn−1 = ∂Bn by the
rule y 7→ Ay

|Ay| . That is, we lift the action of GLn(R) on RPn−1 to its double cover Sn−1.
In what follows we assume that Γ ⊂ Affn(R) acts freely and properly discontinuously on
Rn such that M = Rn/Γ is a compact manifold. Let (M, g) be a Riemannian metric on
M . Denote by (Rn, ĝ) the lifting of (M, g) to Rn. For x, y ∈ Rn denote by distg(x, y) the
distance between x, y in (Rn, g). (It is not hard to show that this distance is finite and
realized by some geodesic from x to y.) Then Γ is a subgroup of the group of isometries
Iso(Rn, ĝ). (distg(γ(x), γ(y)) = distg(x, y), x, y ∈ Rn, γ ∈ Γ.) Fix a point ξ ∈ Rn. Let

D(ξ, g) = {x ∈ Rn : distg(x, ξ) < distg(x, γ(ξ)), γ ∈ Γ, γ 6= id}

be the Dirichlet polygon centered at ξ. Since M is compact it follows that ∂D(ξ, g) consists
of a finite number of sides of the form

distg(x, ξ) = distg(x, γ(ξ)), γ ∈ S ⊂ Γ, S−1 = S, id 6∈ S, |S| < ∞.
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Thus, the S is a generating set of Γ. Moreover, Closure(D(ξ, g)) induces a tessella-
tion of Rn by the tiles γ(Closure(D(ξ, g)), γ ∈ Γ so that the set of neighboring tiles of
Closure(D(ξ, g)) is γ(Closure(D(ξ, g)), γ ∈ S. Consider the the Poincaré series

p(x, y, s) =
∑

γ∈Γ

e−sdistg(x,γ(y)), x, y ∈ D(ξ, g).

We claim that Poincaré series converge for s > ω for some 0 < ω < ∞. This is a
straightforward consequence of the fact that a sectional curvature of (M, g) and hence of
(Rn, ĝ) is bounded below by some c which may be negative. Consult for example with
[Nic] for the hyperbolic case (sectional curvature −1) and with [Gun] for the volume
growth on Riemannian manifolds with bounded sectional curvature. Let κ, 0 ≤ κ ≤ ω be
the critical exponent of Poincaré series. Assume for simplicity that the Poincaré series
diverge for s = κ. (Note that the value of κ and the divergence of Poincaré series do
not depend on choices of x, y.) Then one can construct the Patterson-Sullivan measure
[Pat]-[Sul] as follows. Let

µ(x, y, s) =
1

p(y, y, s)

∑

γ∈Γ

e−sdistg(x,γ(y))δγ(y), s > κ.

Note that Γ acts on the above family of measures:

α̂(µ(x, y, s)) = µ(α−1(x), y, s), α ∈ Γ.

Denote by M(x, y) be the w∗ closure of all weak∗ limit of the measures µ(x, y, s) when
s → κ+. Thus, α̂M(x, y) = M(α−1(x), y). As Γ acts properly discontinuously on Rn ∼
Bo

n it follows that M(x, y) is supported on the limit set of Γ(y) situated on ∂Bn = Sn−1.
Fix a point y for all choices of x ∈ D(ξ, g). Let µx ∈M(x, y). Set

µα−1(x) = α̂(µx).

It then follows that µα−1(x) ∈M(α−1(x), y). For discrete group of Möbius transformations
acting on Bo

n equipped with the standard hyperbolic metric the works of Patterson [Pat]
and Sullivan [Sul] show that the measure µx satisfies the remarkable identity

dµx′

dµx
(ξ) =

( P (x, ξ)
P (x′, ξ)

)κ
, P (x, ξ) =

1− |x|2
|x− ξ|2 , x ∈ Bo

n, ξ ∈ Sn−1.

Here, P (x, ξ) is the Poisson kernel and dµx′
dµx

(ξ) is the Radon-Nikodym derivative. Further-
more, if Γ is geometrically finite then µx is unique (up to a multiple by a positive constant).
Finally, if Γ is convex cocompact then µx is unique and κ is the Hausdorff measure of the
limit set Γ(y) (which does not depend on the choice of y). Thus, µx is an invariant measure
of Γ iff κ = 0, i.e. Γ is elementary.

Thus, on could try to investigate the set M(x, y) in our case. The following simple
example shows that we should expect a different behavior in our case. Assume that Γ
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is a discrete group of translation of Rn such that M is a compact torus. In that case
it is easy to show that the limit set of Γ(y) is Sn−1. Choose (Rn, ĝ) to be the standard
metric on Rn. In that case it follows that κ = 0. Furthermore, each M(x, y) consists
of one measure µ(x, y) which is invariant under the action of Γ. In [Fri2] we construct
the Patterson-Sullivan measure for any discrete torsion free group Γ of a given Lie group.
However our construction differs from the above construction.

We now discuss the second approach to the weak Auslander conjecture. We will
assume that by changing the metric g on M , if necessary, we can achieve the following
conditions on D(ξ, g) and the tesselation induced by D(ξ, g).

Conditions 3.1. The boundary of D(ξ, g) is piecewise smooth.

dim(∂D(ξ, g) ∩ γ(∂D(ξ, g))) = n− 1,∀γ ∈ S.

For any open interval (a, b) ⊂ Closure(D(ξ, g)∪γ∈Sγ(D(ξ, g))) the set (a, b)∩(D(ξ, g)∪γ∈S

γ(D(ξ, g))) consists of a finite number of open intervals with the total length equal to the
length of (a, b).

We believe that the above conditions can be always satisfied by a properly chosen
Riemannian metric on M . Note that the last condition of Conditions 3.1 implies that
the boundary of D(ξ, g) does not contain a nontrivial interval (a geodesic of Rn in the
standard metric).

Combine Condition 3.1. with the assumption that Γ acts discretely and properly
discontinuously to deduce that any finite interval (a, b) intersects a finite number of tiles
γ(Closure(D(ξ, g))), γ ∈ T ⊂ Γ, |T | < ∞. Furthermore, (a, b) ∩ (∪γ∈T γ(D(ξ, g))) consists
of a finite number of open intervals whose length is equal to the length of the interval
(a, b). Let Rn × Sn−1 be the trivial Sn−1 fiber bundle over Rn. We now construct a flow

Ft : Rn × Sn−1 → Rn × Sn−1, t ∈ R.

For (x, p) ∈ Rn × Sn−1 we let Ft(x, p) = (X(x, p, t), p), t ∈ R where X(x, p, t) is on the
line l(x, p) = {y, y = x + τp, τ ∈ R}. For t > 0 the point X(x, p, t) moves in the direction
of p. For t < 0 the flow travels in the direction −p. The velocity of the flow X(x, p, t) on
a line l(x, p) is constant on l(x, p, γ) = l(x, p) ∩ γ(D(ξ, g)) for a fixed γ ∈ Γ. For γ = id
this velocity is equal to 1. For a general γ this velocity is determined uniquely by the
condition that the γ−1(X(x, p, t)|l(x,p,γ)) gives the flow X(x′, p′, t) on D(ξ, g). Specifically,
let γ = (Aγ , aγ) ∈ Affn(R). Then the velocity of the flow X(x, p, t) while moving on
l(x, p, γ) is equal to 1

|A−1
γ p| . Note that the velocity of the flow X(x, p, t) is not defined on

γ(∂D(ξ, g)). Since any compact interval [a, b] meets ∪γ∈Γγ(∂D(ξ, g)) at a finite number
of points it follows that the flow Ft is a well defined continuous nondifferentiable flow.

We let Affn(R) to act on Rn × Sn−1 as follows.

(x, p) 7→ (Ax + a,
Ap

|Ap| ), (A, a) ∈ Affn(R).
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It then follows that Γ acts properly discontinuously on Rn×Sn−1. Let M̂ = Rn×Sn−1/Γ
be an Sn−1 bundle over M . Our construction yields that the flow Ft induces a continuous
flow F̂t : M̂ → M̂ . The flow F̂t corresponds to the following ”billiard” flow on D(ξ, g).
Pick a point x ∈ D(ξ, g) and a direction p ∈ Sn−1. Then the billiard ball is moving in the
direction p with unit speed until the billiard hits ∂D(ξ, g) at x′. Then the ball continues
its way from the point γ−1(x′) ∈ ∂D(ξ, g) into D(ξ, g) with unit speed in the direction
A−1

γ p

|A−1
γ p| for a unique γ ∈ S. Krylov-Bogolyubov’s theorem yields that F̂t has an invariant

measure ν ∈ Π(M̂). It seems that the existence of an invariant measure for ψ̂(Γ) could be
constructed by using ν.
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