
Short overview of papers of Shmuel Friedland organized by subjects

1. Elasticity: 1,2, 5.
These papers were done while I was an undergraduate and graduate student, working

part time for Y. Stavsky, Professor in Aeronautics Department in Technion. I worked on
obtaining exact solutions to ODE in theory of bucklings of shells.

2. Theory of Analytic Functions of One Complex Variable and Related Subjects: 3, 4, 7,
11, 12, 20, 22, 27.

These papers deal mostly with various coefficient problems of certain families of ana-
lytic functions of one complex variable.

In 3 (my Master thesis) I proved the Robertson conjecture for n = 4, which implies
the Bieberbach conjecture for n = 4 (verified first by Z.Charzynski and Schiffer). It turns
out that this is a special case (n = 4) of Milin’s inequality, which were proved in full by L.
de Brange a few years later. (They yield the Bieberbach conjecture.)

Jointly with Z. Nehari we generalized in 4 Nehari’s famous condition for the univalence.
This work inspired me to consider problems in 8 (my D.Sc. thesis).

Jointly with D. Aharonov we proved in 7, 11, the sharp cofficient bounds for the
functions of bounded boundary rotations.

Jointly with M. Schiffer we obtained in 20, 22 some global results on the coefficients
of univalent functions using control theory. These results were recently discussed in 1998
Ph.D. thesis of Oliver Roth, Bayerischen Julius-Maximilian-University, Wurzburg, under
the title the Friedland-Schiffer equation. (See also O. Roth, Pontryagin maximum principle
in geometric function theory, Complex Variables 41 (2000), 391-426.) I extended these ideas
to some global principle in control theory and differential games in 27.

3. Nonoscillation and Disconjugacy: 9, 16, 18.
In the Memoir 18 I treat in a uniform way the classical notions of nonoscillation and

disconjugacy as certain variational problems. I derive the corresponding Euler-Lagrange
equations and show that they possess a solution. I found also some new sharp constants.
My constants were shown to yield the uniqueness for nonlinear multipoint boundary-value
problems. C.J. Amick: J. London Math. Soc. 21(1980), 304-310.

4. Eigenvalue Problems and Eigenvalue Inequalities: 8, 14, 17, 19, 29, 30, 32, 42, 44, 50,
51, 62, 65, 71, 74, 75, 84, 86, 95, 96, 98, 101, 103, 106, 114, 122, 124, 128, 135.

Jointly with S. Karlin we give some basic inequality in 14 for the spectral radius of
a nonnegative matrix. This inequality turned out to be fundamental in many pure and
applied areas. It can be viewed as a discrete explicit version of the famous Donsker-
Varadhan formula, Proc. Acad. Sci. USA 72(1975), 780-783.

In 17 together with R. Loewy we find the minimal dimension for any subspace of n×n
real symmetric matrices to contain a nonzero matrix whose first eigenvalue is of multiplicity
m at least. This result gives a proof to an old theorem of Bohnenblust. Recently it was
used by L. Lovácz: Semidefinite programs and combinatorial optimization, Lecture Notes
2001.
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Jointly with W. Hayman we generalize in 19 Ahlfors theorem to subharmonic functions
in any number of variables using some eigenvalue inequalities. These inequalities are
obtained by using the symmetrization principle. Recently this paper became of interest to
researchers in PDE, e.g. Caffarelli, Luis A.; Jerison, David; Kenig, Carlos E. Some new
monotonicity theorems with applications to free boundary problems. Ann. of Math. (2)
155 (2002), no. 2, 369–404. (My paper 19 has 6 reference citations and 1 review citation
in MathSciNet.)

In 24, 29, 32 I show that the extremal solutions to many eigenvalue problems satisfy
the bang-bang principle.

In 44, 50, 84, 86 we bound the variation of certain spectral functions using norms.
In a joint paper with J. Cohen, T. Kato and F. Kelly, we derive in 51 various versions

of the Golden-Thompson inequalities (in statistical mechanics). This paper was used in the
recent work of C. O’Cinneide: Markov additive processes and Perron-Frobenius eigenvalue
inequalities., Ann. Probab. 28 (2000), 1230–1258.

Together with my former Ph.D. student G. Porta we give in 136 a version of Golden-
Thompson inequality for self adjoint operators.

In 62, 75, 96, 98, 103, 122 we derive some inequalities for the first eigenvalue of
0-1 matrices which correspond to the first eigenvalue of certain graphs. Some of these
inequalities are sharp. 62 has found a recent application in J. Snellman: Bounds for the
entropy of graded algebras, arXiv:math.RA/0209080 v2 10 Sep 2002. (See also J. Snellman,
The maximal spectral radius of a digraph with (M + 1)2 − S edges, Elec. Lin. Alg. 10
(2003), 179-189.)

In 95, 101, 114, 128 we discuss the upper bounds for the second eigenvalue of non-
negative matrices, which is of cardinal importance in the rate of convergence of Markov
chains. (The Cheeger inequality.)

Jointly with L. Elsner we give in 106 a generalization of T. Kato inequality (for self
adjoint operators) to normal operators.

In 124 I generalize Klyachko’s theorem, which solved the famous Horn conjecture, to
hermitian matrices and to selfadjoint, positive, compact operators. My result on hermitian
matrices was improved substantially by W. Fulton: Eigenvalues of majorized Hermitian
matrices and Littlewood-Richardson coefficients, Linear Algebra Appl. 319 (2000), 23-36.

5. Inverse Eigenvalue Problems (IEP): 6, 15, 21, 23, 26, 33, 70, 73, 94
In 21, generalizing the results of 6 and 15, I showed how to combine the methods of

algebraic geometry with matrix theory to produce the fundamental paper on IEP, which
was cited many times. (Reference citations 3 and Review citations 4 in MathSciNet.) An
exposition of some of these results were given by J.C. Alexander: Matrices, eigenvalues
and complex projective spaces, Amer. Math. Monthly 85(1978), 727-733.

In 26 I study systematically the IEP for nonnegative and eventually nonnegative
matrices. A complete solution of this problem was given by M. Boyle and D. Handle:
The spectra of nonnegative matrices via symbolic dynamics, Annals of Math., 133(1991),
249-316, for which they received the second H. Schneider prize.

In 70, 73 together with Nocedal and Overton we continue to apply the ideas of 21 to
obtain variuos numerical methods to solve IEP.
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In 94 I treat the IEP for symmetric Toeplitz matrices using complex and real algebraic
geometry. My methods were applied successfully by J.H. Landau: The inverse eigenvalue
problem for real symmetric Toeplitz matrices, Journal of AMS 7(1994), 749-767, to prove
the long standing conjecture that any real spectrum is realized by a real symmetric Toeplitz
matrix.

6. Permanents and Applications: 10, 28, 31, 35, 46, 76, 78, 157, 158.
In 35 I give the correct exponential lower bound for the permanents of doubly stochas-

tic matrices. This result enabled me to solve one of the Erdös-Rényi conjectures. My lower
bound was improved by Egorichev and Falikman in 1980 by proving the van der Waerden
conjecture. I used their methods to prove the Tverberg conjecture in 46.

In 76 together with Li and Schneider we discuss additive decomposition of nonnegative
matrices with applications to scaling and permanents. It turned out that these ideas were
used by N. Linial, Samorodnitsky and A. Wigderson: A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents, Combinatorica 20(2000), 545-
568, to study the complexity of permanent computation of certain nonnegative matrices.

In 78 I use the van der Waerden conjecture to give a simple proof that any 7-regular
digraph contains an even cycle. This result is cited in R.L. Graham, M. Grotschel and L.
Lovácz: Handbook of Combinatorics, North-Holland, 1996. C. Thomassen: The even cycle
problem for directed graphs, Journal of AMS 5(1992), 217-229, proved Lovász conjecture
that any 3-regular digraph contains an even cycle.

Together with Gurvits we give lower bounds for partial matchings in regular bipartite
graphs in [157]. These results can be viewed as an analog of the famous A. Schrijver lower
bound on counting 1-factors in regular bipartite graphs. We show that these results are
asymptotically sharp in certain cases. We give applications to the monomer-dimer entropy.
Further improvements of these results are given in [158].

7. Invariants of Classes of Matrices and Applications: 36, 38, 39, 40, 43, 47, 53, 54, 63,
67, 85, 89.

In 36, 39 and 40 I studied problems of analytic similarity of matrices, which orig-
inated from the work of W. Wasow: ”Asymptotic Expansions for Ordinary Differential
Equations”, Krieger, N.Y. 1976. I generalized many known results.

Jointly with N. Moiseyev we applied these ideas and methods to certain problems
of resonanse states in Molecular Physics in 38 and 43. These results were successfuly
continued by Moiseyev and his group in theoretical chemistry.

In 54 I treated the notorious ”wild problem” of simultaneous similarity of matrices
considered by many outstanding mathematicians, e.g. I. Gelfand: I.M. Gelfand and V.A.
Ponomarev, Remarks on the classification of a pair of commuting linear transformations
in a finite dimensional vector space, Functional Anal. Appl. 325-326; I.M. Gelfand, The
cohomology of infinite dimensional Lie algebras, some questions of integtal geometry, in
”Actes, Congrés Intern. Math.”, vol. 1 (1970),95-111.

I showed that this wild problem can be reasonably classified by using algebraic geom-
etry.

In 63 and 67 I showed how to apply the methods of 54 to find the invariants and the
canonical forms which appear in the standard (linear) models of control theory.
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8. Stability Problems in Matrices: 25, 45, 52, 56, 57, 59, 112, 144.
Together with Michelli we discuss in 25 comparison theorems for countable number of

difference equations and apply then to splines. In a joint work with de Boor and Pinkus
we prove in 52 Michelli conjecture on spline interpolation.

In 45, 56, 57, 59 we discuss the stability criterias for sets of matrices, which are
of fundamental importance in the theory of (stable) convergent schemes of hyperbolic
equations. The most remarkable paper of these four papers is a joint paper with Zenger
(57), which shows that a unit ball of the spectrally dominant norm is a stable set.

Together with Elsner we give in 112 necessary and sufficients conditions for conver-
gence of all infinite products in two given matrices. This condition is important in wavelets.

In [144] I give a simple necessary condition for convergence of products of matrices to
rank one matrix in the projective space.

9. Nonnegative Matrices and Operators: 37, 41, 58, 66, 72, 77, 83, 88, 91, 93, 102, 108,
123, 126.

In 37, 66, 77, 91 we discuss various properties of powers of nonnegative and related
matrices.

In 41 I describe convex spectral functions of hermitian, nonnegative and totally posi-
tive matrices.

In 88 I give an elegant characterization of the spectral radius of any nonnegative
operator, with respect to the natural cone of nonnegative self adjoint elements of C∗

algebra. See 83 and 93 for the finite dimensional version of this theorem.
Together with L. Elsner we give in 108 a certain inequality for the Hadamard square

of the matrix, which has applications to graphs, permanents and eigenvalue perturbations.
Jointly with L. Elsner we generalize in 123 and 126 some classical results on non-

negative, asymetric, infinite Toeplitz matrices to nonnegative, asymetric, infinite, block
Toeplitz matrices.

10. Topological and Algebraic Geometry Methods in Matrices: 55, 68, 119, 129, 131.
In a joint work with Robbin and Sylvester we give in 55 the crossing rule: the precise

version of the famous (heuristic) Wigner-von Neumann noncrossing rule. It was very well
received by theoretical physicists and by mathematicians working in stability of hyperbolic
systems.

Together with Berger we extend in 68 some of the results in 55. Further generalizations
were given by K.Y. Lam and P.Y.H. Yiu: Sums of squares formulae near Hurwitz-Radon
range, Contemporary Math. 58, II(1987), 51-56.

In 119 and 129 we discuss the minimal dimension of subspaces of n × n symmetric
matrices containing a nonzero matrix of rank m at most. In 129 we use results of Harris-
Tu on determinantal varieties to find the above minimal dimension for a given m and an
infinite family of n (depending on m). This result genearlizes the famous result in P. Lax:
The mulltiplicity of eigenvalues, Bull. Amer. Math. Soc. 6(1982), 213-215, for m = 2.

Jointly with A. Libgober in 131 we answer an open case in 129 using the tools of
algebraic geometry.
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11. Algebraic and Number Theoretic Problems in Matrices and Applications to Graphs and
Graph Isomorphism Problem: 60, 61, 64, 80, 81, 90, 99, 104, 115, 137, 153, 154.

In 61, together with Alon and Kalai, we show (using Chevalley theorem) that every
4-regular graph plus one edge contains a 3-regular subgraph. This is a variation of the
Berge-Sauer conjecture proved by V.A. Tashkinov: Regular subgraphs of regular graphs,
Soviet Math. Dokl. 26(1982), 37-38. More general results are given in 60.

In 80 and 90 I discuss the connections between the coherent algebras and quadratic
forms respectively and the graph isomorphism problem (g.i.p.). The complexity of g.i.p.
is one of the main unclassified problems in theoretical computer science.

In 99 I give natural conditions for rational orthogonal similarity of rational symmetric
matrices. It was generalized by W.C. Waterhouse: Orthogonal similarity and pairs of
quadratic forms, Linear Algebra Appl. 231(1995), 175-179.

Together with Brualdi and Pothen we solve in 104 the sparse basis problem (of im-
portance in computer science) using multilinear algebra.

In 115 I show that for n >> 1 the monomial group has the maximal order among
all finite subgroups of GL(n,Q). This result was generalized by W. Feit, The orders of
finite linear groups, preprint 1995. This result is discussed in J. Kuzmanovich and A.
Pavlichenkov, Finite groups of matrices whose entries are integers, Monthly, 109(2002),
173-186.

Together with Kim, Peled, Pless and Perepelitsa we consider explicit constructions of
LDPC Ccodes which are serious contenders to Turbo codes. The constructions of these
codes are geometric-algebraic. The proofs that these codes have a large weight are number
theoretical.

In [153], together with C. Krattenthaler we bound the the exponent of 2, which divides
certain ratios of products of factorials. We solve the conjecture stated in [129], and apply to
the dimension of subspaces of matrices containing a nonzero matrix of maximal prescribed
rank.

In [154], together with Bhattacharya and Peled we characterize the extreme points of
the polytope of dual degree partitions.

12. Discrete Groups and Ergodic Theory: 97, 107, 109, 116, 132-134, 141.
In 97 together with my an informal Ph.D. student S. Hersonsky we generalize Jor-

gensen’s inequality to discrete groups in normed algebras.
In 107 I discuss the connection between Auslander’s conjecture and invariant measures

on groups of homeomorphisms.
In 109 I study discrete groups of unitary isometries in finite dimensional vector spaces

and their applications to lower bounds on radii of balls in hyperbolic manifolds.
In 116 I discuss properly discontinuous groups on certain matrix homogenous spaces.

Some of my results were generalized by Y. Benoist: Action propres sur les espace homo-
genes reductifs, Annals Math. 144(1996), 315-347.

Together with my former Ph.D. student P. Freitas in 132-134 we make a fundamental
study of Busemann compcatifications on the homogeneous space GL(n,C)/Un and of
discrete subgroups of biholomorphisms of Siegel upper half plane.

In 141 together with B. Weiss we study generalized inrterval exchanges and apply
these results to new versions of the 2-3 conjecture of H. Furstenberg.
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13. Dynamical Systems: 79, 87, 92, 105, 110, 113, 117, 118, 121, 130, 138, 139, 156.
The joint work with J. Milnor 79 stimulated many works on the subject of complex

dynamics of plane polynomial diffeomorphisms. It has 17 references citations and 12
citations in MathSciNet. Bedford and Smillie have produced at least 7 papers on this
subject, e.g. E. Bedford, M. Lyubich and J. Smillie, Polynomial differomorphisms of C2

IV: The measure of maximal entropy and laminar currents, Inventiones Math. 112(1993),
77-125.

In 87, 92, 105, 110, 156 I discuss the notion of entropy for various maps arising in
the context of algebraic geometry: rational maps, multivalued algebraic maps, groups
and semi-groups of finitely generated algebraic maps. The connecting theme in these
papers is the use of graphs. In 87 I showed that for the self holomorphic maps of smooth
projective variety to itself the entropy is given by the spectral radius of the induced map
on the homology. In 105 I extend this result to holomorphic self maps of compact Kähler
manifolds. These results show the validity of the entropy conjecture for these maps in
the tightest form. (M. Shub, Dynamical systems, filtrations and entropy, Bulletin AMS
80(1974), 27-41.) This result is mentioned in C.T. McMullen: Dynamics on K3 surfaces,
Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201-233.

In 113 I discuss in detail the use of matrices to calculate the entropy of Zd subshifts of
finite type. In particular I prove that d− 1 symmetries imply that the topological entropy
is equal to the periodic entropy. This result has a siginificant implication to some problems
of statistical mechanics, even for the case d = 2: E.H. Lieb: Residual entropy of square
ice, Phys. Rev. 162(1967), 162-172. Surprisingly, this topic became fashionable in IEEE
circles under the name multi-dimensional capacity. I gave two hours lecture on this topic
in the recent MTNS-02 conference August 2002 in Notre Dame Univ. A survey paper
130, which also contains many new resutls on this subject, will appear in the proceeings of
this conference. Together with my colleague Uri Peled we compute in 138-139 the famous
entropies of two and three dimensional monomer-dimer configurations with high precision.

In 117 I show how to use some results in matrices to compute the Hausdorff dimension
of subshifts, which yields a generalization of the Mauldin-Williams formula: R.D. Mauldin
and S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. AMS
309(1988), 811-829. I apply these results to compute the Hausdorff dimension of the limit
sets of finitely generated free groups of isometries of inifinite trees.

In a joint paper with Ochs 118 we discuss in detail the existence of Gibbs measures
whose Hausdorff dimension is equal to the Hausdorff dimension of the nonwandering set.
Some results of this paper are improved in recent works of C. Wolf, e.g.: Dimension of
Julia sets of polynomial automorphisms of C2, Michigan Math. J. 47 (2000), 585-600.

In 121 I introduce the notion of discrete Lyapunov exponent for certain subshifts of
finite types. I show that the Hausdorff dimension (with respect to a suitable metric) has
a variational characterization analogous to the characterization for complex hyperbolic
polynomial maps. This characterzation yields a lower bound for the Hausdorff dimension
which is sharp in some clasical examples, e.g. geometrically finite Kleinian groups.

14. The limit of certain matrices and operators: 100, 136.
In s joint work with W. So 100 we show that certain one parameter family of hermitian

matrices have a limit.
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In a joint work with my former Ph.D. student G. Porta in 136 we extended the above
results to one parameter family of operators in two selfadjoint, positive, compact operators.

15. The Jacobian conjecture: 120, 125
In 120 I published the results of my work on the Jacobian conjecture. (It is one of

the suggested problems for 21 century by S. Smale: Math. Intelligencer 20 1998), #2.) It
deals with the monodromy action on the affine algebraic curves, Gauss-Manin connection
and their role for polynomial maps with constant nonzero Jacobian.

In 125 I show that the Jacobian conjecture is equivalent to finiteness of certain coho-
mologies.

16. Random Matrices: 135.
Together with B. Ryder and O. Zeitouni we show that the permanent of positive

matrices with entries in [a, b] can be efficiently computed for large n, using the determinants
of random matrices with corresponding independent Gaussian entries.

17. Singular Value Decomposiiton and Genomics: 143, 145-147, 152, 155.
In 143 I study theoretical and numerical aspects of singular value decomposition with

applications to DNA microarrays. This study is continued in joint works with Torokhti
and Howlett in [152] and [155]. In [146], together with Kaveh, Niknejad and Zare we give
an algorithm for fast Monte-Carlo low rank approximations for matrices.

In 145, together with L. Chihara and A. Niknejad we suggest a new algorithm to
complete the missing entries in DNA microarrays. A variant of this algorithm is considered
in [147].
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