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Introduction

In many instances in measuring multidimensional data, as matrices
and tensors, one confronts the following problems: noisy data, missing
entries and data reduction.
There are many statistical and mathematical methods to deal with
these problems. In this talk we discuss a few methods that the speaker
was working on.
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Statement of the 2-dimensional problem

2-D data is presented in terms of a matrix

A =


a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

...
...

am,1 am,2 ... am,n

 .
Examples

1 digital picture: 512× 512 matrix of pixels,
2 DNA-microarrays: 60,000× 30

(rows are genes and columns are experiments),
3 web pages activities:

ai,j -the number of times webpage j was accessed from web page
i .

Objective: denoise, condense and store data effectively.
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Least squares & best rank k -matrix approximation

Least Squares: given a1, . . . ,an ∈ Rm find the best approximations
b1, . . . ,bn ∈ Rm lying in the subspace spanned by f1, . . . , fk ∈ Rm

History Gauss (1794) 1809, Legendre 1805, Adrain 1808

SOL: A = [a1 . . . an] = [aij ],B = [b1 . . . bn] ∈ Rm×n,
‖A− B‖2F :=

∑
i,j |aij − bij |2, F = [f1 . . . fk ] ∈ Rm×k ,X ∈ Rk×n

minX∈Rk×n ‖A− FX‖2F achieved for X ? = F †A, B? = FF †A
F †-Moore-Penrose inverse 1920, 1955

Singular Value Decomposition:
In LS find the best r -dimensional subspace
minX∈Rr×n,F∈Rm×r ‖A− FX‖2F achieved for Ar := (F ?)†X ?

History Beltrami 1873, C. Jordan 1874, Sylvester 1889, E. Schmidt
1907, H. Weyl 1912
Story: Gene Golub
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Singular Value Decomposition - SVD

A = UΣV>

Σ = diag(σ1, . . . , σmin(m,n)) :=



σ1 0 ... 0
0 σ2 ... 0
...

...
...

...
0 0 ... σn
0 0 ... 0
...

...
...

...


∈ Rm×n

σ1 ≥ . . . ≥ σr > 0 = σi , i > r = rank A
U = [u1 . . .um] ∈ O(m), V = [v1 . . . vn] ∈ O(n)

a† = a−1 if a ∈ R \ {0}, a† = 0 if a = 0

A† := V diag(σ†1, . . . , σ
†
min(m,n))U>

AA> = U diag(σ2
1, . . . , σ

2
r ,0, . . . ,0)U> - Spectral decomposition of AA>
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Best rank k -approximation

For k ≤ r = rank A: Σk = diag(σ1, . . . , σk ) ∈ Rk×k ,
Uk = [u1 . . .uk ] ∈ Rm×k ,Vk = [v1 . . . vk ] ∈ Rn×k

Ak := Uk ΣkV>k is the best rank k approximation in Frobenius and
operator norm of A

min
B∈R(m,n,k)

||A− B||F = ||A− Ak ||F .

Reduced SVD A = Ur Σr V>r
(r ≥) ν numerical rank of A if∑

i≥ν+1 σ
2
i∑

i≥1 σ
2
i
≈ 0, (0.01).

Aν is a noise reduction of A. Noise reduction has many applications in
image processing, DNA-Microarrays analysis, data compression.
Full SVD: O(mn min(m,n)), k - SVD: O(kmn).
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CUR approximation-I

From A ∈ Rm×n choose submatrices consisting of p-columns
C ∈ Rm×p and q rows R ∈ Rq×n

A =



a1,1 a1,2 a1,3 ... a1,n
a2,1 a2,2 a2,3 ... a2,n
a3,1 a3,2 a3,3 ... a3,n
a4,1 a4,2 a4,3 ... a4,n

...
...

...
...

am−1,1 am−1,2 am−1,3 ... am−1,n
am,1 am,2 am,3 ... am,n


,

R ∈ Rm×q - red - blue, C ∈ Rm×p - red - magenta.

Approximate A using C,R: by A = CUR,

by ”best chosen" U ∈ Rp×q
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CUR approximation-II

Given A the best choice of U is
Ub ∈ arg minU∈Rp×q ||A− CUR||F
Ub = C†AR†

Complexity: O(pqmn).

A good choice U = A[I, J]†

Needs to find with certain maximal properties:

Having the product of all nonzero singular values of A[I, J] maximal

Done by going through a finite random choices of I, J
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Simulations: Tire I

Figure: Tire image compression (a) original, (b) SVD approximation, (c) CLS
approximation, tmax = 100.

Figure 1 portrays the original image of the Tire picture from the Image
Processing Toolbox of MATLAB, given by a matrix A ∈ R205×232 of rank
205, the image compression given by the SVD (using the MATLAB

function svds) of rank 30 and the image compression given by
Bb = CUbR.
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Simulations: Tire II

The corresponding image compressions given by the approximations
Bopt1 , Bopt2 and B̃opt are displayed respectively in Figure 2. Here,
tmax = 100 and p = q = 30. Note that the number of trials tmax is set to
the large value of 100 for all simulations in order to be able to compare
results for different (small and large) matrices.

Figure: Tire image compression with (a) Bopt1 , (b) Bopt2 , (c) B̃opt , tmax = 100.
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DNA Microarrays: I

A DNA microarray (also commonly known as gene chip, DNA chip, or
biochip) is a collection of microscopic DNA spots attached to a solid
surface. Scientists use DNA microarrays to measure the expression
levels of large numbers of genes simultaneously or to genotype
multiple regions of a genome. Each DNA spot contains picomoles
(10-12 moles) of a specific DNA sequence, known as probes (or
reporters).

Shmuel Friedland Univ. Illinois at Chicago () Approximating, denoising and completing missing entries in 2 and 3 dimensional data
Department of Informatics, University Zurich Nord 19 October, 2011 14

/ 30



DNA Microarrays: II

Figure: Microarays raw data
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DNA Microarrays: III

Figure: Microarays processed data
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Missing entries in DNA Microarrays

During the laboratory process, some spots on the array may be
missing due to various factors (for example, machine error.) Because it
is often very costly or time consuming to repeat the experiment,
molecular biologists, statisticians, and computer scientists have made
attempts to recover the missing gene expressions by some ad-hoc and
systematic methods.
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Gene expression matrix

E =



g11 g12 . . . g1m
g21 g22 . . . g2m

...
...

...
...

gj1 gj2 . . . gjm
...

...
...

...
gn1 gn2 . . . gnm


=



g>1
g>2
...

g>j
...

g>n


= [c1 c2 . . . cm] ∈ Rn×m

g>j := (gj1,gj2, ...,gjm), j = 1, ...,n,ci =



g1i
g2i
...

gji
...

gni


, i = 1, ...,m.

g>j relative expression levels of j th gene in m experiments.
ci relative expression levels of n genes ini th experiment
n� m
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Missing entries problem in DNA Microarrays

N ⊂ [n] := {1, . . . ,n} the set of rows of E that contain at least one
missing entry.

For each j ∈ N c := [n]\N , the gene g>j has all of its entries.

n′ denote the size of N c , i.e. the size of N is n − n′.

Problem: complete the missing entries of each g>j , j ∈ N ,

under some assumptions.
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Fixed Rank Approximation Algorithm (FRAA): I

σ2
1(A) ≥ σ2(A)2 ≥ . . . are the eigenvalues of AA> and A>A.

Ky-Fan characterization

m∑
i=ν+1

σi(A)2 = min
[xν+1...xm]∈O(m,m−ν)

m∑
i=ν+1

(Axi)
>(Axi)

O(m, k) ⊂ Rm×k all matrices with k orthonormal columns
Ω ⊂ {1, . . . ,n} × {1, . . . ,m} missing entries set.

Set gij = 0 if (i , j) ∈ Ω to obtain E ∈ Rn×m.

X are all X = [xij ] ∈ Rn×m where xij = 0 if (i , j) 6∈ Ω.

Assume that the completed matrix of the experiment should have the
numerical rank ν. Then we complete the entries by solving the
problem:
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FRAA: II

(1) minX∈X
∑m

i=ν+1 σ
2
i (E +X ) = minX∈X

∑m
i=ν+1 λi((E +X )>(E +X ))

Fixed Rank Approximation Algorithm: [4]

Gp ∈ X is pth approximation to a solution of optimization problem (1).

Let Bp := (E + Gp)>(E + Gp)

Find an orthonormal set of eigenvectors for Bp, vp,1, ...,vp,m.

Then Gp+1 is a solution to the following minimum
of a convex nonnegative quadratic function

min
X∈X

m∑
q=l+1

((E + X )vp,q)>((E + X )vp,q)
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Fixed Rank Approximation Algorithm (IFRAA)

FRAA is a robust algorithm which performs good, but not as well as
KNNimpute, BPCA and LSSimpute.
All other algo reconstruct the missing values of each gene from similar
genes.

First use FRAA to find a completion G.

Then use a cluster algorithm

(We used K-means repeating & refining cluster size),
to find a reasonable number of clusters of similar genes,

each cluster is a relatively smaller matrix having an effective low rank.

For each cluster of genes apply FRAA separately to recover the
missing entries in this cluster [3].
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SIMULATIONS 1

Figure: Comparison of NRMSE against percent of missing entries for three
methods: IFRAA, BPCA and LLS. Cdc15 data set in [?] with 24 samples.
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SIMULATIONS 2

Figure: Comparison of NRMSE against percent of missing entries for three
methods: IFRAA, BPCA and LLS. Data set was a 2000× 20 randomly
generated matrix of rank 2.
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Missing entries for 3-tensors

T = [ti,j,k ]n,m,li=j=k=1 ∈ Rn×m×l .

Ω ⊂ {1, . . . ,n} × {1, . . . ,m} × {1, . . . , l} missing entries set

Simple solution: Assume 1, . . . ,n are genes

Unfold T in direction 1 to get the matrix E = [gi(j,k)] ∈ Rn×(ml)

where gi(j,k) = ti,j,k .

Apply your favorite completion algorithm for matrices
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(p, q, r)-approximation of 3-tensors

U ⊂ Rn,V ⊂ Rm,W ⊂ Rl of dimensions p,q, r respectively

with orthonormal bases [u1, . . . ,up], [v1, . . . ,vq], [w1, . . . ,wr ]

PU⊗V⊗W(T ) =
∑p,q,r

i=j=k 〈T ,ui ⊗ vj ⊗wk 〉ui ⊗ vj ⊗wk

(〈T ,x⊗ y⊗ z〉 =
∑n,m,l

i=j=k=1 ti,j,kxiyjzk )

‖T ‖2HS := ‖PU⊗V⊗W(T )|2HS + ‖P(U⊗V⊗W)⊥(T )|2HS

(‖PU⊗V⊗W(T )|2HS :=
∑p,q,r

i=j=k=1〈T ,ui ⊗ vj ⊗wk 〉2)

(Best) (p,q, r)-approximation PU?⊗V?⊗W?(T ):

arg max ‖PU⊗V⊗W(T )‖HS = arg min ‖P(U⊗V⊗W)⊥(T )‖HS
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Fixed Rank Approximation Algorithm for Tensors

ΦΩ ⊂ Rn×m×l all tensors X = [xi,j,k ] ∈ Rn×m×l

with xi,j,k = 0 if (i , j , k) 6∈ Ω.

T = [ti,j,k ] ∈ Rn×m×l , ti,j,k = 0 if (i , j , k) ∈ Ω.

X0 an approximation of completed errors

Assume Xs given.

Find (p,q, r)-approximation of T + Xs with corresponding subspaces
Us,Vs,Ws.

Then Xs+1 := arg min{‖P(Us⊗Vs⊗Ws)⊥(T + X )‖HS,X ,∈ Φ}.

Xs converges to a critical semi-local minimum
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