On the entropy of Z^d subshifts of finite type

Shmuel Friedland

University of Illinois at Chicago

August 23, 1995

§0. Introduction

Let n be a positive integer and denote < n > = \{1, ..., n\}. We view < n > as an alphabet on n letters. Denote by < n > Z^d the set of all mappings of Z^d to the set < n >. By extending the Hamming metric on < n > × < n > to < n > Z^d one obtains that < n > Z^d is a compact metric space. The group Z^d acts as a group of (translation) automorphisms on < n > Z^d. A set S ⊂ Z^d which is closed and invariant under the action of Z^d is called a subshift. S is called a subshift of finite type (SFT) if there is a finite set of finite admissible configurations which generates S under the action of Z^d. More precisely, let F ⊂ Z^d be a finite set. Assume that P ⊂ < n > F. Then (F, P) defines a following Z^d-SFT S. For each a ∈ Z^d let F + a ∈ Z^d be the corresponding translation of F. Then x ∈ S iff for each a ∈ Z^d, π_{F+a}(x), the projection of x on the set F + a, is in P. See for example [Sch, Ch. 5].

The case of Z action, i.e. d = 1, is well understood. In that case, it is relatively easily to decide whether S is empty or not. Moreover, the topological entropy h(S) of the restriction of the standard shift to S is a logarithm of an algebraic integer ρ(F, P). The number ρ(F, P) is a the spectral radius of certain 0−1 square matrix induced by (F, P). Furthermore, the topological entropy h(S) is equal to the rate of growth of the number of periodic points. The case d > 1 is much more complicated. First, the problem wether S is an empty set or not is undecidable. This result for d = 2 goes back to Berger [Ber]. See also [K-M-W] and [Rob]. Second, there exists a SFT S ≠ ∅ which does not have periodic points. Moreover, in the case where S ≠ ∅ the topological entropy may be uncomputable, see [H-K-C] and [Gab].

The object of this paper to show that contrary to these results one has a natural and a simple criterion which either determines that S = ∅ or calculates the topological entropy of S ≠ ∅. There is no contradiction to the uncomputability of h(S) because we can not estimate the rate of convergence of our sequence. However, if we introduce a symmetry in Z^2 we can estimate the rate of convergence of our sequence. Moreover, in this case h(S) is the rate of growth the number of periodic points. Our main tool is to view a Z^d-SFT as a matrix SFT. See [M-P1, M-P2]. In fact our methods are very close to the methods of [M-P1, M-P2].

We now describe briefly the content of the paper. In §1 we define combinatorial entropy of Z^d-SFT. It can is computed by finite configurations. We then observe, using König’s method, that Z^d-SFT is nonempty iff every finite configuration is nonempty. In §2 we show that the combinatorial entropy is equal to the topological entropy of Z^d-SFT.
In §3 we show that simple symmetricity conditions yield that the topological entropy of \mathbb{Z}^d-SFT is equal to the periodic entropy. (The periodic entropy is the rate growth of the periodic points.) In the case $d = 2$ combined with the symmetricity assumption we obtain an algorithm for computing the entropy at any given precision. This result is due to [M-P2] under stricter conditions. The last section is devoted to various remarks.

§1. Preliminary results

Let $\Gamma \subset < n > \times < n >$. Set
\[
\Gamma^N = \{ x = (x_i)_1^N, (x_i, x_{i+1}) \in \Gamma, i = 1, \ldots, N - 1 \}, \\
\Gamma^\infty = \{ x = (x_i)_{i \in \mathbb{Z}} : (x_i, x_{i+1}) \in \Gamma, i \in \mathbb{Z} \}.
\]
Assume that $\Gamma_i \subset < n > \times < n >, i = 1, \ldots, d$. Set $\Gamma = (\Gamma_1, \ldots, \Gamma_d)$ and let
\[
\Gamma^\infty = \{ f : f \in < n > \mathbb{Z}^d, (f_{(i_1, \ldots, i_d)})_{i_1 \in \mathbb{Z}} \in \Gamma_k^\infty, \\
(i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_d) \in \mathbb{Z}^{d-1}, k = 1, \ldots, d \}
\]
to be a \mathbb{Z}^d-SFT induced by Γ. We now show that a standard \mathbb{Z}^d-SFT is equivalent the \mathbb{Z}^d-SFT induced by Γ. For the case $d = 2$ this can be deduced from [Moz] who proved that every \mathbb{Z}^2-SFT is equivariant to Wang-tiling-space. It is easy to see that Wang-tiling-space is \mathbb{Z}^2-SFT induced by some special $\Gamma = (\Gamma_1, \Gamma_2)$.

Let S be a SFT is given by the pair (F, P) as in §0. Let $N = (N_1, \ldots, N_d) \in \mathbb{Z}^d, N_i \geq 1, i = 1, \ldots, d$. By $B(N)$ we denote the box $< N_1 > \times \cdots \times < N_d > \subset \mathbb{Z}^d$. Let $f = (f_{(i_1, \ldots, i_d)})_{(i_1, \ldots, i_d)}^N \in < n > B(N)$. Then f is called (F, P) admissible if for all $a \in \mathbb{Z}^d$ such that $F+a \subset B(N)$ we have the condition that $\pi_{F+a}(f)$ - the projection of f on the set $F+a$ is P-admissible, i.e. $\pi_{F+a}(f) \in P$. Let $(1, \ldots, 1) \leq M(F) = (M_1(F), \ldots, M_d(F)) \in \mathbb{Z}^d$ be the dimension of the smallest box containing F. That is, $B(M(F)) \supset F + a$ for some $a \in \mathbb{Z}^d$ and $B(M(F))$ is minimal with respect to this property. For $M(F) \leq N \in \mathbb{Z}^d$ let $w(N, F, P)$ be the number of (F, P) admissible words in $B(N).$ We then let
\[
h_{com}(F, P) = \limsup_{N_1, \ldots, N_d \to \infty} \frac{\log w(N, F, P)}{N_1 \cdots N_d}
\]
to be the combinatorial entropy of induced by (F, P). We agree that $\log 0 = -\infty$. That is $h_{com}(F, P) \geq 0$ iff every box $B(N)$ has at least one (P, F) admissible configuration $f \in < n > B(N)$. Observe next that if $M_i(F) = 1$ for some some i then we effectively can consider the corresponding \mathbb{Z}^{d-1}-SFT. For
\[
N = (N_1, \ldots, N_d) \in \mathbb{Z}^d, N_k > 1, k = 1, \ldots, d
\]
let
\[
\Gamma^N = \{ f = (f_{(i_1, \ldots, i_d)})_{i_1=1}^{N_1, \ldots, i_d=1} : (f_{(i_1, \ldots, i_d)})_{i_k=1}^{N_k, i_k = 1} \in \Gamma_k^{N_k}, k = 1, \ldots, d \},
\]
for every \(i_1, ..., i_{k-1}, i_{k+1}, ..., i_d\).

Set

\[
F = \{1, 2\}^d = B(2, ..., 2), P = \Gamma^{(2, ..., 2)}, w(N, \Gamma) = w(N, F, P).
\]

Then for any \(N = (N_1, ..., N_d) > (1, ..., 1)\) the set \(\Gamma^N\) consists of all \((F, P)\) admissible words in \(< n >^B(N)\). Define \(h_{\text{com}}(\Gamma) = h_{\text{com}}(F, P)\).

\((1.1)\) Theorem. Let \(F \subset \mathbb{Z}^d\) be a finite set such that \(1 < M_i(F), i = 1, ..., d\). Assume that \(P \subset < n >^F\). Denote by \(T \subset < n >^{B(M(F))}\) the set of all \((F, P)\) admissible words in \(< n >^{B(M(F))}\). For each \(i = 1, ..., d\), and \(u \in T\) let \(\pi_{i, -}(u), \pi_{i, +}(u)\) be the projection of \(u\) on the sets

\[
B(M_i(F), ..., M_{i-1}(F), M_i(F) - 1, M_{i+1}(F), ..., M_d(F)),
\]

\[
B(M_i(F), ..., M_{i-1}(F), M_i(F) - 1, M_{i+1}(F), ..., M_d(F)) + (\delta_{i1}, ..., \delta_{id}).
\]

Set

\[
\Gamma_i = \{(u, v) : u, v \in T, \pi_{i, +}(u) = \pi_{i, -}(v)\} \subset T \times T, i = 1, ..., d, \quad \Gamma = (\Gamma_1, ..., \Gamma_d).
\]

Then for any \(N = (k_1 + M_1(F), ..., k_d + M_d(F)), k_i \geq 1, i = 1, ..., d\), the set of all \((F, P)\) admissible words in \(B(N)\) is in one to one correspondence with \(\Gamma^{(k_1+1, ..., k_d+1)}\) on the alphabet \(T\). In particular the set of all admissible \((F, P)\) words in \(< n >^{\mathbb{Z}^d}\) is in one to one correspondence with \(\Gamma^\infty\). Furthermore \(h_{\text{com}}(F, P) = h_{\text{com}}(\Gamma)\).

Proof. Let \(N = (k_1 + M_1(F), ..., k_d + M_d(F)), k_i \geq 1, i = 1, ..., d\). Assume that \(f \in < n >^{B(N)}\) be an \((F, P)\) admissible word. For \((l_1, ..., l_d), 1 \leq l_j \leq k_j + 1, j = 1, ..., d\), let \(g(l_1, ..., l_d)\) be the word in \(T\) which has the following coordinates in \(f\):

\[
l_i \leq j_i \leq l_i + M_i(F) - 1, i = 1, ..., d.
\]

It is straightforward to check that \(g = (g(l_1, ..., l_d))^{(k_1+1, ..., k_d+1)} \in \Gamma^{(k_1+1, ..., k_d+1)}\). Assume that \(g \in \Gamma^{(k_1+1, ..., k_d+1)}\). Use the above formula to find a unique \(f \in < n >^{B(N)}\) so that \(g\) is constructed from \(f\) as above. We claim that \(f\) is a \((F, P)\) admissible word in \(< n >^{B(N)}\). Assume that \(F + a \subset B(N)\). Then there exists \(l_1, ..., l_d, 1 \leq l_i \leq k_i + 1, i = 1, ..., d\), so that the coordinates of \(F + a\) satisfy the inequalities \((1.2)\). That is, \(\pi_{F+a}(f)\) lies in the word \(u\) generated by the projection of \(f\) on the coordinates specified by \((1.2)\). By the construction, \(u \in T\). In particular, \(\pi_{F+a}(f) = \pi_{F+a}(u) \in P\). Hence, \(f\) is a \((F, P)\) admissible word. Therefore, \(w(N, F, P)\) is equal to \(\omega(k_1 + 1, ..., k_d + 1) = \text{card}(\Gamma^{(k_1+1, ..., k_d+1)})\). All other assertions of the Theorem follow straightforward. \(\diamond\)

Let \((1, ..., 1) \leq N \in \mathbb{Z}^d\). Partition the box \(B(N)\) to \(p\) nontrivial boxes of dimensions \(N^i \in \mathbb{Z}^d, i = 1, ..., p\). It then follows that \(w(N, F, P) \leq \prod_{1}^{p} w(N^i, F, P)\). We thus deduce

\[
h_{\text{com}}(F, P) = \lim_{N_1, ..., N_d \to \infty} \log \frac{w((N_1, ..., N_d), F, P)}{N_1 \cdot \cdots \cdot N_d} = \lim_{m \to \infty} \frac{\log w((m, ..., m), F, P)}{m^d}.
\]
(1.3) Theorem. Let S be a \mathbb{Z}^d-SFT given by (F, P). Then

$$S \neq \emptyset \iff w((m, ..., m), F, P) \geq 1, m = 2, ..., .$$

That is, $S = \emptyset \iff h_{\text{com}} = -\infty$.

Proof. Clearly, if $S \neq \emptyset$ then $h_{\text{com}}(F, P) \geq 0$. In particular, $w((m, ... , m), \Gamma) \geq 1, m = 2, ...$. Assume now that $w((m, ... , m), \Gamma) \geq 1, m = 2, ...$. Consider the box $B((2m, ... , 2m)) - B_{2m}$ in \mathbb{R}^d whose center is at the origin $(0, ..., 0)$. Let $\Theta_m \in \Gamma^{(2m, ..., 2m)}$ be an admissible filling of B_{2m} by the alphabet $\{1, ..., n\}$. Consider the sequence $\{\Theta_m\}_{i=1}^\infty$. Look at the projection of this sequence on B_2. Pick up an infinite subsequence $\{\Theta_n\}_{i=1}^\infty$ whose so that the projection of each Θ_n on B_2 is the same element $\Psi_1 \in \Gamma^{(2, ..., 2)}$. From the sequence Θ_n pick a subsequence Θ_n' so that the projection of each element Θ_n' on B_4 is the same element $\Psi_2 \in \Gamma^{(4, ..., 4)}$. Continue this construction to obtain that the sequence $\Psi_k \in \Gamma^{(2m, ..., 2m)}, k = 1, ...,$ which are $2m \times \cdots \times 2m$ sections of an element $\Psi \in \Gamma^\infty$. The above argument is due to König [Kön].

Introduce on $< n >$ the Hamming metric $d(i, i) = 0, d(i, j) = 1, i \neq j \in < n >$. For $i = (i_1, ..., i_d) \in \mathbb{Z}^d$ we let $|i| = \sum_1^d |i_p|$. On $< n >^{\mathbb{Z}^d}$ define the following metric

$$d(f, g) = \frac{1}{2^{2d}} \sum_{i = (i_1, ..., i_d) \in \mathbb{Z}^d} \frac{d(f_i, g_i)}{2^{|i|}}, f = (f_i), g = (g_i) \in < n >^{\mathbb{Z}^d}.$$

It then follows that $< n >^{\mathbb{Z}^d}$ is a compact metric space. Let $e_i = (\delta_{i1}, ..., \delta_{id}), i = 1, ..., d,$ be the standard basis in \mathbb{Z}^d. Denote by $T_i : < n >^{\mathbb{Z}^d} \to < n >^{\mathbb{Z}^d}$ the following automorphism of $< n >^{\mathbb{Z}^d}$:

$$T_i(f_j) = (f_{j + e_i}), j \in \mathbb{Z}^d, f = (f_j) \in < n >^{\mathbb{Z}^d}.$$

$S \subseteq < n >^{\mathbb{Z}^d}$ is called a subshift (SF) if S is closed and $T_iS = S, i = 1, ..., d$. In that case one defines a topological entropy $h(S)$ as follows. For $(1, ..., 1) \leq N = (N_1, ..., N_k)$ introduce the following new metric on $< n >^{\mathbb{Z}^d}$:

$$d_N(f, g) = \max_{0 \leq p < N_p, p = 1, ..., d} d(T_i^{1} \cdots T_d^{N}, f, T_i^{1} \cdots T_d^{N} g), f, g \in < n >^{\mathbb{Z}^d}.$$

Fix a positive $\epsilon > 0$ and let $K(S, N, \epsilon)$ be the maximal number of ϵ separated points in S in the metric $d_N(\cdot, \cdot)$. We then let

$$h(S) = \lim_{\epsilon \to \infty} \limsup_{N_1, ..., N_d \to \infty} \log K(S, N, \epsilon) / N_1 \cdots N_d. \quad (1.4)$$

(1.5) Theorem. Let $\Gamma_i \subseteq < n > \times < n >, i = 1, ..., d$, and set $\Gamma = \Gamma_1 \times \cdots \times \Gamma_d$. Assume that $\Gamma^\infty \neq \emptyset$. Define $h(\Gamma) = h(\Gamma^\infty)$. For $(1, ..., 1) \leq N \in \mathbb{Z}^d$ let $w(N, \Gamma^\infty)$ be the number of all possible projections of $f \in \Gamma^\infty$ on a fixed box $B(N)$. Then

$$h(\Gamma) = \limsup_{N_1, ..., N_d \to \infty} \log w(N, \Gamma^\infty) / N_1 \cdots N_d.$$
In particular, $h(\Gamma) \leq h_{\text{com}}(\Gamma)$.

Proof. It is quite straightforward to see from the definition of $K(\Gamma^\infty, N, \epsilon)$ that for a small enough $\epsilon > 0$ there exist some constants $1 \leq a(\epsilon), 1 \leq b(\epsilon) \in \mathbb{Z}$ so that

$$w(N, \Gamma^\infty) \leq K(\Gamma^\infty, N, \epsilon) \leq a(\epsilon)w(N + (b(\epsilon), ..., b(\epsilon)) \in \Gamma^\infty).$$

Now the characterization of $h(\Gamma)$ follows straightforward from (1.4). As $w(N, \Gamma^\infty) \leq w(N, \Gamma)$ we deduce that $h(\Gamma) \leq h_{\text{com}}(\Gamma)$. \(\diamondsuit\)

§2. The equality of topological and combinatorial entropy for SFT

Let $\Gamma < n > \times < n >$. Denote by $A = A(\Gamma)$ the $0 - 1$ matrix induced by the graph Γ. Let $\rho(A)$ be the spectral radius of A. Set

$$\text{per}(\Gamma^N) = \{(x_i)_1^N : (x_i)_1^N \in \Gamma^N, x_1 = x_N \}.$$

Assume that $\Gamma_i < n > \times < n >, i = 1, ..., d$. Set

$$\Gamma = (\Gamma_1, ..., \Gamma_d), \Gamma^\downarrow = (\Gamma_1, ..., \Gamma_{i-1}, \Gamma_{i+1}, ..., \Gamma_d), i = 1, ..., d.$$

For

$$N = (N_1, ..., N_d) \in \mathbb{Z}^d, N_k > 1, k = 1, ..., d,$$

$$M = (M_1, ..., M_{d-1}) \in \mathbb{Z}^{d-1}, M_j > 1, j = 1, ..., d - 1,$$

let

$$\text{per}(\Gamma^N) = \{f = (f_{(i_1, ..., i_d)})_{i_1 = ..., i_d = 1}^{N_1, ..., N_d} : (f_{(i_1, ..., i_d)})_{i_k = 1}^{N_k} \in \text{per}(\Gamma_k^{N_k}), k = 1, ..., d\},$$

$$w_p(N, \Gamma) = \text{card}(\text{per}(\Gamma^N)),$$

$$\Gamma(k, M) = \{(a, b) : a = (a_{(i_1, ..., i_{d-1})}), b = (b_{(i_1, ..., i_{d-1})}) \in (\Gamma^\downarrow)^M,$$

$$(a_{(i_1, ..., i_{d-1})}, b_{(i_1, ..., i_{d-1})}) \in \Gamma_k, i_j = 1, ..., M_j, j = 1, ..., d - 1, \}, k = 1, ..., d,$$

$$p(\Gamma(k, M)) = \{(a, b) : a = (a_{(i_1, ..., i_{d-1})}), b = (b_{(i_1, ..., i_{d-1})}) \in \text{per}(\Gamma(\downarrow)^M),$$

$$(a_{(i_1, ..., i_{d-1})}, b_{(i_1, ..., i_{d-1})}) \in \Gamma_k, i_j = 1, ..., M_j, j = 1, ..., d - 1, \}, k = 1, ..., d,$$

$$A(k, M) = A(\Gamma(k, M)), \rho(k, M) = \rho(A(k, M)),$$

$$A(p(\Gamma(k, M))), \rho p(k, M) = \rho(A(p(\Gamma(k, M))), k = 1, ..., d.$$

Note that any $f \in \text{per}(\Gamma^N)$ has a unique minimal periodic extension to Γ^∞. Set

$$h_{\text{p}}(\Gamma) = \limsup_{N_1, ..., N_d \to \infty} \frac{\log wp((N_1, ..., N_d), \Gamma)}{N_1 \cdots N_d}.$$
to be the periodic entropy of Γ^∞.

Theorem (2.1). Let $d \geq 2$ and assume that $\Gamma_i \subset \subset n > \times < n >, i = 1, \ldots, d$. Consider \mathbb{Z}^d-SFT given by $\Gamma = (\Gamma_1, \ldots, \Gamma_d)$. Then

$$h_{com}(\Gamma) = -\infty \iff \forall M = (M_1, \ldots, M_{d-1}) \gg (1, \ldots, 1) \rho(k, M) = 0, k = 1, \ldots, d,$$

$$hp(\Gamma) = -\infty \iff \forall M = (M_1, \ldots, M_{d-1}) \rho p(k, M) = 0, k = 1, \ldots, d.$$

Furthermore

$$\lim \frac{\log \rho(k, (M_1, \ldots, M_{d-1}))}{M_1 \cdots M_{d-1}} = h_{com}(\Gamma), k = 1, \ldots, d,$$

$$\frac{\log \rho(k, (M_1, \ldots, M_{d-1}))}{M_1 \cdots M_{d-1}} \geq h_{com}(\Gamma), M_i > 1, i = 1, \ldots, d - 1, k = 1, \ldots, d,$$

$$\limsup \frac{\log \rho p(k, (M_1, \ldots, M_{d-1}))}{M_1 \cdots M_{d-1}} \leq hp(\Gamma), k = 1, \ldots, d.$$

Proof. We first prove the theorem for $d = 2$. In that case $M = (m)$ and we let $\Gamma(k, M) = \Gamma(k, m), \rho(k, M) = \rho(k, m)$ for $k = 1, 2$. Suppose first that there exists $N = (N_1, N_2)$ so that $\Gamma^N = \emptyset$. We then claim that $\rho(1, m) = 0$ for $m \geq N_2$. Suppose to the contrary that $\rho(1, m) \geq 1$. That is, $A(1, m)$ is not a nilpotent matrix. That is, $\Gamma(1, m)^l \neq \emptyset, l = 2, \ldots, \ldots$. Clearly,

$$\Gamma(1, m)^l = \Gamma(l, m). \quad (2.2)$$

Set $l = N_1$ to obtain a contradiction. Similarly, $\rho(2, m) = 0$ for $m \geq N_2$. Assume now that $\rho(1, m) = 0$ for some $m \geq 1$. Let $L_2(m) = card(\Gamma_2^m)$. Then $\Gamma(1, m)^{L_2(m)} = \emptyset$. Use (2.2) to deduce that $\Gamma(l^{L_2(m)}, m) = \emptyset$. Similar results hold if $\rho(2, m) = 0$.

Assume now $h_{com}(\Gamma) \geq 0$, i.e. $\rho(1, m) \geq 1, \rho(2, m) \geq 1, m = 1, \ldots$. We now prove the conditions related to the characterization of $h_{com}(\Gamma)$ in terms of $\rho(1, m)$. We claim that

$$\log \rho(1, p + q) \leq \log \rho(1, p) + \log \rho(1, q), p, q \geq 1. \quad (2.3)$$

Indeed, let $w((l, p), \Gamma), w((l, q), \Gamma), w((l, p + q), \Gamma)$ be the total number of words of length l corresponding to the subshifts $\Gamma(1, p), \Gamma(1, q), \Gamma(1, p + q)$ respectively. Clearly, every word of length l in $\Gamma(1, p + q)$ splits (from bottom to top) as a word in $\Gamma(1, p)$ followed by a word in $\Gamma(1, q)$. That is $w((l, p + q), \Gamma) \leq w((l, p), \Gamma)w((l, q), \Gamma)$. Take the logarithm of this inequality, divide by l and take the limsup to deduce (2.3). It is a well known fact that (2.3) implies that the sequence $\left\{\frac{\log \rho(1, m)}{m}\right\}_1^\infty$ converges to a (nonnegative) limit h. Furthermore, $h \leq \frac{\log \rho(1, m)}{m}, m = 1, \ldots$. We now show that $h = h_{com}(\Gamma)$. Let $\{\epsilon_m\}_1^\infty$ be a positive sequence which converges to zero. Clearly, there exists a sequence of positive integers $\{l_m\}_1^\infty$ converging to ∞ so that

$$\frac{\log w((l_m, m), \Gamma)}{l_m} > \log \rho(1, m) - \epsilon_m, m = 1, \ldots.$$

Hence,
\[h_{com}(\Gamma) \geq \lim \sup \frac{\log w((l_m, m), \Gamma)}{l_m m} \geq h. \]

We now show the reversed inequality. Let \(\{m_i\}_1^\infty, \{n_i\}_1^\infty \) be two sequences of positive integers which converge to \(\infty \). We claim that

\[\lim \sup \frac{\log w((n_i, m_i), \Gamma)}{n_i m_i} \leq h. \]

Pick a positive \(\delta > 0 \). Pick a positive integer \(m \) so that \(\frac{\log \rho(1, m)}{m} < h + \delta \). Let \(K > 1 \) so that
\[\forall n > K \max_{1 \leq k \leq m} \left(\frac{\log w((n, k), \Gamma)}{n} - \log \rho(1, k) \right) < \delta. \]

Assume that \(m_i, n_i > K \). Set \(m_i = p_i m + q_i, 1 \leq q_i \leq m \). Consider a word of length \(n_i \) corresponding to SFT induced by \(\Gamma(1, m_i) \). This word splits (from bottom to top) as \(p_i \) words induced by \(\Gamma(1, m) \) and a word induced by \(\Gamma(1, q) \) of length \(n_i \) respectively. Hence, \(w((n_i, m_i), \Gamma) \leq w((n_i, m), \Gamma) \rho^{p_i} w((n_i, q_i), \Gamma) \). That is

\[\frac{\log w((n_i, m_i), \Gamma)}{n_i m_i} \leq \frac{\log w((n_i, m), \Gamma)}{n_i m} + \frac{\log w((n_i, q_i), \Gamma)}{n_i m_i} \leq \frac{\log \rho(1, m)}{m} + \frac{\delta}{m} + \max_{1 \leq k \leq m} \rho(1, k) + \delta, m_i, n_i > K. \]

Thus, \(\lim \sup_{m_i, n_i \to \infty} \frac{\log w((n_i, m_i), \Gamma)}{m_i n_i} < h + 2\delta \). These arguments prove the theorem for \(\rho(1, m) \). Similar arguments verify the theorem for \(\rho(2, m) \).

We now consider the periodic solutions. Assume first that \(\text{per}(\Gamma^N) \neq \emptyset \) for some \(N = (N_1, N_2), N_1 > 1, N_2 > 1 \). It then follows that

\[\text{per}(\Gamma^M) \neq \emptyset, M = (N_1 + i(N_1 - 1), N_2 + j(N_2 - 1)), i, j = 0, \ldots. \quad (2.4) \]

We then claim that \(\rho p(1, N_2) \geq 1, \rho p(2, N_1) \geq 1 \). Consider first the matrix \(Ap(1, N_2) \). If \(\rho p(1, N_2) = 0 \), i.e. \(Ap(1, N_2) \) is nilpotent, we could not have arbitrary long words in the SFT induced by \(p(\Gamma(1, N_2)) \). This contradicts (2.4) for \(j = 0 \). Similarly, \(\rho p(2, N_1) \geq 1 \). Assume now that \(\rho p(1, N_2) \geq 1 \) for some \(N_2 > 1 \). Then the SFT induced by \(p(\Gamma(1, N_2)) \) has at least one periodic word of length \(N_1 > 1 \), i.e. \(\text{per}(p(\Gamma(1, N_2)))^{N_1} \neq \emptyset \). As every periodic word of length \(N_1 \) in the SFT corresponding to \(p(\Gamma(1, N_2)) \) is an element of \(\text{per}(\Gamma^{(N_1, N_2)}) \) we deduce in particular \(\text{per}(\Gamma^{(N_1, N_2)}) \neq \emptyset \). That is,

\[hp(\Gamma) = -\infty \iff \rho p(1, m) = \rho p(2, m) = 0, m = 2, \ldots. \]

Assume now that \(hp(\Gamma) \geq 0 \). We now prove the theorem for \(\rho p(1, m) \). Consider the SFT induced by \(p(\Gamma(1, m)) \). Then \(\text{w}(l, m, \Gamma) \) is the number of periodic words of length \(l \) of this SFT. As \(\rho p(1, m) \geq 1 \) we know that for any \(\delta > 0 \) there exists \(l = l(\delta) \) so that
\[
\log \frac{wp((l,m),\Gamma)}{l} \geq \log \rho p(1,m) - \delta.
\]
Assume that \(\{m_i\}_{i=1}^{\infty}\) is a strictly increasing sequence of positive integers so that

\[
\limsup_{m \to \infty} \frac{\log \rho p(1,m)}{m} = \lim_{i \to \infty} \frac{\log \rho p(1,m_i)}{m_i}.
\]

Let \(\{l_i\}_{i=1}^{\infty}\) be a strictly increasing sequence so that \(\log \frac{wp((l_i,m_i),\Gamma)}{l_i} \geq \log \rho p(1,m_i) - 1, i = 2,\ldots\). We then deduce \(\limsup_{m \to \infty} \frac{\log \rho p(1,m)}{m} \leq hp(\Gamma)\). The analogous result for \(\rho p(2,m)\) is proved similarly.

Let \(d > 2\). Assume that \((1,\ldots,1) < M \in \mathbb{Z}^d_{-1}\). Partition the box \(B(M)\) to \(p\) nontrivial boxes of dimensions \(M_i \in \mathbb{Z}^d_{-1}, i = 1,\ldots,p\). We denote this fact by \(M = \bigcup_1^p M_i\). We then have the following generalization of (2.3).

\[
\log \rho(k,M) \leq \sum_1^p \log \rho(k,M_i), k = 1,\ldots,d. \tag{2.3}'
\]

Similarly, all assertions of the theorem for \(d > 2\) are derived in an analogous way. ◇

Theorem. Let \(d \geq 2\) and assume that \(\Gamma_i \subset < n > \times < n >, i = 1,\ldots,d\). Consider the \(\mathbb{Z}^d\)-SFT given by \(\Gamma = (\Gamma_1,\ldots,\Gamma_d)\). Then

\[
h_{com}(\Gamma) = h(\Gamma).
\]

To prove the theorem we need the following result.

Lemma. Let the assumptions of Theorem 2.5 hold. Assume furthermore that \(\Gamma^\infty \neq \emptyset\). Let \(M, N_1, N_2 \in \mathbb{Z}^d\) and assume that \((1,\ldots,1) \leq M \leq N_1 \leq N_2\). Then

\[
\pi_{B(2M)+N_1-M}(\Gamma^{2N_1}) \supset \pi_{B(2M)+N_2-M}(\Gamma^{2N_2}).
\]

Assume that \(f \in \Gamma^{2M}\). Then

\[
\exists g \in \Gamma^\infty \pi_{B(2M)}g = f \iff \forall N f \in \pi_{B(2M)+N-M}(\Gamma^{2N}).
\]

Proof. The first claim of the lemma is trivial. Assume that \(g \in \Gamma^\infty\). Let \(f = \pi_{B(2M)}g\). Clearly, \(\forall N f \in \pi_{B(2M)+N-M}(\Gamma^{2N})\). The reverse implication is proved by using König’s argument as in the proof of Theorem 1.3. ◇

Proof of Theorem 2.5 By Theorem 1.3 \(h_{com}(\Gamma) = -\infty \iff h(\Gamma) = -\infty\). Thus, it is enough to consider the case \(h_{com}(\Gamma) \geq 0\). As \(w(N,\Gamma) \geq w(N,\Gamma^\infty)\) Theorem 1.5 implies that \(h_{com}(\Gamma) \geq h(\Gamma)\). Thus \(h_{com}(\Gamma) = 0 \Rightarrow h(\Gamma) = 0\). Hence, it is left to prove the theorem in the case \(h_{com}(\Gamma) > 0\). For simplicity of the exposition we consider the case \(d = 2\).
Fix $k \geq 1$ and let $m \geq k$. Consider the graph $\Gamma(1, 2m)$. It represents a SFT induced by an infinite horizontal strip of width $2m$ in the vertical direction. Erase from the above infinite horizontal strip $m - k$ first and last infinite rows. We then obtain a $S(2m)(2k)$ a SFT induced by the graph $\Gamma(1, 2m)$. Furthermore, $S(2m)(2k)$ is a subshift of $S(2k)$ induced by $\Gamma(1, 2m)$. Clearly, we have the inclusions

$$S(2k) \supset S(2(k + 1))(2k) \supset \cdots \supset S(2m)(2k) \supset \cdots.$$

Fix a box of dimension $(2l, 2k)$ and let $w_{2m}(2l, 2k)$ be the projection of $S(2m)(2k)$ on this box. Clearly

$$w((2l, 2k), \Gamma) > w_{2(k + 1)}(2l, 2k) > \cdots > w_{2m(k)}(2l, 2k) = w_{2(m(k) + 1)}(2l, 2k) = \ldots.$$

König’s argument yield that

$$w((2l, 2k), \Gamma^\infty) = w_{2m(k)}(2l, 2k).$$

We claim that

$$w((2l, 2k), \Gamma^\infty)^{p - 2m(k)} \geq \frac{\rho(1, p2k)^{2l}}{\rho(1, 2k)^{2l2m(k)}}, p >> 1. \quad (2.7)$$

To prove this inequality consider the infinite horizontal strip of width $p2k$ where $p > 2m(k)$. In this strip pick up a box of dimension $(rl, p2k)$ where $r >> 1$. It then follows that

$$w((rl, p2k), \Gamma) \approx K_1 (rl)^{s_1} \rho(1, p2k)^{rl}$$

for some fixed integer s_1. We view the above strip as composed of p infinite strips of width $2k$. For $m(k)$ the most upper strips and for $m(k)$ the most lower strips the number of words in the box $(rl, 2k)$ does not exceed

$$w((rl, 2k), \Gamma) \approx K_2 (rl)^{s_2} \rho(1, 2k)^{rl}.$$

We now consider all the other infinite horizontal strip of width $2k$. Observe that they are all SFT contained in $S(2m(k))(2k)$. Denote by $C(l, 2k)$ all distinct projections of Γ^∞ on a box $B(l, 2k)$. Denote by $\Delta(l, 2k) \subset C(l, 2k) \times C(l, 2k)$ the following graph induced by all distinct projections of Γ^∞ on the box $B((2l, 2k))$. That is $(x, y) \in \Delta(l, 2k)$ iff (x, y) is obtained by the projection on $B((2l, 2k))$ of some possible configuration in Γ^∞. Let $w(t, \Delta(l, 2k))$ be the number of words of length t in the SFT induced by $\Delta(l, 2k)$. Set $\tilde{\rho}(l, 2k) = \rho(A(\Delta(l, 2k))$ It then follows that for $r >> 1$

$$w(r, \Delta(l, 2k)) \approx K_3 r^{s_3} \tilde{\rho}(l, 2k)^r.$$

We next claim that

$$w((2l, 2k), \Gamma^\infty) \geq \tilde{\rho}(l, 2k)^2. \quad (2.8)$$
Indeed, we trivially have that \(w(2r, \Delta(l, 2k)) \leq w((2l, 2k), \Gamma^\infty) \). Use the asymptotic value of \(w(2r, 2k), \Delta(l, 2k) \) for \(r \gg 1 \) to deduce (2.8). From the definitions of \(m(k) \) and \(\rho(l, 2k) \), it follows that for \(p > 2m(k) \)

\[
w((2rl, p2k), \Gamma) \leq w((2rl, 2k), \Gamma)^{2m(k)} w(2r, \Delta(l, 2k))^{p-2m(k)}.
\]

Use the asymptotic equalites for the above words and the inequality (2.8) to deduce (2.7). Take the \(2lp - th \) root of (2.7) and let \(p \to \infty \). Use Theorem 2.1 to deduce that

\[
\lim \inf_{l \to \infty} \frac{\log w((2l, 2k), \Gamma^\infty)}{2l} \geq 2kh_{com}(\Gamma).
\]

Hence,

\[
h(\Gamma) = \lim \sup_{k,l \to \infty} \frac{\log w((l, k), \Gamma^\infty)}{kl} \geq \lim \inf_{k \to \infty} \frac{1}{2k} \lim \inf_{l \to \infty} \frac{\log w((2l, 2k), \Gamma^\infty)}{2l} \geq h_{com}(\Gamma).
\]

Thus, \(h(\Gamma) = h_{com}(\Gamma) \) and the proof of the theorem is completed. \(\diamond \)

§3. A symmetricity condition

(3.1) **Theorem.** Let \(\Gamma_i \subset < n > \times < n >, i = 1, \ldots, d \), and consider \(\mathbb{Z}^d \)-SFT given by \(\Gamma = (\Gamma_1, \ldots, \Gamma_d) \). Assume that \(\Gamma_1, \ldots, \Gamma_{d-1} \) are symmetric. Then \(hp(\Gamma) = h(\Gamma) \).

Proof. We prove the theorem by the induction on \(d \). Assume first that \(d = 2 \). From Theorem 1.3 we deduce that \(\rho(2, 2) = 0 \Rightarrow h(\Gamma) = -\infty \). Assume that \(\rho(2, 2) \geq 1 \). We now show that \(hp(\Gamma) \geq 0 \). Observe first that \(\text{per}(\Gamma(2, 2)^l) \neq \emptyset \) for some \(l > 1 \). In particular, \(\text{per}(\Gamma_2) \neq \emptyset \), i.e. \(\rho(A(\Gamma_2)) = \rho(2, 1) \geq 1 \). Consider \(\rho(\Gamma(1, l)) \). The above assumption means that \(\rho(\Gamma(1, l)) \) has at least one edge. As \(\Gamma_1 \) is symmetric we deduce that \(\rho(\Gamma(1, l)) \) is also a symmetric matrix. Hence, \(\rho\rho(1, l) \geq 1 \). Theorem 2.1 implies that \(hp(\Gamma) \geq 0 \). Thus \(hp(\Gamma) = h(\Gamma) = -\infty \iff \rho(2, 2) = 0 \).

In what follows we assume that \(\rho(2, 2) \geq 1 \). We now prove that \(hp(\Gamma) = h(\Gamma) \). Clearly, \(hp(\Gamma) \leq h(\Gamma) \). As we showed that \(hp(\Gamma) \geq 0 \) it is enough to consider the case \(h(\Gamma) > 0 \). Note that Theorems 2.1 and Theorem 2.5 yield that \(\rho(2, m) > 1, m = 2, \ldots, \). Fix \(m \geq 1 \). Let \(wp(l) \) be the number of periodic words in the SFT induced by \(\Gamma(2, 2m + 1) \) of length \(l \). Set

\[
L_{p2}(l) = \text{card}(\text{per}(\Gamma_{2}^m)), B = \{b_{ij}\}_{1}^{L_{p2}(l)} = A(p(\Gamma(1, l))), B^{2m} = \{b_{ij}^{(2m)}\}_{1}^{L_{p2}(l)}.
\]

It then follows that \(wp(l) = \sum_{i=j=1}^{L_{p2}(l)} b_{ij}^{(2m)} \). Recall that \(B \) is a nonnegative symmetric matrix. Hence, its spectral norm is equal to its spectral radius \(\rho p(1, l) \). As \(wp(l) = eB^{2m}e^T, e = (1, \ldots, 1) \) we deduce that \(wp(l) \leq \rho p(1, l)^{2m} L_{p2}(l) \). Observe next that

10
trace(B^{2m}) = $wp(2m + 1, l)$. As B^{2m} is a symmetric matrix with nonnegative eigenvalues it follows that trace(B^{2m}) $\geq \rho p(1, l)^{2m}$. Combine the above inequalities to deduce

$$wp(l) \leq wp(2m + 1, l)Lp_2(l) \leq wp(2m + 1, l)n^{l-1}.$$

Fix $\delta, 0 < \delta$. Choose a strictly increasing sequence $\{l_m\}_1^\infty$ so that $\frac{\log wp(l_m)}{l_m} > \log \rho(2, 2m + 1) - \delta$. Use Theorem 2.1 and the above inequalities to deduce

$$h(\Gamma) = \lim_{m \to \infty} \frac{\log \rho(2, 2m + 1)}{2m + 1} \leq \liminf_{m \to \infty} \frac{\log wp(l_m)}{(2m + 1)l_m} \leq \liminf_{m \to \infty} \frac{\log wp(2m + 1, l_m)}{(2m + 1)l_m} \leq hp(\Gamma).$$

This proves the equality $hp(\Gamma) = h(\Gamma)$ for $d = 2$.

Assume that the result holds for $d \geq l \geq 2$ and let $d = l + 1$. Choose $\delta > 0$ and $M = (M_1, ..., M_l) >> (1, ..., 1)$ so that $\frac{\log \rho(1, 2, M)}{M_1, ..., M_l} < h(\Gamma) + \delta$. (We are assuming the nontrivial case $\rho(l + 1, M) \geq 1 \iff h(\Gamma) \geq 0$.) Furthermore, we assume that $M_1, ..., M_l$ are odd numbers. Choose $N_{l+1} >> 1$ so that $w(M_1, ..., M_l, N_{l+1})$- the total number of words in $(\Gamma(l + 1, M))^{N_{l+1}}$ is not greater then $(1 + \delta)^{N_{l+1}}$ times $wp_{l+1}(M_1, ..., M_l, N_{l+1}) = \text{card}(\text{per}(\Gamma(l+1, M)^{N_{l+1}}))$. Let $p_{l+1}(\Gamma(1, (M_2, ..., M_l, N_{l+1}))) \subset \Gamma(1, (M_2, ..., M_l, N_{l+1}))$ be the subgraph generated by all the words of length $(M_2, ..., M_l, N_{l+1})$ in the SFT induced by $(\Gamma_2, ..., \Gamma_{l+1})$ which are periodic with respect to the last coordinate. Note that this graph is symmetric. Moreover,

$$(p_{l+1}(\Gamma(1, (M_2, ..., M_l, N_{l+1}))))^{M_1} = \text{per}(\Gamma(l + 1, M)^{N_{l+1}}) \neq \emptyset.$$

The arguments of the proof for $d = 2$ show that $h(\Gamma)$ - the density of words of length $(N_1, ..., N_{l+1})$ is equal to the density of the words periodic in the last and the first coordinates. Let $p_{l, l+1}(\Gamma(2, (M_1, M_3, ..., M_l, N_{l+1}))) \subset \Gamma(2, (M_1, M_3, ..., M_l, N_{l+1}))$ be the subgraph generated by all the words of length $(M_1, M_3, ..., M_l, N_{l+1})$ in SFT induced by $(\Gamma_1, \Gamma_3, ..., \Gamma_{l+1})$ which are periodic in the first and the last coordinate. As Γ_2 is symmetric it follows that $p_{l, l+1}(\Gamma(2, (M_1, M_3, ..., M_l, N_{l+1})))$ is also symmetric. Use the previous arguments to deduce that $h(\Gamma)$ is the density of words periodic in $1, 2, l + 1$ coordinates. Continue in this manner to deduce that $h(\Gamma) = hp(\Gamma)$. ⊗

Our results yield a new proof that the periodic entropy $hp(\Gamma)$ computed by Lieb [Lie] is equal to the standard entropy $h(\Gamma)$. See [B-K-W] for a specific proof of the above equality for the ice rule model in zero field.

Under the assumptions of Theorem 3.1 it is possible to give lower estimates for $h(\Gamma)$. To do that we need to introduce the following notation. Let $U \subset d > b$ be a set of cardinality p. We then agree that $U = \{i_1, ..., i_p\}, 1 \leq i_1 < \cdots < i_p \leq d$. For $N = (N_1, ..., N_d)$ set $N^U = (N_{i_1}, ..., N_{i_p})$. In particular, $N^{(k)} = (N_1, ..., N_{k-1}, N_{k+1}, ..., N_d), k = 1, ..., d$. Assume the assumptions of Theorem 3.1. For any nontrivial set $U \subset d > b$ we consider the SFT on $\mathbb{Z}^{\text{card}(U)}$ induced on $\Gamma^U = (\Gamma_{i_1}, ..., \Gamma_{i_p})$. Suppose that $k \in U, V = U \{k\}, \text{card}(V) \geq 1$. Then $\Gamma(k, N^V)$ is graph induced by the SFT corresponding to Γ^U. Let $\rho(k, N^V)$ be the spectral radius of this graph. Given three pairwise disjoint sets $V, \{k\}, W \subset d > b$ we consider the following contraction of $\rho(k, N^{V \cup W})$ on V indices

$$\rho_V(k, N^W) = \lim_{N_i \to \infty, i \in V} \rho(k, N^{V \cup W}) \prod_{i \in V} N_i.$$

11
Let $U = \{k\} \cup V$. Observe that $\log \rho_V(k, N^V) = h(\Gamma^U)$.

(3.2) Theorem. Let $\Gamma_i \subset \langle n \rangle \times \langle n \rangle$, $i = 1, \ldots, d$, and consider the \mathbb{Z}^d-SFT given by $\Gamma = (\Gamma_1, \ldots, \Gamma_d)$. Assume that Γ_k is symmetric. Then

$$
\rho(i, N^{\{i\}}) \leq \rho(\{i\}, N^{\{i,k\}})^{N_k-1} \rho(i, N^{\{i,k\}}),
$$

$N = (N_1, \ldots, N_d) \geq (1, 1, \ldots, 1), i = 1, \ldots, k-1, k+1, \ldots, d$.

Proof. Fix $N_i \geq 1$, $j = 1, \ldots, i-1, i+1, \ldots, d$. For a small positive $\delta > 0$ choose $N_i >> 1$ so that

$$(1 - h)^{N_i} \rho(i, N^{\{i\}})^{N_i} \leq w(N) = \text{card}((\Gamma(i, N^{\{i\}}))^{N_i}),$$

$$
\omega(N^{\{k\}}) = \text{card}((\Gamma(i, N^{\{i,k\}}))^{N_i}) \leq (1 + \delta)^{N_i} \rho(i, N^{\{i,k\}})^{N_i}.
$$

Let $C = A(\Gamma(k, N^{\{k\}}))$. Then C is $\omega(N^{\{k\}}) \times \omega(N^{\{k\}})$ symmetric matrix with the spectral norm equal to $\rho(k, N^{\{k\}})$. Set $e = (1, \ldots, 1)$. The maximal characterization of the maximal eigenvalue of C^{N_k-1} yields

$$w(N, \Gamma) = e C^{N_k-1} e^T \leq \rho(k, N^{\{k\}})^{N_k-1} \omega(N^{\{k\}}).$$

Taking the N_i-th root in the above inequality and letting $N_i \to \infty$ we deduce the theorem.

\hfill \Box.

Combine Theorems 3.1-3.2 for $d = 2, k = 1$ with Theorems 2.1 and 2.5 to obtain.

(3.3) Corollary. Let $\Gamma_1, \Gamma_2 \subset \langle n \rangle \times \langle n \rangle$. Assume that Γ_1 is symmetric and consider the \mathbb{Z}^2-SFT induced by $\Gamma = (\Gamma_1, \Gamma_2)$. Then

$$
\frac{\log \rho(2, k)}{k-1} - \frac{\log \rho(2, 1)}{k-1} \leq h_p(\Gamma) = h(\Gamma) \leq \frac{\log \rho(2, k)}{k}, \ k = 2, \ldots.
$$

The above Corollary under stronger assumptions is due to [M-P2]. Note that Corollary 3.3 enables one to calculate effectively the entropy $h(\Gamma)$ up to an arbitrary precision.

We now apply Theorem 3.2 for $d = 3$ assuming that Γ_2 is symmetric. Let $N_1 = p \geq 1, N_2 = q \geq 2, k = 2, i = 3$ to deduce

$$
\frac{\log \rho(3, (p, q))}{p(q-1)} - \frac{\log \rho(3, p)}{p(q-1)} \leq \frac{\log \rho(3, (p, q))}{p}.
$$

Let $p \to \infty$. We then get the inequalities

$$
\frac{\log \rho_{\{1\}}(3, q)}{q-1} - \frac{h(\Gamma^{\{1\}})}{q-1} \leq h(\Gamma).
$$

(3.4)
This yields a lower bound for $h(\Gamma)$ which converges to $h(\Gamma)$ as $q \to \infty$. To obtain computable lower bounds for $h(\Gamma)$ in terms of various $\rho(k, M)$ we assume that Γ_3 is symmetric. First observe that Theorem 2.1 gives an upper bound on $h(\Gamma^{(1.3)})$. Use Theorem 3.2 with $k = 3, i = 1, M_2 = q, M_3 = r$ to deduce

$$\frac{\log \rho(1, (q, r))}{r - 1} - \frac{\log \rho(1, q)}{r - 1} \leq \log \rho(1)(3, q).$$

Use the above inequalities in (3.4) to obtain a lower bound for $h(\Gamma)$ which in principle can be arbitrary close to $h(\Gamma)$. (Choose all the numbers entering in this inequality to be big enough.)

§4. Observations

Let $\Gamma \subset < n > \times < n >$ be a directed graph on n vertices. For any nontrivial set $V \subset < n >$ set $\Gamma(V) = \Gamma \cap V \times V$. Γ is called a strongly connected graph if any two vertices $i, j \in < n >$ are connected by a path in a graph. This is equivalent to the statement that $A(\Gamma)$ is an irreducible matrix. If Γ is not strongly connected then $< n >$ is decomposed to a disjoint union

$\begin{align*}
\langle n \rangle &= \bigcup_{i=0}^{p} U_i, U_i \cap U_j = \emptyset, 0 \leq i < j \leq p, \text{card}(U_i) \geq 1, i = 1, \ldots, p, \\
A(\Gamma(U_0))^n &= 0, (A(\Gamma(U_i)) + I)^n > 0, i = 1, \ldots, p.
\end{align*}
$ (4.1)

Here I stands for the identity matrix and $B > 0$ denote a real valued matrix whose all entries are positive. The set U_0 is called a transient set. That is, if we consider any path with edges in our graph Γ each transient vertex will appear at most once. Equivalently, any closed path will not contain any transient vertex, while for each vertex in $\bigcup_{i=0}^{p} U_i$ there exists a closed path which contains this vertex. The set $\bigcup_{i=0}^{p} U_i$ is the set of nontransient vertices. Moreover, each graph $\Gamma(U_i)$ is a strongly connected for $i = 1, \ldots, p$. Furthermore, U_1, \ldots, U_p are maximal sets with this property. That is, for $1 \leq i < j \leq p$ either there is no path of Γ connecting U_i to U_j or U_j to U_i (or both). The reduced graph $\text{red}(\Gamma)$ is defined as follows. The states (vertices) of the reduced graph are the transient vertices U_0 and the new states $[U_1], \ldots, [U_q]$. Let $\text{red}(n) = \text{card}(U_0) + p$. Then $\text{red}(\Gamma) \subset< \text{red}(n) > \times < \text{red}(n) >$ does not have self loops, i.e. $(i, i) \notin \text{red}(\Gamma), i \in < \text{red}(n) >$. Furthermore $(i, j) \in \text{red}(\Gamma)$ iff there is at least one edge in Γ which goes from one vertex represented by the state i to one vertex represented by the state j. It then follows that $A(\text{red}(\Gamma))$ is a nilpotent matrix. Let $x = (x_{ji})^n_1 \in \Gamma^m, m >> 1$. The generic picture dictated by the reduced graph is as follows. First we may have a couple of transient vertices $x_1, \ldots, x_t \in U_0, (x_i, x_{i+1}) \in \text{red}(\Gamma), i = 1, \ldots, t_1 - 1$. (It may happen that we do not have transient vertices, i.e. $t_1 = 0$.) Then we have a sequence of an arbitrary length $k_1, x_{t_1+1}, \ldots, x_{t_1+k_1} \in U_{j_1}, (x_{t_1}, [U_{ji}]) \in \text{red}(\Gamma)$. Then we may have another few transient states $x_{t_1+k_1+1}, \ldots, x_{t_1+k_1+t_2} \in U_0, ([U_{ji}, x_{t_1+k_1+1}), (x_i, x_{i+1}) \in \text{red}(\Gamma), i = t_1+k_1+1, \ldots, t_1+k_1+t_2-1, (t_2 \geq 0)$. This sequence may be followed by another arbitrary
long sequence $x_{t_1+k_1+t_2+1}, \ldots, x_{t_1+k_1+t_2+k_2} \in U_{j_2}$, $(x_{t_1+k_1+t_2}, [U_{j_2}]) \in \text{red}(\Gamma)$. If $t_2 = 0$ we then have the condition $([U_{j_1}], [U_{j_2}]) \in \text{red}(\Gamma)$. This process may continue until we reach the final state of the reduced graph. In particular, the arbitrary long sequences belong to pairwise distinct components U_{j_1}, \ldots, U_{j_l} whose order depends on the structure of the reduced graph. In particular, $1 \leq l \leq n$.

These properties can be deduced straightforward from the Frobenius normal form of a nonnegative matrix, e.g. [Gan]. Consult for example with [F-S]. In particular, $\rho(A(\Gamma)) = \max_{1 \leq i \leq p} \rho(A(\Gamma^{(i)}))$. A graph $\Gamma \subset < n > \times < n >$ is called nontransient if it does not have a transient set, i.e. $U_0 = \emptyset$. For a general graph we let $\Gamma' = \Gamma(\bigcup_i U_i)$ to be the nontransient part of Γ. As $h(\Gamma) = \log \rho(A(\Gamma))$ we deduce that $h(\Gamma) = \max_{1 \leq i \leq p} h(\Gamma(U_i)) = h(\Gamma')$.

Finally observe that the periodic orbits under the shift correspond to closed paths in the graph Γ. Hence, any periodic orbit has vertices only in one per $((\Gamma(U_i))^N)$. We now show that some these results can be generalised to SFT in higher dimension.

(4.2) Lemma. Let $\Gamma_i \subset < n > \times < n >, i = 1, \ldots, m$. Then one of the following mutually exclusive conditions hold:
(i) For any nontrivial subset $V \subset < n >$ there exists $k \in < m >$ such that $\Gamma_k(V)$ has a nontrivial transient set of vertices in V.
(ii) There exist a maximal (nontrivial) subset $V \subset < n >$, so that $\Gamma_k(V)$ is a nontransient graph on V for $k = 1, \ldots, m$.

Proof. Let $U_{0,i} \subset < n >$ be the set of transient vertices of the graph Γ_i, $i = 1, \ldots, m$. If $U_{0,i} = \emptyset, i = 1, \ldots, m$, then we have the condition (ii) with $V = < n >$. Let $V_1 = < n > \setminus \bigcup_i m U_{0,i}$. If $V_1 = \emptyset$ then the condition (i) holds. Assume that $< n > \neq V_1 \neq \emptyset$. Repeat the above process for $\Gamma_i(V_1), i = 1, \ldots, m$ to deduce either (i) or (ii). \diamond

(4.3) Theorem. $\Gamma_i \subset < n > \times < n >, i = 1, \ldots, d$, and consider \mathbb{Z}^d-SFT given by $\Gamma = (\Gamma_1, \ldots, \Gamma_d)$. Assume first that condition (i) of Lemma 4.2 holds. Then $h(\Gamma) = -\infty$. Assume now that V is the maximal (nontrivial) subset of $< d >$ so that $\Gamma_k(V)$ is nontransient for $k = 1, \ldots, d$. Set $\Gamma(V) = (\Gamma_1(V), \ldots, \Gamma_d(V))$. Then $h(\Gamma) = h(\Gamma(V))$.

Proof. Clearly, the theorem trivially holds if $h(\Gamma) = -\infty$. Assume that $h(\Gamma) \geq 0$. That is for each $N = (N_1, \ldots, N_d)$, $N_i \geq 1, i = 1, \ldots, d$, $\rho(k, N^{(k)}) \geq 1, k = 1, \ldots, d$. As in the proof of Lemma 4.2 consider the transient set $U_{0,k}$ for the graph Γ_k for $k = 1, \ldots, d$. If all $U_{0,k} = \emptyset$ then $V = < n >$ and the theorem is trivial in this case. Suppose that $U_{0,k} \neq \emptyset$. Fix $N^{(k)}$. As $\rho(k, N^{(k)}) \geq 1$ we know that $h(k, N^{(k)})$ is given by the density of the periodic words $\text{per}(\Gamma(k, N^{(k)}))$. Observe next that every periodic word in $\text{per}(\Gamma(k, N^{(k)}))$ is induced by a word $f = (f(j_1, \ldots, j_d))_{j_1=1}^{N_1} \cdots_{j_d=1}^{N_d}$ such that

$$(f_{(j_1, \ldots, j_d)})_{j_1=1}^{N_1} \in \text{per}(\Gamma_k)^{N_k}, j_l = 1, \ldots, N_l, l = 1, \ldots, k - 1, k + 1, \ldots, d.$$

Hence, the coordinates of each vector $(f_{(j_1, \ldots, j_d)})_{j_1=1}^{N_1}$ belong to some set $U_{k,i}$ appearing in the decomposition (4.1) of the nontransient set for Γ_k. Note that the value of i may depend on $(j_1, \ldots, j_{k-1}, j_{k+1}, \ldots, j_d)$. In particular, all the coordinates of f are in the set

14
$V_1 = \{ n > \mid U_{0,k} \}$. Let $\Gamma(V_1) = (\Gamma_1(V_1), \ldots, \Gamma_d(V_1))$. Theorems 2.1 and 2.5 yield that $h(\Gamma) = h(\Gamma(V_1))$. Repeat this process as in the proof of Lemma 4.2. If we obtain the condition (i) of Lemma 4.2 we deduce that $h(\Gamma) = -\infty$ which contradicts our assumption that $h(\Gamma) \geq 0$. Hence, the second condition of Lemma 4.2 holds. By the above arguments $h(\Gamma) = h(\Gamma(V_1))$ and the proof of the theorem is concluded. \end{proof}

Let $\Gamma_1, \Gamma_2 \subset \{ n \}$. Set $X = (\Gamma_2)^\infty$. Then X is a closed compact space in the Tychonoff topology. (More precisely, X is a Cantor set.) Set $\Delta = \Delta(\Gamma_1, \Gamma_2) \subset X \times X$ be the following closed graph

$$\Delta = \{(x, y) : x = (x_i)_{i \in \mathbb{Z}}, (y_i)_{i \in \mathbb{Z}} \in X, (x_i, y_i) \in \Gamma_1, i \in \mathbb{Z}\}.$$

Define Δ^m, Δ^∞ as in the introduction. Note that

$$\Delta^m = \emptyset \iff \rho(2, m) = 0, m = 2, \ldots,$$

$$\Delta^\infty = \emptyset \iff \Gamma^\infty = \emptyset, \Gamma = (\Gamma_1, \Gamma_2).$$

Observe that if Γ_1 is symmetric then Δ is also symmetric.

In [Fri1-2] we studied the entropy $h(\Delta)$ of the shift σ restricted to Δ^∞. Here $\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}$. It is not difficult to show that if $h(\Gamma) > 0$ then $h(\Delta) = \infty$. Thus, $h(\Gamma)$ can be considered as the renormalization of the entropy $h(\Delta)$. More precisely if $N(k, \epsilon)$ is the number of $k-\epsilon$ separated sets then one can show that up to a multiplicative constant that the right renormalization is:

$$h(\Gamma) = \lim_{\epsilon \to 0} \limsup_{k \to \infty} \log \frac{N(k, \epsilon)}{k \log \frac{1}{\epsilon}}.$$

Moreover, the dynamics of \mathbb{Z}^2 shift restricted to Γ^∞ is related to the dynamics of the standard shift restricted to Δ^∞. It would be interesting to explore in more details this relation. Similar ideas apply to higher dimensional \mathbb{Z}^d-SFT.

References

[Gab] W.P. Gabriel, On dynamical systems with uncomputable topological entropy,
Acknowledgement. I would like to thank T. Gowers for useful remarks.