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Chapter 1

Domains, Modules and
Matrices

1.1 Rings, Domains and Fields

Definition 1.1.1 A non empty set R is called a ring if R has two binary
operations, called addition and multiplication, such that for all a, b, c ∈ R
the following holds:

a+ b ∈ R;(1.1.1)
a+ b = b+ a (the commutative law);(1.1.2)
(a+ b) + c = a+ (b+ c) (the associative law) :(1.1.3)
∃ 0 ∈ R such that a+ 0 = 0 + a = a, ∀ a ∈ R;(1.1.4)
∀ a ∈ R, ∃ − a ∈ R such that a+ (−a) = 0;(1.1.5)
ab ∈ R;(1.1.6)
a(bc) = (ab)c (the associative law);(1.1.7)
a(b+ c) = ab+ ac, (b+ c)a = ba+ ca, (the distribution laws).(1.1.8)

R has an identity element 1 if a1 = 1a for all a ∈ R. R is called
commutative if

(1.1.9) ab = ba, for all a, b ∈ R.

Note that the properties (1.1.2)− (1.1.8) imply that a0 = 0a = 0. If a and
b are two nonzero elements such that

(1.1.10) ab = 0

1



2 CHAPTER 1. DOMAINS, MODULES AND MATRICES

then a and b are called zero divisors.

Definition 1.1.2 D is called an integral domain if D is a commutative
ring without zero divisors and containing identity 1.

The classical example of an integral domain is the ring of integers Z. In
this book we shall use the following example of an integral domain.

Example 1.1.3 Let Ω ⊂ Cn be a nonempty set. Then H(Ω) denotes
the ring of analytic functions f(z1, ..., zn) such that for each ζ ∈ Ω there
exists an open neighborhood O(f, ζ) of ζ such that f is analytic on O(f, ζ).
If Ω is open we assume that f is defined only on Ω. If Ω consists of one
point ζ then Hζ stands for H({ζ}).

Note that zero element is the zero function and the identity element
is the constant function which is equal to 1. The properties of analytic
functions imply that H(Ω) is an integral domain if and only if Ω is a con-
nected set. (Ω is connected if for any open set O ⊃ Ω there exists an open
connected set O′ such that O ⊃ O′ ⊃ Ω.) In this book we shall assume
that Ω is connected unless otherwise stated. See [Rud74] and [GuR65] for
properties of analytic functions in one and several complex variables.

For a, b ∈ D, a divides b, (or a is a divisor of b), denoted by a|b, if b = ab1
for some b1 ∈ D. An element a is called invertible, (unit, unimodular), if
a|1. a, b ∈ D are associates, denoted by a ≡ b, if a|b and b|a. Denote
{{b}} = {a ∈ D : a ≡ b}. The associates of a and units are called improper
divisors of a. For an invertible a denote by a−1 the unique element such
that

(1.1.11) aa−1 = a−1a = 1.

f ∈ H(Ω) is invertible if and only if f does not vanish at any point of Ω.

Definition 1.1.4 A field F is an integral domain D such that any non
zero element is invertible.

The familiar examples of fields are the set of rational numbers Q, the
set of real numbers R, and the set of complex numbers C. Given an integral
domain D there is a standard way to construct the field F of its quotients.
F is formed by the set of equivalence classes of all quotients a

b , b 6= 0 such
that

(1.1.12)
a

b
+
c

d
=
ad+ bc

bd
,

a

b

c

d
=
ac

bd
, b, d 6= 0.

Definition 1.1.5 For Ω ⊂ Cn, ζ ∈ Cn let M(Ω),Mζ denote the quo-
tient fields of H(Ω),Hζ respectively.
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Definition 1.1.6 Let D[x1, ..., xn] be the ring of all polynomials in n
variables with coefficients in D:

p(x1, ..., xn) =
∑
|α|≤m

aαx
α,(1.1.13)

α = (α1, ..., αn) ∈ Zn+, |α| :=
n∑
i=1

αi, xα := xα1
1 · · ·xαnn .

The degree of p(x1, ..., xn) 6= 0 (deg p) is m if there exists aα 6= 0 such
that |α| = m. (deg 0 = 0.) A polynomial p is called homogeneous if aα = 0
for all |α| < deg p. It is a standard fact that D[x1, ..., xn] is an integral
domain. (See Problems 2-3.) As usual F(x1, ..., xn) denotes the quotient
field of F[x1, ..., xn].

Problems

1. Let C[a, b] be the set of real valued continuous functions on the inter-
val [a, b], a < b. Show that C[a, b] is a commutative ring with identity
and zero divisors.

2. Prove that D[x] is an integral domain.

3. Prove that D[x1, ..., xn] is an integral domain. (Use the previous prob-
lem and the identity D[x1, ..., xn] = D[x1, ..., xn−1][xn].)

4. Let p(x1, ..., xn) ∈ D[x1, ..., xn]. Show that p =
∑
i≤deg p pi, where

each pi is either a zero polynomial or a homogeneous polynomial of
degree i for i ≥ 1. If p is not a constant polynomial then m = deg p ≥
1 and pm 6= 0. The polynomial pm is called the principle part of p
and is denoted by pπ. (If p is a constant polynomial then pπ = p.)

5. Let p, q ∈ D[x1, ..., xn]. Show (pq)π = pπqπ.

1.2 Bezout Domains

Let a1, . . . , an ∈ D. Assume first that not all of a1, . . . , an are equal to zero.
An element d ∈ D is a greatest common divisor (g.c.d) of a1, ..., an if d|ai
for i = 1, ..., n, and for any d′ such that d′|ai, i = 1, ..., n, d′|d. Denote by
(a1, ..., an) any g.c.d. of a1, ..., an. Then {{(a1, . . . , an)}} is the equivalence
class of all g.c.d. of a1, . . . , an. For a1 = . . . = an = 0, we define 0 to be the
g.c.d. of a1, . . . , an, i.e. (a1, ..., an) = 0. The elements a1, ..., an are called
coprime if {{(a1, ..., an)}} = {{1}}.
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Definition 1.2.1 D is called a greatest common divisor domain, or
simply GCD domain and denoted by DG, if any two elements in D have
a g.c.d..

A simple example of DG is Z. See Problem 5 for a non GCD domain.

Definition 1.2.2 A subset I ⊂ D is called an ideal if for any a, b ∈ I
and p, q ∈ D the element pa+ qb belongs to I.

In Z any nontrivial ideal is the set of all numbers divisible by an integer
k 6= 0. In H(Ω), the set of functions which vanishes on a prescribed set
U ⊂ Ω, i.e.

(1.2.1) I(U) := {f ∈ H(Ω) : f(ζ) = 0, ζ ∈ U},

is an ideal. Ideal in I is called prime if ab ∈ I implies that either a or b is
in I. I ⊂ Z is a prime ideal if and only if I is the set of integers divisible
by some prime number p. An ideal I is called maximal if the only ideals
which contain I are I and D. I is called finitely generated if there exists k
elements (generators) p1, ..., pk ∈ I such that any i ∈ I is of the form

(1.2.2) i = a1p1 + · · ·+ akpk

for some a1, ..., ak ∈ D. For example, in D[x, y] the set of all polynomials
p(x, y) such that

(1.2.3) p(0, 0) = 0,

is an ideal generated by x and y. An ideal is called principal ideal if it is
generated by one element p.

Definition 1.2.3 D is called a Bezout domain, or simply BD and de-
noted by DB, if any two elements a, b ∈ D have g.c.d. (a, b) such that

(1.2.4) (a, b) = pa+ qb,

for some p, q ∈ D.

It is easy to show by induction that for a1, ..., an ∈ DB

(1.2.5) (a1, ..., an) =
n∑
i=1

piai, for some p1, . . . , pn ∈ DB .

Lemma 1.2.4 An integral domain is a Bezout domain if and only if
any finitely generated ideal is principal.
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Proof. Assume that an ideal of DB is generated by a1, ..., an. Then
(1.2.5) implies that (a1, ..., an) ∈ I. Clearly (a1, ..., an) is a generator of I.
Assume now that any finitely generated ideal of D is principal. For given
a, b ∈ D let I be the ideal generated by a and b. Let d be a generator of I.
So

(1.2.6) d = pa+ qb.

Since d generates I d divides a and b. (1.2.6) implies that if d′ divides a
and b then d′|d. Hence d = (a, b) and D is DB . 2

Let I ⊂ D[x, y] be the ideal given by (1.2.3). Clearly (x, y) = 1. As
1 6∈ I, I is not principal. As x, y generate I we obtain that D[x, y] is not
DB . In particular F[x1, ..., xn] is not DB for n ≥ 2. The same argument
shows that H(Ω) is not DB for Ω ⊂ Cn and n ≥ 2. It is a standard fact
that F[x] is a Bezout domain [Lan67]. (See 1.3.) For a connected set Ω ⊂ C
H(Ω) is DB . This result is implied by the following interpolation theorem
[Rud74, Thms 15.11, 15.15]:

Theorem 1.2.5 Let Ω ⊂ C be an open set, A ⊂ Ω be a countable set
with no accumulation point in Ω. Assume that for each ζ ∈ A, m(ζ) and
w0,ζ , ..., wm(ζ),ζ are a nonnegative integer and m(ζ) + 1 complex numbers,
respectively. Then there exists f ∈ H(Ω) such that

f (n)(ζ) = n!wn,ζ , n = 0, ...,m(ζ), for all ζ ∈ A.

Furthermore, if all wn,ζ = 0 then there exists g ∈ H(Ω) such that all zeros
of g are in A and g has a zero of order m(ζ) + 1 at each ζ ∈ A.

Theorem 1.2.6 Let Ω ⊂ C be an open connected set. Then for a, b ∈
H(Ω) there exists p ∈ H(Ω) such that (a, b) = pa+ b.

Proof. If a = 0 or b = 0 then (a, b) = 1a+ 1b. Assume that ab 6= 0. Let
A be the set of common zeros of a(z) and b(z). For each ζ ∈ A let m(ζ) + 1
be the minimum multiplicity of the zero z = ζ of a(z) and b(z). Theorem
1.2.5 implies the existence of f ∈ H(Ω) which has its zeros at A, such that
at each ζ ∈ A f(z) has a zero of order m(ζ) + 1. Hence

a = âf, b = b̂f, â, b̂ ∈ H(Ω).

Thus â and b̂ do not have common zeros. If A is empty then â = a, b̂ = b.
Let Â be the set of zeros of â. Assume that for each ζ ∈ Â â has a
zero of multiplicity n(ζ) + 1. Since b(ζ) 6= 0 for any ζ ∈ Â, Theorem 1.2.5
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implies the existence of a function g ∈ H(Ω) which satisfies the interpolation
conditions:

dk

dzk
(eg(z))|z=ζ =

dk

dzk
b̂(z)|z=ζ , k = 0, ..., n(ζ), ζ ∈ Â.

Then

p =
eg − b̂
â

, (a, b) = feg = pa+ b

and the theorem follows. 2

Corollary 1.2.7 Let Ω ⊂ C be a connected set. Then H(Ω) is a Bezout
domain.

Problems

1. Let a, b, c ∈ DB . Assume that (a, b) = 1, (a, c) = 1. Show that
(a, bc) = 1.

2. Let I be a prime ideal in D. Show that D/I (the set of all cosets of
the form I + a) is an integral domain.

3. Let I an ideal in D. For p ∈ D denote by I(p) the set:

I(p) := {a ∈ D : a = bp+ q, for all b ∈ D, q ∈ I}.

Show that I(p) is an ideal. Prove that I is a maximal ideal if and
only if for any p 6∈ I I(p) = D.

4. Show that an ideal I is maximal if and only if D/I is a field.

5. Let Z[
√
−3] = {a ∈ C, a = p+ q

√
−3, p, q ∈ Z}. Show

(a) Z[
√
−3], viewed as a subset of C, is a domain with respect to

the addition and multiplication in C.
(b) Let z = a+ b

√
−3 ∈ Z[

√
−3]. Then

|z| = 1 ⇐⇒ z = ±1, |z| = 2 ⇐⇒ z = ±2 or z = ±1±
√
−3.

|z| ≥
√

7 for all other values of z 6= 0. In particular if |z| = 2
then z is a prime.

(c) Let

a = 4 = 2·2 = (1+
√
−3)(1−

√
−3), b = (1+

√
−3)·2 = −(1−

√
−3)2.

Then any d that divides a and b divides one of the following
primes d1 := 1 +

√
−3, d̄1 = 1−

√
−3, d2 := 2.

(d) Z[
√
−3] is not GCD domain.
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1.3 DU ,DP and DE domains

p ∈ D is irreducible (prime) if it is not a unit and every divisor of p is
improper. A positive integer p ∈ Z is irreducible if and only if p is prime.
A linear polynomial in D[x1, ..., xn] is irreducible.

Lemma 1.3.1 Let Ω ⊂ C be a connected set. Then all irreducible ele-
ments of H(Ω) (up to multiplication by invertible element) are of the form
z − ζ for each ζ ∈ Ω.

Proof. Let f ∈ H(Ω) be noninvertible. Then there exists ζ ∈ Ω such
that f(ζ) = 0. Hence z − ζ|f(z). Therefore the only irreducible elements
are z − ζ. Clearly z−η

z−ζ is analytic in Ω if and only if η = ζ. 2

For ζ ∈ C Hζ has one irreducible element z − ζ.

Definition 1.3.2 D is unique factorization domain, or simply UFD
and denoted by DU , if any nonzero, noninvertible element a can be factored
as a product of irreducible elements

(1.3.1) a = p1 · · · pr,

and these primes are uniquely determined within order and invertible fac-
tors.

Z and Hζ , ζ ∈ C are DU . F[x1, ..., xn] is DU [Lan67].

Lemma 1.3.3 Let Ω ⊂ C be a connected open set. Then H(Ω) is not
unique factorization domain.

Proof. Theorem 1.2.6 yields the existence of a nonzero function a(z) ∈
H(Ω) which has a countable infinite number of zeros Ω (which do not
accumulate in Ω). Use Lemma 1.3.1 to deduce that a can not be a product
of a finite number of irreducible elements. 2.

A straightforward consequence of this lemma that for any open set Ω ⊂
Cn, H(Ω) is not DU . See Problem 2.

Definition 1.3.4 D is principal ideal domain, or simply PID and de-
noted by DP , if every ideal of D is principal.

Z and F[z] are DP . It is known that any DP is DU [Lan67] or [vdW59].
Thus H(Ω) is not DP for any open connected set Ω ⊂ Cn.

Definition 1.3.5 D is a Euclidean domain, or simply ED and denoted
by DE, if there exists a function d : D\{0} → Z+ such that:

for all a, b ∈ D, ab 6= 0 d(a) ≤ d(ab);(1.3.2)
for any a, b ∈ D, ab 6= 0, there exists t, r ∈ D such that
a = tb+ r, where either r = 0 or d(r) < d(b).(1.3.3)
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We define d(0) = −∞.

Standard examples of Euclidean domains are Z and F[x], see Problem
1.

Lemma 1.3.6 Any ideal {0} 6= I ⊂ DE is principal.

Proof. Let minx∈I\{0} d(x) = d(a). Then I is generated by a. 2

Lemma 1.3.7 Let Ω ⊂ C be a compact connected set. Then H(Ω) is
DE. Here d(a) is the number of zeros of a nonzero function a ∈ H(Ω)
counted with their multiplicities.

Proof. Let a be a nonzero analytic functions on an open connected set
O ⊃ Ω. Since each zero of a is an isolated zero of finite multiplicity, the
assumption that Ω is compact yields that a has a finite number of zeros in
Ω. Hence d(a) < ∞. Let pa be a nonzero polynomial of degree d(a) such
that a0 := a

pa
does not vanish on Ω. By the definition d(a) = d(pa) = deg p.

Let a, b ∈ H(Ω), ab 6= 0. Since C[z] is DE we deduce that

pa(z) = t(z)pb(z) + r(z), r = 0 or d(r) < d(pb).

Hence

a =
a0t

b0
b+ a0r, a0r = 0 or d(a0r) = d(r) < d(pb) = d(b).

2

The Weierstrass preparation theorem [GuR65] can be used to prove the
following extension of the above lemma to several complex variables:

Lemma 1.3.8 Let Ω ⊂ Cn be a compact connected set. Then H(Ω) is
DU .

Let a1, a2 ∈ DE\{0}. Assume that d(a1) ≥ d(a2). The Euclidean
algorithm consists of a sequence a1, ..., ak+1 which is defined recursively as
follows:

(1.3.4) ai = tiai+1 + ai+2, ai+2 = 0 or d(ai+2) < d(ai+1).

Since d(a) ≥ 0 the Euclidean algorithm terminates a1 6= 0, . . . , ak 6= 0 and
ak+1 = 0. Hence

(1.3.5) (a1, a2) = ak.

See Problem 3.

Problems
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1. Show that the following domains are Euclidean.

(a) Z, where d(a) = |a| for any a ∈ Z.

(b) F[x], where d(p(x)) = deg p(x) for each nonzero polynomial
p(x) ∈ F[x].

2. Let Ω ⊂ Cn be an open set. Construct a nonzero function f depending
on one variable in Ω, which has an infinite number of zeros in Ω.
Prove that f can not be decomposed to a finite product of irreducible
elements. Hence H(Ω) is not DU .

3. Consider the equation (1.3.3) for r 6= 0. Show that (a, b) = (a, r).
Using this result prove (1.3.5).

1.4 Factorizations in D[x]

Let F be the field of quotients of D. Assume that p(x) ∈ D[x]. Suppose
that

p(x) = p1(x)p2(x), p1(x), p2(x) ∈ F[x].

We discuss the problem when p1(x), p2(x) ∈ D[x]. One has to take in
account that for any q(x) ∈ F[x]

(1.4.1) q(x) =
p(x)
a

, p(x) ∈ D[x], a ∈ D.

Definition 1.4.1 Let

(1.4.2) p(x) = a0x
m + · · ·+ am ∈ D[x].

p(x) is called normalized if a0 = 1. Let D be GCD domain and denote
c(p) = (a0, ..., am). p(x) is called primitive if c(p) = 1.

The following result follows from Problem 2.

Lemma 1.4.2 Let F be the quotient field of DG. Then for any q(x) ∈
F[x] there exists a decomposition (1.4.1) where (c(p), a) = 1. The polyno-
mial p(x) is uniquely determined up to an invertible factor in DG. Further-
more,

(1.4.3) q(x) =
b

a
r(x), r(x) ∈ DG[x], a, b ∈ DG,

where (a, b) = 1 and r(x) is primitive.



10 CHAPTER 1. DOMAINS, MODULES AND MATRICES

Lemma 1.4.3 (Gauss’s lemma) Let p(x), q(x) ∈ DU [x] be primitive.
Then p(x)q(x) is primitive.

The proof of Gauss lemma follows from the following proposition.

Proposition 1.4.4 Let p, q ∈ DG[x]. Assume that π ∈ D is a prime
element which divides c(pq). Then π divides either c(p) or c(q).

Proof. Clearly, it is enough to assume that p, q 6= 0. We prove the
Proposition by induction on k = deg p+deg q. For k = 0 p(x) = p0, q(x) =
q0. Hence c(pq) = p0q0. Since π|p0q0 we deduce that π divides either
p0 = c(p) or q0 = c(q).

Assume that the proposition holds for k ≤ l and assume that k = l+ 1.
Let p =

∑m
i=0 aix

i, q =
∑n
j=0 bjx

j , where ambn 6= 0 and l + 1 = m + n.
So π|pmqm. Without loss of generality we may assume that nontrivial case
π|pm and m > 0. Let r(x) =

∑m−1
i=0 aix

i. Since π|c(pq) it is straightforward
that πc(rq). As deg r + deg q ≤ l we deduce that π|c(r)c(q). If π|c(q) the
proposition follows. If π|c(r) then π|c(p) and the proposition follows in this
case too. 2

Corollary 1.4.5 Let p(x) ∈ DU [x] be primitive. Assume that p(x) is
irreducible in F[x], where F is the quotient field of DU . Then p(x) is irre-
ducible in DU [x].

Theorem 1.4.6 Let F be the quotient field of DU . Then any p(x) ∈
DU [x] has unique decomposition (up to invertible elements in DU ):

(1.4.4) p(x) = aq1(x) · · · qs(x), q1, ..., qs ∈ DU [x], a ∈ DU ,

where q1(x), ..., qs(x) are primitive and irreducible in F[x] and a has decom-
position (1.3.1). Hence DU [x] is UFD.

See [Lan67] and Problems 3-5.

Normalization 1.4.7 Let F be a field an assume that p(x) ∈ F[x] is
a nonconstant normalized polynomial in F[x]. Let (1.4.4) be a decompo-
sition to irreducible factors. Normalize the decomposition (1.4.4) by let-
ting q1(x), ..., qs(x) to be normalized irreducible polynomial in F[x]. (Then
a = 1.)

Lemmas 1.4.3 and 1.4.5 yield (see Problem 5):
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Theorem 1.4.8 Let p(x) be a normalized nonconstant polynomial in
DU [x]. Let (1.4.4) be a normalized decomposition in F[x], where F is the
quotient field of DU . Then q1(x), ..., qs(x) are irreducible polynomials in
DU [x].

Theorem 1.4.9 Let Ω ⊂ Cn be a connected set. Assume that p(x) is a
normalized nonconstant polynomial in H(Ω)[x]. Let (1.4.4) be a normalized
decomposition in M[x], where M is the field of meromorphic functions in
Ω. Then each qj(x) is an irreducible polynomial in H(Ω)[x].

Proof. By the definition ofH(Ω) we may assume that p(x) ∈ H(Ω0)[x], qj(x) ∈
M(Ω0)[x], j = 1, ..., s for some open connected Ω0 ⊃ Ω. Let

q(x, z) = xt +
t∑

r=1

αr(z)
βr(z)

xt−r,(1.4.5)

x ∈ C, z ∈ Ω0, αr(z), βr(z) ∈ H(Ω0), r = 1, ..., t.

Then q(x, z) is analytic on Ω0\Γ, where Γ is an analytic variety given by

Γ = {z ∈ Ω0 :
t∏

r=1

βr(z) = 0}.

Let x1(z), ..., xt(z) be the roots of q(x, z) = 0, which is well defined as
unordered set of functions {x1(z), ..., xt(z)} on Ω\Γ. Suppose that each
xk(z) is bounded on some neighborhood O of a point ζ ∈ Γ. Then each
αj(z)
βj(z)

, which is the j symmetric function of {x1(z), ..., xt(z), is bounded on

O. The Riemann extension theorem [GrH78] implies that αj(z)
βj(z)

is analytic
in O. If each xk(z) is bounded in the neighborhood of each ζ ∈ Γ it follows
that αk(z)

βk(z) ∈ H(Ω0), k = 1, ..., t.
The assumption that p(x, z) is a normalized polynomial in H(Ω0) yields

that all the roots of p(x, z) = 0 are bounded on any compact set S ⊂ Ω.
The above arguments show that each qj(x, z) in the decomposition (1.4.4)
of p(x, z) is an irreducible polynomial in H(Ω)[x]. 2

Problems

1. a1, . . . , ak ∈ D\{0} are said to have the least common multiple,
denoted by lcm(a1, . . . , ak) and abbreviated as the lcm, if the fol-
lowing conditions hold. Assume that b ∈ D is divisible by each
ai, i = 1, . . . , k. Then lcm(a1, . . . , ak)|b. (Note that the lcm is de-
fined up to an invertible element.) Let D be GCD domain. Show
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(a) lcm(a1, a2) = a1a2
(a1,a2) .

(b) For k > 2 lcm(a1, . . . , ak) = lcm(a1,...,ak−1)ak
(lcm(a1,...,ak−1),ak) .

2. Let F be the division field of DG. Assume that 0 6= q(x) ∈ F[x].
Write q(x) =

∑
i∈I

bi
ai
xi where ai, bi ∈ DG\{0} for each i ∈ I, and

I = {0 ≤ i1 < . . . < ik} is a finite subset of Z+. Let a′i = ai
(ai,bi)

, b′i =
bi

(ai,bi)
for i ∈ I. Then (1.4.1) holds, where a = lcm(a′i1 , . . . , a

′
ik

)

and p(x) =
∑
i∈I

b′ia
a′i
xi. Show that (c(p), a) = 1. Furthermore, if

q(x) = r(x)
c for some r(x) ∈ DG[x], c ∈ DG then c = ea, r(x) = ep(x)

for some e ∈ DG\{0}.

3. Let p(x) be given by (1.4.2) and put

q(x) = b0x
n + · · ·+ bn, r(x) = p(x)q(x) = c0x

m+n + · · ·+ cm+n.

Assume that p(x), q(x) ∈ DU [x]. Let π be an irreducible element in
DU such that

π|ai, i = 0, ..., α, π|bj , j = 0, ..., β, π|cα+β+2.

Then either π|aα+1 or π|bβ+1.

4. Prove that if p(x), q(x) ∈ DU [x] then c(pq) = c(p)c(q).

Deduce from the above equality Lemma 1.4.3. Also if p(x) and q(x)
normalized polynomials then p(x)q(x) is primitive.

5. Prove Theorem 1.4.8.

6. Using the equality D[x1, ..., xn−1][xn] = D[x1, ..., xn] prove that DU [x1, ..., xn]
is UFD. Deduce that F[x1, ..., xn] is UFD.

1.5 Elementary Divisor Domain

Definition 1.5.1 DG is elementary divisor domain, or simply EDD
and denoted by (DED), if for any three elements a, b, c ∈ D there exists
p, q, x, y ∈ D such that

(1.5.1) (a, b, c) = (px)a+ (py)b+ (qy)c.

By letting c = 0 we obtain that (a, b) is a linear combination of a and b.
Hence an elementary divisor domain is a Bezout domain.
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Theorem 1.5.2 Let D be a principal ideal domain. Then D is an ele-
mentary divisor domain.

Proof. Without loss of generality we may assume that abc 6= 0, (a, b, c) =
1. Let (a, c) = d. Since D is DU ([Lan67]), we decompose a = a′a′′, where in
the prime decomposition (1.3.1) of a, a′ contains all the irreducible factors
of a, which appear in the decomposition of d to irreducible factors. Thus

a = a′a′′, (a′, a′′) = 1, (a′, c) = (a, c), (a′′, c) = 1,(1.5.2)
and if a′, f are not coprime then c, f are not coprime.

Hence there exists q and α such that

(1.5.3) b− 1 = −qc+ αa′′.

Let d′ = (a, b+ qc). The above equality implies that (d′, a′′) = 1. Suppose
that d′ is not coprime with a′. Then there exists a noninvertible f such that
f divides d′ and a′. According to (1.5.2) (f, c) = f ′ and f ′ is not invertible.
Thus f ′|b which implies that f ′ divides a, c and b. Contradictory to our
assumption that (a, b, c) = 1. So (d′, a′) = 1 which implies (d′, a) = 1.
Therefore there exists x, y ∈ D such that xa + y(b + qc) = 1. This shows
(1.5.1) with p = 1. 2

Theorem 1.5.3 Let Ω ⊂ C be a connected set. Then H(Ω) is an ele-
mentary divisor domain.

Proof. Given a, b, c ∈ H(Ω) we may assume that a, b, c ∈ H(Ω0) for
some open connected set Ω0 ⊃ Ω. Theorem 1.2.6 yields

(1.5.4) (a, b, c) = (a, (b, c)) = a+ y(b, c) = a+ y(b+ qc).

2

Problems

1. D is called adequate if for any 0 6= a, c ∈ D (1.5.2) holds. Use the
proof of Theorem 1.5.2 to show that any adequate DB is DED.

2. Prove that for any connected set Ω ⊂ C, H(Ω) is an adequate domain
([Hel43]).

1.6 Modules

Definition 1.6.1 M is an abelian group if it has a binary operation,
denoted by +, which satisfies the conditions (1.1.1− 1.1.5).
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Definition 1.6.2 Let S be a ring with identity. An abelian group M,
which has an operation +, is called a (left) S-module if for each r ∈ S, v ∈
M the product rv is an element of M such that the following properties
hold:

r(v1 + v2) = rv1 + rv2, (r1 + r2)v = r1v + r2v,

(1.6.1)
(rs)v = r(sv), 1v = v.

N ⊂M is called a submodule if N is an S-module.
Assume that S does not have zero divisors. (I.e. if r, s ∈ S and rs = 0

then either r = 0 or s = 0.) Then M does not have zero divisors if

(1.6.2) rv = 0 if and only if v = 0 for any r 6= .

Assume that D is a domain. Then M is a called a D-module if in addition
to the above property M does not have zero divisors.

A standard example of S-module is

(1.6.3) Sm := {v = (v1, ..., vm)> : vi ∈ S, i = 1, ...,m},

where

u + v = (u1 + v1, ..., um + vm)>,
(1.6.4)

ru = (ru1, ..., rum)>, r ∈ S.

Note that if S does not have zero divisors then Sn is an S-module with no
zero divisors.

Definition 1.6.3 A D-module M is finitely generated if there exist n-
elements (generators) v1, ...,vn ∈M such that any v ∈M is of the form

(1.6.5) v =
n∑
i=1

aivi, ai ∈ D, i = 1, ..., n.

If each v can be expressed uniquely in the above form then v1, ...,vn is
called a basis in M, and M is said to have a finite basis. We denote by
[v1, ...,vn] a basis in M.

Note that Dm has a standard basis vi = (δi, . . . , δin)>, i = , . . . , n.
Let F be a field. Then an F-module is called a vector space V over F. It

is a standard fact in linear algebra [HJ88] that a finitely generated V has
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a finite basis. A finitely generated vector space is called finite dimensional.
The number of vectors of a basis for a finite dimensional vector space V
is constant. It is called the dimension of V, and is denoted by dim V. A
submodule of V is called a subspace of V.

Let M be a D-module with a finite basis. Let F be a quotient ring of D.
It is possible to imbed M in a vector space V by considering all vectors v
of the form (1.6.5), where ai ∈ F, i = 1, ..., n. (For more general statement
see Problem 1.) Thus dim V = n. Using this fact we obtain:

Lemma 1.6.4 Any two finite bases of a D module contain the same
number of elements dim V.

One of the standard examples of submodules in Dn is as follows. Con-
sider the linear homogeneous system

(1.6.6)
n∑
j=1

aijxj = 0, aij , xj ∈ D, i = 1, ...,m, j = 1, ..., n.

Then the set of solutions x = (x1, ..., xn)> is a submodule of Dn. In §1.12
we show that the above module has a basis if D is a Bezout domain.

Definition 1.6.5 Let M be a module over D. Assume that Mi is
a submodule of M for i = 1, . . . , k. Then M is called a direct sum of
M, . . . ,Mk, and denoted as M = ⊕ki=Mi, if every element m ∈ M can
be expressed in unique way as a sum m =

∑k
i= mi, where mi ∈ Mi for

i = 1, . . . , k.

Definition 1.6.6 Then ring of quaternions H is a four dimensional
vector space over R with the basis 1, i, j,k, i.e. vectors of the form

(1.6.7) q = a+ bi + cj + dk, a, b, c, d ∈ R,

where

(1.6.8) i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is known that H is a noncommutative division algebra over R. See
Problem 5.

Problems

1. Let M be a finite generated module over D. Let F be the quotient
field of D. Show
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(a) Assume that M is generated by a, . . . ,am. Let N = {x =
(x, . . . , xm)> ∈ Dm,

∑m
i= xiai = 0}. Then N is a D-module.

(b) Let U ⊆ Fm be the subspace generated by all vectors in N. (Any
vector in U is a finite linear combination of vectors in N.) Then
any vector in u ∈ U is of the form 1

cb, where b ∈ N.

(c) Let V = Fm/U. (V can be constructed as follows. Assume that
dim U = l. Pick a basis [u, . . . ,ul] in U and complete this basis
to a basis in Fm. So [u, . . . ,ul,w, . . . ,wm−l] is a basis in Fm.
Let W = span (w, . . . ,wm−l). Then any vector in V is of the
form of a coset w + U for a unique vector w ∈W.)

(d) Define φ : M → V as follows. Let a ∈ M and write a =∑m
i= aiai. Set φ(a) = (a, . . . , am)> + U. Then

i. φ is well defined, i.e. does not depend on a particular rep-
resentation of a as a linear combination of a, . . . ,am.

ii. φ(a) = φ(b) ⇐⇒ a = b.
iii. φ(aa + bb) = aφ(a) + bφ(b) for any a, b ∈ D and a,b ∈M.
iv. For any v ∈ V there exists a ∈ D and a ∈ M such that

φ(a) = av.

(e) Let Y be a finite dimensional vector space over F with the fol-
lowing properties.

i. There is an injection φ : M→ Y, i.e. φ is one to one, such
that φ(am + bn) = aφ(m) + bφ(n) for any a, b ∈ D and
m,n ∈M.

ii. For any y ∈ Y there exists a ∈ D and m ∈ M such that
φ(m) = ay.

Then dim X = dim V, where V is defined in 1c.

Definition 1.6.7 D-module M is called k-dimensional, if M is
finitely generated and dim V = k.

2. Let M be a D-module with a finite basis. Let N be a submodule of
M. Show that if D is DP then N has a finite basis.

3. Let M be a D-module with a finite basis. Assume that N is a finitely
generated submodule of M. Show that if D is DB then N has a finite
basis.

4. Let M be a module over D. Assume that Mi is a submodule of M
for i = 1, . . . , k. Then N := M + . . .+Mk is the set of all m of the
form m + . . .+ mk, where mi ∈Mi for i = 1, . . . , k. Show
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(a) N is a submodule of M.

(b) ∩ki=1Ni is a submodule of M.

(c) Assume that M, . . . ,Mk are finitely generated. Then N is
finitely generated and dim N ≤

∑k
i= dim Mi.

(d) Assume that M, . . . ,Mk are have bases and N = ⊕ki=Mi.
Then N has a basis and dim Nl =

∑k
i= dim Mi.

5. Show

(a) H can be viewed as C2, where each q ∈ H of the form (1.6.7)
can be written as q = z + wj, where z = a+ bi, w = c+ di ∈ C.
Furthermore, for any z ∈ C, jz = z̄j.

(b) H is a ring with the identity 1 = 1 + 0i + 0j + 0k.

(c) (rq)s = q(rs) for any q, s ∈ H and r ∈ R. Hence H is an algebra
over R.

(d) Denote |q| =
√
a2 + b2 + c2 + d2, q̄ = a− bi− cj− dk for any q

of the form (1.6.7). Then q̄q = qq̄ = |q|. Hence |q|−2q̄ is the
right and the left inverse of q 6= .

1.7 Algebraically closed fields

Definition 1.7.1 A field F is algebraically closed if any polynomial
p(x) ∈ F[x] of the form (1.4.2) splits to linear factors in F:

(1.7.1) p(x) = a0

m∏
i=1

(x− ξi), ξi ∈ F, i = 1, ...,m, a0 6= 0.

The classical example of an algebraically closed field is the field of complex
numbers C. The field of real numbers R is not algebraically closed.

Definition 1.7.2 Let K ⊃ F be fields. Then K is an extension field of
F. K is called a finite extension of F if K is a finite dimensional vector
space over F. The dimension of the vector space K over F is called the
degree of K and is denoted by [K : F].

Thus C is a finite extension of R of degree 2. It is known [Lan67], see
Problems 1-2:

Theorem 1.7.3 Let p(x) ∈ F[x]. Then there exists a finite extension
K of F such that p(x) splits into linear factors in K[x].
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The classical Weierstrass preparation theorem in two complex variables
is an explicit example of the above theorem. We state the Weierstrass
preparation theorem in a form needed later [GuR65].

Theorem 1.7.4 Let H0 be the ring of analytic functions in one variable
in the neighborhood of the origin 0 ∈ C. Let p(λ) ∈ H0[λ] be a normalized
polynomial of degree n

(1.7.2) p(λ, z) = λn +
n∑
j=1

aj(z)λn−j , aj(z) ∈ H0, j = 1, ..., n.

Then there exists a positive integer s|n! such that

(1.7.3) p(λ,ws) =
n∏
j=1

(λ− λj(w)), λj(w) ∈ H0, j = 1, ..., n.

In this particular case the extension field K of F =M0 is the set of multi-
valued functions in z, which are analytic in z

1
s in the neighborhood of the

origin. Thus K =M0(w), where

(1.7.4) ws = z.

The degree of K over F is s.

Problems

1. Let F be a field and assume that p(x) = xd + adx
d−1 + . . . + a1 ∈

F[x], where d > 1. On the vector field Fd define a product as fol-
lows. (b1, . . . , bd)(c1, . . . , cd) = (r1, . . . , rd), where (r1, . . . , rd) de-
fined as follows. Let b(x) =

∑d
i=1 bix

i−1, c(x) =
∑d
i=1 cix

i−1, r(x) =∑d
i=1 rix

i−1. Then r(x) is the remainder of b(x)c(x) be the division
by p(x). I.e. b(x)c(x) = g(x)p(x) + r(x) where deg r(x) < d. Let Pd
be Fd with the above product.

Show

(a) Pd is a commutative ring with identity e = (, , . . . , ).

(b) F is isomorphic to span (e), where f 7→ fe.

(c) Let ei = (δi, . . . , δdi), i = , . . . , d. Then

ei = e+i, i = , . . . , d− , p(e) = .

(d) Pd is a domain if and only if p(x) is an irreducible polynomial
over F[x].
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(e) Pd is a field if and only if p(x) is an irreducible polynomial over
F[x].

(f) Assume that p(x) ∈ F[x] is irreducible. Then K := Pd is an
extension field of F with [K : F] = d. Furthermore p(x) viewed
as p(x) ∈ K[x] decompose to p(x) = (x− e)q(x), where q(x) =
xd−1 +

∑d
i=1 gix

i−1 ∈ K[x].

2. Let F be a field and p(x) ∈ F[x]. Show that there exists a finite
extension field K such that p(x) splits in K. Furthermore [K : F] ≤
(deg p)!

1.8 The resultant and the discriminant

Let D be an integral domain. Suppose that

(1.8.1) p(x) = a0x
m + · · ·+ am, q(x) = b0x

n + · · ·+ bn ∈ D[x].

Assume furthermore that m,n ≥ 1 and a0b0 6= 0. Let F be the quotient
field D and assume that K is a finite extension of F such that p(x) and q(x)
split to linear factors in K. That is

p(x) = a0

m∏
i=1

(x− ξi), ξi ∈ K, i = 1, ...,m, a0 6= 0.

(1.8.2)

q(x) = b0

n∏
j=1

(x− ηj), ηj ∈ K, j = 1, ..., n, b0 6= 0.

Then the resultant R(p, q) of p, q and the discriminant D(p) of p are defined
as follows.

R(p, q) = an0 b
m
0

m,n∏
i,j=1

(ξi − ηj),

(1.8.3)

D(p) = a
m(m−1)
0

∏
1≤i<j≤m

(ξi − ξj)2.

It is a classical result that R(p, q) ∈ D[a0, ..., am, b0, ..., bn] and D(p) ∈
D[a0, ..., am], e.g. [vdW59]. More precisely, we have.
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Theorem 1.8.1 Let

a = (a0, . . . , am) ∈ Dm+1,b = (b0, . . . , bn) ∈ Dn+1,

p(x) =
m∑
i=0

aix
m−i, q(x) =

n∑
j=0

bjx
n−j .

Then R(p, q) = det C(a,b), where

C(a,b) =



a0 a1 a2 ... am 0 0 ... 0
0 a0 a1 ... am−1 am 0 ... 0
...

...
...

...
...
...

...
...

...
...
...
...

...
0 0 0 ... a0 a1 a2 ... am
b0 b1 ... bn−2 bn−1 bn 0 ... 0
0 b0 b1 ... bn−2 bn−1 bn 0 ...
...

...
...

...
...
...

...
...

...
...
...
...

...
0 0 0 ... b0 b1 b2 ... bn


is an (m+ n)× (m+ n) matrix.

Proof. Let F be the quotient field of D, and assume that p, q ∈ D[x]
split in a finite extension field K of F. Let c(x) =

∑n−1
i=0 cix

n−1−i, d(x) =∑m−1
j=0 djx

m−1−j ∈ F[x]. Then c(x)p(x)+d(x)q(x) =
∑m+n−1
l=0 glx

m+n−1−l.
Denote

f = (c, . . . , cn−, d, . . . , dm−),g = (g, . . . , gm+n−) ∈ Dm+n. A
straightforward calculation show that fC(a,b) = g.

Assume that det C(a,b) 6= . Let f = (, . . . , , )C(a,b)−. Hence
there exists c(x), d(x) ∈ F[x] of the above form such that c(x)p(x) +
d(x)q(x) = 1. Hence p, q do not have common zeros in K.

We now show that if a0b0 6= 0 then R(p, q) = det C(a,b). Divide the
first n rows of C(a,b) by a0 and the last m rows of C(a,b) by b0, to
deduce that it is enough to show the equality R(p, q) = det C(a,b) in the
case a0 = b0 = 1. Then p(x) =

∏m
i=1(x− ui), q(x) =

∏n
j=1(x− vj) ∈ K[x].

Recall that (−1)iai and (−1)jbj the i− th and j− th elementary symmetric
polynomials in u1, . . . , um and v1, . . . , vn, respectively:

ai = (−1)i
∑

1≤l1<...<li≤m

ul1 . . . uli , i = 1, . . . ,m,(1.8.4)

bj = (−1)j
∑

1≤l1<...<lj≤n

vl1 . . . vlj , j = 1, . . . , n.
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Then C(a,b) is a matrix with polynomial entries in u = (u, . . . , um),v =
(v, . . . , vn). Hence s(u,v) := det C(a,b) is a polynomial inm+n variables.

Assume that ui = vj for some i ∈ [1,m], j ∈ [1, n]. Then p(x) and q(x)
have a common factor x − ui = x − vj . The above arguments shows that
s(u,v) = . Hence s(u,v) is divisible by t(u,v) =

∏m,n
i=,j=(ui − vj). So

s(u,v) = h(u,v)t(u,v), for some polynomial h(u,v).
Consider s(u,v), t(u,v), h(u,v) as polynomials in v with coefficients

in D[u]. Then deg vt(u,v) = nm and the term of the highest degree is
(−1)mnvm1 . . . vmn . Observe next that the contribution of the variables v in
det C(a,b) comes from it last m rows. The term of the maximal degree in
each such row is n which comes only from bn = (−1)nv1 . . . vn. Hence the
coefficient of the product bmn comes from the minor of C(a,b) based on the
first n rows and columns. Clearly, this minor is equal to an0 = 1. So h(u,v)
is only polynomial in u. Furthermore h(u) = 1.

2

If F is a field of characteristic 0 then

(1.8.5) D(p) = ±a−1
0 R(p, p′).

Note that if ai, bi are given the weight i for i = 0, ..., then R(p, q) and D(p)
are polynomials with total degrees mn and m(m − 1) respectively. See
Problem 4.

Problems

1. Let D be a domain and assume that p(x) = xm, q(x) = (x+1)n. Show

(a) R(p, q) = 1.

(b) Let a = (1, 0, . . . , 0) ∈ Dm+1,b = (
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
) ∈ Dn+1.

Let C(a,b) be defined as in Theorem 1.8.1. Then det C(a,b) =
1.

2. Let u = (u1, . . . , um),v = (v1, . . . , vn). Assume that each ai ∈
D[u], bj ∈ D[v], is a multilinear polynomial for i = 0, . . . ,m, j =
0, . . . , n. (The degree of ai, bj with respect to any variable is at most
1.) Let C(a,b) be defined as in Theorem 1.8.1. Show that det C(a,b)
is a polynomial of degree at most n and m with respect to ui and vj
respectively, for any i = 1, . . . ,m and j = 1, . . . , n.

3. Let the assumptions of Theorem 1.8.1 hold. Show

(a) If a0 = b0 then det C(a,b) = 0.
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(b) Assume that p(x) is not a zero polynomial and a0 = 0, b0 6= 0.
Then det C(a,b) = 0 if and only if p and q have a common root
in an extension field K of F, where p and q split.

4. Let C(a,b) be defined as Theorem 1.8.1. View det C(a,b) as a poly-
nomial F (a,b). Assume that the weight ω(ai) = i, ω(bj) = j. Then
the weight of a monomial in the variables a,b is the sum of the
weights of each variable times the number of times in appears in this
monomial. Show

(a) Each nontrivial monomial in F (a,b) is of weight mn.

(b) Assume as in the proof of Theorem 1.8.1 that a0 = b0 = 1 and ai
and bj are the i−th and j−th elementary symmetric polynomials
in u and v respectively. Then each nontrivial monomial in u,v
appearing in F (a(u),b(v)) is of total degree mn.

1.9 The ring F[x1, ..., xn]

In 1.2 we pointed out that F[x1, ..., xn] is not DB for n ≥ 2. It is known
[Lan67] that F[x1, ..., xn] is Noetherian:

Definition 1.9.1 D is Noetherian, denoted by DN , if any ideal of D is
finitely generated.

In what follows we assume that F is algebraically closed. Let p1, ..., pk ∈
F[x1, ..., xn]. Denote by U(p1, ..., pk) the common set of zeros of p1, ..., pk:

(1.9.1) U(p1, ..., pk) = {x = (x1, ..., xn)T : pj(x) = 0, j = 1, ..., k}.

U(p1, ..., pk) may be an empty set. U(p1, ..., pk) is called an algebraic variety
(in Fn). It is known [Lan67] that any nonempty variety in Fn splits as

(1.9.2) U = ∪ki=1Vi,

where each Vi is an irreducible algebraic variety, which is not contained in
any other Vj . Over C each irreducible variety V ⊂ Cn is a closed connected
set. Furthermore, there exists a strict subvariety W ⊂ V (of singular points
of V ) such that V \W is a connected analytic manifold of complex dimension
d in Cn. dim V := d is called the dimension of V . If d = 0 then V consists
of one point. For any set U ⊂ Fn let I(U) be the ideal of polynomials
vanishing on U :

(1.9.3) I(U) = {p ∈ F[x1, ..., xn] : p(x) = 0, ∀x ∈ U}.
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Theorem 1.9.2 (Hilbert Nullstellensatz) Let F be an algebraically closed
field. Let I ⊆ F[x1, ..., xn] be an ideal generated by p1, ..., pk. Assume that
g ∈ F[x1, ..., xn]. Then gj ∈ I for some positive integer j if and only if
g ∈ I(U(p1, ..., pk)).

Corollary 1.9.3 Let p1, ..., pk ∈ F[x1, ..., xn], where F is algebraically
closed field. Then p1, ..., pk generate F[x1, ..., xn] if and only if U(p1, ..., pk) =
∅.

1.10 Matrices and homomorphisms

Notation 1.10.1 For a set S denote by Sm×n the set of all m × n
matrices A = [aij ]

i=m,j=n
i=j=1 , where each aij ∈ S.

Definition 1.10.2 Let M, N be D-modules. Let T : N → M. T is a
homomorphism if

(1.10.1) T (au + bv) = aTu + bTv, for all u,v ∈ N, a, b ∈ D.

Let

Range T = {u ∈M : u = Tv, v ∈ N},
Ker T = {v ∈ N : Tv = 0},

be the range and the kernel of T . Denote by Hom(N,M) the set of all
homomorphisms of N to M.

T ∈ Hom(N,M) is an isomorphism if there exists Q ∈ Hom(M,N)
such that QT and TQ are the identity maps on M and N respectively. M
and N are isomorphic if there exists an isomorphism T ∈ Hom(N,M).

Hom(N,M) is a D-module with

(aS + bT )v = aSv + bTv, a, b ∈ D, S, T ∈ Hom(N,M), v ∈ N.

Assume that M and N have finite bases. Let [u1, ...,um] and [v1, ...,vn]
be bases in M and N respectively. Then there exists a natural isomorphism
between Hom(N,M) and Dm×n. For each T ∈ Hom(N,M) let A = [aij ] ∈
Dm×n be defined as follows:

(1.10.2) Tvj =
m∑
i=1

aijui, j = 1, ..., n.

Conversely, for eachA = [aij ] ∈ Dm×n there exists a unique T ∈ Hom(N,M)
which satisfies (1.10.2). The matrix A is called the representation matrix
of T in the bases [u1, ...,um] and [v1, ...,vn].
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Notation 1.10.3 For a positive integer n denote [n] = {1, . . . , n}. For
k ∈ [n] denote by [n]k the set of all subsets of [n] of cardinality k. Each α ∈
[n]k is represented by (α1, . . . , αk), where α1, . . . , αk are integers satisfying
1 ≤ α1 < . . . < αk ≤ n.

Definition 1.10.4 Let D be a domain and A ∈ Dm×n. Assume that
α = (α1, . . . , αk) ∈ [m]k, β = (β1, . . . , βl) ∈ [n]l. Denote by A[α, β] =
[aαiβj ]

k,l
i,j=1 the k × l submatrix of A. For k = l, det A[α, β] is called an

(α, β) minor, k-minor, or simply a minor of A. The rank of A, denoted by
rank A, is the maximal size of a nonvanishing minor of A. (The rank of
the zero matrix is 0.) The nullity of A, denoted by nul A, is n− rank A.

Any A ∈ Dm×n can be viewed as T ∈ Hom(Dn,Dm), where Tx := Ax, x =
(x1, ..., xn)>. We will sometime denote T by A. If D is DB then Range A
has a finite basis of dimension rank A (Problem 1).

We now study the relations between the representation matrices of a
fixed T ∈ Hom(N,M) with respect to different bases in M and N.

Definition 1.10.5 U ∈ Dn×n is called invertible (unimodular) if det U
is an invertible element in D.

Proposition 1.10.6 U ∈ Dn×n is invertible if and only if there exists
V ∈ Dn×n such that either UV or V U is equal to the identity matrix I.

Proof. Let F be the divison field of D. Assume first that det U is an
invertible element in D. Then U is an invertible matrix in Fn×n, where

U−1 =
1

det U
adj U,(1.10.3)

adj A = [(−1)i+jdet A[[n] \ {j}, [n] \ {i}]]ni=j=1.(1.10.4)

Clearly V := U−1 ∈ Dn×n. Assume now that there exists V ∈ Dn×n such
that V U = I. Then 1 = det V U = det V det U and det U−1 = det V ∈ D.
Similarly det U is invertible in D if UV = I. 2

Notation 1.10.7 Denote by GL(n,D) the group of invertible matrices
in Dn×n.

Lemma 1.10.8 Let M be a D-module with a finite basis [ũ1, ..., ũm].
Then [u1, ...,um] is a basis in M if and only if the matrix Q = [qki] ∈ Dm×m
given by the equalities

(1.10.5) ui =
m∑
k=1

qkiũk, i = 1, ...,m,

is an invertible matrix.
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Proof. Suppose first that [u1, ...,um] is a basis in M. Then

(1.10.6) ũk =
m∑
l=1

rlkul, k = 1, ...,m.

Let R = [rlk]m1 . Insert (1.10.6) to (1.10.5) and use the assumption that
[u1, ...,um] is a basis to obtain that RQ = I. Proposition 1.10.6 yields that
Q ∈ GL(m,D). Assume now that Q is invertible. Let R = Q−1. Hence
(1.10.6) holds. It is straightforward to deduce that [ũ1, ..., ũm] is a basis in
M. 2

Definition 1.10.9 Let A,B ∈ Dm×n. Then A and B are right equiv-
alent, left equivalent and equivalent if the following conditions hold respec-
tively:

B = AP for some P ∈ GL(n,D) (A ∼r B),(1.10.7)
B = QA for some Q ∈ GL(m,D) (A ∼l B),(1.10.8)
B = QAP for some P ∈ GL(n,D), Q ∈ GL(m,D) (A ∼ B).(1.10.9)

Clearly, all the above relations are equivalence relations.

Theorem 1.10.10 Let M and N be D-modules with finite bases having
m and n elements respectively. Then A,B ∈ Dm×n represent some T ∈
Hom(N,M) in certain bases as follows:
(l) A ∼l B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.10) [u1, ...,um], [v1, ...,vn] and [ũ1, ..., ũm], [v1, ...,vn].

(r) A ∼r B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.11) [u1, ...,um], [v1, ...,vn] and [u1, ...,um], [ṽ1, ..., ṽn].

(e) A ∼ B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.12) [u1, ...,um], [v1, ...,vn] and [ũ1, ..., ũm], [ṽ1, ..., ṽn].

Sketch of a proof. Let A be the representation matrix of T in the bases
[u1, ...,um] and [v1, ...,vn] given in (1.10.2). Assume that the relation be-
tween the bases [u1, ...,um] and [ũ1, ..., ũm] is given by (1.10.5). Then

Tvj =
m∑
i=1

aijui =
m∑

i=k=1

qkiaijũk, j = 1, ..., n.
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Hence the representation matrix B in bases [ũ1, ..., ũm] and [v1, ...,vn] is
given by (1.10.8).

Change the basis [v, ...,vn] to [ṽ1, ..., ṽn] according to

ṽj =
n∑
l=1

pljvl, j = 1, ..., n, P = [plj ] ∈ GL(n,D).

Then a similar computation shows that T is presented in the bases [u1, ...,um]
and [ṽ1, ..., ṽn] by AP . Combine the above results to deduce that the rep-
resentation matrix B of T in bases [ũ1, ..., ũm] and [ṽ1, ..., ṽn] is given by
(1.10.9). 2

Problems

1. Let A ∈ Dm×nB . View A a as linear transformation from A : DnB →
DmB . to show that Range A is a module with basis of dimension
rank A. (Hint: Use Problem 1.6.3.)

2. For A,B ∈ Dm×n show.

(a) If A ∼l B then Ker A = Ker B and Range A and Range B are
isomorphic.

(b) A ∼r B then Range A = Range B and Ker A and Ker B are
isomorphic.

1.11 Hermite normal form

We start this section with two motivating problems.

Problem 1.11.1 Given A,B ∈ Dm×n. When are A and B
(l) left equivalent;
(r) right equivalent;
(e) equivalent.

Problem 1.11.2 For a given A ∈ Dm×n characterize the equivalence
classes corresponding to the left equivalence, to the right equivalence and to
the equivalence relation as defined in Problem 1.11.1.

For DG the equivalence relation has the following natural invariants:
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Lemma 1.11.3 For A ∈ Dm×nG let

µ(α,A) := g.c.d. ({det A[α, θ], θ ∈ [n]k}, α ∈ [m]k),
ν(β,A) := g.c.d. ({det A[φ, β], φ ∈ [m]k}), β ∈ [n]k,(1.11.1)
δk(A) := g.c.d. ({det A[φ, θ], φ ∈ [m]k, θ ∈ [n]k}),

(δk(A) is called the k-th determinant invariant of A.) Then

µ(α,A) ≡ µ(α,B) for all α ∈ [m]k if A ∼r B,
ν(β,A) ≡ ν(β,B) for all β ∈ [n]k if A ∼l B,(1.11.2)
δk(A) ≡ δk(B) if A ∼ B,

for k = 1, ...,min(m,n). (Recall that for a, b ∈ D a ≡ b if a = bc for some
invertible c ∈ D.)

Proof. Suppose that (1.10.7) holds. Then the Cauchy-Binet formula
(e.g. [Gan59]) implies

det B[α, γ] =
∑
θ∈[n]k

det A[α, θ]det P [θ, γ].

Hence µ(α,A) divides µ(α,B). As A = BP−1 we get µ(α,B)|µ(α,A).
Thus µ(α,A) ≡ µ(α,B). The other equalities in (1.11.2) are established in
a similar way. 2

Clearly

(1.11.3) A ∼l B ⇐⇒ AT ∼r BT , A,B ∈ Dm×n.

Hence it is enough to consider the left equivalence relation. We characterize
the left equivalence classes for Bezout domains DB . To do that we need a
few notations.

Recall that P ∈ Dn×n is called a permutation matrix if P is a matrix
having at each row and each column one nonzero element which is equal to
the identity element 1. A permutation matrix is invertible since P−1 = PT .

Definition 1.11.4 Let Πn ⊂ GL(n,D) be the group of n× n permuta-
tion matrices.

Definition 1.11.5 An invertible matrix U ∈ GL(n,D) is called simple
if there exists P,Q ∈ Πn such that

(1.11.4) U = P

[
V 0
0 In−2

]
Q,
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where

(1.11.5) V =
[
α β
γ δ

]
∈ GL(2,D), (αδ − βγ is invertible).

U is called elementary if U is of the form (1.11.4) and

(1.11.6) V =
[
α β
0 δ

]
∈ GL(2,D), and α, δ are invertible.

Definition 1.11.6 Let A ∈ Dm×n. The following row (column) opera-
tions are called elementary:
(a) interchange any two rows (columns) of A;
(b) multiply row (column) i by an invertible element a;
(c) add to row (column) j b times row (column) i (i 6= j).
The following row (column) operation is called simple:
(d) replace row (column) i by a times row (column) i plus b times row
(column) j,
and row (column) j by c times row (column) i plus d times row (column) j,
where i 6= j and ad− bc is invertible in D.

It is straightforward to see that the elementary row (column) operations
can be carried out by multiplication of A by a suitable elementary matrix
from left (right), and the simple row (column) operations are carried out
by multiplication of A by a simple matrix U from (left) right.

Theorem 1.11.7 Let DB be a Bezout domain. Let A ∈ Dm×nB . Assume
that rank A = r. Then there exists B = [bij ] ∈ Dm×nB which is equivalent to
A and satisfies the following conditions:

(1.11.7) i− th row of B is a nonzero row if and only if i ≤ r.

Let bini be the first nonzero entry in i-th row for i = 1, ..., r. Then

(1.11.8) 1 ≤ n1 < n2 < · · · < nr ≤ n.

The numbers n1, ..., nr are uniquely determined and the elements bini , i =
1, ..., r, which are called pivots, are uniquely determined, up to invertible
factors, by the conditions

ν((n1, ..., ni), A) = b1n1 · · · bini , i = 1, ..., r,
(1.11.9)

ν(α,A) = 0, α ∈ Qi,ni−1, i = 1, ..., r.
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For 1 ≤ j < i ≤ r, adding to the row j a multiple of the row i does not
change the above form of B. Assume that B = [bij ], C = [cij ] ∈ Dm×n are
left equivalent to A and satisfy the above conditions. If bjni = cjni , j =
1, ..., i, i = 1, . . . , r then B = C. The invertible matrix Q which satisfies
(1.10.8) can be given by a finite product of simple matrices.

Proof. Clearly, it is enough to consider the case A 6= 0, i.e. r ≥ 1. Our
proof is by induction on n and m. For n = m = 1 the theorem is obvious.
Let n = 1 and assume that for a given m ≥ 1 there exists a matrix Q,
which is a finite product of simple matrices, such that the entries (i, 1) of
Q are zero for i = 2, ...,m if m ≥ 2. Let A1 = [ai1] ∈ D(m+1)×1

B and denote
by A the submatrix [ai1]mi=1. Set

Q1 :=
[
Q 0
0 1

]
.

Then the (i, 1) entries of A2 = [a(2)
i1 ] = Q1A1 are equal to zero for i =

2, ...,m. Interchange the second and the last row of A2 to obtain A3.
Clearly A3 = [a(3)

i1 ] = Q2A2 for some permutation matrix Q2. Let A4 =
(a(3)

11 , a
(3)
21 )>. As DB is Bezout domain there exists α, β ∈ DB such that

(1.11.10) αa
(3)
11 + βa

(3)
21 = (a(3)

11 , a
(3)
21 ) = d.

As (α, β) = 1 there exists γ, δ ∈ DB such that

(1.11.11) αδ − βγ = 1.

Let V be a 2× 2 invertible matrix given by (1.11.5). Then

A5 = V A4 =
[
d
d′

]
.

Lemma 1.11.3 implies ν((1), A5) = ν((1), A4) = d. Hence d′ = pd for some
p ∈ DB . Thus [

d
0

]
= WA5, W =

[
1 0
−p 1

]
∈ GL(2,DB).

Let

Q3 =
[
W 0
0 Im−1

] [
V 0
0 Im−1

]
.

Then the last m rows of A6 = [a(6)
i1 ] = Q3A3 are zero rows. So a

(6)
11 =

ν((1), A6) = ν((1), A1) and the theorem is proved in this case.
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Assume now that we proved the theorem for all A1 ∈ Dm×nB where
n ≤ p. Let n = p + 1 and A ∈ Dm×(p+1)

B . Let A1 = [aij ]
mp
i=j=1. The

induction hypothesis implies the existence of Q1 ∈ GL(m,DB), which is
a finite product of simple matrices, such that B′1 = [b(1)

ij ]mpi=j=1 = Q1A1

satisfies the assumptions of our theorem. Let n′1, ..., n
′
s be the integers

defined by A1. Let B1 = [b(1)
ij ]mni=j=1 = Q1A. If b(1)

in = 0 for i > s then

ni = n′i, i = 1, ..., s and B1 is in the right form. Suppose now that b(1)
in 6= 0

for some s < i ≤ m. Let B2 = [b(1)
in ]mi=s+1 ∈ D

(m−s)×1
B . We proved above

that there existsQ2 ∈ GL(m−s,DB) such thatQ2B2 = (c, 0, ..., 0)T , c 6= 0.
Then

B3 =
[
Is 0
0 Q2

]
B1

is in the right form with

s = r − 1, n1 = n′1, ..., nr−1 = n′r−1, nr = n.

We now show (1.11.9). First if α ∈ [ni − 1]i then any matrix B[β|α], β ∈
[m]i has at least one zero row. Hence det B[β|α] = 0. Therefore ν(α,B) =
0. Lemma 1.11.3 yields that ν(α,A) = 0. Let α = (n1, ..., ni). Then
B[β|α], β ∈ [m]i. Then B[β|α] has at least one zero row unless β is equal
to γ = (1, 2, ..., i). Therefore

ν(α,A) = ν(α,B) = det B[γ|α] = b1n1 · · · bini 6= 0.

This establishes (1.11.9).
It is obvious that b1n1 , ..., brnr are determined up to invertible elements.

For 1 ≤ j < i ≤ r we can perform the following elementary row operation
on B: add to row j a multiple of row i. The new matrix C will satisfy the
assumption of the theorem. It is left to show that if B = [bij ], C = [cij ] ∈
Dm×nB are left equivalent to A, have the same form given by the theorem
and satisfying

(1.11.12) bjni = cjni , j = 1, ..., i, i = 1, ..., r,

then B = C. See Problem 1. 2

A matrix B ∈ Dm×nB is said to to be in a Hermite normal form, abbre-
viated as HNF, if it satisfies conditions (1.11.7-1.11.8).

Normalization 1.11.8 Let B = [bij ] ∈ Dm×nB in a Hermite normal
form. If bini is invertible we set bini = 1 and bjni = 0 for i < j.
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Theorem 1.11.9 Let U be an invertible matrix over a Bezout domain.
Then U is a finite product of simple matrices.

Proof. Since det U is invertible, Theorem 1.11.7 yields that bii is in-
vertible. Normalization 1.11.8 implies that the Hermite normal form of U is
I. Hence the inverse of U is a finite product of simple matrices. Therefore
U itself is a finite product of simple matrices. 2

Normalization 1.11.10 For Euclidean domains assume

(1.11.13) either bjni = 0 or d(bjni) < d(bini) for j < i.

For Z we assume that bini ≥ 1 and 0 ≤ bjni < bini for j < i. For F[x] we
assume that bini is a normalized polynomial.

Corollary 1.11.11 Let DE = Z,F[x]. Under Normalization 1.11.10
any A ∈ Dm×nE has a unique Hermite normal form.

It is a well known fact that over Euclidean domains Hermite normal form
can be achieved by performing elementary row operations.

Theorem 1.11.12 Let A ∈ Dm×nE . Then B = QA, Q ∈ GL(m,DE)
where B is in a Hermite normal form satisfying Normalization 1.11.10 and
Q is a product of finite elementary matrices.

Proof. From the proof of Theorem 1.11.7 it follows that it is enough to
show that any A ∈ GL(2,DE) is a finite product of elementary invertible
matrices in GL(2,DE). As I2 is the Hermite normal form of any 2 × 2
invertible matrix, it suffices to show that any A ∈ D2×2

E can be brought to
its Hermite form by a finite number of elementary row operations. Let

Ai =
[
ai bi
ai+1 bi+1

]
, A1 = PA,

where P is a permutation matrix such that d(a1) ≥ d(a2). Suppose first
that a2 6= 0. Compute ai+2 by (1.3.4). Then

Ai+1 =
[
0 1
1 0

] [
1 −ti
0 1

]
Ai, i = 1, ...

As the Euclidean algorithm terminates after a finite number of steps we
obtain that ak+1 = 0. Then Ak is the Hermite normal form of A. If
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bk+1 = 0 we are done. If bk+1 6= 0 substract from the first row of Ak a
corresponding multiple of the second row of Ak to obtain the matrix

B′ =
[
ak b′k
0 bk+1

]
, d(bk+1) > d(b′k).

Multiply each row of B′ by invertible element if necessary to obtain Her-
mite’s form of B according to Normalization 1.11.10. We obtained B by
a finite number of elementary row operations. If a1 = a2 = 0 perform the
Euclid algorithm on the second column of A. 2

Corollary 1.11.13 Let U ∈ GL(n,DE). Then U is a finite product of
elementary invertible matrices.

Corollary 1.11.14 Let F be a field. Then A ∈ Fm×n can be brought to
its unique reduced row echelon form given by Theorem 1.11.7 with

bini = 1, bjni = 0, j = 1, ..., i− 1, i = 1, ..., r,

by a finite number of elementary row operations.

Problems

1. Show

(a) Let A,B ∈ Dm×m be two upper triangular matrices with the
same nonzero diagonal entries. Assume that QA = B for some
Q ∈ Dm×m. Then Q is un upper triangular matrix with one on
the main diagonal. (Hint: First prove this claim for the quotient
field F of D.)

(b) Let Q ∈ Dm×m be an upper triangular matrix with 1 on the
main diagonal. Show that Q = R2 . . . Rm = Tm . . . T2 where
Ri − Im, Qi − Im may have nonzero entries only in the places
(j, i) for j = 1, . . . , i− 1 and i = 2, . . . ,m.

(c) Let A,B ∈ Dm×n. Assume that A ∼l B, and A and B are in
HNF and have the same pivots. Then B can be obtained from
A, by adding multiples of the row bini to the rows j = 1, . . . , i−1
for i = 2, . . . , r.

(d) Let B = [bij ], C = [cij ] ∈ Dm×n. Assume that B,C are in
Hermite’s normal form with the same r numbers 1 ≤ n1 < · · · <
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nr ≤ n.Suppose furthermore (1.11.12) holds and B = QC for
some Q ∈ Dm×m. Then

Q =
[
Ir ∗
0 ∗

]
⇒ B = C.

(Here ∗ denotes a matrix of a corresponding size.)

(e) Let M be a DB module, N = DnB and T ∈ Hom (N,M). Let
Range (T ) be the range of T in M. Then the module Range (T )
has a basis Tu1, ..., Tuk such that

(1.11.14) ui =
i∑

j=1

cijvj , cii 6= 0, i = 1, ..., k,

where v, ...,vn is a permutation of the standard basis

(1.11.15) ei = (δi, ..., δin)T , i = , ..., n.

2. Let A ∈ Dm×nB and assume that B is it’s Hermite’s normal form.
Assume that ni < j < ni+1. Prove that

ν(α,A) = b1n1 · · · b(i−1)ni−1bij , for α = (n1, ..., ni−1, j).

3. Definition 1.11.15 Let F be a field and V a vector space over F
of dimension n. A flag F∗ on V is a strictly increasing sequence of
subspaces

0 = F ⊂ F ⊂ · · · ⊂ Fn = V,

(1.11.16)
dim Fi = i, i = , ..., n = dim V.

Show

(a) Let L be a subspace of V of dimension `. Then

(1.11.17) dim L∩Fi− ≤ dim L∩Fi ≤ dim L∩Fi−+, i = , ..., n.

(b) Let Gr(`,V) be the space of all `-dimensional subspaces of V.
Let J = {1 ≤ j1 < · · · < j` ≤ n} be a subset of < n > of cardinality
` = |J |. Then

Ωo(J,F∗) := {L ∈ Gr(`,V) : dim L ∩ Fji = i, i = , ..., `},
(1.11.18)

Ω(J,F∗) := {L ∈ Gr(`,V) : dim L ∩ Fji ≥ i, i = , ..., `},
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which are called the open and the closed Schubert cell in Gr(`,V)
respectively. Show that a given L ∈ Gr(`,V) belongs to the smallest
open Grassmanian cell ΩoJ , where J = J(L,F∗) given by the condition

(1.11.19) dim L ∩ Fji = i, dim L ∩ Fji− = i− , i = , ..., `.

(c) Let V = Fn and assume that e, .., en is the standard basis of Fn.
Let

(1.11.20) Fi = span (en, en−, ..., en−i+), i = , ..., n

be the reversed standard flag in Fn. Let A ∈ Fm×n. Assume that
` = rank A ≥ 1. Let L ∈ Gr(`,Fn) be the vector space spanned by
the columns of AT . Let N = {1 ≤ n1 < · · · < n` ≤ n} be the integers
given by the row echelon form of A. Then J(L,F∗) = N .

1.12 Systems of linear equations over Bezout
domains

Consider a system of m linear equations in n unknowns:

n∑
j=1

aijxj = bi, i = 1, ...,m,

(1.12.1)
aij , bi ∈ D, i = 1, ...,m, j = 1, ..., n.

In matrix notation (1.12.1) is equivalent to

(1.12.2) Ax = b, A ∈ Dm×n, x ∈ Dn, b ∈ Dm.

Let

(1.12.3) Â = [A,b] ∈ Dm×(n+1).

The matrix A is called the coefficient matrix and the matrix Â is called the
augmented coefficient matrix. If D is a field, the classical Kronecker-Capelli
theorem states [Gan59] that (1.12.1) is solvable if and only if

(1.12.4) rank A = rank Â.

Let F be the quotient field of D. If (1.12.1) is solvable over D it is also solv-
able over F. Therefore (1.12.4) is a necessary condition for the solvability
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of (1.12.1) over D. Clearly, even in the case m = n = 1 this condition is
not sufficient. In this section we give necessary and sufficient conditions on
Â for the solvability of (1.12.1) over a Bezout domain. First we need the
following lemma:

Lemma 1.12.1 Let 0 6= A ∈ Dm×nB . Then there exist P ∈ Πm, U ∈
GL(n,DB) such that

C = [cij ] = PAU,

cii 6= 0, i = 1, ..., rank A,(1.12.5)
cij = 0 if either j > i or j > rank A.

Proof. Consider the matrix A>. By interchanging the columns of AT ,
i.e. multiplying A> from the right by some permutation matrix PT , we
can assume that the Hermite normal form of A>P> satisfies ni = i, i =
1, ..., rank A. 2

Theorem 1.12.2 Let D be a Bezout domain. Then the system (1.12.1)
is solvable if and only if

(1.12.6) r = rank A = rank Â, δr(A) ≡ δr(Â).

Proof. Assume first the existence of x ∈ Dn which satisfies (1.12.2).
Hence (1.12.4) holds, i.e. the first part of (1.12.6) holds. As any minor
r×r of A is a minor of Â we deduce that δr(Â)|δr(A). (1.12.2) implies that
b is a linear combination of the columns of A. Consider any r× r minor of
Â which contains the n+ 1-st column b. Since b is a linear combination of
columns of A it follows that δr(A) divides this minor. Hence δr(A)|δr(Â),
which establishes the second part of (1.12.6). (Actually we showed that if
(1.12.1) is solvable over DG then (1.12.6) holds.)

Assume now that (1.12.6) holds. Let

V Â = B̂ = [B, b̂] ∈ Dm×(n+1), V ∈ GL(m,D)

be Hermite’s normal form of Â. Hence B is Hermite’s normal form of A.
Furthermore

V A = B, rank B = rank A = rank Â = rank B̂ = r,
δr(B) ≡ δr(A) ≡ δr(Â) ≡ δr(B̂).

Hence nr in Hermite’s normal form of Â is at most n. Note that the last
m − r equations of Bx = b̂ are the trivial equations 0 = 0. That is, it is
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enough to show the solvability of the system (1.12.2) under the assumptions
(1.12.6) with r = m. By changing the order of equations in (1.12.1) and
introducing a new set of variables

(1.12.7) y = U−x, U ∈ GL(n,D),

we may assume that the system (1.12.2) is

(1.12.8) Cy = d, C = PAU, d = (d, ..., dm)T = Pb,

where C is given as in Lemma 1.12.5 with r = m. Let Ĉ = [C,d]. It is
straightforward to see that A ∼ C, Â ∼ Ĉ. Hence

rank C = rank A = rank Â = rank Ĉ = m, δm(C) ≡ δm(A) ≡ δm(Â) ≡ δm(Ĉ).

Thus it is enough to show that the system (1.12.8) is solvable. In view of
the form of C the solvability of the system (1.12.8) over D is equivalent the
solvability of the system

(1.12.9) C̃ỹ = d, C̃ = [cij ]mi=j= ∈ Dm×m, ỹ = (y, ..., ym)T .

Note that δm(C) = δm(C̃) = det C̃. Cramer’s rule for the above system in
the quotient field F of D yields

yi =
det C̃i
det C̃

, i = 1, ...,m.

Here C̃i is obtained by replacing column i of C̃ by d. Clearly det C̃i
is an m × m minor of Ĉ up to the factor ±1. Hence it is divisible by
δm(Ĉ) ≡ δm(C) = det (C̃). Therefore yi ∈ D, i = 1, ...,m. 2

Theorem 1.12.3 Let A ∈ Dm×nB . Then Range A and Ker A are mod-
ules in DmB and DnB having finite bases with rank A and nul A elements
respectively. Moreover, the basis of Ker A can be completed to a basis of
DnB.

Proof. As in the proof of Theorem 1.12.2 we may assume that rank A =
m and A = C, where C is given by (1.12.5) with r = m. Let e, ..., en be
the standard basis of DnB . Then Ce, ..., Cem is a basis in Range C and
em+, ..., en is a basis for Ker A. 2

Let A ∈ Dm×nG . Expand any q× q minor of A by any q− p rows, where
1 ≤ p < q. We then deduce

(1.12.10) δp(A)|δq(A) for any 1 ≤ p ≤ q ≤ min(m,n).
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Definition 1.12.4 For A ∈ Dm×nG let

ij(A) :=
δj(A)
δj−1(A)

, j = 1, ..., rank A, (δ0(A) = 1),

ij(A) = 0 for rank A < j ≤ min(m,n),

be the invariant factors of A. ij(A) is called a trivial factor if ij(A) is
invertible in DG.

Suppose that (1.12.1) is solvable over DB . Using the fact that b is
a linear combination of the columns of A and Theorem 1.12.2 we get an
equivalent version of Theorem 1.12.2. (See Problem 2.)

Corollary 1.12.5 Let A ∈ Dm×nB , b ∈ DmB . Then the system (1.12.1)
is solvable over DB if and only if

(1.12.11) r = rank A = rank Â, ik(A) ≡ ik(Â), k = 1, ..., r.

Problems

1. Let A ∈ Dn×nG . Assume that r = rank A. Show

(a)
(1.12.12)
δj(A) = ωji1(A) · · · ij(A), where ωj is invertible in DG for j = 1, . . . , n.

(b) i1(A)|ij(A) for j = 2, . . . , r. (Hint: Expand any minor of order
j by any row.)

(c) Let 2 ≤ k, 2k−1 < j ≤ r. Then i1(A) . . . ik(A)|ij−k+1(A) . . . ij(A).

2. Give a complete proof of Corollary 1.12.5.

3. Let A ∈ Dm×nB . Assume that all the pivots in HNF of A> are invert-
ible elements. Show

(a) Any basis of Range A can be completed to a basis in DmB .

(b) i1(A) = . . . = irank A(A) = 1.

4. Assume that D = DB , M is a D-module with a basis, M,M are
finitely generated modules of M. Show

(a) M ∩M has a basis which can be completed to bases in M

and M.
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(b) Mi = M ∩M ⊕Ni for i = 1, 2, where each Ni has a basis.

dim Mi = dim (M1 ∩M2) + dim Ni, i = 1, 2,
M1 + M2 = (M1 ∩M2)⊕N1 ⊕N2.

In particular, dim (M+M) = dim M+dim M−dim (M∩
M).

1.13 Smith normal form

A matrix D = [dij ] ∈ Dm×n is called a diagonal matrix if dij = 0 for all
i 6= j. The entries d11, ..., d``, ` = min(m,n) are called the diagonal entries
of D. D is denoted as D = diag(d11, ..., d``).

Theorem 1.13.1 Let 0 6= A ∈ Dm×n. Assume that D is an elementary
divisor domain. Then A is equivalent to a diagonal matrix

(1.13.1) B = diag(i1(A), ..., ir(A), 0, ..., 0), r = rank A.

Furthermore

(1.13.2) ij−1(A)|ij(A), for j = 2, ..., rank A.

Proof. Recall that an elementary divisor domain is a Bezout domain.
For n = 1 Hermite’s normal form of A is a diagonal matrix with i1(A) =
δ1(A). Next we consider the case m = n = 2. Let

A1 = WA =
[
a b
0 c

]
, W ∈ GL(2,D),

be Hermite’s normal form of A. As D = DED there exists p, q, x, y ∈ D
such that

(px)a+ (py)b+ (qy)c = (a, b, c) = δ1(A).

Clearly (p, q) = (x, y) = 1. Hence there exist p̄, q̄, x̄, ȳ such that

pp̄− qq̄ = xx̄− yȳ = 1.

Let

V =
[
p q
q̄ p̄

]
, U =

[
x ȳ
y x̄

]
.

Thus

G = V AU =
[
δ1(A) g12

g21 g22

]
.
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Since δ1(G) ≡ δ1(A) we deduce that δ1(A) divides g12 and g21. Apply
appropriate elementary row and column operations to deduce that A is
equivalent to a diagonal matrix C = diag(i1(A), d2). As δ2(C) = i1(A)d2 ≡
δ2(A) we see that C is equivalent to the matrix of the form (1.13.1), where
we can assume that d2 = i2(A). Since i1(A)|d2 we have that i1(A)|i2(A).
We now prove the theorem in the case m ≥ 3, n = 2 by induction starting
from m = 2. Let A = [aij ] ∈ Dm×2 and denote by Ā = [aij ]

m−1,2
i=j=1 . Use the

induction hypothesis to assume that Ā is in the form (1.13.1). Interchange
the second row of A with the last one to obtain A1 ∈ Dm×2. Apply simple
row and column operations on the first two rows and columns of A1 to
obtain A2 = [a(2)

ij ] ∈ Dm×2, where a(2)
11 = i1(A). Use the elementary row

and column operations to obtain A3 of the form

(1.13.3) A3 =
[
i1(A) 0

0 A4

]
, A4 ∈ D(m−1)×1.

Recall that i1(A) divides all the entries of A4. Hence A4 = i1(A)B4 and
i1(A4) = i1(A)i1(B4). Use simple row operations on the rows 2, ...,m of
A3 to bring B4 to a diagonal form. Thus A is equivalent to the diagonal
matrix
C = diag(i1(A), i1(A)i1(B4)) ∈ Dm×2. Recall that

i1(A) = δ1(A) ≡ δ1(C), δ2(A) ≡ δ2(C) = i1(A)i1(A4) = i1(A)i1(A)i1(B4).

Thus i1(A)|i1(A4) so i1(A) = i1(C) and i2(A) ≡ i1(A4). Hence C is equiv-
alent to B of the form (1.13.1) and i1(A)|i2(A).

By considering A> we deduce that we proved the theorem in the case
min(m,n) ≤ 2. We now prove the remaining cases by a double induc-
tion on m ≥ 3 and n ≥ 3. Assume that the theorem holds for all ma-
trices in D(m−1)×n for n = 2, 3, ... Assume that m ≥ 3 and is fixed,
and theorem holds for any E ∈ Dm×(n−1) for n ≥ 3. Let A = [aij ] ∈
Dm×n, Ā = [aij ]

m,n−1
i=j=1 . Use the induction hypothesis to assume that

Ā = diag(d1, ..., dl), l = min(m,n− 1). Here d1|di, i = 2, ..., l. Interchange
the second and the last column of A to obtain A1 = [a(1)

ij ] ∈ Dm×n. Perform
simple row operations on the rows of A1 and simple column operations on
the the first m− 1 columns of A1 to obtain the matrix A2 = [a(2)

ij ] ∈ Dm×n

such that Ā2 = [a(2)
ij ]m,n−1

i=j=1 = diag(a(2)
11 , ..., a

(2)
ll ) is Smith’s normal form

of Ā1 = [a(1)
ij ]m,n−1

i=j=1 . The definition of A2 yields that i1(A) ≡ a
(2)
11 . Use

elementary row operations to obtain an equivalent matrix to A2:

A3 =
[
i1(A) 0

0 A4

]
, A4 ∈ D(m−1)×(n−1).
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As i1(A) = δ1(A) = δ1(A3) it follows that i1(A) divides all the entries of
A4. So A4 = i1(A)B4. Hence ij(A4) = i1(A)ij(B4) Use simple row and
column operations on the last m− 1 rows and the last n− 1 columns of A3

to bring B4 to Smith’s normal form using the induction hypothesis:

A ∼ A5 =
[
i1(A) 0

0 i1(A) diag(i1(B4), ..., il(B4))

]
.

By induction hypothesis

ij(B4)|ij+1(B4), j = 1, ..., rank A− 1, ij(B4) = 0, j > rank A− 1.

Similar claim holds for A4. Hence

δk(A) ≡ δk(A5) = i1(A)i1(A4) · · · ik−1(A4), k = 2, ..., rank A.

Thus
ij(A4) ≡ ij+1(A), j = 1, ..., rank A− 1

and A5 is equivalent to B given by (1.13.1). Furthermore, we showed
(1.13.2). 2

The matrix (1.13.1) is called the Smith normal form of A.

Corollary 1.13.2 Let A,B ∈ Dm×nED . Then A and B are equivalent if
and only if A and B have the same rank and the same invariant factors.

Over an elementary divisor domain, the system (1.12.2) is equivalent to
a simple system

ik(A)yk = ck, k = 1, ..., rank A,
(1.13.4)

0 = ck, k = rank A + 1, ...,m,

(1.13.5) y = P−x, c = Qb.

Here P and Q are the invertible matrices appearing in (1.10.9) and B is of
the form (1.13.1). For the system (1.13.4) Theorems 1.12.2 and 1.12.3 are
straightforward. Clearly

Theorem 1.13.3 Let A ∈ Dm×nED . Assume that all the invariant factors
of A are invertible elements in DED. Then the basis of Range A can be
completed to a basis of DnED.

In what follows we adopt
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Normalization 1.13.4 Let A ∈ F[x]m×n. Then the invariant polyno-
mials ( the invariant factors) of A are assumed to be normalized polynomi-
als.

Notation 1.13.5 Let Ai ∈ Dmi×ni for i = 1, . . . , k. Then ⊕ki=1Ai =
diag(A1, . . . , Ak) denote the block diagonal matrix B = [Bij ]ki,j=1 ∈ Dm×n,
where Bij ∈ Dmi×nj for i, j = 1, . . . , k, m =

∑k
i=1mi, n =

∑k
j=1 nj , such

that Bii = Ai and Bij = 0 for i 6= j.

Problems

1. Let A =
[
p 0
0 q

]
∈ D2×2

B . Then A is equivalent to diag((p, q), pq
(p,q) ).

2. Let A ∈ Dm×nG , B ∈ Dp×qG . Suppose that either is(A)|it(B) or
it(B)|is(A) for s = 1, ..., rank A = α, t = 1, ..., rank B = β. Show
that the set of the invariant factorsA⊕B is {i1(A), ..., iα(A), i1(B), ..., iβ(B)}.

3. Let M ⊂ N be DED modules with finite bases. Prove that there
exists a basis u1, ...,un in N such that i1u1, ..., irur is a basis in M,
where i1, ..., ir ∈ DED and ij |ij+1 for j = 1, ..., r − 1.

4. Let M be a D-module and N,N ⊂M be submodules. N and N

are called equivalent if there exists an isomorphism T ∈ Hom (M,M)
(T−1 ∈ Hom (M,M)) such that TN1 = N2. Suppose that M, N1, N2

have bases [u1, ...,um], [v1, ...,vn] and [w1, ...,wn] respectively. Let

vj =
m∑
i=1

aijui, wj =
m∑
i=1

bijui, j = 1, ..., n,

(1.13.6)
A = [aij ]

m,n
i=j=1, B = [bij ]

m,n
i=j=1.

Show that N and N are equivalent if and only if A ∼ B.

5. Let N ⊂M be Dmodules with bases. Assume that N has the division
property: if ax ∈ N for 0 6= a ∈ D and x ∈M then x ∈ N. Show that
if D is an elementary divisor domain and N has the division property
then any basis in N can be completed to a basis in M.

6. Let D be elementary divisor domain. Assume that N ⊂ Dm is a
submodule with basis of dimension k ∈ [1,m]. Let N′ ⊂ Dm be the
following set. n ∈ N′ if there exists 0 6= a ∈ D such that an ∈ N.
Show that N′ is a submodule of Dm, which has the division property.
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Furthermore, N′ has a basis of dimension k which can be obtained
from a basis of N as follows. Let w1, . . . ,wk be a basis of N. Let
W ∈ Dm×k be the matrix whose columns are w, . . . ,wk. Assume
that D = diag(n1, . . . , nk) is the Smith normal form of W . So W =
UDV,U ∈ GL(m,D), V ∈ GL(k,D). Let u1, . . . ,uk are the first k
columns of U . Then u1, . . . ,uk is a basis of N′.

1.14 The ring of local analytic functions in
one variable

In this section we consider applications of the Smith normal to the system of
linear equations over H0, the ring of local analytic functions in one variable
at the origin. In 1.3 we showed that the only noninvertible irreducible
element in H0 is z. Let A ∈ Hm×n

0 . Then A = A(z) = [aij(z)]
m,n
i=j=1 and

A(z) has the McLaurin expansion

(1.14.1) A(z) =
∞∑
k=0

Akz
k, Ak ∈ Cm×n, k = 0, ...,

which converges in some disk |z| < R(A). Here R(A) is a positive number
which depends on A. That is, each entry aij(z) has convergent McLaurin
series for |z| < R(A).

Notations and Definitions 1.14.1 Let A ∈ Hm×n
0 . Then local in-

variant polynomials (the invariant factors) of A are normalized to be

(1.14.2) ik(A) = zιk(A), 0 ≤ ι1(A) ≤ ι2(A) ≤ ... ≤ ιr(A), r = rank A.

The number ιr(A) is called the index of A and is denoted by η = η(A). For
a nonnegative integer p denote by κp = κp(A)-the number of local invariant
polynomials of A whose degree is equal to p.

We start with the following perturbation result.

Lemma 1.14.2 Let A,B ∈ Hm×n
0 . Let

(1.14.3) C(z) = A(z) + zk+1B(z),

where k is a nonnegative integer. Then A and C have the same local in-
variant polynomials up to degree k. Moreover, if k is equal to the index of
A, and A and C have the same ranks then A is equivalent to C.
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Proof. Since H0 is an Euclidean domain we may already assume that
A is in Smith’s normal form

(1.14.4) A = diag(zι1 , ..., zιr , 0, ..., 0).

Let s =
∑k
j=0 κj(A). Assume first that s ≥ t ∈ N. Consider any any t× t

submatrix D(z) of C(z) = [cij(z)]. View det D(z) as a sum of t! products.
As k + 1 > ιt it follows each such product is divisible by zι1+...+ιt . Let
D(z) = [cij(z)]ti=j=1. Then the product of the diagonal entries is of the
form zι1+...+ιt(1 + zO(z)). All other t!− 1 products appearing in det D(z)
are divisible by zι1+...ιt−2+2(k+1). Hence

(1.14.5) δt(C) = zι1+...+ιt = δt(A), t = 1, ..., s,

which implies that

(1.14.6) ιt(C) = ιt(A), t = 1, ..., s.

As s =
∑k
j=0 κj(A) it follows that

κj(C) = κj(A), j = 0, ..., k − 1, κk(A) ≤ κk(C).

Write A = C − zk+1B and deduce from the above arguments that

(1.14.7) κj(C) = κj(A), j = 0, ..., k.

Hence A and C have the same local invariant polynomials up to degree k.
Suppose that rank A = rank C. Then (1.14.6) implies that A and C have
the same local invariant polynomials. Hence A ∼ B. 2

Consider a system of linear equations over H0

(1.14.8) A(z)u = b(z), A(z) ∈ Hm×n
 , b(z) ∈ Hm

 ,

where we look for a solution u(z) ∈ Hn
 . Theorem 1.12.2 claims that the

above system is solvable if and only if rank A = rank Â = r and the g.c.d.
of all r × r minors of A and Â are equal. In the area of analytic functions
it is common to try to solve (1.3.6) by the method of power series. Assume
that A(z) has the expansion (1.14.1) and b(z) has the expansion

(1.14.9) b(z) =
∞∑
k=0

bkzk, bk ∈ Cm, k = 0, ...

Then one looks for a formal solution

(1.14.10) u(z) =
∞∑
k=0

ukzk, uk ∈ Cn, k = 0, ...,
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which satisfies

(1.14.11)
k∑
j=0

Ak−juj = bk,

for k = 0, ... . A vector u(z) is called a formal solution of (1.14.8) if (1.14.11)
holds for any k ∈ Z+. A vector u(z) is called an analytic solution if u(z) is
a formal solution and the series (1.14.10) converges in some neighborhood
of the origin, i.e. u(z) ∈ Hn

 . We now give the exact conditions for which
(1.14.11) is solvable for k = 0, ..., q.

Theorem 1.14.3 Consider the system (1.14.11) for k = 0, ..., q ∈ Z+.
Then this system is solvable if and only if A(z) and Â(z) have the same
local invariant polynomials up to degree q:

(1.14.12) κj(A) = κj(Â), j = 0, ..., q.

Assume that the system (1.14.8) is solvable over H0. Let q = η(A) and
suppose that u0, ...,uq satisfies (1.14.11) for k = 0, ..., q. Then there exists
u(z) ∈ Hn

0 satisfying (1.14.8) and u(0) = u0.
Let q ∈ Z+ and Wq ⊂ Cn be the subspace of all vectors w0 such that

w0, ...,wq is a solution to the homogenous system

(1.14.13)
k∑
j=0

Ak−jwj = 0, k = 0, ..., q.

Then

(1.14.14) dim Wq = n−
q∑
j=0

κj(A)

In particular, for η = η(A) and any w0 ∈Wη there exists w(z) ∈ Hn
0 such

that

(1.14.15) A(z)w(z) = 0, w(0) = w0.

Proof. Let
uk = (uk,1, ..., uk,n)>, k = 0, ..., q.

We first establish the theorem when A(z) is Smith’s normal form (1.14.4).
In that case the system (1.14.11) reduces to

uk−is,s = bk,s if ιs ≤ k,
(1.14.16)

0 = bk,s if either ιs > k or s > rank A.
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The above equations are solvable for k = 0, ..., q if and only if zιs divides
bs(z) for all ιs ≤ q, and for ιs > q, zq+1 divides bs(z). If ιs ≤ q then subtract
from the last column of Â the s-column times bs(z)

zιs . So Â is equivalent to
the matrix

A1(z) = diag(zι1 , ..., zιl)⊕ zq+1A2(z),

l =
q∑
j=0

κj(A), A2 ∈ H(m−l)×(n+1−l)
0 .

According to Problem 2 the local invariant polynomials of A1(z) whose
degree does not exceed q are zι1 , ..., zιl . So A(z) and A1(z) have the same
local invariant polynomials up the degree q. Assume now that A and Â
have the same local invariant polynomial up to degree q. Hence

zι1+...+ιk = δk(A) = δk(Â), k = 1, ..., l,
zι1+...+ιl+q+1|δl+1(Â).

The first set of the equalities implies that zιs |bs(z), s = 1, ..., l. The last
equality yields that for s > l, zq+1|bs(z). Hence (1.14.11) is solvable for
k = 0, ..., q if and only if A and Â have the same local invariant polynomials
up to the degree q.

Assume next that (1.14.8) is solvable. Since A(z) is of the form (1.14.4)
the general solution of (1.14.8) in that case is

uj(z) =
bi(z)

zιj
, j = 1, ..., rank A,

uj(z) is an arbitrary function in H0, j = rank A + 1, ...,n.

Hence

uj(0) = bij , j = 1, ..., rank A,
(1.14.17)

uj(0) is an arbitrary complex number, j = rank A + 1, ...,n.

Clearly (1.14.16) implies that u0,s = us(0) for k = is. The solvability of
(1.14.8) implies that bs(z) = 0 for s > rank A. So u0,s is not determined
by (1.14.16) for s > rank A. This proves the existence of u(z) satisfying
(1.14.8) such that u(0) = u0. Consider the homogeneous system (1.14.13)
for k = 0, ..., q. Then w0,s = 0 for is ≤ and otherwise u0,s is a free variable.
Hence (1.14.14) holds. Let q = η = η(A). Then the system (1.14.13)
implies that the coordinates of w0 satisfy the conditions (1.14.17). Hence
the system (1.14.15) is solvable.
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Assume now that A(z) ∈ Hm×n
0 is an arbitrary matrix. Theorem 1.13.1

implies the existence of
P (z) ∈ GL(n,H0), Q(z) ∈ GL(m,H0) such that

Q(z)A(z)P (z) = B(z) = diag(zι1 , ..., zιr , 0, ..., 0), 0 ≤ ι1 ≤ ... ≤ ιr, r = rank A.

It is straightforward to show that P (z) ∈ GL(n,H0) if and only if P (z) ∈
Hn×n

0 and P (0) is invertible. To this end let

P (z) =
∞∑
k=0

Pkz
k, Pk ∈ Cn×n, k = 0, ..., det P0 6= 0,

Q(z) =
∞∑
k=0

Qkz
k, Qk ∈ Cn×n, k = 0, ..., det Q0 6= 0.

Introduce a new set of variables v(z) and v0,v1, ... such that

u(z) = P (z)v(z),

uk =
k∑
j=0

Pk−jvj , k = 0, ...

Since det P0 6= 0 v(z) = P (z)−1u(z) and we can express each vk in terms
of uk, ...,u0 for k = 0, 1, ... Then (1.14.8) and (1.14.11) are respectively
equivalent to

B(z)v(z) = c(z), c(z) = Q(z)b(z),
k∑
j=0

Bk−jvj = ck, k = , ..., q.

As B ∼ A and B̂ = QÂ(P ⊕ I1) ∼ Â we deduce the theorem. 2

Problems

1. The system (1.14.8) is called solvable in the punctured disc if the
system

(1.14.18) A(z0)u(z0) = b(z0),

is solvable for any point 0 < |z0| < R as a linear system over C for
some R > 0, i.e.

(1.14.19) rank A(z0) = rank Â(z0), for all 0 < |z0| < R.

Show that (1.14.8) is solvable in the punctured disk if and only if
(1.14.8) is solvable over M0–the quotient field of H0.
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2. The system (1.14.8) is called pointwise solvable if (1.14.18) is solvable
for all z0 in some open disk |z0| < R. Show that (1.14.8) is pointwise
solvable if and only if (1.14.8) is solvable over M0 and

(1.14.20) rank A(0) = rank Â(0).

3. Let A(z) ∈ Hm×n
0 . A(z) is called generic if whenever the system

(1.3.6) is pointwise solvable then it is analytically solvable, i.e. solv-
able over H0. Prove that A(z) is generic if and only if η(A) ≤ 1.

4. Let Ω ⊂ C be a domain and consider the system

(1.14.21) A(z)u = b(z), A(z) ∈ H(Ω)m×n, b(z) ∈ H(Ω)m.

Show that the above system is solvable over H(Ω) if and only if for
each ζ ∈ Ω this system is solvable in Hζ . (Hint: As H(Ω) is DED it
suffices to analyze the case where A(z) is in its Smith’s normal form.)

5. Let A(z) and b(z) satisfy the assumptions of Problem 4. A(z) is called
generic if whenever (1.14.21) is pointwise solvable it is solvable over
H(Ω). Show that A(z) is generic if and only the invariant functions
(factors) of A(z) have only simple zeros. (ζ is a simple zero of f ∈
H(Ω) if f(ζ) = 0 and f ′(ζ) 6= 0.)

6. Let A(z) ∈ H(Ω)m×n, where Ω is a domain in C. Prove that the
invariant factors of A(z) are invertible in H(Ω) if and only if

(1.14.22) rank A(ζ) = rank A, for all ζ ∈ Ω.

7. Let A(z) ∈ H(Ω)m×n, where Ω is a domain in C. Assume that
(1.14.22) holds. View A(z) ∈ Hom (H(Ω)n,H(Ω)m). Show that
Range A(z) has a basis which can be completed to a basis in H(Ω)m.
(Hint: Use Theorem 1.14.5.)

1.15 The local-global domains in Cp

Let p be a positive integer and assume that Ω ⊆ Cp is a domain. Consider
the system of m nonhomogeneous equations in n unknowns:

(1.15.1) A(z)u = b(z), A(z) ∈ H(Ω)m×n, b(z) ∈ H(Ω)m.
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In this section we are concerned with the problem of existence of a
solution u(z) ∈ H(Ω)m to the above system. Clearly a necessary condition
for the solvability is the local condition:

Condition 1.15.1 Let Ω ⊆ Cp be a domain. For each ζ ∈ Ω the system
A(z)u = b(z) has a solution uζ(z) ∈ Hm

ζ .

Definition 1.15.2 A domain Ω ⊆ Cp is called a local-global domain,
if any system of the form (1.15.1), satisfying the condition 1.15.1, has a
solution u(z) ∈ H(Ω)m.

Problem 1.14.4 implies that any domain Ω ⊂ C is a local-global domain.
In this section we assume that p > 1. Problem 1 shows that not every
domain in Cp is a local-global domain. We give a sufficient condition on
domain Ω to be a local-global domain.

Definition 1.15.3 A domain Ω ⊂ Cp is called a domain of holomor-
phy, if there exist f ∈ H(Ω) such that for any larger domain Ω1 ⊂ Cp,
strictly containing Ω, there is no f1 ∈ H(Ω1) which coincides with f on Ω.

The following theorem is a very special case of Hartog’s theorem [GuR65].

Theorem 1.15.4 Let Ω ⊆ Cp, p > 1 be a domain. Assume that ζ ∈ Ω
and f ∈ H(Ω\{ζ}). Then f ∈ H(Ω).

Thus H(Ω\{ζ}) is not domain of holomorphy. A simple example of
domain of holomorphy is [GuR65]:

Example 1.15.5 Let Ω ⊆ Cp be an open convex set. Then Ω is domain
of holomorphy.

(See 7.1 for the definition of convexity.) The main result of this section
is:

Theorem 1.15.6 Let Ω ⊆ Cp, p > 1 be domain of holomorphy. Then
Ω is a local-global domain.

The proof needs basic knowledge of sheaves and is brought for the
reader who was exposed to the basic concepts in this field. See for ex-
ample [GuR65]. We discuss only very special type of sheaves which are
needed for the proof of Theorem 1.15.6.

Definition 1.15.7 Let Ω ⊆ Cp be an open set. Then
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1. F(Ω), called the sheaf of rings of holomorphic functions on Ω, is the
union all H(U), where U ranges over all open subsets of Ω. Then
for each ζ ∈ Ω the local ring Hζ is viewed as a subset of F(Ω) and
is called the stalk of F(Ω) over ζ. A function f ∈ H(U) is called a
section of F(Ω) on U .

2. For an integer n ≥ 1, Fn(Ω), called an F(Ω)–sheaf of modules, is the
union all H(U)n, where U ranges over all open subsets of Ω. Then
for each ζ ∈ Ω the local module Hn

ζ is viewed as a subset of Fn(Ω)
and is called the stalk of Fn(Ω) over ζ. (Note Hn

ζ is an Hζ module.)
A vector u ∈ H(U)n is called a section on U . (If U = ∅ then H(U)n

consists of the zero element 0.)

3. F ⊆ Fn(Ω) is called a subsheaf if the following conditions holds. First
F ∩ Hn(U) contains the trivial section 0 for each open set U ⊆ Ω.
Second, assume that u ∈ H(U)n∩F ,v ∈ H(V )n∩F and W ⊆ U∩V is
an open nonempty set. Then for any f, g ∈ H(W ) the vector fu+gv ∈
F∩H(W )n. (Restriction property.) Third, if u = v on W then the
section w ∈ Hn(U∪V ), which coincides with u,v on U, V respectively,
belongs to F ∩Hn(U ∪V ). (Extension property.) Fζ := F ∩Hn

ζ is
the stalk of F over ζ ∈ Ω.

(a) Let U be an open subset of Ω. Then F(U) := F∩Fn(U) is called
the restriction of the sheaf F to U .

(b) Let U be an open subset of Ω. The sections u, . . . ,uk ∈ F ∩
H(U)n are said to generate F on U , if for any ζ ∈ U Fζ is
generated by u, . . . ,uk over Hζ . F is called finitely generated
over U if such u, . . . ,uk ∈ F∩H(U)n exists. F is called finitely
generated if it is finitely generated over Ω. F is called of finite
type if for each for each ζ ∈ Ω there exists an open set Uζ ⊂ Ω,
containing ζ, such that F is finitely generated over U . (I.e. each
Fζ is finitely generated.)

(c) F is called a coherent sheaf if the following two conditions hold.
First F is finite type. Second, for each open set U ⊆ Ω and for
any q ≥ 1 sections u, . . . ,uq ∈ F ∩ H(Ω)n let G ⊆ Fq(U) be a
subsheaf generated by the condition

∑q
i=1 fiui = . That is, G

is a union of all (f1, . . . , fq)> ∈ H(V )q satisfying the condition∑q
i=1 fiui =  for all open V ⊆ U . Then G is of finite type.

The following result is a straight consequence of Oka’s coherence theo-
rem [GuR65].

Theorem 1.15.8 Let Ω ⊆ CP be an open set. Then
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• The sheaf Fn(Ω) is coherent.

• Let A ∈ H(Ω)m×n be given. Let F ⊆ F(Ω) be the subsheaf consisting
of all u ∈ H(U)n satisfying Au =  for all open sets U ⊆ Ω. Then F
is coherent.

Note that Fn(Ω) is generated by n constant sections ui := (δi, . . . , δin)> ∈
H(Ω)n, i = , . . . , n. The following theorem is a special case of Cartan’s
Theorem A.

Theorem 1.15.9 Let Ω ⊆ Cp be a domain of holomorphy. Let F ⊂
Fn(Ω) be a subsheaf defined in Definition 1.15.7. If F is coherent then F
is finitely generated.

Corollary 1.15.10 Let Ω ⊆ Cp be a domain of holomorphy and A ∈
H(Ω)m×n. Then there exists u1, . . .ul ∈ H(Ω)n, such that for any ζ ∈ Ω,
every solution of the system Au = 0 over Hn

ζ is of the form
∑l
i=1 fiui for

some f1, . . . , fl ∈ Hζ .

We now introduce the notion of sheaf cohomology of F ⊆ Fn(Ω).

Definition 1.15.11 Let Ω ⊆ Cp be an open set. Let U := {Ui ⊆ Ω, i ∈
I} be an open cover of Ω. (I.e. each Ui is open, and ∪i∈IUi = Ω.) For
each integer p ≥ 0 and p + 1 tuples of indices (i0, . . . , ip) ∈ Ip+1 denote
Ui0...ip := ∩pj=0Uij .

Assume that F ⊆ Fn(Ω) is a subsheaf. A p-cochain c is a map carrying
each p+1–tuples of indices (i0, . . . , ip) to a section F∩Hn(Ui0...ip) satisfying
the following properties.

1. c(i0, . . . , ip) = 0 if Ui0...ip = ∅.

2. c(π(i0), . . . , π(ip)) = sgn(π)c(i0, . . . , ip) for any permutation π : {0, . . . , p} →
{0, . . . , p}. (Note that c(i0, . . . , ip) is the trivial section if ij = ik for
j 6= k.)

Zero cochain is the cochain which assigns a zero section to any (i0 . . . ip).
Two cochains c, d are added and subtracted by the identity (c±d)(i0 . . . ip) =
c(i0, . . . , ip)±d(i0, . . . , ip). Denote by Cp(Ω,F ,U) the group of p+1 cochains.

The p − th coboundary operator δp : Cp(Ω,F ,U) → Cp+1(Ω,F ,U) is
defined as follows:

(δpc)(i0, . . . , ip+1) =
p+1∑
j=0

(−1)jc(i0, . . . , îj , . . . , ip+1),

where îj is a deleted index. Then p− th cohomology group is given by
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1. H0(Ω,F ,U) := Ker δ0.

2. For p ≥ 1 Hp(Ω,F ,U) := Ker δp/Range δp−1. (See Problem 2.)

Lemma 1.15.12 Let the assumptions of Definition 1.15.11 hold. Let
c ∈ C0(Ω,F ,U). Then c ∈ H0(Ω,F ,U) if and only if c represents a global
section u ∈ F ∩H(Ω)n.

Proof. Let c ∈ C0(Ω,F ,U). Assume that c ∈ H0(Ω,F ,U). Let
U0, U1 be two open sets in U . Then c(i0)−c(i1) is the zero section on U0∩U1.
Thus for each ζ ∈ U0 ∩ U1 c(i0)(ζ) = c(i1)(ζ). Let u(z) := c(i0)(z) ∈ Cn.
It follows that u ∈ H(Ω)n. The extension property of subsheaf F yields
that u ∈ F ∩ Hn(Ω). Vice versa, assume that u ∈ F ∩ Hn(Ω). Define
c(i0) = u|U0. Then c ∈ H0(Ω,F ,U). 2

We identify H0(Ω,F ,U) with the set of global sections F ∩H(Ω)n. The
cohomology groups Hp(Ω,F ,U), p ≥ 1 depend on the open cover U of Ω. By
refining the covers of Ω one can define the cohomology groups Hp(Ω,F), p ≥
0. See Problem 3. Cartan’s Theorem B claims [GuR65].

Theorem 1.15.13 Let Ω ⊆ Cp be domain of holomorphy. Assume that
the sheaf F given in Definition 1.15.7 is coherent. Then Hp(Ω,F) is trivial
for any p ≥ 1.

Proof of Theorem 1.15.6. Consider the system (1.15.1). Let F be
the coherent sheaf defined in Theorem 1.15.8. Assume that the system
(1.15.1) is locally solvable over Ω. Let ζ ∈ Ω. Then there exists an open set
Uζ ⊆ Ω such that there exists uζ ∈ Hn(Uζ) satisfying (1.15.1) over H(Uζ).
Let U := {Uζ , ζ ∈ Ω} be an open cover of Ω. Define c ∈ C1(Ω,F ,U) by
c(ζ, η) = uζ − uη. Note that

(δ1c)(ζ, η, θ) = c(η, θ)− c(ζ, θ) + c(ζ, η) = 0.

Hence c ∈ Ker δ1. Since F is coherent Cartan’s Theorem B yields that
H1(Ω,F) is trivial. Hence H1(Ω,F ,U) is trivial. (See Problem 3c.) Thus,
there exists an element d ∈ C0(Ω,F ,U) such that δ0d = c. Thus for each
ζ, η ∈ Ω such that Uζ ∩ Uη there exist sections d(ζ) ∈ F ∩ Hn(Uζ),d(η) ∈
F ∩ Hn(Uη) such that d(η) − d(ζ) = uζ − uη on Uζ ∩ Uη. Hence d(η) +
uη = d(ζ) + uζ on Uζ ∩ Uη. Since Adζ = 0 ∈ H(Uζ)m it follows that
A(dζ + uζ) = b ∈ H(Uζ)m. As d(η) + uη = d(ζ) + uζ on Uζ ∩Uη it follows
that all these section can be patched to the vector v ∈ H(Ω)n which is a
global solution of (1.15.1). 2

Problems
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1. Consider a system of one equation over Cp, p > 1

p∑
i=1

ziui = 1, u = (u1, . . . , up)>, z = (z1, . . . , zp).

Let Ω := Cp\{0}.

(a) Show that Condition 1.15.1 holds for Ω.

(b) Show that the system is not solvable at z = 0. (Hence it dose
not have a solution u(z) ∈ Hp

0.)

(c) Show that the system does not have a solution u(z) ∈ H(Ω)p.
(Hint: Prove by contradiction using Hartog’s theorem.)

2. Let the assumptions of Definition 1.15.11 hold. Show for any p ≥ 0.

(a) δp+1δp = 0.

(b) Range δp ⊆ Ker δp+1.

3. Let U = {Ui, i ∈ I},V = {Vj , j ∈ J } be two open covers of an open
set Ω ⊂ Cp. V is called a refinement of U , denoted V ≺ U , if each
Vj is contained in some Ui. For each Vj we fix an arbitrary Ui with
Vj ⊆ Ui, and write it as Ui(j) : Vj ⊆ Ui(j). Let F be a subsheaf as in
Definition 1.15.11. Show

(a) Define φ : Cp(Ω,F ,U) → Cp(Ω,F ,V) as follows. For c ∈
Cp(Ω,F ,U) let (φ(c))(j0, . . . , jp) ∈ Cp(Ω,F ,V) be the restric-
tion of the section c(i(j0), . . . , i(jp)) to Vj0...jp . Then φ is a ho-
momorphism.

(b) φ is induces a homomorphism φ̃ : Hp(Ω,F ,U) → Hp(Ω,F ,V).
Furthermore, φ̃ depends only on the covers U ,V. (I.e., the choice
of i(j) is irrelevant.)

(c) By refining the covers one obtains the p− th cohomology group
Hp(Ω,F) with the following property. The homomorphism φ̃
described in 3b induces an injective homomorphism that φ̃ :
Hp(Ω,F ,U) → Hp(Ω,F) for p ≥ 1. (Recall that H0(Ω,F , U) ≡
F ∩ Hn(Ω).) In particular, Hp(Ω,F) is trivial, i.e. Hp(Ω,F) =
{0}, if and only if each Hp(Ω,F ,U) is trivial.

1.16 Historical remarks

Most of the material in Sections 1.1-1.10 are standard. See [Lan58], [Lan67]
and [vdW59] for the algebraic concepts. Consult [GuR65] and [Rud74] for
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the concepts and results concerning the analytic functions. See [Kap49] for
the properties of elementary divisor domains. It is not known if there exists
a Bezout domain which is not an elementary divisor domain. Theorem 1.5.3
for Ω = C is due to [Hel40]. For §1.10 see [CuR62] or [McD33]. Most of §1.11
is well known, e.g. [McD33]. §1.12 seems to be new since the underlying
ring is assumed to be only a Bezout domain. Theorems 1.12.2 and 1.12.3
are well known for an elementary divisor domain, since A is equivalent to a
diagonal matrix. It would be interesting to generalize Theorem 1.12.2 for
D = F[x1, ..., xp] for p ≥ 2. The fact that the Smith normal form can be
achieved for DED is due to Helmer [Hel43]. More can be found in [Kap49].

Most of the results of §1.14 are from [Fri80b]. I assume that Theorem
1.15.6 is known to the experts.
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Chapter 2

Canonical Forms for
Similarity

2.1 Strict equivalence of pencils

Definition 2.1.1 A matrix A(x) ∈ D[x]m×n is a pencil if

(2.1.1) A(x) = A0 + xA1, A0, A1 ∈ Dm×n.

A pencil A(x) is regular if m = n and det A(x) 6= 0. Otherwise A(x) is a
singular pencil. Two pencils A(x), B(x) ∈ D[x]m×n are strictly equivalent
if
(2.1.2)

A(x) s∼B(x) ⇐⇒ B(x) = QA(x)P, P ∈ GL(n,D), Q ∈ GL(m,D).

The classical works of Weierstrass [Wei67] and Kronecker [Kro90] clas-
sify the equivalence classes of pencils under the strict equivalence relation
in the case D is a field F. We give a short account of their main results.

First note that the strict equivalence of A(x), B(x) implies the equiva-
lence of A(x), B(x) over the domain D[x]. Furthermore let

(2.1.3) B(x) = B0 + xB1.

Then the condition (2.1.2) is equivalent to

(2.1.4) B0 = QA0P, B1 = QA1P, P ∈ GL(n,D), Q ∈ GL(m,D).

Thus we can interchange A0 with A1 and B0 with B1 without affecting the
strict equivalence relation. Hence it is natural to consider a homogeneous

55
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pencil

(2.1.5) A(x0, x1) = x0A0 + x1A1.

Assume that D is DU . Then DU [x0, x1] is also DU (Problem 1.4.6.) In
particular DU [x0, x1] is DG. Let δk(x0, x1), ik(x0, x1) be the invariant de-
terminants and factors of A(x0, x1) respectively for k = 1, ..., rank A(x0, x1).

Lemma 2.1.2 Let A(x0, x1) be a homogeneous pencil over DU [x0, x1].
Then its invariant determinants and the invariant polynomials
δk(x0, x1), ik(x0, x1), k = 1, ..., rank A(x0, x1) are homogeneous polynomi-
als. Moreover, if δk(x) and ik(x) are the invariant determinants and factors
of the pencil A(x) for k = 1, ..., rank A(x), then

(2.1.6) δk(x) = δk(1, x), ik(x) = ik(1, x), k = 1, ..., rank A(x).

Proof. Clearly any k × k minor of A(x0, x1) is either zero or a
homogeneous polynomial of degree k. In view of Problem 1 we deduce that
the g.c.d. of all nonvanishing k × k minors is a homogeneous polynomial
δk(x0, x1). As ik(x0, x1) = δk(x0,x1)

δk−1(x0,x1) Problem 1 implies that ik(x0, x1) is
a homogeneous polynomial. Consider the pencil A(x) = A(1, x). So δk(x) -
the g.c.d. of k× k minors of A(x) is obviously divisible by δk(1, x). On the
other hand we have the following relation between the minors of A(x0, x1)
and A(x)

(2.1.7) det A(x0, x1)[α, β] = xk0det A(
x1

x0
)[α, β], α, β ∈ [n]k.

This shows that xρk0 δk(x1
x0

) (ρk = deg δk(x)) divides any k × k minor of
A(x0, x1). So xρk0 δk(x1

x0
)|δk(x0, x1). This proves the first part of (2.1.6). So

(2.1.8) δk(x0, x1) = xφk0 (xρk0 δk(
x1

x0
)), ρk = deg δk(x), φk ≥ 0.

The equality

ik(x0, x1) =
δk(x0, x1)
δk−1(x0, x1)

implies

(2.1.9) ik(x0, x1) = xψk0 (xσk0 ik(
x1

x0
)), σk = deg ik(x), ψk ≥ 0.

2

δk(x0, x1) and ik(x0, x1) are called the invariant homogeneous deter-
minants and the invariant homogeneous polynomials (factors) respectively.
The classical result due to Weierstrass [Wei67] states:
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Theorem 2.1.3 Let A(x) ∈ F[x]n×n be a regular pencil. Then a pencil
B(x) ∈ F[x]n×n is strictly equivalent to A(x) if and only if A(x) and B(x)
have the same invariant homogeneous polynomials.

Proof. The necessary part of the theorem holds for any A(x), B(x)
which are strictly equivalent. Suppose now that A(x) and B(x) have the
same invariant homogeneous polynomials. According to (1.4.4) the pencils
A(x) and B(x) have the same invariant polynomials. So A(x) ∼ B(x) over
F[x]. Therefore

(2.1.10) W (x)B(x) = A(x)U(x), U(x),W (x) ∈ GL(n,F[x]).

Assume first that A1 and B1 are nonsingular. Then (see Problem 2) it is
possible to divide W (x) by A(x) from the right and to divide U(x) by B(x)
from the left

(2.1.11) W (x) = A(x)W1(x) +R, U(x) = U1(x)B(x) + P,

where P and R are constant matrices. So

A(x)(W1(x)− U1(x))B(x) = A(x)P −RB(x).

Since A1, B1 ∈ GL(n,F) we must have that W1(x) = U1(x), otherwise
the left-hand side of the above equality would be of degree 2 at least (see
Definition 2.1.5), while the right-hand side of this equality is at most 1. So

(2.1.12) W1(x) = U1(x), RB(x) = A(x)P.

It is left to show that P and Q are nonsingular. Let V (x) = W (x)−1 ∈
GL(n,F[x]). Then I = W (x)V (x). Let V (x) = B(x)V1(x) + S. Use the
second identity of (2.1.12) to obtain

I = (A(x)W1(x) +R)V (x) = A(x)W1(x)V (x) +RV (x) =
A(x)W1(x)V (x) +RB(x)V1(x) +RS =
A(x)W1(x)V (x) +A(x)PV1(x) +RS =
A(x)(W1(x)V (x) + PV1(x)) +RS.

Since A1 ∈ GL(n,F) the above equality implies

W1(x)V (x) + PV1(x) = 0, RS = I.

Hence R is invertible. Similar arguments show that P is invertible. Thus
A(x) s∼B(x) if det A1,det B1 6= 0.
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Consider now the general case. Introduce new variables y0, y1:

y0 = ax0 + bx1, y1 = cx0 + dx1, ad− cb 6= 0.

Then
A(y0, y1) = y0A

′
0 + y1A

′
1, B(y0, y1) = y0B

′
0 + y1B

′
1.

Clearly A(y0, y1) and B(y0, y1) have the same invariant homogeneous poly-
nomials. Also A(y0, y1) s∼B(y0, y1) ⇐⇒ A(x0, x1) s∼B(x0, x1). Since
A(x0, x1) and B(x0, x1) are regular pencils it is possible to choose a, b, c, d
such that A′1 and B′1 are nonsingular. This shows that A(y0, y1) s∼B(y0, y1).
Hence A(x) s∼B(x). 2

Using the proof of Theorem 2.1.3 and Problem 2 we obtain:

Theorem 2.1.4 Let A(x), B(x) ∈ D[x]n×n. Assume that A1, B1 ∈
GL(n,D). Then A(x) s∼B(x) ⇐⇒ A(x) ∼ B(x).

For singular pencils the invariant homogeneous polynomials alone do
not determine the class of strictly equivalent pencils. We now introduce
the notion of column and row indices for A(x) ∈ F[x]m×n. Consider the
system (1.14.15). The set of all solutions w(x) is an F[x]-module M with
a a finite basis w1(x), ...,ws(x). (Theorem 1.12.3.) To specify a choice of
a basis we need the following definition.

Definition 2.1.5 Let A ∈ D[x1, ..., xk]m×n. So

A(x1, ..., xk) =
∑
|α|≤d

Aαx
α, Aα ∈ Dm×n,

α = (α1, ..., αk) ∈ Zk+, |α| =
k∑
i=1

αi, x
α = xα1

1 ...xαkk .

(2.1.13)

Then the degree of A(x1, ..., xk) 6= 0 (deg A) is d if there exists Aα 6= 0 with
|α| = d. Let deg 0 = 0.

Definition 2.1.6 Let A ∈ F[x]m×n and consider the module M ⊂ F[x]n

of all solutions of (1.14.15). Choose a basis w1(x), ...,ws(x), s = n−rank A
in M such that wk(x) ∈ M has the lowest degree among all w(x) ∈ M
which are linearly independent over F(x) of w1, ...,wk−1(x) for k = 1, ..., s.
Then the column indices 0 ≤ α1 ≤ α2 ≤ ... ≤ αs of A(x) are given as

(2.1.14) αk = deg wk(x), k = 1, ..., s.

The row indices 0 ≤ β1 ≤ β2 ≤ ... ≤ βt, t = m − rank A, of A(x) are the
column indices of A(x)>.
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It can be shown [Gan59] that the column (row) indices are independent
of a particular allowed choice of a basis w1(x), ...,ws(x). We state the
Kronecker result [Kro90]. (See [Gan59] for a proof.)

Theorem 2.1.7 The pencils A(x), B(x) ∈ F[x]m×n are strictly equiva-
lent if and only if they have the same invariant homogeneous polynomials
and the same row and column indices.

For a canonical form of a singular pencil under the strict equivalence see
Problems 8– 12.

Problems

1. Using the fact that DU [x1, ..., xn] is DU and the equality (1.13.5) show
that if a ∈ DU [x1, ..., xn] is a homogeneous polynomial then in the
decomposition (1.3.1) each pi is a homogeneous polynomial.

2. Let

(2.1.15) W (x) =
q∑

k=0

Wkx
k, U(x) =

p∑
k=0

Ukx
k ∈ D[x]n×n.

Assume that A(x) = A0 + xA1 such that A0 ∈ Dn×n and A1 ∈
GL(n,D). Show that if p, q ≥ 1 then

W (x) = A(x)A−1
1 (Wqx

q−1)+W̃ (x), U(x) = (Upxp−1)A−1
1 A(x)+Ũ(x),

where
deg W̃ (x) < q, deg Ũ(x) < p.

Prove the equalities (2.1.11) where R and P are constant matrices.
Suppose that A1 = I. Show that R and P in (2.1.11) can be given as

(2.1.16) R =
q∑

k=0

(−A0)kWk, P =
p∑
k=0

Uk(−A0)k.

3. Let A(x) ∈ DU [x]n×n be a regular pencil such that det A1 6= 0. Prove
that in (2.1.8) and (2.1.9) φk = ψk = 0 for k = 1, ..., n. (Use equality
(1.12.12) for A(x) and A(x0, x1).)

4. Consider the following two pencils

A(x) =

2 + x 1 + x 3 + 3x
3 + x 2 + x 5 + 2x
3 + x 2 + x 5 + 2x

 , B(x) =

2 + x 1 + x 1 + x
1 + x 2 + x 2 + x
1 + x 1 + x 1 + x


over R[x]. Show that A(x) and B(x) are equivalent but not strictly
equivalent.
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5. Let

A(x) =
p∑
k=0

Akx
k ∈ F[x]m×n.

Put

A(x0, x1) =
q∑

k=0

Akx
q−k
0 xk1 , q = deg A(x).

Prove that ik(x0, x1) is a homogeneous polynomial for k = 1, ..., rank A(x).
Show that i1(1, x), ..., ik(1, x) are the invariant factors of A(x).

6. Let A(x), B(x) ∈ F[x]m×n. A(x) and B(x) are called strictly equiva-
lent (A(x) s∼B(x)) if

B(x) = PA(x)Q, P ∈ GL(m,F), Q ∈ GL(n,F).

Show that if A(x) s∼B(x) then A(x0, x1) and B(x0, x1) have the same
invariant factors.

7. LetA(x), B(x) ∈ F[x]m×n. Show thatA(x) s∼B(x) ⇐⇒ A(x)> s∼B(x)>.

8. (a) Let Lm(x) ∈ F[x]m×(m+1) be matrix with 1 on the main diagonal
and x on the diagonal above it, and all other entries 0:

Lm(x) =


1 x 0 . . . 0
0 1 x . . . 0
...

...
. . . . . .

...
0 0 . . . 1 x

 .
Show that rank Lm = m and α1 = m.

(b) Let 1 ≤ α1 ≤ . . . ≤ αs, 1 ≤ β1 ≤ . . . ≤ βt be integers. Assume
that B(x) = B0 + xB1 ∈ F[x]l×l is a regular pencil. Show that
A(x) = B(x) ⊕si=1 Lαi ⊕tj=1 L

>

βj
has the column and the row

indices 1 ≤ α1 ≤ . . . ≤ αs, 1 ≤ β1 ≤ . . . ≤ βt respectively.

9. Show if a pencil A(x) is a direct sum of pencils of the below form,
where one of the summands of the form 9a-9b appears, it is a singular
pencil.

(a) Lm(x).

(b) Lm(x)>.

(c) B(x) = B0 + xB1 ∈ F[x]l×l is a regular pencil.
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10. Show that a singular pencil A(x) is strictly similar to the singular
pencil given in Problem 9, if and only if there are no column and row
indices equal to 0.

11. Assume that A(x) ∈ F[x]m×n is a singular pencil.

(a) Show that A(x) has exactly k column indices equal to 0, if and
only if it is strict equivalent to [0m×k A1(x)], A1(x) ∈ F[x]m×(n−k),
where either A1(x) is regular or singular. If A1(x) is singular
then the row indices of A1(x) are the row indices of A(x), and
the column indices of A1(x) are the nonzero column indices of
of A(x).

(b) By considering A(x)> state and prove similar result for the row
indices of A(x).

12. Use Problems 8–11 to find a canonical from for a singular pencil A(x)
under the strict equivalence.

2.2 Similarity of matrices

Definition 2.2.1 Let A,B ∈ Dm×m. Then A and B are similar (A ≈
B) if

(2.2.1) B = QAQ−1,

for some Q ∈ GL(m,D).

Clearly the similarity relation is an equivalence relation. So Dm×m is di-
vided into equivalences classes which are called the similarity classes. For
a D module M we let Hom (M) := Hom (M,M). It is a standard fact
that each similarity class corresponds to all possible representations of
some T ∈ Hom (M), where M is a D-module having a basis of m ele-
ments. Indeed, let [u1, ...,um] be a basis in M. Then T is represented by
A = [aij ] ∈ Dm×m, where

(2.2.2) Tuj =
m∑
i=

aijui, j = , ...,m.

Let [ũ1, ..., ũm] be another basis in M. Assume that Q ∈ GL(m,D) is
given by (1.10.5). According to (2.2.2) and the arguments of §1.10, the
representation of T in the basis [ũ1, ..., ũm] is given by the matrix B of the
form (2.2.1).

The similarity notion of matrices is closely related to strict equivalence
of certain regular pencils.
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Lemma 2.2.2 Let A,B ∈ Dm×m. Associate with these matrices the
following regular pencils

(2.2.3) A(x) = −A+ xI, B(x) = −B + xI.

Then A and B are similar if and only if the pencils A(x) and B(x) are
strictly equivalent.

Proof. Assume first that A ≈ B. Then (2.2.1) implies (2.1.2) where
P = Q−1. Suppose now that A(x) s∼B(x). So B = QAP, I = QP . That is
P = Q−1 and A ≈ B. 2

Clearly A(x) s∼B(x)⇒ A(x) ∼ B(x).

Corollary 2.2.3 Let A,B ∈ Dm×mU . Assume that A and B are similar.
Then the corresponding pencils A(x), B(x) given by (2.2.3) have the same
invariant polynomials.

In the case DU = F the above condition is also a sufficient condition in view
of Lemma 2.2.2 and Corollary 2.1.4

Theorem 2.2.4 Let A,B ∈ Fm×m. Then A and B are similar if and
only if the pencils A(x) and B(x) given by (2.2.3) have the same invariant
polynomials.

It can be shown (see Problem 1) that even over Euclidean domains the
condition that A(x) and B(x) have the same invariant polynomials does
not imply in general that A ≈ B.

Problems

1. Let

A =
[
1 0
0 5

]
, B =

[
1 1
0 5

]
∈ Z2×2.

Show that A(x) and B(x) given by (2.2.3) have the same invariant
polynomials over Z[x]. Show that A and B are not similar over Z.

2. Let A(x) ∈ DU [x]n×n be given by (2.2.3). Let i1(x), ..., in(x) be the
invariant polynomial of A(x). Using the equality (1.12.12) show that
each ik(x) can be assumed to be normalized polynomial and

(2.2.4)
n∑
k=1

deg ik(x) = n.

3. Let A ∈ Fn×n. Show that A ≈ A>.
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2.3 The companion matrix

Theorem 2.2.4 shows that if A ∈ Fn×n then the invariant polynomials
determine the similarity class of A. We now show that any set of normalized
polynomials i1(x), ..., in(x) ∈ DU [x], such that ij(x)|ij+1(x), j = 1, ..., n−1
and which satisfy (2.2.4), are invariant polynomials of xI − A for some
A ∈ Dn×nU . To do so we introduce the notion of a companion matrix.

Definition 2.3.1 Let p(x) ∈ D[x] be a normalized polynomial

p(x) = xm + a1x
m−1 + ...+ am.

Then C(p) = [cij ]m1 ∈ Dm×m is the companion matrix of p(x) if

cij = δ(i+1)j , i = 1, ...,m− 1, j = 1, ...,m,
cmj = −am−j+1, j = 1, ...,m,(2.3.1)

C(p) =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 1
−am −am−1 −am−2 . . . −a2 −a1

 .

Lemma 2.3.2 Let p(x) ∈ DU [x] be a normalized polynomial of degree
m. Consider the pencil C(x) = xI −C(p). Then the invariant polynomials
of C(x) are

(2.3.2) i1(C) = ... = im−1(C) = 1, im(C) = p(x).

Proof. For k < m consider a minor of C(x) composed of the rows 1, ..., k
and the columns 2, ..., k+ 1. Since this minor is the determinant of a lower
triangular matrix with −1 on the main diagonal we deduce that its value
is (−1)k. So δk(C) = 1, k = 1, ...,m− 1. This establishes the first equality
in (2.3.2). Clearly δm(C) = det (xI−C). Expand the determinant of C(x)
by the first row and use induction to prove that det (xI −C) = p(x). This
shows that im(C) = δm(C)

δm−1(C) = p(x). 2

Using the results of Problem 2.1.13 and Lemma 2.3.2 we get:

Theorem 2.3.3 Let pj(x) ∈ DU [x] be normalized polynomials of posi-
tive degrees such that pj(x)|pj+1(x), j = 1, ..., k − 1. Consider the matrix

(2.3.3) C(p1, ..., pk) = ⊕kj=1C(pj).

Then the nontrivial invariant polynomials of xI − C(p1, ..., pk) ( i.e. those
polynomials which are not the identity element) are p1(x), ..., pk(x).
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Combining Theorems 2.2.4 and 2.3.3 we obtain a canonical representa-
tion for the similarity class in Fn×n.

Theorem 2.3.4 Let A ∈ Fn×n and assume that pj(x) ∈ F[x], j =
1, ..., k are the nontrivial normalized invariant polynomials of xI−A. Then
A is similar to C(p1, ..., pk).

Definition 2.3.5 For A ∈ Fn×n the matrix C(p1, ..., pk) is called the
rational canonical form of A.

Let F be the quotient field of D. Assume thatA ∈ Dn×n. Let C(p1, ..., pk)
be the rational canonical form of A in Fn×n. We now discuss the case when
C(p1, ..., pk) ∈ Dn×n. Assume that D is DU . Let δk be the g.c.d of k × k
minors of xI − A. So δk divides the minor p(x) = det (xI − A)[α, α], α =
{1, ..., k}. Clearly p(x) is normalized polynomial in DU [x]. Recall that
DU [x] is also DU (§1.4).

According to Theorem 1.4.8 the decomposition of p(x) into irreducible
factors in DU [x] is of the form (1.4.4), where a = 1 and each qi(x)is a non-
trivial normalized polynomial in DU [x]. Hence ik = δk

δk−1
is either identity

or a nontrivial polynomial in DU [x]. Thus

Theorem 2.3.6 Let A ∈ Dn×nU . Then the rational canonical form
C(p1, ..., pk) of A over the quotient field F of DU belongs to Dn×nU .

Corollary 2.3.7 Let A ∈ C[x1, ..., xm]n×n. Then the rational canoni-
cal form of A over C(x1, ..., xn) belongs to C[x1, ..., xm]n×n.

Using the results of Theorem 1.4.9 we deduce that Theorem 2.3.6 applies
to the ring of analytic functions in several variables although this ring is
not DU (§1.3).

Theorem 2.3.8 Let A ∈ H(Ω)n×n (Ω ⊂ Cm). Then the rational
canonical form of A over the field of meromorphic functions in Ω belongs
to H(Ω)n×n.

Problems

1. Let p(x) ∈ DU [x] be a normalized nontrivial polynomial. Assume that
p(x) = p1(x)p2(x), where pi(x) is a normalized nontrivial polynomial
in DU [x] for i = 1, 2. Using Problem 1.13.1 and 2 show that xI −
C(p1, p2) given by (2.3.3) have the same invariant polynomials as
xI − C(p) if and only if (p1, p2) = 1.
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2. Let A ∈ Dn×nU and assume that p1(x), ..., pk(x) are the nontrivial
normalized invariant polynomials of xI −A. Let

(2.3.4) pj(x) = (φ1(x))m1j ...(φl(x))mlj , j = 1, ..., k,

where φ1(x), ..., φl(x) are nontrivial normalized irreducible polynomi-
als in DU [x] such that (φi, φj) = 1 for i 6= j. Prove that

(2.3.5) mik ≥ 1, mik ≥ mi(k−1) ≥ ... ≥ mi1 ≥ 0,
l,k∑
i,j=1

mij = n.

The polynomials φmiji for mij > 0 are called the elementary divisors
of xI −A. Let

(2.3.6) E = ⊕mij>0C(φmiji ).

Show that xI − A and xI − E have the same invariant polynomials.
Hence A ≈ E over the quotient field F of DU . (In some references E
is called the rational canonical form of A.)

2.4 Splitting to invariant subspaces

Let V be an m dimensional vector space over F and let T ∈ Hom (V). In
§2.2 we showed that the set of all matrices A ⊂ Fm×m, which represents
T in different bases, is an equivalence class of matrices with respect to the
similarity relation. Theorem 2.2.4 shows that the class A is characterized
by the invariant polynomials of xI −A for some A ∈ A. Since xI −A and
xI−B have the same invariant polynomials if and only if A ≈ B we define:

Definition 2.4.1 Let T ∈ Hom (V) and let A ∈ Fm×m be a represen-
tation matrix of T given by the equality (2.2.2) in some basis u1, ...,um of
V. Then the invariant polynomials i1(x), ..., im(x) of T are defined as the
invariant polynomials of xI −A. The characteristic polynomial of T is the
polynomial det (xI −A).

The fact that the characteristic polynomial of T is independent of a
representation matrix A follows from the identity (1.12.12)

(2.4.1) det (xI −A) = p1(x)...pk(x),

where p1(x), ..., pk(x) are the nontrivial invariant polynomials of xI−A. In
§2.3 we showed that the matrix C(p1, ..., pk) is a representation matrix of
T . In this section we consider another representation of T which is closely
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related to the matrix E given in (2.3.6). This form is achieved by splitting
V to a direct sum

(2.4.2) V = ⊕li=1Ui,

where each Ui is an invariant subspace of T defined as follows:

Definition 2.4.2 Let V be a finite dimensional vector space over F
and T ∈ Hom (V). A subspace U ⊆ V is an invariant subspace of T
(T -invariant) if

(2.4.3) TU ⊆ U.

U is called trivial if U = {0} or U = V. U is called nontrivial, (proper),
if {0} 6= U 6= V. U is called irreducible if U can not be expressed a direct
sum of two nontrivial invariant subspaces of T . The restriction of T to a
T -invariant subspace U is denoted by T |U.

Thus if V splits into a direct sum of nontrivial invariant subspaces of
T , then a direct sum of matrix representations of T on each Uj gives a
representation of T . So, a simple representation of T can be achieved by
splitting V into a direct sum of irreducible invariant subspaces. To do so
we need to introduce the notion of the minimal polynomial of T . Consider
the linear operators I = T 0, T, T 2, ..., Tm

2
, where I is the identity operator

(Iv = v). As dim Hom (V) = m, these m2 + 1 operators are linearly
dependent. So there exists an integer q ∈ [0,m2] such that I, T, ..., T q−1

are linearly independent and I, T, ..., T q are linearly dependent. Let 0 ∈
Hom (V) be the zero operator: 0v = 0. For φ ∈ F[x] let φ(T ) be the
operator

φ(T ) =
l∑
i=0

ciT
i, φ(x) =

l∑
i=1

cix
i.

φ is annihilated by T if φ(T ) = 0.

Definition 2.4.3 A polynomial ψ(x) ∈ F[x] is a minimal polynomial
of T ∈ Hom (V) if ψ(x) is a normalized polynomial of the smallest degree
annihilated by T .

Lemma 2.4.4 Let ψ(x) ∈ F[x] be the minimal polynomial T ∈ Hom (V).
Assume that T annihilates φ. Then ψ|φ.

Proof. Divide φ by ψ:

φ(x) = χ(x)ψ(x) + ρ(x), deg ρ < deg ψ.
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As φ(T ) = ψ(T ) = 0 it follows that ρ(T ) = 0. From the definition of ψ(x)
it follows that ρ(x) = 0. 2

Since F[x] is a unique factorization domain, let

ψ(x) = φs11 ...φ
sl
l ,

(φi, φj) = 1 for 1 ≤ i < j ≤ l, deg φi ≥ 1, i = 1, ..., l,
(2.4.4)

where each φi is a normalized irreducible polynomial if F[x].

Theorem 2.4.5 Let ψ be the minimal polynomial of T ∈ Hom (V).
Assume that ψ splits to a product of coprime factors given in (2.4.4). Then
the vector space V splits to a direct sum (2.4.2), where each Uj is a non-
trivial invariant subspace of T |Uj. Moreover φsjj is the minimal polynomial
of T |Uj.

The proof of the theorem follows immediately from the lemma below.

Lemma 2.4.6 Let ψ be the minimal polynomial of T ∈ Hom (V). As-
sume that ψ splits to a product of two nontrivial coprime factors

(2.4.5) ψ(x) = ψ1(x)ψ2(x), deg ψi ≥ 1, i = 1, 2, (ψ1, ψ2) = 1,

where each ψi is normalized. Then

(2.4.6) V = U1 ⊕U2,

where each Uj is a nontrivial T -invariant subspace and ψj is the minimal
polynomial of Tj := T |Uj.

Proof. The assumptions of the lemma imply the existence of polyno-
mials θ1(x) and θ2(x) such that

(2.4.7) θ1(x)ψ1(x) + θ2(x)ψ2(x) = 1.

Define

(2.4.8) Uj = {u ∈ V : ψj(T )u = 0}, j = 1, 2.

Since any two polynomials in T commute (i.e. µ(T )ν(T ) = ν(T )µ(T )) it
follows that each Uj is T -invariant. The equality (2.4.7) implies

I = ψ1(T )θ1(T ) + ψ2(T )θ2(T ).
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Hence for any u ∈ V we have

u = u1 + u2, u1 = ψ2(T )θ2(T )u ∈ U1, u2 = ψ1(T )θ1(T )u ∈ U2.

So V = U1 +U2. Suppose that u ∈ U1∩U2. Then ψ1(T )u = ψ2(T )u = 0.
Hence θ1(T )ψ1(T )u = θ2(T )ψ2(T )u = 0. Thus

u = ψ1(T )u + ψ2(T )u = 0.

So U1 ∩U2 = {0} and (2.4.6) holds. Clearly Tj annihilates ψj . Let ψ̄j be
the minimal polynomial of Tj . So ψ̄j |ψj , j = 1, 2. Now

ψ̄1(T )ψ̄2(T )u = ψ̄1(T )ψ̄2(T )(u1+u2) = ψ̄2(T )ψ̄1(T )u1+ψ̄1(T )ψ̄2(T )u2 = 0.

Hence T annihilates ψ̄1ψ̄2. Since ψ is the minimal polynomial of T we have
ψ1ψ2|ψ̄1ψ̄2. Therefore ψ̄j = ψj , j = 1, 2. As deg ψj ≥ 1 it follows that
dim Uj ≥ 1. 2

Problems

1. Assume that (2.4.6) holds, where TUj ⊆ Uj , j = 1, 2. Let ψj be
the minimal polynomial of Tj = T |Uj for j = 1, 2. Show that the
minimal polynomial ψ of T is equal to ψ1ψ2

(ψ1,ψ2) .

2. Let the assumptions of Problem 1 hold. Assume furthermore that
ψ = φs, where φ is irreducible over F[x]. Then either ψ1 = ψ or
ψ2 = ψ.

3. Let C(p) ∈ Dm×m be the companion matrix given by (2.3.1). Let
ei = (δi1, ..., δim)>, i = 1, ...,m be the standard basis in Dm. Show

(2.4.9) C(p)ei = ei−1 − am−i+1em, i = 1, ...,m, (e0 = 0).

Prove that p(C) = 0 and that any polynomial 0 6= q ∈ D[x], deg q <
m is not annihilated by C. (Consider q(C)ei and use (2.4.9).) That
is: p is the minimal polynomial of C(p).

Hint: Use the induction on m as follows. Set fi = em−i+ for
i = 1, . . . ,m. Let q = xm−1 + a1x

m−1 + . . . + am−1. Set Q =[
0 0>m−

0m− C(q)

]
. Use the induction hypothesis on C(q), i.e. q(C(q)) =

0, and the facts that C(p)fi = Qfi for i = 1, . . . ,m − 1, C(p)fm =
fm+1 + Qfm to obtain that p(C(p))f1 = 0. Now use (2.4.9) to show
that p(C(p))fi = 0 for i = 2, . . . ,m+ 1.
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4. Let A ∈ Fm×m. Using Theorem 2.3.4 and Problems 1 and 3 show
that the minimal polynomial ψ of A is the last invariant polynomial
of xI −A. That is:

(2.4.10) ψ(x) =
det (xI −A)
δm−1(x)

,

where δm−1(x) is the g.c.d. of all (m− 1)× (m− 1) minors of xI−A.

5. Show that the results of Problem 4 apply to A ∈ Dm×mU . In particular,
if A ≈ B then A and B have the same minimal polynomials.

6. Deduce from Problem 4 the Cayley-Hamilton theorem which states
that T ∈ Hom (V) annihilates its characteristic polynomial.

7. Let A ∈ Dm×m. Prove that A annihilates its characteristic polyno-
mial. (Consider the quotient field F of D.)

8. Use Problem 6 and Lemma 2.4.4 to show

(2.4.11) deg ψ ≤ dim V.

9. Let ψ = φs, where φ is irreducible in F[x]. Assume that deg ψ =
dim V. Use Problems 2 and 8 to show that V is an irreducible in-
variant subspace of T .

10. Let p(x) ∈ F[x] be a nontrivial normalized polynomial such that p =
φs, where φ is a normalized irreducible in F[x]. Let T ∈ Hom (V) be
represented by C(p). Use Problem 9 to show that V is an irreducible
invariant subspace of T .

11. Let T ∈ Hom (V) and let E be the matrix given by (2.3.6), which is
determined by the elementary divisors of T . Using Problem 10 show
that the representation E of T corresponds to a splitting of V to a
direct sum of irreducible invariant subspaces of T .

12. Deduce from Problem 9 and 11 that V is an irreducible invariant
subspace of T if and only if the minimal polynomial ψ of T satisfies
the assumptions of Problem 9

2.5 An upper triangular form

Definition 2.5.1 Let M be a D-module and assume that T ∈ Hom (M).
λ ∈ D is an eigenvalue of T if there exists 0 6= u ∈M such that

(2.5.1) Tu = λu.
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The element, (vector), u is an eigenelement, (eigenvector), corresponding
to λ. An element 0 6= u is a generalized eigenelement, (eigenvector), if

(2.5.2) (λI − T )ku = 0

for some positive integer k, where λ is an eigenvalue of T . For T ∈ Dm×m
λ is an eigenvalue if (2.5.1) holds for some 0 6= u ∈ Dm. The element u is
eigenelement, (eigenvector), or generalized eigenelement, (eigenvector), if
either (2.5.1) or (2.5.2) holds respectively.

Lemma 2.5.2 Let T ∈ Dm×m. Then λ is an eigenvalue of T if and
only if λ is a root of the characteristic polynomial det (xI − T ).

Proof. Let F be the quotient field of D. Assume first that λ is an
eigenvalue of T . As (2.5.1) is equivalent to (λI − T )u = 0 and u 6= 0, then
above system has a nontrivial solution. Therefore det (λI − T ) = 0. Vice
versa, if det (λI − T ) = 0 then the system (λI − T )v = 0 has a nontrivial
solution v ∈ Fm. Then there exists 0 6= a ∈ D such that u := av ∈ Dm and
Tu = λu. 2

Definition 2.5.3 A matrix A = [aij ] ∈ Dm×m is an upper, (lower), tri-
angular if aij = 0 for j < i, (j > i). Let UT(m,D), (LT(m,D)) ⊂ Dm×m
be the ring of upper, (lower), triangular m×m matrices. Let UTG(m,D) =
UT(m,D) ∩GL(m,D), (LTG(m,D) = LT(m,D) ∩GLm(D)).

Theorem 2.5.4 Let T ∈ Dm×m. Assume that the characteristic poly-
nomial of T splits to linear factors over D

(2.5.3) det (xI − T ) =
m∏
i=1

(x− λi), λi ∈ D, i = 1, ...,m.

Assume furthermore that D is a Bezout domain. Then

(2.5.4) T = QAQ−1, Q ∈ GL(m,D), A = [aij ]m ∈ UT(m,D),

such that a11, ..., amm are the eigenvalues λ1, ..., λm appearing in any spec-
ified order.

Proof. Let λ be an eigenvalue of T and consider the set of all u ∈ Dm
which satisfies (2.5.1). Clearly this set is a D-module M. Lemma 2.5.2
yields that M contains nonzero vectors. Assume that D is DB . According
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to Theorem 1.12.3 M has a basis u1, ...,uk which can be completed to a
basis u1, ...,um in Dm. Let

(2.5.5) Tui =
m∑
j=1

bjiuj , i = 1, ...,m, B = [bij ] ∈ Dm×m.

A straightforward computation shows that T ≈ B. As Tui = λui, i =
1, ..., k we have that bj1 = 0 for j > 1. So

det (xI − T ) = det (xI −B) = (x− λ)det (xI − B̃),

where B̃ = [bij ]ni,j=2 ∈ D(m−1)×(m−1). Here the last equality is achieved by
expanding det (xI −B) by the first column. Use the induction hypothesis
to obtain that B̃ ≈ A1, where A1 ∈ UT(m− 1,D), with the eigenvalues of
B̃ on the main diagonal of A1 appearing in any prescribed order. Hence
T ≈ C = [cij ]n1 , where C ∈ UT(m,D) with c11 = λ, [cij ]ni,j=2 = A1. 2

The upper triangular form of A is not unique unless A is a scalar matrix:
A = aI. See Problem 1.

Definition 2.5.5 Let T ∈ Dm×m and assume that (2.5.3) holds. Then
the eigenvalue multiset of T is the set S(T) = {λ1, ..., λm}. The multiplicity
of λ ∈ S(T), denoted by m(λ), is the number of elements in S(T) which are
equal to λ. λ is called a simple eigenvalue if m(λ) = 1. The spectrum of T ,
denoted by spec (T), is the set of all distinct eigenvalues of T :

(2.5.6)
∑

λ∈spec (T)

m(λ) = m.

For T ∈ Cm×m arrange the eigenvalues of T in the decreasing order of their
absolute values (unless otherwise stated):

(2.5.7) |λ1| ≥ · · · ≥ |λm| ≥ 0,

The spectral radius of T , denoted by ρ(T ), is equal to |λ1|.

Problems

1. Let Q correspond to the elementary row operation described in Def-
inition 1.11.6(iii). Assume that A ∈ UT(m,D). Show that if j < i
then QAQ−1 ∈ UT(m,D) with the same diagonal as A. More gen-
eral, for any Q ∈ UTGm(D) QAQ−1 ∈ UT(m,D) with the same
diagonal as A.
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2. Show that if T ∈ Dm×m is similar to A ∈ UT(m,D) then the charac-
teristic polynomial of T splits to linear factors over D[x].

3. Let T ∈ Dm×m and put

(2.5.8) det (xI − T ) = xm +
∑
j=1

am−jx
j .

Assume that the assumptions of Theorem 2.5.4 holds. Show that
(2.5.9)

(−1)kak =
∑

α∈[m]k

det T [α, α] = sk(λ1, ..., λm), k = 1, ...,m.

Here sk(x1, ..., xm) is the k− th elementary symmetric polynomial of
x1, ..., xm. The coefficient −a1 is called the trace of A:

(2.5.10) trA =
m∑
i=1

aii =
m∑
i=1

λi.

4. Let T ∈ Dm×m and assume the assumptions of Theorem 2.5.4. Sup-
pose furthermore that D is DU . Using the results of Theorem 2.5.4
and Problem 2.4.5 show that the minimal polynomial ψ(x) of T is of
the form

ψ(x) =
l∏
i=1

(x− αi)si ,

αi 6= αj for i 6= j, 1 ≤ si ≤ mi := m(αi), i = 1, ..., l,
(2.5.11)

where spec (T) = {α1, ..., αl}. (Hint: Consider the diagonal elements
of ψ(A).)

5. Let T ∈ Dm×mU and assume that the minimal polynomial of T is given
by (2.5.11). Using Problem 2.4.4 and the equality (2.4.1) show

(2.5.12) det (xI − T ) =
l∏
i=1

(x− αi)mi .

2.6 Jordan canonical form

Theorem 2.5.4 and Problem 2.5.2 shows that T ∈ Dm×m is similar to an
upper triangular matrix if and only if the characteristic polynomial of T
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splits to linear factors. Unfortunately, the upper triangular form of T is not
unique. If D is a field then there is a special upper triangular form in the
similarity class of T which is essentially unique. For convenience we state
the theorem for an operator T ∈ Hom (V).

Theorem 2.6.1 Let V be a vector space over the field F. Let T ∈
Hom (V) and assume that the minimal polynomial ψ(x) of T splits to a
product of linear factors as given by (2.5.11). Then V splits to a direct sum
of nontrivial irreducible invariant subspaces of T

(2.6.1) V = W1 ⊕ ...⊕Wq.

In each invariant subspace W(= Wj) it is possible to choose a basis con-
sisting of generalized eigenvectors x1, ...,xr such that

Tx1 = λ0x1,

(2.6.2)
Txk+1 = λ0xk+1 + xk, k = 1, ..., r − 1,

where λ0 is equal to some αi and r ≤ si. (For r = 1 the second part of
(2.6.2) is void.) Moreover for each αi there exists an invariant subspace W
whose basis satisfies (2.6.2) with λ0 = αi and r = si.

Proof. Assume first that the minimal polynomial of T is

(2.6.3) ψ(x) = xs.

Recall that ψ(x) is the last invariant polynomial of T . Hence each nontrivial
invariant polynomial of T is of the form xr for 1 ≤ r ≤ s. Theorem 2.3.4
implies that V has a basis in which T is presented by its rational canonical
form

C(xr1)⊕ ...⊕ C(xrk), 1 ≤ r1 ≤ r2 ≤ ... ≤ rk = s.

Hence V splits to a direct sum of T -invariant subspaces (2.6.1). Let W be
an invariant subspace in the decomposition (2.6.1). Then T̃ := T |W has the
minimal polynomial xr, 1 ≤ r ≤ s. Furthermore, W has a basis x1, ...,xr
so that T̃ is represented in this basis by the companion matrix C(xr). It
is straightforward to show that x1, ..., xr satisfies (2.6.2) with λ0 = 0. As
W is spanned by xr, T̃xr, ..., T̃ r−1xr it follows that W is an irreducible
invariant subspace of T . Assume now that the minimal polynomial of T
is (x − λ0)s. Let T0 = T − λ0I. Clearly xs is the minimal polynomial of
T0. Let (2.6.1) be the decomposition of V to invariant subspaces of T0 as
above. In each invariant subspace W choose a basis for T0 as above. Then
our theorem holds in this case too.
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Assume now that the minimal polynomial of T is given by (2.5.11). Use
Theorem 2.4.5 and the above arguments to deduce the theorem. 2

Let

(2.6.4) Hn := C(xn) =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

 .
Sometimes we denote Hn by H when the dimension of H is well defined.

Let W = span (x1,x2, ...,xr). Let T ∈ Hom (W) be given by (2.6.2).
Then T is presented in the basis x1, ...,xr by the Jordan block λ0Ir + Hr.
Theorem 2.6.1 yields:

Theorem 2.6.2 Let A ∈ Fn×n. Assume that the minimal polynomial
ψ(x) of A splits to linear factors as in (2.5.11). Then there exists P ∈
GL(n,F) such that

P−1AP = J,

J = ⊕li=1 ⊕
qi
j=1 (αiImij +Hmij ),(2.6.5)

1 ≤ miqi ≤ miqi−1 ≤ ... ≤ mi1 = si, i = 1, ..., l.(2.6.6)

Definition 2.6.3 Let A ∈ Fn×n satisfy the assumptions of Theorem
2.6.2. The matrix J in (2.6.5) is called the Jordan canonical form of A.
Let T ∈ Hom (V) and assume that its minimal polynomial splits over F.
Then a representation matrix J (2.6.5) is called the Jordan canonical form
of T .

Remark 2.6.4 Let A ∈ Fn×n and suppose that the minimal polynomial
ψ of A does not split over F. Then there exits a finite extension K of F
such that ψ splits over K. Then (2.6.5) holds for some P ∈ GL(n,K). J
is referred as the Jordan canonical form of A.

Corollary 2.6.5 Let A ∈ Fn×n. Assume that the minimal polynomial
of A is given by (2.5.11). Let J be the Jordan canonical form of A given by
(2.6.5). Set

(2.6.7) miqi+1 = ... = min = 0, i = 1, ..., l.

Then the elementary polynomials of xI − A, which are the elementary di-
visors of xI −A defined in Problem 2, are

(2.6.8) φij = (x− αi)mij , j = 1, ..., n, i = 1, ..., l.
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Hence the invariant polynomials i1(x), ..., in(x) of xI −A are

(2.6.9) ir(x) =
l∏
i=1

(x− αi)mi(n−r+1) , r = 1, ..., n.

The above Corollary shows that the Jordan canonical form is unique up
to a permutation of Jordan blocks.

Problems

1. Show directly that to each eigenvalue λ0 of a companion matrix
C(p) ∈ Fn×n corresponds one dimensional eigenvalues subspace spanned
by the vector (1, λ0, λ

2
0, ..., λ

n−1
0 )>.

2. Let A ∈ Fn×n and assume that the minimal polynomial of A splits in
F. Let U1,U2 ⊂ Fn be the subspaces of all generalized eigenvectors of
A, A> respectively corresponding to λ ∈ spec (A). Show that there
exists bases x1, ...,xm and y1, ...,ym in U1 and U2 respectively so
that

y>i xj = δij , i, j = 1, ...,m.

(Hint: Assume first that A is in its Jordan canonical form.)

3. Let A ∈ Fn×n. Let λ, µ ∈ F be two distinct eigenvalues of A. Let
x,y ∈ Fn be two generalized eigenvectors of A,A> corresponding to
λ, µ respectively. Show that y>x = 0.

4. Verify directly that J (given in (2.6.5)) annihilates its characteristic
polynomial. Using the fact that any A ∈ Fn×n is similar to its Jordan
canonical form over the finite extension fieldK of F deduce the Cayley-
Hamilton theorem.

5. Let A,B ∈ Fn×n. Show that A ≈ B if and only if A and B have the
same Jordan canonical form.

2.7 Some applications of Jordan canonical form

Definition 2.7.1 Let A ∈ Fn×n and assume that det (xI −A) splits in
F. Let λ0 be an eigenvalue of A. Then the number of factors of the form
x−λ0 appearing in the minimal polynomial ψ(x) of A is called the index of
λ0 and is denoted by index λ0. The dimension of the eigenvalue subspace
of A corresponding to λ0 is called the geometric multiplicity of λ0.

Using the results of the previous section we obtain.
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Lemma 2.7.2 Let the assumptions of Definition 2.7.1 hold. Then index λ0

is the size of the largest Jordan block corresponding to λ0, and the geometric
multiplicity of λ0 is the number of the Jordan blocks corresponding to λ0.

Let T ∈ Hom (V), λ0 ∈ spec (T) and consider the invariant subspaces

Xr = {x ∈ V : (λ0I − T )rx = 0}, r = 0, 1, . . . ,(2.7.1)
Yr = (λ0I − T )rV, r = 0, 1, . . . .

Theorem 2.7.3 Let T ∈ Hom (V) and assume that λ0 is the eigen-
value of T . Let index λ0 = m1 ≥ m2 ≥ ... ≥ mp ≥ 1 be the dimensions of
all Jordan blocks corresponding to λ0 which appear in the Jordan canonical
form of T . Then

dim Xr =
p∑
i=1

min(r,mi), r = 0, 1, ...,(2.7.2)

dim Yr = dim V − dim Xr, r = 0, 1, ...

In particular

[0] = X0 $ X1 $ X2 $ ... $ Xm,

X(λ0) := Xm = Xm+1 = ..., m = index λ0.

V = Y0 % Y1 % Y2 % ... % Ym,(2.7.3)
Y(λ0) := Ym = Ym+1 = ...

V = X(λ0)⊕Y(λ0).

Let

(2.7.4) νi = dim Xi − dim Xi−1, i = 1, ...,m+ 1, m := index λ0.

Then νi is the number of Jordan block of size i at least corresponding to λ0.
In particular

(2.7.5) ν1 ≥ ν2 ≥ ... ≥ νm > νm+1 = 0.

Furthermore

νi − νi+1 is the number of Jordan blocks of order(2.7.6)
i in the Jordan canonical form of T corresponding to λ0.

Proof. Assume first that det (xI − T ) = ψ(x) = (x− λ0)m. That is T
has one Jordan block of order m corresponding to λ0. Then the theorem
follows straightforward. Observe next that for

Ker (λI − T ) = 0, Range Ker (λI − T ) = V, λ 6= λ0.
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Assume now that det (xI − T ) splits in F and V has the decomposition
(2.6.1). Apply the above arguments to each T |Wi for i = 1, ..., q to deduce
the theorem in this case. In the general case, where det (xI − T ) does not
split to linear factors, use the rational canonical form of T to deduce the
theorem. 2

Thus (2.7.3) gives yet another characterization of the index λ0. Note
that in view of Definition 2.5.1 each 0 6= x ∈ Xk is a generalized eigenvector
of T . The sequence (2.7.4) is called the Weyr sequence corresponding to
λ0.

Definition 2.7.4 A transformation T ∈ Hom (V) is diagonable if there
exists a basis in V which consists entirely of eigenvectors of T . That is any
representation matrix A of T is diagonable, i.e. A is similar to a diagonal
matrix.

For such T we have that X1 = Xm1 for each λ0 ∈ spec (T). Theorem
2.6.1 yields.

Theorem 2.7.5 Let T ∈ Hom (V). Then T is diagonable if and only
if the minimal polynomial ψ of T splits to linear, pairwise different factors.
That is the index of any eigenvalue of T equals to 1.

Definition 2.7.6 Let M be a D-module and let T ∈ Hom (M). T is
nilpotent if T s = 0 for some positive integer s.

Let T ∈ Hom (V) and assume that det (xI − T ) splits in F. For λ0 ∈
spec (T) let X(λ0) ⊂ V be the T -invariant subspace defined in (2.7.3).
Then the decomposition (2.6.1) yields the spectral decomposition of V:

(2.7.7) V = ⊕λ∈spec (T)X(λ).

The above decomposition is courser then the fine decomposition (2.6.1).
The advantage of the spectral decomposition is that it is uniquely defined.
Note that each X(λ), λ ∈ spec (T) is direct sum of irreducible T -invariant
subspaces corresponding to the eigenvalue λ in the decomposition (2.6.1).
Clearly T − λI|X(λ) is a nilpotent operator. In the following theorem we
address the problem of the choices of irreducible invariant subspaces in the
decomposition (2.6.1) for a nilpotent transformation T .

Theorem 2.7.7 Let T ∈ Hom (V) be nilpotent. Let index 0 = m =
m1 ≥ m2 ≥ ... ≥ mp ≥ 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T . Let (2.6.1) be a decomposition of V to
a direct sum of irreducible T -invariant subspaces such that

dim W1 = m1 ≥ dim W2 = m2 ≥ ... ≥ dim Wq = mq ≥ 1,
(2.7.8)

m1 = ... = mi1 > mi1+1 = ... = mi2 > ... > mip−1+1 = ... = mip = mq.
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Assume that each Wi has a basis yi,1, ...,yi,mi satisfying (2.6.2), with λ0 =
0. Let Xi,Yi, i = 0, ... be defined as in (2.7.1) for λ0 = 0. Then the above
bases in W1, ...,Wq can be chosen recursively as follows:
(a) y1,1, ...,yi1,1 is an arbitrary basis in Ym−1.
(b) Let 1 ≤ k < m. Assume that yl,j are given for all l such that
ml ≥ m − k + 1 and all j such that 1 ≤ j ≤ ml − m + k. Then each
yl,(k+1) is any element in T−1yl,k ∩ Ym−k−1, which is a coset of the
subspace Ym−k−1 ∩ X1 = Ker T |Ym−k−1. If m − k = mt for some
1 < t ≤ ip then yit−1+1,1, ...,yit,1 is any set of linearly independent vectors
in Ym−k−1 ∩X1, which complements the above chosen vectors yl,j , ml ≥
m− k + 1, ml −m+ k + 1 ≥ j to a basis in Ym−k−1.

See Problem 1 for the proof of the Theorem.

Corollary 2.7.8 Let the assumptions of Theorem 2.7.7 hold. Suppose
furthermore that Z ⊂ V is an eigenspace of T . Then there exists a decompo-
sition (2.6.1) of V to a direct sum of irreducible T -invariant subspaces such
that Z has a basis consisting of l = dim Z eigenvectors of the restrictions
of T |Wj1 , . . . , T |Wjl for 1 ≤ j1 < . . . < jl ≤ q.

Proof. Let Z1 := Z ∩ Ym−1 ⊂ . . . ⊂ Zm := Z ∩ Y0 and denote
li = dim Zi for i = 1, . . . ,m. We then construct bases in W1, . . . ,Wq

as in Theorem 2.7.7 in the following way. If l1 = dim Z1 > 0 we pick
y1,1, . . . ,yl1,1 to be from Z1. In general, for each k = 1, . . . ,m−1, 1 < t ≤ ip
and mt = m − k such that lk+1 > lk we let yit−1+1,1, ...,yit−1+lk+1−lk,1 be
any set of linearly independent vectors in Zk+1, which form a basis in
Zk+1/Zk. 2

Problems

1. Prove Theorem 2.7.7

2.8 The matrix equation AX −XB = 0

Let A,B ∈ Dn×n. A possible way to determine if A and B are similar over
GL(n,D) is to consider the matrix equation

(2.8.1) AX −XB = 0.

Then A ≈ B if and only if there exists a solution X ∈ Dn×n such that
det X is an invertible element in D. For X ∈ Dm×n let X̂ ∈ Dmn be the
column vector composed of the n columns of X:

(2.8.2) X̂ = (x11, ..., xm1, x12, ..., xm2, ..., xm(n−1), x1n, ..., xmn)>,
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whereX = [xij ] ∈ Dm×n. Then the equation (2.8.1), whereA ∈ Dm×m, B ∈
Dn×n, has a simple form in tensor notation [MaM64]. (See also Problems
1 and 2.8.13.)

(2.8.3) (I ⊗A−B> ⊗ I)X̂ = 0.

Assume that D is a Bezout domain. Then the set of all X ∈ Dn×n satisfying
(2.8.1) forms a D-module with a basis X1, ..., Xν , (Theorem 1.12.3). So any
matrix X which satisfies (2.8.1) is of the form

X =
ν∑
i=1

xiXi, xi ∈ D, i = 1, ..., ν.

It is ”left” to find whether a function

δ(x1, ..., xν) := det (
ν∑
i=1

xiXi)

has an invertible value. In such a generality this is a difficult problem. A
more modest task is to find the value of ν and to determine if δ(x1, ..., xν)
vanish identically. For that purpose it is enough to assume that D is actually
a field F (for example the quotient field of D). Also we may replace F by a
finite extension field K in which the characteristic polynomial of A and B
split. Finally we are going to study the equation (2.8.1) where

A ∈ Km×m, B ∈ Kn×n, X ∈ Km×n.

Let ψ(x), φ(x) and J, K be the minimal polynomials and the Jordan
canonical forms of A, B respectively.

ψ(x) =
l∏
i=1

(x− λi)si , spec (A) = {λ1, ..., λl},

φ(x) =
k∏
j=1

(x− µj)tj , spec (B) = {µ1, ..., µk},

P−1AP = J = ⊕li=1Ji,

(2.8.4)
Ji = ⊕qir=1(λiImir +Hmir ), 1 ≤ miqi ≤ ... ≤ mi1 = si, i = 1, ..., l,
Q−1BQ = K = ⊕kj=1Kj ,

Kj = ⊕pjr=1(µjInjr +Hnjr ), 1 ≤ njpj ≤ ... ≤ nj1 = tj , j = 1, ..., k.
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Let Y = P−1XQ. Then the system (2.8.1) is equivalent to JY − Y K = 0.
Partition Y according to the partitions of J and K as given in (2.8.4). So

Y = (Yij), Yij ∈ Kmi×nj ,

mi =
qi∑
r=1

mir, nj =
pj∑
r=1

njr, i = 1, ..., l, j = 1, ..., k.

Then the matrix equation for Y reduces to lk matrix equations

(2.8.5) JiYij − YijKj = 0, i = 1, ..., l, j = 1, ..., k.

The following two lemmas analyze the above matrix equations.

Lemma 2.8.1 Let i ∈ [l], j ∈ [k]. If λi 6= µj then the corresponding
matrix equation in (2.8.5) has the unique trivial solution Yij = 0.

Proof. Let

Ji = λiImi + J̄i, J̄i = ⊕qir=1Hmir ,

Kj = µjInj + K̄j , K̄j = ⊕pjr=1Hnjr .

Note that J̄u = K̄v = 0 for u ≥ mi and v ≥ nj . Then (2.8.5) becomes

(λi − µj)Yij = −J̄Yij + YijK̄.

Thus

(λi − µj)2Yij = −J̄i(λi − µj)Yij + (λi − µj)YijK̄j =
−J̄i(−J̄iYij + YijK̄j) + (−J̄iYij + YijK̄j)K̄j =
(−J̄i)2Yij + 2(−J̄i)YijK̄j + YijK̄

2
j .

Continuing this procedure we get

(λi − µj)rYij =
r∑

u=0

(
r

u

)
(−J̄i)uYijK̄r−u

j .

Hence for r = mi + nj either J̄ui or K̄r−u
j is a zero matrix. Since λi 6= µj

we deduce that Yij = 0. 2

Lemma 2.8.2 Let Z = [zαβ ] ∈ Fm×n satisfy the equation

(2.8.6) HmZ = ZHn.
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Then the entries of Z are of the form

zαβ = 0 for β < α+ n−min(m,n),
(2.8.7)

zαβ = z(α+1)(β+1) for β ≥ α+ n−min(m,n).

In particular, the subspace of all m × n matrices Z satisfying (2.8.6) has
dimension min(m,n).

Proof. Note that the first column and the last row of Hl are equal to
zero. Hence the first column and the last row of ZHn = HmZ are equal to
zero. That is

zα1 = zmβ = 0, α = 2, ...,m, β = 1, ..., n− 1.

In all other cases, equating the (α, β) entries of HmZ and ZHn we obtain

z(α+1)β = zα(β−1), α = 1, ...,m− 1, β = 2, ..., n.

The above two sets of equalities yield (2.8.7). 2

Combine the above two lemmas to obtain.

Theorem 2.8.3 Consider the system of (2.8.5). If λi 6= µj then Yij =
0. Assume that λi = µj. Partition Yij according to the partitions of Ji and
Kj as given in (2.8.4):

Yij = [Y (uv)
ij ], Y (uv)

ij ∈ Kmiu×njv , u = 1, ..., qi, v = 1, ..., pj .

Then each Y
(uv)
ij is of the form given in Lemma 2.8.2 with m = miu and

n = njv. Assume that

λi = µi, i = 1, ..., t,
(2.8.8)

λi 6= µj , i = t+ 1, ..., l, j = t+ 1, ..., k.

Then the dimension of the subspace Y ⊂ Km×n of block matrices Y =
[Yij ]lki,j=1 satisfying (2.8.5) is given by the formula

(2.8.9) dim Y =
t∑
i=1

qi,pi∑
u,v=1

min(miu, niv).
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Consider a special case of (2.8.1)

(2.8.10) C(A) = {X ∈ Dn×n : AX −XA = 0}.

Then C(A) is an algebra over D with the identity I. In case D is a field F,
or more generally D is a Bezout domain, C(A) has a finite basis. Theorem
2.8.3 yields

dim C(A) =
l∑
i=1

qi∑
u,v=1

min(miu,miv).

(Note that the dimension of C(A) does not change if we pass from F to an
finite extension field K in which the characteristic polynomial of A splits.)
As {miu)piu=1 is a decreasing sequence we have

qi∑
v=1

min(miu,miv) = umiu +
qi∑

v=u+1

miv.

So

(2.8.11) dim C(A) =
l∑
i=1

qi∑
u=1

(2u− 1)miu.

Let i1(x), ..., in(x) be the invariant polynomials of xI−A. Use (2.6.7-2.6.9)
to deduce

(2.8.12) dim C(A) =
n∑
u=1

(2u− 1)deg in−u+1(x).

The above formula enables us to determine when any commuting matrix
with A is a polynomial in A. Clearly, the dimension of the subspace spanned
by the powers of A is equal to the degree of the minimal polynomial of A.

Corollary 2.8.4 Let A ∈ Fn×n. Then each commuting matrix with
A can be expressed as a polynomial in A if and only if the minimal and
the characteristic polynomial of A are equal. That is, A is similar to a
companion matrix C(p), where p(x) = det (xI −A).

A matrix for which the minimal and characteristic polynomial coincide is
called nonderogatory. If the minimal polynomial of A is a strict factor of the
characteristic polynomial of A, i.e. the degree of the minimal polynomial
is strictly less than the degree of the characteristic polynomial, then A is
called derogatory.

Problems
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1. For A = [aij ] ∈ Dm×p, B = (bkl) ∈ Dn×q let

(2.8.13) A⊗B := [aijB] ∈ Dmn×pq,

be the tensor (Kronecker) product of A and B. Show

(A1⊗A2)(B1⊗B2) = (A1B1)⊗(A2B2), Ai ∈ Dmi×ni , Bi ∈ Dni×pi , i = 1, 2.

2. Let µ : Dm×n → Dmn be given by µ(X) = X̂, where X̂ is defined be
(2.8.2). Show that

µ(AX) = (In⊗A)µ(X), µ(XB) = (B>⊗Im)µ(X), A ∈ Dm×m, B ∈ Dn×n.

3. Let P ∈ Fm×m, Q ∈ Fn×n, R ∈ Fm×n. Let

A =
[
P R
0 Q

]
, B =

[
P 0
0 Q

]
∈ F(m+n)×(m+n).

Assume that the characteristic polynomials of P and Q are coprime.

Show that there exists X =
[
Im Y
0 Im

]
which satisfies (2.8.1). Hence

A ≈ B.

4. Let A =
∑`
i=1⊕Ai ∈ Fn×n. Show that

(2.8.14) dim C(A) ≥
∑̀
i=1

dim C(Ai),

and the equality holds if and only if

(det (xI −Ai),det (xI −Aj)) = 1 for i = 1, ..., `, j = 1, ..., `− 1.

5. Let A ∈ Dn×n. Show that the ring C(A) is a commutative ring if
and only if A satisfies the conditions of Corollary 2.8.4, where F is
the quotient field of D.

6. Let A ∈ Dn×n, B ∈ C(A). Then B is an invertible element in the
ring C(A) if and only if B is a unimodular matrix.

7. Let A ∈ Dm×m, B ∈ Dn×n. Define

(2.8.15) C(A,B) := {X ∈ Dm×n : AX −XB = 0}.

Show that C(A,B) is a left (right) module of C(A) (C(B)) under the
matrix multiplication.
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8. Let A,B ∈ Dn×n. Show that A ≈ B if and only if the following two
conditions hold:

(a) C(A,B) is a C(A)-module with a basis consisting of one element
U ;

(b) any basis element U is a unimodular matrix.

2.9 A criterion for similarity of two matrices

Definition 2.9.1 Let A ∈ Dm×m, B ∈ Dn×n. Denote by r(A,B) and
ν(A,B) the rank and the nullity of the matrix In ⊗A−B> ⊗ Im viewed as
a matrix acting on the vector space Fm×n, where F is the quotient field of
D.

According to Theorem 2.8.3 we have

ν(A,B) =
t∑
i=1

qi,pi∑
u,v=1

min(miu, niv),

(2.9.1)

r(A,B) = mn−
t∑
i=1

qi,pi∑
u,v=1

min(miu, niv).

Theorem 2.9.2 Let A ∈ Dm×m, B ∈ Dn×n. Then

ν(A,B) ≤ 1
2

(ν(A,A) + ν(B,B)).

Equality holds if and only if m = n and A and B are similar over the
quotient field F.

Proof. Without loss of generality we may assume that D = F and the
characteristic polynomials of A and B split over F[x]. For x, y ∈ R let
min(x, y) (max(x, y)) be the minimum (maximum) of the values of x and
y. Clearly min(x, y) is a homogeneous concave function on R2. Hence

(2.9.2) min(a+ b, c+ d) ≥ min(a, c) + min(b, d) + min(a, d) + min(b, c)
2

.

A straightforward calculation shows that if a = c and b = d then equality
holds if and only if a = b. Let

N = max(m,n), miu = njv = 0,
for qi < u ≤ N, pi < v ≤ N, i = 1, ..., `, j = 1, ..., k.
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Then

ν(A,A) + ν(B,B) =
`,N∑
i,u=1

(2u− 1)miu +
k,N∑
j,u=1

(2u− 1)nju ≥

t,N∑
i,u=1

(2u− 1)(miu + niu).

and the equality holds if and ` = k = t. Next consider the inequality

t,N∑
i,u=1

(2u− 1)(miu + niu) =
t∑
i=1

N∑
u,v=1

min(miu + niu,miv + niv) ≥

1
2

t∑
i=1

N∑
u,v=1

(min(miu,miv) + min(miu, niv) +

min(niu,miv) + min(niu, niv)) =

1
2

t,N∑
i,u=1

(2u− 1)(miu + niu) +
t∑
i

qi,pi∑
u,v=1

min(miu, niv).

Combine the above results to obtain the inequality (2.9.2). Equality sign
holds in (2.9.2) if and only if A and B have the same Jordan canonical
forms. That is m = n and A is similar to B over F. 2

Suppose that A ≈ B. Hence (2.2.1) holds. The rules for the tensor
product (Problem 2.8.1) imply

I ⊗A−B> ⊗ I = ((Q>)−1 ⊗ I)(I ⊗A−A> ⊗ I)(Q> ⊗ I),
(2.9.3)

I ⊗A−B> ⊗ I = ((Q>)−1 ⊗Q)(I ⊗A−A> ⊗ I)(Q> ⊗Q−1).

Hence the three matrices

(2.9.4) I ⊗A−A> ⊗ I, I ⊗A−B> ⊗ I, I ⊗B −B> ⊗ I

are similar. In particular, these matrices are equivalent. Over a field F
the above matrices are equivalent if and only if the have the same nullity.
Hence Theorem 2.9.2 yields.

Theorem 2.9.3 Let A,B ∈ Fn×n. Then A and B are similar if and
only if the three matrices in (2.9.4) are equivalent.

The obvious part of Theorem 2.9.3 extends trivially to any integral domain
D.
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Proposition 2.9.4 Let A,B ∈ Dn×n. If A and B are similar over D
then the three matrices in (2.9.4) are equivalent over D.

However, this condition is not sufficient for the similarity of A and B even
in the case D = Z. (See Problem 1.) The disadvantage of the similarity
criterion stated in Theorem 2.9.3 is due to the appearance of the matrix
I ⊗A−B> ⊗ I, which depends on A and B. It is interesting to note that
the equivalence of just two matrices in (2.9.4) does not imply the similarity
of A and B. Indeed

I ⊗A−A> ⊗ I = I ⊗ (A+ λI)− (A+ λI)> ⊗ I

for any λ ∈ F. If F has an infinite characteristic then A 6≈ A + λI for
any λ 6= 0. (Problem 2.) Also if A = Hn and B = 0 then ν(A,A) =
ν(A,B) = n. (Problem 3.) however, under certain assumptions the equality
ν(A,A) = ν(A,B) implies A ≈ B.

Theorem 2.9.5 Let A ∈ Cn×n. Then there exists a neighborhood of
A = [aij ]

(2.9.5) D(A, ρ) := {B = [bij ] ∈ Cn×n :
n∑

i,j=1

|bij − aij |2 < ρ2},

for some positive ρ depending on A, such that if

(2.9.6) ν(A,A) = ν(A,B), B ∈ D(A, ρ),

then B is similar to A.

Proof. Let r be the rank of I ⊗A−A> ⊗ I. So there exist indices

α = {(α11, α21), ..., (α1r, α2r)}, β = {(β11, β21), ..., (β1r, β2r)} ⊂ [n]× [n],

viewed as elements of [n2]r, such that det (I ⊗A−A> ⊗ I)[α, β] 6= 0. Also
det (I⊗A−A>⊗ I)[γ, δ] = 0 for any γ, δ ∈ [n2]r+1. First choose a positive
ρ′ such that

(2.9.7) det (I ⊗A−B> ⊗ I)[α, β] 6= 0, for all B ∈ D(A, ρ′).

Consider the system (2.8.1) as a system in n2 variables, which are the
entries of X = [xij ]n1 . In the system (2.8.1) consider the subsystem of r
equations corresponding to the set α:

(2.9.8)
n∑
k=1

aikxkj − xikbkj = 0, i = α1p, j = α2p, p = 1, ..., r.
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Let

(2.9.9) xkj = δkj for (k, j) 6= (β1p, β2p), p = 1, ..., r.

The condition (2.9.7) yields that the system (2.9.8)-(2.9.9) has a unique
solution X(B) for any B ∈ D(A, ρ′). Also X(A) = I. Use the continuity
argument to deduce the the existence of ρ ∈ (0, ρ′] so that det X(B) 6= 0 for
all B ∈ D(A, ρ). Let V be the algebraic variety of all matrices B ∈ Cn×n
satisfying

(2.9.10) det (I ⊗A−B> ⊗ I)[γ, δ] = 0 for any γ, δ ∈ Q(r+1),n2 .

We claim that V ∩ D(A, ρ) is the set of matrices of the form (2.9.6). In-
deed, let B ∈ V ∩D(A, ρ). Then (2.9.7) and (2.9.10) yield that ν(A,B) =
ν(A,A) = n2 − r. Assume that B satisfies (2.9.6). Hence (2.9.10) holds
and B ∈ V ∩D(A, ρ). Assume that B ∈ V ∩D(A, ρ). Then

AX(B)−X(B)B = 0, det X(B) 6= 0 ⇒ A ≈ B.

2

Problems

1. Show that for A and B given in Problem 2.2.1 the three matrices in
(2.9.4) are equivalent over Z, but A and B are not similar over Z.
(See Problem 2.2.1.)

2. Show that if F has an infinite characteristic then for any A ∈ Fn×n
A ≈ A + λI if and only if λ = 0. (Compare the traces of A and
A+ λI.)

3. Show that if A = Hn and B = 0 then ν(A,A) = ν(A,B) = n.

4. Let A,B ∈ Dn×n. Assume that the three matrices in (2.9.4) are
equivalent. Let I be a maximal ideal in D. Let F = D/I and view
A,B as matrices over F. Prove that A and B similar over F. (Show
that the matrices in (2.9.4) are equivalent over F.)

2.10 The matrix equation AX −XB = C

A related equation to (2.8.1) is the nonhomogeneous equation

(2.10.1) AX −XB = C, A ∈ Fm×m, B ∈ Fn×n, C,X ∈ Fm×n.
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This equation can be written in the tensor notation as

(2.10.2) (In ⊗A−B> ⊗ Im)X̂ = Ĉ.

The necessary and sufficient condition for the solvability of (2.10.2) can
be stated in the dual form as follows. Consider the homogenous system
whose coefficient matrix is the transposed coefficient matrix of (2.10.2),
(see Problem 1),

(In ⊗A> −B ⊗ Im)Ŷ = 0.

Then (2.10.2) is solvable if and only if any solution Ŷ of the above system
is orthogonal to Ĉ (e.g. Problem 2). In matrix form the above equation is
equivalent to

A>Y − Y B> = 0, Y ∈ Fm×n.

The orthogonality of Ŷ and Ĉ are written as trY >C = 0. (See Problem
3.) Thus we showed:

Theorem 2.10.1 Let A ∈ Fm×m, B ∈ Fn×n. Then (2.10.1) is solvable
if and only if

(2.10.3) trZC = 0

for all Z ∈ Fm×n satisfying

(2.10.4) ZA−BZ = 0.

Using the above Theorem we can obtain a stronger version of Problem 4.

Theorem 2.10.2 Let

G = [Gij ]`1, Gij ∈ Fni×nj , Gij = 0 for j < i, i, j = 1, ..., `.

Then

(2.10.5) dim C(G) ≥
∑̀
i=1

dim C(Gii).

Proof. Consider first the case ` = 2. Let G =
[
A E
0 B

]
. Assume that

T =
[
U X
0 V

]
commutes with G. So

(2.10.6) AU − UA = 0, BV − V B = 0, AX −XB = UE − EV.
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Theorem 2.10.1 implies that U ∈ C(A), V ∈ C(B) satisfy the last equation
of (2.10.6) if and only if trZ(UE − EV ) = 0 for all Z satisfying (2.10.4).
Thus the dimension of pairs (U, V ) satisfying (2.10.6) is at least

dim C(A) + dim C(B)− dim C(B,A).

On the other hand, for a fixed (U, V ) satisfying (2.10.6), the set of all X
satisfying the last equation of (2.10.6) is of the form X0 + C(A,B). The
equality (2.8.9) yields dim C(A,B) = dim C(B,A). Hence (2.10.5) holds
for ` = 2. The general case follows straightforward by induction on `. 2

We remark that contrary to the results given in Problem 2.8.4 the equal-
ity in (2.10.5) may occur even if Gii = Gjj for some i 6= j. (See Problem
4.)

Theorem 2.10.3 Let A ∈ Fm×m, B ∈ Fn×n, C ∈ Fm×n. Let

F =
[
A 0
0 B

]
, G =

[
A C
0 B

]
∈ F(m+n)×(m+n).

Show that F ≈ G if and only if the matrix equation (2.10.1) is solvable.

Proof. Assume that (2.10.1) solvable. Then U =
[
Im X
0 In

]
∈ GL(m+

n,F) and G = U−1FU .
Assume now that F ≈ G. We prove the solvability of (2.10.1)) by

induction on m+ n, where m,n ≥ 1. Let K be a finite extension of F such
that the characteristic polynomial of A and B split to linear factors. Clearly
it is enough to prove the solvability of (2.10.1) for the field K. Suppose first
that A and B do not have common eigenvalues. Then Problem 2.8.3 yields
that F ≈ G. Assume now that A and B have a common eigenvalue λ1.
For m = n = 1 it means that A = B = λ1 ∈ F. Then the assumption that
F ≈ G implies that C = 0 and (2.10.1) is solvable with X = 0.

Assume now that the theorem holds for all 2 ≤ m + n < L. Let m +
n = L. The above arguments yield that it is enough to consider the case
where the characteristic polynomials of A and B split to linear factors
and λ1 is a common eigenvalue of A and B. By considering the matrices
F − λ1Im+n, G − λ1Im+n we may assume that 0 is an eigenvalue of A
and B. By considering the similar matrices U−1FU, U−1GU where U =
U1 ⊕ U2, U1 ∈ GL(m,F), U ∈ GL(n,F) we may assume that A and B
are in a Jordan canonical form of the form

A = A1⊕A2, B = B1⊕B2, Am1 = 0, Bn1 = 0, 0 6∈ (spec (A2)∪spec (B2)).

(It is possible that either A = A1 or B = B1.) Let

U =
[
Im X
0 In

]
, X =

[
0 X12

X21 0

]
, C =

[
C11 C12

C21 C22

]
.
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Use Problem 2.8.3 to deduce that one can choose X12, X21 such that G′ =

U−1GU = G =
[
A C ′

0 B

]
and C ′12 = 0, C ′21 = 0. For simplicity of notation

we will assume that C12 = 0, C21 = 0. Permute second and third blocks in
F,G to obtain that F,G are permutationally similar to

F̂ =


A1 0 0 0
0 B1 0 0
0 0 A2 0
0 0 0 B2

 , Ĝ =


A1 C11 0 0
0 B1 0 0
0 0 A2 C22

0 0 0 B2

 ,
respectively. So the Jordan canonical form of F̂ , Ĝ corresponding to 0 are

determined by the Jordan canonical forms of
[
A1 0
0 B1

]
,

[
A1 C11

0 B1

]
re-

spectively. The Jordan canonical form of F̂ , Ĝ corresponding to other eigen-

values are determined by the Jordan canonical forms of
[
A2 0
0 B2

]
,

[
A2 C22

0 B2

]
respectively. Hence[

A1 0
0 B1

]
≈
[
A1 C11

0 B1

]
,

[
A2 0
0 B2

]
≈
[
A2 C22

0 B2

]
.

Thus if either A or B are not nilpotent the theorem follows by induction.
It is left to consider the case where A and B are nilpotent matrices,

which are in their Jordan canonical form. If A = 0, B = 0 then C = 0 and
the theorem follows. So we assume that either at least one of the matrices
in {A,B} is not a zero matrix. Since dim kerF = dim kerG Problem
6 yields that (after the upper triangular similarity applied to G) we may
assume that kerF = kerG. Let

A = ⊕pi=1Ai, B = ⊕qj=1Bj ,

where each Ai, Bj is an upper triangular Jordan block of dimension mi, nj
respectively. Let

C = [Cij ], Cij ∈ Cmi×nj , i = 1, ..., p, j = 1, ..., q,

be the block partition of C induced by the block partition of A and B re-
spectively. The assumption that kerF = kerG is equivalent to the assump-
tion that the first column of each Cij is zero. Consider V = Fm+n/ kerF .
Then F,G induce the operators F̂ , Ĝ on V which are obtained from F,G
by deleting the rows and columns corresponding to the vectors in the ker-
nels of A and B. (These vectors are formed by some of the vectors in the
canonical basis of Fm+n.) Note that the Jordan canonical forms of F̂ , Ĝ are
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direct sums of reduced Jordan blocks (obtained by deleting the first row
and column in each Jordan block) corresponding to F̂ , Ĝ respectively. As
F and G have the same Jordan blocks it follows that F̂ , Ĝ have the same
Jordan blocks, i.e. F̂ ≈ Ĝ. It is easy to see that

F̂ =
[
Â 0
0 B̂

]
, Ĝ =

[
Â Ĉ

0 B̂

]
,

Â = ⊕pi=1Âi, B̂ = ⊕qj=1B̂j , Ĉ = (Ĉij),

Âi ∈ F(mi−1)×(mi−1), B̂j ∈ F(nj−1)×(nj−1), Ĉij ∈ F(mi−1)×(nj−1).

Here Âi, B̂j , Ĉij obtained from Ai, Bj , Cij be deleting the first row and
column respectively. Since F̂ ≈ Ĝ we can use the induction hypothesis.
That is there exists X = (Xij) ∈ Fm×n partitioned as C with the following
properties: The first row and the column of each Xij is zero. AiXij −
XijBj−Cij have zero entries in the last mi−1 rows and in the first column.

By considering U−1GU with U =
[
Im X
0 In

]
we already may assume that

the last mi − 1 rows and the first column of each Cij are zero. Finally we
observe that if Ai and Bj are Jordan blocks that the equation (2.10.1) is
solvable by letting Xij be a corresponding matrix with the last mi−1 rows
equal to zero. 2

Problems

1. Let A⊗B be defined as in (2.8.13). Prove that (A⊗B)> = A>⊗B>.

2. Consider the system

Ax = b, A ∈ Fm×n, b ∈ Fn.

Show the above system is solvable if and only any solution of A>y = 0
satisfies y>b = 0. (Change variables to bring A to its diagonal form
as in §1.12.)

3. Let X,Y ∈ Dm×n. Let µ(X), µ(Y ) ∈ Dmn be defined as in Problem
2.8.1. Show that

µ(X)>µ(Y ) = trY >X.

4. Assume in Theorem 2.10.2 ` = 2, G11 = G22 = 0, G12 = I. Show
that in this case the equality sign holds in (2.10.5).
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5. Let Ai ∈ Fni×ni , i = 1, 2 and suppose that A1 and A2 do not have a
common eigenvalue. Assume that A = A1 ⊕A2. Let

C = [Cij ]21, X = [Xij ]21, Cij , Xij ∈ Fni×nj , i, j = 1, 2.

Using Problem 2.8.4 prove that the equation AX−XA = C is solvable
if and only if the equations AiXii−XiiAi = Cii, i = 1, 2 are solvable.

6. Let A ∈ Fm×m, B ∈ Fn×n be two nilpotent matrix. Let C ∈ Fm×n
and define the matrices F,G ∈ F(m+n)×(m+n) as in Theorem 2.10.3.
Show that dim kerF ≥ dim kerG. Equality holds if and only if
C kerB ⊂ Range A. Equivalently, equality holds if and only if there
exists X ∈ Fm×n such that

kerF = kerU−1GU, U =
[
Im X
0 In

]
.

2.11 A case of two nilpotent matrices

Theorem 2.11.1 Let T ∈ Hom (V) be nilpotent. Let index 0 = m =
m1 ≥ m2 ≥ ... ≥ mp ≥ 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T . Let Z ⊂ V be an eigenspace of T
corresponding to the eigenvalue 0. Denote by W = V/Z. Then T induces
a nilpotent operator T ′ ∈ Hom (W). The dimension of Jordan blocks of T ′

correspond to the positive integers in the sequence m′1,m
′
2, . . . ,m

′
p, where

m′i is either mi or mi− 1. Furthermore, exactly dim Z of indices of m′i are
equal to mi − 1.

Proof. Suppose first that p = 1, i.e. W is an irreducible invariant
subspace of T . Then Z is the eigenspace of T and the theorem is straight-
forward. Use Corollary 2.7.8 in the general case to deduce the theorem. 2

Theorem 2.11.2 Let A ∈ Fn×n be a nilpotent matrix. Put

Xk = {x ∈ Fn : Akx = 0}, k = 0, ...

Then

(2.11.1) X0 = {0} and Xi ⊂ Xi+1, i = 0, ...

Assume that

Xi 6= Xi+1 for i = 0, ..., p− 1, and Xp = Fn, p = index 0.
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Suppose that B ∈ Fn×n satisfies

(2.11.2) BXi+1 ⊂ Xi, for i = 1, ..., p− 1.

Then B is nilpotent and

(2.11.3) ν(A,A) ≤ ν(B,B).

Equality holds if and only if B is similar to A.

Proof. Clearly (2.11.2) holds for any A ∈ Fn×n. As BpFn = BpXp ⊂
X0 = {0}, it follows that B is nilpotent. We prove the claim by induction
on p. For p = 1 A = B = 0 and equality holds in (2.11.3). Suppose that
the theorem holds for p = q − 1. Let p = q.

Assume that the Jordan blocks of A and B are the sizes q = m1 ≥ . . . ≥
mj ≥ 1 and l1 ≥ . . . ≥ lk ≥ 1 respectively. Recall that X1 is the eigenspace
of A corresponding to λ = 0. Hence j = dim X1. Since BX1 = X0 = {0}
it follows that the dimension of the eigenspace of B is at least j. Hence
k ≥ j.

Let W := V/X. Since AX1 = {0} A induces a nilpotent operator
A′ ∈ Hom (W). Let X′i = ker(A′)i, i = 1, . . .. Then X′i = Xi+1/X1, i =
0, 1, . . .. Hence the index of A′ = q − 1. Furthermore the Jordan blocks
of A′ correspond to the positive numbers in the sequence m′1 = m1 − 1 ≥
. . . ≥ m′j = mj−1. Since BX1 = {0} it follows that B induces the operator
B′ ∈ Hom (W). The equality X′i = Xi+1/X1 implies that B′X′i ⊂ X′i−1

for i = 1, . . ..
Theorem 2.11.1 implies that the Jordan blocks of B′ correspond to

nonzero l′1, . . . , l
′
k, where l′i is either li or li − 1. Furthermore exactly j

of l′i are equal to li − 1. Recall (2.8.11) that

ν(A,A) =
j∑
i=1

(2i− 1)mi =
j∑
i=1

(2i− 1)m′i +
j∑
i=1

(2i− 1) = ν(A′, A′) + j2.

Assume that

l1 = . . . = lk1 > lk1+1 = . . . = lk2 > lk2+1 = . . . > lkr−1+1 = . . . = lkr ,

where kr = k. let k0 = 0. Suppose that in the set of {ks−1 + 1, . . . , ks} we
have exactly i ≤ ks − ks−1 indices such that l′r = lr − 1 for r ∈ {ks−1 +
1, . . . , ks}. We then assume that l′r = lr−1 for r = ks, ks−1, . . . , ks− i+1.
Hence l′1 ≥ . . . ≥ l′k ≥ 0. Thus ν(B′, B′) =

∑k
i=1(2i− 1)l′i. So

ν(B,B) =
k∑
i=1

(2i− 1)li = ν(B′, B′) +
k∑
i=1

(2i− 1)(li − l′i) ≥ ν(B′, B′) + j2.
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equality holds if and only if l′i = li − 1 for i = 1, . . . , j. The induc-
tion hypothesis implies that ν(A′, A′) ≤ ν(B′, B′) and equality holds if
and only if A′ ∼ B′, i.e A′ and B′ have the same Jordan blocks. Hence
ν(A,A) ≤ ν(B,B) and equality holds if and only if A ∼ B. 2

2.12 Historical remarks

The exposition of §2.1 is close to [Gan59]. The content of §2.2 is standard.
Theorem 2.3.4 is well known [Gan59]. Other results of §2.3 are not common
and some of them may be new. §2.4 is standard and its exposition is close
to [Gan59]. Theorem 2.5.4 is probably known for Ded (see [Lea48] for the
case D = H(Ω), Ω ⊂ C.) Perhaps it is new for Bezout domains. The
results of §2.6 are standard. Most of §2.7 is standard. The exposition of
§2.8 is close to [Gan59]. For additional properties of tensor product see
[MaM64]. Problem 2.8.8 is close to the results of [Fad66]. See also [Gur80]
for an arbitrary integral domain D. Theorems 2.9.2 and 2.9.3 are taken
from [Fri80b]. See [GaB77] for a weaker version of Theorem 2.9.3. Some of
the results of §2.10 may be new. Theorem 2.10.1 was taken from [Fri80a].
Theorem 2.10.3 is called Roth’s theorem [Rot52]. Theorem 2.11.2 is taken
from [Fri80b].



Chapter 3

Functions of Matrices and
Analytic Similarity

3.1 Components of a matrix and functions of
matrices

In this Chapter we assume that all the matrices are complex valued (F = C)
unless otherwise stated. Let φ(x) be a polynomial (φ ∈ C[x]). The following
relations are easily established

φ(B) = Pφ(A)P−1, B = PAP−1, A,B ∈ Cn×n, P ∈ GLn(C),
(3.1.1)

φ(A1 ⊕A2) = φ(A1)⊕ φ(A2).

It often pays to know the explicit formula for φ(A) in terms of the Jordan
canonical form of A. In view of (3.1.1) it is enough to consider the case
where J is composed of one Jordan block.

Lemma 3.1.1 Let J = λ0I + H ∈ Cn×n, where H = Hn. Then for
any φ ∈ C[x]

φ(J) =
n−1∑
k=0

φ(k)(λ0)
k!

Hk.

Proof. For any φ we have the Taylor expansion

φ(x) =
N∑
k=0

φ(k)(λ0)
k!

(x− λ0)k, N = max(deg φ, n).

95
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As H` = 0 for ` ≥ n from the above equality we deduce the lemma. 2

Using the Jordan canonical form of A we obtain.

Theorem 3.1.2 Let A ∈ Cn×n. Assume that the Jordan canonical
form of A is given by (2.6.5). Then for φ ∈ C[x] we have

(3.1.2) φ(A) = P (⊕`i=1 ⊕
qi
j=1

mij−1∑
k=0

φ(k)(λi)
k!

Hk
mij )P

−1.

Definition 3.1.3 Let the assumptions of Theorem 3.1.2 hold. Then
Zik = Zik(A) is called the (i, k) component of A and is given by

Zik = P (0⊕ ...⊕ 0⊕qij=1 H
k
mij ⊕ 0...⊕ 0)P−1,

(3.1.3)
k = 0, ..., si − 1, si = mi1, i = 1, ..., `.

Compare (3.1.2) with (3.1.3) to deduce

(3.1.4) φ(A) =
∑̀
i=1

si−1∑
j=0

φ(j)(λi)
j!

Zij .

Definition 3.1.4 Let A ∈ Cn×n and assume that Ω ⊂ C contains
spec (A). Then for φ ∈ H(Ω) define φ(A) by (3.1.4).

Using (3.1.3) it is easy verify that the components of A satisfy

Zij , i = 1, ..., `, j = 1, ..., si − 1, are linearly independent,
ZijZpq = 0 if either i 6= p, or i = p and j + q ≥ si,

(3.1.5)
ZijZiq = Zi(j+q), for j + q ≤ si − 1,

A = P (
∑̀
i=1

λiZi0 + Zi1)P−1.

Consider the component Zi(si−1). The above relations imply

(3.1.6) AZi(si−1) = Zi(si−1)A = λiZi(si−1).

Thus the nonzero columns of Zi(si−1), Z>i(si−1) are the eigenvectors of
A, A> respectively corresponding to λi. (Note that Zi(si−1) 6= 0.)
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Lemma 3.1.5 Let A ∈ Cn×n. Assume that λi is an eigenvalue of A.
Let Xi be the generalized eigenspace of A corresponding to λi:

(3.1.7) Xi = {x ∈ Cn : (λiI −A)six = 0}.

Then

(3.1.8) rank Zi(si−1) = dim (λiI−A)si−1Xi.

Proof. It is enough to assume that A is in its Jordan form. Then Xi

is the subspace of all x = (x1, ..., xn)>, where the first
∑i−1
p=1

∑qp
j=1mpj co-

ordinates and the last
∑`
p=i+1

∑qp
j=1mpj coordinates vanish. So (λiI −

A)si−1Xi contains only those eigenvectors which correspond to Jordan
blocks of the length si. Clearly, the rank of Zi(si−1) is exactly the number
of such blocks. 2

Definition 3.1.6 Let A ∈ Cn×n. Then the spectral radius ρ(A), the
peripheral spectrum spec peri(A) and the index A of A are given by

ρ(A) = max
λ∈spec (A)

|λ|,

spec peri(A) = {λ ∈ spec (A) : |λ| = ρ(A)},(3.1.9)
index A = max

λ∈spec peri(A)
index λ.

Problems

1. Let A ∈ Cn×n and let ψ ∈ C[x] be the minimal polynomial of A.
Assume that Ω ⊂ C is an open set in C such that spec (A) ⊂ Ω. Let
φ ∈ H(Ω). Then the values

(3.1.10) φ(k)(λ), k = 0, ..., index λ− 1, λ ∈ spec (A)

are called the values of φ on the spectrum of A. Two functions φ, θ ∈
H(Ω) are said to coincide on spec (A) if they have the same values on
spec (A). Assume that φ ∈ C[x] and let

φ = ωψ + θ, deg θ < deg ψ.

Show that θ coincide with φ on spec (A). Let

φ(x)
ψ(x)

= ω(x)+
θ(x)
ψ(x)

= ω(x)+
∑̀
i=1

si∑
j=1

αij
(x− λi)j

, si = index λi, i = 1, ..., `,
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where ψ is given by (2.5.11). Show that αij , j = si, ..., si − p are
determined recursively by φ(j), j = 0, ..., p. (Multiply the above
equality by ψ(x) and evaluate this identity at λi.) For any φ ∈ H(Ω)
define θ by the equality

(3.1.11) θ(x) = ψ(x)
∑̀
i=1

si∑
j=1

αij
(x− λi)j

.

The polynomial θ is called the Lagrange-Sylvester (L-S) interpolation
polynomial of φ (corresponding to ψ). Prove that

(3.1.12) φ(A) = θ(A).

Let θj be the L-S polynomials of φj ∈ H(Ω) for j = 1, 2. Show that
θ1θ2 coincides with L-S polynomial of φ1φ2 on spec (A). Use this fact
to prove the identity

(3.1.13) φ1(A)φ2(A) = φ(A), φ = φ1φ2.

2. Prove (3.1.13) by using the definition (3.1.4) and the relation (3.1.5).

3. Let the assumptions of Problem 1 hold. Assume that a sequence
{φm}∞1 ⊂ H(Ω) converges to φ ∈ H(Ω). That is {φm}∞1 converges
uniformly on any compact set of Ω. Hence

lim
m→∞

φ(j)
m (λ) = φ(j)(λ), for any j ∈ Z+ and λ ∈ Ω.

Use the definition (3.1.4) to show

(3.1.14) lim
m→∞

φm(A) = φ(A).

Apply this result to prove

(3.1.15) eA =
∞∑
m=0

Am

m!
(= lim

N→∞

N∑
m=0

Am

m!
).

(3.1.16) (λI −A)−1 =
∞∑
m=0

Am

λm+1
for |λ| > ρ(A).
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3.2 Cesaro convergence of matrices

Let

(3.2.1) Ak = [a(k)
ij ] ∈ Cm×n, k = 0, 1, ...

be a sequence of matrices. The p− th Cesaro sequence is defined as follows.
First Ak,0 = Ak for each k ∈ Z+. Then for p ∈ N Ak,p defined recursively
by

(3.2.2) Ak,p = [a(k,p)
ij ] :=

1
k + 1

k∑
j=0

Aj,p−1, k ∈ Z+, p ∈ N.

Definition 3.2.1 A sequence {Ak}∞0 converges to A = [aij ] ∈ Cm×n if

lim
k→∞

a
(k)
ij = aij , i = 1, ...,m, j = 1, ..., n ⇐⇒ lim

k→∞
Ak = A.

A sequence {Ak}∞0 converges p-Cesaro to A = [aij ] if limk→∞Ak,p = A
for p ∈ Z+. A sequence {Ak}∞0 converges p-Cesaro exactly to A = [aij ] if
limk→∞Ak,p = A and {Ak,p−1}∞k=0 does not converge.

It is known (e.g. [Har49]) that if {Ak} is p-Cesaro convergent then {Ak} is
also p+ 1-Cesaro convergent. A simple example of exact 1-Cesaro conver-
gent sequence is the sequence {λk}, where |λ| = 1, λ 6= 1. More generally,
see [Har49] or Problem 1:

Lemma 3.2.2 Let |λ| = 1, λ 6= 1. Then for p ∈ N the sequence
{
(
k
p−1

)
λk}∞k=0 is exactly p-Cesaro convergent.

We now show how to recover the component Zα(sα−1)(A) for 0 6= λα ∈
spec peri(A) using the notion of Cesaro convergence.

Theorem 3.2.3 Let A ∈ Cn×n. Assume that ρ(A) > 0 and λα ∈
spec peri(A). Let

(3.2.3) Ak =
(sα − 1)!
ksα−1

(
λ̄αA

|λα|2
)k, sα = index λα.

Then

(3.2.4) lim
k→∞

Ak,p = Zα(sα−1), p = index A− index λα + 1.

The sequence Ak is exactly p-Cesaro convergent unless either spec peri(A) =
{λα} or index λ < index λα for any λ 6= λα in spec peri(A). In these
exceptional cases limk→∞Ak = Zα(sα−1).
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Proof. It is enough to consider the case where λα = ρ(A) = 1. By
letting φ(x) = xk in (3.1.4) we get

(3.2.5) Ak =
∑̀
i=1

si−1∑
j=0

(
k

j

)
λk−ji Zij .

So

Ak =
∑̀
i=1

si−1∑
j=0

(sα − 1)!
ksα−1

k(k − 1)...(k − j + 1)
j!

λk−ji Zij .

Since the components Zij , i = 1, ..., `, j = 0, ..., si− 1 are linearly indepen-
dent it is enough to analyze the sequence (sα−1)!

ksα−1

(
k
j

)
λk−ji , k = j, j + 1, ...

Clearly for |λ| < 1 and any j or for |λ| = 1 and j < sα − 1 this sequence
converges to zero. For λi = 1 and j = sα − 1 the above sequence converges
to 1. For |λi| = 1, λi 6= 1 and j ≥ sα − 1 the given sequence is exactly
j − sα + 2 convergent to 0 in view of Lemma 3.2.2. From these arguments
the theorem easily follows. 2

The proof of Theorem 3.2.3 yields:

Corollary 3.2.4 Let the assumptions of Theorem 3.2.3 hold. Then

(3.2.6) lim
N→∞

1
N + 1

N∑
k=0

(s− 1)!
ks−1

(
A

ρ(A)
)k = Z, s = index A.

If ρ(A) ∈ spec (A) and index ρ(A) = s then Z = Zρ(A)(s−1). Otherwise
Z = 0.

Problems

1. Let |λ| = 1, λ 6= 1 be fixed. Differentiate the formula

k−1∑
j=0

λj =
λk − 1
λ− 1

r times with respect to λ and divide by r! to obtain

k−1∑
j=0

(
j

r

)
λj = k

r−1∑
`=0

f(λ, r, `)
(
k − 1
`

)
λk−1 + (−1)r

λk − 1
(λ− 1)r+1

,

where f(λ, r, `) are some fixed nonzero functions. Use the induction
on r to prove Lemma 3.2.2.
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2. Let φ(x) be a normalized polynomial of degree p − 1. Prove that
the sequence {φ(k)λk}∞k=0 for |λ| = 1, λ 6= 1 is exactly p-Cesaro
convergent.

3. Let A ∈ Cn×n. For λi ∈ spec (A) let

(3.2.7) Zij(A) = [z(ij)
µν ]nµ,ν=1, j = 0, ..., index λi − 1.

Let

(3.2.8) indexµνλi := 1 + max{j : z(ij)
µν 6= 0, j = 0, ..., index λi − 1},

where indexµνλi = 0 if z(ij)
µν = 0 for j = 0, ..., index;λi − 1.

(3.2.9) ρµν(A) = max{|λi| : indexµνλi > 0},

where ρµν(A) = −∞ if indexµνλi = 0 for all λi ∈ spec (A). The
quantities index µνλi, ρµν(A) are called the (µ, ν) index of λi and
the (µ, ν) spectral radius respectively. Alternatively these quantities
are called the local index and the local spectral radius respectively.
Show that Theorem 3.2.3 and Corollary 3.2.4 could be stated in a
local form. That is for 1 ≤ µ, ν ≤ n assume that

λα = ρµν(A), sα = indexµνλα, Ak = (a(k)
µν ), Ak = [aµν,k], Ak,p = [aµν,kp],

where Ak and Ak,p are given by (3.2.3) and (3.2.2) respectively. Prove

lim
k→∞

aµν,kp = z(α(sα−1))
µν , p = indexµνA− indexµνλα + 1,

lim
N→∞

1
N + 1

N∑
k=0

(s− 1)!
ks−1

(
aµν,k
ρµν(A)

)k = zµν , s = indexµνA, ρµν(A) > 0,

where zµν = 0 unless λ1 = ρµν(A) ∈ spec (A) and indexµνλ1 =indexµν =
s. In this exceptional case zµν = z

(1(s−1))
µν .

Finally A is called irreducible if ρµν(A) = ρ(A) for each µ, ν = 1, ..., n.
Thus for an irreducible A the local and the global versions of Theorem
3.2.3 and Corollary 3.2.4 coincide.

3.3 An iteration scheme

Consider an iteration given by

(3.3.1) xi+1 = Axi + b, i = 0, 1, ...,
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where A ∈ Cn×n and xi,b ∈ Cn. Such an iteration can be used to solve a
system

(3.3.2) x = Ax + b.

Assume that x is the unique solution of (3.3.2) and let yi := xi − x. Then

(3.3.3) yi+1 = Ayi, i = 0, 1, ...

Definition 3.3.1 The system (3.3.3) is called stable if the sequence
yi, i = 0, 1, ... converges to zero for any choice of y0. The system (3.3.3)
is called bounded if the sequence yi, i = 0, 1, ... is bounded for any choice
of y0.

Clearly, the solution to (3.3.3) is yi = Aiy0, i = 0, 1, ... So (3.3.3) is stable
if and only if

(3.3.4) lim
i→∞

Ai = 0.

Furthermore (3.3.3) is bounded if and only if

(3.3.5) ‖Ai‖ ≤M, i = 0, 1, ...,

for some (or any) vector norm ‖ · ‖ : Cn×n → R+ and some M > 0. For
example one can choose the l∞ norm on Cm×n to obtain the induced matrix
norm:

(3.3.6) ‖B‖ = max
1≤i≤m,1≤j≤n

|bij |, B = [bij ] ∈ Cm×n.

See §7.4 and §7.7 for definitions and properties of vector and operator
norms.

Theorem 3.3.2 Let A ∈ Cn×n. Then conditions (3.3.4) holds if and
only if ρ(A) < 1. Conditions (3.3.5) hold if either ρ(A) < 1 or ρ(A) = 1
and index A = 1.

Proof. Consider the identity (3.2.5). Since all the components of A are
linearly independent (3.3.4) is equivalent to

lim
k→∞

(
k

j

)
λk−ji = 0, λi ∈ spec (A), j = 0, 1, ..., index λi − 1.

Clearly the above conditions are equivalent to ρ(A) < 1.
Since all vector norms on Cm×n are equivalent, the condition (3.3.5)

is equivalent to the statement that the sequence
(
k
j

)
λk−ji , k = 0, ..., is
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bounded for each λi ∈ spec (A) and each j ∈ [0, index λi − 1]. Hence
ρ(A) ≤ 1. Furthermore if |λi| = 1 then index λi = 1. 2

Problems

1. Let A ∈ Cn×n and ψ be the minimal polynomial of A given by
(2.5.11). Verify

(3.3.7) eAt =
∑̀
i=1

si−1∑
j=0

tjeλit

j!
Zij .

Use (3.1.5) or (3.1.15) to show

(3.3.8)
d

dt
eAt = AeAt = eAtA.

(In general t may be complex valued, but in this problem we assume
that t is real.) Verify that the system

(3.3.9)
dx
dt

= Ax, x(t) ∈ Cn

has the unique solution

(3.3.10) x(t) = eA(t−t)x(t).

The system (3.3.9) is called stable if limt→∞ x(t) =  for any solution
(3.3.10). The system (3.3.9) is called bounded if any solution x(t)
(3.3.10) is bounded on [t0,∞). Prove that (3.3.9) is stable if and only
if

(3.3.11) <λ < 0 for each λ ∈ spec (A).

Furthermore (3.3.9) is bounded if and only if each λ ∈ spec (A) sat-
isfies

(3.3.12) <λ ≤ 0 and index λ = 1 if <λ = 0.

3.4 Cauchy integral formula for functions of
matrices

Let A ∈ Cn×n, φ ∈ H(Ω), where Ω is an open set in C. If spec (A) ⊂ Ω it
is possible to define φ(A) by (3.1.4). The aim of this section is to give an
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integral formula for φ(A) using the Cauchy integration formula for φ(λ).
The resulting expression is simply looking and very useful in theoretical
studies of φ(A). Moreover, this formula remains valid for bounded operators
in Banach spaces (e.g. [Kat80]-[Kat82]).

Consider the function φ(x, λ) = (λ − x)−1. The domain of analyticity
of φ(x, λ) (with respect to x) is the punctured complex plane C at λ. Thus
if λ 6∈ spec (A) (3.1.4) yields

(3.4.1) (λI −A)−1 =
∑̀
i=1

si−1∑
j=0

(λ− λi)−(j+1)Zij .

Definition 3.4.1 The function (λI −A)−1 is called the resolvent of A
and is denoted by

(3.4.2) R(λ,A) = (λI −A)−1.

Let Γ = {Γ1, ...,Γk} be a set of disjoint simply connected rectifiable curves
such that Γ forms the boundary ∂D of an open set D and

(3.4.3) D ∪ Γ ⊂ Ω, Γ = ∂D.

For φ ∈ H(Ω) the classical Cauchy integration formula states (e.g. [Rud74])

(3.4.4) φ(ζ) =
1

2π
√
−1

∫
Γ

(λ− ζ)−1φ(λ)dλ, ζ ∈ D.

Differentiate the above equality j times to obtain

(3.4.5)
φ(j)(ζ)
j!

=
1

2π
√
−1

∫
Γ

(λ− ζ)−(j+1)φ(λ)dλ, ζ ∈ D, j = 0, 1, 2, ...

Theorem 3.4.2 Let Ω be an open set in C. Assume that Γ = {Γ1, ...,Γk}
is a set of disjoint simple, connected, rectifiable curves such that Γ is a
boundary of an open set D, and Γ ∪D ⊂ Ω. Assume that A ∈ Cn×n and
spec (A) ⊂ D. The for any φ ∈ H(Ω)

(3.4.6) φ(A) =
1

2π
√
−1

∫
Γ

R(λ,A)φ(λ)dλ.

Proof. Insert the expression (3.4.1) into the above integral to obtain

1
2π
√
−1

∫
Γ

R(λ,A)φ(λ)dλ =
∑̀
i=1

si−1∑
j=0

( 1
2π
√
−1

∫
Γ

(λ− λi)−(j+1)φ(λ)dλ
)
Zij .



3.4. CAUCHY INTEGRAL FORMULA FOR FUNCTIONS OF MATRICES105

Use the identity (3.4.5) to deduce

1
2π
√
−1

∫
Γ

R(λ,A)φ(λ)dλ =
∑̀
i=1

si−1∑
j=0

φ(j)(λi)
j!

Zij .

The definition (3.1.4) yields the equality (3.4.6). 2

We generalize the above theorem as follows.

Theorem 3.4.3 Let Ω be an open set in C. Assume that Γ = {Γ1, ...,Γk}
is a set of disjoint simple, connected, rectifiable curves such that Γ is a
boundary of an open set D, and Γ ∪D ⊂ Ω. Assume that A ∈ Cn×n and
spec (A) ∩ Γ = ∅. Let spec D(A) := spec (A) ∩D. The for any φ ∈ H(Ω)

(3.4.7)
∑

λi∈spec D(A)

si−1∑
j=0

φ(j)(λi)
j!

Zij =
1

2π
√
−1

∫
Γ

R(λ,A)φ(λ)dλ.

If spec D(A) = ∅ then the left-hand side of the above identity is zero.

See Problem 1.
We illustrate the usefulness of Cauchy integral formula by two examples.

Theorem 3.4.4 Let A ∈ Cn×n and assume that λp ∈ spec (A). Sup-
pose that D and Γ satisfy the assumptions of Theorem 3.4.3 (Ω = C).
Assume furthermore that spec (A) ∩D = {λp}. Then the (p, q) component
of A is given by

(3.4.8) Zpq(A) =
1

2π
√
−1

∫
Γ

R(λ,A)(λ− λp)qdλ.

(Zpq = 0 for q > sp − 1.)

See Problem 2.
Our next examples generalizes the first part of Theorem 3.3.2 to a com-

pact set of matrices.

Definition 3.4.5 A set A ⊂ Cn×n is called power stable if

(3.4.9) lim
k→∞

(
sup
A∈A
||Ak||

)
= 0,

for some vector norm on Cn×n. A set A ⊂ Cn×n is called power bounded
if

(3.4.10) ||Ak|| ≤ K, for any A ∈ A and k = 0, 1, ...,

for some positive K and some vector norm on Cn×n.
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Theorem 3.4.6 Let A ⊂ Cn×n be a compact set. Then A is power
stable if and only if ρ(A) < 1 for any A ∈ A.

To prove the theorem we need a well known result on the roots of
normalized polynomials in C[x] (e.g. [Ost66]).

Lemma 3.4.7 Let p(x) = xm +
∑m
i=1 aix

m−i ∈ C[x]. Then the zeros
ξ1, ..., ξm of p(x) are continuous functions of its coefficients. That is for
a given a1, ..., an and ε > 0 there exists δ(ε), depending on a1, ..., an, such
that if |bi − ai| < δ(ε), i = 1, ...,m it is possible to enumerate the zeros of
q(x) = xm +

∑m
i=1 bix

m−i by η1, ..., ηm, such that |ηi − ξi| < ε. i = 1, ...,m.
In particular the function

(3.4.11) ρ(p) = max
1≤i≤m

|ξi|

is a continuous function of a1, ..., am.

Corollary 3.4.8 The function ρ : Cn×n → R+, which assigns to A ∈
Cn×n its spectral radius ρ(A) is a continuous function.

Proof of Theorem 3.4.6. Suppose that (3.4.9) holds. Then by Theorem
3.3.2 ρ(A) < 1 for each A ∈ A. Assume that A is compact and ρ(A) < 1.
Corollary 3.4.8 yields

ρ := max
A∈A

ρ(A) = ρ(Ã) < 1, Ã ∈ A.

Recall that (λI −A)−1 = [ pij(λ)
det (λI−A) ]n1 , where pij(λ) is the (j, i) cofactor of

λI − A. Let λ1, ..., λn be the eigenvalues of A counted with multiplicities.
Then for |λ| > ρ

|det (λI −A)| = |
n∏
i=1

(λ− λi)| ≥
n∏
i=1

(|λ| − ρ)n.

Let ρ < r < 1. Since A is a bounded set, the above arguments yield that
there exists a positive constant K such that ||(λI − A)−1|| ≤ K for each
A ∈ A, |λ| = r. Apply (3.4.6) to obtain

(3.4.12) Ap =
1

2π
√
−1

∫
|λ|=r

(λI −A)−1λpdλ,

for each A ∈ A. Combine this equality with the estimate ||λI−A)−1|| ≤ K
for |λ| = r to obtain ||Ap|| ≤ Krp+1 for any A ∈ A. As r < 1 the theorem
follows. 2
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Theorem 3.4.9 Let A ⊂ Cn×n. Then A is power bounded if and only

(3.4.13) ||(λI −A)−1|| ≤ K

|λ| − 1
, for all A ∈ A and |λ| > 1,

for some vector norm || · || on Cn×n and K ≥ ||In||.

Proof. For |λ| > ρ(A) we have the Neumann series

(3.4.14) (λI −A)−1 =
∞∑
i=0

Ai

λi+1
.

Hence for any vector norm on Cn×n

(3.4.15) ||(λI −A)−1|| ≤
∞∑
i=0

||Ai||
|λ|i+1

, |λ| > ρ(A).

(See Problem 3.) Assume first that (3.4.10) hold. As A0 = In it follows
that K ≥ ||In||. Furthermore as each A ∈ A is power bounded Theorem
3.3.2 yields that ρ(A) ≤ 1 for each A ∈ A. Combine (3.4.10) and (3.4.15)
to obtain (3.4.13).

Assume now that (3.4.13) holds. Since all vector norms on Cn×n are
equivalent we assume that the norm in (3.4.13) is the l∞ norm given in
(3.3.6). Let A ∈ A. Note that (λI − A) in invertible for each |λ| > 1.
Hence ρ(A) ≤ 1. Let (λI − A)−1 = [pij(λ)

p(λ) ]. Here p(λ) = det (λI − A)
is a polynomial of degree n and pij(λ) (the (j, i) cofactor of λI − A) is a
polynomial of degree n − 1 at most. Let Ap = [a(p)

ij ], p = 0, 1, ... Then for
any r > 1 the equality (3.4.12) yields that

a
(p)
ij =

1
2π
√
−1

∫
|λ|=r

pij(λ)
p(λ)

λpdλ =
1

2π

∫ 2π

0

pij(re
√
−1θ)

p(re
√
−1θ)

rp+1e(p+1)
√
−1θdθ.

Problem 6 implies that

|a(p)
ij | ≤

4(2n− 1)rp+1

π(p+ 1)
max
|λ|=r

|pij(λ)
p(λ)

| ≤ 4(2n− 1)rp+1K

π(p+ 1)(r − 1)
.

Choose r = 1 + 1
p+1 to obtain

(3.4.16) |a(p)
ij | ≤

4(2n− 1)eK
π

, i, j = 1, ..., n, p = 0, 1, ..., A ∈ A.

Hence ||Ap|| ≤ 4(2n−1)eK
π . 2

Problems
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1. Use the proof of Theorem 3.4.2 to prove Theorem 3.4.3.

2. Prove Theorem 3.4.4

3. Let A ∈ Cn×n. Show the Neumann series converge to the resolvent
(3.4.14) for any |λ| > ρ(A). (You may use (3.4.1).) Prove (3.4.15) for
any vector norm on Cn×n.

4. Let f(x) be a real continuous periodic function on R with period 2π.
Assume furthermore that f ′ is a continuous function on R. (f ′ is
periodic of period 2π.) Then the Fourier series of f converge to f
(e.g. [Pin09, Cor. 1.2.28]).

f(θ) =
∑
k∈Z

ake
√
−1kθ,

(3.4.17)

ak = āk =
1

2π

∫ θ0+2π

θ0

f(θ)e−
√
−1kθdθ, k ∈ Z, θ0 ∈ R.

Use integration by parts to conclude that

(3.4.18) ak =
1

2π
√
−1k

∫ θ0+2π

θ0

f ′(θ)e−
√
−1kθdθ, k ∈ Z\{0}.

Assume that f ′(θ) vanishes exactly at m(≥ 2) points on the interval
[0, 2π). Show that

|a0| ≤ max
θ∈[0,2π)

|f(θ)|,

(3.4.19)

|ak| ≤
m

π|k|
max

θ∈[0,2π)
|f(θ)|, for all k ∈ Z\{0}

(Hint. The first inequality of (3.4.19) follows immediately from (3.4.17).
Assume that f ′ vanishes at 0 ≤ θ0 < ... < θm−1 < 2π ≤ θm = θ0 +2π.
Then

|
∫ θi

θi−1

f ′(θ)e−2π
√
−1kθdθ| ≤

∫ θi

θi−1

|f ′(θ)|dθ =

|f(θi)− f(θi−1)| ≤ 2 max
θ∈[0,2π)

|f(θ)|, i = 1, ...,m.

Use (3.4.18) to deduce the second part of (3.4.19).)
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5. A real periodic function f is called a trigonometric polynomial of
degree n if f has the expansion (3.4.17), where ak = 0 for |k| > n and
an 6= 0. Show

(a) A non zero trigonometric polynomial f(θ) of degree n vanishes at
most 2n points on the interval [0, 2π). (Hint. Let z = e

√
−1θ. Then

f = z−np(z)||z|=1 for a corresponding polynomial p of degree 2n.)

(b) Let f(θ) = g(θ)
h(θ) be a nonconstant function, where g is a nonzero

trigonometric polynomial of degree m at most and h is a nowhere
vanishing trigonometric polynomial of degree n. Show that f ′ has at
most 2(m+ n) zeros on [0, 2π).

6. Let p(z), q(z) be nonconstant polynomials of degree m,n respectively.
Suppose that q(z) does not vanish on the circle |z| = r > 0. Let
M := max|z|=r

|p(z)|
|q(z)| . Show that for all k ∈ Z

(3.4.20) | 1
2π

∫ 2π

0

p(re
√
−1θ)

q(re
√
−1θ)

e
√
−1kθdθ| ≤ 4M max(m+ n, 2n− 1)

πmax(|k|, 1)
.

Hint. Let F (z) = p(z)
q(z) = p(z) ¯q(z)

q(z) ¯q(z)
be a nonconstant rational function.

Then F (re
√
−1θ) = f1(θ) +

√
−1f2(θ), where f1, f2 as in Problem 5.

Clearly |f1(θ)|, |f2(θ)| ≤M . Observe next that

f ′1(θ) +
√
−1f ′2(θ) =

√
−1re

√
−1θ(p′(re

√
−1θ)q(re

√
−1θ)− p(re

√
−1θ)q′(re

√
−1θ)( ¯q(re

√
−1θ))2

|q(re
√
−1θ)|2

.

Hence f ′1, f
′
2 vanish at most 2 max(m + n, 2n − 1) points on [0, 2π).

Use (3.4.19) for f1, f2 to deduce (3.4.20).

7. Let α ≥ 0 be fixed and assume that A ⊂ Cn×n. Show that the
following statements are equivalent:

(3.4.21) ||Ak|| ≤ kαK, for any A ∈ A and k = 0, 1, ...,

(3.4.22) ||(λI −A)−1|| ≤ K ′|λ|α

(|λ| − 1)1+α
, for all A ∈ A and |λ| > 1.

Hint. Use the fact that (−1)k
(−(1+α)

k

)
k−α ∈ [a, b], k = 1, ... for some

0 < a < b, (e.g.[Olv74], p’119).)
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8. Let A ∈ Cn×n. Using (3.4.1) deduce

(3.4.23) Zi(si−1) = lim
x→λi

(x− λi)si(xI −A)−1, i = 1, ..., `.

let R(x,A) = [rµν ]. Using the definitions of Problem 3 show

(3.4.24) zi(si−1)
µν = lim

x→λi
(x− λi)s rµν(x), if s = index µνλi > 0.

9. A set A ⊂ Cn×n is called exponentially stable if

(3.4.25) lim
T→∞

sup
t≥T
||eAt|| = 0.

Show that a compact set A is exponentially stable if and only if
<λ < 0 for each λ ∈ spec (A) and each A ∈ A.

10. A matrix B ∈ Cn×n is called projection (idempotent) if B2 = B. Let
Γ be a set of simply connected rectifiable curves such that Γ from a
boundary of an open bounded set D ⊂ C. Let A ∈ Cn×n and assume
that Γ ∩ spec (A) = ∅. Define

PD(A) :=
1

2π
√
−1

∫
Γ

R(x,A)dx,(3.4.26)

A(D) :=
1

2π
√
−1

∫
Γ

R(x,A)xdx.

Show that PD(A) is a projection. PD(A) is called the projection of
A on D, and A(D) is called the restriction of A to D. Prove
(3.4.27)

PD(A) =
∑

λi∈spec D(A)

Zi0, A(D) =
∑

λi∈spec D(A)

(λiZi0 + Zi1).

Show that the rank of PD(A) is equal to the number of eigenvalues
of A in D counted with their multiplicities. Prove that there exists a
neighborhood of A such that PD(B) and B(D) are analytic functions
inB in this neighborhood. In particular, ifD satisfies the assumptions
of Theorem 3.4.4 then PD(A) is called the projection of A on λp:
PD(A) = Zp0.

11. Let B = QAQ−1 ∈ Cn×n. Assume that D satisfies the assumptions
of Problem 10. Show that PD(B) = QPD(A)Q−1.

12. Let A ∈ Cn×n and assume that the minimal polynomial ψ(x) of
A is given by (2.5.11). Let Cn = U1 ⊕ ... ⊕ U`, where each Up
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is an invariant subspace of A (AUp ⊂ Up), such that the minimal
polynomial of A|Up is (x− λp)sp . Show that

(3.4.28) Up = Zp0Cn.

Hint. It is enough to consider the case where A is in the Jordan
canonical form.

13. Let Di satisfy the assumptions of Problem 10 for i = 1, ...k. Assume
that Di ∩Dj = ∅ for i 6= j. Show that PDi(A)Cn ∩ PDj (A)Cn = {0}
for i 6= j. Assume furthermore that Di ∩ spec (A) 6= ∅, i = 1, ..., k,
and spec (A) ⊂ ∪k

i=1Di. Let

PDi(A)Cn = span (y(i)
1 , ...,y(i)

ni
), i = 1, ..., k,

X = [y(1)
1 , ...,y(1)

n1
, ...,y(k)

nk
] ∈ Cn×n.

Show that
(3.4.29)

X−1AX =
k∑
i=1

⊕Bi, spec (Bi) = Di ∩ spec (A), i = 1, ..., k.

14. Let A ∈ Cn×n and λp ∈ spec (A). Show that if index λp = 1 then

Zp0 =
∏

λj∈spec (A),λj 6=λp

(A− λjI)sj

(λp − λj)sj
, sj = index λj .

Hint. Use the Jordan canonical form of A.

3.5 A canonical form over HA

Consider the space Cn×n. Clearly Cn×n can be identified with Cn2
. As

in Example 1.1.3 denote by HA the set of analytic functions f(B), where
B ranges over a neighborhood D(A, ρ) of the form (2.9.5) (ρ = ρ(f) > 0).
Thus B = [bij ] is an element in Hn×n

A . Let C ∈ Hn×n
A and assume that

C = C(B) is similar to B over HA. Then

(3.5.1) C(B) = X−1(B)BX(B),

where X(B) ∈ Hn×n
A and det X(A) 6= 0. We want to find a ”simple” from

for C(B) (simpler than B!). Let MA be the quotient field of HA (the set
of meromorphic functions in the neighborhood of A). If we let X ∈Mn×n

A
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then we may take C(B) to be R(B) - the rational canonical form of B
(2.3.3). According to Theorem 2.3.8 R(B) ∈ Hn×n

A . However B and R(B)
are not similar over HA in general. (We shall give below the necessary
and sufficient conditions for B ≈ R(B) over HA.) For C(B) = [cij(B)] we
may ask how many independent variables are among cij(B), i, j = 1, ..., n.
For X(B) = I the number of independent variables in C(B) = B is n2.
Thus we call C(B) to be simpler than B if C(B) contains less independent
variable than B. For a given C(B) we can view C(B) as a map

(3.5.2) C(·) : D(A, ρ)→ Cn×n,

where D(A, ρ) is given by (2.9.5), for some ρ > 0. It is well known, e.g.
[GuR65], that the number of independent variables is equal to the rank of
the Jacobian matrix DC(·) over MA

(3.5.3) DC(B) := (
∂µ(C)
∂bij

(B)) ∈ Hn2×n2

A ,

where µ is the map given in Problem 2.8.2.

Definition 3.5.1 Let rank DC, rank DC(A) be the ranks of DC(·), DC(A)
over the fields MA, C respectively.

Lemma 3.5.2 Let C(B) be similar to B over HA. Then

(3.5.4) rank DC(A) ≥ ν(A,A).

Proof. Differentiating the relation X−1(B)X(B) = I with respect to
bij we get

∂X−1

∂bij
= −X−1 ∂X

∂bij
X−1.

So

(3.5.5)
∂C

∂bij
= X−1(−(

∂X

∂bij
X−1)B +B(

∂X

∂bij
X−1) + Eij)X,

where

(3.5.6) Eij = [δiαδjβ ]m,nα,β=1 ∈ C
m×n, i = 1, ...,m, j = 1, ..., n,

and m = n. So

X(A)
∂C

∂bij
(A)X−1(A) = APij − PijA+ Eij , Pij =

∂X

∂bij
(A)X−1(A).
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Clearly, APij − PijA is in Range Â, where

(3.5.7) Â = (I ⊗A−A> ⊗ I) : Cn×n → Cn×n.

According to Definition 2.9.1 dim Range Â = r(A,A). Let

(3.5.8) Cn×n = Range Â⊕ span (Γ1, ...,Γν(A,A)).

As Eij , i, j = 1, ..., n is a basis in Cn×n

Γp =
n∑

i,j=1

α
(p)
ij Eij , p = 1, ..., ν(A,A).

Let

Tp :=
n∑

i,j=1

α
(p)
ij

∂C

∂bij
(A) = X−1(A)(Qp + Γp)X(A), Qp ∈ Range (Â),

p = 1, ..., ν(A,A).

According to (3.5.8) T1, ..., Tν(A,A) are linearly independent. Hence (3.5.4)
holds. 2

Clearly rank DC ≥ rank DC(A) ≥ ν(A,A).

Theorem 3.5.3 Let A ∈ Cn×n and assume that Γ1, ...,Γν(A,A) be any
ν(A,A) matrices satisfying (3.5.8). Then for any nonsingular matrix P ∈
Cn×n it is possible to find X(B) ∈ Hn×n

A , X(A) = P , such that

X−1(B)BX(B) = P−1AP +
ν(A,A)∑
i=1

fi(B)P−1ΓiP,

(3.5.9)
fi ∈ HA, fi(A) = 0, i = 1, ..., ν(A,A).

Proof. Let R1, ..., Rr(A,A) be a basis in Range Â. So there exist Ti such
that ATi − TiA = Ri for i = 1, ..., r(A,A). Assume that X(B) is of the
form

X(B)P−1 = I +
r(A,A)∑
j=1

gj(B)Tj , gj ∈ HA, gj(A) = 0, j = 1, ..., r(A,A).

(3.5.10)

The theorem will follow if we can show that the system

(3.5.11) B(I +
r(A,A)∑
j=1

gjTj) = (I +
r(A,A)∑
j=1

gjTj)(A+
ν(A,A)∑
i=1

fiΓi)
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is solvable for some g1, ..., gr(A,A), f1, ..., fν(A,A) ∈ HA which vanish at A.
Clearly, the above system is trivially satisfied at B = A. The implicit
function theorem implies that the above system is solved uniquely if the
Jacobian of this system is nonsingular. Let B = A + F, F = [fij ] ∈
Cn×n. Let αi(F ), βj(F ) be the linear terms of the Taylor expansions of
fi(A+ F ), gj(A+ F ). The linear part of (3.5.11) reduces to

F +
r(A,A)∑
j=1

βjATj =
r(A,A)∑
j=1

βjTjA+
ν(A,A)∑
i=1

αiΓi.

That is

F =
r(A,A)∑
j=1

βjRj +
ν(A,A)∑
i=1

αiΓi.

In view of (3.5.8) α1, ..., αν(A,a), β1, ..., βr(A,A) are uniquely determined by
F . 2

Note that if A = aI then the form (3.5.9) is not simpler than B. Also
by mapping T → P−1TP we get

(3.5.12) Cn×n = Range ˆP−1AP ⊕ span (P−1Γ1P, ...,P−1Γν(A,A)P).

Lemma 3.5.4 Let B ∈ Hn×n
A . Then the rational canonical form of B

over MA is a companion matrix C(p), where p(x) = det (xI −B).

Proof. The rational canonical form of B is C(p1, ..., pk) is given by
(2.3.3). We claim that k = 1. Otherwise p(x) and p′(x) have a common
factor over MA. In view of Theorem 2.1.9 implies that p(x) and p′(x)
have a common factor over HA. That is any B ∈ D(A, ρ) has at least
one multiple eigenvalue. Evidently this is false. Consider C = P−1BP
where P ∈ Cn×n and J = P−1AP is the Jordan canonical form of A.
So C ∈ D(J, ρ′). Choose C to be an upper diagonal. (This is possible
since J is an upper diagonal matrix.) So the eigenvalues of C are the
diagonal elements of C, and we can choose them to be pairwise distinct.
Thus p(x) and p′(x) are coprime over MA, hence k = 1. Furthermore
p1(x) = det (xI − C(p)) = det (xI −B). 2

Theorem 3.5.5 Let A ∈ Cn×n. Then B ∈ Hn×n
A is similar to the

companion matrix C(p), p(x) = det (xI − B) over HA if and only if
ν(A,A) = n. That is the minimal and the characteristic polynomial of
A coincide, i.e. A is nonderogatory.

Proof. Assume first that C(B) in (3.5.1) can be chosen to be C(p).
Then for B = A we obtain that A is similar to the companion matrix.
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Corollary 2.8.4 yields ν(A,A) = n. Assume now that ν(A,A) = n. Accord-
ing to (2.8.12) we have that i1(x) = i2(x) = ... = in−1(x) = 1. That is, the
minimal and the characteristic polynomials of A coincide, i.e. A is similar
to a companion matrix. Use (3.5.9) to see that we may assume that A is a
companion matrix. Choose Γi = Eni, i = 1, ..., n, where Eni are defined in
(3.5.6).

It is left to show that Range Â ∩ span (En1, ...,Enn) = {0}. Suppose
that Γ =

∑n
i=1 αiEni ∈ Range (Â). Theorem 2.10.1 and Corollary 2.8.4

yield that tr ΓAk = 0, k = 0, 1, ..., n − 1. Let α = (α1, ..., αn). Since the
first n− 1 rows of Γ are zero rows we have

0 = tr ΓAk = αAken, ej = (δj1, ..., δjn)>, j = 1, ..., n.

For k = 0 the above equality implies that αn = 0. Suppose that we already
proved that these equalities for k = 0, ..., ` imply that αn = ... = αn−l = 0.
Consider the equality tr ΓA`+1 = 0. Use Problem 2.4.9 to deduce

A`+1en = en−`−1 +
∑̀
j=0

f(`+1)jen−j .

So tr ΓA`+1 = αn−`−1 as αn = ... = αn−` = 0. Thus αn−`−1 = 0, which
implies that Γ = 0.

Theorem 3.5.3 yields that

C(B) = X−1(B)BX(B) = A+
n∑
i=1

fi(B)Eni.

So C(B) is a companion matrix. As det (xI − C(B)) = det (xI − B) it
follows that C(B) = C(p). 2.

Problem 5 yields.

Lemma 3.5.6 Let Ai ∈ Cni×ni i = 1, 2 and assume that

Cni×ni = Range Âi ⊕ span (Γ(i)
1 , ...,Γ(i)

ν(Ai,Ai)
), i = 1, 2.

Suppose that A1 and A2 do not have a common eigenvalue. Then

C(n1+n2)×(n1+n2) = Range ˜A1 ⊕A2 ⊕
span (Γ(1)

1 ⊕ 0, ...,Γ(1)
ν(A1,A1) ⊕ 0, 0⊕ Γ(2)

1 , ..., 0⊕ Γ(2)
ν(A2,A2)).

Theorem 3.5.7 Let A ∈ Cn×n. Assume that spec (A) consists of `
distinct eigenvalues λ1, ..., λ`, where the multiplicity of λi is ni for i =
1, ..., `. Then B is similar over HA to the matrix
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C(B) =
∑̀
i=1

⊕Ci(B), Ci(B) ∈ Hni×ni
A , (λiIni − Ci(A))ni = 0, i = 1, ..., `.

(3.5.13)

Moreover C(A) is the Jordan canonical form of A.

Proof. Choose P in the equality (3.5.9) such that P−1AP is the
Jordan canonical of A and each P−1ΓiP is of the form

∑`
j=1 Γ(j)

i as follows
from Lemma 3.5.6. Then (3.5.9) yields the theorem. 2

Problems

1. Let A =
∑k
i=1⊕Hni , n =

∑k
i=1 ni. Partition any B ∈ Cn×n as a

block matrix as A: B = [Bij ], Bij ∈ Cni×nj , i, j = 1, ..., k. Using the
results of Theorem 2.8.3 and Theorem 2.10.1 show that the matrices

Γα,β,γ = (Γ(α,β,γ)
ij )k1 ∈ Cn×n,

Γ(α,β,γ)
ij = 0 ∈ Cni×nj , if (α, β) 6= (i, j),

Γ(α,β,γ)
αβ = Enαγ ∈ Cnα×nβ ,
γ = 1, ...,min(nα, nβ), α, β = 1, ..., k,

satisfy (3.5.8).

2. Let A be a matrix given by (2.8.4). Use Theorem 3.5.7 and Problem
1 to find a set of matrices Γ1, ...,Γν(A,A) which satisfy (3.5.8).

3. Let A ∈ Cn×n and assume that λi is a simple eigenvalue of A, i.e. λi is
a simple root of the characteristic polynomial of A. Use Theorem 2.8.3
to show the existence of λ(B) ∈ HA such that λ(B) is an eigenvalue
of B and λ(A) = λi.

4. Let A satisfy the assumptions of Theorem 3.5.7. Denote by Dp

an open set satisfying the assumptions of Theorem 3.4.4 for p =
1, ..., `. Let Pk(B) be the projection of B ∈ Hn×n

A on Dk, k =
1, ..., `. Problem 10 implies that Pk(B) ∈ Hn×n

A , k = 1, ..., `. Let
Pk(A)Cn = span (xk1, ...,xknk), k = 1, ..., `, B ∈ D(A, ρ), where
ρ is some positive number. Let X(B) ∈ Hn×n

A be formed by the
columns Pk(B)xk1, ..., Pk(B)xknk , k = 1, ..., `. Show that C(B) given
by (3.5.1) satisfies (3.5.13). (This yields another proof of Theorem
3.5.7.)



3.6. ANALYTIC, POINTWISE AND RATIONAL SIMILARITY 117

3.6 Analytic, pointwise and rational similar-
ity

Definition 3.6.1 Let Ω ⊂ Cm and A,B ∈ H(Ω)n×n. Then
(a) A and B are called analytically similar, denoted by A

a
≈B, if A and B

are similar over H(Ω).
(b) A and B are called pointwise similar, denoted by A

p
≈B, if A(x) and

B(x) are similar over C for all x ∈ Ω0, for some open set Ω0 ⊃ Ω.
(c) A and B are called rationally similar, denoted by A

r
≈B, if A and B are

similar over the field of meromorphic functions M(Ω).

Theorem 3.6.2 Let Ω ⊂ Cm and assume that A,B ∈ H(Ω)n×n. Then

A
a
≈B ⇒ A

p
≈B ⇒ A

r
≈B.

Proof. Suppose that

(3.6.1) B(x) = P−1(x)A(x)P (x),

where P, P−1 ∈ H(Ω)n×n. Let x0 ∈ Ω. Then (3.6.1) holds in some neigh-
borhood of x0. So A

p
≈B. Assume now that A

p
≈B. Let C(p1, ..., pk) and

C(q1, ..., q`) be the rational canonical forms of A and B respectively over
M(Ω). Then

C(p1, ..., pk) = S(x)−1A(x)S(x), C(q1, ..., q`) = T (x)−1B(x)T (x),
S(x), T (x) ∈ H(Ω)n×n, det A(x) 6≡ 0, det B(x) 6≡ 0.

Theorem 2.3.8 yields that C(p1, ..., pk), C(q1, ..., q`) ∈ H(Ω)n×n. Let Ω0 ⊃
Ω be an open set such that A,B, S, T ∈ H(Ω0)n×n and A(x) and B(x)
are similar over C for any x ∈ Ω0. Let x0 ∈ Ω0 be a point such that
det S(x0)T (x0) 6= 0. Then for all x ∈ D(x0, ρ) C(p1, ..., pk) = C(q1, ..., q`).
The analyticity of C(p1, ..., pk) and C(q1, ..., q`) imply that these matrices
are identical in H(Ω), i.e. A

r
≈B. 2

Assume that A
a
≈B. Then according to Lemma 2.9.4 the three matrices

I ⊗A(x)−A(x)> ⊗ I, I ⊗A(x)−B(x)> ⊗ I, I ⊗B(x)−B(x)> ⊗ I
(3.6.2)

are equivalent over H(Ω). Theorem 2.9.3 yields.

Theorem 3.6.3 Let A,B ∈ H(Ω)n×n. Assume that the three matrices
in (3.6.2) are equivalent over H(Ω). Then A

p
≈B.
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Assume that Ω ⊂ C is a domain. Then H(Ω) is EDD. Hence we can
determine when these matrices are equivalent.

The problem of finding a canonical form of A ∈ Ωn×n under analytic
similarity is a very hard problem. This problem for the ring of local analytic
functions in one variables will be discussed in the next sections. We now
determine when A is analytically similar to its rational canonical form over
Hζ , the ring of local analytic functions in the neighborhood of ζ ∈ Cm.

For A,B ∈ H(Ω)n×n denote by r(A,B) and ν(A,B) the rank and the
nullity of the matrix C = I ⊗A−B> ⊗ I over the field M(Ω). Denote by
r(A(x), B(x)) and ν(A(x), B(x)) the rank of C(x) over C. As the rank of
C(x) is the largest size of a nonvanishing minor, we deduce

r(A(ζ), B(ζ)) ≤ r(A(x), B(x)) ≤ r(A,B)
(3.6.3)

ν(A,B) ≤ ν(A(x), B(x)) ≤ ν(A(ζ), B(ζ)), x ∈ D(ζ, ρ)

for some positive ρ. Moreover for any ρ > 0 there exists at least one
x0 ∈ D(ζ, ρ) such that

(3.6.4) r(A(x0), B(x0)) = r(A,B), ν(A(x0, B(x0)) = ν(A,B).

Theorem 3.6.4 Let ζ ∈ Cm and A ∈ Hn×n
ζ . Assume that C(p1, ..., pk)

is the rational canonical form of A over Mζ and C(σ1, ..., σ`) is the ratio-
nal canonical form of A(ζ) over C. That is pi = pi(λ, x) and σj(λ) are
normalized polynomials in λ belonging to Hζ [λ] and C[λ] respectively for
i = 1, ..., k and j = 1, ..., `. Then
(a) ` ≥ k;
(b)

∏q
i=0 σ`−i(λ)|

∏q
i=0 pk−i(λ, ζ) for q = 0, 1, ..., k − 1.

Moreover ` = k and pi(λ, ζ) = σi(λ) for i = 1, ..., k if and only if

(3.6.5) r(A(ζ), B(ζ)) = r(A,B), ν(A(ζ), B(ζ)) = ν(A,B),

which is equivalent to the condition

r(A(ζ), B(ζ)) = r(A(x), B(x)),(3.6.6)
ν(A(ζ), B(ζ)) = ν(A(x), B(x)), x ∈ D(ζ, ρ)

for some positive ρ.

Proof. Let

un−k+i(λ, x) =
i∏

α=1

pα(λ, x), vn−`+j(λ) =
j∏

β=1

σβ(λ),

i = 1, ..., k, j = 1, ..., `,
uα(λ, x) = vβ(λ) = 1, for α ≤ n− k, β ≤ n− `.
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So ui(λ, x) and vi(λ) are the g.c.d. of all minors of order i of matrices
λI − A and λI − A(ζ) over the rings Mζ [λ] and C[λ] respectively. As
ui(λ, x) ∈ Hζ [λ] it is clear that ui(λ, ζ) divides all the minors of I − A(ζ)
of order i. So ui(λ, ζ)|vi(λ) for i = 1, ..., n. Since vn−` = 1 it follows that
un−`(λ, x) = 1. Hence k ≤ `. Furthermore

un(λ, x) = det (λI −A(x)), vn(λ) = det (λI −A(ζ)).

Therefore un(λ, ζ) = vn(λ) and vn(λ)
vi(λ) |

un(λ,ζ)
ui(λ,ζ)

. This establishes claims (a)
and (b) of the theorem. Clearly if C(q1, ..., q`) = C(p1, ..., pk)(ζ) then k =
` and pi(λ, ζ) = qi(λ) for i = 1, ..., `. Assume now that (3.6.5) holds.
According to (2.8.12)

ν(A,A) =
k∑
i=1

(2i− 1)deg pk−i+1(λ, x),

ν(A(ζ), A(ζ)) =
∑̀
j=1

(2j − 1)deg q`−j+1(λ).

Note that the degrees of the invariant polynomials of λI−A and λI−A(ζ)
satisfy the assumptions of Problem 2. From the results of Problem 2 it
follows that the second equality in (3.6.5) holds if and only if k = ` and
deg pi(λ, x) = deg qi(λ) for i = 1, ..., k. Finally (3.6.3-3.6.4) imply the
equivalence of the conditions of (3.6.5) and (3.6.6). 2

Corollary 3.6.5 Let A ∈ Hn×n
ζ . Assume that (3.6.6) holds. Then

A
a
≈B if and only if A

p
≈B.

Proof. According to Theorem 3.6.2 it is enough to show that A
p
≈B

implies that A
a
≈B. Since A satisfies (3.6.6) the assumption that A

p
≈B

implies that B satisfies (3.6.6) too. According to Theorem 3.6.4 A and B
are analytically similar to their canonical rational form. From Theorem
3.6.2 it follows that A and B have the same rational canonical form. 2

Problems

1. Let

A(x) =
[
0 x
0 0

]
, B(x) =

[
0 x2

0 0

]
.



120CHAPTER 3. FUNCTIONS OF MATRICES AND ANALYTIC SIMILARITY

Show that A(x) and B(x) are rationally similar over C(x) to H2 =
A(1). Prove that

A 6
p
≈H2, B 6

p
≈H2, A

p
≈B, A 6

a
≈B

over C[x].

2. Let n be a positive integer and assume that {`i}n1 , {mi}n1 are two
nonincreasing sequences of nonnegative integers satisfying

k∑
i=1

`i ≤
k∑
i=1

mi, k = 1, ..., n− 1,

n∑
i=1

`i =
n∑
i=1

mi.

Show (by induction) that

n∑
i=1

(2i− 1)mi ≤
n∑
i=1

(2i− 1)`i

and equality holds if and only if `i = mi, i = 1, ..., n.

3. Let ζn ∈ C, n = 1, ..., and limn→∞ ζn = ζ. Suppose that Ω ⊂ C is a
connected set and ζn ∈ Ω, n = 1, ..., ζ ∈ Ω. Recall that if f ∈ H(Ω)
and f(ζn) = 0, n = 1, ..., then f = 0. Show that for A,B ∈ H(Ω)n×n

the assumption that A(ζn) ≈ B(ζn), n = 1, ..., implies that A
r
≈B.

3.7 A Global Splitting

From this section to the end of the chapter we assume that Ω is a domain
in C. We now give a global version of Theorem 3.5.7.

Theorem 3.7.1 Let A ∈ H(Ω)n×n. Suppose that

(3.7.1) det (λI −A(x)) = φ1(λ, x)φ2(λ, x),

where φ1, φ2 are two nontrivial normalized polynomials in H(Ω)[λ] of posi-
tive degrees n1 and n2 respectively. Assume that (φ1(λ, x0), φ2(λ, x0)) = 1
for each x0 ∈ Ω. Then there exists X ∈ GL(n,H(Ω)) such that

X−1(x)C(x)X(x) = C1(x)⊕ C2(x),
(3.7.2)

Ci(x) ∈ H(Ω)ni×ni , det (λI − Ci(x)) = φi(λ, x), i = 1, 2.



3.8. FIRST VARIATION OF A GEOMETRICALLY SIMPLE EIGENVALUE121

Proof. Let Pi(x) be the projection of A(x) on the eigenvalues of A(x)
satisfying φi(λ, x) = 0. Since (φ1(λ, x0), φ2(λ, x0)) = 1 it follows that
Pi(x) ∈ H(Ω)n×n for i = 1, 2. (See Problem 3.4.10.) Also for any x0 the
rank of Pi(x0) is ni. Since H(Ω) is EDD each Pi(x) can be brought to the
Smith normal form

Pi(x) = Ui(x) diag(ε(i)1 (x), ..., ε(i)ni (x), 0, ..., 0)Vi(x)),
Ui, Vi ∈ GL(ni,H(Ω)), i = 1, 2.

As rank Pi(x0) = ni for any x0 ∈ Ω we deduce that ε(i)j = 1, j = 1, ..., n, i =

1, 2. Let u(i)
1 (x), ...,u(i)

n (x) be the columns of Ui(x) for i = 1, 2. As V ∈
GL(n,H(Ω) we obtain

(3.7.3) Pi(x)Cn = span (u(i)
1 (x), ...,u(i)

ni
(x)),

for any x ∈ Ω. Let

X(x) = [u(1)
1 (x), ...,u(1)

n1
(x),u(2)

1 (x), ...,u(2)
n2

(x)] ∈ H(Ω)n×n.

According to Problem 3.4.13 det X(x0) 6= 0 for any x0 ∈ H(Ω). So
X(x) ∈ GL(n,H(Ω)). Then (3.7.2) follows from (3.4.29). 2

3.8 First variation of a geometrically simple
eigenvalue

Theorem 3.8.1 Let A(x) be a continuous family of n×n complex val-
ued matrices for |x − x0| < δ, where the parameter x is either real or
complex. Suppose that

(3.8.1) A(x) = A0 + (x− x0)A1 + |x− x0|o(1).

Assume furthermore that λ0 is a geometrically simple eigenvalue of A0 of
multiplicity m. Let x1, ...,xm and y1, ...,ym be eigenvectors of A0 and
A>0 respectively corresponding to λ0, which form a biorthonormal system
y>i xj = δij , i, j = 1, ...,m. Then it is possible to enumerate the eigenvalues
of A(x) by λi(x), i = 1, ..., n, such that

(3.8.2) λi(x) = λ0 + (x− x0)µi + |x− x0|o(1), i = 1, ...,m,

where µ1, ..., µm are the eigenvalues of the matrix

(3.8.3) S = [sij ] ∈ Cm×m, sij = yi>A1xj , i, j = 1, ...,m.
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Proof. By considering the matrix P−1A(x)P , for an appropriate P ∈
GL(n,C), we can assume that A0 is in the Jordan canonical form such that
the first m diagonal entries of A0 are λ0. The proofs of Theorems 3.5.3 and
3.5.7 implies the existence of

X(B) = I + Z(B), Z ∈ Hn×n
0 , Z(0) = 0,

such that

(3.8.4) X−1(B)(A0 +B)X(B) =
∑̀
i=1

⊕Ci(B), C1(0) = λ0Im.

Substituting

B(x) = A(x)−A0 = (x− x0)A1 + |x− x0|o(1),
X(x) = X(B(x)) = I + (x− x0)X1 + |x− x0|o(1)

we get

C(X) = X−1A(x)X(x) = A0 + (x−x0)(A1 +A0X1−X1A0) + |x−x0|o(1).

According (3.8.4) λ1(x), ..., λm(x) are the eigenvalues of C1(B(x)). As
C1(B(x0)) = λ0Im, by considering (C1(B(x))− λ0Im)/(x− x0) we deduce
that (λi(x)− λ0)/(x− x0) are continuous functions at x0. Also

(C1(B(x))− λ0Im)/(x− x0) = [vi>(A1 +A0X1 −X1A0)uj ]mi,j=1 + o(1),

where ui = vi = (δi1, ..., δin)> for i = 1, ...,m. Since ui and vi are the
eigenvectors of A0 and A>0 respectively corresponding to λ0 for i = 1, ...,m,
it follows that v>i (A0X1−X1A0)uj = 0 for i, j = 1, ...,m. This establishes
the result for a particular choice of eigenvectors u1, ...,um and v1, ...,vm.
It is left to note that any other choice of the eigenvectors x1, ...,xm and
y1, ...,ym, which form a biorthonormal system amounts to a new matrix
S1 which is similar to S. In particular S and S1 have the same eigenvalues.

2

Problems

1. Let A(x) =
[

0 1
x 0

]
. Find the eigenvalues and the eigenvectors of

A(x) in terms of
√
x. Show that (3.8.2) does not apply for x0 = 0

in this case. Let B(x) = A(x2). Show that (3.8.2) holds for x0 even
though λ0 = 0 is not geometrically simple for B(0).
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3.9 Analytic similarity over H0

Let A,B ∈ Hn×n
0 . That is

A(x) =
∞∑
k=0

Akx
k, |x| < r(A),

(3.9.1)

B(x) =
∞∑
k=0

Bkx
k, |x| < r(B).

Definition 3.9.1 For A,B ∈ Hn×n
0 let η(A,B) and κp(A,B) be the

index and the number of local invariant polynomials of degree p of the matrix
In ⊗A(x)−B(x)> ⊗ In respectively.

Theorem 3.9.2 Let A,B ∈ Hn×n
0 . Then A and B are analytically

similar over H0 if and only if A and B are rationally similar over H0 and
there exists η(A,A) + 1 matrices T0, ..., Tη ∈ Cn×n (η = η(A,A)), such that
det T0 6= 0 and

(3.9.2)
k∑
i=0

AiTk−i − Tk−iBi = 0, k = 0, ..., η(A,A).

Proof. The necessary part of the theorem is obvious. Assume now that
A(x)

r
≈B(x) and the matrices T0, ..., Tη satisfy (3.9.2), where T0 ∈ GL(n,C).

Put

C(x) = T (x)B(x)T−1(x), T (x) =
η∑
k=0

Tkx
k.

As det T0 6= 0 we deduce that B(x)
a
≈C(x). Hence A(x)

r
≈C(x). In

particular r(A,A) = r(A,C). Also (3.9.2) is equivalent to A(x) − C(x) =
xη+1O(1). Thus

(In ⊗A(x)−A(x)> ⊗ In)− (In ⊗A(x)− C(x)> ⊗ In) = xη+1O(1).

In view of Lemma 1.14.2 the matrices (In⊗A(x)−A(x)>⊗In), (In⊗A(x)−
C(x)> ⊗ In) are equivalent over H0. In particular η(A,A) = η(A,C). Also
I, 0, ..., 0 satisfy the system (3.9.2) where Bi = Ci, i = 0, 1, ..., η. Theorem
1.14.3 yields the existence P (x) ∈ Hn×n

0 such that

A(x)P (x)− P (x)C(x) = 0, P (0) = I.
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Hence A(x)
a
≈C(x). By the definition C(x)

a
≈B(x). Therefore A(x)

a
≈B(x).

2

Note that if η(A,A) = 0 the assumptions of Theorem 3.9.2 are equiv-
alent to A(x)

r
≈B(x). Then the implication that A(x)

a
≈B(x) follows from

Corollary 3.6.5.
Suppose that the characteristic polynomial of A(x) splits over H0. That

is

(3.9.3) det (λI −A(x)) =
n∏
i=1

(λ− λi(x)), λi(x) ∈ H0, i = 1, ..., n.

As H0 is ED Theorem 2.5.4 yields that A(x) is similar to an upper triangular
matrix. Using Theorem 3.5.7 and Theorem 2.5.4 we obtain that A(x) is
analytically similar to

C(x) = ⊕`i=1Ci(x), Ci(x) ∈ Hni×ni
0 ,

(3.9.4)
(αiIni − Ci(0))ni = 0, αi = λni(0), αi 6= αj for i 6= j, i, j = 1, ..., `.

Furthermore each Ci(x) is an upper triangular matrix. In what follows we
are more specific on the form of the upper triangular matrix.

Theorem 3.9.3 Let A(x) ∈ Hn×n
0 . Assume that the characteristic

polynomial of A(x) splits in H0.Then A(x) is analytically similar to a block
diagonal matrix C(x) of the form (3.9.4) such that each Ci(x) is an upper
triangular matrix whose off-diagonal entries are polynomial in x. More-
over, the degree of each polynomial entry above the diagonal in the matrix
Ci(x) does not exceed η(Ci, Ci) for i = 1, ..., `.

Proof. In view of Theorem 3.5.7 we may assume that ` = 1. That is,
A(0) has one eigenvalue α0. Furthermore, by considering A(x)−α0I we may
assume that A(0) is nilpotent. Also in view of Theorem 3 we may assume
that A(x) is already in the upper triangular form. Suppose in addition to
all the above assumptions A(x) is nilpotent. Define

Xk = {y : Aky = 0, y ∈ Hn
0}, k = 0, 1, ..., .

Then
{0} = X0 $ X1 $ X2 $ . . . $ Xp = Hn

0 .

Using Theorem 1.12.3 one can show the existence of a basis y1(x), ...,yn(x)
in Hn

0 , such that y1(x), ...,yψk(x) is a basis in Xk for k = 1, ..., p. As
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A(x)Xk+1 ⊂ Xk we have

A(x)yj =
ψk∑
i=1

gijyi(x), ψk < j ≤ ψk+1.

Define gij = 0 for i > ψk and ψk < j ≤ ψk+1. Put

G(x) = [gij ]n1 , T (x) = [y1(x), ...,yn(x)] ∈ Hn×n
0 .

Since y1(x), ...,yn(x) is a basis in Hn
0 we deduce that T (x) ∈ GL(n,H0).

Hence
G(x) = T−1(x)A(x)T (x), s = η(A,A) = η(G,G).

Let

G(x) =
∞∑
j=0

Gjx
j , G(k) =

k∑
j=0

Gjx
j , k = 0, 1, ..., .

We claim that G(s) a≈G(x). First note that

(In ⊗G(x)−G(x)> ⊗ In)− (In ⊗G(s)(x)−G(s)(x)> ⊗ In) = xs+1O(1).

Lemma 1.14.2 implies that the matrices (In ⊗ G(x) − G(x)> ⊗ In), (In ⊗
G(s)(x) − G(s)(x)> ⊗ In) have the same local invariant polynomial up to
the degree s. So r(G,G) ≤ r(G(s), G(s)) which is equivalent to

(3.9.5) ν(G(s), G(s)) ≤ ν(G,G).

Let

Yk = {y = (y1, ..., yn)> : yj = 0 for j > ψk}, k = 0, ..., p.

Clearly if gij = 0 then (i, j)− th entry of G(s) is also equal to zero. By the
definition gij(x) = 0 for i > ψk and ψk < j < ψk+1. So G(s)(x)Yk+1 ⊂ Yk

for k = 0, ..., p− 1. Theorem 2.11.2 implies

(3.9.6) ν(G(x0), G(x0)) ≤ ν(G(s)(x0), G(s)(x0))

for all x0 in the neighborhood of the origin. Hence ν(G,G) ≤ ν(G(s), G(s)).
This establishes equality in (3.9.5), which in return implies equality in
(3.9.6) for 0 < |x0| < ρ. Theorem 2.11.2 yields that G(x0) ≈ G(s)(x0)
for 0 < |x0| < ρ. From Theorem 3.6.2 we deduce that G

r
≈G(s). As

G(x)I − IG(s) = xs+1O(1) Theorem 3.9.2 implies that G
a
≈G(s). This es-

tablishes the theorem in case that A(x) is a nilpotent matrix.
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We now consider the general case where A(x) is an upper triangular
matrix. Without loss of generality we may assume that A(x) is of the form

A(x) = [Aij ]`1, Aij ∈ Hni×nj
0 ,

Aij(x) = 0 for j < i, (Aii(x)− λi(x)Ini)
ni = 0,(3.9.7)

λi 6≡ λj(x), for i 6= j, i, j = 1, ..., `.

We already showed that

Aii(x) = Ti(x)−1Fii(x)Ti(x), Ti ∈ GL(n,H),

and each Fii(x)−λi(x)Ini is a nilpotent upper triangular matrix with poly-
nomial entries of the form described above. Let

T (x) =
∑̀
i=1

Ti(x), G(x) = [Gij(x)]`1 = T (x)−1A(x)T (x).

As λi(x) 6≡ λj(x) for i 6= j Problem 3 implies ν(G,G) =
∑`
i=1 ν(Gii, Gii).

Let G(k)(x) = [G(k)
ij ] be defined as above. Theorem 2.10.2 implies

ν(G(k), G(k)) ≥
∑̀
i=1

ν(G(k)
ii , G

(k)
ii ).

Using Theorem 2.11.2 as above we obtain ν(Gii, Gii) ≤ ν(G(k)
ii , G

(k)
ii ). Com-

bine the above inequalities we obtain ν(G,G) ≤ ν(G(s), G(s)). Compare this
inequality with the inequality (3.9.5) to deduce equality in (3.9.5). Hence

(3.9.8) ν(G(s)
ii , G

(s)
ii ) = ν(Gii, Gii), i = 1, ..., `.

Let

Di(x) = λi(x)Ini =
∞∑
j=0

Dijx
j , D

(k)
i =

k∑
j=0

Dijx
j ,

(3.9.9)

D(x) = ⊕`i=1Di(x), D(k)(x) = ⊕`i=1D
(k)
i (x).

Then (3.9.8) is equivalent to

ν(G(s)
ii −D

(s)
i , G

(s)
ii −D

(s)
i ) = ν(Gii −Dii, Gii −Dii), i = 1, ..., `.

As above Theorem 2.11.2 yields that G
(s)
ii − D

(s)
i

r
≈Gii − Di ⇒ G

(s)
ii −

D
(s)
i + Di

r
≈Gii. Since λi(x) 6≡ λj(x) for i 6= j we finally deduce that
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G
r
≈G(s) −D(s) +D. Also GI − I(G(s) −D(s) +D) = xs+1O(1). Theorem

3.9.2 yields G
a
≈G(s)−D(s) +D. The proof of the theorem is completed. 2

Theorem 3.9.4 Let P (x) and Q(x) be matrices of the form (3.9.4)

P (x) =
p∑
i=1

⊕Pi(x), Pi(x) ∈ Hmi×mi
0 ,

(αiImi − Pi(0))mi = 0, αi 6= αj for i 6= j, i, j = 1, ..., p,
(3.9.10)

Q(x) = ⊕qj=1Qj(x), Qj(x) ∈ Hnj×nj
0 ,

(βjInj −Qj(0))nj = 0, βi 6= βj for i 6= j, i, j = 1, ..., q.

Assume furthermore that

αi = βi, i = 1, ..., t, αj 6= βj ,(3.9.11)
i = t+ 1, ..., p, j = t+ 1, ..., q, 0 ≤ t ≤ min(p, q).

Then the nonconstant local invariant polynomials of I ⊗ P (x)−Q(x)> ⊗ I
are the nonconstant local invariant polynomials of I ⊗ Pi(x)−Qi(x)> ⊗ I
for i = 1, ..., t. That is

(3.9.12) κp(P,Q) =
t∑
i=1

κp(Pi, Qi), p = 1, ..., .

In particular if C(x) is of the form (3.9.4) then

(3.9.13) η(C,C) = max
1≤i≤`

η(Ci, Ci).

Proof. Theorem 1.14.3 implies κp(P,Q) = dim Wp−1−dim Wp, where
Wp ⊂ Cn×n is the subspace of n× n matrices X0 such that

(3.9.14)
k∑
j=0

Pk−jXj −XjQk−j = 0, k = 0, ..., p.

Here

P (x) =
∞∑
j=0

Pjx
j , Pi(x) =

∞∑
j=1

P
(i)
j xj , Pj = ⊕pi=1P

(i)
j ,

Q(x) =
∞∑
j=0

Qjx
j , Qi(x) =

∞∑
j=1

Q
(i)
j xj , Qj = ⊕qi=1Q

(i)
j .
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Partition Xj to [X(j)
αβ ], X(j)

αβ ∈ Cmα⊗nβ , α = 1, ..., p, β = 1, ..., q. We claim

that X(j)
αβ = 0 if either α > t+ 1, or β > t+ 1, or α 6= β. Indeed in view of

Lemma 2.8.1 the equation P (α)
0 Y − Y Q(β)

0 = 0 has only the trivial solution
for α, β satisfying the above conditions. Then the claim that X(j)

αβ = 0
follows by induction. Thus (3.9.14) splits to the system

k∑
j=0

P
(i)
k−jX

(j)
ii −X

(j)
ii Q

(i)
k−j = 0, i = 1, ..., t.

Apply the characterizations of κp(P,Q) and κp(Pi, Qi) for i = 1, ..., t to
deduce (3.9.12). Clearly (3.9.12) implies (3.9.13). 2

We conclude this section by remarking that main assumptions of Theo-
rem 3.9.3, the splitting of the characteristic polynomial of A(x) in H0, is not
a heavy restriction in view of the Weierstrass preparation theorem (Theo-
rem 1.7.4). That is the eigenvalues of A(ym) split in H0 for some value of
m. Recall that m can be always be chosen n!, i.e. the minimal m divides
n!. Problem 1 claims A(x)

a
≈B(x) ⇐⇒ A(ym)

a
≈B(ym). In view of Theo-

rem 3.9.3 the classification problem of analytic similarity classes reduces to
the description of the polynomial entries which are above the diagonal (in
the matrix C in Theorem 3.9.3). Thus given the rational canonical form of
A(x) and the index η(A,A) the set of all possible analytic similarity classes
which correspond to A is a certain finite dimensional variety.

The case n = 2 is classified completely (Problem 2). In this case to
a given rational canonical form there are at most countable number of
analytic similarity classes. For n = 3 we have an example in which to a
given rational canonical form there the family of distinct similarity classes
correspond to a finite dimensional variety (Problem 3).

Problems

1. Let A(x), B(x) ∈ Hn×n
0 and let m be a positive integer. Assume that

A(ym)T (y) = T (y)A(ym) where T (y) ∈ Hn×n
0 . Show

A(x)Q(x) = Q(x)B(x), Q(ym) =
1
m

m∑
k=1

T (ye
2π
√
−1k
m ), Q(x) ∈ Hn×n

0 .

Prove A(x)
a
≈B(x) ⇐⇒ A(ym)

a
≈B(ym).
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2. Let A(x) ∈ H2×2
0 and assume that

det (λI −A(x)) = (λ− λ1(x))(λ− λ2(x),

λi(x) =
∞∑
j=0

λ
(i)
j xj ∈ H0, i = 1, 2,

λ
(1)
j = λ

(2)
j , j = 0, ..., p, λ

(1)
p+1 6= λ

(2)
p+1, −1 ≤ p ≤ ∞,

p =∞ ⇐⇒ λ1(x) = λ2(x).

Show that A(x) is analytically similar either to a diagonal matrix or
to

B(x) =
[
λ1(x) xk

0 λ2(x)

]
, k = 0, ..., p (p ≥ 0).

Furthermore if A(x)
a
≈B(x) then η(A,A) = k. (Hint: Use a similarity

transformation of the form DAD−1, where D is a diagonal matrix.)

3. Let A(x) ∈ H3×3
0 . Assume that

A(x)
r
≈C(p), p(λ, x) = λ(λ− x2m)(λ− x4m), m ≥ 1.

Show that A(x) is analytically similar to a matrix

B(x, a) =

0 xk1 a(x)
0 x2m xk2

0 0 x4m

 , 0 ≤ k1, k2 ≤ ∞ (x∞ = 0),

where a(x) is a polynomial of degree 4m− 1 at most. (Use Problem
2.) Assume that k1 = k2 = m. Show that B(x, a)

a
≈B(x, b) if and only

if

(1) if a(0) 6= 1 then b− a is divisible by xm.

(2) if a(0) = 1 and dia
dxi = 0, i = 1, ..., k − 1, dka

dxk
6= 0 for 1 ≤ k < m

then b− a is divisible by xm+k.

(3) if a(0) = 1 and dia
dxi = 0, i = 1, ...,m then b−a is divisible by x2m.

Then for k1 = k2 = m and a(0) ∈ C\{1} we can assume that a(x) is a
polynomial of degree less than m. Furthermore the similarity classes
of A(x) is uniquely determined by such a(x). These similarity classes
are parameterized by C\{1}×Cm−1 (the Taylor coefficients of a(x)).

4. Let P and Q satisfy the assumptions of Theorem 3.9.4. Show that P
and Q are analytically similar if and only if

p = q = t, mi = ni, Pi(x)
a
≈Qi(x), i = 1, ..., t.
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3.10 Similarity to diagonal matrices

Theorem 3.10.1 Let A(x) ∈ Hn×n
0 and assume that the characteristic

polynomial of A(x) splits in H0 as in (3.9.3). Let

(3.10.1) B(x) = diag(λ1(x), ..., λn(x)).

Then A(x) and B(x) are not analytically similar if and only if there exists
a nonnegative integer p such that

κp(A,A) + κp(B,B) < 2κp(A,B),
(3.10.2)

κj(A,A) + κj(B,B) = 2κj(A,B), j = 0, ..., p− 1, if p ≥ 1.

In particular A(x)
a
≈B(x) if and only if the three matrices given in (2.9.4)

are equivalent over H0.

Proof. Suppose first that (3.10.2) holds. Then the three matrices in

(2.9.4) are not equivalent. HenceA(x)
a

6 ≈B(x). Assume now thatA(x)
a

6 ≈B(x).
Without a loss in generality we may assume that A(x) = C(x) where C(x)
is given in (3.9.4). Let

B(x) = ⊕`j=1Bj(x), Bj(0) = αjInj , j = 1, ..., `.

We prove (3.10.2) by induction on n. For n = 1 (3.10.2) is obvious. Assume
that the (3.10.2) holds for n ≤ N − 1. Let n = N . If A(0) 6≈ B(0) then
Theorem 2.9.2 implies the inequality (3.10.2) for p = 0. Suppose now
A(0) ≈ B(0). That is Aj(0) = Bj(0) = αjInj , j = 1, ..., `. Suppose first
that ` > 1. Theorem 3.9.4 yields

κp(A,A) =
∑̀
j=1

κp(Aj , Aj), κp(A,B) =
∑̀
j=1

κp(Aj , Bj),

κp(B,B) =
∑̀
j=1

κp(Bj , Bj).

Problem 4 implies that A(x)
a

6 ≈B(x) ⇐⇒ Aj(x)
a

6 ≈Bj(x) for some j. Use
the induction hypothesis to deduce (3.10.2). It is left to consider the case

A(0) = B(0) = α0, κ0(A,A) = κ0(A,B) = κ0(B,B) = 0.

Let

A(1)(x) =
A(x)− α0I

x
, B(1)(x) =

B(x)− α0I

x
.
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Clearly

κp(A,A) = κp−1(A(1), A(1)), κp(A,B) = κp−1(A(1), B(1)),

κp(B,B) = κp−1(B(1), B(1)).

Furthermore A(x)
a
≈B(x) ⇐⇒ A(1)(x)

a
≈B(1)(x). Continue this process. If

at some (first) stage k either A(k)(0) 6≈ B(k)(0) or A(k)(0) has at least two
distinct eigenvalues we conclude (3.10.2) as above. Suppose finally that
such k does not exist. Then A(x) = B(x) = λ(x)I, which contradicts the

assumption A(x)
a

6 ≈B(x). 2

3.11 Strict similarity of matrix polynomials

Definition 3.11.1 Let A(x), B(x) ∈ C[x]n×n. Then A(x) and B(x)
are called strictly similar (A

s
≈B) if there exists P ∈ GL(n,C) such that

B(x) = PA(x)P−1.

Definition 3.11.2 Let ` be a positive integer and (A0, A1, ..., A`), (B0, ..., B`) ∈
(Cn×n)`+1. Then (A0, A1, ..., A`) and (B0, ..., B`) are called simultaneously
similar (A0, A1, ..., A`) ≈ (B0, ..., B`) if there exists P ∈ GL(n,C) such that
Bi = PAiP

−1, i = 0, ..., `, i.e. (B0, B1, ..., B`) = P (A0, A1, ..., A`)P−1.

Clearly

Proposition 3.11.3 Let

(3.11.1) A(x) =
∑̀
i=0

Aix
i, B(x) =

∑̀
i=0

Bix
i ∈ C[x]n×n.

Then (A
s
≈B) if and only if (A0, A1, ..., A`) ≈ (B0, ..., B`).

The problem of simultaneous similarity of matrices, i.e. to describe the
similarity class of a given m (≥ 2) tuple of matrices or to decide when a
given two tuples of matrices are simultaneously similar, is a hard problem.
See [Fri83]. There are some cases where this problem has a relatively simple
solution.

Theorem 3.11.4 Let ` ≥ 1 and (A0, ..., A`) ∈ (Cn×n)`+1. Then (A0, ..., A`)
is simultaneously similar to a diagonal tuple (B0, ..., B`) ∈ Cn×n)`+1, i.e.
each Bi is a diagonal matrix, if and only if A0, ..., A` are `+ 1 commuting
diagonable matrices:

(3.11.2) AiAj = AjAi, i, j = 0, ..., `.
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Proof. Clearly if (A0, ..., A`) is simultaneously similar to a diagonal
tuple then A0, ..., A` a set of commuting diagonal matrices. Assume that
A0, ..., A` a set of commuting diagonal matrices. We show that (A0, ..., A`)
is simultaneously similar to a diagonal tuple by the double induction on n
and `. It is convenient to let ` ≥ 0. For n = 1 the theorem trivially holds
for any ` ≥ 0. For ` = 0 the theorem trivially holds for any n ≥ 1. Assume
now that p > 1, q ≥ 1 and assume that the theorem holds for n ≤ p − 1
and all ` and for n = p and ` ≤ q − 1. Assume that A0, ..., Aq ∈ Cp×p
are q + 1 commuting diagonable matrices. Suppose first that A0 = aIp.
The induction hypothesis yields that (B1, ..., Bq) = P (A1, ..., Aq)P−1 is a
diagonal q-tuple for some P ∈ GL(n,C). As PA0P

−1 = A0 = aIp we
deduce that (A0, B1, ..., B`) = P (A0, A1, ..., A`)P−1.

Assume that A0 is not a scalar matrix, i.e A0 6= 1
p trA Ip. Let

Ã0 = QA0Q
−1 = ⊕ki=1aiIpi ,

1 ≤ pi, ai 6= aj for i 6= j, i, j = 1, ..., k,
k∑
i=1

ni = p.

Then the q+ 1 tuple (Ã0, ..., Ãq) = Q(A0, ..., Aq)Q−1 is a q+ 1 tuple of di-
agonable commuting matrices. The specific form of Ã0 and the assumption
that Ã0 and Ãj commute implies

Ãj = ⊕ki=1Ãj,i, Ãj,i ∈ Cpi×pi , i = 1, ..., k, j = 1, ..., q.

The assumption that (Ã0, ..., Ãq) is a q + 1 tuple of diagonable commut-
ing matrices implies that each i the tuple (aiIpi , Ã1,i..., Ãq,i) is q + 1 tuple
of diagonable commuting matrices. Hence the induction hypothesis yields
that (aiIpi , Ã1,i..., Ãq,i) is similar to a q + 1 diagonal tuple for i = 1, ..., k.
It follows straightforward that (Ã0, Ã1..., Ãq) is simultaneously similar to a
diagonal q + 1 tuple. 2

The problem when A(x) ∈ C[x]n×n is strictly similar to an upper tri-
angular matrix B(x) ∈ C[x]n×n is equivalent to the problem when an `+ 1
tuple (A0, ..., A`) ∈ (Cn×n)`+1 is simultaneously an upper triangular tu-
ple (B0, ..., B`), i.e. each Bi is an upper triangular matrix, is solved in
[DDG51]. We bring their result without a proof.

Definition 3.11.5 Let D be a domain, let n,m be positive integers and
let C1, ..., Cm ∈ Dn×n. Then A(C, ..., Cm) ⊂ Dn×n denotes the minimal
algebra in Dn×n containing In and C1, ..., Cm. That is every matrix F ∈
A(C, ..., Cm) is a noncommutative polynomial in C1, ..., Cm.
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Theorem 3.11.6 Let m, ` be positive integers and let A0, ..., A` ∈ (Cn×n)`+1.
TFAE:
(a) (A0, ..., A`) is simultaneously similar to an upper triangular tuple (B0, ..., B`) ∈
Mn(C)`+1.
(b) For any 0 ≤ i < j ≤ ` and F ∈ A(A, ..., A`)) the matrix (AiAj −
AjAi)F is nilpotent.

The implication (a) ⇒ (b) is trivial. (See Problem 2.) The verification
of condition (b) can be done quite efficiently. (See Problem 3.)

Corollary 3.11.7 Let m, ` be positive integers and assume that A0, ..., A` ∈
Cn×n are commuting matrices. Then (A0, ..., A`) is simultaneously similar
to an upper triangular tuple (B0, ..., B`).

See Problem 4.

Problems

1. Let F be a field. View Fn×n as an n2 dimensional vector space over
F. Note that any A ∈ Fn×n acts as a linear transformation on Fn×n
by left multiplication: B 7→ AB, B ∈ Cn×n. Let A0, ..., A` ∈ Fn×n.
Let W0 = span (In) and define

Wk = Wk−1 +
∑̀
j=0

AjWk−1, k = 1, ..., .

Show that Wk−1 ⊂ Wk for each k ≥ 1. Let p be the minimal non-
negative integer for which the equality Wk = Wk+1 holds. Show
that A(A, ..., A`) = Wp. In particular A(A, ..., A`) is a finite di-
mensional subspace of Fn×n.

2. Show the implication (a)⇒ (b) in Theorem 3.11.6.

3. Let the assumptions of Problem 1 hold. Let X0 = A(A, ..., A`) and
define recursively

Xk =
∑

0≤i<j≤`

(AiAj −AjAi)Xk−1 ⊂ Fn×n, k = 1, ..., .

Show that the condition (a) of Theorem 3.11.6 to the following two
conditions:

(c) AiXk ⊂ Xk, i = 0, ..., `, k = 0, ...,.

(d) There exists q ≥ 1 such that Xq = {0} and Xk is a strict subspace
of Xk−1 for k = 1, ..., q.
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4. Let A0, ..., A` ∈ Fn×n. Assume that 0 6= x ∈ Fn and A0x = λ0x.
Suppose that A0Ai = AiA0, i = 1, ..., `.
(a) Show that any nonzero vector inA(A, ..., A`)span (x)(⊃ span (x))
is an eigenvector of A0 corresponding λ0.
(b) Assume in addition that A1, ..., A` are commuting matrices whose
characteristic polynomials split in F to linear factors. Show by induc-
tion that there exists 0 6= y ∈ A(A, ..., A`)span (x) such Aiy =
λiy, i = 0, ..., `.
(c) Show that if A0, ..., A` ∈ Fn×n are commuting matrices whose
characteristic polynomials split in F to linear factors then (A0, ..., A`)
is simultaneously similar over GL(n,F) to an upper triangular `+ 1
tuple.

3.12 Similarity to diagonal matrices

Let A(x) ∈ Hn×n
0 . The Weierstrass preparation theorem (Theorem 1.7.4)

implies that the eigenvalues of A(ys) are analytic in y for some s|n!. That
is the eigenvalues λ1(x), ..., λn(x) are multivalued analytic functions in x
which have the expansion

λj(x) =
∞∑
k=0

λjkx
k
s , j = 1, ..., n.

In particular each λj has sj branches, where sj |m. For more properties of
the eigenvalues λ1(x), ..., λn(x) see for example [Kat80, Chap.2].

Let A(x) ∈ C[x]n×n. Then

(3.12.1) A(x) =
∑̀
k=0

Akx
k, Ak ∈ Cn×n, k = 0, ..., `.

The eigenvalues of A(x) satisfy the equation

det (λI −A(x)) = λn +
n∑
j=1

aj(x)λn−j , aj(x) ∈ C[x], j = 1, ..., n.

(3.12.2)

Thus the eigenvalues λ1(x), ..., λn(x) are algebraic functions of x. (See for
example [GuR65].) For each ζ ∈ C we apply the Weierstrass preparation
theorem in Hζ to obtain the Puiseaux expansion of λj(x) around x = ζ:

(3.12.3) λj(x) =
∞∑
k=0

λjk(ζ)(x− ζ)
k
s , j = 1, ..., n.
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For simplicity of notation we choose s ≤ n! for which the above expansion
holds for each ζ ∈ C. (For example s = n! is always a valid choice.) Since
A(x) is a polynomial matrix each λj(x) has Puiseaux expansion at ∞. Let

A(x) = x`B(
1
x

), B(y) =
∑̀
k=0

Aky
`−k.

Then the Puiseaux expansion of the eigenvalues of B(y) at y = 0 yields

(3.12.4) λj(x) = x`
∞∑
k=0

λjk(∞)x−
k
s , j = 1, ..., n.

Equivalently, we view the eigenvalues λj(x) as multivalued analytic func-
tions over the Riemann sphere P = C ∪ ∞. To view A(x) as a matrix
function over P we need to homogenize as in §2.1.

Definition 3.12.1 Let A(x) be given by (3.12.1). Denote by A(x0, x1)
the corresponding homogeneous matrix

(3.12.5) A(x0, x1) =
`′∑
k=0

Akex
`′−k
0 xk1 ∈ C[x0, x1]n×n,

where `′ = −1 if A(x) = 0 and A`′ 6= 0 and Aj = 0 for `′ < j ≤ ` if
A(x) 6= 0.

Let A(x), B(x) ∈ C[x]n×n. Then A(x) and B(x) are similar over C[x],
denoted by A(x) ≈ B(x), if B(x) = P (x)A(x)P−1(x) for some P (x) ∈
GL(n,C[x]). Lemma 2.9.4 implies that if A(x) ≈ B(x) then the three
matrices in (3.6.2) are equivalent over C[x]. Assume a stronger condition
A
s
≈B. Clearly if B(x) = PA(x)P−1 then B(x0, x1) = PA(x0, x1)P−1.

According to Lemma 2.9.4 the matrices

I ⊗A(x0, x1)−A(x0, x1)> ⊗ I, I ⊗A(x0, x1)−B(x0, x1)> ⊗ I,(3.12.6)
I ⊗B(x0, x1)−B(x0, x1)> ⊗ I,

are equivalent over C[x0, x1]. Lemma 1.11.3 yields.

Lemma 3.12.2 Let A(x), B(x) ∈ C[x]n×n. Assume that A(x)
s
≈B(x).

Then the three matrices in (3.12.6) have the same invariant polynomials
over C[x0, x1].

Definition 3.12.3 Let A(x), B(x) ∈ C[x]n×n. Let A(x0, x1), B(x0, x1)
be the homogeneous matrices corresponding to A(x), B(x) respectively. De-
note by ik(A,B, x0, x1), k = 1, ..., r(A,B) the invariant factors of I ⊗
A(x0, x1)−B(x0, x1)> ⊗ I.
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The arguments of the proof of Lemma 2.1.2 imply that ik(A,B, x0, x1)
is a homogeneous polynomial for k = 1, ..., r(A,B). Moreover ik(A,B, 1, x)
are the invariants factors of I ⊗A(x)−B(x)> ⊗ I. (See Problems 5-6.)

Theorem 3.12.4 Let A(x) ∈ C[x]n×n. Assume that the characteristic
polynomial of A(x) splits to linear factors over C[x]. Let B(x) be the di-
agonal matrix of the form (3.10.1). Then A(x) ≈ B(x) if and only if the
three matrices in (3.6.2) are equivalent over C[x]. Furthermore A(x)

s
≈B(x)

if and only if the three matrices in (1.34.8) have the same invariant factors
over C[x0, x1].

Proof. Clearly if A(x) ≈ B(x) then the three matrices in (3.6.2) are
equivalent over C[x]. Similarly if A(x)

s
≈B(x) then the three matrices in

(1.34.8) have the same invariant factors over C[x0, x1]. We now show the
opposite implications.

Without loss of generality we may assume that B(x) is of the form

B(x) = ⊕mi=1λi(x)Ini ∈ C[x]n×n, λi(x) 6= λj(x), i 6= j, i, j = 1, ...,m.
(3.12.7)

Thus for all but a finite number of points ζ ∈ C we have that

(3.12.8) λi(ζ) 6= λj(ζ) for i 6= j, i, j = 1, ...,m.

Assume first that A(x) ≈ B(x). Let Pj(A) be the projection of A(x) on
λj(x) for j = 1, ...,m. Suppose that (3.12.8) is satisfied at ζ. Problem 3.4.10
yields that each Pj(x) is analytic in the neighborhood of ζ. Assume that
(3.12.8) does not hold for ζ ∈ C. The assumptions that the three matrices
in (3.12.6) have the same invariant polynomials imply that the matrices in
(3.6.2) are equivalent over Hζ . Now use Theorem 3.10.1 to get that A(x) =
Q(x)B(x)Q(x)−1, Q ∈ GL(n,Hζ). Clearly Pj(B), the projection of B(x)
on λj(x), is 0⊕Inj ⊕0. In particular Pj(B) is analytic in the neighborhood
of any ζ ∈ C and its rank is always equal to nj . Problem 3.4.11 yields that
Pj(A)(x) = Q(x)Pj(B)(x)Q(x)−1 ∈ Hn×n

ζ . Hence rank Pj(A)(ζ) = nj for
all ζ ∈ C. Furthermore Pj(A)(x) ∈ Hn×n

C , i.e. each entry of Pj(A) is an
entire function (analytic function on C). Problem 3.4.14 yields that

(3.12.9) Pj(A)(ζ) =
n∏

k=1,k 6=j

A(ζ)− λk(ζ)I
λj(ζ)− λk(ζ)

, j = 1, ..., n.

Hence each entry of Pj(A)(ζ) is a rational function of ζ on C. Since
Pi(A)(x) is analytic in the neighborhood of each ζ ∈ C it follows that
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Pi(x) ∈ C[x]n×n. We also showed that its rank is locally constant, hence
rank Pi(x) = ni, i = 1, ...,m. Therefore the Smith normal form of Pi(x)
over C[x] is Pi(x) = Ui(x)(Ini ⊕ 0)Vi(x), Ui, Vi ∈ GL(n,C[x]). Let
u1,i(x), ...,uni,i(x) be the first ni columns of Ui(x). Then Pi(x)Cn =
span (u1,i(x), ...,uni,i(x)). Recall that P1(x) + ... + Pm(x) = In. Hence
u1,1(x), ...,un1,1(x), ...,u1,m(x), ...,unm,m(x) is a basis for Cn for each x ∈
C. Let S(x) be the matrix with the columns

u1,1(x), ...,un1,1(x), ...,u1,m(x), ...,unm,m(x).

Then S(x) ∈ GL(n,C[x]). Let D(x) = S−1(x)A(x)S(x) ∈ C[x]n×n. Since
A(x) is pointwise diagonable D(ζ) = B(ζ), where ζ satisfies (3.12.8) and
B(x) is of the form (3.12.7). Since only finite number of points ζ ∈ C do
not satisfy the condition (3.12.7) it follows that D(x) = B(x). This proves
the first part of the theorem.

Assume now that the three matrices in (1.34.8) have the same invariant
factors over C[x0, x1]. The same arguments imply that A(x0, 1)

a
≈B(x0, 1)

over the ring H0. That is Pj(A) is also analytic at the neighborhood ζ =∞.
So Pj(A) is analytic on P hence bounded, i.e. each entry of Pj(A) is
bounded. Hence Pj(A) is a constant matrix. Therefore S(x) is a con-
stant invertible matrix, i.e. A(x)

s
≈B(x). 2

Let A(x) ∈ C[x]n×n be of the form (3.12.1) with ` ≥ 1 and A` 6= 0.
Assume that A(x) is strictly similar to a diagonal matrix B(x). Then
A(x) is pointwise diagonable, i.e. A(x) is similar to a diagonal matrix
for each x ∈ C, and A` 6= 0 is diagonable. Equivalently, consider the
homogeneous polynomial matrix A(x0, x1). Then A(x0, x1) is pointwise
diagonable (in C2). However the assumption that any A(x0, x1) is pointwise
diagonable does not imply that A(x) is strictly equivalent to a diagonal
matrix. Consider for example

(3.12.10) A(x) =
[
x2 x
0 1 + x2

]
⇒ A(x0, x1) =

[
x2

1 x0x1

0 x2
0 + x2

1

]
.

(See Problem 2.)

Definition 3.12.5 Let A(x) ∈ C[x]n×n be of the form (3.12.1) with
` ≥ 1 and A` 6= 0. Let λp(x) and λq(x) be two distinct eigenvalues of
A(x). (λp(x) and λq(x) have distinct Puiseaux expansion for any ζ ∈ P.)
The eigenvalues λp(x) and λq(x) are said to be tangent at ζ ∈ P if their
Puiseaux expansion at ζ satisfy

(3.12.11) λpk(ζ) = λqk(ζ), k = 0, ..., s.
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(Note that two distinct eigenvalues are tangent at ∞ if the corresponding
eigenvalues of A(x, 1) are tangent at 0.)

Note that for A(x) given in (3.12.10) the two eigenvalues of A(x) x2 and
1 + x2 are tangent at one point ζ = ∞. (The eigenvalues of A(x, 1) are 1
and 1 + x2.)

Theorem 3.12.6 Let A(x) ∈ C[x]n×n be of the form (3.12.1) with
` ≥ 1 and A` 6= 0. Then one of the following conditions imply that
A(x) = S(x)B(x)S−1(x), where S(x) ∈ GL(n,C[x]) and B(x) ∈ C[x]n×n

is a diagonal matrix of the form
∑m
i=1 λi(x)Iki , where k1, . . . , km ≥ 1.

Furthermore λ1(x), ..., λm(x) are m distinct polynomials satisfying the fol-
lowing conditions:
(a) ` ≥ deg λi(x), i = 1, ...,m.
(b) The polynomial λi(x) − λj(x) has only simple roots in C for i 6= j.
(λi(ζ) = λj(ζ)⇒ λ′i(ζ) 6= λ′j(ζ)).

I. The characteristic polynomial of A(x) splits in C[x], i.e. all the
eigenvalues of A(x) are polynomials. A(x) is point-wise diagonable in C
and no two distinct eigenvalues are tangent at any ζ ∈ C .

II. A(x) is point-wise diagonable in C and A` is diagonable. No two
distinct eigenvalues are tangent at any point ζ ∈ C ∪ {∞}. Then A(x) is
strictly similar to B(x), i.e. S(x) can be chosen in GL(n,C). Furthermore
λ1(x), ..., λm(x) satisfy the additional condition:

(c) deg λ1(x) = l. Furthermore, for i 6= j either d`λi
d`x

(0) 6= d`λj
d`x

(0) or
d`λi
d`x

(0) = d`λj
d`x

(0) and d`−1λi
d`=1x

(0) 6= d`−1λj
d`−1x

(0).

Proof. View A(x) as matrix inMn×n, whereM is field of rational
functions. Let K be a finite extension ofM such that det (λI−A(x)) splits
to linear factors over K. Then A(x) has m distinct eigenvalues λ1, ..., λm ∈
K of multiplicities n1, ..., nm respectively. We view these eigenvalues as
multivalued functions λ1(x), ..., λm(x). Thus for all but a finite number
of points ζ (3.12.8) holds. Assume that ζ satisfies (3.12.8). Denote by
Pj(ζ) the projection of A(ζ) on λj(ζ). Problem 10 implies that Pj(x)
is a multivalued analytic in the neighborhood of ζ and rank Pj(ζ) = nj .
Problem 14 yields (3.12.9). We claim that in the neighborhood of any ζ ∈ C
each λj and Pj is multivalued analytic and rank Pj(x) = nj . Let ζ ∈ C for
which (3.12.8) is violated. For simplicity of notation we consider λ1(x) and
P1(x). Let

λ1(ζ) = ... = λr(ζ) 6= λk(ζ), k = r + 1, ...,m.
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Theorem 3.5.7 implies the existence of Q(x) ∈ GL(n,Hζ) such that

Q−1(x)A(x)Q(x) = C1(x)⊕ C2(x),

Cj(x) ∈ Hmj×mj
ζ , j = 1, 2, m1 =

r∑
i=1

ni, m2 = n−m1.

The eigenvalues of C1(x) and C2(x) are λ1(x), ..., λr(x) and λr+1(x), ..., λm(x)
respectively in some neighborhood of ζ. Since C(x) is pointwise diagonable
in Hζ it follows that C1(x) and C2(x) are pointwise diagonable in Hζ . We
claim that λi(x) ∈ Hζ , the projection P̂i(x) of C1(x) on λi(x) is in Hm1×m1

ζ

and rank P̂i(ζ) = ni for i = 1, ..., r. If r = 1 λ1(x) = 1
n1

trC1(x) ∈ Hζ

and P̂1(x) = In1 . Assume that r > 1. Since C1(ζ) is diagonable and has
one eigenvalue λ1(ζ) of multiplicity m1 it follows that C1(ζ) = λ1(ζ)Im1 .
Hence

C1(x) = λ1(ζ)Im1 + (x− ζ)Ĉ1(x), Ĉ1(x) ∈ Hm1×m1
ζ .

Clearly Ĉ1(x) has r distinct eigenvalues λ̂1(x), ..., λ̂r(x) such that

λi(x) = λ1(ζ) + (x− ζ)λ̂i(x), i = 1, ..., r.

Each λ̂i(x) has Puiseaux expansion (3.12.3). The above equality shows
that for 1 ≤ i < j ≤ r λi(x) and λj(x) are not tangent if and only if
λ̂i(ζ) 6= λ̂j(η). By the assumption of theorem no two different eigenval-
ues of A(x) are tangent in C. Hence λ̂i(ζ) 6= λ̂j(η) for all i 6= j ≤ r.
That is Ĉ1(ζ) has r distinct eigenvalues. Apply Theorem 3.5.7 to Ĉ1(ζ)
to deduce that Ĉ1(ζ) is analytically similar C̃1 ⊕ ... ⊕ C̃r such that C̃i
has a unique eigenvalues λ̂i(x) of multiplicity ni for i = 1, ..., r. Hence
λ̂i(x) = 1

ni
tr C̃i(x) ∈ Hζ ⇒ λi(x) ∈ Hζ . Clearly the projection of C̃i(x)

on λ̂i(x) is Ini . Hence P̂i(x) is analytically similar to the projection to
0 ⊕ ... ⊕ Ini ... ⊕ 0. So P̂i(x) ∈ Hm1×m1

ζ , rank Pi(x) = ni for i = 1, .., r.
Hence P1(x) ∈ Hn×n

ζ , rank P1(x) = n1 as we claimed.
Assume now that λ1(x), . . . , λn(x) are polynomials. Hence and Pi(x) are

entire functions on C. (See for example [Rud74].) Since lim|x|→∞
A(x)
x`

= Al

it follows that lim sup|x|→∞
|λi(x)|
|x|` ≤ ρ(A), where ρ(A) is the spectral radius

of A`. Hence each λj(x) is polynomial of degree ` at most. Since A` 6= 0
it follows that at least one of λj(x) is a polynomial of degree ` exactly.
We may assume that deg λ1(x) = `. This proves the condition (a) of the
theorem. The condition (b) is equivalent to the statement that no two
distinct eigenvalues of A(x) are tangent in C.
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Define Pi(ζ) by (3.12.9). As in the proof of Theorem 3.12.4 it follows
that Pi(x) ∈ C[x]n×n and rank Pi(x) = ni, i = 1, ...,m. Furthermore we
define S(x) ∈ GL(n,C[x]) as in the proof of Theorem 3.12.4 such that
B(x) = S−1(x)A(x)S(x). This proves the first part of the theorem.

To prove the second part of the theorem observe that in view of our
definition of tangency at ∞ the condition (c) is equivalent to the condition
that no two distinct eigenvalues of A are tangent at infinity. Assume now
that Al is diagonable and no two distinct eigenvalues are tangent at ∞.
Then the above arguments show that each Pi(x) is also multivalued analytic
at ∞. By considering x−lA(x) it follows that Pi(x) is bounded at the
neighborhood of ∞. Hence Pi(x) = Pi(0) for i = 1, ...,m. Thus S ∈
GL(n,C). So A(x) is diagonable by a constant matrix. In particular all
the eigenvalues of A(x) are polynomials. Sice no two distinct eigenvalues
are tangent at ∞ we deduce the condition (c) holds. 2

Problems

1. Let A(x) ∈ C[x]n×n. Assume that there exists an infinite sequence
of distinct points {ζk}∞1 such that A(ζk) is diagonable for k = 1, ...,.
Show that A(x) is diagonable for all but a finite number of points.
(Hint: Consider the rational canonical form of A(x) over the field of
rational functions C(x).)

2. Consider the matrix A(x) given in (3.12.10). Show

(a) A(x) and A(x0, x1) are pointwise similar to diagonal matrices in
C and C2 respectively.

(b) The eigenvalues of A(x) are not tangent at any point in C.

(c) Find S(x) ∈ GL(,C[x]) such that S−1(x)A(x)S(x) = diag(x2, 1+
x2).

(d) Show that A(x) is not strictly similar to diag(x2, 1 + x2).

(c) Show that the eigenvalues of A(x) are tangent at ζ =∞.

3.13 Property L

In this section and the next one we assume that all pencils A(x) = A0+A1x
are square pencils, i.e. A(x) ∈ C[x]n×n, and A1 6= 0 unless stated otherwise.
Then A(x0, x1) = A0x0 +A1x1.
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Definition 3.13.1 A pencil A(x) ∈ C[x]n×n has property L if all the
eigenvalues of A(x0, x1) are linear functions. That is λi(x0, x1) = αix0 +
βix1 is an eigenvalue of A(x0, x1) of multiplicity ni for i = 1, ...,m, where

n =
m∑
i=1

ni, (αi, βi) 6= (αj , βj), for 1 ≤ i < j ≤ m.

The proofs of the following propositions is left to the reader. (See Problems
1-2.)

Proposition 3.13.2 Let A(x) = A0 + xA1 be a pencil in C[x]n×n.
TFAE:
(a) A(x) has property L.
(b) The eigenvalues of A(x) are polynomials of degree 1 at most.
(c) The characteristic polynomial of A(x) splits to linear factors over C[x].
(d) There is an ordering of the eigenvalues of A0 and A1, a1, ..., an and
b1, ..., bn, respectively, such that the eigenvalues of A0x0 +A1x1 are a1x0 +
b1x1, ..., anx0 + bnx1.

Proposition 3.13.3 Let A(x) be a pencil in C[x]n×n. Then A(x) has
property L if one of the following conditions hold:
(a) A(x) is similar over C(x) to an upper triangular matrix U(x) ∈ C(x)n×n.
(b) A(x) is strictly similar to an upper triangular pencil U(x) = U0 + U1x,
i.e. U0, U1 are upper triangular.
(c) A(x) is similar over C[x] to a diagonal matrix B(x) ∈ C[x]n×n.
(d) A(x) is strictly similar to diagonal pencil.

Note that for pencils with property L any two distinct eigenvalues are
not tangent at any point of P. For pencils one can significantly improve
Theorem 3.12.6.

Theorem 3.13.4 Let A(x) = A0 + A1x ∈ C[x]n×n be a nonconstant
pencil (A1 6= 0). Assume that A(x) is pointwise diagonable on C. Then
A(x) has property L. Furthermore A(x) is similar over C[x] to a diagonal
pencil B(x) = B0 + B1x. Suppose furthermore that A1 is diagonable, i.e.
A(x0, x1) is pointwise diagonable on C2. Then A(x) is strictly similar to the
diagonal pencil B(x), i.e. A0 and A1 are commuting diagonable matrices.

Proof. We follow the proof of Theorem 3.12.6. Let λ1(x), ..., λm(x) be
the eigenvalues of A(x) of multiplicities n1, ..., nm respectively, where each
λj(x) is viewed as multivalued function of x. More precisely, there exists
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an irreducible polynomial

φ(x, λ) = λp +
p∑
q=1

φq(x)λp−q ∈ C[x, λ],

(3.13.1)
φ(x, λ)|det (λI −A(x)),

such that λj(x) satisfies the algebraic equation

(3.13.2) φ(x, λ) = 0.

Moreover all branches generated by λj(x) on C will generate all the solu-
tions λ(x) of (3.13.2). Equivalently all pairs (x, λ) satisfying (3.13.2) form
an affine algebraic variety V0 ⊂ C2. If we compactify V0 to a projective
variety V ⊂ P2 then V is a compact Riemann surface. V \V0 consists of a
finite number of points, the points of V0 at infinity. The compactification
of V0 is equivalent to considering λj(x) as a multivalued function on P.
See for example [GuR65]. Note that any local solution of (3.13.2) is some
eigenvalue λi(x) of A(x). Since A(ζ) is diagonable at ζ ∈ C Theorem 3.8.1
implies that the Puiseaux expansion of λj(x) around ζ in (3.12.3) is of the
form

λj(x) = λj(ζ) +
∞∑
k=s

λjk(ζ)(x− ζ)
k
s .

Then
dλj(x)
dx

=
∞∑
k=s

k

s
λjk(ζ)(x− ζ)

k−s
s .

So dλj(x)
dx is a multivalued locally bounded function on C. Equivalently,

using the fact that λj(x) satisfy (3.13.2) we deduce

(3.13.3)
dλj(x)
dx

= −
∂φ(x,λ)
∂x

∂φ(x,λ)
∂y

.

Hence dλj(x)
dx is a rational function on V , which is analytic on V0 in view

of the assumption that A(x) is pointwise diagonable in C. The Puiseaux
expansion of λj(x) it ∞ (3.12.4) is

λj(x) = x

∞∑
k=0

λjk(∞)x−
k
s .
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Hence
dλj(x)
dx

= λj0(∞) +
∞∑
k=1

s− k
s

λjk(∞)x−
k
s .

That is the multivalued function dλj(x)
dx is bounded at the neighborhood of

∞. Equivalently the rational function in (3.13.3) is bounded at all points
of V \V0. Thus the rational function in (3.13.3) is bounded on a compact
Riemann surface (3.13.2). Hence it must be constant, i.e. dλj(x)

dx = bj ⇒
λj(x) = aj + bjx. So we have property L by part (b) of Proposition 3.13.2.
In particular two distinct eigenvalues of A(x) are not tangent at any ζ ∈ P.
The first part of Theorem 3.12.6 implies that A(x) is similar to B(x) =∑m
j=1⊕(aj + bjx)Inj over C[x].
Assume now that A1 is diagonable. Then the second part of Theorem

3.12.6 yields that A(x) is strictly similar to B(x), which is equivalent to
the assumption that A0, A1 are commuting diagonable matrices (Theorem
3.11.4). 2

Theorem 3.13.5 Let A(x) = A0 + A1x ∈ C[x]n×n. Assume that A1

and A2 are diagonable and A0A1 6= A1A0. Then exactly one of the following
conditions hold:
(a) A(x) is not diagonable exactly at the points ζ1, ..., ζp, where 1 ≤ p ≤
n(n− 1).
(b) A(x) is diagonable exactly at the points ζ1 = 0, ..., ζq for some q ≥ 1.

Proof. Combine the assumptions of the theorem with Theorem 3.13.4
to deduce the existence of 0 6= ζ ∈ C such that A(ζ) is not diagonable.
Consider the homogenized pencil A(x0, x1) = A0x0 +A1x1. Let

C(p1, ..., pk)(x0, x1) = ⊕kj=1C(pj) ∈ C[x0, x1]n×n,
k∏
i=1

pi(x0, x1, λ) = det (λI −A(x0, x1)),

pi(x0, x1, λ) = λmi +
mi∑
j=1

λmi−jpij(x) ∈ C[x0, x1][λ], 1 ≤ mi i = 1, ..., k,

p1|p2|...|pk,

be the rational canonical form A(x0, x1) over C(x0, x1). (See 2.3.) That is
each pi(x0, x1, λ) is a nontrivial invariant polynomial of λI − A(x0, x1).
Hence each pi(x0, x1, λ) is a homogeneous polynomial of degree mi in
x0, x1, λ. FurthermoreA(x0, x1) = S(x0, x1))C(p1, ..., pk)(x0, x1)S(x0, x1)−1

for some
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S(x0, x1) ∈ C[x0, x1]n×n ∩GL(n,C(x, x)). Choose x0 = τ 6= 0 such that
det S(τ, x1) is not identically zero in x1. Then A(x) = A(1, x) is pointwise
similar to
1
τC(p1, ..., pk)(τ, τx) at all point for which det S(τ, τx) 6= 0, i.e. at all but
a finite number of points in C.

Since C[x0, x1, λ] is Du then pk(x0, x1, λ) =
∏r
i=1 φi(x0, x1, λ)`i , where

each φi is a nonconstant irreducible (homogeneous) polynomial and φi is
coprime with φj for i 6= j. Assume first that some `i > 1. Then C(pk)(τ, t)
has a multiple eigenvalue for any t ∈ C, hence it is not diagonable. That is
the condition (b) of the theorem holds.

Assume now that `1 = ... = `r = 1. This is equivalent to the assump-
tion that pk(x0, x1, λ) = 0 does not have multiple roots for some (x0, x1).
We claim that it is possible to choose τ 6= 0 such that pk(τ, x1, λ) has mk

pairwise distinct roots (in λ) except in the points ζ1, ..., ζq. Consider the
discriminant D(x0, x1) of pk(x0, x1, λ) ∈ C[x0, x1][λ]. See 1.8. Since pki
is a homogeneous polynomial of degree i for i = 1, ...,mk it follows that
D(x0, x1) is homogeneous polynomial of degree mk(mk − 1) ≤ n(n − 1).
Since pk(x0, x1, λ) = 0 does not have multiple roots for some (x0, x1) it
follows that D(x0, x1) is not a zero polynomial, and pk(x0, x1, λ) = 0 has a
multiple root if and only if D(x0, x1) = 0. Choose τ 6= 0 such that D(τ, x1)
is not a zero polynomial. Let ζ1, ..., ζq be the distinct roots of D(τ, τx) = 0.
Since the degree of D(x0, x1) is at most n(n− 1) it follows that the degree
of D(τ, x) is at most n(n − 1). Hence 0 ≤ q ≤ n(n − 1). By the defini-
tion of the invariant polynomials it follows that pk(x0, x1, A(x0, x1)) = 0.
Hence pk(τ, τt, A(τ, τt)) = 0. Let t ∈ X = C\{ζ1, ..., ζq}. Since pk(τ, τt, λ)
has mk distinct roots, which are all eigenvalues of A(τ, τt) it follows that
A(τ, τt) = τA(t) is a diagonable matrix. 2

For n = 2 the case (b) in Theorem 3.13.5 does not arise. See Problem
4. We do not know if the case (b) of Theorem 3.13.5 arises. Recall that a
hermitian matrix A ∈ Cn×n, Ā> = A is always diagonable.

Definition 3.13.6 A pencil A(x) = A0 + A1x is called hermitian if
A1, A2 ∈ Cn×n are hermitian.

Theorem 3.13.7 Let A(x) = A0 +A1x ∈ C[x]n×n be a hermitian pen-
cil. Assume that A0A1 6= A1A0. Then there exists 2q distinct complex
points ζ1, ζ̄1..., ζq, ζ̄q ∈ C\R, 1 ≤ q ≤ n(n−1)

2 such that A(x) is not diago-
nable if and only if x ∈ {ζ1, ζ̄1, ..., ζq, ζ̄q}.

Proof. Clearly A(x) is a hermitian matrix for any real x. Hence A(x)
is diagonable for x ∈ R. Thus the condition (a) of Theorem 3.13.5 holds.
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Assume that A(ζ) is not diagonable. Then ζ ∈ C\R. Let A(ζ) = QJQ−1,
where J is a Jordan canonical form of A(ζ). Then

A(ζ̄) = A(ζ)
>

= (Q̄>)−1J̄>Q̄>.

Hence A(ζ̄) is not diagonable. Thus the number of distinct points ζ for
which A(ζ) is not diagonable is 1 ≤ 2q ≤ n(n− 1). 2

The points ζ1, ..., ζq are called the resonance states of the hermitian
pencil A(x). They are important in certain chemical models [MoF80].

Problems

1. Prove Proposition 3.13.2.

2. (a) Show that property L is equivalent to the condition (a) of Propo-
sition 3.13.3.

(b) Prove the other conditions of Proposition 3.13.3.

3. Show that a pencil A(x) = A0 + A1x ∈ C[x]2×2 have property L if
and only if A(x) is strictly similar to an upper triangular pencil.

4. Let A(x0, x1) = A0x0 + A1x1 ∈ C[x0, x1]2×2. Then exactly one the
following conditions hold.

(a) A(x0, x1) is strictly similar to a diagonal pencil. (Property L
holds).

(b) A(x0, x1) is not diagonable except exactly for the points (x0, x1) 6=
(0, 0) lying on a line ax0 + bx1 = 0. (Property L holds, A0A1 = A1A0

but Ai is not diagonable for some i ∈ {1, 2}, A(x0, x1) has a double
eigenvalue.)

(c) A(x0, x1) is diagonable except exactly for the points (x0, x1) 6=
(0, 0) lying on a line ax0 + bx1 = 0. (Property L holds.)

(d) A(x0, x1) is diagonable except exactly the points (x0, x1) 6= (0, 0)
which lie on two distinct lines in C2. (Property L does not hold.)

5. Let

A0 =

0 1 0
0 0 1
0 0 0

 , A1 =

 1 1 2
1 1 2
−1 −1 −2

 .
(a) Show that A0, A1 are nilpotent while A0 +A1 is nonsingular.

(b) Show that A(x) = A0 +A1x does not have property L.

(c) Show that A(x) is diagonable for all x 6= 0.
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3.14 Strict similarity of pencils and analytic
similarity

Let A(x) = A0 + A1x,B(x) = B0 + B1x ∈ C[x]n×n. Recall the notion of
strict equivalence A(x) s∼B(x) (2.1) and strict similarity A(x)

s
≈B(x) (3.11).

Clearly A(x)
s
≈B(x)⇒ A(x) s∼B(x). (2.9.3) yields.

Proposition 3.14.1 Let A(x), B(x) ∈ C[x]n×n be two strictly similar
pencils. Then the three pencils in (3.6.2) are strictly equivalent.

Using Kronecker’s result (Theorem 2.1.7) we can determine if the three
pencils in (3.6.2) are strictly equivalent. We now study the implications of
Proposition 3.14.1.

Lemma 3.14.2 Let A(x) = A0 +A1x,B(x) = B0 +B1x ∈ C[x]n×n be
two pencils such that

(3.14.1) I ⊗A(x)−A(x)> ⊗ I s∼I ⊗A(x)−B(x)> ⊗ I.

Then there exists two nonzero U, V ∈ Cn×n such that

(3.14.2) A(x)U − UB(x) = 0, V A(x)−B(x)V = 0.

In particular

(3.14.3) A0 kerV,A1 kerV ⊂ kerV, B0 kerU,B1 kerU ⊂ kerU.

Proof. As A(x)I − IA(x) = 0 it follows that the kernels of I ⊗A(x)−
A(x)>⊗I ∈ C[x]n

2×n2
and its transpose contain a nonzero vector În ∈ Cn

2

which is induced by In. (See 2.8.) Hence the kernel of I⊗A(x)−B(x)>⊗I
contain nonzero constant vectors. This is equivalent to (3.14.2).

Assume that (3.14.2) holds. Let x ∈ kerV . Multiply the second equal-
ity in (3.14.2) from the right by x to deduce the first part (3.14.3). The
second part of (3.14.3) is obtained similarly. 2

Definition 3.14.3 A0, A1 ∈ Cn×n have a common invariant subspace
if there exist a subspace U ⊂ Cn, 1 ≤ dim U ≤ n−1 such that A0U, A1U ⊂
U.

The following claims are left to the reader (see Problems 1-2).
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Proposition 3.14.4 Let A(x) = A0 + xA1 ∈ C[x]n×n. Then A(x) is
strictly similar to an upper triangular pencil

B(x) =
[
B11(x) B12(x)

0 B22(x)

]
,

B11(x) ∈ C[x]n1×n1 , B12(x) ∈ C[x]n1×n2 , B22(x) ∈ C[x]n2×n2 ,(3.14.4)
1 ≤ n1, n2, n1 + n2 = n,

if and only if A0, A1 have a common invariant subspace.

Proposition 3.14.5 Assume that A(x) ∈ C[x]n×n is similar over C(x)
to an upper triangular matrix B(x) of the form (3.14.4). Then det (λI −
A(x)) ∈ C[x, λ] is reducible.

Theorem 3.14.6 Let A(x) = A0 + A1x,B(x) = B0 + B1x ∈ C[x]n×n.
Assume that either det (λI − A(x)) or det (λI − B(x)) is irreducible over
C[x, λ]. Then A(x)

s
≈B(x) if and only if (3.14.1) holds.

Proof. Assume that (3.14.1) holds. Suppose that det (λI − A(x)) is
irreducible. Propositions 3.14.4-3.14.5 imply that A0, A1 do not have a
common invariant subspace. Lemma 3.14.2 implies that the matrix V in
(3.14.2) is invertible, i.e. B(x) = V A(x)V −1. Similarly if det (λI − B(x))
is irreducible then B(x) = U−1A(x)U . 2

Definition 3.14.7 Let In ⊂ (Cn×n)2 be the set of all pairs (A0, A1)
such that det (λI − (A0 +A1x)) irreducible.

We will show later that In = (Cn×n)2\Xn where Xn is a strict subvariety
of (Cn×n)2. That is, for most of the pencils A(x), (A0, A1) ∈ (Cn×n)2

det (λI − A(x)) is irreducible. Clearly if (A0, A1)
s
≈(B0, B1) then either

(A0, A1), (B0, B1) ∈ In or (A0, A1), (B0, B1) 6∈ In.

Corollary 3.14.8 Let (A0, A1), (B0, B1) ∈ In. Then A(x) = A0 +A1x
is strictly similar to B(x) = B0 +B1x if and only if (3.14.1) holds.

We now discuss the connection between the notion of analytic similarity
of matrices over H0 and strict similarity of pencils. Let A(x), B(x) ∈ Hn×n

0

and assume that η(A,A) = 1. Suppose that A
r
≈B(x). Theorem 3.9.2

claims that A(x) ≈ B(x) if and only if there exists two matrices T0 ∈
GL(n,C), T ∈ Cn×n such that

A0T0 = T0B0, A1T0 +A0T1 = T0B1 + T1B0.
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Let

(3.14.5) F (A0, A1) =
[
A0 A1

0 A0

]
∈ C2n×2n.

Then (3.9.2) is equivalent in this case to

(3.14.6) F (A0, A1)F (T0, T1) = F (T0, T1)F (B0, B1).

As det F (T0, T1) = (det T0)2 it follows that T0 is invertible if and only if
F (T0, T1) is invertible.

Definition 3.14.9 Let A0, A1, B0, B1 ∈ Cn×n. Then F (A0, A1) and
F (B0, B1) are called strongly similar (F (A0, A1) ∼= F (A0, A1)) if there ex-
ists F (T0, T1) ∈ GL(2n,C) such that (3.14.6) holds.

Clearly F (A0, A1) ∼= F (A0, A1) ⇒ F (A0, A1) ≈ F (B0, B1). It can be
shown that the notion of strong similarity is stronger that the notion of
similarity. (Problem 10.)

Proposition 3.14.10 The matrices F (A0, A1) and F (B0, B1) are strongly
similar if and only if the pencils

A(x) = F (0, I) + F (A0, A1)x, B(x) = F (0, I) + F (B0, B1)x

are strictly similar.

Proof. Let [Pij ]21 ∈ C2n×2n. Then F (0, I)P = PF (0, I) if and only if
P11 = P22, P21 = 0. That is P = F (P11, P12) and the proposition follows.

2

Clearly F (A0, A1) ∼= F (A0, B1)⇒ A0 ≈ B0. Without loss of generality
we may assume that A0 = B0. (See Problem 5.) Consider all matrices
T0, T1 satisfying (3.14.6). For A0 = B0 (3.14.6) reduces to

A0T0 = T0A0, A0T1 − T1A0 = T0B1 −A1T0.

Theorem 2.10.1 yields that the set of matrices T0 which satisfies the above
conditions is of the form

P(A1, B1) = {T0 ∈ C(A0) :(3.14.7)
tr(V (T0B1 −A1T0)) = 0, for all V ∈ C(A0)}.

Hence
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Proposition 3.14.11 Suppose that F (A0, A1) ∼= F (A0, B1). Then

(3.14.8) dim P(A1, A1) = dim P(A1, B1) = dim P(B1, B1).

As in Theorem 2.9.5 for a fixed A0, A1 there exists a neighborhood
D(A1, ρ) such that the first two equalities in (3.12.7) imply that F (A0, A1) ∼=
F (A0, B1) for all B1 ∈ D(A1, ρ) (Problem 4).

We now considering a splitting result analogous to Theorem 3.5.7.

Theorem 3.14.12 Assume that

(3.14.9) A0 =

[
A

(0)
11 0
0 A

(0)
22

]
, A

(0)
ii ∈ C

ni×ni , i = 1, 2,

where A(0)
11 and A(0)

22 do not have a common eigenvalue. Let

A1 =

[
A

(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

]
, B1 =

[
B

(1)
11 B

(1)
12

B
(1)
21 B

(1)
22

]

be the block partition of A1, B1 as the block partition of A0. Then

(3.14.10) P(A1, B1) = P(A(1)
11 , B

(1)
11 )⊕ P(A(1)

22 , B
(1)
22 ).

Moreover

F (A0, A1) ∼= F (A0, B1) ⇐⇒ F (A(0)
ii , A

(1)
ii ) ∼= F (A(0)

ii , B
(1)
ii ) for i = 1, 2.

Proof. According to Problem 4 C(A0) = C(A(0)
11 )⊕C(A(0)

22 ). Then the
trace condition in (3.14.7) reduces to

tr(V1(T (0)
1 B

(1)
11 −A

(1)
11 T

(0)
1 ) + V2(T (0)

2 B
(1)
22 −A

(1)
22 T

(0)
2 )) = 0,

where

V = V1 ⊕ V2, T
(0)
0 = T

(0)
1 ⊕ T (0)

2 ∈ C(A(0)
11 )⊕ C(A(0)

22 ).

Choosing either V0 = 0 or V1 = 0 we obtain (3.14.10). The right impli-
cation of the last claim of the theorem is straightforward. As det T0 =
det T (0)

1 det T (0)
2 it follows that T0 ∈ GL(n,C) ⇐⇒ T

(0)
i ∈ GL(ni,C), i =

1, 2. This establishes the left implication of the last claim of the theorem. 2

Thus, the classification of strong similarity classes for matrices F (A0, A1)
reduces to the case where A0 is nilpotent (Problem 6). In the case A0 = 0
F (0, A1) ∼= F (0, B1) ⇐⇒ A1 ≈ B1. In the case A0 = Hn the strong
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similarity classes of F (Hn, A1) classified completely (Problem 9). This
case corresponds to the case discussed in Theorem 3.5.5. The case A0 =
Hm⊕Hm can be classified completely using the results of Problem 2 (Prob-
lem 3.14.11).

Problems

1. Prove Proposition 3.14.4.

2. Prove Proposition 3.14.5.

3. Let A(x) ∈ C[x]n×n and assume that A(x)U ⊂ U ⊂ Cn is a non-
trivial invariant subspace of A(x), i.e 1 ≤ dim U ≤ n − 1. Let
p(x, λ) ∈ C[x, λ] be the minimal polynomial of A(x)|U. Thus 1 ≤
deg λp(x, λ) ≤ n − 1. Show that p(x, λ)|det (λI − A(x)). Hence
det (λI −A(x)) is reducible over C[x, λ].

4. Modify the proof of Theorem 2.9.5 to show that for a fixed A0, A1 ∈
Cn×n there exists ρ > 0 such that the first two equalities in (3.14.8)
for B1 ∈ D(A1, ρ) imply that F (A0, A1) ∼= F (A0, B1).

5. Show that for any P ∈ GL(n,C)

F (A0, A1) ∼= F (B0, B1) ⇐⇒ F (A0, A1) ∼= F (PB0P
−1, PB1P

−1).

Assume that F (A0, A1) ∼= F (B0, B1). Show that there exists P ∈
GL(n,C) such that A0 = PB0P

−1.

6. Show that for any λ ∈ C

F (A0, A1) ∼= F (B0, B1) ⇐⇒ F (A0 − λI,A1) ∼= F (B0 − λI,B1).

7. Let Ai ∈ Cn×n, i = 0, ..., s− 1. Define

F (A0, ..., As−1) =


A0 A1 A2 ... As−1

0 A0 A1 ... As−2

...
...

...
...
...
...

...
0 0 0 ... A0

 ∈ Csn×sn.
F (A0, ..., As−1) and F (B0, ..., Bs−1) are called strongly similar

(F (A0, ..., As−1) ∼= F (B0, ..., Bs−1))

F (A0, ..., As−1) = F (T0, ..., Ts−1)F (B0, ..., Bs−1)F (T0, ..., Ts−1)−1,

F (T0, ..., Ts−1) ∈ GL(sn,C).

Show that F (A0, ..., As−1) ∼= F (B0, ..., Bs−1) if and only if the equal-
ities (3.9.2) hold for k = 0, ..., s− 1 and T0 ∈ GL(n,C).
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8. Let

Z = Hn ⊕ ...⊕Hn, X = [Xpq]s1, [Ypq]s1 ∈ Csn×sn,

Xpq = [x(pq)
ij ]n1 , Ypq = [y(pq)

ij ]n1 ∈ Cn×n, p, q = 1, ..., s.

Show that if each Xpq is an upper triangular matrix then

det X =
n∏
r=1

det [x(pq)
rr ]sp,q=1.

(Expand the determinant of X by the rows n, 2n, ..., sn and use the
induction.) Define

Ar = [a(r)
pq ]s1, Br = [b(r)pq ]s1 ∈ Cs×s,

a(r)
pq =

r+1∑
i=1

x
(pq)
(n−r+i−1)i, b

(r)
pq =

r+1∑
i=1

y
(pq)
(n−r+i−1)i, r = 0, ..., n− 1.

Using Theorem 2.8.3 show

F (Z,X) ∼= F (Z, Y ) ⇐⇒ F (A0, ..., An−1) ∼= F (B0, ..., Bn−1).

9. Let X = [xij ]n1 , Y = [yij ]n1 ∈ Cn×n. Using Problems 7-8 show that
F (Hn, X) ∼= F (Hn, Y ) if and only if

r∑
i=1

x(n−r+i)i =
r∑
i=1

y(n−r+i)i, for r = 1, ..., n.

10. Let X = [xij ]21 ∈ C2×2. Show that if x21 6= 0 then F (H2, X) ∼= H4.
Combine this result with Problem 9 to show the existence of Y ∈
C2×2 such that F (H2, X) is similar to F (H2, Y ) but F (H2, X) is not
strongly similar to F (H2, Y ).

(3.14.11)

Assume in Problem 8 s = 2. Let

A(x) =
n−1∑
i=0

Aix
i, B(x) =

n−1∑
i=0

Bix
i ∈ H2×2

0 .

Use the results of Problems 7-8, (3.9.2) and Problem 2 to show that
F (Z,X) ∼= F (Z, Y ) if and only if the three matrices in (3.6.2) have
the same local invariant polynomials up to degree n− 1.
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3.15 Historical remarks

The exposition of §3.1 is close to [Gan59]. The results of §3.2 were inspired
by [Rot81]. The notion of local indices (Problem 3.2.3) can be found in
[FrS80]. The content of §3.3 are standard. Theorem 3.3.2 can be found
in [Wie67] and Problem §3.3.1 in [Gan59]. The use of Cauchy integration
formula to study the properties of analytic functions of operators and ma-
trices as in §3.4 is now common, e.g. [Kat80] and [Kat82]. Theorem 3.4.6
is standard. Theorem 3.4.9 is a part of the Kreiss matrix stability theorem
[Kre62]. The inequality (3.4.16) is due to [Tad81]. The results of Problem
3.4.7 are from [Fri81]. The results of §3.5 influenced by Arnold [Arn71], in
particular Theorem 3.5.3 is from [Arn71]. See also [Was77]. The subject
of §3.6 and its applications in theory of differential equations in neighbor-
hood of singularities was emphasized in works of Wasow [Was63],[Was77]
and [Was78]. Theorem 3.6.4 for one complex variable appears in [Fri80b].
Corollary 3.6.5 is due to [Was63]. Theorem 3.7.1 for simply connected do-
main is due to [Gin78]. See [Was78] for the extension of Theorem 3.7.1 to
certain domains Ω ⊂ Cp. It is shown there that Theorem 3.7.1 fails even
for simply connected domains in C3.

Theorem 3.8.1 can be found in [Kat80] or [Fri78]. The results of §3.9-
§3.10 were taken from [Fri80b]. It is worthwhile to mention that the conjec-
ture stated in [Fri80b] that A(x) and B(x) are analytically similar over H0

if the three matrices in (3.6.2) are equivalent over H0 is false [Gur81, §6].
The contents of §3.11 are known to the experts. The nontrivial part of this
section (Theorem 3.11.6) is due to [DDG51]. Some of the results in §3.12,
in particular Theorem 3.12.4, seem to be new. Property L of §3.13 was
introduced by Motzkin-Taussky [MoT52] and [MoT55]. Theorem 3.13.4 is
a slight improvement of [MoT55]. Our proof of property L in Theorem
3.13.4 follows [Kat80]. Theorem 3.13.7 is taken from [MoF80]. Theorem
3.13.7 associates the ”defective” points ζ1, ..., ζq with the resonance states
of molecules. Many results in §3.14 are taken from [Fri80a] and [Fri80b]. It
connects the analytic similarity of matrices with simultaneous similarity of
certain pairs of matrices. Simultaneous similarity of matrices is discussed
in [Fri83].



Chapter 4

Inner product spaces

4.1 Inner product

Definition 4.1.1 Let F = R,C and let V be a vector space over F.
Then 〈·, ·〉 : V×V→ F is called an inner product if the following conditions
hold:

(a) 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉, for all a, b ∈ F, x,y, z ∈ V,

(br) for F = R 〈y,x〉 = 〈x,y〉, for all x,y ∈ V;
(bc) for F = C 〈y,x〉 = ¯〈x,y〉, for all x,y ∈ V;
(c) 〈x,x〉 >  for all x ∈ V\{0}.

‖x‖ :=
√
〈x,x〉 is called the norm (length) of x ∈ V.

Other standard properties of inner products are mentioned in Problems
1-2. We will use the abbreviation IPS for inner product space. In this
chapter we assume that F = R,C unless stated otherwise.

Proposition 4.1.2 Let V be a vector space over R. Identify VC with
the set of pairs (x,y), x,y ∈ V. Then VC is a vector space over C with

(a+
√
−1b)(x,y) := a(x,y) + b(−y,x), for all a, b ∈ R, x,y ∈ V.

If V has a basis e, ..., en over R then (e, ), ..., (en, ) is a basis of VC
over C. Any inner product 〈·, ·〉 on V over F induces the following inner
product on VC:

〈(x,y), (u,v)〉 = 〈x,u〉+ 〈y,v〉+
√
−(〈y,u〉 − 〈x,v〉), x,y,u,v ∈ V.

153
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We leave the proof of this proposition to the reader (Problem 3).

Definition 4.1.3 Let V be an IPS. Then
(a) x,y ∈ V are called orthogonal if 〈x,y〉 = .
(b) S, T ⊂ V are called orthogonal if 〈x,y〉 =  for any x ∈ S, y ∈ T .
(c) For any S ⊂ V S⊥ ⊂ V is the maximal orthogonal set to S.
(d) x, ...,xm is called an orthonormal set if

〈xi,xj〉 = δij , i, j = , ...,m.

(e) x, ...,xn is called an orthonormal basis if it is an orthonormal set which
is a basis in V.

Definition 4.1.4 (Gram-Schmidt algorithm.) Let V be an IPS and
S = {x, ...,xm} ⊂ V a finite (possibly empty) set (m ≥ 0). Then S̃ =
{e, ..., ep} is the orthonormal set (p ≥ 1) or the empty set (p = 0) obtained
from S using the following recursive steps:
(a) If x =  remove it from S. Otherwise replace x by ‖x‖−x.
(b) Assume that x, ...,xk is an orthonormal set and 1 ≤ k < m. Let
yk+ = xk+ −

∑k
i=〈xk+,xi〉xi. If yk+ =  remove xk+ from S. Oth-

erwise replace xk+ by ‖yk+‖−yk+.

Corollary 4.1.5 Let V be an IPS and S = {x, ...,xn} ⊂ V be n
linearly independent vectors. Then the Gram-Schmidt algorithm on S is
given as follows:

y := x, r := ‖y‖, e :=


r
y,

rji := 〈xi, ej〉, j = , ..., i− ,(4.1.1)

yi := xi −
i−∑
j=

rjiej , rii := ‖yi‖, ei :=


rii
yi, i = , ..., n.

In particular, ei ∈ Si and ‖yi‖ = dist(xi, Si−), where Si = span (x, ...,xi)
for i = 1, ..., n and S0 = {0}. (See Problem 4 for the definition of dist(xi, Si−).)

Corollary 4.1.6 Any (ordered) basis in a finite dimensional IPS V
induces an orthonormal basis by the Gram-Schmidt algorithm.

See Problem 4 for some known properties related to the above notions.

Problems
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1. Let V be an IPS over F. Show

〈0,x〉 = 〈x,0〉 = ,

for F = R 〈z, ax + by〉 = a〈z,x〉+ b〈z,y〉, for all a, b ∈ R, x,y, z ∈ V,

for F = C 〈z, ax + by〉 = ā〈z,x〉+ b̄〈z,y〉, for all a, b ∈ C, x,y, z ∈ V.

2. Let V be an IPS. Show

(a) ‖ax‖ = |a| ‖x‖ for a ∈ F and x ∈ V.

(b) The Cauchy-Schwarz inequality:

|〈x,y〉| ≤ ‖x‖ ‖y‖,

and equality holds if and only if x,y are linearly dependent (collinear).

(c) The triangle inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖,

and equality holds if either x =  or y = ax for a ∈ R+.

3. Prove Proposition 4.1.2.

4. Let V be a finite dimensional IPS of dimension n. Assume that
S ⊂ V. Show

(a) If x, ...,xm is an orthonormal set then x, ...,xm are linearly
independent.

(b) Assume that e, ..., en is an orthonormal basis in V. Show that
for any x ∈ V the orthonormal expansion holds

(4.1.2) x =
n∑
i=

〈x, ei〉ei.

Furthermore for any x,y ∈ V

(4.1.3) 〈x,y〉 =
n∑
i=

〈x, ei〉 ¯〈y, ei〉.

(c) Assume that S is a finite set. Let S̃ be the set obtained by the
Gram-Schmidt process. Show that S̃ = ∅ ⇐⇒ span S = {0}. Show
that if S̃ 6= ∅ then e, ..., ep is an orthonormal basis in span S.
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(d) There exists an orthonormal basis e, ..., en in V and 0 ≤ m ≤ n
such that

e, ..., em ∈ S, span S = span (e, ..., em),
S⊥ = span (em+, ..., en),
(S⊥)⊥ = span S.

(e) Assume from here to the end of the problem that S is a subspace.
Show V = S ⊕ S⊥.

(f) Let x ∈ V and let x = u + v for unique u ∈ S, v ∈ S⊥. Let
P (x) := u be the projection of x on S. Show that P : V → V is a
linear transformation satisfying

P 2 = P, Range P = S, Ker P = S⊥.

(g) Show

dist(x, S) := ‖x− Px‖ ≤ ‖x−w‖ for any w ∈ S
and equality ⇐⇒ w = Px.(4.1.4)

(h) Show that dist(x, S) = ‖x − w‖ for some w ∈ S if and only if
x−w is orthogonal to S.

5. Let X ∈ Cm×n and assume that m ≥ n and rank X = n. Let
x, ...,xn ∈ Cm be the columns of X, i.e. X = (x, ...,xn). Assume
that Cm is an IPS with the standard inner product 〈x,y〉 = y∗x.
Perform the Gram-Schmidt algorithm (4.1.5) to obtain the matrix
Q = (e, ..., en) ∈ Cm×n. Let R = (rji)n1 ∈ Cn×n be the upper trian-
gular matrix with rji, j ≤ i given by (4.1.1). Show that Q̄TQ = In
and X = QR. (This is the QR algorithm.) Show that if in addition
X ∈ Rm×n then Q and R are real valued matrices.

6. Let C ∈ Cn×n and assume that {λ1, ..., λn} are n eigenvalues of C
counted with their multiplicities. View C as an operator C : Cn →
Cn. View Cn as 2n-dimensional vector space over R2n. Let C =
A+
√
−1B, A,B ∈ Rn×n.

a. Then Ĉ :=
[
A −B
B A

]
∈ R(2n)×(2n) represents the operator C :

Cn → Cn as an operator over R in suitably chosen basis.

b. Show that {λ1, λ̄1, ..., λn, λ̄n} are the 2n eigenvalues of Ĉ counting
with multiplicities.

c. Show that the Jordan canonical form of C̃, is obtained by replacing
each Jordan block λI + H in C by two Jordan blocks λI + H and
λ̄I +H.
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4.2 Special transformations in IPS

Proposition 4.2.1 Let V be an IPS and T : V→ V a linear transfor-
mation Then there exists a unique linear transformation T ∗ : V→ V such
that 〈Tx,y〉 = 〈x, T ∗y〉 for all x,y ∈ V.

See Problems 1-2.

Definition 4.2.2 Let V be an IPS and let T : V → V be a linear
transformation. Then
(a) T is called self-adjoint if T ∗ = T ;
(b) T is called anti self-adjoint if T ∗ = −T ;
(c) T is called unitary if T ∗T = TT ∗ = I;
(d) T is called normal if T ∗T = TT ∗.

Denote by S(V), AS(V), U(V), N(V) the sets of self-adjoint, anti
self-adjoint, unitary and normal operators on V respectively.

Proposition 4.2.3 Let V be an IPS over F = R,C with an orthonor-
mal basis E = {e, ..., en}. Let T : V→ V be a linear transformation. Let
A = (aij) ∈ Fn×n be the representation matrix of T in the basis E:

(4.2.1) aij = 〈Tej , ei〉, i, j = , ..., n.

Then for F = R:

(a) T ∗ is represented by A>,
(b) T is selfadjoint ⇐⇒ A = A>,

(c) T is anti selfadjoint ⇐⇒ A = −A>,
(d) T is unitary ⇐⇒ A is orthogonal ⇐⇒ AA> = A>A = I,

(e) T is normal ⇐⇒ A is normal ⇐⇒ AA> = A>A,

and for F = C:

(a) T ∗ is represented by A∗ (:= Ā>),
(b) T is selfadjoint ⇐⇒ A is hermitian ⇐⇒ A = A∗,

(c) T is anti selfadjoint ⇐⇒ A is anti hermitian ⇐⇒ A = −A∗,
(d) T is unitary ⇐⇒ A is unitary ⇐⇒ AA∗ = A∗A = I,

(e) T is normal ⇐⇒ A is normal ⇐⇒ AA∗ = A∗A.

See Problem 3.
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Proposition 4.2.4 Let V be an IPS over R, and let T ∈ Hom (V).
Let Vc be the complexification of V. Show that there exists a unique Tc ∈
Hom (Vc) such that Tc|V = T . Furthermore T is self-adjoint, unitary or
normal if and only if Tc is self-adjoint, unitary or normal respectively.

See Problem 4

Definition 4.2.5 For a domain D with identity 1 let

S(n,D) := {A ∈ Dn×n : A = A>},
AS(n,D) := {A ∈ Dn×n : A = −A>},
O(n,D) := {A ∈ Dn×n : AA> = A>A = I},
SO(n,D) := {A ∈ O(n,D) : det A = 1},
DO(n,D) := D(n,D) ∩O(n,D),
N(n,R) := {A ∈ Rn×n : AA> = A>A},
N(n,C) := {A ∈ Cn×n : AA∗ = A∗A},
Hn := {A ∈ Cn×n : A = A∗},
AHn := {A ∈ Cn×n : A = −A∗},
Un := {A ∈ Cn×n : AA∗ = A∗A = I},
SUn := {A ∈ Un : det A = },
DUn := D(n,C) ∩Un.

See Problem 5 for relations between these classes.

Theorem 4.2.6 Let V be an IPS over C of dimension n. Then a linear
transformation T : V→ V is normal if and only if V has an orthonormal
basis consiting of eigenvectors of T .

Proof. Suppose first that V has an orthonormal basis e, ..., en such
that Tei = λiei, i = , ..., n. From the definition of T ∗ it follows that
T ∗ei = λ̄iei, i = , ..., n. Hence TT ∗ = T ∗T .

Assume now T is normal. Since C is algebraically closed T has an
eigenvalue λ1. Let V be the subspace of V spanned by all eigenvectors
of T corresponding to the eigenvalue λ1. Clearly TV ⊂ V. Let x ∈ V.
Then Tx = λx. Thus

T (T ∗x) = (TT ∗)x = (T ∗T )x = T ∗(Tx) = λT
∗x⇒ T ∗V ⊂ V.

Hence TV⊥ , T
∗V⊥ ⊂ V⊥ . Since V = V ⊕V⊥ it is enough to prove the

theorem for T |V and T |V⊥ .
As T |V = λIV

it is straightforward to show T ∗|V = λ̄IV
(see

Problem 2). Hence for T |V the theorem trivially holds. For T |V⊥ the
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theorem follows by induction. 2

The proof of Theorem 4.2.6 yields:

Corollary 4.2.7 Let V be an IPS over R of dimension n. Then the
linear transformation T : V → V with a real spectrum is normal if and
only if V has an orthonormal basis consiting of eigenvectors of T .

Proposition 4.2.8 Let V be an IPS over C. Let T ∈ N(V). Then

T is self − adjoint ⇐⇒ spec (T) ⊂ R,
T is unitary ⇐⇒ spec (T) ⊂ S1 = {z ∈ C : |z| = 1}.

Proof. Since T is normal there exists an orthonormal basis e, ..., en
such that Tei = λiei, i = , ..., n. Hence T ∗ei = λ̄iei. Then

T = T ∗ ⇐⇒ λi = λ̄i, i = 1, ..., n,
TT ∗ = T ∗T = I ⇐⇒ |λi| = 1, i = 1, ..., n.

2

Combine Proposition 4.2.4 and Corollary 4.2.7 with the above proposi-
tion to deduce:

Corollary 4.2.9 Let V be an IPS over R and let T ∈ S(V). Then
spec (T) ⊂ R and V has an orthonormal basis consisting of the eigenvectors
of T .

Proposition 4.2.10 Let V be an IPS over R and let T ∈ U(V). Then
V = ⊕i∈{−,,,...,k}Vi, where k ≥ 1, Vi and Vj are orthogonal for i 6= j,
such that
(a) T |V− = −IV− dim V− ≥ ,
(b) T |V = IV dim V ≥ ,
(c) TVi = Vi, dim Vi = , spec (T|Vi) ⊂ S\{−, } for i = 2, ..., k.

See Problem 7.

Proposition 4.2.11 Let V be an IPS over R and let T ∈ AS(V).
Then V = ⊕i∈{,,...,k}Vi, where k ≥ 1, Vi and Vj are orthogonal for
i 6= j, such that
(a) T |V = V

dim V ≥ ,
(b) TVi = Vi, dim Vi = , spec (T|Vi) ⊂

√
−R\{} for i = 2, ..., k.

See Problem 8.
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Theorem 4.2.12 Let V be an IPS over C of dimension n. Let T ∈
Hom (V). Let λ1, ..., λn ∈ C be n eigenvalues of T counted with their
multiplicities. Then there exists a unitary basis g, ...,gn of V with the
following properties:
(4.2.2)

T span (g, ...,gi) ⊂ span (g, ...,gi), 〈Tgi,gi〉 = λi, i = , ..., n.

Let V be an IPS over R of dimension n. Let T ∈ Hom (V) and assume
that spec (T) ⊂ R. Let λ1, ..., λn ∈ R be n eigenvalues of T counted with
their multiplicities. Then there exists an orthonormal basis g, ...,gn of V
such that (4.2.2) holds.

Proof. Assume first that V is IPS over C of dimension n. The proof
is by induction on n. For n = 1 the theorem is trivial. Assume that
n > 1. Since λ1 ∈ spec (T) it follows that there exists g ∈ V, 〈g,g〉 = 
such that Tg = λg. Let U := span (g)⊥. Let P be the orthogonal
projection on U. Let T1 := PT |U. Then T1 ∈ Hom (U). Let λ̃2, ..., λ̃n
be the eigenvalues of T1 counted with their multiplicities. The induction
hypothesis yields the existence of an orthonormal basis g, ...,gn of U such
that

T1span (g, ...,gi) ⊂ span (g, ...,gi), 〈Tgi,gi〉 = λ̃i, i = , ..., n.

It is straightforward to show that T span (g, ...,gi) ⊂ span (g, ...,gi) for
i = 1, ..., n. Hence in the orthonormal basis g, ...,gn T is presented by
an upper diagonal matrix B = (bij)n1 , with b11 = λ1 and bii = λ̃i, i =
2, ..., n. Hence λ1, λ̃2, ..., λ̃n are the eigenvalues of T counted with their
multiplicities. This establishes the theorem in this case. The real case is
treated similarly. 2

Combine the above results with Problems 6 and 12 to deduce:

Corollary 4.2.13 Let A ∈ Cn×n. Let λ1, ..., λn ∈ C be n eigenvalues
of A counted with their multiplicities. Then there exist an upper triangular
matrix B = (bij)n1 ∈ Cn×n, such that bii = λi, i = 1, ..., n, and a unitary
matrix U ∈ Un such that A = UBU−1. If A ∈ N(n,C) then B is a diagonal
matrix.

Let A ∈ Rn×n and assume that spec (T) ⊂ R. Then A = UBU−1 where
U can be chosen a real orthogonal matrix and B a real upper triangular
matrix. If A ∈ N(n,R) and spec (A) ⊂ R then B is a diagonal matrix.

It is easy to show that U in the above Corollary can be chosen in SUn or
SO(n,R) respectively (Problem 11).
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Definition 4.2.14 Let V be a vector space and assume that T : V→ V
is a linear operator. Let 0 6= v ∈ V. Then W = span (v, Tv, T v, . . .) is
called a cyclic invariant subspace of T generated by v. (It is also referred
as a Krylov subspace of T generated by v.) Sometimes we will call W just
a cyclic subspace, or Krylov subspace.

Theorem 4.2.15 Let V be a finite dimensional IPS. Let T : V → V
be a linear operator. For 0 6= v ∈ V let W = span (v, Tv, ..., T r−v) be a
cyclic T -invariant subspace of dimension r generated by v. Let u, ...,ur
be an orthonormal basis of W obtained by the Gram-Schmidt process from
the basis [v, TV, ..., T r−v] of W. Then 〈Tui,uj〉 =  for 1 ≤ i ≤ j − 2,
i.e. the representation matrix of T |W in the basis [u, . . . ,ur] is upper
Hessenberg. If T is self-adjoint then the representation matrix of T |W in
the basis [u, . . . ,ur] is a tridiagonal hermitian matrix.

Proof. Let Wj = span (v, . . . , T j−v) for j = 1, ..., r + 1. Clearly
TWj ⊂ Wj+ for j = 1, ..., r. The assumption that W is T -invariant
subspace yields W = Wr = Wr+. Since dim W = r it follows that
v, ..., T r−v are linearly independent. Hence [v, . . . , T r−v] is a basis for
W. Recall that span (u, ...,uj) = Wj for j = 1, . . . , r. Let r ≥ j ≥ i+ 2.
Then Tui ∈ TWi ⊂ Wi+. As uj ⊥ Wi+ it follows that 〈Tui,uj〉 = .
Assume that T ∗ = T . Let r ≥ i ≥ j + 2. Then 〈Tui,uj〉 = 〈ui, Tuj〉 = .
Hence the representation matrix of T |W in the basis [u, . . . ,ur] is a tridi-
agonal hermitian matrix. 2

Problems

1. Prove Proposition 4.2.1.

2. Let P,Q ∈ Hom (V),a, b ∈ F. Show that (aP + bQ)∗ = āP ∗ + b̄Q∗.

3. Prove Proposition 4.2.3.

4. Prove Proposition 4.2.4 for finite dimensional V. (Hint: Choose an
orthonormal basis in V.)
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5. Show the following

SO(n,D) ⊂ O(n,D) ⊂ GL(n,D),
S(n,R) ⊂ Hn ⊂ N(n,C),
AS(n,R) ⊂ AHn ⊂ N(n,C),
S(n,R),AS(n,R) ⊂ N(n,R) ⊂ N(n,C),
O(n,R) ⊂ Un ⊂ N(n,C),
SO(n,D), O(n,D), SUn, Un are groups

S(n,D) is a D−module of dimension
(
n+ 



)
,

AS(n,D) is a D−module of dimension
(
n



)
,

Hn is an R− vector space of dimension n.
AHn =

√
− Hn

6. Let E = {e, ..., en} be an orthonormal basis in IPS V over F. Let
G = {g, ...,gn} be another basis in V. Show that F is an orthonor-
mal basis if and only if the tranfer matrix either from E to G or from
G to E is a unitary matrix.

7. Prove Proposition 4.2.10

8. Prove Proposition 4.2.11

9. a. Show thatA ∈ SO(,R) is of the formA =
[

cos θ sin θ
− sin θ cos θ

]
, θ ∈ R.

b. Show that SO(,R) = eAS(,R). That is for any B ∈ AS(,R)
eB ∈ SO(,R) and any A ∈ SO(n,R) is eB for some B ∈ AS(,R).

(Hint : Consider the power series for eB , B =
[

0 θ
−θ 0

]
.)

c. Show that SO(n,R) = eAS(n,R). (Hint : Use Propositions 4.2.10
and 4.2.11 and part b.)

d. Show that SO(n,R) is a path connected space. (See part e.)

e. Let V be an n(> 1)-dimensional IPS over F = R. Let p ∈ 〈n− 1〉.
Assume that x, ...,xp and y, ...,yp be two orthonormal systems in
V. Show that these two o.n.s. are path connected. That is there
are p continuous mappings zi(t) : [, ] → V, i = , ..., p such that
for each t ∈ [0, 1] z(t), ..., zp(t) is an o.n.s. and zi() = xi, zi() =
yi, i = , ..., p.
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10. a. Show that Un = eAHn . (Hint : Use Proposition 4.2.8 and its
proof.)

b. Show that Un is path connected.

c. Prove Problem 9e for F = C.

11. Show

(a) D1DD
∗
1 = D for any D ∈ D(n,C), D ∈ DUn.

(b) A ∈ N(n,C) ⇐⇒ A = UDU∗, U ∈ SUn, D ∈ D(n,C).

(c) A ∈ N(n,R), σ(A) ⊂ R ⇐⇒ A = UDU>, U ∈ SOn, D ∈
D(n,R).

12. Show that an upper triangular or a lower triangular matrix B ∈ Cn×n
is normal if and only if B is diagonal. (Hint: consider the equality
(BB∗)11 = (B∗B)11.)

13. Let the assumptions of Theorem 4.2.15 hold. Show that instead of
performing the Gram-Schmidt process on v, Tv, ..., T r−v one can
perform the following process. Let w := 

‖v‖v. Assume that one
already obtained i orthonormal vectors w, ...,wi. Let w̃i+1 := Twi−∑i
j=〈Twi,wj〉wj . If w̃i+1 = 0 then stop the process, i.e. one is left

with i orthonormal vectors. If wi+ 6=  then wi+ := 
‖w̃i+‖w̃i+

and continue the process. Show that the process ends after obtaining
r orthonormal vectors w, . . . ,wr and ui = wi for i = 1, ..., r. (This
is a version of Lanczos tridiagonalization process.)

4.3 Symmetric bilinear and hermitian forms

Definition 4.3.1 Let V be a module over D and Q : V ×V → D. Q
is called a symmetric bilinear form (on V) if the following conditions are
satisfied:
(a) Q(x,y) = Q(y,x) for all x,y ∈ V (symmetricity);
(b) Q(ax + bz, y) = aQ(x,y) + bQ(z,y) for all a, b ∈ D and x,y, z ∈ V
(bilinearity).

For D = C Q is called hermitian form (on V) if Q satisfies the condi-
tions (a′) and (b) where
(a′) Q(x,y) = ¯Q(y,x) for all x,y ∈ V (barsymmetricity).

The following results are elementary (see Problems 1-2):
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Proposition 4.3.2 Let V be a module over D with a basis E = {e, ..., en}.
Then there is 1 − 1 correspondence between a symmetric bilinear form Q
on V and A ∈ S(n,D):

Q(x,y) = η>Aξ,

x =
n∑
i=

ξiei, y =
n∑
i=

ηiei, ξ = (ξ, ..., ξn)>, η = (η, ..., ηn)> ∈ Dn.

Let V be a vector space over C with a basis E = {e, ..., en}. Then there is
1− 1 correspondence between a hermitian form Q on V and A ∈ Hn:

Q(x,y) = η∗Aξ,

x =
n∑
i=

ξiei, y =
n∑
i=

ηiei, ξ = (ξ, ..., ξn)>, η = (η, ..., ηn)> ∈ Cn.

Definition 4.3.3 Let the assumptions of Proposition 4.3.2 hold. Then
A is called the representation matrix of Q in the basis E.

Proposition 4.3.4 Let the assumptions of Proposition 4.3.2 Let F =
{f1, ..., fn} be another basis of the D module V. Then the symmetric bilinear
form Q is represented by B ∈ S(n,D) in the basis F , where B is congruent
A:

B = U>AU, U ∈ GL(n,D)

and U is the matrix corresponding to the basis change from F to E. For
D = C the hermitian form Q is presented by B ∈ Hn in the basis F , where
B hermicongruent to A:

B = U∗AU, U ∈ GL(n,C)

and U is the matrix corresponding to the basis change from F to E.

In what follows we assume that D = F = R,C.

Proposition 4.3.5 Let V be an n dimensional vector space over R.
Let Q : V × V → R be a symmetric bilinear form. Let A ∈ S(n,R)
the representation matrix of Q with respect to a basis E in V. Let Vc

be the extension of V over C. Then there exists a unique hermitian form
Qc : Vc ×Vc → C such that Qc|V×V = Q and Qc is presented by A with
respect to the basis E in Vc.

See Problem 3
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Normalization 4.3.6 Let V is a finite dimensional IPS over F. Let
Q : V × V → F be either a symmetric bilinear form for F = R or a
hermitian form for F = C. Then a representation matrix A of Q is chosen
with respect to an orthonormal basis E.

The following proposition is straightforward (see Problem 4).

Proposition 4.3.7 Let V is an n-dimensional IPS over F. Let Q :
V × V → F be either a symmetric bilinear form for F = R or a hermi-
tian form for F = C. Then there exists a unique T ∈ S(V) such that
Q(x,y) = 〈Tx,y〉 for any x,y ∈ V. In any orthonormal basis of V Q
and T represented by the same matrix A. In particular the characteristic
polynomial p(λ) of T is called the characteristic polynomial of Q. Q has
only real roots:

λ1(Q) ≥ ... ≥ λn(Q),

which are called the eigenvalues of Q. Furthermore there exists an orthonor-
mal basis F = {f1, ..., fn} in V such that D = diag(λ1(Q), ..., λn(Q)) is the
representation matrix of Q in F .

Vice versa, for any T ∈ S(V) and any subspace U ⊂ V the form
Q(T,U) defined by

Q(T,U)(x,y) := 〈Tx,y〉 for x,y ∈ U

is either a symmetric bilinear form for F = R or a hermitian form for
F = C.

In the rest of the book we use the following normalization unless stated
otherwise.

Normalization 4.3.8 Let V is an n-dimensional IPS over F. Assume
that T ∈ S(V). Then arrange the eigenvalues of T counted with their
multiplicities in the decreasing order

λ1(T ) ≥ ... ≥ λn(T ).

Same normalization applies to real symmetric matrices and complex her-
mitian matrices.

Problems

1. Prove Proposition 4.3.2.

2. Prove Proposition 4.3.4.

3. Prove Proposition 4.3.5.

4. Prove Proposition 4.3.7.
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4.4 Max-min characterizations of eigenvalues

Definition 4.4.1 Let V be a finite dimensional space over the field F.
Denote by Gr(m,V) be the space of all m-dimensional subspaces in U of
dimension m ∈ [0, n] ∩ Z+.

Theorem 4.4.2 (The convoy principle) Let V be an n-dimensional
IPS. Let T ∈ S(V). Then

λk(T ) = max
U∈Gr(k,V)

min
0 6=x∈U

〈Tx,x〉
〈x,x〉

=(4.4.1)

max
U∈Gr(k,V)

λk(Q(T,U)), k = , ..., n,

where the quadratic form Q(T,U) is defined in Proposition 4.3.7. For
k ∈ [1, n] ∩ N let U be an invariant subspace of T spanned by eigenvectors
e, ..., ek corresponding to the eigenvalues λ1(T ), ..., λk(T ). Then λk(T ) =
λk(Q(T,U)). Let U ∈ Gr(k,V) and assume that λk(T ) = λk(Q(T,U)).
Then U contains and eigenvector of T corresponding to λk(T ).

In particular

(4.4.2) λ1(T ) = max
06=x∈V

〈Tx,x〉
〈x,x〉

, λn(T ) = min
0 6=x∈V

〈Tx,x〉
〈x,x〉

Moreover for any x 6= 0

λ1(T ) =
〈Tx,x〉
〈x,x〉

⇐⇒ Tx = λ(T )x,

λn(T ) =
〈Tx,x〉
〈x,x〉

⇐⇒ Tx = λn(T )x,

The quotient 〈Tx,x〉
〈x,x〉 , 0 6= x ∈ V is called Rayleigh quotient. The

characterization (4.4.2) is called convoy principle.
Proof. Choose an orthonormal basis E = {e, ..., en} such that

(4.4.3) Tei = λi(T )ei, < ei, ej >= δij i, j = , ..., n.

Then

(4.4.4)
〈Tx,x〉
〈x,x〉

=
∑n
i=1 λi(T )|xi|2∑n

i=1 |xi|2
, x =

n∑
i=

xiei 6= 0.
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The above equality yields straightforward (4.4.2) and the equality cases in
these characterizations. Let U ∈ Gr(k,V). Then the minimal characteri-
zation of λk(Q(T,U)) yields the equality

(4.4.5) λk(Q(T,U)) = min
0 6=x∈U

〈Tx,x〉
〈x,x〉

for any U ∈ Gr(k,U).

Next there exists 0 6= x ∈ U such that 〈x, ei〉 =  for i = 1, ..., k − 1. (For
k = 1 this condition is void.) Hence

〈Tx,x〉
〈x,x〉

=
∑n
i=k λi(T )|xi|2∑n

i=k |xi|2
≤ λk(T )⇒ λk(T ) ≥ λk(Q(T,U)).

Let

λ1(T ) = ... = λn1(T ) > λ(T )n1+1(T ) = ... = λn2(T ) > ... >

λnr−1+1(T ) = ... = λnr (T ) = λn(T ), n0 = 0 < n1 < ... < nr = n.(4.4.6)

Assume that nj−1 < k ≤ nj . Suppose that λk(Q(T,U)) = λk(T ). Then
for x ∈ U such that 〈x, ei〉 =  we have equality λk(Q(T,U)) = λk(T ) if
and only if x =

∑nj
i=k xiei. Thus Tx = λk(T )x.

Let Uk = span (e, ..., ek). Let 0 6= x =
∑k
i= ∈ Uk. Then

〈Tx,x〉
〈x,x〉

=
∑k
i=1 λi(T )|xi|2∑k

i=1 |xi|2
≥ λk(T )⇒ λk(Q(T,Uk)) ≥ λk(T ).

Hence λk(Q(T,Uk)) = λk(T ). 2

It can be shown that for k > 1 and λ1(T ) > λk(T ) there exist U ∈
Gr(k,V) such that λk(T ) = λk(T,U) and U is not an invariant subspace
of T , in particular U does not contain all e, ..., ek satisfying (4.4.3). (See
Problem 1.)

Corollary 4.4.3 Let the assumptions of Theorem 4.4.2 hold. Let 1 ≤
` ≤ n. Then

(4.4.7) λk(T ) = max
W∈Gr(`,V)

λk(Q(T,W)), k = , ..., `.

Proof. For k ≤ ` apply Theorem 4.4.2 to λk(Q(T,W)) to deduce that
λk(Q(T,W)) ≤ λk(T ). Let U` = span (e, ..., e`). Then

λk(Q(T,U`)) = λk(T ), k = , ..., `.

2
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Theorem 4.4.4 (Courant-Fisher principle) Let V be an n-dimensional
IPS and T ∈ S(V). Then

λk(T ) = min
W∈Gr(k−,V)

max
06=x∈W⊥

〈Tx,x〉
〈x,x〉

, k = 1, ..., n.

See Problem 2 for the proof of the theorem and the following corollary.

Corollary 4.4.5 Let V be an n-dimensional IPS and T ∈ S(V). Let
k, ` ∈ [1, n] be integers satisfying k ≤ l. Then

λn−`+k(T ) ≤ λk(Q(T,W)) ≤ λk(T ), for any W ∈ Gr(`,V).

Theorem 4.4.6 Let V be an n-dimensional IPS and S, T ∈ S(V).
Then for any i, j ∈ N, i+ j− 1 ≤ n the inequality λi+j−1(S+T ) ≤ λi(S) +
λj(T ) holds.

Proof. Let Ui−,Vj− ⊂ V be eigenspaces of S, T spanned by the
first i− 1, j − 1 eigenvectors of S, T respectively. So

〈Sx,x〉 ≤ λi(S)〈x,x〉, 〈Ty,y〉 ≤ λj(T )〈y,y〉 for all x ∈ U⊥i−,y ∈ V⊥j−.

Note that dim Ui− = i − ,dim Vj− = j − .. Let W = Ui− +
Vj−. Then dim W = l −  ≤ i + j − . Assume that z ∈ W⊥.
Then 〈(S + T )z, z〉 = 〈Sz, z〉 + 〈Tz, z〉 ≤ (λi(S) + λj(T ))〈z, z〉. Hence
max06=z∈W⊥

〈(S+T )z,z〉
〈z,z〉 ≤ λi(S)+λj(T ). Use Theorem 4.4.4 to deduce that

λi+j−1(S + T ) ≤ λl(S + T ) ≤ λi(S) + λj(T ). 2

Definition 4.4.7 Let V be an n-dimensional IPS. Fix an integer k ∈
[1, n]. Then Fk = {f1, ..., fk} is called an orthonormal k-frame if < fi, fj >=
δij for i, j = 1, ..., k. Denote by Fr(k,V) the set of all orthonormal k-frames
in V.

Note that each Fk ∈ Fr(k,V) induces U = span Fk ∈ Gr(k,V). Vice
versa, any U ∈ Gr(k,V) induces the set Fr(k,U) of all orthonormal k-
frames which span U.

Theorem 4.4.8 Let V be an n-dimensional IPS and T ∈ S(V). Then
for any integer k ∈ [1, n]

k∑
i=1

λi(T ) = max
{f1,...,fk}∈Fr(k,V)

k∑
i=1

〈T fi, fi〉.
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Furthermore
k∑
i=1

λi(T ) =
k∑
i=1

〈T fi, fi〉

for some k-orthonormal frame Fk = {f1, ..., fk} if and only if span Fk is
spanned by e, ..., ek satisfying (4.4.3).

Proof. Define

trQ(T,U) :=
k∑
i=

λi(Q(T,U)) for U ∈ Gr(k,V),

(4.4.8)

trk T :=
k∑
i=1

λi(T ).

Let Fk = {f1, ..., fk} ∈ Fr(k,V). Set U = span Fk. Then in view of
Corollary 4.4.3

k∑
i=1

〈T fi, fi〉 = trQ(T,U) ≤
k∑
i=

λi(T ).

Let Ek := {e, ..., ek} where e, ..., en are given by (4.4.3). Clearly trk T =
trQ(T, span Ek). This shows the maximal characterization of trk T .

Let U ∈ Gr(k,V) and assume that trk T = trQ(T,U). Hence λi(T ) =
λi(Q(T,U)) for i = 1, ..., k. Then there exists Gk = {g, ...,gk} ∈ Fr(k,U))
such that

min
0 6=x∈span (g,...,gi}

〈Tx,x〉
〈x,x〉

= λi(Q(T,U)) = λi(T ), i = , ..., k.

Use Theorem 4.4.2 to deduce that Tgi = λi(T )gi for i = 1, ..., k. 2

Theorem 4.4.9 Let V be an n-dimensional IPS and T ∈ S(V). Then
for any integer k, l ∈ [1, n], such that k + l ≤ n

l+k∑
i=l+1

λi(T ) = min
W∈Gr(l,V)

max
{f1,...,fk}∈Fr(k,V∩W⊥)

k∑
i=1

〈T fi, fi〉.

Proof. Let Wj := span (e, ..., ej), j = , . . . , n, where e, ..., en are
given by (4.4.3). Then V := V ∩Wl is an invariant subspace of T . Let
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T1 := T |V. Then λi(T1) = λl+i(T ) for i = 1, . . . , n− l. Theorem 4.4.8 for
T1 yields

max
{f1,...,fk}∈Fr(k,V∩W⊥

l )

k∑
i=1

〈T fi, fi〉 =
l+k∑
i=l+1

λi(T ).

Let T2 := T |Wl+k and W ∈ Gr(l,V). Set U := Wl+k ∩W⊥. Then
dim U ≥ k. Apply Theorem 4.4.8 to −T2 to deduce

k∑
i=1

λi(−T2) ≥
k∑
i=1

〈−T fi, fi〉 for {f1, ..., fk} ∈ Fr(k,U).

The above inequality is equal to the inequality

l+k∑
i=l+1

λi(T ) ≤
k∑
i=1

〈T fi, fi〉 for {f1, ..., fk} ∈ Fr(k,U) ≤

max
{f1,...,fk}∈Fr(k,V∩W⊥)

k∑
i=1

〈T fi, fi〉.

The above inequalities yield the theorem. 2

Problems

1. Let V be 3 dimensional IPS and T ∈ Hom (V) be self-adjoint. As-
sume that

λ1(T ) > λ2(T ) > λ3(T ), Tei = λi(T )ei, i = , , .

Let W = span (e, e).

(a) Show that for each t ∈ [λ3(T ), λ1(T )] there exists a unique W(t) ∈
Gr(,W) such that λ1(Q(T,W(t))) = t.

(b) Let t ∈ [λ2(T ), λ1(T )]. Let U(t) = span (W(t), e) ∈ Gr(,V).
Show that λ2(T ) = λ2(Q(T,U(t)).

2. (a) Let the assumptions of Theorem 4.4.4 hold. Let W ∈ Gr(k−,V).
Show that there exists 0 6= x ∈ W⊥ such that 〈x, ei〉 =  for k +
1, ..., n, where e, ..., en satisfy (4.4.3). Conclude that λ1(Q(T,W⊥)) ≥
〈Tx,x〉
〈x,x〉 ≥ λk(T ).

(b) Let U` = span (e, ..., e`). Show that λ1(Q(T,U⊥` )) = λ`+(T )
for ` = 1, ..., n− 1.

(c) Prove Theorem 4.4.4.



4.4. MAX-MIN CHARACTERIZATIONS OF EIGENVALUES 171

(d) Prove Corollary 4.4.5. (Hint: Choose U ∈ Gr(k,W) such that
U ⊂W∩span (en−`+k+, ..., en)⊥. Then λn−`+k(T ) ≤ λk(Q(T,U)) ≤
λk(Q(T,W)).)

3. Let B = [bij ]ni,j=1 ∈ Hn and denote by A ∈ Hn− the matrix obtained
from B by deleting the j − th row and column.

(a) Show the Cauchy interlacing inequalities

λi(B) ≥ λi(A) ≥ λi+1(B), for i = 1, ..., n− 1.

(b) Show that inequality λ1(B) + λn(B) ≤ λ1(A) + bii.
Hint. Express the traces of B and A respectively in terms of
eigenvalues to obtain

λ1(B) + λn(B) = bii + λ1(A) +
n−1∑
i=2

(λi(A)− λi(B)).

Then use the Cauchy interlacing inequalities.

4. Show the following generalization of Problem 3.b ([Big96, p.56]). Let

B ∈ Hn be the following 2 × 2 block matrix B =
[
B11 B12

B∗12 B22

]
.

Show that
λ1(B) + λn(B) ≤ λ1(B11) + λ1(B22).

Hint. Assume that Bx = λ(B)x,x> = (x> ,x
>
 ), partitioned as

B. Consider U = span ((x> ,0)>, (0,x> )>). Analyze λ1(Q(T,U)) +
λ(Q(T,U)).

5. Let B = (bij)n1 ∈ Hn. Show that B > 0 if and only if det (bij)k1 > 0
for k = 1, ..., n.

6. Let T ∈ S(V). Denote by ι+(T ), ι0(T ), ι−(T ) the number of posi-
tive, negative and zero eigenvalues among λ1(T ) ≥ ... ≥ λn(T ). The
triple ι(T ) := (ι+(T ), ι0(T ), ι−(T )) is called the inertia of T . For
B ∈ Hn let ι(B) := (ι+(B), ι0(B), ι−(B)) be the inertia of B, where
ι+(B), ι0(B), ι−(B) is the number of positive, negative and zero eigen-
values of B respectively. Let U ∈ Gr(k,V). Show

(a) Assume that λk(Q(T,U)) > , i.e. Q(T,U) > . Then k ≤ ι+(T ).
If k = ι+(T ) then U is the unique invariant subspace of V spanned
by the eigenvectors of T corresponding to positive eigenvalues of T .

(b) Assume that λk(Q(T,U)) ≥ , i.e. Q(T,U) ≥ . Then k ≤
ι+(T ) + ι0(T ). If k = ι+(T ) + ι0(T ) then U is the unique invariant
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subspace of V spanned by the eigenvectors of T corresponding to
nonnegative eigenvalues of T .

(c) Assume that λ1(Q(T,U)) < , i.e. Q(T,U) < . Then k ≤ ι−(T ).
If k = ι−(T ) then U is a unique invariant subspace of V spanned by
the eigenvectors of T corresponding to negative eigenvalues of T .

(d) Assume that λ1(Q(T,U)) ≤ , i.e. Q(T,U) ≤ . Then k ≤
ι−(T ) + ι0(T ). If k = ι−(T ) + ι0(T ) then U is a unique invariant
subspace of V spanned by the eigenvectors of T corresponding to
nonpositive eigenvalues of T .

7. Let B ∈ Hn and assume that A = PBP ∗ for some P ∈ GL(n,C).
Then ι(A) = ι(B).

4.5 Positive definite operators and matrices

Definition 4.5.1 Let V be a finite dimensional IPS over F = C,R.
Let S, T ∈ S(V). Then T > S, (T ≥ S) if 〈Tx,x〉 > 〈Sx,x〉, (〈Tx,x〉 ≥
〈Sx,x〉) for all 0 6= x ∈ V. T is called positive (nonnegative) definite if
T > 0 (T ≥ 0), where 0 is the zero operator in Hom (V).

Denote by S+(V)o ⊂ S+(V) ⊂ S(V) the open set of positive definite
self adjoint operators and the closed set of nonnegative selfadjoint operators
respectively.

Let P,Q be either quadratic forms if F = R or hermitian forms if F = C.
Then Q > P, (Q ≥ P ) if Q(x,x) > P (x,x), (Q(x,x) ≥ P (x,x)) for all
0 6= x ∈ V. Q is called positive (nonnegative) definite if Q > 0 (Q ≥ 0),
where 0 is the zero operator in Hom (V).

For A,B ∈ Hn B > A (B ≥ A) if x∗Bx > x∗Ax (x∗Bx ≥ x∗Ax)
for all 0 6= x ∈ Cn. B ∈ Hn is called is called positive (nonnegative)
definite if B > 0 (B ≥ 0). Denote by Ho

n,+ ⊂ Hn,+ ⊂ Hn the open set
of positive definite n × n hermitian matrices and the closed set of n × n
nonnegative hermitian matrices respectively. Let S+(n,R) := S(n,R) ∩
Hn,+, S+(n,R)o := S(n,R) ∩Ho

n,+.

Use (4.4.1) to deduce.

Corollary 4.5.2 Let V be n-dimensional IPS. Let T ∈ S(V). Then
T > 0 (T ≥ 0) if and only if λn(T ) > 0 (λn(T ) ≥ 0). Let S ∈ S(V) and
assume that T > S (T ≥ S). Then λi(T ) > λi(S) (λi(T ) ≥ λi(S)) for
i = 1, ..., n.

Proposition 4.5.3 Let V be a finite dimensional IPS. Assume that
T ∈ S(V). Then T ≥ 0 if and only if there exists S ∈ S(V) such that T =



4.5. POSITIVE DEFINITE OPERATORS AND MATRICES 173

S2. Furthermore T > 0 if and only if S is invertible. For 0 ≤ T ∈ S(V)
there exists a unique 0 ≤ S ∈ S(V) such that T = S2. This S is called the
square root of T and is denoted by T

1
2 .

Proof. Assume first that T ≥ 0. Let e, ..., en be an orthonormal basis
consisting of eigenvectors of T as in (4.4.3). Since λi(T ) ≥ 0, i = 1, ..., n
we can define P ∈ Hom (V) as follows

Pei =
√
λi(T )ei, i = , ..., n.

Clearly P is self-adjoint nonnegative and T = P 2.
Suppose now that T = S2 for some S ∈ S(V). Then T ∈ S(V) and

〈Tx,x〉 = 〈Sx, Sx〉 ≥ . Hence T ≥ 0. Clearly 〈Tx,x〉 =  ⇐⇒ Sx = .
Hence T > 0 ⇐⇒ S ∈ GL(V). Suppose that S ≥ 0. Then λi(S) =√
λi(T ), i = 1, ..., n. Furthermore each eigenvector of S is an eigenvector

of T . It is straightforward to show that S = P , where P is defined above.
Clearly T > 0 if and only if

√
λn(T ) > 0, i.e. if and only if S is invertible. 2

Corollary 4.5.4 Let B ∈ Hn (S(n,R)). Then B ≥ 0 if and only there
exists A ∈ Hn (S(n,R)) such that B = A2. Furthermore B > 0 if and only
if A is invertible. For B ≥ 0 there exists a unique A ≥ 0 such that B = A2.
This A is denoted by B

1
2 .

Theorem 4.5.5 Let V be an IPS over F = C,R. Let x, ...,xn ∈
V. Then the grammian matrix G(x, ...,xn) := (〈xi,xj〉)n is a hermitian
nonnegative definite matrix. (If F = R then G(x, ...,xn) is real symmetric
nonnegative definite.) G(x, ...,xn) >  if and only x, ...,xn are linearly
independent. Furthemore for any integer k ∈ [1, n− 1]

(4.5.1) det G(x, ...,xn) ≤ det G(x, ...,xk) det G(xk+, ...,xn).

Equality holds if and only if either det G(x, ...,xk) det G(xk+, ...,xn) = 
or 〈xi,xj〉 =  for i = 1, ..., k and j = k + 1, ..., n.

Proof. ClearlyG(x, ...,xn) ∈ Hn. If V is an IPS over R thenG(x, ...,xn) ∈
S(n,R). Let a = (a, ..., an)> ∈ Fn. Then

a∗G(x, ...,xn)a = 〈
n∑
i=

aixi,
n∑
j=

ajxj〉 ≥ .

Equality holds if and only if
∑n
i=1 aixi = . Hence G(x, ...,xn) ≥ 

and G(x, ...,xn) >  if and only if x, ...,xn are linearly independent. In
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particular det G(x, ...,xn) ≥  and det G(x, ...,xn) >  if and only if
x, ...,xn are linearly independent.

We now prove the inequality (4.5.1). Assume first that the right-hand
side of (4.5.1) is zero. Then either x, ...,xk or xk+, ...,xn are linearly
dependent. Hence x, ...,xn are linearly dependent and det G = 0.

Assume now that the right-hand side of (4.5.1) is positive. Hence
x, ...,xk and xk+, ...,xn are linearly independent. If x, ...,xn are lin-
early dependent then det G = 0 and strict inequality holds in (4.5.1). It is
left to show the inequality (4.5.1) and the equality case when x, ...,xn are
linearly independent. Perform the Gram-Schmidt algorithm on x, ...,xn
as given in (4.1.1). Let Sj = span (x, ...,xj) for j = 1, ..., n. Corollary
4.1.1 yields that span (e, ..., en−) = Sn−. Hence yn = xn −

∑n−
j= bjxj

for some b1, ..., bn−1 ∈ F. Let G′ be the matrix obtained from G(x, ...,xn)
by subtracting from the n-th row bj times j-th row. Thus the last row of
G′ is (〈yn,x〉, ..., 〈yn,xn〉) = (, ..., , ‖yn‖). Clearly det G(x, ...,xn) =
det G′. Expand det G′ by the last row to deduce

det G(x, ...,xn) = det G(xi, ...,xn−) ‖yn‖ = ... =

det G(x, ...,xk)
n∏

i=k+

‖yi‖ =(4.5.2)

det G(x, ...,xk)
n∏

i=k+

dist(xi, Si−), k = n− , ..., .

Perform the Gram-Schmidt process on xk+, ...,xn to obtain the orthogonal
set of vectors ŷk+1, ..., ŷn such that

Ŝj := span (xk+, ...,xj) = span (ŷk+1, ..., ŷj), dist(xj , Ŝj−) = ‖ŷj‖,

for j = k+1, ..., n, where Ŝk = {0}. Use (4.5.2) to deduce that det G(xk+, ...,xn) =∏n
j=k+ ‖ŷj‖. As Ŝj−1 ⊂ Sj−1 for j > k it follows that

‖yj‖ = dist(xj , Sj−) ≤ dist(xj , Ŝj−) = ‖ŷj‖, j = k + , ..., n.

This shows (4.5.1). Assume now equality holds in (4.5.1). Then ‖yj‖ =
‖ŷj‖ for j = k + 1, ..., n. Since Ŝj−1 ⊂ Sj−1 and ŷj − xj ∈ Ŝj− ⊂
Sj− it follows that dist(xj , Sj−) = dist(ŷj,Sj−1) = ‖yj‖. Hence ‖ŷj‖ =
dist(ŷj,Sj−1). Part (h) of Problem 4.1.4 yields that ŷj is orthogonal on
Sj−1. In particular each ŷj is orthogonal to Sk for j = k + 1, ..., n. Hence
xj ⊥ Sk for j = k + 1, ..., n, i.e. 〈xj ,xi〉 =  for j > k and i ≤ k. Clearly,
if the last condition holds then
det G(x, ...,xn) = det G(x, ...,xk) det G(xk+, ...,xn). 2
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det G(x, ...,xn) has the following geometric meaning. Consider a par-
allelepiped Π in V spanned by x, ...,xn starting from the origin 0. That is
Π is a convex hull spanned by the vectors 0 and

∑
i∈S xi for all nonempty

subsets S ⊂ {1, ..., n}. Then
√

det G(x, ...,xn) is the n-volume of Π. The
inequality (4.5.1) and equalities (4.5.2) are ”obvious” from this geometrical
point of view.

Corollary 4.5.6 Let 0 ≤ B = (bij)n1 ∈ Hn,+. Then

det B ≤ det (bij)k1 det (bij)nk+1, for k = 1, ..., n− 1.

For a fixed k equality holds if and only if either the right-hand side of the
above inequality is zero or bij = 0 for i = 1, ..., k and j = k + 1, ..., n.

Proof. From Corollary 4.5.4 it follows that B = X2 for some X ∈ Hn.
Let x, ...,xn ∈ Cn be the n-columns of XT = (x, ...,xn). Let 〈x,y〉 =
y∗x. Since X ∈ Hn we deduce that B = G(x, ...,xn). 2

Theorem 4.5.7 Let V be an n-dimensional IPS. Let T ∈ S. TFAE:
(a) T > 0.
(b) Let g, ...,gn be a basis of V. Then det (〈Tgi,gj〉)ki,j= > , k =
, ..., n.

Proof. (a)⇒ (b). According to Proposition 4.5.3 T = S2 for some S ∈
S(V)∩GL(V). Then 〈Tgi,gj〉 = 〈Sgi, Sgj〉. Hence det (〈Tgi,gj〉)ki,j= =
det G(Sg, ..., Sgk). Since S is invertible and g, ...,gk linearly independent
it follows that Sg, ..., Sgk are linearly independent. Theorem 4.5.1 implies
that det G(Sg, ..., Sgk) >  for k = 1, ..., n.
(b) ⇒ (a). The proof is by induction on n. For n = 1 (a) is obvious.
Assume that (a) holds for n = m−1. Let U := span (g, ...,gn−) and Q :=
Q(T,U). Then there exists P ∈ S(U) such that < Px,y >= Q(x,y) =<
Tx,y > for any x,y ∈ U. By induction P > 0. Corollary 4.4.3 yields that
λn−1(T ) ≥ λn−1(P ) > 0. Hence T has at least n − 1 positive eigenvalues.
Let e, ..., en be given by (4.4.3). Then det (〈Tei, ej〉)ni,j= =

∏n
i= λi(T ) >

. Let A = (apq)n1 ∈ GL(n,C) be the transformation matrix from the basis
g, ...,gn to e, ..., en, i.e.

gi =
n∑
p=

apiep, i = , ..., n.
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It is straightforward to show that

(〈Tgi,gj〉)n = AT (〈Tep, eq〉)Ā⇒
(4.5.3)

det (〈Tgi,gj〉)n = det (〈Tei, ej〉)n |det A| = |det A|
n∏
i=

λi(T ).

Since det (〈Tgi,gj〉)n >  and λ1(T ) ≥ ... ≥ λn−1(T ) > 0 it follows that
λn(T ) > 0. 2

Corollary 4.5.8 Let B = (bij)n1 ∈ Hn. Then B > 0 if and only if
det (bij)k1 > 0 for k = 1, ..., n.

The following result is straightforward (see Problem 1):

Proposition 4.5.9 Let V be a finite dimensional IPS over F = R,C
with the inner product 〈·, ·〉. Assume that T ∈ S(V). Then T > 0 if and
only if (x,y) := 〈Tx,y〉 is an inner product on V. Vice versa any inner
product (·, ·) : V ×V → R is of the form (x,y) =< Tx,y > for a unique
self-adjoint positive definite operator T ∈ Hom (V).

Example 4.5.10 Each 0 < B ∈ Hn induces and inner product on Cn:
(x,y) = y∗Bx. Each 0 < B ∈ S(n,R) induces and inner product on Rn:
(x,y) = yTBx. Furthermore any inner product on Cn or Rn is of the above
form. In particular, the standard inner products on Cn and Rn are induces
by the identity matrix I.

Definition 4.5.11 Let V be a finite dimensional IPS with the inner
product 〈·, ·〉. Let S ∈ Hom (V ). Then S is called symmetrizable if there
exists an inner product (·, ·) on V such that S is self-adjoint with respect
to (·, ·).

Problems

1. Show Proposition 4.5.9.

2. Recall the Hölder inequality

(4.5.4)
n∑
l=1

xlylal ≤ (
n∑
l=1

xpl al)
1
p (

n∑
l=1

yql al)
1
q

for any x = (x, . . . , xn)>,y = (y, . . . , yn)>,a = (a, . . . , an) ∈ Rn+
and p, q ∈ (1,∞) such that 1

p + 1
q = 1. Show



4.6. MAJORIZATION AND APPLICATIONS 177

(a) Let A ∈ Hn,+,x ∈ Cn and 0 ≤ i < j < k be three integers.
Then

(4.5.5) x∗Ajx ≤ (x∗Aix)
k−j
k−i (x∗Akx)

j−i
k−i .

Hint: Diagonalize A.

(b) Assume that A = eB for some B ∈ Hn. Show that (4.5.5) holds
for any three real numbers i < j < k.

4.6 Majorization and applications

Definition 4.6.1 Let

Rn↘ := {x = (x, ..., xn)T ∈ Rn : x ≥ x ≥ ... ≥ xn}.

For x = (x, ..., xn)T ∈ Rn let x̄ = (x̄1, ..., x̄n)T ∈ Rn↘ be the unique
rearrangement of the coordinates of x in a decreasing order. That is there
exists a permutation π on {1, ..., n} such that x̄i = xπ(i), i = 1, ..., n.

Let x = (x, ..., xn)T ,y = (y, ..., yn)T ∈ Rn. Then x is weakly ma-
jorized by y (y weakly majorizes x), which is denoted by x � y, if

(4.6.1)
k∑
i=1

x̄i ≤
k∑
i=1

ȳi, k = 1, ..., n.

x is majorized by y (y majorizes x), which is denoted by x ≺ y, if x � y
and

∑n
i=1 xi =

∑n
i=1 yi.

Definition 4.6.2 A ∈ Rn×n+ is called doubly stochastic matrix if the
sum of each row and column of A is equal to 1. Denote by Ωn ⊂ Rn×n+ the
set of doubly stochastic matrices. Denote by 1

nJn the n×n doubly stochastic
matrix whose all entries are equal to 1

n , i.e. Jn ∈ Rn×n+ is the matrix whose
each entry is 1.

Definition 4.6.3 P ∈ Rn×n+ is called a permutation matrix if each row
and column of P a contains exactly one nonzero element which is equal to
1. Denote by Pn the set of n× n permutation matrices.

Lemma 4.6.4 The following properties hold.

1. A ∈ Rn×n+ is double stochastic if and only if A1 = A>1 = 1, where
1 = (, . . . , )> ∈ Rn.

2. Ω1 = {1}.
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3. A,B ∈ Ωn ⇒ tA+ (1− t)B ∈ Ωn for each t ∈ [0, 1].

4. A,B ∈ Ωn ⇒ AB ∈ Ωn.

5. Pn ⊂ Ωn.

6. Pn is a group with respect to the multiplication of matrices, with In
the identity and P−1 = P>.

7. A ∈ Ωl, B ∈ Ωm → A⊕B ∈ Ωl+m.

See Problem 1.

Theorem 4.6.5 A ∈ Rn×n+ is doubly stochastic if and only

(4.6.2) A =
∑
P∈Pn

aPP for some aP ≥ 0, P ∈ Pn,
∑
P∈Pn

aP = 1.

Proof. In view of properties 3 and 5 of Lemma 4.6.4 it follows that
any A of the form (4.6.2) is doubly stochastic. We now show by induction
on n that any A ∈ Ωn is of the form (4.6.2). For n = 1 the result trivially
holds. Assume that the result holds for n = m−1 and assume that n = m.

Assume that A = (aij) ∈ Ωn. Let l(A) be the number of nonzero entries
of A. Since each row sum of A is 1 it follows that l(A) ≥ n. Suppose first
l(A) ≤ 2n−1. Then there exists a row i of A which has exactly one nonzero
element, which must be 1. Hence there exists i, j ∈ 〈n〉 such that aij = 1.
Then all other elements of A on the row i and column j are zero. Denote
by Aij ∈ R(n−1)×(n−1)

+ the matrix obtained from A by deleting the row and
column j. Clearly Aij ∈ Ωn−1. Use the induction hypothesis on Aij to
deduce (4.6.2), where aP = 0 if the entry (i, j) of P is not 1.

We now show by induction on l(A) ≥ 2n − 1 that A is of the form
(4.6.2). Suppose that any A ∈ Ωn such that l(A) ≤ l − 1, l ≥ 2n is of
the form (4.6.2). Assume that l(A) = l. Let S ⊂ 〈n〉 × 〈n〉 be the set
of all indices (i, j) ∈ 〈n〉 × 〈n〉 where aij > 0. Note #S = l(A) ≥ 2n.
Consider the following system of equations in n2 variables, which are the
entries X = (xij)ni,j=1 ∈ Rn×n:

n∑
j=1

xij =
n∑
j=1

xji = 0, i = 1, . . . , n.

Since the sum of all rows of X is equal to the sum of all columns of X
we deduce that the above system has at most 2n − 1 linear independent
equations. Assume furthermore the conditions xij = 0 for (i, j) 6∈ S. Since
we have at least 2n variables it follows that there exist X 6= 0n×n satisfying
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the above conditions. Note that X has zero entry in the places where A
has zero entry. Furthermore, X has at least one positive and one negative
entry. Therefore the exists b, c > 0 such that A − bX,A + cX ∈ Ωn and
l(A − bX), l(A + cX) < l. So A − bX,A + cX are of the form (4.6.2). As
A = c

b+c (A−bX)+ b
b+c (A+cX) we deduce that A is of the form (4.6.2). 2

Theorem 4.6.6 . Let x,y ∈ Rn. Then x ≺ y if and only if there exists
A ∈ Ωn such that x = Ay.

Proof. Assume first that x = Py for some P ∈ Pn. Then it is
straightforward to see that x ≺ y. Assume that x = Ay for some A ∈ Ωn.
Use Theorem 4.6.5 to deduce that x ≺ y.

Assume now that x,y ∈ Rn and x ≺ y. Since x = P x̄,y = Qȳ for some
P,Q ∈ Pn, it follows that x̄ ≺ ȳ. In view of Lemma 4.6.4 it is enough to
show that x̄ = Bȳ some B ∈ Ωn. We prove this claim by induction on n.
For n = 1 this claim is trivial. Assume that if x̄ ≺ ȳ ∈ Rl then x̄ = Bȳ for
some B ∈ Ωl for all l ≤ m − 1. Assume that n = m and x̄ ≺ ȳ. Suppose
first that for some 1 ≤ k ≤ n− 1 we have the equality

∑k
i=1 x̄i =

∑k
i=1 ȳi.

Let

x = (x̄, . . . , x̄k)>,y = (ȳ, . . . , ȳk)> ∈ Rk,
x = (x̄k+, . . . , x̄n)>,y = (ȳk+, . . . , ȳn)> ∈ Rn−k.

Then x ≺ y,x ≺ y. Use the induction hypothesis that xi = Biyi, i =
,  where B1 ∈ Ωk, B2 ∈ Ωn−k. Hence x̄ = (B1⊕B2)y and B1⊕B2 ∈ Ωn.

It is left to consider the case where strict inequalities hold in (4.6.1) for
k = 1, . . . , n− 1. We now define a finite number of vectors

ȳ = z � z = z̄ � . . . � zN = z̄N � x,

where N ≥ 2, such that

1. zi+ = Bizi for i = 1, . . . , N − 1.

2.
∑k
i=1 x̄i =

∑k
i=1 wi for some k ∈ 〈n−1〉, where zN = w = (w, . . . , wn)>.

Observe first that we can not have ȳ1 = . . . = ȳn. Otherwise x̄ = ȳ
and we have equalities in (4.6.1) for all k ∈ 〈n〉, which contradicts out
assumptions. Assume that we defined

ȳ = z � z = z̄ � . . . � zr = z̄r = (u, . . . , un)> � x,

for 1 ≤ r such that
∑k
i=1 x̄i <

∑k
i=1 ui for k = 1, . . . , n − 1. Assume that

u1 = . . . = up > up+1 = . . . = up+q, where up+q > up+q+1 if p + q < n.
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Let C(t) = ((1 − t)Ip+q + t
p+qJp+q) ⊕ In−(p+q)) for t ∈ [0, 1] and define

u(t) = C(t)zr. We vary t continuously from t = 0 to t = 1. Note that
u(t) = ū(t) for all t ∈ [0, 1]. We have two possibilities. First there exists
exits t0 ∈ (0, 1] such that u(t) � x for all t ∈ [0, t0]. Furthermore for
w = u(t) = (w, . . . , wn)> we have the equality

∑k
i=1 x̄i =

∑k
i=1 wi for

some k ∈ 〈n− 1〉. In that case r = N − 1 and zN = u(t).
Otherwise let zr+ = u() = (v, . . . , vn)>, where v1 = . . . = vp+q >

vp+q+1. Repeat this process for zr+ and so on until we deduce the condi-
tions 1 and 2. So x = BNzN = BNBN−zN− = BN . . . By. In view of 4
of Lemma 4.6.4 we deduce that x = Ay for some A ∈ Ωn.

2

Combine Theorems 4.6.6 and 4.6.5 to deduce.

Corollary 4.6.7 Let x,y ∈ Rn. Then x ≺ y if and only if

(4.6.3) x =
∑
P∈Pn

aPPy for some aP ≥ , P ∈ Pn where
∑
P∈Pn

aP = .

Furthermore, if x ≺ y and x 6= Py for all P ∈ Pn then in (4.6.3) each
aP < 1.

Definition 4.6.8 Let I ⊆ R be an interval. A function φ : I → R is
called convex if for any x, y ∈ I and t ∈ [0, 1] φ(tx + (1 − t)y) ≤ tφ(x) +
(1 − t)φ(y). φ is called strictly convex on I if for any x, y ∈ I, x 6= y and
t ∈ (0, 1) φ(tx+ (1− t)y) < tφ(x) + (1− t)φ(y).

A function ψ : I → R is called concave or strictly concave if the function
−ψ is convex or strictly convex respectively.

Theorem 4.6.9 Let x = (x, ..., xn)> ≺ y = (y, ..., yn)>. Let φ :
[ȳn, ȳ1]→ R be a convex function. Then

(4.6.4)
n∑
i=1

φ(xi) ≤
n∑
i=1

φ(yi).

If φ is strictly convex on [ȳn, ȳ1] and Px 6= y for all P ∈ Pn then strict
inequality holds in (4.6.4).

Proof. Problem 3 implies that if x = (x, . . . , xn)> ≺ y = (y, . . . , yn)
then xi ∈ [ȳn, ȳ1] for i = 1, . . . , n. Use Corollary 4.6.7 and the convexity of
φ, see Problem 2, to deduce:

φ(xi) ≤
∑
P∈Pn

aPφ((Py)i), i = , . . . , n.
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Observe next that
∑n
i=1 φ(yi) =

∑n
i=1 φ((Py)i) for all P ∈ Pn. Sum up

the above inequalities to deduce (4.6.4).
Assume now that φ is strictly convex and x 6= Py for all P ∈ Pn. Then

Corollary 4.6.7 and strict convexity of φ implies that at least in one the
above i − th inequality one has strict inequality. Hence strict inequality
holds in (4.6.4). 2

Corollary 4.6.10 Let V be an n-dimensional IPS. Let T ∈ S(V). De-
note λ(T ) := (λ1(T ), ..., λn(T ))> ∈ Rn↘. Let Fn = {f1, ...fn} ∈ Fr(n,V).
Then

(〈T f1, f1〉, ..., 〈T fn, fn〉)> ≺ λ(T ).

Let φ : [λn(T ), λ1(T )]→ R be a convex function. Then

n∑
i=1

φ(λi(T )) = max
{f1,...fn}∈Fr(n,V)

n∑
i=1

φ(〈T fi, fi〉).

If φ is strictly convex then
∑n
i=1 φ(λi(T )) =

∑n
i=1 φ(〈T fi, fi〉) if and only

if f1, . . . , fn is a set of n orthonormal eigenvectors of T .

See Problem 4.

Problems

1. Prove Lemma 4.6.4.

2. Let I ⊆ R be an interval and assume that φ : I → R is convex. Let
x1, . . . , xm ∈ I,m ≥ 3. Show

(a) Let a1, . . . , am ∈ [0, 1] and assume that
∑m
i=1 ai = 1. Then

(4.6.5) φ(
m∑
i=1

aixi) ≤
m∑
i=1

aiφ(xi).

(b) Assume in addition that φ is strictly convex, xi 6= xj for i 6= j
and a1, . . . , am > 0. Then strict inequality holds in (4.6.5).

3. Let x,y ∈ Rn. Show that x ≺ y ⇐⇒ −y ≺ −x.

4. Prove Corollary 4.6.10.
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4.7 Spectral functions

Let T ⊂ S(V), where V is an n-dimensional IPS over F = R,C. Denote
λ(T ) := {λ(T ) ∈ Rn↘ : T ∈ T }. A function f : T → R is called a spectral
function if there exists a set D ⊂ Rn↘ and h : D → R such that λ(T ) ⊂ D
and f(T ) = h(λ(T )) for each T ∈ T . D is called a Schur set if

x,y ∈ Rn↘, x ≺ y, y ∈ D ⇒ x ∈ D.

Let D ⊂ Rn↘ be a Schur set. A function h : D → R is called Schur’s order
preserving if

h(x) ≤ h(y) for any x,y ∈ D such x ≺ y.

h is called strict Schur’s order preserving if a strict inequality holds in the
above inequality whenever x 6= y. h is called strong Schur’s order preserving
if

h(x) ≤ h(y) for any x,y ∈ D such x � y.

h is called strict strong Schur’s order preserving if a strict inequality holds
in the above inequality whenever x 6= y.

Note that h((x1, ..., xn)) :=
∑n
i=1 g(xi) for some convex function g :

R → R then Corollary 4.6.10 implies that h : Rn↘ → R is Schur’s order
preserving. The results of Section 4.4 yield:

Proposition 4.7.1 Let V be an n-dimensional IPS, D ⊂ Rn↘ be a
Schur set and h : D → R be Schur’s order preserving function. Let T ∈
S(V) and assume that λ(T ) ∈ D. Then

h(λ(T )) = max
x∈D,x≺λ(T )

h(x).

Definition 4.7.2 A set D ⊂ Rn is called a regular set if the interior of
D, denoted by Do ⊂ Rn, is a nonempty set, and D is a subset of the closure
Do, denoted by Cl(Do). For a regular set D a function F : D → R is in
the class Ck(D), i.e. F has k continuous derivatives, if F ∈ Ck(Do) and
F and any of its derivative of order not greater than k has a continuous
extension to D.

Definition 4.7.3 Let V be a vector space over R. For x,y ∈ V denote

[x,y] := {z : z = αx + (− α)y for all α ∈ [, ]}.

A set C ⊂ V is called convex if for each x,y ∈ V [x,y] ⊂ C. Assume that
C ⊂ V is a nonempty convex set and let x ∈ C. Denote by C − x the set
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{z : z = y − x, y ∈ C}. Let U = span (C − x). Then the dimension
C, denoted by dim C, is the dimension of the vector space U. C − x has
interior as a subset of U called relative interior and denoted by ri (C − x).
Then the relative interior of C is defined as ri (C − x) + x.

It is straightforward to show that dim C, ri C do not depend on the
choice of x ∈ C. Furthermore ri C is convex. See Problem 7 or [Roc70].

Proposition 4.7.4 Let y = (y, ..., yn)> ∈ Rn↘. Denote

M(y) := {x ∈ Rn↘ : x ≺ y}.

Then M(y) is a closed convex set.

See Problem 1.

Theorem 4.7.5 Let D ⊂ Rn↘ be a regular Schur set in Rn. Let F ∈
C1(D). Then F is Schur’s order preserving if and only if

(4.7.1)
∂F

∂x1
(x) ≥ ... ≥ ∂F

∂xn
(x), for each x = (x, ..., xn)> ∈ D.

If for any point x = (x, ..., xn)> ∈ D such that xi > xi+1 the inequality
∂F
∂xi

(x) > ∂F
∂xi+

(x) holds then F is strict Schur’s order preserving.

Proof. Assume that F ∈ C1(D) and F is Schur’s order preserving. Let
x = (x, ..., xn)> ∈ Do. Hence x1 > ... > xn. Let ei = (δi, ..., δin)>, i =
, ..., n. For i ∈ [1, n− 1] ∩ Z+ let x(t) := x + t(ei − ei+). Then

x(t) ∈ Rn↘ for |t| ≤ τ :=
minj∈[,n−]∩Z+ xj − xj+


,

(4.7.2)
and x(t) ≺ x(t) for − τ ≤ t ≤ t ≤ τ.

See Problem 2. Since Do is open there exists ε > 0 such that x(t) ∈ Do for
t ∈ [−ε, ε]. Then f(t) := F (x(t)) is an increasing function on [−ε, ε]. Hence
f ′(0) = ∂F

∂xi
(x) − ∂F

∂xi+
(x) ≥ . This proves (4.7.1) in Do. The continuity

argument yields (4.7.1) in D.
Assume now that (4.7.1) holds. Let y = (y, ..., yn)>, z = (z, ..., zn)> ∈

D and define

y(t) := (− t)y + tz, g(t) := F ((− t)y + tz), for t ∈ [, ].
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Suppose that y ≺ z. Then y(t) ≺ y(t) for 0 ≤ t1 ≤ t2 ≤ 1. Since D is
Schur set [y, z] ⊂ D. Then

(4.7.3) g′(t) =
n−1∑
i=1

(
∂F (y(t))
∂xi

− ∂F (y(t))
∂xi+1

)
i∑

j=1

(zj − yj).

See Problem 3. Hence g′(t) ≥ 0, i.e. g(t) is a nondecreasing function
on [0, 1]. Thus F (y) = g() ≤ g() = F (z). Assume that for any point
x = (x, ..., xn)> ∈ D such that xi > xi+1 the inequality ∂F

∂xi
(x) > ∂F

∂xi+
(x).

Suppose that y 6= z. Then g′(t) > 0 and F (y) = g() < g() = F (z). 2

Theorem 4.7.6 Let D ⊂ Rn↘ be a regular Schur set in Rn. Let F ∈
C1(D). If F is strong Schur’s order preserving then

(4.7.4)
∂F

∂x1
(x) ≥ ... ≥ ∂F

∂xn
(x) ≥ , for each x = (x, ..., xn)> ∈ D.

Suppose that in addition to the above assumptions D is convex. If F satisfies
the above inequalities then F is strong Schur’s order preserving. If for any
point x = (x, ..., xn)> ∈ D ∂F

∂xn
(x) >  and ∂F

∂xi
(x) > ∂F

∂xi+
(x) whenever

xi > xi+1 holds then F is strict strong Schur’s order preserving.

Proof. Assume that F is strong Schur’s order preserving. Since F is
Schur’s order preserving (4.7.1) holds. Let x = (x, ..., xn)> ∈ Do. Define
w(t) = x+ ten. Then there exists ε > 0 such that w(t) ∈ Do for t ∈ [−ε, ε].
Clearly w(t) � w(t) for −ε ≤ t1 ≤ t2 ≤ ε. Hence the function h(t) :=
F (w(t)) is not decreasing on the interval [−ε, ε]. Thus ∂F

∂xn
(x) = h′() ≥ .

Use the continuity argument to deduce that ∂F
∂xn

(x) ≥  for any x ∈ D.
Assume that D is convex and (4.7.4) holds. Let y, z ∈ D and define

y(t) and g(t) as in the proof of Theorem 4.7.5. Then

g′(t) =
n−1∑
i=1

(
∂F (y(t))
∂xi

− ∂F (y(t))
∂xi+1

)
i∑

j=1

(zj − yj)

(4.7.5)

+
∂F (y(t))
∂xn

n∑
j=1

(zj − yj).

See Problem 3. Assume that y � z. Then g′(t) ≥ 0. Hence F (y) ≤ F (z).
Assume now that for any point x = (x, ..., xn)> ∈ D ∂F

∂xn
(x) >  and

∂F
∂xi

(x) > ∂F
∂xi+

(x) whenever xi > xi+1. Let y, z ∈ D and assume that
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y � z and y 6= z. Define g(t) on [0, 1] as above. Use (4.7.5) to deduce that
g′(t) > 0 on [0, 1]. Hence F (y) < F (z). 2

Let C be a convex set. A function f : C → R is called convex if

(4.7.6) f(αx + (− α)y) ≤ αf(x) + (− α)f(y), for any α ∈ [, ],

and x,y ∈ C.
f is called strictly convex if for any x,y ∈ C, x 6= y and α ∈ (0, 1) the

strict inequality holds in the above inequality. The following result is well
known. (See Problems 4-9)

Theorem 4.7.7 Let C ⊂ Rd be a regular convex set. Assume that
f ∈ C2(C). Then f is convex if and only if the symmetric matrix H(f) :=
( ∂2f
∂xixj

)di,j=1 is nonnnegative definite for each y ∈ C. Furthermore, if H(f)
is positive definite for each y ∈ C then f is strictly convex.

For any set T ∈ V we let ClT be the closure of T in the standard
topology in V (which is identified with the standard topology of Rdim RV).

Proposition 4.7.8 Let C ⊂ V be convex. Then ClC is convex. As-
sume that C is a regular set and f ∈ C0(Cl C). Then f is convex in ClC
if and only if f is convex in C.

See Problem 8.
Denote by R̄ := R ∪ {−∞,∞} the extended real line. Then a +∞ =

∞+ a = ∞ for a ∈ R ∪ {∞}, a−∞ = −∞+ a = −∞ for a ∈ R ∪ {−∞}
and ∞ −∞, −∞ +∞ are not defined. For a > 0 we let a∞ = ∞a =
∞, a(−∞) = (−∞)a = −∞ and 0∞ = ∞0 = 0, 0(−∞) = (−∞)0 = 0.
Clearly for any a ∈ R −∞ < a < ∞. Let C be a convex set. Then
f : C → R is called an extended convex function if (4.7.6) holds. Let
f : C → R be a convex function. Then f has the following continuity and
differentiability properties:

In the one dimensional case where C = (a, b) ⊂ R f is continuous on
C and f has a derivative f ′(x) at all but a countable set of points. f ′(x)
is an nondecreasing function (where defined). In particular f has left and
right derivatives at each x, which is given as the left and the right limits of
f ′(x) (where defined).

In the general case C ⊂ V, f is continuous function in ri C, has a
differential Df in a dense set C1 of ri C, the complement of C1 in ri C has
a zero measure, and Df is continuous in C1. Furthermore at each x ∈ ri C
f has a subdifferential φ ∈ Hom(V,R) such that

(4.7.7) f(y) ≥ f(x) + φ(y − x) for all y ∈ C.

See for example [Roc70].
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Proposition 4.7.9 (The maximal principle) Let C be a convex set and
let fφ : C → R̄ be an extended convex function for each φ a set Φ. Then

f(x) := sup
φ∈Φ

fφ(x), for each x ∈ V,

is an extended convex function on C.

Theorem 4.7.10 Let V be an n-dimensional IPS over F = R,C. Then
the function φi : S(V)→ R given by

(4.7.8) φi(T ) :=
i∑

j=1

λi(T ), T ∈ S(V), i = , ..., n,

is a continuous homogeneous convex function for i = 1, ..., n− 1. φn(T ) =
trT is a linear function on S(V).

Proof. Clearly φi(aT ) = aφi(T ) for a ∈ [0,∞). Hence φi is a homoge-
neous function. Since the eigenvalues of T are continuous it follows that φi
is a continuous function. Clearly φn is a linear function on the vector space
S(V). Combine Theorem 4.4.8 with Proposition 4.7.9 to deduce that φi is
convex. 2

Corollary 4.7.11 Let V be a finite dimensional IPS over F = R,C.
Then

λ(αA+ (1−α)B) ≺ αλ(A) + (1−α)λ(B), for any A,B ∈ S(V), α ∈ [, ].

For α ∈ (0, 1) equality holds if an only if there exists an orthonormal basis
[v, ...,vn] in V such that

Avi = λi(A)ui, Bvi = λi(B)vi, i = , ..., n.

See Problem 10.

Proposition 4.7.12 Let V be n-dimensional IPS over F = R,C. For
D ⊂ Rn let

(4.7.9) λ−1(D) := {T ∈ S(V) : λ(T ) ∈ D}.

If D ⊂ Rn is a regular convex Schur set then λ−1(D) is regular convex set
in the vector space S(V).
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Proof. The continuity of the function λ : S(V) → Rn↘ implies that
λ−1(D) is a regular set in S(V). Suppose that A,B ∈ λ(D)−1 and α ∈ [0, 1].
Since D is convex αλ(A)+(1−α)λ(B) ∈ D. Since D is a Schur set Corollary
4.7.11 yields that λ(αA+(1−α)B) ∈ D. Hence αA+(1−α)B ∈ λ−1(D). 2

Theorem 4.7.13 Let D ⊂ Rn↘ be a regular convex Schur set and let
h : D → R. Let V be an n-dimensional IPS over F = R,C. Let f :
λ−1(D) → R be the spectral function given by f(A) := h(λ(A)). Then the
following are equivalent:
(a) f is (strictly) convex on λ−1(D).
(b) h is (strictly) convex and (strictly) Schur’s order preserving on D.

Proof. Choose a fixed orthonormal basis [u, ...,un]. We then identify
S(V) with Hn(F). Thus we view T := λ−1(D) is a subset of Hn(F). Since
D is a regular convex Schur set Proposition 4.7.12 yields that T is a regular
convex set. For x = (x, ..., xn)> ∈ Rn let D(x) := diag(x, ..., xn). Then
λ(D(x)) = x̄. Thus D(x) ∈ T ⇐⇒ x̄ ∈ D and f(D(x)) = h(x̄) for x̄ ∈ D.
(a) ⇒ (b). Assume that f convex on T . By restricting f to D(x),x ∈ D
we deduce that h is convex on D. If f is strictly convex on T we deduce
that h is strictly convex on D.

Let x,y ∈ D and assume that x ≺ y. Then (4.6.3) holds. Hence

D(x) =
∑
P∈Pn

aPPD(y)P>.

Clearly λ(PD(y)P>) = λ(D(y)) = y. The convexity of f yields

h(x) = f(D(x)) ≤
∑
P∈Pn

aP f(PD(y)P>) = f(D(y)) = h(y).

See Problem 6. Hence h is Schur’s order preserving. If f is strictly convex
on T then in the above inequality one has a strict inequality if x 6= y.
Hence h is strictly Schur’s order preserving.
(b) ⇒ (a). Assume that h is convex. Then for A,B ∈ T

αf(A)+(1−α)f(B) = αh(λ(A))+(1−α)h(λ(B)) ≥ h(αλ(A)+(1−α)λ(B)).

Use Corollary 4.7.11 and the assumption that and h is Schur’s order pre-
serving to deduce the convexity of f . Suppose that h is strictly convex
and strictly Schur’s order preserving. Assume that f(αA + (1 − α)B) =
αf(A)+(1−α)f(B) for some A,B ∈ T and α ∈ (0, 1). Hence λ(A) = λ(B)
and λ(αA + (1 − α)B) = αλ(A) + (1 − α)λ(B). Use Corollary 4.7.11 to
deduce that A = B. Hence f is strictly convex. 2
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Theorem 4.7.14 Let D ⊂ Rn↘ be a regular convex Schur set and let
h ∈ C1(D). Let V be an n-dimensional IPS over F = R,C. Let f :
λ−1(D) → R be the spectral function given by f(A) := h(λ(A)). Then the
following are equivalent:
(a) f is convex on λ−1(D) and f(A) ≤ f(B) for any A,B ∈ λ−1(D) such
that A ≤ B.
(b) h is convex and strongly Schur’s order preserving on D.

Proof. We repeat the proof of Theorem 4.7.13 with the following mod-
ifications.
(b) ⇒ (a). Since h is convex and Schur’s order preserving Theorem 4.7.13
yields that f is convex on T . Let A,B ∈ T and assume that A ≤ B.
Then λ(A) � λ(B). As h is strongly Schur’s order preserving h(λ(A)) ≤
h(λ(B))⇒ f(A) ≤ f(B).
(a) ⇒ (b). Since f is convex on T Theorem 4.7.13 implies that h is
convex and Schur’s order preserving. Since h ∈ C1(D) Theorem 4.7.5
yields that h satisfies the inequalities (4.7.1). Let x ∈ Do and define
x(t) := x + ten. Then for a small a > 0 x(t) ∈ Do for t ∈ (−a, a). Clearly
D(x(t)) ≤ D(x(t)) for t1 ≤ t2. Hence g(t) := f(D(x(t)) = h(x(t)) is a
nondecreasing function on (−a, a). Hence ∂h

∂xn
(x) = g′() ≥ . Use the con-

tinuity hypothesis to deduce that h satisfies (4.7.4). Theorem 4.7.6 yields
that h is strong Schur’s order preserving. 2

Theorem 4.7.15 Let V be an N -dimensional IPS over F = R,C. For
n,N ∈ N and n < N let λ(n) : S(V) → Rn↘ be the map A 7→ λ(n)(A) :=
(λ1(A), ..., λn(A))>. Assume that D ⊂ Rn↘ is a regular convex Schur set
and let T := λ−1

(n)(D) ⊂ S(V). Let f : T → R be the spectral function
given by f(A) := h(λ(n)(A)). Assume that n < N Then the following are
equivalent:
(a) f is convex on T .
(b) h is convex and strongly Schur’s order preserving on D.
(c) f is convex on T and f(A) ≤ f(B) for any A,B ∈ T such that A ≤ B.

Proof. Let π : RN↘ → Rn↘ be the projection on the first n coordinates.
Let D1 := π−1(D) ⊂ RN↘. It is straightforward to show that D1 is a regular
convex set. Let h1 := h ◦ π : D1 → R. Then ∂h1

∂xi
= 0 for i = n+ 1, ..., N .

(a) ⇒ (b). Suppose that f is convex on T . Then Theorem 4.7.13 yields
that h1 is convex and Schur’s order preserving. Theorem 4.7.5 yields the
inequalities (4.7.1). Hence ∂h1

∂xn
(y) ≥ ∂h

∂xn+
(y) =  for any y ∈ D. Clearly
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h is convex and
∂h

∂xi
(x) =

∂h
∂xi

(y), i = , ..., n, where x ∈ D, y ∈ D, and π(y) = x.

Thus h satisfies (4.7.4). Theorem 4.7.6 yields that h is strongly Schur’s
order preserving.

Other nontrivial implications follow as in the proof of Theorem 4.7.14.

Problems

1. Show Proposition 4.7.4

2. Let x = (x, ..., xn)> ∈ Rn and assume x1 > ... > xn. Let x(t) be
defined as in the proof of Theorem 4.7.5. Prove (4.7.2).

3. Let D ⊂ Rn be a regular set and assume that [y, z] ⊂ D,y =
(y, ..., yn)>, z = (z, ..., zn)>. Let F ∈ C1(D) and assume that g(t) is
defined as in the proof of Theorem 4.7.5. Show the equality (4.7.5).
Suppose furthermore that

∑n
i=1 yi =

∑n
i=1 zi. Show the equality

(4.7.3).

4. (a) Let f ∈ C1(a,b). Show that f is convex on (a, b) if and only if
f ′(x) is nondecreasing on (a, b). Show that if f ′(x) is increasing on
(a, b) then f is strictly convex on (a, b).

(b) Let f ∈ C[a,b] ∩ C1(a,b). Show that f is convex in [a, b] if and
only if f is convex in (a, b). Show that if f ′(x) is increasing on (a, b)
then f is strictly convex on [a, b].

(c) Let f ∈ C2(a,b). Show that f is convex on (a, b) if and only if f ′′

is a nonnegative function on (a, b). Show that if f ′′(x) > 0 for each
x ∈ (a, b) then f is strictly convex on (a, b).

(d) Prove Theorem 4.7.7.

5. (This problem offers an alternative proof of Theorem 4.6.9.) Let a < b
and n ∈ N. Denote

[a, b]n↘ := {(x1, ..., xn) ∈ Rn↘ : xi ∈ [a, b], i = 1, ..., n}.

(a) Show that [a, b]n↘ is a regular convex Schur domain.

(b) Let f ∈ C1[a,b] be a convex function. Let F : [a, b]n → R be
defined by F ((x1, ..., xn)>) :=

∑n
i=1 f(xi). Show that F satisfies the

condition (4.7.1) on [a, b]n↘. Hence Theorem 4.6.9 holds for any x,y ∈
[a, b]n such that x ≺ y. (c) Assume that any convex f ∈ C[a,b] can be
uniformly approximated by as sequence of convex fk ∈ C1[a,b], k =
1, ... Show that Theorem 4.6.9 holds for x,y ∈ [a, b]n such that x ≺ y.
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6. Let D ⊂ V be convex set and assume that f : D → R be a convex
function. Show that for any k ≥ 3

f(
k∑
j=1

uj) ≤
k∑
j=

αjf(uj), for any u, ...,uk ∈ D, α ≥ , ...., αk ≥ ,
k∑
j=

αj = .

7. Let V be a finite dimensional space and C ⊂ V a nonempty convex
set. Let x ∈ C. Show

a. The subspace U := span (C− x) does not depend on x ∈ C.

b. C − x has a nonempty convex interior in U and the definition of
ri C does not depend on x ∈ C.

8. Prove Proposition 4.7.8.

9. Prove Proposition 4.7.9.

10. Use Theorem 4.4.8 to show the equality case in Corollary 4.7.11

11. For p ∈ [1,∞) let

‖x‖p,w := (
n∑
i=

wi|xi|p)

p , x = (x, ..., xn)> ∈ Rn, w = (w, ..., wn)> ∈ Rn+.

(a) Show that ‖ · ‖p,w : Rn → R is a homogeneous convex function.
Furthermore this function is strictly convex if and only if p > 1 and
wi > 0 for i = 1, ..., n. (Hint: First prove the case w = (, ..., ).)

(b) For q > 1 show that ‖ · ‖qp,w : Rn → R is a convex function.
Furthermore this function is strictly convex if and only if wi > 0 for
i = 1, ..., n. (Hint: Use the fact that f(x) = xq is strictly convex on
[0,∞).)

(c) Show that for q > 0 the function ‖ · ‖qp,w : Rn+,↘ → R is strong
Schur’s order preserving if and only if w1 ≥ ... ≥ wn ≥ 0. Further-
more this function is strictly strong Schur’s order preserving if and
only if w1 ≥ ... ≥ wn > 0.

(d) Let V be an n-dimensional IPS over F = R,C. Show that for
q ≥ 1, w1 ≥ ... ≥ wn ≥ 0 the spectral function T → ‖λ(T )‖qp,w is a
convex function on S(V)+ (the positive self-adjoint operators on V.)
If in addition wn > 0 and max(p, q) > 1 then the above function is
strictly convex on S(V)+.

12. Use the differentiability properties of convex function to show that
Theorems 4.7.14 and 4.7.15 holds under the lesser assumption h ∈
C(D).
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13. Show that on Ho
n,+ the function log det A is a strictly concave func-

tion, i.e. det (αA+(1−α)B) ≥ (det A)α(det B)1−α. (Hint: Observe
that − log x is a strictly convex function on (0,∞).)

4.8 Inequalities for traces

Let V be a finite dimensional IPS over F = R,C. Let T : V → V be a
linear operator. Then trT is the trace of the representation matrix A of
with respect to any orthonormal basis of V. See Problem 1.

Theorem 4.8.1 Let V be an n-dimensional IPS over F = R,C. As-
sume that S, T ∈ S(V). Then trST is bounded below and above by

(4.8.1)
n∑
i=1

λi(S)λn−i+1(T ) ≤ trST ≤
n∑
i=1

λi(S)λi(T ).

Equality for the upper bound holds if and only if ST = TS and there exists
an orthonormal basis x, ...,xn ∈ V such that

(4.8.2) Sxi = λi(S)xi, Txi = λi(T )xi, i = , ..., n.

Equality for the lower bound holds if and only if ST = TS and there exists
an orthonormal basis x, ...,xn ∈ V such that

(4.8.3) Sxi = λi(S)xi, Txi = λn−i+(T )xi, i = , ..., n.

Proof. Let y, ...,yn be an orthonormal basis of V such that

Tyi = λi(T )yi, i = , ..., n,

λ1(T ) = ... = λi1(T ) > λi1+1(T ) = ... = λi2(T ) > ... >

λik−1+1(T ) = ... = λik(T ) = λn(T ), 1 ≤ i1 < ... < ik = n.

If k = 1 ⇐⇒ i1 = n it follows that T = λ1I and the theorem is trivial in
this case. Assume that k > 1. Then

trST =
n∑
i=1

λi(T )〈Syi,yi〉 =

n−1∑
i=1

(λi(T )− λi+1(T ))(
i∑
l=1

〈Syl,yl〉) + λn(T )(
n∑
l=

〈Syl,yl〉) =

k−1∑
j=1

(λij (T )− λij+1(T ))
ij∑
l=1

〈Syl,yl〉+ λn(T ) trS.
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Theorem 4.4.8 yields that
∑ij
l=1〈Syl,yl〉 ≤

∑ij
l= λl(S). Substitute these

inequalities for j = 1, ..., k − 1 in the above identity to deduce the upper
bound in (4.8.1). Clearly the condition (4.8.2) implies that trST is equal to
the upper bound in (4.8.1). Assume now that trST is equal to the upper
bound in (4.8.1). Then

∑ij
l=1〈Syl,yl〉 =

∑ij
l= λl(S) for j = 1, ..., k − 1.

Theorem 4.4.8 yields that span (y, ...,yij ) is spanned by some ij eigenvec-
tors of S corresponding to the first ij eigenvalues of S for j = 1, ..., k − 1.
Let x, ...,xi be an orthonormal basis of span (y, ...,yi) consisting of
the eigenvectors of S corresponding to the eigenvalues of λ1(S), ..., λi1(S).
Since any 0 6= x ∈ span (y, ...,yi) is an eigenvector of T correspond-
ing to the eigenvalue λi1(T ) it follows that (4.8.2) holds for i = 1, ..., i1.
Consider span (y, ...,yi). The above arguments imply that this subspace
contains i2 eigenvectors of S and T corresponding to the first i2 eigenvalues
of S and T . Hence U, the orthogonal complement of span (x, ...,xi)
in span (y, ...,yi), spanned by xi+, ...,xi , which are i2 − i1 orthonor-
mal eigenvectors of S corresponding to the eigenvalues λi1+(S), ..., λi2(S).
Since any nonzero vector in U is an eigenvector of T corresponding to the
eigenvalue λi2(T ) we deduce that (4.8.2) holds for i = 1, ..., i2. Continuing
in the same manner we obtain (4.8.2).

To prove the equality case in the lower bound consider the equality in
the upper bound for trS(−T ). 2

Corollary 4.8.2 Let V be an n-dimensional IPS over F = R,C. As-
sume that S, T ∈ S(V). Then

(4.8.4)
n∑
i=1

(λi(S)− λi(T ))2 ≤ tr(S − T )2.

Equality holds if and only if ST = TS and V has an orthonormal basis
x, ...,xn satisfying (4.8.2).

Proof. Note
n∑
i=1

(λi(S)− λi(T ))2 = trS2 + trT 2 − 2
n∑
i=1

λi(S)λi(T ).

2

Corollary 4.8.3 Let S, T ∈ Hn. Then the inequalities (4.8.1) and
(4.8.4) hold. Equalities in the upper bounds hold if and only if there exists
U ∈ Un such that S = U diag λ(S)U∗, T = U diag λ(T )U∗. Equality in
the lower bound of (4.8.1) if and only if there exists V ∈ Un such that
S = V diag λ(S)V ∗,−T = V diag λ(−T )V ∗.
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Problems

1. Let V be a n-dimensional IPS over F = R,C.

(a) Assume that T : V → V be a linear transformation. Show that
for any o.n. basis x, ...,xn

trT =
n∑
i=1

〈Txi,xi〉.

Furthermore, if F = C then trT is the sum of the n eigenvalues
of T .

(b) Let S, T ∈ S(V). Show that trST = trTS ∈ R.

4.9 Singular Value Decomposition

Let U,V, be finite dimensional IPS over F = R,C, with the inner products
〈·, ·〉U, 〈·, ·〉V respectively. Let u1, ...,um and v1, ...,vn be bases in U and
V respectively. Let T : V → U be a linear operator. In these bases T is
represented by a matrix A ∈ Fm×n as given by (1.10.2). Let T ∗ : U∗ =
U → V∗ = V. Then T ∗T : V → V and TT ∗ : U → U are selfadjoint
operators. As

〈T ∗Tv,v〉V = 〈Tv, Tv〉V ≥ , 〈TT ∗u,u〉U = 〈T ∗u, T ∗u〉U ≥ 

it follows that T ∗T ≥ 0, TT ∗ ≥ 0. Let

T ∗Tci = λi(T ∗T )ci, 〈ci, ck〉V = δik, i, k = , ..., n,(4.9.1)
λ1(T ∗T ) ≥ ... ≥ λn(T ∗T ) ≥ 0,
TT ∗dj = λj(TT ∗)dj , 〈dj ,dl〉U = δjl, j, l = , ...,m,(4.9.2)
λ1(TT ∗) ≥ ... ≥ λm(TT ∗) ≥ 0,

Proposition 4.9.1 Let U,V, be finite dimensional IPS over F = R,C.
Let T : V → U. Then rank T = rank T∗ = rank T∗T = rank TT∗ = r.
Furthermore the selfadjoint nonnegative definite operators T ∗T and TT ∗

have exactly r positive eigenvalues, and

(4.9.3) λi(T ∗T ) = λi(TT ∗) > 0, i = 1, ..., rank T.

Moreover for i ∈ [1, r] Tci and T ∗di are eigenvectors of TT ∗ and T ∗T cor-
responding to the eigenvalue λi(TT ∗) = λi(T ∗T ) respectively. Furthermore
if c, ..., cr satisfy (4.9.1) then d̃i := Tci

||Tci|| , i = 1, ..., r satisfy (4.9.2) for
i = 1, ..., r. Similar result holds for d, ...,dr.
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Proof. Clearly Tx =  ⇐⇒ 〈Tx, Tx〉 =  ⇐⇒ T ∗Tx = . Hence

rank T∗T = rank T = rank T∗ = rank TT∗ = r.

Thus T ∗T and TT ∗ have exactly r positive eigenvalues. Let i ∈ [1, r]. Then
T ∗Tci 6= . Hence Tci 6= . (4.9.1) yields that TT ∗(Tci) = λi(T ∗T )(Tci).
Similarly T ∗T (T ∗di) = λi(TT ∗)(T ∗di) 6= . Hence (4.9.3) holds. Assume
that c, ..., cr satisfy (4.9.1). Let d̃1, ..., d̃r be defined as above. By the
definition ||d̃i|| = 1, i = 1, ..., r. Let 1 ≤ i < j ≤ r. Then

0 = 〈ci, cj〉 = λi(T ∗T )〈ci, cj〉 = 〈T ∗Tci, cj〉 = 〈Tci, Tcj〉 ⇒ 〈d̃i, d̃j〉 = .

Hence d̃1, ..., d̃r is an orthonormal system. 2

Let

σi(T ) =
√
λi(T ∗T ) for i = 1, ...r, σi(T ) = 0 for i > r,

(4.9.4)
σ(p)(T ) := (σ1(T ), ..., σp(T ))> ∈ Rp↘, p ∈ N.

Then σi(T ) = σi(T ∗), i = 1, ...,min(m,n) are called the singular values of
T and T ∗ respectively. Note that the singular values are arranged in a
decreasing order. The positive singular values are called principal singular
values of T and T ∗ respectively. Note that

||Tci|| = 〈Tci, Tci〉 = 〈T ∗Tci, ci〉 = λi(T ∗T ) = σi ⇒
||Tci|| = σi, i = , ..., n,

||T ∗dj || = 〈T ∗dj , T ∗dj〉 = 〈TT ∗dj ,di〉 = λi(TT ∗) = σj ⇒
||Tdj || = σj , j = , ...,m.

Let c, ...cn be an orthonormal basis of V satisfying (4.9.1). Choose an
orthonormal basis d, ...,dm as follows. Set di := Tci

σi
, i = , ..., r. Then

complete the orthonormal set {d, ...,dr} to an orthonormal basis of U.
Since span (d, ...,dr) is spanned by all eigenvectors of TT ∗ corresponding
to nonzero eigenvalues of TT ∗ it follows that kerT ∗ = span (dr+, ...,dm).
Hence (4.9.2) holds. In these orthonormal bases of U and V the operators
T and T ∗ represented quite simply:

Tci = σi(T )di, i = , ..., n, where di =  for i > m,

(4.9.5)
T ∗dj = σj(T )cj , j = , ...,m, where cj =  for j > n..
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Let

(4.9.6) Σ = (sij)
m,n
i,j=1, sij = 0 for i 6= j, sii = σi for i = 1, ...,min(m.n).

In the casem 6= n we call Σ a diagonal matrix with the diagonal σ1, ..., σmin(m,n).
Then in the bases [d, ...,dm] and [c, ..., cn] T and T ∗ represented by the
matrices Σ and Σ> respectively.

Lemma 4.9.2 Let [u, ...,um], [v, ...,vn] be orthonormal bases in the
vector spaces U,V over F = R,C respectively. Then T and T ∗ are presented
by the matrices A ∈ Fm×n and A∗ ∈ Fn×m respectively. Let U ∈ U(m)
and V ∈ U(n) be the unitary matrices representing the change of base
[d, ...,dm] to [u, ...,um] and [c, ..., cn] to [v, ...,vn] respectively. (If F =
R then U and V are orthogonal matrices.) Then

(4.9.7) A = UΣV ∗ ∈ Fm×n, U ∈ U(m), V ∈ U(n).

Proof. By the definition Tvj =
∑m
i= aijui. Let U = (uip)mi,p=1, V =

(vjq)nj,q=1. Then

Tcq =
n∑
j=

vjqTvj =
n∑
j=

vjq

m∑
i=

aijui =
n∑
j=

vjq

m∑
i=

aij

m∑
p=

ūipdp.

Use the first equality of (4.9.5) to deduce that U∗AV = Σ. 2

Definition 4.9.3 (4.9.7) is called the singular value decomposition (SVD)
of A.

Proposition 4.9.4 Let F = R,C and denote by Rm,n,k(F) ⊂ Fm×n the
set of all matrices of rank k ∈ [1,min(m,n)] at most. Then A ∈ Rm,n,k(F)
if and only if A can be expressed as a sum of at most k matrices of rank
1. Furthermore Rm,n,k(F) is a variety in Fm×n given by the polynomial
conditions: Each (k + 1)× (k + 1) minor of A is equal to zero.

For the proof see Problem 2

Definition 4.9.5 Let A ∈ Cm×n and assume that A has the SVD given
by (4.9.7), where U = [u, . . . ,um], V = [v, . . . ,vn]. Denote by Ak :=∑k
i=1 σiuiv

∗
i ∈ Cm×n for k = 1, . . . , rank A. For k > rank A we define

Ak := A (= Arank A).

Note that for 1 ≤ k < rank A, the matrix Ak is uniquely defined if and
only if σk > σk+1. (See Problem 1.)
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Theorem 4.9.6 For F = R,C and A = (aij) ∈ Fm×n the following
conditions hold:

(4.9.8) ||A||F :=
√

trA∗A =
√

trAA∗ =

√√√√rank A∑
i=1

σi(A)2.

(4.9.9) ||A||2 := max
x∈Fn,||x||=

||Ax|| = σ(A).

(4.9.10)
min

B∈Rm,n,k(F)
||A−B||2 = ||A−Ak|| = σk+1(A), k = 1, ..., rank A− 1.

σi(A) ≥ σi((aipjq )
m′,n′

p=1,q=1) ≥ σi+(m−m′)+(n−n′)(A),
(4.9.11)

m′ ∈ [1,m], n′ ∈ [1, n], 1 ≤ i1 < ... < im′ ≤ m, 1 ≤ j1 < ... < jn′ ≤ n.

Proof. The proof of (4.9.8) is left a Problem 7. We now show the
equality in (4.9.9). View A as an operator A : Cn → Cm. From the
definition of ||A||2 it follows

||A||22 = max
06=x∈Rn

x∗A∗Ax
x∗x

= λ1(A∗A) = σ1(A)2,

which proves (4.9.9).
We now prove (4.9.10). In the SVD decomposition of A (4.9.7) assume

that U = (u, ...,um) and V = (v, ...,vn). Then (4.9.7) is equivalent to
the following representation of A:
(4.9.12)

A =
r∑
i=1

σiuiv∗i , u, ...,ur ∈ Rm, v, ...,vr ∈ Rn, u∗iuj = v∗i vj = δij , i, j = , ..., r,

where r = rank A. Let B =
∑k
i=1 σiuiv

∗
i ∈ Rm,n,k. Then in view of (4.9.9)

||A−B||2 = ||
r∑

k+1

σiuiv∗i || = σk+.

Let B ∈ Rm,n,k. To show (4.9.10) it is enough to show that ||A − B||2 ≥
σk+1. Let

W := {x ∈ Rn : Bx = }.



4.9. SINGULAR VALUE DECOMPOSITION 197

Then codim W ≥ k. Furthermore

||A−B||22 ≥ max
||x||=,x∈W

||(A−B)x|| = max
||x||=,x∈W

x∗A∗Ax ≥ λk+(A∗A) = σk+,

where the last inequality follows from the min-max characterization of
λk+1(A∗A).

Let C = (aijq )
m,n′

i,q=1. Then C∗C is an a principal submatrix of A∗A of
dimension n′. The interlacing inequalities between the eigenvalues of A∗A
and C∗C yields (4.9.11) for m′ = m. Let D = (aipjq )

m′,n′

p,q=1. Then DD∗ is a
principle submatrix of CC∗. Use the interlacing properties of the eigenval-
ues of CC∗ and DD∗ to deduce (4.9.11). 2

We now restate the above results for linear operators.

Definition 4.9.7 Let U,V be finite dimensional vector spaces over F =
R,C. For k ∈ Z+ denote Lk(V,U) := {T ∈ L(V,U) : rank T ≤ k}.
Assume furthermore that U,V are IPS. Let T ∈ L(V,U) and assume
that the orthonormal bases of [d, . . . ,dm], [c, . . . , cn] of U,V respectively
satisfy (4.9.5). Define T0 := 0 and Tk := T for an integer k ≥ rank T.
Let k ∈ [1, rank T − 1] ∩ N. Define Tk ∈ L(V,U) by the equality Tk(v) =∑k
i= σi(T )〈v, ci〉di for any v ∈ V.

It is straightforward to show that Tk ∈ Lk(V,U) and Tk is unique if
and only if σk(T ) > σk+1(T ). See Problem 8. Theorem 4.9.6 yields:

Corollary 4.9.8 Let U and V be finite dimensional IPS over F = R,C.
Let T : V→ U be a linear operator. Then

(4.9.13) ||T ||F :=
√

trT ∗T =
√

trTT ∗ =

√√√√rank T∑
i=1

σi(T )2.

(4.9.14) ||T ||2 := max
x∈V,||x||=

||Tx|| = σ(T ).

(4.9.15) min
Q∈Lk(V,U)

||T −Q||2 = σk+1(T ), k = 1, ..., rank T− 1.

Problems

1. Let U,V be finite dimensional inner product spaces. Assume that
T ∈ L(U,V). Show that for any complex number t ∈ C σi(tT ) =
|t|σi(T ) for all i.
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2. Prove Proposition 4.9.4. (Use SVD to prove the nontrivial part of the
Proposition.)

3. Let A ∈ Cm×n and assume that U ∈ U(m), V ∈ V(m). Show that
σi(UAV ) = σi(A) for all i.

4. Let A ∈ GL(n,C). Show that σ1(A−1) = σn(A)−1.

5. Let U,V be IPS inner product space of dimensions m and n respec-
tively. Assume that

U = U ⊕U,dim U = m,dim U = m,

V = V ⊕V,dim V = n,dim V = n.

Assume that T ∈ L(V,U). Suppose furthermore that TV ⊆ U, TV ⊆
U. Let Ti ∈ L(Vi,Ui) be the restriction of T to Vi for i = 1, 2.
Then rank T = rank T1 + rank T2 and {σ1(T ), . . . , σrank T(T )} =
{σ1(T1), . . . , σrank T1(T1)} ∪ {σ1(T2), . . . , σrank T2(T2)}.

6. Let the assumptions of the Definition 4.9.5 hold. Show that for 1 ≤
k < rank A Ak is uniquely defined if and only if σk > σk+1.

7. Prove the equalities in (4.9.8).

8. Let the assumptions of Definition 4.9.7 hold. Show that for k ∈
[1, rank T−1]∩N rank Tk = k and Tk is unique if and only if σk(T ) >
σk+1(T ).

9. Let V be an n-dimensional IPS. Assume that T ∈ L(V) is a normal
operator. Let λ1(T ), . . . , λn(T ) be the eigenvalues of T arranged in
the order |λ1(T )| ≥ . . . ≥ |λn(T )|. Show that σi(T ) = |λi(T )| for
i = 1, . . . , n.

4.10 Characterizations of singular values

Theorem 4.10.1 Let F = R,C and assume that A ∈ Fm×n. Define

(4.10.1) H(A) =
[

0 A
A∗ 0

]
∈ Hm+n(F).

Then

λi(H(A)) = σi(A), λm+n+1−i(H(A)) = −σi(A), i = 1, ..., rank A,
(4.10.2)

λj(H(A)) = 0, j = rank A + 1, ...,n + m− rank A.
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View A as an operator A : Fn → Fm. Choose orthonormal bases [d, ...,dm], [c, ..., cn]
in Fm,Fn respectively satisfying (4.9.5). Then[

0 A
A∗ 0

] [
di
ci

]
= σi(A)

[
di
ci

]
,

[
0 A
A∗ 0

] [
di
−ci

]
= −σi(A)

[
di
−ci

]
,

i = 1, ..., rank A,(4.10.3)
kerH(A) = span ((d∗r+, )

∗, ..., (d∗m, )
∗, (, c∗r+)∗, ..., (, c∗n)∗), r = rank A.

Proof. It is straightforward to show the equalities (4.10.3). Since all
the eigenvectors appearing in (4.10.3) are linearly independent we deduce
(4.10.2). 2

Corollary 4.10.2 Let F = R,C and assume that A ∈ Fm×n. Let Â :=
A[α, β] ∈ Fp×q be a submatrix of A, formed by the set of rows and columns
α ∈ Qp,m, β ∈ Qq,n respectively. Then

(4.10.4) σi(Â) ≤ σi(A) for i = 1, . . . .

For l ∈ [1, rank A] ∩ N the equalities σi(Â) = σi(A), i = 1, . . . , l hold if and
only if there exists two orthonormal systems of l right and left singular vec-
tors c, . . . , cl ∈ Fn, d, . . . ,dl ∈ Fn satisfying (4.10.3) for i = 1, . . . , l such
that the nonzero coordinates vectors c, . . . , cl and d, . . . ,dl are located at
the indices β, α respectively.

See Problem 1.

Corollary 4.10.3 Let V,U be IPS over F = R,C. Assume that W
is a subspace of V. Let T ∈ L(V,U) and denote by T̂ ∈ L(W,U) the
restriction of T to W. Then σi(T̂ ) ≤ σi(T ) for any i ∈ N. Furthermore
σi(T̂ ) = σi(T ) for i = 1, . . . , l ≤ rank T if and only if U contains a subspace
spanned by the first l right singular vectors of T .

See Problem 2.
Define by Rn+,↘ := Rn↘ ∩ Rn+. Then D ⊂ Rn+,↘ is called a strong Schur

set if for any x,y ∈ Rn+,↘,x � y we have the implication y ∈ D ⇒ x ∈ D.

Theorem 4.10.4 Let p ∈ N and D ⊂ Rp↘ ∩ R
p
+ be a regular convex

strong Schur domain. Fix m,n ∈ N and let σ(p)(D) := {A ∈ Fm×n :
σ(p)(A) ∈ D}. Let h : D → R be a convex and strongly Schur’s order
preserving on D. Let f : σ(p) :→ R be given as h ◦σ(p). Then f is a convex
function.

See Problem 3.
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Corollary 4.10.5 Let F = R,C, m, n, p ∈ N, q ∈ [1,∞) and w1 ≥
w2 ≥ ... ≥ wp > 0. Then the following function

f : Fm×n → R, f(A) := (
p∑
i=1

wiσi(A)q)
1
q , A ∈ Fm×n

is a convex function.

See Problem 4
We now translate Theorem 4.10.1 to the operator setting.

Lemma 4.10.6 Let U,V be finite dimensional IPS spaces with the in-
ner products 〈·, ·〉U, 〈·, ·〉V respectively. Define W := V⊕U be the induced
IPS with

〈(y,x), (v,u)〉W := 〈y,v〉V + 〈x,u〉U.
Let T : V → U be a linear operator, and T ∗ : U→ V be the adjoint of T .
Define the operator

(4.10.5) T̂ : W→W, T̂ (y,x) := (T ∗x, Ty).

Then T̂ is self-adjoint operator and T̂ 2 = T ∗T ⊕ TT ∗. Hence the spectrum
of T̂ is symmetric with respect to the origin and T̂ has exactly 2rank T
nonzero eigenvalues. More precisely, if dim U = m,dim V = n then:

λi(T̂ ) = −λm+n−i+1(T̂ ) = σi(T ), for i = 1, . . . , rank T,(4.10.6)
λj(T̂ ) = 0, for j = rank T + 1, . . . ,n + m− rank T.

Let {d, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U), {c, . . . , cmin(m,n)} ∈ Fr(min(m,n),V)
be the set of vectors satisfying (4.9.5). Define
(4.10.7)

zi :=
√


(ci,di), zm+n−i+ :=
√


(ci,−di), i = , . . . ,min(m,n).

Then {z, zm+n, . . . , zmin(m,n), zm+n−min(m,n)+} ∈ Fr(min(m,n),W). Fur-
thermore T̂zi = σi(T )zi, T̂zm+n−i+ = −σi(T )zm+n−i+ for i = 1, . . . ,min(m,n).

See Problem 5.

Theorem 4.10.7 Let U,V be m and n-dimensional IPS over C re-
spectively. Let T : V → U be a linear operator. Then for each k ∈
[1,min(m,n)] ∩ Z

k∑
i=1

σi(T ) = max
{f1,...,fk}∈Fr(k,U),{g,...,gk}∈Fr(k,V)

k∑
i=1

<〈Tgi, fi〉U =(4.10.8)

max
{f1,...,fk}∈Fr(k,U),{g,...,gk}∈Fr(k,V)

k∑
i=1

|〈Tgi, fi〉U|.
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Furthermore
∑k
i=1 σi(T ) =

∑k
i=1<〈Tgi, fi〉U for some two k-orthonormal

frames Fk = {f1, ..., fk}, Gk = {g1, ...,gk} if and only span ((g1, f1), . . . , (gk, fk))
is spanned by k eigenvectors of T̂ corresponding to the first k eigenvalues
of T̂ .

Proof. Assume that {f1, ..., fk} ∈ Fr(k,U), {g, ...,gk} ∈ Fr(k,V).
Let wi := √


(gi, fi), i = , . . . , k. Then {w, . . . ,wk} ∈ Fr(k,W). A

straightforward calculation shows
∑k
i=1〈T̂wi,wi〉W =

∑k
i=<〈Tgi, fi〉U.

The maximal characterization of
∑k
i=1 λi(T̂ ), (Theorem 4.4.8), and (4.10.6)

yield the inequality
∑k
i=1 σi(T̂ ) ≥

∑k
i=1<〈Tgi, fi〉U for k ∈ [min(m,n)∩Z.

Let c, . . . , cmin(m,n), d, . . . ,dmin(m,n) satisfy (4.9.5). Then Lemma 4.10.6
yields that

∑k
i=1 σi(T̂ ) =

∑k
i=1<〈Tci,di〉U for k ∈ [min(m,n) ∩ Z. This

proves the first equality of (4.10.8). The second equality of (4.10.8) is
straightforward. (See Problem 6).)

Assume now that
∑k
i=1 σi(T ) =

∑k
i=1<〈Tgi, fi〉U for some two k-

orthonormal frames Fk = {f1, ..., fk}, Gk = {g1, ...,gk}. Define w, . . . ,wk

as above. The above arguments yield that
∑k
i=1〈T̂wi,wi〉W =

∑k
i= λi(T̂ ).

Theorem 4.4.8 yields that span ((g1, f1), . . . , (gk, fk)) is spanned by k eigen-
vectors of T̂ corresponding to the first k eigenvalues of T̂ . Vice versa,
assume that {f1, ..., fk} ∈ Fr(k,U), {g, ...,gk} ∈ Fr(k,V) and
span ((g1, f1), . . . , (gk, fk)) is spanned by k eigenvectors of T̂ corresponding
to the first k eigenvalues of T̂ . Define {w, . . . ,wk} ∈ Fr(W) as above.
Then span (w, . . . ,wk) contains k linearly independent eigenvectors cor-
responding to the the first k eigenvalues of T̂ . Theorem 4.4.8 and Lemma
4.10.6 yield that σi(T ) =

∑k
i=1〈T̂wi,wi〉W =

∑k
i=<〈Tgi, fi〉U. 2

Theorem 4.10.8 U,V be m and n dimensional IPS spaces. Assume
that Let S, T : V→ U be linear operators. Then

(4.10.9) < tr(S∗T ) ≤
min(m,n)∑
i=1

σi(S)σi(T ).

Equality holds if and only if there exists two orthonormal set {d, . . . ,dmin(m,n)} ∈
Fr(min(m,n),U), {c, . . . , cmin(m,n)} ∈ Fr(min(m,n),V), such that
(4.10.10)
Sci = σi(S)di, Tci = σi(T )di, S∗di = σi(S)ci, T ∗di = σi(T )ci, i = , . . . ,min(m,n).

Proof. Let A,B ∈ Cn×m. Then
trB∗A = trAB∗. Hence 2< trAB∗ = trH(A)H(B). Therefore 2< trS∗T =
tr ŜT̂ . Use Theorem 4.8.1 for Ŝ, T̂ and Lemma 4.10.6 to deduce (4.10.9).
Equality in (4.10.9) if and only if tr ŜT̂ =

∑m+n
i=1 λi(Ŝ)λi(T̂ ).
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Clearly, the assumptions that {d, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U),
{c, . . . , cmin(m,n)} ∈ Fr(min(m,n),V), and the equalities (4.10.10) imply
equality in (4.10.9).

Assume equality in (4.10.9). Theorem 4.8.1 and the definitions of Ŝ, T̂
yields the existence {d, . . . ,dmin(m,n)} ∈ Fr(min(m,n),U), {c, . . . , cmin(m,n)} ∈
Fr(min(m,n),V), such that (4.10.10) hold. 2

Theorem 4.10.9 Let U and V be finite dimensional IPS over F =
R,C. Let T : V→ U be a linear operator. Then

(4.10.11) min
Q∈Lk(V,U)

||T −Q||F =

√√√√rank T∑
i=k+1

σ2
i (T ), k = 1, ..., rank T− 1.

Furthermore ||T − Q||F =
√∑rank T

i=k+1 σ
2
i (T ) for some Q ∈ Lk(V,U), k <

rank T, if and only there Q = Tk, where Tk is defined in Definition 4.9.7.

Proof. Use Theorem 4.10.8 to deduce that for any Q ∈ L(V,U) one
has

||T −Q||2F = trT ∗T − 2< trQ∗T + trQ∗Q ≥
rank T∑
i=1

σ2
i (T )− 2

k∑
i=1

σi(T )σi(Q) +
k∑
i=1

σ2
i (Q) =

k∑
i=1

(σi(T )− σi(Q))2 +
rank T∑
i=k+1

σ2
i (T ) ≥

rank T∑
i=k+1

σ2
i (T ).

Clearly ||T − Tk||2F =
∑rank T
i=k+1 σ

2
i (T ). Hence (4.10.11) holds. Vice versa if

Q ∈ Lk(V,U) and ||T − Q||2F =
∑rank T
i=k+1 σ

2
i (T ) then the equality case in

Theorem 4.10.8 yields that Q = Tk. 2

Corollary 4.10.10 Let F = R,C and A ∈ Fm×n. Then

(4.10.12) min
B∈Rm,n,k(F)

||A−B||F =

√√√√rank A∑
i=k+1

σ2
i (A), k = 1, ..., rank A− 1.

Furthermore ||A − B||F =
√∑rank A

i=k+1 σ
2
i (A) for some B ∈ Rm,n,k(F), k <

rank A, if and only there B = Ak, where Ak is defined in Definition 4.9.5.
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Theorem 4.10.11 Let F = R,C and A ∈ Fm×n. Then

min
B∈Rm,n,k(F)

j∑
i=1

σi(A−B) =
k+j∑
i=k+1

σi(A),(4.10.13)

j = 1, ...,min(m,n)− k, k = 1, . . . ,min(m,n)− 1.

Proof. Clearly, for B = Ak we have the equality
∑j
i=1 σi(A − B) =∑k+j

i=k+1 σi(A). Let B ∈ Rm,n,k(F). Let X ∈ Gr(k,Cn) be an subspace
which contains the columns of B. Let W = {(0>,x>)> ∈ Fm+n,x ∈ X}.
Observe that for any z ∈ W⊥ one has the equality z∗H((A − B))z =
z∗H(A)z. Combine Theorems 4.4.9 and 4.10.1 to deduce

∑j
i=1 σi(B−A) ≥∑k+j

i=k+1 σi(A). 2

Theorem 4.10.12 Let V be an n-dimensional IPS over C. Let T :
V→ V be a linear operator. Assume the n eigenvalues of T λ1(T ), . . . , λn(T )
are arranged the order |λ1(T )| ≥ . . . ≥ |λn(T )|. Let λa(T ) := (|λ1(T )|, . . . , |λn(T )|),
σ(T ) := (σ1(T ), . . . , σn(T )). Then λa(T ) � σ(T ). That is

(4.10.14)
k∑
i=1

|λi(T )| ≤
k∑
i=1

σi(T ), i = 1, . . . , n.

Furthermore,
∑k
i=1 |λi(T )| =

∑k
i=1 σi(T ) for some k ∈ [1, n]∩Z if and only

if the following conditions are satisfied. There exists an orthonormal basis
x, . . . ,xn of V such that:

1. Txi = λi(T )xi, T ∗xi = λi(T )xi for i = 1, . . . , k.

2. Denote by S : U → U the restriction of T to the invariant subspace
U = span (xk+, . . . ,xn). Then ||S||2 ≤ |λk(T )|.

Proof. Use Theorem 4.2.12 to choose an orthonormal basis g, . . . ,gn
of V, such that T is represented by an upper diagonal matrix A = [aij ] ∈
Cn×n such that aii = λi(T ), i = 1, . . . , n. Let εi ∈ C, |εi| = 1 such that
ε̄iλi(T ) = |λi(T )| for i = 1, . . . , n. Let S ∈ L(V) be presented in the basis
g, . . . ,gn by a diagonal matrix diag(ε1, . . . , εk, 0, . . . , 0). Clearly, σi(S) = 1
for i = 1, . . . , k and σi(S) = 0 for i = k+1, . . . , n. Furthermore, < trS∗C =∑k
i=1 |λi(T )|. Hence Theorem 4.10.8 yields (4.10.14).
Assume now that

∑k
i=1 |λi(T )| =

∑k
i=1 σi(T ). Hence equality sign holds

in (4.10.9). Hence there exists two orthonormal bases {c, . . . , cn}, {d, . . . ,dn}
in V such that (4.10.10) holds. It easily follows that {c, . . . , ck}, {d, . . . ,dk}
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are orthonormal bases of W := span (g, . . . ,gk). Hence W is an in-
variant subspace of T and T ∗. Hence A = A1 ⊕ A2, i.e. A is a block
diagonal matrix. Thus A1 = (aij)ki,j=1 ∈ Ck×k, A2 = (aij)ni,j=k+1 ∈
C(n−k)×(n−k) represent the restriction of T to W,U := W⊥, denoted by
T1 and T2 respectively. Hence σi(T1) = σi(T ) for i = 1, . . . , k. Note that
the restriction of S to W, denoted by S1 is given by the diagonal matrix
D1 := diag(ε1, . . . , εk) ∈ U(k). (4.10.10) yield that S−1

1 T1ci = σi(T )ci for
i = 1, . . . , k,i.e. σ1(T ), . . . , σk(T ) are the eigenvalues of S−1

1 T1. Clearly
S−1

1 T1 is presented in the basis [g, . . . ,gk] by the matrix D−1
1 A1, which is

a diagonal matrix with |λ1(T )|, . . . , |λk(T )| on the main diagonal. That is
S−1

1 T1 has eigenvalues |λ1(T )|, . . . , |λk(T )|. Therefore σi(T ) = |λi(T )| for
i = 1, . . . , k. Theorem 4.9.6 yields that

trA∗1A1 =
k∑

i,j=1

|aij |2 =
k∑
i=1

σ2
i (A1) =

k∑
i=1

σ2
i (T1) =

k∑
i=1

|λi(T )|2.

As λ1(T ), . . . , λk(T ) are the diagonal elements of A1 is follows from the
above equality that A1 is a diagonal matrix. Hence we can choose xi = gi
for i = 1, . . . , n to obtain the part 1 of the equality case.

Let Tx = λx where ||x|| =  and ρ(T ) = |λ|. Recall ||T ||2 = σ1(T ),
where σ1(T )2 = λ1(T ∗T ) is the maximal eigenvalue of the self-adjoint
operator T ∗T . The maximum characterization of λ1(T ∗T ) yields that
|λ|2 = 〈Tx, Tx〉 = 〈T ∗Tx,x〉 ≤ λ(T ∗T ) = ||T ||. Hence ρ(T ) ≤ ||T ||2.

Assume now that ρ(T ) = ||T ||2. ρ(T ) = 0 then ||T ||2 = 0 ⇒ T = 0,
and theorem holds trivially n this case. Assume that ρ(T ) > 0. Hence
the eigenvector x := x is also the eigenvector of T ∗T corresponding to
λ1(T ∗T ) = |λ|2. Hence |λ|2x = T ∗Tx = T ∗(λx), which implies that
T ∗x = λ̄x. Let U = span (x)⊥ be the orthogonal complement of span (x).
Since T span (x) = span (x) it follows that T ∗U ⊆ U. Similarly, since
T ∗span (x) = span (x) TU ⊆ U. Thus V = span (x)⊕U and span (x),U
are invariant subspaces of T and T ∗. Hence span (x),U are invariant sub-
spaces of T ∗T and TT ∗. Let T1 be the restriction of T to U. Then T ∗1 T1 is
the restriction of T ∗T . Therefore ||T1||22 = λ1(T1 ∗ T1) ≥ λ1(T ∗T ) = ||T ||22.
This establishes the second part of theorem, labeled (a) and (b).

The above result imply that the conditions (a) and (b) of the theorem
yield the equality ρ(T ) = ||T ||2. 2

Corollary 4.10.13 Let U be an n-dimensional IPS over C. Let T :
U→ U be a linear operator. Denote by |λ(T )| = (|λ1(T )|, ..., |λn(T )|)T the
absolute eigenvalues of T , (counting with their multiplicities), arranged in
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a decreasing order. Then |λ(T )| = (σ1(T ), ..., σn(T ))T if and only if T is a
normal operator.

Problems

1. Let the assumptions of Corollary 4.10.2 hold.

(a) Since rank Â ≤ rank A show that the inequalities (4.10.4) reduce
to σi(Â) = σi(A) = 0 for i > rank A.

(b) Since H(Â) is a submatrix of H(A) use the Cauchy interlacing
principle to deduce the inequalities (4.10.4) for i = 1, . . . , rank A.
Furthermore, if p′ := m−#α, q′ = n−#β then the Cauchy in-
terlacing principle gives the complementary inequalities σi(Â) ≥
σi+p′+q′(A) for any i ∈ N.

(c) Assume that σi(Â) = σi(A) for i = 1, . . . , l ≤ rank A. Compare
the maximal characterization of the sum of the first k eigenvalues
of H(Â) and H(A) given by Theorem 4.4.8 for k = 1, . . . , l to
deduce the last part of Corollary (4.10.2).

2. Prove Corollary 4.10.3 by choosing any orthonormal basis in U, an
orthonormal basis in V whose first dim W elements span W, and
using Problem 1.

3. Combine Theorems 4.7.15 and 4.10.1 to deduce Theorem 4.10.4.

4. (a) Prove Corollary 4.10.5

(b) Recall the definition of a norm on a vector space over F = R,C
7.4.1. Show that the function f defined in Corollary 4.10.5 is a
norm. For p = min(m,n) and w1 = ... = wp = 1 this norm is
called the q − Schatten norm.

5. Prove Lemma 4.10.6.

6. Under the assumptions of Theorem 4.10.7 show.

(a)

max
{f1,...,fk}∈Fr(k,U),{g,...,gk}∈Fr(k,V)

k∑
i=1

<〈Tgi, fi〉U =

max
{f1,...,fk}∈Fr(k,U),{g,...,gk}∈Fr(k,V)

k∑
i=1

|〈Tgi, fi〉U|.
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(b) For w1 ≥ . . . ≥ wk ≥ 0

k∑
i=1

wiσi(T ) = max
{f1,...,fk}∈Fr(k,U),{g,...,gk}∈Fr(k,V)

k∑
i=1

wi<〈Tgi, fi〉U.

7. Under the assumptions of Theorem 4.10.7 is it true that that for k > 1

k∑
i=1

σi(T ) = max
{f1,...,fk}∈Fr(k,U)

k∑
i=1

||T fi||V.

I doubt it.

8. Let U,V be finite dimensional IPS. Assume that P, T ∈ L(U,V).
Show that < tr(P ∗T ) ≥ −

∑min(m,n)
i=1 σi(S)σi(T ). Equality holds if

and only if S = −P and T satisfy the conditions of Theorem 4.10.8.

4.11 Moore-Penrose generalized inverse

Let A ∈ Cm×n. Then (4.9.12) is called the reduced SVD of A. It can be
written as

A = UrΣrV ∗r , r = rank A, Σr := diag(σ1(A), . . . , σr(A)) ∈ Sr(R),
(4.11.1)
Ur = [u, . . . ,ur] ∈ Cm×r, Vr = [v, . . . ,vr] ∈ Cn×r, U∗rUr = V ∗r Vr = Ir, .

Recall that

AA∗ui = σi(A)ui, A∗Avi = σi(A)vi,

vi =


σi(A)
A∗ui,ui =



σi(A)
Avi, i = , . . . , r.

Then

(4.11.2) A† := VrΣ−1
r U∗r ∈ Cn×m

is the Moore-Penrose generalized inverse of A. If A ∈ Rm×n then we assume
that U ∈ Rm×r and V ∈ Rn×r, i.e. U, V are real values matrices over the
real numbers R.

Theorem 4.11.1 Let A ∈ Cm×n matrix. Then the Moore-Penrose
generalized inverse A† ∈ Cn×m satisfies the following properties.

1. rank A = rank A†.
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2. A†AA† = A†, AA†A = A, A∗AA† = A†AA∗ = A∗.

3. A†A and AA† are Hermitian nonnegative definite idempotent matri-
ces, i.e. (A†A)2 = A†A and (AA†)2 = AA†, having the same rank as
A.

4. The least square solution of Ax = b, i.e. the solution of the system
A∗Ax = A∗b, has a solution y = A†b. This solution has the minimal
norm ||y||, for all possible solutions of A∗Ax = A∗b.

5. If rank A = n then A† = (A∗A)−1A∗. In particular, if A ∈ Cn×n is
invertible then A† = A−1.

To prove the above theorem we need the following proposition.

Proposition 4.11.2 Let E ∈ Cl×m, G ∈ Cm×n. Then
rank EG ≤ min(rank E, rank G). If l = m and E is invertible then rank EG =
rank G. If m = n and G is invertible then rank EG = rank E.

Proof. Let e, . . . , em ∈ Cl,g, . . . ,gn ∈ Cm be the columns of
E and G respectively. Then rank E = dim span (e, . . . , el). Observe
that EG = [Eg, . . . , Egn] ∈ Cl×n. Clearly Egi is a linear combina-
tion of the columns of E. Hence Egi ∈ span (e, . . . , el). Therefore
span (Eg, . . . , Egn) ⊆ span (e, . . . , el), which implies that rank EG ≤
rank E. Note that (EG)T = GTET . Hence
rank EG = rank (EG)T ≤ rank GT = rank G. Thus
rank EG ≤ min(rank E, rank G). Suppose E is invertible. Then rank EG ≤
rank G = rank E−1(EG) ≤ rank EG. Hence rank EG = rank G. Similarly
rank EG = rank E if G is invertible. 2

Proof of Theorem 4.11.1.

1. Proposition 4.11.2 yields that rank A† = rank VrΣ−1
r U∗r ≤ rank Σ−1

r U∗r ≤
rank Σ−1

r = r = rank A. Since Σr = V ∗r A
†Ur Proposition 4.11.2

yields that rank A† ≥ rank Σ−1
r = r. Hence rank A = rank A†.

2. AA† = (UrΣrV ∗r )(VrΣ−1
r U∗r ) = UrΣrΣ−1

r U∗r = UrU
∗
r . Hence

AA†A = (UrU∗r )(UrΣrV ∗r ) = UrΣV ∗r = A.

Hence A∗AA† = (VrΣrU∗r )(UrU∗r ) = A∗. Similarly A†A = VrV
∗
r and

A†AA† = A†, A†AA∗ = A∗.
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3. Since AA† = UrU
∗
r we deduce that (AA†)∗ = (UrU∗r )∗ = (U∗r )∗U∗r =

AA†, i.e. AA† is Hermitian. Next (AA†)2 = (UrU∗r )2 = (UrU∗r )(UrU∗r ) =
(UrU∗r ) = AA†, i.e. AA† is idempotent. Hence AA† is nonnegative
definite. As AA† = UrIrU

∗
r , the arguments of part 1 yield that

rank AA† = r. Similar arguments apply to A†A = VrV
∗
r .

4. Since A∗AA† = A∗ it follows that A∗A(A†b) = A∗b, i.e. y = A†b is
a least square solution. It is left to show that if A∗Ax = A∗b then
||x|| ≥ ||A†b|| and equality holds if and only if x = A†b.

We now consider the system A∗Ax = A∗b. To analyze this system
we use the full form of SVD given in (4.9.7). It is equivalent to

(V ΣTU∗)(UΣV ∗)x = V ΣTU∗b. Multiplying by V ∗ we obtain the
system ΣTΣ(V ∗x) = ΣT (U∗b). Let z = (z, . . . , zn)T := V ∗x,

c = (c, . . . , cm)T := U∗b. Note that z∗z = x∗V V x = x∗x, i.e.
||z|| = ||x||. After these substitutions the least square system in
z1, . . . , zn variables is given in the form σi(A)2zi = σi(A)ci for i =
1, . . . , n. Since σi(A) = 0 for i > r we obtain that zi = 1

σi(A)ci
for i = 1, . . . , r while zr+1, . . . , zn are free variables. Thus ||z|| =∑r
i=


σi(A) +

∑n
i=r+ |zi|. Hence the least square solution with the

minimal length ||z|| is the solution with zi = 0 for i = r + 1, . . . , n.
This solution corresponds the x = A†b.

5. Since rank A∗A = rank A = n it follows that A∗A is an invertible
matrix. Hence the least square solution is unique and is given by
x = (A∗A)−A∗b. Thus for each b one has (A∗A)−1A∗b = A†b,
hence A† = (A∗A)−1A∗.

If A is an n×n matrix and is invertible it follows that (A∗A)−1A∗ =
A−1(A∗)−1A∗ = A−1. 2

Problems

1. P ∈ Cn×n is called a projection if P 2 = P . Show that P is a projection
if and only if the following two conditions are satisfied:

• Each eigenvalue of P is either 0 or 1.
• P is a diagonable matrix.

2. P ∈ Rn×n is called an orthogonal projection if P is a projection and
a symmetric matrix. Let V ⊆ Rn be the subspace spanned by the
columns of P . Show that for any a ∈ Rn,b ∈ V ||a−b|| ≥ ||a−Pa||
and equality holds if and only if b = Pa. That is, Pa is the orthogonal
projection of a on the column space of P .
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3. Let A ∈ Rm×n and assume that the SVD of A is given by (4.9.7),
where U ∈ O(m,R), V ∈ O(n,R).

(a) What is the SVD of AT ?

(b) Show that (AT )† = (A†)T .

(c) Suppose that B ∈ Rl×m. Is it true that (BA)† = A†B†? Justify!

4.12 Approximation by low rank matrices

We now restate Theorem 4.10.8 in matrix terms. That is we view A,B ∈
Cm×n as linear operators A,B : Cn → Cm, where Cm,Cn are IPS equipped
with the standard inner product.

Theorem 4.12.1 Let A,B ∈ Cm×n, and assume that σ1(A) ≥ σ2(A) ≥
. . . ≥ 0, σ1(B) ≥ σ2(B) ≥ . . . ≥ 0, where σi(A) = 0 and σj(B) = 0 for
i > rank A and j > rank B respectively. Then

(4.12.1) −
m∑
i=1

σi(A)σi(B) ≤ < trAB∗ ≤
m∑
i=1

σi(A)σi(B).

Equality in the right-hand side holds if and only if Cn,Cm have two or-
thonormal bases [c, . . . , cn], [d, . . . ,dm] such that (4.10.10) is satisfied
for T = A and S = B. Equality for the left-hand side holds if and only
if Cn,Cm have two orthonormal bases [c, . . . , cn], [d, . . . ,dm] such that
(4.10.10) is satisfied for T = A and S = −B.

Theorem 4.10.9 yields:

Corollary 4.12.2 For A ∈ Cm×n Let Ak be defined as in Definition
4.9.5. Then minB∈Rm,n,k(F) ||A−B||2F = ||A−Ak||2 =

∑m
i=k+1 σi(A)2. Ak

is the unique solution to this minimal problem if and only if 1 ≤ k < rank A
and σk(A) ≥ σk+1(A).

We now give a generalization of Corollary 4.10.9. Let A ∈ Cm×n and
assume that A = UAΣAV ∗A be the SVD of A given in (4.9.7). Let UA =
[u u . . .um], VA = [v v . . .vn] be the representations of U, V in terms
of their m,n columns respectively. Then

(4.12.2) PA,left :=
rank A∑
i=1

uiu∗i ∈ Cm×m, PA,right :=
rank A∑
i=

viv∗i ∈ Cn×n,

are the orthogonal projections on the range of A and A∗, respectively.
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Theorem 4.12.3 Let A ∈ Cm×n, C ∈ Cm×p, R ∈ Cq×n be given. Then
X = C†(PC,leftAPR,right)kR† is a solution to the minimal problem

(4.12.3) min
X∈R(p,q,k)

||A− CXR||F ,

having the minimal ||X||F . This solution is unique if and only if either k ≥
rank PC,leftAPR,right or 1 ≤ k < rank PC,leftAPR,right and σk(PC,leftAPR,right) >
σk+1(PC,leftAPR,right).

Proof. Assume that C = UCΣCV ∗C , R = URΣRV ∗R are the SVD de-
composition of C,R, respectively. Recall that the Frobenius norm is in-
variant under the multiplication from the left and the right by the corre-
sponding unitary matrices. Hence ||A−BXC||F = ||Ã−ΣCX̃ΣR||, where
Ã := U∗CAVR, X̃ := V ∗CXUR. Clearly, X and X̃ have the same rank and
the same Frobenius norm. Thus it is enough to consider the minimal prob-
lem minX̃∈R(p,q,k) ||Ã − ΣCX̃ΣR||F . Let s = rank C, t = rank R. Clearly
if C or R is a zero matrix, then X = 0p×q is the solution to the minimal
problem (4.12.3). In this case either PC,left or PR,right are zero matrices,
and the theorem holds trivially in this case.

It is left to consider the case 1 ≤ s, 1 ≤ t. Define C1 := diag(σ1(C), . . . , σs(C)) ∈
Cs×s, R1 := diag(σ1(R), . . . , σt(R)) ∈ Ct×t. Partition Ã and X̃ to 2 × 2
block matrices Ã = [Aij ]2i,j=1 and X̃ = [Xij ]2i,j=1, where A11, X11 ∈ Cs×t.
(For certain values of s and t, we may have to partition Ã or X̃ to less than
2× 2 block matrices.) Observe next that Z := ΣCX̃ΣR = [Zij ]2i,j=1, where
Z11 = C1X11R1 and all other blocks Zij are zero matrices. Hence

||Ã−Z||2F = ||A11−Z11||2F+
∑

2<i+j≤4

||Aij ||2F ≥ ||A11−(A11)k||2F+
∑

2<i+j≤4

||Aij ||2F .

Thus X̂ = [Xij ]2i,j=1, where X11 = C−1
1 (A11)kR−1

1 and Xij = 0 for all
(i, j) 6= (1, 1) is a solution minX̃∈R(p,q,k) ||Ã−ΣCX̃ΣR||F with the minimal
Frobenius form. This solution is unique if and only if the solution Z11 =
(A11)k is the unique solution to minZ11∈R(s,t,k) ||A11−Z11||F . This happens
if either k ≥ rank A11 or 1 ≤ k < rank A11 and σk(A11) > σk+1(A11). A
straightforward calculation shows that X̂ = Σ†C(PΣC ,leftÃPΣR,right)kΣ†R.
This shows that X = C†(PC,leftAPR,right)kR† is a solution of (4.12.3)
with the minimal Frobenius norm. This solution is unique if and only
if either k ≥ rank PC,leftAPR,right or 1 ≤ k < rank PC,leftAPR,right and
σk(PC,leftAPR,right) > σk+1(PC,leftAPR,right). 2
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Corollary 4.12.4 Let the assumptions of Theorem 4.12.3 hold. Then
X = C†AR† is the unique solution to the minimal problem minX∈Cp×q ‖A−
CXR‖F with the minimal Frobenius norm.

Theorem 4.12.5 Let a, . . . ,an ∈ Cm and k ∈ [1,m− 1]∩N be given.
Let A = [a . . .an] ∈ Cm×n. Denote by Lk ∈ Gr(k,Cm) a k-dimensional
subspace spanned by the first k left singular vectors of A. Then

(4.12.4) min
L∈Gr(k,Cm)

n∑
i=1

min
bi∈L

||ai − bi|| =
n∑
i=

min
bi∈Lk

||ai − bi||.

Proof. Let L ∈ Gr(k,Cm) and b, . . . ,bn ∈ L. Then B := [b . . .bn] ∈
R(m,n, k). Vice versa, given B ∈ R(m,n, k) then the column space of B
is contained in some L ∈ Gr(k,Cm). Hence

∑n
i=1 ||ai − bi|| = ||A−B||.

Corollary 4.12.2 implies that the minimum stated in the left-hand side of
(4.12.4) is achieved by the n columns of Ak. Clearly, the column space of
A is equal to Lk. (Note that Lk is not unique. See Problem 3.) 2

Problems

1. Let A ∈ Sn(R) and assume the A = QTΛQ, where Q ∈ O(n,R) and
Λ = diag(α1, . . . , αn) is a diagonal matrix, where |α1| ≥ . . . ≥ |αn| ≥
0.

(a) Find the SVD of A.

(b) Show that σ1(A) = max(λ1(A), |λn(A)|), where λ1(A) ≥ . . . ≥
λn(A) are the n eigenvalues of A arranged in a decreasing order.

2. Let k,m, n be a positive integers such that k ≤ min(m,n). Show
that the function f : Rm×n : [0,∞) given by f(A) =

∑k
i=1 σi(A) is a

convex function on Rm×n.

3. Show that the minimal subspace for the problem (4.12.4) is unique if
and only if σk(A) > σk+1(A).

4. Prove Corollary 4.12.4.

4.13 CUR-approximations

Let A = (aij)
m,n
i,j=1 ∈ Cm×n, where m,n are big, e.g. m,n ≥ 106. Then

the low rank approximation of A given by its SVD has prohibitively high
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computational complexity and storage requirements. In this section we
discuss a low rank approximation of A given by of the form CUR, where
C ∈ Rm×p, R ∈ Rq×n are obtained from A by reading p, q columns and rows
of A, respectively. If one chooses U as the best least squares approximation
given by Corollary 4.12.4 then U = C†AR†. Again, for very large m,n this
U has too high computational complexity. In this section we give different
ways to compute U of a relatively low computational complexity.

Let

I = {1 ≤ α1 < . . . < αq ≤ m} ⊂ 〈m〉, J = {1 < β1 < . . . < βp ≤ n} ⊂ 〈n〉

be two nonempty sets of cardinality q, p respectively. Using the indices in
I, J , we consider the submatrices

AIJ = (aαkβl)
q,p
k,l=1 ∈ C

q×p,

R = AI〈n〉 = (aαkj)
q,n
k,j=1 ∈ C

q×n,(4.13.1)

C = A〈m〉J = (aiβl)
m,p
i,l=1 ∈ C

m×p.

Thus, C = A〈m〉J and R = AI〈n〉 are composed of the columns in J and
the rows I of A, respectively. The read entries of A are in the index set

(4.13.2) S := 〈m〉 × 〈n〉\((〈m〉\I)× (〈n〉\J)), #S = mp+ qn− pq.

We look for a matrix F = CUR ∈ Cm×n, with U ∈ Cp×q still to be
determined. We determine Uopt as a solution to the least square problem
of minimizing

∑
(i,j)∈S |aij − (CUR)ij |2, i.e.,

(4.13.3) Uopt = arg min
U∈Cp×q

∑
(i,j)∈S

|aij − (CUR)ij |2.

It is straightforward to see that the above least squares is the least squares
solution of the following overdetermined system

TÛ = Â, T = (t(i,j)(k,l)) ∈ C(mp+qn−pq)×pq, t(i,j)(k,l) = aikalj ,(4.13.4)

Û = (u(k,l)) ∈ Cpq, Â = (a(ij)) ∈ Cmp+qn−pq, (i, j) ∈ S, (k, l) ∈ 〈p〉 × 〈q〉.

Here Û , Â is viewed as a vector whose coordinates are the entries of U and
the entries of A which are either in C or R. Note that T is a corresponding
submatrix of A⊗A.

Theorem 4.13.1 Let A ∈ Cm×n, and let I ⊂ 〈m〉, J ⊂ 〈n〉 have car-
dinality q and p, respectively. Let C = A〈m〉J ∈ Cm×p, and R = AI〈n〉 ∈
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Cp×n be as in (4.13.1) and suppose that AIJ is invertible. Then the overde-
termined system (4.13.4) has a unique solution U = A−1

IJ , i.e., the rows in
I and the columns in J of the matrix CA−1

IJR are equal to the corresponding
rows and columns of A, respectively.

Proof. For any I ⊂ 〈m〉, J ⊂ 〈n〉, with #I = q, #J = p, and U ∈ Cm×n
we have the identity

(4.13.5) (A〈m〉JUAI〈n〉)IJ = AIJUAIJ .

Hence the part of the system (4.13.4) corresponding to (CUR)IJ = AIJ
reduces to the equation

(4.13.6) AIJUAIJ = AIJ

If AIJ is a square matrix and invertible, then the unique solution to this
matrix equation is U = A−1

IJ . Furthermore

(A〈m〉JA−1
IJAI〈n〉)I〈n〉 = AIJA

−1
IJAI〈n〉 = AI〈n〉,

(A〈m〉JA−1
IJAI〈n〉)〈m〉J = A〈m〉JA

−1
IJAIJ = A〈m〉J .

2

This results extends to the general nonsquare case.

Theorem 4.13.2 Let A ∈ Cm×n, and let I ⊂ 〈m〉, J ⊂ 〈n〉 have
cardinality q and p, respectively. Let C = A〈m〉J ∈ Cm×p, and R = AI〈n〉 ∈
Cp×n be as in (4.13.1). Then U = A†IJ is the minimal solution (in Frobenius
norm) of (4.13.3).

Proof. Consider the SVD decomposition of AIJ

AIJ = WΣV ∗, W ∈ Cq×q, V ∈ Cp×p, Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rq×p+ ,

where W,V are unitary matrices and σ1, . . . , σr are the positive singular
values of AIJ . In view of Theorem 4.13.1 it is enough to assume that
max(p, q) > r. W.l.o.g. we may assume that I = 〈q〉, J = 〈p〉. Let

W1 =
(

W 0q×(m−q)
0(m−q)×q Im−q

)
∈ Cm×m,

V1 =
(

V 0p×(n−p)
0(n−p)×p In−p

)
∈ Cn×n.

Replace A by A1 = W1AV
∗
1 . It is easy to see that it is enough to prove

the theorem for A1. For simplicity of the notation we assume that A1 = A.
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That is, we assume thatAIJ = Σr⊕0(q−r)×(p−r), where Σr = diag(σ1, . . . , σr)
and r = rank AIJ. For U ∈ Cp×q denote by Ur ∈ Rp×q the matrix ob-
tained from U by replacing the last p− r rows and q − r columns by rows
and columns of zeroes, respectively. Note that then CUR = CUrR and
‖Ur‖F ≤ ‖U‖F , and equality holds if and only if U = Ur. Hence, the
minimal Frobenius norm least squares solution U of is given by U = Ur.
Using the fact that the rows r + 1, . . . , q and columns r + 1, . . . , p of CUR
are zero it follows that the minimum in (4.13.3) is reduced to the minimum
on S ′ = 〈m〉× 〈r〉 ∪ 〈r〉× 〈n〉. Then, by Theorem 4.13.1 the solution to the
minimal Frobenius norm least square problem is given by Σ†. 2

For a matrix A define the entrywise maximal norm

(4.13.7) ‖A‖∞,e := max
i∈〈m〉,j∈〈n〉

|aij |, A = (aij) ∈ Cm×n.

Theorem 4.13.3 Let A ∈ Cm×n, p ∈ [1, rank A] ∩ N. Define

(4.13.8) µp := max
I⊂〈m〉,J⊂〈n〉,#I=#J=p

|det AIJ | > 0.

Suppose that

(4.13.9) |det AIJ | ≥ δµp, δ ∈ (0, 1], I ⊂ 〈m〉, J ⊂ 〈n〉,#I = #J = p.

Then for C,R defined by (4.13.1) we have

(4.13.10) ||A− CA−1
IJR||∞,e ≤

p+ 1
δ

σp+1(A).

Proof. We now estimate |aij − (CA−1
IJR)ij | from above. In the case

p = rank A, i.e. σp+1(A) = 0, we deduce from Problem 1 that aij −
(CA−1

IJR)ij = 0 . Assume σp+1(A) > 0. By Theorem 4.13.1 aij−(CA−1
IJR)ij =

0 if either i ∈ I or j ∈ J . It is left to consider the case i ∈ 〈m〉\I, j ∈ 〈n〉\J .
Let K = I ∪ {i}, L = J ∪ {j}. Let B = AKL. If rank B = p then Problem
1 yields that B = BKJA

−1
IJBIK . Hence aij − (CA−1

IJR)ij = 0. Assume that
det B 6= 0. We claim that

(4.13.11) aij − (CA−1
IJR)ij = ± det B

det AIJ
.

It is enough to consider the case where I = J = 〈p〉, i = j = p+ 1K = L =
〈p + 1〉. In view of Theorem 4.13.1 B − BKJA−1

IJBJL = diag(0, . . . , 0, t),
where t is equal to the left-hand side of (4.13.11). Multiply this ma-
trix equality from the left by B−1 = (bst,−1)p+1

s,t=1. Note that the last
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row of B−1BKI is zero. Hence we deduce that b(p+1)(p+1),−1t = 1, i.e
t = b−1

(p+1)(p+1),−1. Use the identity B−1 = (det B)−1adj B to deduce the
equality (4.13.11).

We now estimate σ1(B−1) from above. Note that each entry of B−1 =
(det B)−1adj B is bounded above by |det B|−1µp. Hence σ1(B−1) ≤ (p+1)µp

|det B| .
Recall that σ1(B−1 = σp+1(B)−1. Thus

|det B|
µp

≤ (p+ 1)σp+1(B)⇒ |det B|
|det AIJ |

≤ (p+ 1)σp+1(B)
δ

.

Since B is a submatrix of A we deduce σp+1(B) ≤ σp+1(A). 2

Problems

1. Let A ∈ Cm×n, rank A = r. Assume that I ⊂ 〈m〉, J ⊂ 〈n〉,#I =
#J = r. Assume that det AIJ 6= 0. Show that A = CA−1

IJR.

4.14 Some special maximal spectral problems

Let S ⊂ V. Then the convex hull of S, denoted by conv S, is the minimal
convex set containing S. Thus Πn := conv{e, ..., en} ⊂ Rn, where e, ..., en
is the standard basis in Rn, is the set of probability vectors in Rn.

Assume that C ⊂ V is convex. A point e ∈ C is called an extremal
point if for any x,y ∈ C such that e ∈ [x,y] the equality x = y = e holds.
For a convex set C denote by ext C the set of the extremal points of C. It
is known that ext conv S ⊂ S [Roc70] or see Problem 1.

Definition 4.14.1 Let S ⊂ V. For each j ∈ N let

convj−1S = {z ∈ V : z =
j∑
i=

pixi, for all p = (p, ..., pj)> ∈ Πj , x, ...,xj ∈ S}.

Let C be a convex set in V. Assume that ext C 6= ∅. Then Fj−1(C) :=
convj−1(ext C) is called j − 1 dimensional face of C for any j ∈ N.

Suppose that S is a finite set of cardinality N ∈ N. Then conv S =
convN−1S, see Problem 1, and convS is called a finitely generated convex
set. Note that F0(S) = S. The following result is well known [Roc70]. (See
Problem 1 for finitely generated convex sets.)
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Theorem 4.14.2 Let V be a vector space over real of finite dimension.
Let C ⊂ V be a nonempty compact convex set. Then conv ext C = C. Let
d := dim C. Then Fd(ext C) = C. More general, for any S ⊂ V let
d = dim conv S. Then Fd(S) = conv S.

Throughout this book we assume that V is finite dimensional, unless stated
otherwise. In many case we shall identify V with Rd. Assume that the
C ⊂ V is a nonempty compact convex set of dimension d. Then the
following facts are known. If d = 2 then ext C is a closed set. For d ≥ 3
there exist C such that ext C is not closed.

The following result is well known (see Problem 3):

Proposition 4.14.3 Let S ⊂ V and assume that f : conv S → R̄ is a
convex function. Then

sup
x∈conv S

f(x) = sup
y∈S

f(y).

If in addition S is compact and f is continuous on conv S then one can
replace sup by max.

See Problem 4 for a generalization of this proposition.

Corollary 4.14.4 Let V be a finite dimensional IPS over F = R,C.
Let S ⊂ S(V). Let f : conv S→ R̄ be a convex function. Then

sup
A∈conv S

f(A) = sup
B∈S

f(B).

The aim of this section to give a generalization of this result to certain
spectral nonconvex functions f .

Definition 4.14.5 For x = (x, ..., xn)>,y = (y, ..., yn)> ∈ Rn let
x ≤ y ⇐⇒ xi ≤ yi, i = , ..., n. Let D ⊂ Rn and f : D → R̄. f is called
a nondecreasing function on D if for any x,y ∈ D one has the implication
x ≤ y⇒ f(x) ≤ f(y).

Theorem 4.14.6 Let V be an n-dimensional IPS over R. Let p ∈
[1, n] ∩ N and D ⊂ Rn↘ be a convex Schur set. Let Dp be the projec-
tion of D on the first p coordinates. Let h : Dp → R and assume that
f : λ−1(D) → R be the spectral function given by A 7→ h(λ(p)(A)), where
λ(p)(A) = (λ1(A), ..., λp(A))>. Let S ⊂ λ−1(D). Assume that h is nonde-
creasing on Dp. Then

(4.14.1) sup
A∈conv S

f(A) = sup
B∈conv(p+1

2 )−1
S
f(B),

and this result is sharp.
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Proof. Since dim conv S ≤ dim S(V) =
(
n+


)
Theorem 4.14.2 implies

that it is enough to prove the theorem in the case S = T := {A1, ...,AN},
where N ≤

(
n+1

2

)
+ 1. Observe next that since D is a convex Schur set and

S ⊂ λ−1(D) it follows that conv S ⊂ λ−1(D) (Problem 6).
Let A ∈ conv T. Assume that x, ...,xp are p-orthonormal eigenvectors

of A corresponding to the eigenvalues λ1(A), ..., λp(A). For any B ∈ S(V)
let B(x, ...,xp) := (〈Bxi,xj〉)pi,j= ∈ Sp(R). We view Sp(R) as a real vec-
tor space of dimension

(
p+1

2

)
. Let T′ := {A1(x, ...,xp), ..., AN (x, ...,xp)} ⊂

Sp(R). It i straightforward to show that for any B ∈ conv T one has
B(x, ...,xp) ∈ conv T′. Let T̃ the restriction of conv T′ to the line in
Sp(R)

{X = (xij) ∈ Sp(R) : xij = λi(A)δij , for i+ j > }.

Clearly A(x, ...,xp) ∈ T̃. Hence T̃ = [C(x, ...,xp), D(x, ...,xp)] for some
C,D ∈ conv T. It is straightforward to show that C,D ∈ conv(p+1

2 )−1 T.
See Problem 1. Hence maxX∈T̃ x11 = max(〈Cx,x〉, 〈Dx,x〉). Without
loss of generality we may assume that the above maximum is achieved
for the matrix C. Hence C(x, ...,xp) is a diagonal matrix such that
λ1(C(x, ...,xp) ≥ λ(A) and λi(C(x, ...,xp))) = λi(A) for i = 2, ..., p.
Let U = span (x, ...,xp). Since x, ...,xp are orthonormal it follows that
λi(Q(C,U)) = λi(C(x, ...,xp)) for i = 1, ..., p. Corollary 4.4.7 yields
that λ(p)(C) ≥ λ(p)(A). Since h is increasing on D we get h(λ(p)(C)) ≥
h(λ(p)(A)). See Problem 7 which shows that (4.14.4) is sharp. 2

Theorem 4.14.7 Let V be an n-dimensional IPS over C. Let p ∈
[1, n] ∩ N and D ⊂ Rn↘ be a convex Schur set. Let Dp be the projec-
tion of D on the first p coordinates. Let h : Dp → R and assume that
f : λ−1(D) → R be the spectral function given by A 7→ h(λ(p)(A)), where
λ(p)(A) = (λ1(A), ..., λp(A))>. Let S ⊂ λ−1(D). Assume that h is nonde-
creasing on Dp. Then

(4.14.2) sup
A∈conv S

f(A) = sup
B∈convp2−1S

f(B),

and this result is sharp.

See Problems 8 for the proof of the theorem.
It is possible to improve Theorems 4.14.6 and 4.14.7 in special interesting

cases for p > 1.
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Definition 4.14.8 Let V be an n-dimensional IPS over F = R,C and
p ∈ [1, n] ∩ Z. Let A ∈ S(V). Then p-upper multiplicity of λp(A), denoted
by upmul(A, p), is a natural number in [1, p] such that

λp−upmul(A,p)(A) > λp−upmul(A,p)+1(A) = ... = λp(A), where λ0(A) =∞.

For any C ⊂ S(V) let upmul(C,p) := maxA∈C upmul(A,p).

See Problem 14 for sets satisfying upmul(C,p) ≤ k for any k ∈ N.

Theorem 4.14.9 Let V be an n-dimensional IPS over R. Let p ∈
[1, n] ∩ N and denote µ(p) := upmul(convS, p). Then

(4.14.3) sup
A∈conv S

λp(A) = sup
B∈conv µ(p)(2p−µ(p)+1)

2 −1
S
λp(B).

Proof. For µ(p) = p (4.14.4) follows from Theorem 4.14.6. Thus, it
is enough to consider the case p > 1 and µ(p) < p. As in the proof of
Theorem 4.14.6 we may assume that S = {A1, ...,AN} where N ≤

(
n+1

2

)
+1.

Let M := {B ∈ conv S : λp(B) = maxA∈conv S λp(A)}. Since λp(A)
is a continuous function on S(V) and conv S is a compact set it follows
that M is a nonempty compact set of conv S. Let ν := µ(p)(2p−µ(p)+1)

2 −
1. Assume to the contrary that the theorem does not hold, i.e. M ∩
convνS = ∅. Let M′ := {p = (p, ..., pN )> ∈ PN :

∑n
i=Ai ∈ M}.

Then M′ is a nonempty compact set of PN and any p ∈ M′ at least
ν + 2 positive coordinates. Introduce the following complete order on PN .
Let x = (x, ..., xN )>,y = (y, ..., yN )> ∈ RN . As in Definition 4.6.1
let x̄ = (x̄1, ..., x̄N )>, ȳ = (ȳ1, ..., ȳN )> ∈ RN be the rearrangements of
the coordinates of the vectors x and y in the nonincreasing order. Then
x � y if either x̄ = ȳ or x̄i = ȳi for i = 0, ...,m − 1 and x̄m < ȳm
for some m ∈ [1, n] ∩ N. (We assume that x = y = ∞.) Since M′
is compact there exists a maximal element p = (p, ..., pN )> ∈ M′, i.e.
q ∈ M′ ⇒ q � p. Let I := {i ∈ 〈N〉 : pi > 0}. Then #I ≥ ν + 2. Let
B =

∑N
i=1 piAi ∈ conv S be the corresponding matrix with the maximal

λp on conv S. Assume that x, ...,xn ∈ V be an orthonormal basis of
V, consisting of the eigenvectors of B corresponding to the eigenvalues
λ1(B), ..., λn(B) respectively. Let m := upmul(B, p) ≤ µ(p). Consider the
following systems of m(2p−m+1)

2 equations in #I unknowns qi ∈ R, i ∈ I:

qi = 0, for i ∈ 〈N〉\I,
∑
i∈I

qi = 0,∑
i∈I

qi〈Aixj ,xk〉 = , j = , ..., k − , k = p, ..., p−m+ ,
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∑
i∈I

qi〈Aixj ,xj〉 =
∑
i∈I

qi〈Aixp,xp〉 j = p− , ..., p−m+  if m > .

Since #I ≥ ν + 2 = µ(p)(2p−µ(p)+1)
2 + 1 > m(2p−m+1)

2 it follows that there
exists 0 6= q = (q, ..., qN )> ∈ RN whose coordinates satisfy the above equa-
tions. Let B(t) := B + tC, C :=

∑N
i=1 qiAi, t ∈ R. Then there exists a > 0

such that for t ∈ [−a, a] p(t) := p + tq ∈ PN ⇒ B(t) ∈ conv S. As in the
proof of Theorem 4.14.6 consider the matrix B(t)(x, ...,xp) ∈ Sp(R). Since
B(0)(x, ...,xp) = B(x, ...,xp) is the diagonal matrix diag(λ1(B), ..., λp(B)
the conditions on the coordinates of q imply that B(t)(x, ...,xp) is of
the form (diag(λ1(B), ..., λp−m(B)) + tC1)⊕ (λp + tb)Im for a correspond-
ing C1 ∈ Sp−m(R). Since λp−m(B) > λp(B) it follows that there exists
a′ ∈ (0, a] such that

λp−m(B(t)(x, ...,xp)) = λp−m(diag(λ(B), ..., λp−m(B)) + tC) >
λp(B) + |tb|, λp(B(t)) = λp(B) + tb, for |t| ≤ a′.

Hence λp(B(t)) ≥ λp(B) + tb for |t| ≤ a′. As B(t) ∈ conv S for |t| ≤ a′ and
λp(B) ≥ λp(B(t)) for |t| ≤ a′ it follows that b = 0 and λp(B(t)) = λp(B)
for |t| ≤ a′. Hence p + tq ∈ M′ for |t| ≤ a′. Since q 6= , it is impossible
to have the inequalities p− a′q� p and p + a′q� p. This contradiction
proves the theorem. 2

It is possible to show that the above theorem is sharp in the case µ(p) =
1 Problem 13 (d2). Similarly one can show, see Problem 10.

Theorem 4.14.10 Let V be an n-dimensional IPS over C. Let p ∈
[1, n] ∩ N and denote µ(p) := upmul(convS, p). Then

(4.14.4) sup
A∈conv S

λp(A) = sup
B∈convµ(p)(2p−µ(p))−1S

λp(B).

Problems

1. Let S ⊂ Rn be a nonempty finite set. Show

a. Let S = {x, ...,xN}. Then conv S = convN−1(S).

b. Any finitely generated convex set is compact.

c. S ⊂ ext conv S.

d. Let f1, ..., fm : Rn → R be linear functions and a1, ..., am ∈ Rm.
Denote by A the affine space {x ∈ Rn : fi(x) = ai, i = , ...,m}.
Assume that C := conv S∩A 6= ∅. Then C is a finitely generate convex
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set such that ext C ⊂ convm S. (Hint : Describe C by m+1 equations
with #S variables as in part a. Use the fact that any homogenous
system in m + 1 equations and l > m + 1 variables has a nontrivial
solution.)

e. Prove Theorem 4.14.2 for a finitely generated convex set C and a
finite S.

2. Let C be a convex set of dimension d with a nonempty ext C. Let
C ′ = conv ext C. Show

(a) ext C ′ = ext C.

(b) Let d′ = dim C ′. Then d′ ≤ d and the equality holds if and only
if C = C ′.

(c) Fj(C) ⊂ Fj+1(C) and equality holds if and only if j ≥ d′.

3. Prove Proposition 2.

4. Let C ⊂ V be a convex set. A function f : C → R̄ is called concave if
−f is a convex function on C. Assume the assumptions of Proposition
4.14.3. Assume in addition f(C) ⊂ [0,∞] and g : C → (0,∞) is
concave. Then

sup
x∈conv S

f(x)
g(x)

= sup
y∈S

f(y)
g(y)

.

If in addition S is compact and f, g are continuous on convS then
one can replace sup by max.

5. a. Let x,y ∈ Rn. Show the implication x ≤ y⇒ x � y.

b. Let D ⊂ Rn↘ and assume that f : D → R is strong Schur’s order
preserving. Show that f is nondecreasing on D.

c. Let i ∈ [2, n]∩N and f be the following function on Rn: (x1, ..., xn)> 7→
xi. Show that f is nondecreasing on Rn but not Schur’s order pre-
serving on Rn↘.

6. Let D ⊂ Rn↘ be a convex Schur set. Let V be an n-dimensional IPS
over F = R,C. Let S ⊂ S(V) be a finite set such that S ⊂ λ−1(D).
Show that conv S ⊂ λ−1(D).

7. a. Let A ∈ Hn and assume that trA = 1. Show that λn(A) ≤ 1
n and

equality holds if and only if A = 1
nIn.

b. Let Ekl := ( δ(k,l)(i,j)+δ(l,k)(i,j)2 )pi,j=1 ∈ Sp(R) for 1 ≤ k ≤ l ≤ p be
the symmetric matrices which have at most two nonzero equal entries
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at the locations (k, l) and (l.k) which sum to 1. Let Q1, ..., Q(p+1
2 ) ∈

Sp(R) be defined as follows:

Q1 := E11 + E12, Q2 := E11 − E12 + E13, ..., Qp := E11 − E1p + E23, ...,
Q2p−3 := E11 − E2(p−1) + E2p, ..., Q(p2) := E11 − E(p−2)p + E(p−1)p,

Q(p2)+1 = E11 − E(p−1)p, Q(p2)+i = Eii, for i = 2, ..., p.

Let S = {Q1, ...,Q(p+1
2 )} Show that 1

pIp ∈ conv S = conv(p+1
2 )−1S and

1
pIp 6∈ conv(p+1

2 )−2S.

c. Let S ⊂ Sp(R) be defined as in b. Show that trA = 1 for each
A ∈ conv S. Hence

max
A∈conv S

λp(A) = λp(
1
p
Ip) =

1
p
> max
B∈conv(p+1

2 )−2
S
λp(B).

d. Assume that n > p and let Ri := Qi ⊕ 0 ∈ Sn(R), where Qi is
defined in b, for i = 1, ...,

(
p+1

2

)
. Let S = {R1, ...,R(p+1

2 )}. Show that

max
A∈conv S

λp(A) = λp(
1
p
Ip ⊕ 0) =

1
p
> max
B∈conv(p+1

2 )−2
S
λp(B).

8. a. Prove Theorem 4.14.7 repeating the arguments of Theorem 4.14.6.
(Hint : Note that the condition 〈Bxi,xj〉 =  for two distinct or-
thonormal vectors xi,xj ∈ V is equivalent to two real conditions,
while the condition 〈Bxi,xi〉 = λi(A) is one real conditions for B ∈
S(V).)

b. Modify the example in Problem 7 to show that Theorem 4.14.7 is
sharp.

9. Let C = A+
√
−1B ∈ Mn(C),A,B ∈ Mn(R).

a. Show C ∈ Hn if and only if A is symmetric and B is antisymmetric:
B> = −B.

b. Assume that C ∈ Hn and let Ĉ ∈ M2n(R) be defined as in Problem
6. Show that Ĉ ∈ Sn(R) and λ2i−1(Ĉ) = λ2i(Ĉ) = λi(C) for i =
1, ..., n.

c. Use the results of b to obtain a weaker version Theorem 4.14.7
directly from Theorem 4.14.6.

10. Prove Theorem 4.14.10.
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11. Let F be a field and k ∈ Z+. A = (aij) ∈ Mn(F) is called a 2k + 1-
diagonal matrix if aij = 0 if |i−j| > k. (1-diagonal are diagonal and 3-
diagonal are called tridiagonal.) Then the entries a1(k+1), ..., a(n−k)n

are called the k-upper diagonal.

a. Assume that A ∈ Mn(F), n > k and A is 2k+ 1-diagonal. Suppose
furthermore that k-upper diagonal of A does not have zero elements.
Show that rank A ≥ n− k.

b. Suppose in addition to a. A ∈ Hn. Then upmul(A, p) ≤ k for any
p ∈ 〈n〉.

12. Let V be an n-dimensional IPS over F = R,C. Let S ⊂ S(V) and p ∈
〈n〉. Define the weak p-upper multiplicity denoted by wupmul(conv S,p)
as follows. It is the smallest positive integer m ≤ p such that for
any N =

(
n+1

2

)
+ 1 operators A1, ..., AN ∈ S there exists a sequence

Aj,k ∈ S(V), j ∈ 〈N〉, k ∈ N, such that limk→∞Aj,k = Aj , j ∈ 〈N〉
and upmul(conv{A1,k, ..., AN,k}, p) ≤ m for k ∈ N.

a. Show that wupmul(conv S,p) ≤ upmul(conv S,p).

b. Show that in Theorems 4.14.9 and 4.14.10 one can replace upmul(conv S,p)
by wupmul(conv S,p).

13. a. Show that for any set S ⊂ D(n,R) and p ∈ 〈n〉 wupmul(conv S,p) =
1. (Hint : Use Problem 11.)

b. Let Di = diag(δi1, ..., δin), i = 1, ..., n. Let S := {D1, ...,Dn}. Show
that for p ∈ [2, n] ∩ Z

max
D∈conv S

λp(D) = max
D∈convp−1S

λp(D) =
1
p
> max
D∈convp−2S

λp(D) = 0.

c. Show that the variation of Theorem 4.14.9 as in Problem 12b for
wupmul(conv S,p) = 1 is sharp.

d. Let A ∈ Sn(R) be a tridiagonal matrix with nonzero elements on
the first upper diagonal as in 11b. Let t ∈ R and define Di(t) =
Di + tA, where Di is defined as in b, for i = 1, ..., n. Let S(t) =
{D1(t), ...,Dn(t)}. Show

d1. For t 6= 0 upmul(conv S(t),p) = 1 for p ∈ [2, n] ∩ Z.

d2. There exists ε > 0 such that for any |t| ≤ ε

max
A∈conv S(t)

λp(A) = max
B∈convp−1S(t)

λp(B) > max
C∈convp−2S(t)

λp(C).

Hence Theorem 4.14.9 is sharp in the case upmul(conv S,p) = 1.
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14. a. Let S ⊂ Hn be a set of 2k+1-diagonal matrices. Assume that either
each k-upper diagonal of any A ∈ S consists of positive elements,
or each k-upper diagonal of any A is fixed and consists of nonzero
elements. Show that upmul(conv S,p) ≤ k.

b. Let S ⊂ Hn be a set of 2k + 1-diagonal matrices. Show that
wupmul(conv S,p) ≤ k + 1.

4.15 Multiplicity index of a subspace of S(V)

Definition 4.15.1 Let V be a finite dimensional IPS over F = R,C.
Let U be a nontrivial subspace of S(V). Then the multiplicity index of U
is defined

mulind U := {max p ∈ N : ∃A ∈ U\{} such that λ(A) = ... = λp(A)}.

Clearly for any nontrivial U mulind U ∈ [,dim V]. Also mulind U =
dim V ⇐⇒ I ∈ V. The aim of this section to prove the following theorem.

Theorem 4.15.2 Let V be an IPS over F = R,C of dimension n ≥ 3.
For r ∈ [2, n − 1] let κ(r) := (r−1)(2n−r+2)

2 if F = R and κ(r) := (r −
1)(2n− r+ 2) if F = C. Let U be a subspace of S(V). Then mulind U ≥ r
if dim U ≥ κ(r) and this result is sharp.

Proof. Assume first that F = R. Assume dim U ≥ κ(r). Suppose to
the contrary that index U = p < r. Let A ∈ U such that λ1(A) = ... =
λp(A) > λp+1(A). Assume that

Axi = λi(A)xi, xi ∈ V, 〈xi,xj〉 = δij , i, j = , ..., n.

By representing S(V) is Sn(R) with respect to the orthonormal basis x, ...,xn
we may assume that U is a subspace of Sn(R) andA = diag(λ1(A), ..., λn(A)).

4.16 Analytic functions of hermitian matri-
ces

Denote by Hn the set of all n× n hermitian matrices. For A ∈ Hn denote
by spec A ⊂ R the spectrum of A. A(z) := A0 + zA1, A0, A1 ∈ Hn is
called a hermitian pencil. It is known that it is possible to rename the
eigenvalues of A(z) as α1(z), . . . , αn(z) such that each αi(z) is analytic in
some neighborhood N of the real axis R. Furthermore the eigenprojection
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Pi(z) on each αi(z) is analytic in z inN . (Note that if αi(z) has multiplicity
mi for all but a finite number of points on R, then Pi(z) has rank mi on N .)
Furthermore, the corresponding eigenvectors x(z), . . . ,xn(z) can be chosen
to be analytic in z ∈ N , such that for x(t), . . . ,xn(t) are orthonormal for
t ∈ R. See [Kat80, II.6.1-II.6.2].

Let t ∈ R be fixed. An eigenvalue α(z) := αi(z) is called regular at t if
the multiplicity of α(z) is fixed for |z − t| < r for some r = r(t) > 0. So

(4.16.1) α(z) =
∞∑
j=0

aj(z − t)j , aj ∈ R, j ∈ Z+.

Furthermore, given a normalized eigenvector A(t)x = ax,x∗x = ,
there exists an analytic eigenvector x(z) corresponding to α(z) satisfying
the conditions:

x(z) =
∞∑
j=

(z − t)jxj , xj ∈ Cn, j ∈ Z+,(4.16.2)

A(z)x(z) = α(z)x(z), x(s)∗x(s) =  for s ∈ R.

Let Sn denote the space of all n×n real symmetric matrices. Suppose that
A0, A1 ∈ Sn. Then A(z) is called a symmetric pencil. In that case the
projections induced by A(s), s ∈ R on each αi(s) must be a real orthogonal
projection. Hence in the expansion (4.16.2) each xj can be chosen to be a
real vector.

One can find the formulas for aj ,xj , j ∈ Z+ in terms of A0, A1, in
particular for a1, a2, in [Kat80, II.2.4]. In this note we give slightly different
formulas for a1, a2, a3.

Let B ∈ Hn. Denote by B† ∈ Hn the Moore-Penrose inverse of B. That
is B is uniquely characterized by the condition that B†B = BB† is the
projection on the subspace spanned by all eigenvectors of B corresponding
to the nonzero eigenvalues of B.

Theorem 4.16.1 Let A0, A1 ∈ Hn, A(z) = A + zA. Let t ∈ R, A =
A0 + tA1 and assume that the eigenvalue a0 ∈ spec A is simple for the
pencil A(z) at z = t. Suppose that Ax = ax, x∗x = . Let (4.16.1-
4.16.2) be the Taylor expansion of the eigenvalue α(z) ∈ spec A(z) and
a local Taylor expanison of the corresponding eigenvector x(z) satisfying
α(t) = a0, x(t) = x. Then
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a1 = x∗Ax,

x = (aI −A)†Ax,
a2 = x∗Ax = x∗A(aI −A)†Ax,(4.16.3)

x = (aI −A)†(A − aI)x − (



x∗x)x

a3 = x∗((A − aI)(aI −A)†)Ax,

Proof. Without loss of generality we assume that t = 0, hence
A = A0. Next we consider first the case where A0, A1 are real sym-
metric. Furthermore, by replacing A0, A1 with Q>A0Q,Q

>A1Q, where
Q ∈ Rn×n is an orthogonal matrix we may assume that A0 is a diagonal
matrix diag(d1, . . . , dn), where d1 = a0 and di 6= a0 for i > 1. More-
over, we can assume that x = (, , . . . , )>. Note that (a0I − A0)† =
diag(0, (a0 − d1)−1, . . . , (a0 − dn)−1). (We are not going to use explicitly
these assumptions, but the reader can see more transparently our argu-
ments using these assumptions.)

Recall that we may assume that x(s) ∈ Rn. The orthogonality condition
x(s)>x(s) =  yields that

(4.16.4)
k∑
j=0

x>j xk−j = , k ∈ N.

The equality A(z)x(z) = α(z)x(z) yields

(4.16.5) A0xk +Axk− =
k∑
j=

ajxk−j , k ∈ N.

Since α(s) is real for a real s we deduce that aj ∈ R. Consider the
equality (4.16.5) for k = 1. Multiply it by x> and use the equality x> A =
ax> to deduce the well known equality a1 = x> Ax, which is the first
equality of (4.16.3). The equality (4.16.5) for k = 1 is equivalent to (a0I −
A0)x = Ax − ax. Hence x is of the form

(4.16.6) x = (aI −A)†(Ax − ax) + bx = (aI −A)†Ax + bx,

for some b1. The orthogonality condition x> x implies that b1 = 0. Hence
the second equality of (4.16.3) holds.

Multiply the equality (4.16.5) for k = 2 by x> and use x> A = ax> ,x
>
 x =

 to obtain a2 = x> Ax. This establishes the third equality of (4.16.3).
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Rewrite the equality (4.16.5) for k = 2 as (a0I−A0)x = Ax−ax−ax.
Hence

(4.16.7) x = (aI −A)†(A − aI)x + bx.

Multiply the above equality by x> to deduce that x> x = b. (4.16.4) for
k = 2 yields b2 = − 1

2x> x. This establishes the fourth equality of (4.16.3).
Multiply the equality (4.16.5) for k = 3 by x> to deduce

a3 = x> Ax − ax> x = x> (A − aI)x.

Observe next that from the first equality in (4.16.3) xT (A − aI)x = .
This establishes the last equality of (4.16.3).

We now show that the same formulas hold when A0, A1 are hermitian.
Observe that if we have a local Taylor expansion of x(z) then we can re-
place x(z) by eφ(z)x(z), where φ(z) =

∑∞
j=1 φj(z− t)j is locally analytic at

z = t and each φj is purely imaginary. Now we repeat the proof of (4.16.3).
The first formula of (4.16.3) holds as in the symmetric case. The equality
(4.16.6) also holds. We now can only deduce the equality <b1 = 0. Now
choose φ1 such that b1 = 0. Hence the second equality of (4.16.3) holds.
Now deduce the third equality of (4.16.3). Next we deduce (4.16.7) and the
equality <b2 = 0. Now use the corresponding choice of φ2 to obtain that
b2 = 0. Hence the fourth equality of (4.16.3) holds. Now deduce the last
equality of (4.16.3). 2

Note that for the real symmetric case the formulas of x,x in (4.16.3)
are global formulas.

Theorem 4.16.2 Let A0 ∈ Hn, n ≥ . Assume that a0 is a simple
eigenvalue of A0, with the corresponding eigenvector Ax = ax,x∗x = .
Suppose furthermore that |λ − a0| ≥ r > 0 for any other eigenvalue λ
of A0. Let A1 ∈ Hn, A 6= , and denote by ||A1|| the l2 norm of A1,
i.e. the maximal absolute value of the eigenvalues of A1. Let α(z) be the
eigenvalue of A(z) = A0 + zA1, which is analytic in the neighborhood of R
and satisfying the condition α(0) = a0. Let a1, a2 will be given by (4.16.3),
where A = A0. Fix 0 < c < r

2||A1|| . Then

(4.16.8) |α(s)− (a0 + a1s+ a2s
2)| ≤ 4||A1||3|s|3

(r − 2c||A1||)2
for all s ∈ [−c, c].

Proof. Let λ1(s) ≥ . . . ≥ λn(s) be the eigenvalues of A(s), s ∈ R. Note
that λ1(0), . . . , λn(0) are the eigenvalues of A0. Assume that λi(0) = a1.
Let ρ(s) = min(λi−1(s)−λi(s), λi(s)−λi+1(s)), where λ0(s) =∞, λn+1(s) =
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−∞. Thus r ≤ ρ(0). Let β1 ≥ . . . ≥ βn be the eigenvalues of A1. Then
||A1|| = max(|β1|, |βn|). Apply Lidskii’s theorem to C = A(s)−A0 [Kat80,
III.Thm 6.10] to deduce that

|λj(s)− λj(0)| ≤ |s| ||A1||, j = 1, . . . , n.

Hence

(4.16.9) ρ(s) ≥ r(0)− 2|s|||A1|| > 0 for s ∈ (− ρ(0)
2||A1||

,
ρ(0)

2||A1||
).

In particular, λi(s) is a simple eigenvalue of A(s) in the above interval.
Assume that s is in the interval given in (4.16.9). It is straightforward to
show that

(4.16.10) ||(α(s)I −A(s))†|| = 1
ρ(s)

≤ 1
ρ(0)− 2|s| ||A1||

.

(One can assume that A(s) is a diagonal matrix.)
Use the Taylor theorem with remainder to obtain the equality

(4.16.11) α(s)− (a0 + sa1 + s2a2) =
1
6
α(3)(t)s3 for some t, |t| < |s|.

Use Theorem 4.16.1 to deduce that

1
6
α(3)(t) = xi(t)∗((A − α′i(t)I)(αi(t)I −A(t))†)Axi(t),

where xi(s) is an eigenvector of A(s) of length one corresponding to αi(s).
As α′(t) = xi(t)∗Axi(t) we deduce that |α′i(t)| ≤ ||A1||. Hence ||A1 −
α′i(t)I|| ≤ 2||A1||. Therefore

|1
6
α(3)(t)| ≤ ||((A1 − α′i(t)I)(αi(t)I −A(t))†)2A1|| ≤

4||A1||3

ρ(t)2

Use the inequality (4.16.10) and the inequality r ≤ ρ(0) to deduce the
theorem. 2

4.17 Eigenvalues of sum of hermitian matri-
ces

Put here
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• Lidskii’s theorem which is equivalent to λ(A)− λ(B) ≺ λ(A−B).

• Weyl’s inequality.

• Kato’s inequality [Kat80, II.5.Thm 6.11] If f : R→ R is convex then

n∑
i=1

f(λi(A)− λi(B)) ≤
n∑
i=1

f(λi(A−B).

In particular use f(x) = |x|p, p ≥ 1.



Chapter 5

Elements of Multilinear
Algebra

5.1 Tensor product of two free modules

Let D be a domain. Recall that N is called a free finite dimensional module
if N has a finite basis e, . . . , en, i.e. dim N = n. Then N′ := Hom (N,D)
is a free n-dimensional module. Furthermore we can identify Hom (N′,D)
with N. (See Problem 1.)

Definition 5.1.1 Let M,N be two free finite dimensional modules over
an integral domain D. Then the tensor product M ⊗N is identified with
Hom (N′,M). Moreover, for each m ∈ M,n ∈ N we identify m ⊗ n ∈
M ⊗D N with the linear transformation m⊗ n : N′ → M given by f 7→
f(n)m for any f ∈ N′.

Proposition 5.1.2 Let M,N be free modules over a domain D with
bases [d, . . . ,dm], [e, . . . , en] respectively. Then M⊗DN is a free module
with the basis di ⊗ ej , i = , . . . ,m, j = , . . . , n. In particular

(5.1.1) dim M⊗N = dim M dim N.

(See Problem 3.) For an abstract definition of M ⊗D N for any two
D-modules see Problem 16.

Intuitively, one views M⊗N as a linear span of all elements of the form
m⊗ n, where m ∈M,n ∈ N satisfying the following natural properties:

• a(m⊗ n) = (am)⊗ n = m⊗ (an) for all a ∈ D.

229
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• (a1m + am)⊗ n = a(m ⊗ n) + a(m ⊗ n) for all a1, a2 ∈ D.

(Linearity in the first variable.)

• m⊗ (an + an) = a(m⊗ n) + a(u⊗ n) for all a1, a2 ∈ D.

(Linearity in the second variable.)

The element m⊗n is called decomposable tensor, or decomposable element
(vector), or rank one tensor.

Proposition 5.1.3 Let M,N be free modules over a domain D with
bases
[d, . . . ,dm], [e, . . . , en] respectively. Then any τ ∈M⊗D N is given by

(5.1.2) τ =
i=m,j=n∑
i=j=1

aijdi ⊗ ej , A = [aij ] ∈ Dm×n.

Let [u, . . . ,um], [v, . . . ,vn] be another bases of M,N respectively. Assume
that τ =

∑m,n
i,j=1 bijui ⊗ vj and let B = [bij ] ∈ Dm×n. Then B = PAQT ,

where P and Q are the transition matrices from the bases [d, . . . ,dm] to
[u, . . .um] and [e, . . . , en] to [v, . . . ,vn].
([d, . . . ,dm] = [u, . . .um]P , [e, . . . , en] = [v, . . . ,vn]Q.)

See Problem 6.

Definition 5.1.4 Let M,N be free finite dimensional modules over a
domain D. Let τ ∈M⊗DN be given by (5.1.2). The rank of τ , denoted by
rank τ , is the rank of the representation matrix A, i.e. rank τ = rank A.
The tensor rank of τ , denoted by Rank τ , is the minimal k such that τ =∑k
l=1 ml ⊗ nl for some ml ∈M,nl ∈ N, l = , . . . , k.

rank τ is independent of the choice of bases in M and N. (Problem 7.)
Since M⊗DN has a basis consisting of decomposable tensors it follows that

(5.1.3) Rank τ ≤ min(dim M,dim N) for any τ ∈M⊗D N.

See Problem 8.

Proposition 5.1.5 Let M,N be free finite dimensional modules over
a domain D. Let τ ∈ M ⊗D N. Then rank τ ≤ Rank τ . If D is a Bezout
domain then rank τ = Rank τ

Proof. Assume that M,N have bases as in Proposition 5.1.3. Sup-
pose that (5.1.2) holds. Let τ =

∑k
l=1 ml ⊗ nl. Clearly, each ml ⊗ nl =∑m,n

i,j= aij,ldi ⊗ ej , where Al := [aij,l]
m,n
i,j=1 ∈ Dm×n is rank one matrix.
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Then A =
∑k
l=1Al. It is straightforward to show that rank A ≤ k. This

shows that rank τ ≤ Rank τ .
Assume that D is BD. Let P ∈ GL(m,D) such that PA = [bij ] ∈ Dm×n

is a Hermite normal form of A. In particular, the first r := rank A
rows of B are nonzero rows, and all other rows of B are zero rows. Let
[u, . . . ,um] := [d, . . . ,dm]P− be a basis in M. Proposition 5.1.3 yields
that τ =

∑m,n
i,j=1 bijui ⊗ ej . Define nl =

∑n
j= bljej , l = , . . . , r. Then

τ =
∑r
l=1 ul⊗nl. Hence r ≥ Rank τ , which implies that rank τ = Rank τ .

2

Proposition 5.1.6 Let Mi,Ni be free finite dimensional modules over
D. Let Ti : Mi → Ni be homomorphisms. Then there exists a unique
homomorphism on T : M ⊗M → N ⊗ N such that T (m ⊗m) =
(Tm) ⊗ (Tm) for all m ∈ M,m ∈ M. This homomorphism is
denoted by T1 ⊗ T2.

Suppose furthermore that W,W are free finite dimensional D-modules,
and Pi : Ni →Wi, i = ,  are homomorphisms. Then (P1⊗P2)(T1⊗T2) =
(P1T1)⊗ (P2T2).

See Problem 9.
Since each homomorphism Ti : Mi → Ni, i = ,  is represented by a

matrix, one can reduce the definition of T1 ⊗ T2 to the notion of tensor
product of two matrices A1 ∈ Dn1×m1 , A2 ∈ Dn2×m2 . This tensor product
is called the Kronecker product.

Definition 5.1.7 Let A = [aij ]
m,n
i,j=1 ∈ Dm×n, B = [bij ]

p,q
i,j=1 ∈ Dp×q.

Then A⊗B ∈ Dmp×nq is the following block matrix:

(5.1.4) A⊗B :=


a11B a12B ... a1nB
a21B a22B ... a2nB

...
...

...
...

am1B am12B ... amnB


In the rest of the section we discuss the symmetric and skew symmetric

tensor products of M⊗M.

Definition 5.1.8 Let M be a free finite dimensional module over D.
Denote M⊗ := M ⊗M. The submodule Sym2M ⊂ M⊗, called a 2-
symmetric power of M, is spanned by tensors of the form sym2(m,n) :=
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m⊗ n + n⊗m for all m,n ∈M. sym2(m,n) = sym(n,m) is called a 2-
symmetric product of m and n, or simply a symmetric product Any vector
τ ∈ Sym2M is a called a 2-symmetric tensor, or simply a symmetric tensor.
The subspace

∧2 M ⊂ M⊗, called 2-exterior power of M, is spanned by
all tensors of the form m∧n := m⊗n−n⊗m, for all m,n ∈M. m∧n =
−n ∧m is called the wedge product of m and n. Any vector τ ∈

∧2 M is
a called a 2-skew symmetric tensor, or simply a skew symmetric tensor.

Since M⊗ can be identified with Dm×m it follows that Sym2(M) and∧2 M can be identified with the submodules of symmetric and skew sym-
metric matrices respectively. See Problem 12. Observe next that 2m⊗n =
sym(m,n) + m ∧ n. Assume that 2 is a unit in D. Then M⊗ =
Sym2(M)⊕

∧ M. Hence any tensor τ ∈M⊗ can be decomposed uniquely
to a sum τ = τs+τa where τs, τa ∈M⊗ are symmetric and skew symmetric
tensors respectively. (See Problem 12.)

Proposition 5.1.9 Let M,N be a finite dimensional module over D.
Let T : Hom (M,N). Then

T ⊗ T : Sym2M→ Sym2N, T ⊗ T :
∧

M→
∧

N.

See Problem 13.

Definition 5.1.10 Let M,N be finite dimensional modules over D. Let
T : Hom (M,N). Then T ∧ T ∈ Hom (

∧2 M,
∧ N) is defined as the

restriction of T ⊗ T to
∧2 M.

Proposition 5.1.11 Let M,N be a finite dimensional module over D.
Let T : Hom (M,N). Then

1. Assume that [d, . . . ,dm].

2. Assume that S : Hom (L,M). Show that ST ∧ ST = (S ∧ S)(T ∧ T ).

Problems

1. Let N be a free module with a basis [e, . . . , en]. Show

• N′ := Hom (N,D) is a free module with a basis [f1, . . . , fn],
where fi(ej) = δij , i, j = , . . . , n.
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• Show that (N′)′ can be identified with N as follows. To each
n ∈ N associate the following functional n̂ : N′ → D defined by
n̂(f) = f(n) for each f ∈ N′. Show that n̂ is a linear functional
on N′ and any τ ∈ (N′)′ is equal to a unique n̂.

2. . Let F be a field and V and n-dimensional subspace of V. Then
V′ := Hom (V,F) is called the dual space of V. Show

(a) (V′)′ can be identified with V. I.e. for each v ∈ V let v̂ :
V′ → F be the linear functional given by v̂(f) = f(v). Then any
ψ ∈ (V′)′ is of the form v̂ for some v ∈ V

(b) For X ⊆ V, F ⊆ V′ denote by X⊥ := {f ∈ V′ : f(x) = , ∀x ∈
X}, F⊥ := {v ∈ V : f(v) = , ∀f ∈ F}. Then X⊥, F⊥ are
subspaces of V′,V respectively satisfying

(X⊥)⊥ = span (X), dim X⊥ = n− dim span (X),
(F⊥)⊥ = span (F), dim F⊥ = n− dim span (F).

(c) Let U, . . . ,Uk be k-subspaces of either V or V′. Then

(∩ki=1Ui)⊥ =
∑
i=

U⊥i , (
k∑
i=

Ui)⊥ = ∩i=U⊥i ,

(d) For each bases {v,v, . . . ,vn}, {f, . . . , fn} in V,V′ respectively
there exists unique dual bases {g,g, . . . ,gn}, {u, . . . ,un} in
V′,V respectively such that gi(vj) = fi(uj) = δij , i, j = , . . . , n.

(e) Let U ⊂ V,W ⊂ V′ two m-dimensional subspaces. TFAE
i. U ∩W⊥ = {0}.

ii. U⊥ ∩W = {0}.
iii. There exists bases {u, . . . ,um}, {f, . . . , fm} in U,W re-

spectively such that fj(ui) = δij , i, j = , . . . ,m.

3. Show Proposition 5.1.2.

4. Let U be the space of all polynomials in variable x of degree less than
m: p(x) =

∑m−1
i=0 aix

i with coefficients in F. Let V be the space of
all polynomials in variable y of degree less than n: q(y) =

∑n−1
j=0 bjx

j

with coefficients in F. Then U ⊗ V is identified with the vector
space of all polynomials in two variables x, y of the form f(x, y) =∑m−1,n−1
i=j=0 cijx

iyj with the coefficients in F. The decomposable ele-
ments are p(x)q(y), p ∈ U, q ∈ V. (The tensor products of this kind
are basic tools for solving PDE (partial differential equations), using
separation of variables, i.e. Fourier series.)
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5. Let M = Dm,N = Dn. Show

• M⊗N can be identified with the space of m×n matrices Dm×n.
More precisely each A ∈ Dm×n is viewed as a homomorphism
A : Dn → Dm, where Dm is identified with M′.

• The decomposable tensor m⊗ n is identified with mnT . (Note
mnT is indeed rank one matrix.)

6. Prove Proposition 5.1.3.

7. Show that rank τ defined in Definition 5.1.4 is independent of choices
of bases in M and N.

8. Let the assumptions of Proposition 5.1.3 holds. Show that the equal-
ities

τ =
m∑
i=1

di ⊗ (
n∑
j=

bijej) =
n∑
j=

(
m∑
i=

bijdi)⊗ ej

yield (5.1.3).

9. Prove Proposition 5.1.6.

10. Let the assumptions of Proposition 5.1.2 hold. Arrange the basis
of M ⊗D N is the lexicographical order: d ⊗ e, . . . ,d ⊗ en,d ⊗
e, . . . ,d ⊗ en, . . . ,dm ⊗ e, . . . ,dm ⊗ en. We denote this basis by
[d, . . . ,dm]⊗ [e, . . . , en].

Let Ml,Nl be free modules with the bases [d,l, . . . ,dml,l], [e,l, . . . , enl,l]
for l = 1, 2. Let Tl : Ml → Nl be a homomorphism represented by
Al ∈ Dnl×ml in the above bases for l = 1, 2. Show that T1 ⊗ T2

is represented by the matrices A1 ⊗ A2 with respect to the bases
[d,, . . . ,dm,]⊗[e,, . . . , en,] and [d,, . . . ,dm,]⊗[e,, . . . , en,].

11. Let A ∈ Dm×n, B ∈ Dp×q. Show

• If m = n and A is an upper triangular than A⊗B is block upper
triangular.

• If m = n, p = q and A and B are upper triangular then A ⊗ B
is upper triangular.

• If A and B are diagonal matrices then A⊗B is a diagonal matrix.
In particular Im ⊗ Ip = Imp.

• Let C ∈ Dl×m, D ∈ Dr×p. Then (C⊗D)(A×B) = (CA)⊗(DB).

• A ∈ GL(m,D), B ∈ GL(p,D) then A ⊗ B ∈ GL(mp,D) and
(A⊗B)−1 = A−1 ⊗B−1.
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• rank A⊗B = rank A rank B. (Use the fact that over the quotient
field F of D, A and B are equivalent to diagonal matrices.)
• Let m = n, p = q. Show that det A⊗B = det A det B.

12. Let M be a free module with a basis [d, . . . ,dm]. Identify M⊗ with
Dm×m. Show that Sym2M is identified with Sm(D) ⊂ Dm×m, the
module of m×m symmetric matrices: AT = A, and

∧2 M is identified
with AS(m,D), the module of m×m skew symmetric matrices: AT =
−A.
Assume that 2 is a unit in D. Show the decomposition τ ∈ M⊗

as sum of symmetric and skew symmetric tensor is equivalent to the
following fact: Any matrix A ∈ Dm×m is of the form A = 2−1(A +
AT ) + 2−1(A − AT ), which is the unique decomposition to a sum of
symmetric and skew symmetric matrices.

13. • Prove Proposition 5.1.9.
• Show that (Sym2M,Sym2N) and (

∧2 M,
∧ N) are the only

invariant pairs of submodules of T⊗2 for all choices of T ∈
Hom (M,N).

14. Let M be a module over the domain D. Let X ⊆ M be a subset
of M. Then span X is the set of all finite linear combinations of the
elements from X.

• Show that span X is a submodule of M.
• span X is called the submodule generated by X.

15. Let X be a nonempty set. For a given domain D denote by MD(X)
the free D-module generated by X. That is MD(X) has a set of
elements e(x), x ∈ X with the following properties:

• For each finite nonempty subset Y ⊆ X, the set of vectors
e(y), y ∈ Y are linearly independent.

• MD(X) is generated by {e(x), x ∈ X}.

16. Let M,N be two modules over an integral domain D. Let P be the
free module generated by M×N := {(m,n) : m ∈M,n ∈ N}. (See
Problem 15.) Let Q ⊆ P generated by the elements of the form

e((am+bm, cn+dn))−ace((m,n))−ade((m,n))−bce((m,n)−bde(m,n)),

for all a, b, c, d ∈ D and m,m ∈ M,n,n ∈ N Then M ⊗D N :=
P/Q is called the tensor product of M and N over D.
Show that if M,N are two free finite dimensional modules then the
above definition of M⊗D N is isomorphic to Definition 5.1.1.
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5.2 Tensor product of several free modules

Definition 5.2.1 Let Mi be free finite dimensional modules over a do-
main D for i = 1, . . . , k, where k ≥ 2. Then M := ⊗ki=Mi = M ⊗M ⊗
. . .⊗Mk is the tensor product space of M, . . . ,Mk is defined as follows.
For k = 2 M ⊗M is defined in Definition 5.1.1. For k ≥ 3 ⊗ki=1Mi is
defined recursively as (⊗k−1

i=1 Mi)⊗Mk.

Note that from now on we suppress in our notation the dependence on
D. When we need to emphasize D we use the notation M ⊗D . . .⊗D Mk.

M is spanned by the decomposable tensors

⊗ki=1mi := m ⊗m ⊗ . . .⊗mk, mi ∈Mi, i = , . . . , k,

called also rank one tensors. One have the basic identity:

a(m ⊗m ⊗ . . .⊗mk) = (am)⊗m ⊗ . . .⊗mk =
m ⊗ (am)⊗ . . .⊗mk = . . . = m ⊗m ⊗ . . .⊗ (amk).

Furthermore, the above decomposable tensor is multilinear in each variable.
Clearly

⊗ki=1mji,i, ji = , . . . ,mi, i = , . . . , k is a basis of ⊗ki= Mi(5.2.1)
if m,i, . . . ,mmi,i is a basis of Mi for i = , . . . , k.

Hence

(5.2.2) dim ⊗ki=1 Mi =
k∏
i=

dim Mi.

Thus

(5.2.3) α =
m1,m2,...,mk∑
j1=j2=···=jk=1

aj1j2...jk ⊗ki=1 mji,i, for any α ∈ ⊗ki=Mi.

Denote

(5.2.4) Dm1×...×mk := ⊗ki=1Dmi , for k ∈ N and mi ∈ N, i = 1, . . . , k.

A ∈ Dm×...×mk is given as A := [aj...jk ]m,...,mkj=...=jk=, where aj1...jk ∈
D, ji = 1, . . . ,mi, i = 1, . . . , k. A is called a k − tensor. So 1-tensor is a
vector and 2-tensor is a matrix.

In particular ⊗ki=1Mi is isomorphic to Dm1×...×mk . Furthermore, af-
ter choosing a basis of ⊗ki=1Mi of the form (5.2.1) we correspond to each
τ ∈ ⊗ki=1Mi of the form (5.2.3) the tensor A = [aj...jk ]m,...,mkj=...=jk= ∈
Dm×...×mk .
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Proposition 5.2.2 Let Mi,Ni, i = , . . . , k be free finite dimensional
modules over D. Let Ti : Mi → Ni, i = , . . . , k be homomorphisms. Then
there exists a unique homomorphism on T : ⊗ki=1Mi → ⊗ki=Ni such that
T (⊗ki=1mi) = ⊗ki=(Timi) for all mi ∈ Mi, i = , . . . , k. This homomor-
phism is denoted by ⊗ki=1Ti.

Suppose furthermore that Wi, i = , . . . , k are free finite dimensional
D-modules, and Pi : Ni →Wi, i = , . . . , k are homomorphisms. Then
(⊗ki=1Pi)(⊗ki=1Ti) = ⊗ki=1(PiTi).

See Problem 2.
Since each homomorphism Ti : Mi → Ni, i = , . . . , k is represented by

a matrix, one can reduce the definition of ⊗ki=1Ti to the notion of tensor
product of k matrices.

Definition 5.2.3 Let Ai = [alj,i]
mi,ni
l,j=1 ∈ Dmi×ni , i = 1, . . . , k. Then

the Kronecker product A := ⊗ki=1Ai ∈ Dm1...mk×n1...nk is the matrix with
the entries

A = [a(l1,...,lk)(j1,...,jk)], a(l1,...,lk)(j1,...,jk) :=
k∏
i=1

aliji,i,

for li = 1, . . . ,mi, ji = 1, . . . , ni, i = 1, . . . , k.

where the indices (l1, . . . , lk), li = 1, . . . ,mi, i = 1, . . . , k, and the indices
(j1, . . . , jk), ji = 1, . . . , ni, i = 1, . . . , k are arranged in the lexicographical
order.

It is straightforward to show that the above tensor product of matrices
can be recursively defined by the Kronecker product of two matrices as de-
fined in Definition 5.1.7. See Problem 3. The tensor products of k matrices
have similar properties as in the case k = 2. See Problem 4.

We now consider the k-symmetric and k-exterior products of a free finite
dimensional module M. In view of the previous section we may assume that
k ≥ 3. Denote by Sk the permutation group of k elements of {1, . . . , k},
i.e. Sk is the group of injections σ : {1, . . . , k} → {1, . . . , k}. Recall that
sgn(σ) ∈ {1,−1} is the sign of the permutation. That is sgn(σ) = 1 is σ is
an even permutation, and sgn(σ) = −1 is σ is an odd permutation.

Definition 5.2.4 Let M be a free finite dimensional module over D and
2 ≤ k ∈M. Denote M⊗k := ⊗ki=Mi, where Mi = M for i = 1, . . . , k. The
submodule SymkM ⊂M⊗k, called a k-symmetric power of M, is spanned
by tensors of the form

(5.2.5) symk(m, . . . ,mk) :=
∑
σ∈Sk

⊗ki=mσ(i),
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for all mi ∈ M, i = , . . . , k. symk(m, . . . ,mk) is called a k-symmetric
product of m, . . . ,mk, or simply a symmetric product. Any tensor τ ∈
SymkM is a called a k-symmetric tensor, or simply a symmetric tensor.
The subspace

∧k M ⊂ M⊗k, called k-exterior power of M, is spanned by
all tensors of the form

(5.2.6) ∧ki=1mi = m ∧ . . . ∧mk :=
∑
σ∈Sk

sgn(σ)⊗ki= mσ(i)

for all mi ∈M, i = , . . . , k. ∧ki=1mi is called k- wedge product of m, . . . ,mk.
Any vector τ ∈

∧k M is a called a k-skew symmetric tensor, or simply a
skew symmetric tensor.

Proposition 5.2.5 Let M,N be free finite dimensional module over D.
Let T : Hom (M,N). For k ∈ N let T⊗k : M⊗k → N⊗k be T ⊗ . . .⊗ T︸ ︷︷ ︸

k

.

Then

T⊗k : SymkM→ SymkN, T⊗k :
k∧

M→
k∧

N.

See Problem 5.

Definition 5.2.6 Let M,N be free finite dimensional modules over D.
Let T : Hom (M,N). Then ∧kT ∈ Hom (

∧k M,
∧k N) is defined as the

restriction of T⊗k to
∧k M.

Proposition 5.2.7 Let M,N be free finite dimensional modules over
D. Let T : Hom (M,N). Then

1. Let [d, . . . ,dm], [e, . . . , en] be bases in M,N respectively. Assume
that T is represented by the matrix A = [aij ] ∈ Dn×m in these bases.
Then ∧kT represented in the bases

∧ki=1dji ,  ≤ j < . . . < jk ≤ m, ∧ki=eli ,  ≤ l < . . . < lk ≤ n.

by the matrix ∧kA ∈ D(nk)×(mk ), where the entry ((l1, . . . , lk), (j1, . . . , jk))
of ∧kA is the the k× k minor based of A on the (l1, . . . , lk) rows and
(j1, . . . , jk) columns of A.

2. Let L be a free finite dimensional module and assume that S : Hom (L,M).
Then ∧k(TS) = (∧kT )(∧kS).

See Problem 5.



5.2. TENSOR PRODUCT OF SEVERAL FREE MODULES 239

Remark 5.2.8 In the classical matrix books as [Gan59] and [MaM64]
the matrix ∧kA is called the kth compound matrix or kth adjugate of A.

Proposition 5.2.9 Let M, . . . ,Mk,M := ⊗ki=Mi be free finite di-
mensional modules over D with bases given in (5.2.1). Let [n,i, . . . ,nmi,i] =
[m,i, . . . ,mmi,i]T

−
i , Ti = [tlj,i] ∈ GL(mi,D) be another basis of Mi for

i = 1, . . . ,mi. Let α ∈M be given by (5.2.3). Then

α =
m1,...,mk∑
l1=···=lk=1

bl1...lk ⊗ki=1 nli,i, where(5.2.7)

bl1,...,lk =
m1,...,mk∑
j1,...,jk=1

(
k∏
i=1

tliji,i)aj1...jk for li = 1, . . . ,mi, i = 1, . . . , k.

That is if A := [aj...jk ],B := [bl...lk ] then B = (⊗ki=1Ti)A.

Definition 5.2.10 Let M, . . . ,Mk be free finite dimensional modules
over a domain D. Let τ ∈ ⊗ki=1Mi. The tensor rank of τ , denoted by
Rank τ , is the minimal R such that τ =

∑R
l=1⊗ki=1ml,i for some ml,i ∈

Mi, l = , . . . , R, i = , . . . , k.

We shall see that for k ≥ 3 it is hard to determine the tensor rank a
general k-tensor even in the case D = C.

Let M be a D-module, and let M′ = Hom(M,D) the dual module of
M. For m ∈M,g ∈M′ we denote 〈m,g〉 := g(m). Let

m, . . . ,mk ∈M, g, . . . ,gk ∈M′.

It is straightforward to show

〈m ∧ . . . ∧mk,g ∧ . . . ∧ gk〉 = k!〈⊗ki=,g ∧ . . . ∧ gk〉 =(5.2.8)

k!det

 〈m,g〉 . . . 〈m,gk〉
...

. . .
...

〈mk,g〉 . . . 〈mk,gk〉


See Problem 8b.

Assume that M is an m-dimensional free module over D, with the basis
d, . . . ,dm. Recall that M′ is an m-dimensional free module with the dual
basis f, . . . , fm:

(5.2.9) 〈di, fj〉 = fj(di) = δij , i, j = , . . . ,m.
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Let M, . . . ,Mk,M := ⊗ki=Mi be free finite dimensional modules over
D with bases given in (5.2.1). Let f,i, . . . , fmi,i be the dual basis of M′

i for
i = 1, . . . , k. Then M′ is isomorphic to ⊗ki=1M

′
i, where we assume that

(5.2.10)

〈⊗ki=1mi,⊗ki=gi〉 :=
k∏
i=

〈mi,gi〉, mi ∈Mi,gi ∈M′, i = , . . . , k.

In particular, M′ has the dual basis ⊗ki=1fji,i, ji = , . . . ,mi, i = , . . . , k.
Assume that d, . . . ,dm is a basis of M and f, . . . , fm is the dual basis

of M′. Note that
∧k M′ is a submodule of (

∧k M)′. See Problem 8c. Note
that if Q ⊆ D then

∧k M′ = (
∧k M)′.

Let N be a module over D of dimension n, as defined in Problem 1.6.1.
Assume that M ⊆ N is a submodule of dimension m ≤ n. For any k ∈ N
we view

∧k M as a submodule of
∧k N.

∧0 M := ,
∧m M is a one

dimensional module, while for k > m it is agreed that
∧k M is a trivial

subspace consisting of zero vector. (See Problem 10.)
Let O ⊆ N be another submodule of N. Then (

∧p M)
∧

(
∧q O) is a

submodule of
∧p+q(M + O) of

∧p+q N, spanned by (m ∧ . . .mp) ∧ (o ∧
. . . ∧ oq), where m, . . . ,mp ∈ U,o, . . . ,oq ∈ O for p, q ≥ 1. If p = 0 or
q = 0 then (

∧p M)
∧

(
∧q O) is equal to

∧q O or
∧p M respectively.

In in the next sections we need the following lemma

Lemma 5.2.11 Let V be an n-dimensional vector space over F. As-
sume that 0 ≤ p1, p2, 1 ≤ q1, q2, k := p1 + q1 = p2 + q2 ≤ n. Suppose that
U,U,W,W are subspaces of V such that dim Ui = pi,dim Wi ≥ qi
for i = 1, 2 and U ∩W = U ∩W = {0}. Then

(5.2.11) (
p1∧

U)
∧

(
q∧

W) ∩ (
p∧

U)
∧

(
q∧

W) 6= {0}

if and only if the following condition holds. There exists a subspace V ⊆ V
of dimension k at such that

(5.2.12) U ⊂ V, U ⊂ V, V ⊆ (U + W), V ⊆ (U + W).

Proof. Assume first that (5.2.11) holds. Note that

(
p1∧

U)
∧

(
q∧

W) ⊆
k∧

(U + W), (
p∧

U)
∧

(
q∧

W) ⊆
k∧

(U + W).

Let V := (U + W) ∩ (U + W). Problem 10a yields that

(5.2.13) (
p1∧

U)
∧

(
q∧

W) ∩ (
p∧

U)
∧

(
q∧

W) ⊆
k∧

V.
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The assumption (5.2.11) implies that dim V ≥ k. We now show that U ⊂
V. Assume to the contrary that dim U ∩V = i < p. Choose a basis
v, . . . ,vn such that in V such that v, . . . ,vp and v, . . . ,vi,vp+, . . . ,vr
is a basis of U and V respectively. Observe that the span of vectors
v ∧ . . .∧vp ∧vi . . .viq for p1 < i1 < . . . < iq1 ≤ n contain the subspace
(
∧p1 U)

∧
(
∧q W). On the other hand the subspace

∧k V is has a basis
formed by the exterior products of k vectors out of v, . . . ,vi,vp+, . . . ,vr.
Hence ( (

∧p1 U )
∧

(
∧q W ) ) ∩

∧k V = {0}, which contradicts
(5.2.11-5.2.13). So U ⊂ V. Similarly U ⊂ V.

Next we claim that dim (U + U) ≤ k. Assume to the contrary that
dim (U + U) = j > k. Let u, . . . ,un is a basis of V, such that

u, . . . ,up and u, . . . ,up+p−j ,up+, . . . ,uj

are bases of U and U respectively. Then (
∧p1 U )

∧
(
∧q W ) is

spanned by
(
n−p1
q1

)
linearly independent vectors ui∧. . .uik , where 1 ≤ i1 <

. . . < ik ≤ n and {1, . . . , p1} ⊂ {i1, . . . , ik}. Similarly, (
∧p2 U )

∧
(
∧q W )

is spanned by
(
n−p2
q2

)
linearly independent vectors uj ∧ . . .ujk , where

1 ≤ j1 < . . . < jk ≤ n and {1, . . . , p1 + p2 − j, p1 + 1, . . . , j} ⊂ {i1, . . . , ik}.
Since j > k it follows that these two subset of vectors of the full set of the
basis of

∧k
V do not have any common vector, which contradicts (5.2.11).

So dim (U+U) ≤ k. Choose V any k dimensional subspace of V which
contains U + U.

Vice versa, suppose that V is a k-dimensional subspace of V satisfying
(5.2.12). So

∧k V is a one dimensional subspace which is contained in
(
∧pi Ui )

∧
(
∧qi Wi ) for i = 1, 2. Hence (5.2.11) holds.

2

Problems

1. Let M, . . . ,Mk be free finite dimensional modules over D. Show that
for any σ ∈ Sk ⊗ki=1Mσ(i) is isomorphic to ⊗ki=1Mi.

2. Prove Proposition 5.2.2.

3. Show

• Let A ∈ Dm×n and B ∈ Dp×q. Then the definitions of A ⊗ B
given by Definitions 5.1.7 and 5.2.3 coincide.
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• Let the assumptions of Definition 5.2.3 hold. Assume that k ≥
3. Then the recursive definition of ⊗ki=1Ai := (⊗k−1

i=1 Ai) ⊗ Ak
coincides with the definition of ⊗ki=1Ai given in Definition 5.2.3.

4. Let Ai ∈ Dmi×ni , i = 1, . . . , k ≥ 3. Show

• ⊗ki=1(aiAi) = (
∏k
i=1 ai)⊗ki=1 Ai.

• (⊗ki=1Ai)
T = ⊗ki=1A

T
i .

• If mi = ni and Ai is an upper triangular for i = 1, . . . , k then
⊗ki=1Ai is upper triangular.

• If A1, . . . , Ak are diagonal matrices then ⊗ki=1Ai is a diagonal
matrix. In particular ⊗ki=1Imi = Im1...mk .

• LetBi ∈ Dli×mi , i = 1, . . . , k. Then (⊗ki=1Bi)(⊗ki=1Ai) = ⊗ki=1(BiAi).

• Ai ∈ GL(mi,D), i = , . . . , k then ⊗ki=1Ai ∈ GL(m . . .mk,D)
and (⊗ki=1Ai)

−1 = ⊗ki=1A
−1
i .

• rank ⊗k
i=1 A =

∏k
i=1 rank Ai.

• For mi = ni, i = 1, . . . , k, det ⊗ki=1 Ai =
∏k
i=1(det Ai)

∏k
j=1mj
mi .

5. Prove Proposition 5.2.7.

6. (a) Let A ∈ Dm×n, B ∈ Dn×p. Show that ∧kAB = ∧kA ∧k B for
any k ∈ [1,min(m,n, p)] ∩ N.

(b) Let A ∈ Dn×n. Then ∧kA is upper triangular, lower triangu-
lar, diagonal if A is upper triangular, lower triangular, diagonal
respectively.

(c) ∧kIn = I(nk).

(d) IfA ∈ GL(n,D) then ∧kA ∈ GL(
(
n
k

)
,D) and (∧kA)−1 = ∧kA−1.

7. Let F be an algebraically closed field. Recall that over an algebraically
closed A ∈ Fn×n is similar to an upper triangular matrix.

(a) Let Ai ∈ Fni×ni for i = 1, . . . , k. Show that there exists Ti ∈
GL(ni,F) such that (⊗ki=1Ti)(⊗ki=1Ai)(⊗ki=1Ti)

−1 is an un upper
triangular matrix. Furthermore, let λ1,i, . . . , λni,i be the eigen-
values of Ai, counted with their multiplicities. Then

∏k
i=1 λji,i

for ji = 1, . . . , ni, i = 1, . . . , k are the eigenvalues of ⊗ki=1Ai
counted with their multiplicities.
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(b) Let A ∈ Fn×n and assume that λ1, . . . , λn are the eigenvalues
of A counted with their multiplicities. Show that

∏k
i=1 λji for

1 ≤ j1 < . . . < jk ≤ n are all the eigenvalues of ∧kA counted
with their multiplicites.

8. Let M be a finitely generated module over D.

(a) Let m, . . . ,mk ∈ M. Show that for any σ ∈ Sk mσ() ∧ . . . ∧
mσ(k) = sgn(σ)m∧ . . .∧mk. In particular, if mi =

∑
j 6=i ajmj

then m ∧ . . . ∧mk = 0.

(b) Prove the equality (5.2.8).

(c) Assume that d, . . . ,dm is a basis of M and f, . . . , fm is a dual
basis of M′. Show that 1

k! fi ∧ . . . ∧ fik ,  ≤ i < . . . < ik ≤ m

can be viewed as a basis for (
∧k M)′ for k ∈ [1,m].

9. Let M be an m-dimensional module over D as defined in Problem
1.6.1. Show

•
∧m M is a 1-dimensional module over D.

•
∧k V is a zero module over D for k > m.

10. (a) Let V be an finite dimensional vector space over F and assume
that U,W are subspaces of V. Show that

∧k U ∩
∧k W =∧k(U ∩W).

Hint : Choose a basis v, . . . ,vn in V satisfying the following
property. v, . . . ,vm and v, . . . ,vl,vm+, . . .vm+p−l are bases
for U and W respectively. Recall that vi ∧ . . . ∧ vik ,  ≤ i <

. . . < ik ≤ n form a basis in
∧k V. Observe next that bases of U

and W are of the form of exterior, (wedge), product of k vectors
from v, . . . ,vm and v, . . . ,vl,vm+, . . .vm+p−l respectively.

(b) Assume that V is a an n-dimensional module of Db. Suppose
furthermore that U,W are finitely generated submodules of V.
Show that

∧k U ∩
∧k W =

∧k(U ∩W).

11. Let V be an n-dimensional vector space over F and U ⊂ V,W ⊂ V′

be m-dimensional subspaces. Show

(a) Let {u, . . . ,um}, {f, . . . , fm} be bases of U,W respectively.
Then vanishing of the determinant det [〈ui, fj〉]mi,j= is indepen-
dent of the choice of bases in U,W.

(b) Let F be a field of infinite characteristic. TFAE
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i. dim U⊥ ∩W > .
ii. dim U ∩W⊥ > .
iii.

∧m−1 U ⊂ (
∧m− W)⊥.

iv.
∧m−1 W ⊂ (

∧m− U)⊥.
v. For any bases {u, . . . ,um}, {f, . . . , fm} of U,W respec-

tively 〈u ∧ . . . ∧ um, f ∧ . . . ∧ fm〉 = .

Hint: If dim U⊥∩W =  use Problem 2(e). If dim U⊥∩W > 
choose at least one vector of a basis in W to be in U⊥ ∩W and
use (5.2.8).

5.3 Sparse bases of subspaces

Definition 5.3.1 1. For 0 6= x ∈ Fn denote span (x)∗ := span (x)\{0}.

2. The support of x = (x, . . . , xn)> ∈ Fn is defined as supp (x) = {i ∈
{, . . . , n} : xi 6= }.

3. For a nonzero subspace U ⊆ Fn, a nonzero vector x ∈ U is called
elementary if for every 0 6= y ∈ U the condition supp (y) ⊆ supp (x)
implies supp (y) = supp (x). span (x)∗ is called an elementary class,
in U, if x ∈ U is elementary.

4. Denote by E(U) the union of all elementary classes in U.

5. A basis in {u, . . . ,um} in U is called sparse if u, . . . ,um are ele-
mentary.

Proposition 5.3.2 Let U be a a subspace of Fn of dimension m ∈
[1, n]. Then

1. x ∈ U is elementary if and only if for each 0 6= y ∈ U the condition
supp (x) ⊆ supp (x) implies that y ∈ span (x)∗.

2. E(U) consists of a finite number of elementary classes.

3. span (E(U)) = U.

4. For each subset I of {1, . . . , n} of cardinality m−1 there exists an el-
ementary x ∈ U such that supp (x)c := {, . . . , n}\supp (x) contains
I.

See Problem 1 for proof.

Definition 5.3.3 Let F be a field of 0 characteristic.
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1. A = (aij) ∈ Fk×n is called generic if all the entries of A are alge-
braically independent over Q, i.e. there is no nontrivial polynomial p
in kn variable with integer coefficients such that p(a11, . . . , akn) = 0.

2. A is called nondegenerate if all min(k, n) minors of A are nonzero.

3. An 1 ≤ m-dimensional subspace U ⊆ Fn is called nondegenerate if
for J ⊂ {1, . . . , n} of cardinality n − m + 1 there exists a unique
elementary set span x∗ such that J = supp (x).

Lemma 5.3.4 Let A ∈ Fk×n, 1 ≤ k < n be of rank k. TFAE:

1. A is nondegenerate.

2. The row space of A, (viewed as a column space of A>), is nondegen-
erate.

3. The null space of A is nondegenerate.

Proof. Consider first the column space of A> denoted by U ⊆ Fn.
Recall that any vector in U is of the form x = A>y for some y ∈ Fk. Let
I ⊂ {1, . . . , n} be a set of cardinality k−1. Let B = (A>)[I, :] ∈ Fk−1×k be
submatrix of A> with the rows indexed by the set I. The condition that
supp (x) ⊆ Ic is equivalent to the condition By = 0. Since rank B ≤ k− 1
there exists 0 6= x ∈ U such that supp (x) ⊆ Ic. Let d be defined as in
Problem 3.

Assume that rank B < k− 1. Then d = 0, see Problem 3(b). Further-
more, it is straightforward to show that for each each j ∈ Ic there exists a
nonzero x ∈ U such that supp (x) ⊆ (I ∪ {j})c. So det A[; , I ∪ {j}] = 0
and A is not degenerate.

Suppose that rank B = k − 1, i.e. d 6= 0. Then any nonzero x ∈
U, supp (x) ⊂ Ic is in span (A>d)∗. Let j ∈ Ic. Expand det A[:, I ∪ {j}
by the column j to deduce that and (A>d)j = ±det A[:, I ∪ {j}]. Thus
supp (x) = Ic if and only det A[:, I ∪ {j}] 6= 0 for each j ∈ Ic. These
arguments show the equivalence of 1 and 2.

The equivalence of 1 and 3 are shown in a similar way and are discussed
in Problem 4.

2

Definition 5.3.5 Let J = {J1, . . . , Jt} be t subsets of 〈n〉 each of car-
dinality m− 1. Then J satisfies the m-intersection property provided that

(5.3.1) # ∩i∈P Ji ≤ m−#P for all ∅ 6= P ⊆ 〈t〉.
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It is known that given a set J of t satisfying the above assumptions,
one can check effectively, i.e. in polynomial time, if J satisfies the m-
intersection property. See Problems 5 - 7.

The aim of this section to prove the following theorem.

Theorem 5.3.6 Let F be a field of 0 characteristic and assume that
A ∈ Fk×n is generic over Q.

1. Let I = {I1, . . . , Is} denote the collection of s ≤ k subsets of 〈n〉 each
of cardinality n− k+ 1. Then the elementary vectors x(I), . . . ,x(Is)
in the row space of A with supports I1, . . . , Is are linearly independent
if and only if I ′ := {Ic1 , . . . , Ics}, consisting of the complements of the
supports, have k intersection property.

2. Let J = {J1, . . . , Jt} denote the collection of t ≤ n− k subsets of 〈n〉
each of cardinality k+1. Then the elementary vectors y(J), . . . ,y(Jt)
in the null space of A with supports J1, . . . , Jt are linearly independent
if and only if J ′ := {Jc1 , . . . , Jct }, consisting of the complements of the
supports, have n− k intersection property.

The proof of this theorem needs a number of auxiliary results.

Lemma 5.3.7 Let A ∈ Fk×n be nondegenerate.

1. Let I = {I1, . . . , Is} denote the collection of s ≤ k subsets of 〈n〉 each
of cardinality n− k+ 1. Then the elementary vectors x(I), . . . ,x(Is)
in the row space of A with supports I1, . . . , Is are linearly independent
if and only if the k×s submatrix of ∧k−1A determined by its columns
indexed by Ic1 , . . . , I

c
s has rank s.

2. Let b, . . . ,bn−k ∈ Rn be a basis in the null space of A and denote
by B> ∈ Fn×(n−k) the matrix whose columns are b, . . . ,bn−k. Let
J = {J1, . . . , Jt} denote the collection of t ≤ n−k subsets of 〈n〉 each
of cardinality k + 1. Then the elementary vectors y(J), . . . ,y(Jt) in
the null space of A with supports J1, . . . , Jt are linearly independent
if and only if the (n − k − 1) × t matrix ∧n−k−1B determined by its
columns indexed by Jc1 , . . . , J

c
t has rank t.

See Problems 8-9 for the proof of the lemma.

Corollary 5.3.8 et A ∈ Fk×n be nondegenerate.

1. Let I = {I1, . . . , Ik} denote the collection of k subsets of 〈n〉 each of
cardinality n−k+ 1. Then the elementary vectors x(I), . . . ,x(Is) in
the row space of A with supports I1, . . . , Is not linearly independent if
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and only if the determinant of the full row k× k submatrix of ∧k−1X
determined by its columns indexed by Ic1 , . . . , I

c
k is identically zero for

any X ∈ Fk×n

2. Let b, . . . ,bn−k ∈ Rn be a basis in the null space of A and denote by
B> ∈ Fn×(n−k) the matrix whose columns are b, . . . ,bn−k. Let J =
{J1, . . . , Jt} denote the collection of t ≤ n − k subsets of 〈n〉 each of
cardinality k+ 1. Then the elementary vectors y(J), . . . ,y(Jn−k) in
the null space of A with supports J1, . . . , Jn−k are linearly independent
if and only if the determinant of the full row (n−k−1)×(n−k−1) sub-
matrix ∧n−k−1Y determined by its columns indexed by Jc1 , . . . , J

c
n−k

is identically zero for any Y ∈ F(n−k)×n.

(One may use Problem 10 to show part 2 of the above Corollary.)

Definition 5.3.9 Let V be an n-dimensional vector space over F. Let
U, . . . ,Ut ⊂ V be t subspaces of dimension m − 1.. Then {U, . . . ,Ut}
satisfies the dimension m-intersection property provided that

(5.3.2) dim ∩i∈P Ui ≤ m−#P for all ∅ 6= P ⊆ 〈t〉.

Theorem 5.3.6 follows from the following theorem.

Theorem 5.3.10 Let V be an n-dimensional vector space over a field
F of 0 characteristic and n ≥ 2. Let 2 ≤ m ∈ 〈n〉 and assume that
U, . . . ,Um ∈ Grm−(V′). Let Wm(U, . . . ,Um) ⊆ Grm(V) be the va-
riety of all subspaces X ∈ Grm(V) such that the one dimensional sub-
space Y :=

∧m(
∧m− X) ⊂ ⊗m(m−)V is orthogonal on the subspace

W := (
∧m− U)

∧
(
∧m− U)

∧
. . .
∧

(
∧m− Um) ⊂ ⊗m(m−)V′ of di-

mension one at most. Then Wm(U, . . . ,Um) is a strict subvariety of
Grm(V) if and only if U, . . . ,Um satisfy the dimension m-intersection
property.

Proof. Since each Ui ism−1 dimensional we assume that
∧m−1 Ui =

span (wi) for some wi ∈
∧m− Ui for i = 1, . . . ,m. Then W = span (w∧

. . .∧wm). Choose a basis x, . . . ,xm in X. Let yi be the wedge product of
m − 1 vectors from {x, . . . ,xm}\{xi} for i = 1, . . . ,m. Then y, . . . ,ym
are linearly independent and Y = span (y ∧ . . .∧ yn). The condition that
Y ⊥W, i.e. Y⊥∩W is a nontrivial subspace, is equivalent to the condition

(5.3.3) 〈y ∧ . . . ∧ ym,w ∧ . . . ∧wm〉 = m!det (〈yi,wj〉)mi,j= = .
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See Problem 5.2.11. Since F has 0 characteristic, the condition (5.3.3) is
equivalent to the vanishing of the determinant in the above formula. We
will use the formula (5.2.8) for each 〈yi,wj〉.

Assume first that U, . . . ,Um do not satisfy the dimension intersection
property. By interchanging the order of U, . . . ,Um if necessary, we may
assume that there exists 2 ≤ p ≤ m such that Z := ∩pj=Uj has dimension
m − p + 1 at least. Let Z ⊆ Z be a subspace of dimension m − p + 1.
Then dim X ∩ Z⊥ ≥ m − (m − p + ) = p − . Let F ⊆ X ∩ Z⊥ be a
subspace of dimension p− 1. Assume that x, . . . ,xm is a basis of X such
that x, . . . ,xp− is a basis of F. So Xi ⊂ F for i = p, . . . ,m. Hence

Xi∩U⊥j ⊇ Xi∩Z⊥ ⊇ Xi∩Z⊥ ⊇ F∩Z⊥ 6= {0} for i = p, . . . ,m, j = , . . . , p.

Thus 〈yi,wj〉 =  for i = p, . . . ,m, j = 1, . . . , p. See Problem 5.2.11.
Hence any p × p submatrix [〈yi,wj〉]mi,j=, with the set of columns 〈p〉,
must have a a zero row. Expand det [〈yi,wj〉]mi,j= by the columns 〈p〉 to
deduce that this determinant is zero. Hence Wm(U, . . . ,Um) = Grm(V).

We now show by induction on m that if U, . . . ,Um ∈ Grm−(V′) sat-
isfy the dimension m-intersection property then there exists X ∈ Grm(V)
such that dim Y⊥ ∩W = , for each n = m,m + 1, . . .. Assume that
m = 2. As dim (U ∩U) =  we deduce that dim (U + U) = . Let
Ui = span (ui), i = , . Then {u,u} is a basis in Z = span (u,u).
Hence Z⊥ is a subspace of V of dimension n − 2. Thus there exists a
subspace X ∈ Gr2(V) such that dim X ∩ Z⊥ = . Note that

∧m−1 X =
X,
∧m−1 Ui = Ui, i = , . Let x,x be a basis in X. The negation of

the condition (5.3.3) is equivalent to 〈x ∧ x,u ∧ u〉 6= . Use Problems
5.1.2(e) and 5.2.11 to deduce this negation.

Assume the induction hypothesis that for 2 ≤ l < n and any l dimen-
sional subspaces Û1, . . . , Ûl ⊂ V′ satisfying the l-dimensional intersection
property there exists X̂ ∈ Grl(V) such that dim Ŷ⊥∩Ŵ = 0. Let m = l+1
and assume that U, . . . ,Um satisfy the m-dimensional intersection prop-
erty. Let P := {P ⊆ 〈m−1〉 : dim ∩i∈P Ui = m−#P}. Note that {i} ∈ P
for each i ∈ 〈m−1〉. The m-intersection property yields that Um∩(∩i∈PUi)
is a strict subspace of ∩i∈PUi for each P ∈ P. I.e. ∩i∈PUi  Um for
each P ∈ P. Equivalently (∩i∈PUi)⊥ ! U⊥m. Problem 12(d) yields that
U⊥m\ ∪P∈P (∩i∈PUi)⊥ 6= ∅. Let xm ∈ U⊥m\ ∪P∈P (∩i∈PUi)⊥. Define
Ûi := Ui ∩ {xm}⊥, i = , . . . , l. For i ∈ 〈l〉 we have that {i} ∈ P, hence
xm 6∈ U⊥i . Thus Ûi ∈ Grl−1(V), i = , . . . , l. We claim that Û1, . . . , Ûl

satisfy the l-dimensional intersection property.
Assume to the contrary that the l-dimensional intersection property is

violated. By renaming the indices in 〈l〉 we may assume that there is 2 ≤
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k ∈ 〈l〉 such that dim ∩i∈〈k〉 Ûi > l−k = m−k− 1. Since Ûi ⊂ Ui, i ∈ 〈l〉
we deduce that dim ∩i∈〈k〉Ui > m−k−. The assumption that U, . . . ,Um

satisfy the m-dimensional intersection property yields dim ∩i∈〈k〉Ui = m−
k, i.e. 〈k〉 ∈ P. Since xm 6∈ (∩i∈〈k〉Ui)⊥ we deduce that dim (∩i∈〈k〉Ui) ∩
{xm}⊥ = dim ∩i∈〈k〉 Ûi = m−k−, contradicting our assumption. Hence
Û1, . . . , Ûl satisfy the l-dimensional intersection property.

Let v, . . . ,vn−,xm be a basis in V. Let f, . . . , fn be the dual basis
in V′. (See Problem 5.1.2(d).) Note that Ûi ⊂ span (f, . . . , fn−). Let
V = span (v, . . . ,vn−). Then we can identify span (f, . . . , fn−) with
V′. The induction hypothesis yields the existence of X̂ ∈ Grl(V) such that
dim Ŷ⊥ ∩ Ŵ = 0. Assume that X̂ is the columns space of the matrix X =
[xij ] ∈ Fn×l. The existence of the above X is equivalent to the statement
that the polynomial pÛ1,...,Ûl

(x11, . . . , xnl), defined in as in the Problem 15,
is not identically zero. Recall that Um ∈ span (f, . . . , fn−). Problem 13
yields the existence of a nontrivial polynomial pU(x11, . . . , xnl) such that
X̂ ∈ Grl(V), equal to the column space of X = [xij ] ∈ Fn×l, satisfies the
condition dim X̂ ∩U⊥m =  ⇐⇒ pU(x, . . . , xnl) 6= . As pUmpÛ1,...,Ûl

is a nonzero polynomial we deduce the existence of X̂ ∈ Gr(V) such that
dim X̂ ∩U⊥m =  and X̂ 6∈ Wm(Û1, . . . , Ûl).

Assume that x, . . . ,xm− is a basis of X̂. Let X := span (x, . . . ,xm).
We claim that X 6∈ Wm(U, . . . ,Um). Let Xi be the m − 1 dimen-
sional subspace spanned by {x, . . . ,xm}\{xi} for i = 1, . . . ,m. Then∧m−1 Xi = span (yi), i = , . . . ,m and

∧m−1 X = span (y, . . . ,ym).
Let

∧m−1 Ui = span (wi), i = , . . . ,m. Note that xm ∈ Xi ∩ U⊥m for
i = 1, . . . ,m− 1. Problem 13 yields that 〈yi,wm〉 =  for i = 1, . . . ,m− 1.
Hence det [〈yi,wj〉]mi,j= = 〈ym,wm〉det [〈yi,wj〉]m−i,j=. Since Xm = X̂ we
obtain that dim Xm ∩ U⊥m = . Hence 〈ym,wm〉 6= . It is left to show
that det [〈yi,wj〉]m−i,j= 6= . Let X̂i ⊂ Xi be the subspace of dimension
l − 1 = m− 2 spanned by {x, . . . ,xm−}\{xi} for i = 1, . . . ,m− 1. Note
that X̂i ⊂ X. So

∧l−1 X̂i = span (ŷi) and we can assume that yi = ŷi∧xm
for i = 1, . . . ,m − 1. Recall that Ûi = {xm}⊥ ∩ Ui. As dim Ûi =
dim Ui −  we deduce that there exists ui ∈ Ui such that 〈xm,ui〉 = 

for i = 1, . . . ,m − 1. So Ui = Ûi ⊕ span (ui). Let
∧l−1 Ûi = span (ŵi).

We can assume that wi = ŵi ∧ ui for i = 1, . . . ,m − 1. Problem 14
yields that 〈ŷi ∧ xm, ŵj ∧ uj〉 = l〈ŷi, ŵj〉 for i, j = 1, . . . ,m − 1. Hence
det [〈yi,wj〉]m−i,j= = lm−det [〈ŷi, ŵj〉]m−i,j=. Since X̂ 6∈ Wm(Û1, . . . , Ûl)
we deduce that det [〈ŷi, ŵj〉]m−1

i,j=1 6= 0, i.e. X 6∈ Wm(U, . . . ,Um). 2

Lemma 5.3.11 Let J1, . . . , Jt be t < m ≤ n subsets of 〈n〉 each of car-
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dinality m− 1. Assume that J1, . . . , Jt satisfy the m-intersection property.
Then there exists m − t subsets Jt+1, . . . , Jm of 〈n〉 of cardinality m such
that the sets J1, . . . , Jm satisfy the m-intersection property.

Proof. It suffices to show that there is a subset Jt+1 ⊂ 〈n〉 of
cardinality m − 1 such that J1, . . . , Jt+1 that satisfies the m-intersection
property. If t = 1 then choose J2 6= J1. Assume that t ≥ 2. Let
P = {P ⊂ 〈t〉 : # ∩i∈P Ji = m−#P}. Note that {i} ∈ P for i ∈ 〈t〉.

Let P,Q ∈ P and assume that P ∩ Q 6= ∅. We claim that P ∪ Q ∈ P.
Let X := ∩i∈PJi, Y := ∩j∈QJj . Then #X = m − #P,#Y = m − #Q.
Furthermore #(X ∩ Y ) = #X + #Y − #(X ∪ Y ). Observe next X ∪
Y ⊂ ∩k∈P∩QJk. Hence the m-intersection property of J1, . . . , Jt yields
#(X ∪ Y ) ≤ m−#(P ∩Q). Combine the m-intersection property with all
the above facts to deduce

m−#(P ∪Q) ≥ # ∩l∈P∪Q Jl = #(X ∩ Y ) = m−#P +m−#Q−#(X ∪ Y ) ≥
m−#P +m−#Q− (m−#(P ∩Q)) = m−#(P ∪Q).

It follows that there exists a partition {P1, . . . , Pl} of 〈t〉 into l sets that
equality in (5.3.1) holds for each Pi, and each P ⊂ 〈t〉 satisfying equality
in (5.3.1) is a subset of some Pi.

As # ∩i∈P1 Ji = m − #P1 ≥ m − t ≥ 1, we let x ∈ ∩i∈P1Ji. Choose
Jt+1 be any subset of cardinality m − 1 such that Jt+1 ∩ (∩i∈P1Ji) =
(∩i∈P1Ji)\{x}. Since #Jt+1 = m − 1 it follows that Jt+1 contains exactly
#P1 elements not in ∩i∈P1Ji.

We now show that J1, . . . , Jt+1 satisfy the m-intersection property. Let
Q ⊆ 〈t〉 and P := Q ∪ {t+ 1}. If Q 6∈ P then # ∩i∈P Ji ≤ m−#Q− 1 =
m − #P . Assume that Q ∈ P. To show (5.3.1) we need to show that
∩i∈QJi  Jt+1. Suppose first that Q ⊆ P1. Then x ∈ ∩i∈QJi and x 6∈ Jt+1.
Assume that Q ⊂ Pj , j > 1. So P1 ∩Q = ∅ and P1 ∪Q 6∈ P. Hence

q := #((∩i∈P1Ji) ∩ (∩j∈QJi)) = # ∩k∈P1∪Q Jk ≤ m− (#P1 + #Q)− 1.

Thus #((∩j∈QJi)\(∩i∈P1Ji)) = m−#Q− q ≥ #P1 + 1. We showed above
that #(Jt\(∩i∈P1Ji)) = #P1. Therefore ∩i∈QJi  Jt+1. 2

Proof of Theorem 5.3.6.
1. Suppose first that J1 := Ic1 , . . . , Js := Ics do not satisfy the intersection k
intersection property. Let P ⊂ 〈s〉 for which q := #(∩i∈PJi) ≥ k−#P +1.
Note that #P ≥ 2. We can assume that P = 〈p〉 for some 2 ≤ p ≤ s.
We claim that yi := ∧k−A[; , Ji], i = , . . . , p are linearly dependent. Let
J = ∩pi=1Ji. By renaming the indices if necessary we may assume that
J = 〈q〉. Suppose first that the columns i = 1, . . . , q are linearly dependent.
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Hence any k−1 columns in Ji are linearly dependent for i = 1, . . . , p. Thus
yi = 0 for i = 1, . . . , p and y, . . . ,yp are linearly dependent.

Assume now that the columns in i = 1, . . . , q are linearly independent.
Let C ∈ Fk×k be an invertible matrix. Then ∧k−1C is also invertible. Thus
y, . . . ,yp are linearly dependent if and only if (∧k−1C)y, . . . , (∧k−C)yp
are linearly dependent. Thus we may replace A by A1 := CA. Choose C

such that A1 =
[
Iq X
O F

]
, where O ∈ F(k−q)×q is the zero matrix and

F ∈ F(k−q)×(n−q).
Consider a k − 1 minor A1[{i}c,K] for some K ⊂ 〈n〉 of cardinality

k − 1 containing set J . Expanding this minor by the first q columns
we deduce that it is equal to zero, unless, unless i = q + 1, . . . , k. Let
J ′i := Ji\J, i = 1, . . . , p. Observe next that the submatrix of ∧k−1A1

based on the rows {q + 1}c, . . . , {k}c and columns J1, . . . , Jp is equal to
the matrix ∧k−q−1F [; , {J ′1, . . . , J ′p}]. Hence rank ∧k−1A1[; , {J1, . . . , Jp}] =
rank ∧k−q−1 F[; , {J′1, . . . , J′p}]. Since q ≥ k− p+ 1 it follows that F has at
most k− (k− p+ 1) = p− 1 rows, which implies that ∧k−q−1F has at most
p−1 rows. Hence rank ∧k−q−1 F[; , {J′1, . . . , J′p}] ≤ rank ∧k−q−1 F ≤ p−1.
Lemma 5.3.7 implies that x(I), . . . ,x(Ip) are linearly dependent, which
yield that x(I), . . . ,x(Is) are linearly dependent.

Assume now that J1 := Ic1 , . . . , Js := Ics satisfy the intersection k
intersection property. By Lemma 5.3.11 we can extend these s sets to
k subsets J1, . . . , Jk ⊂ 〈n〉 of cardinality k − 1 which satisfy the inter-
section k intersection property. Let V := Fn and identify V′ := Fn,
where 〈v, f〉 = f>v. Let {f, . . . , fn} be the standard basis in Fn. Let
Let Ui = ⊕j∈Jispan (fj), j = , . . . , k. Then U, . . . ,Uk have the k-
dimensional intersection property. (See Problem 16). Theorem 5.3.10 yields
that there exists a subspace X ∈ Grk(V) such that X 6∈ Wk(U, . . . ,Uk).
Assume that X is the column space of B> ∈ Fn×k. Assume that the
columns of B> are b, . . . ,bk. As in the proof of Theorem 5.3.10 let
yi = ∧j∈〈k〉\{i}bj , wi = ∧j∈Jifj , i = , . . . , k. Note that yi is i-th col-
umn of ∧k−1B>. Furthermore 〈yi,wj〉 = ∧k−B[{i}c, Jj ]. The choice of
B is equivalent to the condition det [〈yi,wj〉]ki,j= 6= . This is equivalent
to the condition that the minor of k × k submatrix of ∧k−1B based on
the columns J1, . . . , Jk is not equal to zero. Since A is generic, the cor-
responding minor of ∧k−1A 6= 0. (Otherwise the entries of A will satisfy
some nontrivial polynomial equations with integer coefficients.) Hence the
k columns of ∧k−1A corresponding to J1, . . . , Jk are linearly independent.
In particular the s columns of ∧k−1A corresponding to J1, . . . , Js are lin-
early independent. Lemma 5.3.7 implies that x(I), . . . ,x(Is) are linearly
independent.
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2. For a generic A let B ∈ F(n−k)×n such that the columns of B> span
the null space of A. So AB> = 0 and rank B = n − k. According to
Problem 4(e) B is generic. Note that for any J ⊂ 〈n〉 of cardinality k + 1
x(J,B) = y(J,A).

Assume that Jc1 , . . . , J
c
t do not satisfy the the n−k intersection property.

The above arguments and 1 imply that y(J, A), . . . ,y(Jt, A) are linearly
dependent.

Suppose now that Jc1 , . . . , J
c
t satisfy the the n− k intersection property.

Extend this set to the set J1, . . . , Jn−k, each set of cardinality k + 1, such
that Jc1 , . . . , J

c
n−k satisfy the n−k intersection property. Let B ∈ F(n−k)×n

be generic. 1 implies the n− k vectors x(J, B), . . . ,x(Jn−k, B) in the row
space of B are linearly independent. Let A ∈ Fk×n such that the columns
of A> span the null space of B. So rank A = k and BA> = 0. According
to Problem 4(e) A is generic. Hence it follows that x(Ji, B) = y(Ji, A), i =
, . . . , n − k are linearly independent vectors. Problems 3- 4 yield that we
can express the coordinate of each vector elementary vector in the null
space of A in terms of corresponding k × k minors of A. Form the matrix
C = [y(J, A) . . . y(Jn−k, A)] ∈ Fn×(n−k). Since rank C = n− k it follows
that some (n− k) minor of C is different form zero. Hence for any generic
A the corresponding minor of C is different from zero. I.e. the vectors
y(J, A), . . . ,y(Jn−k, A) are always linearly independent for a generic A.
In particular, the vectors y(J, A), . . . ,y(Jt, A) are linearly independent.

2

Problems

1. Prove Proposition 5.3.2.

2. Let A ∈ Fk×n be generic. Show

(a) All entries of A are nonzero.

(b) A is nondegenerate.

3. Let D be a domain and B ∈ D(k−1)×k, where k ≥ 1. Let Bi ∈
D(k−1)×(k−1) be the matrix obtained by deleting the column i for
i = 1, . . . , k. Denote d = (d,−d, . . . , (−)k−dk)>. Show

(a) d = 0 if and only if rank B < k− 1.

(b) Bd = 0.
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(c) Assume that x ∈ kerB. If rank B = k− 1 then x = bd for some
b in the division field of D.

4. Let A ∈ Fk×n, 1 ≤ k ≤ n. Assume that 1 ≤ rank A = l ≤ k. Show

(a) For any I ⊂ {1, . . . , n} of cardinality n − l − 1 there exist 0 6=
x ∈ nul A such that supp (x) ⊆ Ic.

(b) Let I ⊂ {1, . . . , n} be of cardinality n − k − 1 and denote B :=
A[:, Ic] ∈ Rk×(k+1). Then dim {x ∈ nul A : supp (x) ⊆ Ic} = 
if and only if rank B = k.

(c) Let I ⊂ {1, . . . , n} be of cardinality n − k − 1 and denote B :=
A[:, Ic] ∈ Rk×(k+1). Then there exists an elementary vector x ∈
nul A with supp (x) = Ic if and only if for each j ∈ Ic det A[:
, Ic\{j}] 6= 0.

(d) The conditions 1 and 3 of Lemma 5.3.4 are equivalent.
(e) Let rank A = l < k. The nul A is nondegenerate if all minors of

A of order l are nonzero.

5. Let J be defined in Definition 5.3.5. Show

(a) The condition (5.3.1) is equivalent to

#(∪i∈PJci ) ≥ n−m+ #P for all ∅ 6= P ⊆ 〈t〉.

(b) Assume that J satisfies (5.3.1). Let Jt+1 be a subset of 〈n〉
of cardinality m − 1. Then J ′ := J ∪ {Jt+1} satisfies the m-
intersection property if and only if

# ∪i∈P (Jci ∩ Jt+1) ≥ #P for all ∅ 6= P ⊆ 〈t〉.

In particular, if J ′ satisfies m-intersection property then each
Jci ∩ Jt+1 is nonempty for i = 1, . . . , t. Hint: Observe that
Jct+1 ∪ (∪i∈PJci ) decomposes to union of two disjoint sets Jct+1

and ∪i∈P (Jci ∩ Jt+1).

6. Let S1, . . . , St be t nonempty subsets of a finite nonempty set S of
cardinality t at least. S1, . . . , St is said to have a set of distinct rep-
resentatives if there exists a subset {s1, . . . , st} ⊆ S of cardinality t
such that si ∈ Si for i = 1, . . . , t. Show that if S1, . . . , St has a set of
distinct representatives then

# ∪i∈P Si ≥ #P for all ∅ 6= P ⊆ 〈t〉.

Hall’s Theorem states that the above conditions are necessary and
sufficient for existence of a set of distinct representatives [Hal35].
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7. Let the assumptions of Problem 6 hold. Let G be a bipartite graph
on a set of vertices V = 〈t〉 ∪ S and the set of edges E ⊆ 〈t〉 × S as
follows. (i, s) ∈ 〈t〉×S if and only if s ∈ Si. Show that S1, . . . , St has
a set of distinct representatives if and only if G has a match M ⊂ E,
i.e. no two distinct edges in M have a common vertex, of cardinality
t.

Remark : There exist effective algorithms in bipartite graphs G =
(V1 ∪ V2, E), E ⊆ V1 × V2 to find a match of size min(#V1,#V2).

8. Let A ∈ Fk×n be nondegenerate. Show

(a) Let I ⊆ 〈n〉 be of cardinality n−k+1. Then there exists x(I) =
(x, . . . , xn) in the row space of A, with supp (x(I)) = I, whose
nonzero coordinates are given by xj = (−1)pj+1det A[:, Ic ∪{j}]
for any j ∈ I, where pj is the number of integers in Ic less than
j.

(b) Let I and x(I) be defined as in (a). Show that there exists a
unique z(I) = (z, . . . , zk) ∈ Fk such that x(I) = z(I)A. Use
the fact that (zA)j =  for any j ∈ Ic and Cramer’s rule to show
that zi = (−1)idet A[{i}c, Ic] for i = 1, . . . , k.

(c) Let I1, . . . , Is ⊂ 〈n〉 be sets of cardinality n−k+1. Let x(I), z(I), . . . ,x(Is), z(Is)
be defined as above. Then

i. x(I), . . . ,x(Is) are linearly independent if and only if z(I), . . . , z(Is)
are linearly independent.

ii. Let D = diag(−1, 1,−1, . . .) ∈ Fk×k. Then the matrix
D[z(I)> z(I) . . . z(Is)] ∈ Fk×s is the submatrix ∧k−1A[; , {Ic1 , . . . , Ics}].
Hence z(I), . . . , z(Is) are linearly independent if and only
if the submatrix ∧k−1A[; , {Ic1 , . . . , Ics}] has rank s.

iii. The submatrix ∧k−1A[; , {Ic1 , . . . , Ics}] has rank s if and only
if not all the determinants det ∧k−1A[{i1}c, . . . , {is}c}, {{Ic1 , . . . , Ics}]
for 1 ≤ i1 < i2 < . . . < is ≤ k are equal to zero.

iv. x(I), . . . ,x(Ik) is a basis in the row space of A if and only
if the determinant of the full row submatrix of ∧k−1A cor-
responding to the columns determined by Ic1 , . . . , I

c
k is not

equal to zero.

9. Let A ∈ Fk×n be nondegenerate. Let b, . . . ,bn−k ∈ Rn be a basis in
the null space of A and denote by B> ∈ Fn×(n−k) the matrix whose
columns are b, . . . ,bn−k. Show

(a) Let J ⊆ 〈n〉 be of cardinality k + 1. Then there exists y(J) =
(y, . . . , yn)> in the column space of B>, with supp (y(J)) = J ,
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whose nonzero coordinates are given by yj = (−1)pj+1det B[:
, Jc ∪ {j}] for any j ∈ J , where pj is the number of integers in
Jc less than j.

(b) Let J and y(J) be defined as in (a). Show that there exists
a unique u(J) = (u, . . . , un−k)> ∈ Fn−k such that y(J) =
B>u(J). Use the fact that (B>u)j =  for any j ∈ Jc and
Cramer’s rule to show that ui = (−1)idet B[{i}c, Jc] for i =
1, . . . , n− k.

(c) Let J1, . . . , Jt ⊂ 〈n〉 be sets of cardinality k+1. Let y(J),u(J), . . . ,y(Jt),u(Jt)
be defined as above. Then

i. y(J), . . . ,y(Jt) are linearly independent if and only if u(J), . . . ,u(Jt)
are linearly independent.

ii. Let D = diag(−1, 1,−1, . . .) ∈ Fn−k×n−k. Then the matrix
D[u(J) u(J) . . . u(Jt)] ∈ F(n−k)×t is the submatrix ∧n−k−1B[; , {Jc1 , . . . , Jct }].
Hence u(J), . . . ,u(Jt) are linearly independent if and only
if the submatrix ∧n−k−1B[; , {Jc1 , . . . , Jct }] has rank t.

iii. The submatrix ∧n−k−1B[; , {Jc1 , . . . , Jct }] has rank t if and
only if not all the determinants det ∧n−k−1B[{i1}c, . . . , {it}c}, {{Jc1 , . . . , Jct }]
for 1 ≤ i1 < i2 < . . . < it ≤ n− k are equal to zero.

iv. y(J), . . . ,x(Jn−k) is a basis in the null space of A if and
only if the determinant of the full row submatrix of ∧n−k−1B
corresponding to the columns determined by Jc1 , . . . , J

c
n−k−1

is not equal to zero.

10. Let C ∈ Fn×(n−k) be a matrix of rank n− k. Show that there exists
A ∈ Fk×n of rank k such that AC = 0.

11. Let F be a field of 0 characteristic. Let p(x1, . . . , xn) ∈ F[x1, . . . , xn].
Show that p(x1, . . . , xn) = 0 for all x = (x, . . . , xn)> ∈ Fn if and
only if p is the zero polynomial. Hint: Use induction.

12. Let F be a field of 0 characteristic. Assume that V = Fn. Identify
V′ with Fn. So for u ∈ V, f ∈ V′ 〈u, f〉 = f>v. Show

(a) U ⊂ V is a subspace of dimension of n − 1 if and only if there
exists a nontrivial linear polynomial l(x) = ax + . . . + anxn
such that U is the zero set of l(x), i.e. U = Z(l).

(b) Let U, . . . ,Uk be k subspaces of V of dimension n − 1. Show
that there exists a nontrivial polynomial p =

∏k
i=1 li ∈ F[x1, . . . , xn],

where each li is a nonzero linear polynomial, such that ∪i=1Ui

is Z(p).
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(c) Show that if U, . . . ,Uk are k strict subspaces of V then ∪ki=1Ui

is a strict subset of V. Hint: One can assume that dim Ui =
n− , i = , . . . , k and the use Problem 11.

(d) Let U,U, . . . ,Uk be subspaces of V. Assume that U ⊆ ∪ki=Ui.
Show that there exists a subspace Ui which contains U. Hint:
Observe U = ∪ki=(Ui ∩U).

13. Let the assumptions of Problem 12 hold. Let X = [xij ], U = [uij ] ∈
Fn×l. View the matrices ∧lX,∧lU as column vectors in F(nl). Let
pU (x11, . . . , xnl) := det (X>U) = (∧lX)> ∧l U . View pU as a poly-
nomial in nl variables with coefficients in F. Show

(a) pU a homogeneous multilinear polynomial of degree l.

(b) pU is a trivial polynomial if and only if rank U < l.

(c) Let X ∈ Grl(V),U ∈ Grl(V′) and assume that the column space
of X = [xij ] = [x, . . . ,xl], U = [uij ] = [u, . . . ,ul] ∈ Fn×l are
X,U respectively. Then

pU (x11, . . . , xnl) = det [u>j xi]li,j=, 〈x∧. . .∧xl,u∧. . .∧ul〉 = l!pU (x, . . . , xnl).

In particular, dim X ∩U⊥ =  ⇐⇒ pU (x, . . . , xnl) 6= .

14. Let F be a field of 0 characteristic. Assume that V is an n-dimensional
vector space with n ≥ 2. Let X ⊂ V,U ⊂ V′ be m ≥ 2 dimensional
subspaces. Assume that X  U⊥. Let xm ∈ X\U⊥. Let Û =
{xm}⊥ ∩U. Let X̂ be any m − 1 dimensional subspace of X which
does not contain xm. Show

(a) dim Û = m− 1,X = X̂⊕ span (xm).

(b) There exists um ∈ U such that 〈xm,um〉 = . Furthermore
U = Û⊕ span (um).

(c) Let {x, . . . ,xm−}, {u, . . . ,um−} be bases of X̂, Ŷ respec-
tively. Then

〈x∧. . .∧xm,u∧u∧. . .∧um〉 = m〈x∧. . .∧xm−,u∧u∧. . .∧um−〉,

where um is defined in (b). Hint: Use (5.2.8) and expand the
determinant by the last row.

(d) Assume that
∧m−1 X̂ = span (ŷ),

∧m−1 Û = span (ŵ). Then
〈ŷ ∧ xm, ŵ ∧ un〉 = m〈ŷ, ŵ〉.
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15. Let the assumptions of Theorem 5.3.10 hold. View V and V′ as Fn.
So for u ∈ V, f ∈ V′ 〈u, f〉 = f>v. Let X ∈ Grm(V) be the column
space of X = [xij ] ∈ Fn×m. Show that there exists a homogeneous
polynomial pU,...,Um(x11, . . . , xnm) of degree m(m − 1) such that
X ∈ Wm(U, . . . ,Um) if and only if pU,...,Um(x11, . . . , xnm) = 0.
Hint: Choose a basis of X to be the columns of X. Then use the
first paragraph of Proof of Theorem 5.3.10 and Problem 13.

16. Let F be a field and V an n-dimensional subspace over F. Let
v, . . . ,vn be a basis of V. For ∅ 6= K ⊂ 〈n〉 let UK = ⊕i∈Kspan (vi).
Let t ≤ m and assume that K1, . . . ,Kt ⊂ 〈n〉 be sets of cardinality
m − 1 for any 2 ≤ m ∈ 〈n〉. Show that UK , . . . ,UKt satisfy the
m-dimensional intersection property if and only if K1, . . . ,Kt satisfy
the m-intersection property.

17. Let V be an n-dimensional vector space over F of characteristic 0.
Show

(a) Let 2 ≤ m ≤ n. If U, . . . ,Um are m − 1 dimensional vector
spaces satisfying the m-dimensional intersection property then
dim

∑m
i=1

∧m−1 Ui = m.

(b) Form = 3, n = 4 there exist U,U,U, which do not satisfy the
3-dimensional intersection property such that dim

∑3
i=1

∧2 Ui =
. Hint: Choose a basis in V and assume that each Ui is
spanned by by some two vectors in the basis.

(c) Show that for 2 ≤ t ≤ m = nU, . . . ,Ut satisfy the n-intersection
property if and only if dim

∑t
i=1

∧n−1 Ui = t.

5.4 Tensor products of inner product spaces

Let F = R,C and assume that Vi is a ni-dimensional vector space with the
inner product 〈·, ·〉i for i = 1, . . . , k. Then Y := ⊗ki=Vi has a unique inner
product 〈·, ·〉 satisfying the property

(5.4.1) 〈⊗ki=1xi,⊗ki=yj〉 =
k∏
i=

〈xi,yi〉i, for all xi,yi ∈ Vi, i = , . . . , k.

(See Problem 1.) We will assume that Y has the above canonical inner
product, unless stated otherwise.

Proposition 5.4.1 Let Ui,Vi be a finite dimensional IPS over F :=
R,C with the inner product 〈·, ·〉Ui

, 〈·, ·〉Vi
for i = 1, . . . , k respectively.
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Let X := ⊗ki=1Ui,Y := ⊗ki=Vi be IPS with the canonical inner products
〈·, ·〉X, 〈·, ·〉Y respectively. Then the following claims hold.

1. Assume that Ti ∈ L(Vi,Ui) for i = 1, . . . , k. Then ⊗ki=1Ti ∈ L(Y,X)
and (⊗ki=1Ti)

∗ = ⊗ki=1T
∗
i ∈ L(X,Y).

2. Assume that Ti ∈ L(Vi) is normal for i = 1, . . . , k. Then ⊗ki=1Ti ∈
L(Y) is normal. Moreover, ⊗ki=1Ti is hermitian or unitary, if each
Ti is hermitian or unitary respectively.

3. Assume that Ti ∈ L(Vi,Ui) for i = 1, . . . , k. Let σ1(Ti) ≥ . . . ≥
σrank Ti(Ti) > 0, σj(Ti) = 0, j > rank Ti be the singular values of Ti.
Let c,i, . . . , cni,i and d,i, . . . ,dmi,i be orthonormal bases of Vi and
Ui consisting of right and left singular vectors of Ti as described in
(4.9.5):

Ticji,i = σji(Ti)dji,i, ji = , . . . , i = , . . . , k.

Then

(⊗ki=1Ti)⊗ki=1cji,i =
( k∏
i=

σji(Ti)
)
⊗ki=dji,i, ji = , . . . , i = , . . . , k.

In particular

|| ⊗ki=1 Ti|| = σ1(⊗ki=1Ti) =
k∏
i=1

||Ti|| =
k∏
i=1

σ1(Ti),(5.4.2)

σ∏k
i=1 rank Ti

(⊗ki=1Ti) =
k∏
i=1

σrank Ti(Ti).

We consider a fixed IPS vector space V of dimension n and its exte-
rior products

∧k V for k = 1, . . . , n. Since
∧k V is a subspace of Y :=

⊗ki=Vi,V = . . . = Vk = V, it follows that
∧k V has a canonical inner

product induced by 〈·, ·〉Y. See Problem 3a.

Proposition 5.4.2 Let V,U be IPS of dimension n and m respectively.
Assume that T ∈ L(V,U). Suppose that c, . . . , cn and d, . . . ,dm be or-
thonormal bases of V and U composed of the right and left singular eigen-
vectors of T respectively, as given in (4.9.5). Let k ∈ N ∩ [1,min(m,n)].
Then the orthonormal bases

1√
k!

ci ∧ . . . ∧ cik ∈
k∧

V,  ≤ i < . . . < ik ≤ n,

1√
k!

dj ∧ . . . ∧ djk ∈
k∧

U,  ≤ j < . . . < jk ≤ m,
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are the right and the left singular vectors of ∧kT ∈ L(
∧k V,

∧k U), with
the corresponding singular values

∏k
l=1 σil(T ) and

∏k
l=1 σjl(T ) respectively.

In particular

∧kTc ∧ . . . ∧ ck = || ∧k T ||d ∧ . . . ∧ dk, || ∧k T || = σ(∧kT ) =
k∏
l=

σi(T ),

∧kTcrank T−k+1 ∧ . . . ∧ crank T =
k∏
l=

σrank T−k+l(T )drank T−k+1 ∧ . . . ∧ drank T

are the biggest and the smallest positive singular value of ∧kT for k ≤
rank T.

Corollary 5.4.3 Suppose that V is an IPS of dimension n. Assume
that T ∈ S+(V). Let λ1(T ) ≥ . . . ≥ λn(T ) ≥ 0 be the eigenvalues of
T with the corresponding orthonormal eigenbasis c, . . . , cn of V. Then
∧kT ∈ S+(

∧k V). Let k ∈ N ∩ [1, n]. Then the orthonormal base 1√
k!

ci ∧
. . . ∧ cik ,  ≤ i < . . . < ik ≤ n of

∧k V is an eigensystem of ∧kT , with
with the corresponding eigenvalues

∏k
l=1 λil(T ). In particular

∧kTc ∧ . . . ∧ ck = || ∧k T ||c ∧ . . . ∧ ck, || ∧k T || = λ(∧kT ) =
k∏
l=

λi(T ),

∧kTcrank T−k+1 ∧ . . . ∧ crank T =
k∏
l=

λrank T−k+l(T )drank T−k+1 ∧ . . . ∧ drank T

are the biggest and the smallest positive eigenvalue of ∧kT for k ≤ rank T.

See Problem 4.

Theorem 5.4.4 Let U,V,W be finite dimensional IPS. Assume that
P ∈ L(U,W), T ∈ L(V,U). Then

(5.4.3)
k∏
i=1

σi(PT ) ≤
k∏
i=1

σi(P )σi(T ), k = 1, . . .

For k ≤ min(rank P, rank T) equality in (5.4.3) holds if and only if the
following condition is satisfied. There exists a k-dimensional subspace Vk

of V which spanned by the first k-orthonormal right singular vectors of T ,
such that TVk is a k-dimensional subspace of U which is spanned the first
k-orthonormal right singular vectors of P .
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Proof. Suppose first that k = 1. Then ||PT || = ||PTv||, where
v ∈ V, ||v|| =  is the right singular vector of PT . Clearly, ||PTv|| =
||P (Tv)|| ≤ ||P || ||Tv|| ≤ ||P || ||T ||, which implies the inequality (5.4.3)
for k = 1. Assume that ||P || ||T || > 0. For the equality ||PT || = ||P || ||T ||
we must have that Tv is the right singular vector corresponding to P and
v the the right singular vector corresponding to T . This shows the equality
case in the theorem for k = 1.

Assume that k > 1. If the right-hand side of (5.4.3) is zero then
rank PT ≤ min(rank P, rank Q) < k and σk(PT ) = 0. Hence (5.4.3) triv-
ially holds. Assume that k ≤ min(rank P, rank Q). Then the right-hand
side of (5.4.3) is positive. Clearly min(rank P, rank T) ≤ min(dim U,dim V,dim W).
Observe that ∧kT ∈ L(

∧k V,
∧k U),∧kP ∈ L(

∧k U,
∧k W). Hence (5.4.3)

for k = 1 applied to ∧kPT = ∧kP∧kT yields σ1(∧kPT ) ≤ σ1(∧kP )σ1(∧kT ).
Use Proposition 5.4.2 to deduce (5.4.3). In order to have σ1(∧kPT ) =
σ1(∧kP )σ1(∧kT ) the operator ∧kT has a right first singular vector x ∈∧k V, such that 0 6= ∧kTx is a right singular vector of ∧kP corresponding
to σ1(∧kP ). It is left to show to show that x can be chosen as c ∧ . . .∧ ck,
where c, . . . , ck are the right singular vectors of T corresponding to the
first k-singular values of T .

Suppose that

σ1(T ) = . . . = σl1(T ) > σl1+1(T ) = . . . = σl2(T ) > . . . > 0 = σj(T ) for j > lp.

(5.4.4)

Assume first that k = li for some i ≤ p. Then σ1(∧kT ) > σ2(∧kT ) and
c ∧ . . . ∧ ck is the right singular vector of ∧kT corresponding to σ1(∧kT ).
Then σ1(∧kP ∧k T ) = σ1(∧kP )σ1(∧kT ) if and only if (∧kT )c ∧ . . .∧ ck =
Tc∧. . .∧Tck is the right singular vector of ∧kP corresponding to σ1(∧kP ).

Assume that

σ1(P ) = . . . = σm1(P ) > σm1+1(P ) = . . . = σm2(p) > . . . > 0 = σj(P ) for j > mq.

Suppose that k = mj−1 + r, where 1 ≤ r ≤ mj −mj−1. (We assume here
that m0 = 0.) Let U be the subspace spanned by the mj−1 right singular
vectors of P corresponding to the first mj−1 singular values of P and W

be the subspace spanned by mj −mj−1 right singular vectors of P corre-
sponding the σmj−1+1(P ), . . . , σmj (P ). Then any right singular vector of
∧kP corresponding to σ1(∧kP ) is in the subspace

(∧mj−1 U

)∧ (∧r W

)
.

Let Vk = span (c, . . . , ck). So c ∧ . . . ∧ ck is a nonzero vector in
∧k Vk

and (∧kT )c∧. . .∧ck is a nonzero vector in
∧k W, where W := TVk and

U = {0}. The equality in (5.4.3) yields that
(∧mj−1 U

)∧(∧r W

)
∩
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)∧(∧k W

)
6= {0}. Lemma 5.2.11 yields that U ⊂ TVk and

TVk ⊆ U + W. So TVk is spanned by the first k right singular vectors
of P .

Assume now that k = li−1 + s, 1 ≤ s < li − li−1. Then the subspace
spanned by all right singular vectors of ∧kT corresponding to σ1(∧kT ) is
equal to(∧li−1 U

)∧(∧s W

)
, where U and W are the subspaces spanned

the right singular vectors of T corresponding to the first li−1 and the
next li − li−1 singular values of T respectively. Let U := TU,W :=

TW. The equality in (5.4.3) yields that
(∧mj−1 U

)∧(∧r W

)
∩(∧li− U

)∧(∧s W

)
contains a right singular vector of ∧kP corre-

sponding to σ1(∧kP ). Lemma 5.2.11 yields that there exists a k dimensional
subspace V′ such that V′ ⊃ U + U and V′ ⊂ (U + W)∩ (U + W).
Hence there exists a k-dimensional subspace Vk of U + W containing
U such that V′ = TVk contains U and is contained in U + W. Hence
TVk is spanned by the first k right singular vectors of P .

Assume now that
∏l
i=1 σi(P )σi(T ) > 0. Then 0 < σi(P ), 0 < σi(T )

for i = 1, . . . , l. Assume that for k = 1, . . . , l equality holds in (5.4.3). We
prove the existence of orthonormal sets c, . . . , cl, d, . . . ,dl of right sin-
gular vectors of T and P respectively such that 1

σk(T )ck = dk, k = , . . . , l

by induction on l. For l = 1 the result is trivial. Assume that the result
holds for l = m and let l = m + 1. The equality in (5.4.3) for k = m + 1
yields the existence of m + 1 dimensional subspace X ⊆ U such that X is
spanned by the first m + 1 right singular vectors of T and TX is spanned
by the first m+ 1 right singular vectors of P . 2

Theorem 5.4.5 Let the assumptions of Theorem 5.4.4 hold. Then
equalities in (5.4.3) hold for k = 1, . . . , l ≤ min(rank P, rank T) if and
only if there exits first l orthonormal right singular vectors c, . . . , cl of
T , such that 1

σ1(T )Tc, . . . , 
σl(T )Tcl are first l orthonormal right singular

vectors of P .

Proof. We prove the theorem by induction on l. For l = 1 the
theorem follows from Theorem 5.4.4. Suppose that the theorem holds for
l = j. Let l = j + 1. Since we assumed that equality holds in (5.4.3)
for k = l Theorem 5.4.4 yields that there exists an subspace l-dimensional
subspace Vl of V which is spanned by the first l right singular vectors
of T , and TVl is spanned by the first l right singular vectors of P . Let
T̂ ∈ L(Vl, TVl), P̂ ∈ L(TVl, PTVl) be the restrictions of T and P to the
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subspaces Vl, TVl respectively. Clearly

(5.4.5) σi(T ) = σi(T̂ ) > 0, σi(P ) = σi(P̂ ) > 0, for i = 1, . . . , l.

The equalities in (5.4.3) for k = 1, . . . , l imply that σi(PT ) = σi(P )σi(T )
for i = 1, . . . , l. Let Q̂ := P̂ T̂ ∈ L(Vl, PTVl). Clearly Q̂ is the restric-
tion of Q := PT to Vl. Corollary 4.10.3 yields that σi(Q̂) ≤ σi(Q) for
i = 1, . . .. Since det Q̂ = det P̂ det T̂ we deduce that

∏l
i=1 σi(Q̂) =∏l

i=1 σi(P̂ )
∏l
i=1 σi(T̂ ). The above arguments show that

∏l
i=1 σi(Q̂) =∏l

i=1 σi(Q) > 0. Corollary 4.10.3 yields that σi(Q̂) = σi(Q). Hence we
have equalities

∏k
i=1 σi(P̂ Q̂) =

∏k
i=1 σi(P̂ )σi(T̂ ) for i = 1, . . . , l. The

induction hypothesis yields that there exist first l − 1 orthonormal right
singular vectors of T̂ c, . . . , cl−, such that 1

σ1(T̂ )
T̂c, . . . , 

σl(T̂ )
T̂cl− are

first l orthonormal right singular vectors of P̂ . Complete c, . . . , cl− to an
orthonormal basis c, . . . , cl of Vl. Then cl is a right singular vector of T̂
corresponding σl(T̂ ). Since T̂cl is orthogonal to T̂c, . . . , T̂cl−, which are
right singular vectors of P̂ it follows that 1

σl(T̂ )
T̂cl is a right singular vector

of P̂ corresponding to σl(T̂ ). Use (5.4.5) and the fact that T̂ and P̂ are the
corresponding restrictions of T and P respectively to deduce the theorem.

2

In what follows we need to consider the half closed infinite interval
[−∞,∞). We assume that

−∞ < a, a−∞ = −∞+ a = −∞−∞ = −∞ for any a ∈ [−∞,∞).

Denote by [−∞,∞)n↘ ⊂ [−∞,∞)n the set of x = (x, . . . , xn) where x1 ≥
. . . ≥ xn ≥ −∞.

We now extend the notions of majorizatrions, Schur set, Schur order
preserving function to subsets of [−∞,∞)n↘. Let x = (x, . . . , xn),y =
(y, . . . , yn) ∈ [−∞,∞)n↘. Then x � y, i.e. x is weakly majorized by y,
if the inequalities

∑k
i=1 xi ≤

∑k
i=1 yi hold for i = 1, . . . , n. x ≺ y, i.e. x

majorized by y, if x � y and
∑n
i=1 xi =

∑n
i=1 yi. A set D ⊆ [−∞,∞)n↘ is

called Schur set if for any y ∈ D and any x ≺ y x ∈ D.
Let I ⊆ [−∞,∞) be interval, which may be open, closed or half closed.

Denote by Io the interior of I. f : I → R is called continuous if f |I0 and
continuous. If a ∈ [−∞,∞) is an end point of I then f is continuous from
the at a from the left or right respectively. Suppose that −∞ ∈ I. Then
f : I → R is called convex on I if f is continuous on I and a nondecreasing
convex function on I0. (See Problem 6.) f is called strictly convex on I if f
continuous on I and strictly convex on I0. If −∞ ∈ I then f is continuous



5.4. TENSOR PRODUCTS OF INNER PRODUCT SPACES 263

on I, and is an increasing strictly convex function on I0. Note that the
function ex is a strictly convex function on [−∞,∞).

Let D ⊆ [−∞,∞)n. Then f : D → R is continuous, if for any x ∈ D
and any sequence of points xk ∈ D, k ∈ N the equality limk→∞ f(xk) =
f(x) holds if limk→∞ xk = x. D is convex if for any x,y ∈ D the point
tx + ( − t)y ∈ D for any t ∈ (0, 1). For a convex D, f : D → R is
convex if f is continuous and f(tx + (− t)y) ≤ tf(x) + (− t)f(y) for any
t ∈ (0, 1). For a Schur set D ⊆ [−∞,∞)n f : D → R is called if Schur order
preserving, strict Schur order preserving, strong Schur order preserving,
strict strong Schur order preserving if f is a continuous function satisfying
the properties described in the beginning of §4.7. It is straightforward to
generalize the results on Schur order preserving functions established in
§4.7 using Problem 7.

Let the assumptions of Theorem 5.4.4 hold. For any k ∈ N let
(5.4.6)
σk(T ) := (σ1(T ), . . . , σk(T )) ∈ Rk+,↘, logσk := (log σ1(T ), . . . , log σk(T )) ∈ [−∞,∞)k.

Theorem 5.4.4 yields

logσk(PT ) � logσk(P ) + logσk(T ) for any k ∈ [1,max(rank P, rank T)]
logσk(PT ) ≺ logσk(P ) + logσk(T ) for k > max(rank P, rank T),(5.4.7)
logσk(PT ) ≺ logσk(P ) + logσk(T ) if k = rank P = rank T = rank PT.

See Problem 8.

Theorem 5.4.6 Let U,V,W) be IPS. Assume that T ∈ L(V,U), P ∈
L(U,W) and l ∈ N.

1. Assume that D ⊂ [−∞,∞)l↘ be a strong Schur set containing logσl(PT ), logσl(P )+
logσl(T ). Let h : D → R be a strong Schur order preserving func-
tion. Then h(logσl(PT )) ≤ h(logσl(PT ) + logσl(PT )). Suppose
furthermore that h is a strict strong Schur order preserving. Then
equality holds in the above inequality if and only if equality holds in
(5.4.3) for k = 1, . . . , l.

2. Assume that logσl(PT ) ≺ logσl(P )+logσl(T ), and D ⊂ [−∞,∞)l↘
be a Schur set containing logσl(PT ), logσl(P ) + logσl(T ). Let h :
D → R be a Schur order preserving function. Then h(logσl(PT )) ≤
h(logσl(PT ) + logσl(PT )). Suppose furthermore that h is a strict
Schur order preserving. Then equality holds in the above inequality if
and only if equality holds in (5.4.3) for k = 1, . . . , l − 1.

See Problem 9.
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Corollary 5.4.7 Let U,V,W) be IPS. Assume that T ∈ L(V,U), P ∈
L(U,W) and l ∈ N. Assume that logσl(PT ) � logσl(P ) + logσl(T ), and
I ⊂ [−∞,∞) is an interval set containing logσ1(P )+logσ1(T ), log σl(PT ).
Let h : I → R be a convex function. Then

(5.4.8)
l∑
i=1

h(log σi(PT )) ≤
l∑
i=1

h(log σi(P )) + h(log σi(T )).

Corollary 5.4.8 Let U,V,W) be IPS. Assume that T ∈ L(V,U), P ∈
L(U,W) and l ∈ N. Then for any t > 0

(5.4.9)
l∑
i=1

σi(PT )t ≥
l∑
i=1

σi(P )tσi(T )t.

equality holds if and only if one has equality sign in (5.4.3) for k = 1, . . . , l.

Proof. Observe that the function h : [−∞,∞)l↘ → R given by
h((x1, . . . , xl)) =

∑l
i=1 e

txi is a strictly strongly Schur order preserving for
any t > 0. 2

The following theorem improves the results of Theorem 4.10.12.

Theorem 5.4.9 Let V be an n-dimensional IPS vector space over C
and assume that T ∈ L(V). Let λ1(T ), . . . , λn(T ) ∈ C be the eigenvalues
of T counted with their multiplicities and arranged in order |λ1(T ) ≥ . . . ≥
|λn(T )|. Let λa(T ) := (|λ1(T )|, . . . , |λn(T )|) and λa,k(T ) := (|λ1(T )|, . . . , |λk(T )|)
for k = 1, . . . , n. Then
(5.4.10)

l∏
i=1

|λi(T )| ≤
l∏
i=1

σi(T ) for l = 1, . . . , n− 1, and
n∏
i=1

|λi(T )| =
n∏
i=1

σi(T ).

For l = 1, . . . , k ≤ n equalities hold in the above inequalities if and only if
the conditions 1 and 2 of Theorem 4.10.12 hold.

In particular logλa,k(T ) � logσk(T ) for k = 1, . . . , n−1 and logλa(T ) ≺
logσ(T ).

Proof. By Theorem 4.10.12 |λ1(∧lT )| ≤ σ1(∧lT ). Use Problem 7
and Proposition 5.4.2 to deduce the inequalities in (5.4.10). The equality∏n
i=1 |λi(T )| =

∏l
i=1 σi(T ) is equivalent to the identity |det T |2 = det TT ∗.

Suppose that for l = 1, . . . , k ≤ n equalities hold in (5.4.10). Then
|λi(T )| = σi(T ) for i = 1, . . . , k. Hence equality holds in (4.10.14). The-
orem 4.10.12 implies that conditions 1,2 hold. Vice versa, assume that
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the conditions 1,2 of Theorem 4.10.12 hold. Then from the proof of The-
orem 4.10.12 it follows that |λi(T )| = σi(T ) for i = 1, . . . , k. Hence for
l = 1, . . . , k equalities hold in (5.4.10). 2

Corollary 5.4.10 Let V be an n dimensional IPS. Assume that T ∈
L(V).

1. Assume that k ∈ [1, n− 1]∩N and D ⊂ [−∞,∞)k↘ be a strong Schur
set containing logσk(T ). Let h : D → R be a strong Schur order
preserving function. Then h(logλk(T )) ≤ h(logσk(T )). Suppose
furthermore that h is a strict strong Schur order preserving. Then
equality holds in the above inequality if and only if equality holds in
(5.4.10) for l = 1, . . . , k.

2. Let I ⊂ [−∞,∞) be an interval containing log σ1(T ), log σk(T ), log |λk(T )|.
Assume that f : I → R is a convex nondecreasing function. Then∑k
i=1 f(log |λi(T )|) ≤

∑k
i=1 f(log |σi(T )|). If f is a strictly convex

increasing function on I then equality holds if and only if equality
holds in (5.4.10) for l = 1, . . . , k. In particular for any t > 0

(5.4.11)
k∑
i=1

|λi(T )|t ≤
k∑
i=1

σi(T )t.

Equality holds if and only if equality holds in (5.4.10) for l = 1, . . . , k.

3. Assume that D ⊂ [−∞,∞)n↘ is a Schur set containing logσn(T ). Let
h : D → R be a Schur order preserving function. Then h(logλa(T )) ≤
h(logσn(T )). Suppose furthermore that h is a strict Schur order pre-
serving. Then equality holds in the above inequality if and only if
equality holds T is a normal operator.

Problems

1. Let Vi be an ni-dimensional vector space with the inner product 〈·, ·〉i
for i = 1, . . . , k.

(a) Let e,i, . . . , eni,i be an orthonormal basis of Vi with respect
〈·, ·〉i for i = 1, . . . , k. Let 〈·, ·〉 be the inner product in Y :=
⊗ki=Vi such that ⊗ki=1eji,i where ji = 1, . . . , ni, i = 1, . . . , k is
an orthonormal basis of Y. Show that (5.4.1) holds.
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(b) Prove that there exists a unique inner product on Y satisfying
(5.4.1).

2. Prove Proposition 5.4.1.

3. Let V be an n-dimensional IPS with an orthonormal basis e, . . . , en.
Let Y := ⊗ki=Vi,V = . . . = Vk = V be an IPS with the canonical
inner product 〈·, ·〉Y. Show

(a) Let k ∈ N ∩ [1, n]. Then the subspace
∧k V of Y has an or-

thonormal basis

1√
k!

ei ∧ . . . ∧ eik ,  ≤ i < i < . . . < ik ≤ n.

(b) Let k ∈ N. Then the subspace SymkV of Y has an orthonomal
basis α(i1, . . . , ik)symk(ei , . . . , eik),  ≤ i ≤ . . . ≤ ik ≤ n. The
coefficient α(i1, . . . , ik) is given as follows. Assume that i1 =
. . . = il1 < il1+1 = . . . = il1+l2 < . . . < il1+...+lr−1+1 = . . . =
il1+...+lr , where l1 + . . .+ lr = k. Then α(i1, . . . , ik) = 1√

k!l1!...lr!
.

4. (a) Prove Proposition 5.4.2.

(b) Prove Corollary 5.4.3.

5. Let U,V be IPS of dimensions n andm respectively. Let T ∈ L(V,U)
and assume that we chose orthonormal base [c, . . . , cn], [d, . . . ,dm]
of V,U respectively satisfying (4.9.5). Suppose furthermore that

σ1(T ) = . . . = σl1(T ) > σl1+1(T ) = . . . = σl2(T ) > . . . >

(5.4.12)
σlp−1+1(T ) = . . . = σlp(T ) > 0, 1 ≤ l1 < . . . < lp = rank T.

Let

(5.4.13) Vi := span (cli−+, . . . , cli), i = , . . . , p, l := .

(a) Let k = li for some i ∈ [1, p]. Show that σ1(∧kT ) > σ2(∧kT ).
Furthermore the vector c ∧ . . . ∧ ck is a unique right singular
vector, (up to a multiplication by scalar), of ∧kT corresponding
to σ1(∧kT ). Equivalently, the one dimensional subspace spanned
by the the right singular vectors of ∧kT is given by

∧k ⊕ij=1Vi.
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(b) Assume that li − li−1 ≥ 2 and li−1 < k < li for some 1 ≤ i ≤ p.
Show that

(5.4.14) σ1(∧kT ) = . . . = σ(li−li−1
k−li−1))

(T ) > σ(li−li−1
k−li−1

)+1
(T ).

The subspace spanned by all right singular vectors of ∧kT cor-
responding to σ1(∧kT ) is given by the subspace:

(
li−1∧
⊕i−1
j=1Vj)

∧
(
k−li−∧

Vi).

6. Let I := [−∞, a), a ∈ R and assume that f : I → R is continuous. f
is called convex on I if f(tb + (1− t)c) ≤ tf(b) + (1− t)f(c) for any
b, c ∈ I and t ∈ (0, 1). We assume that t(−∞) = −∞ for any t > 0.
Show that if f is convex on I if and only f is a convex nondecreasing
bounded below function on Io.

7. D ⊂ [−∞,∞)n↘ such that D′ := D ∩ Rn is nonempty. Assume that
f : D → R is continuous. Show

(a) D is a Schur set if and only if D′ is a Schur set.

(b) f is Schur order preserving if and only if f |D′ is Schur order
preserving.

(c) f is strict Schur order preserving if and only if f |D′ is string
Schur order preserving.

(d) f is strong Schur order preserving if and only if f |D′ is strong
Schur order preserving.

(e) f is strict strong Schur order preserving if and only if f |D′ is
strict strong Schur order preserving.

8. Let the assumptions of Theorem 5.4.4 hold. Assume that rank P =
rank T = rank PT. Let k = rank P. Show that the arguments of the
proof of Theorem 5.4.5 implies that

∏k
i=1 σi(PT ) =

∏k
i=1 σi(P )σi(T ).

Hence logσk(PT ) ≺ logσk(P ) + logσk(T ).

9. Prove Theorem 5.4.6 using the results of Section 4.7.

10. Show that under the assumptions of Theorem 4.10.8 one has the in-
equality

∑l
i=1 σi(S

∗T )t ≤
∑l
i=1 σi(S)tσi(T )t for any l ∈ N and t > 0.

11. (a) Let the assumptions of Theorem 5.4.9 hold. Show that (5.4.10)
imply that λi(T ) = 0 for i > rank T.
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(b) Let V be a finite dimensional vector field over the algebraically
closed field F. Let T ∈ L(V). Show that the number of nonzero
eigenvalues, counted with their multiplicities, does not exceed
rank T. (Hint : Use the Jordan canonical form of T .)

5.5 Tensor products of exponents

Proposition 5.5.1 (The Lie-Trotter formula.) Let a > 0, A(t) : (−a, a)→
Cn×n, assume that

(5.5.1) lim
t→0

A(t)
t

= B.

Then for any s ∈ R

(5.5.2) lim
t→0

(I +A(t))
s
t = esB

Proof. The assumption (5.5.1) yields that B(t) := 1
tA(t), t 6= 0, B(0) :=

B is continuous at t = 0. Hence, there exists δ > 0 such that for |t| ≤ δ
||B(t)||2 = σ1(B(t)) ≤ c. Without loss of generality we can assume that
cδ ≤ 1

2 . Hence, for |t| ≤ δ all the eigenvalues of A(t) are in the disk |z| ≤ 1
2 .

Consider the analytic function log(1 + z) in the unit disk |z| < 1 with
log 1 = 0. The results of §3.1 that for |t| < δ

s

t
log(I +A(t)) = s

∞∑
i=1

(−t)i−1B(t)
i

= sB(t) +
∞∑
i=2

s(−t)i−1B(t)i

i
.

Recall that

||
∞∑
i=2

s(−t)i−1B(t)i

i
||2 ≤

∞∑
i=2

||st
i−1B(t)i

i
||2 ≤

∞∑
i=2

|s||t|i−1||B(t)||i2
i

≤ |s|(−|t|c− log(1− |t|c)
|t|

.

Hence
lim
t→0

(I +A(t))
s
t = exp(lim

t→0

s

t
log(I +A(t)) = esB .

Proposition 5.5.2 Let Vi is a ni-dimensional vector space for i =
1, . . . , k over F = R,C. Let Y := ⊗ki=Vi. Assume that Ai ∈ L(Vi), i =
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, . . .. Then

⊗ki=1e
Ait = e(A1,...,Ak)⊗ t ∈ L(⊗ki=1Vi), where

(5.5.3)

(A1, . . . , Ak)⊗ :=
k∑
i=1

In1 ⊗ . . .⊗ Ini−1 ⊗Ani ⊗ Ini+1 ⊗ . . .⊗ Ink ∈ L(⊗ki=1Vi),

for any t ∈ F.

See Problem 1.

Definition 5.5.3 Let V be a n-dimensional vector space over F. As-
sume that A ∈ L(V). Denote by A∧k the restriction of (A, . . . , A︸ ︷︷ ︸

k

)⊗ to

∧kV.

Corollary 5.5.4 Let the assumptions of Definition 5.5.3 hold for F =
R,C. Then ∧keAt = eA∧k t for any t ∈ F.

Definition 5.5.5 A subspace U ⊂ Hn is called a commuting subspace
if any two matrices A,B ∈ U commute.

Recall that if A,B ∈ Hn then each eigenvalue of eAeB are positive. (See
Problem 4.)

Theorem 5.5.6 Let U,V ⊂ Hn be two computing subspaces. Then the
functions

(5.5.4) fk : U×V→ R, fk(A,B) :=
k∑
i=

log λi(eAeB), k = , . . . , n,

are convex functions on U×V. (The eigenvalues of eAeB are arranged in
a decreasing order.)

Proof. Since eAeB has positive eigenvalues for all pairs A,B ∈ Hn

it follows that each fk is a continuous function on U × V. Hence it is
enough to show that

(5.5.5)

fk(
1
2

(A1+A2),
1
2

(B1+B2)) ≤ 1
2

(fk(A1, B1)+fk(A2, B2)), k = 1, . . . , n,

for any A1, A2 ∈ U, B, B ∈ V. (See Problem 5.)
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We first consider the case k = 1. Since A1A2 = A2A1, B1B2 = B2B1 it
follows that

e
1
2 (A1+A2)e

1
2 (B1+B2) = e

1
2A2e

1
2A1e

1
2B1e

1
2B2 .

Observe next that

e−
1
2A2(e

1
2A2e

1
2A1e

1
2B1e

1
2B2)e

1
2A2 = e

1
2A1e

1
2B1e

1
2B2e

1
2A2 ⇒

f1(
1
2

(A1 +A2),
1
2

(B1 +B2)) = λ1(e
1
2A1e

1
2B1e

1
2B2e

1
2A2).

Hence

λ1(e
1
2A1e

1
2B1e

1
2B2e

1
2A2) ≤ σ1(e

1
2A1e

1
2B1e

1
2B2e

1
2A2) ≤(5.5.6)

σ1(e
1
2A1e

1
2B1)σ1(e

1
2B2e

1
2A2) = λ1(e

1
2A1e

1
2B1e

1
2B1e

1
2A1)

1
2λ1(e

1
2A2e

1
2B2e

1
2B2e

1
2A2)

1
2 =

λ1(e
1
2A1e

1
2A1e

1
2B1e

1
2B1)

1
2λ1(e

1
2A2e

1
2A2e

1
2B2e

1
2B2)

1
2 = λ1(eA1eB1)

1
2λ1(eA2eB2)

1
2 .

This proves the convexity of f1.
We now show the convexity of fk. Use Problem 6 to deduce that we may

assume that U = UDn(R)U∗,V = VDn(R)V ∗ for some U, V ∈ U(n). Let
Uk,Vk ⊂ H(nk) be two commuting subspaces defined in Problem 6(d). The

above result imply that g : Uk ×Vk → R given by g(C,D) = log(eCeD) is
convex. Hence

g(
1
2

((A1)∧k+(A2)∧k),
1
2

((B1)∧k+(B2)∧k) ≤ 1
2

(g((A1)∧k , (B1)∧k)+g((A1)∧k , (B1)∧k)).

The definitions of (A, . . . , A︸ ︷︷ ︸
k

)⊗ and A∧k yield the equality 1
2 (A∧k +B∧k) =

( 1
2 (A+B))∧k . Use Problem 3 to deduce that the convexity of g implies the

convexity of fk. 2

Theorem 5.5.7 Let A,B ∈ Hn, k ∈ [, n]∩N. Assume that fk(tA, tB), t ∈
R is defined as in (5.5.4). Then the function fk(tA,tB)

t increases on (0,∞).
In particular

k∑
i=1

λi(A+B) ≤
k∑
i=1

log λi(eAeB), k = 1, . . . , n,(5.5.7)

tr eA+B ≤ tr(eAeB)..(5.5.8)

Equality in (5.5.8) holds if and only if AB = BA.
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Proof. Theorem 5.5.6 yields that gk(t) := fk(tA, tB) is convex on
R. (Assume U = span (A),V = span (B)). Note that gk(0) = 0. Prob-
lem 8 implies that gk(t)

t nondecreasing on (0,∞). Problem 9 implies that
limt↘0

gk(t)
t =

∑k
i=1 λi(A + B). Hence (5.5.7) holds. Use Problem 7 to

deduce that in (5.5.7) equality holds for k = n. Hence (5.5.7) is equivalent
to

(5.5.9) λ(A+B) ≺ logλ(eAeB).

Apply the convex function ex to this relation to deduce (5.5.8).
We now show that equality holds in (5.5.8) if and only if AB = BA.

Clearly if AB = BA then eAteBt = e(A+B)t, hence we have equality in
(5.5.8).

It is left to show the claim that equality in (5.5.8) implies that A and
B commutes. We prove this claim by induction on n. For n = 1 this
claim trivially holds. Assume that this claim holds for n = m − 1. Let
n = m. Since ex is strictly convex it follows that equality in (5.5.8) yields
the equality

AB = BA hence we have equality in (5.5.8) λ(A + B) = logλ(eAeB)
in particular λ(A + B) = log λ1(eAeB). Hence g1(t)

t is a constant function
on (0, 1], i.e. g1(t) = Kt for t ∈ [0, 1]. Use the inequalities (5.5.6) for
k = 1, A1 = At,A2 = A,B1 = Bt,B2 = B, t ∈ (0, 1) to conclude that we
must have equalities in all inequalities in (5.5.6). In particular we first must
have the equalities λ1(eAeB) = σ1(eAeB). Similarly we conclude that

k∏
i=1

λi(eAeB) =
k∏
i=1

σi(eAeB), i = 1, . . . , n⇒ λi(eAeB) = σi(eAeB), i = 1, . . . , n.

Theorem 4.10.12 yields that eAeB is a normal matrix.
Assume first that all the eigenvalues of eAeB are equal. Hence eAeB =

cI ⇒ eAeB = eBeA ⇒ AB = BA. Assume now that eAeB has l-distinct
eigenvalues γ1 > . . . > γl > 0. Let Wi be the eigenspace of eAeB corre-
sponding to γi. Clearly eBWi is the eigenspace of eBeA corresponding γi.
Hence eBWi = Wi ⇒ BWi ⊆Wi. Similarly eAWi = Wi ⇒ AWi ⊆Wi.
Since eAeB |Wi = γiIWi it follows that AB|Wi = BA|Wi for i = 1, . . . , k.
Hence eAeB = eBeA ⇒ AB = BA. 2

Let

(5.5.10) C(t) :=
1
t

log e
1
2AteBte

1
2At ∈ Hn, t ∈ R\{}.
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tC(t) is the unique hermitian logarithm of a positive definite hermitian
matrix e

1
2AteBte

1
2At, which is similar to eAteBt. Proposition 5.5.1 yields

(5.5.11) lim
t→0

C(t) = C(0) := A+B.

(See Problem 11.) In what follows we give a complementary formula to
(5.5.11).

Theorem 5.5.8 Let A,B ∈ Hn and assume that C(t) is be the her-
mitian matrix defined as (5.5.10). Then

∑k
i=1 λi(C(t)) are nondecreasing

functions on [0,∞) for k = 1, . . . , n satisfying

(5.5.12) λ(C(t)) ≺ λ(A) + λ(B).

Moreover there exists C ∈ Hn such that

(5.5.13) lim
t→∞

C(t) = C,

and C commutes with A. Furthermore there exist two permutations φ, ψ
on {1, . . . , n} such that

(5.5.14) λi(C) = λφ(i)(A) + λψ(i)(B), i = 1, . . . , n.

Proof. Assume that t > 0 and let λi(t) = etλi(C(t)), i = 1, . . . , n be
the eigenvalues of G(t) := e

1
2AteBte

1
2At. Clearly

λ1(t) = ||e 1
2AteBte

1
2At||2 ≤ ||e

1
2At||22||eBt||22 = e(λ1(A)+λ1(B))t.

By considering ∧kG(t) we deduce

k∏
i=1

λi(t) ≤ et
∑k
i=1 λi(A)+λi(B), k = 1, . . . , n, t > 0.

Note that for k = n equality holds. (See Problem 7.) Hence (5.5.12) holds.
Let gk(t) be defined as in the proof of Theorem 5.5.7. Clearly gk(t)

t =∑k
i=1 λi(C(t)). Since gk(t)

t is nondecreasing we deduce that
∑k
i=1 λi(C(t))

is nondecreasing on [0,∞). Furthermore (5.5.12) shows that gk(t)
t is bounded.

Hence limt→∞
gk(t)
t exists for each k = 1, . . . , n, which is equivalent to

(5.5.15) lim
t→∞

λi(C(t)) = ωi, i = 1, . . . , n.
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Let

ω1 = . . . = ωn1 > ωn1+1 = . . . = ωn2 > . . . > ωnl−1+1 = . . . ωnr ,(5.5.16)
n0 = 0 < n1 < . . . < nr = n.

Let ω0 := ω1 + 1, ωn+1 = ωn − 1. Hence for t > T the open inter-
val (ωi−1+ωi

2 , ωi+ωi+1
2 ) contains exactly ni − ni−1 eigenvalues of C(t) for

i = 1, . . . , r. In what follows we assume that t > T . Let Pi(t) ∈ Hn

be the orthogonal projection on the eigenspace of C(t) corresponding to
the eigenvalues λni−1+1(C(t)), . . . , λni(C(t)) for i = 1, . . . , r. Observe that
Pi(t) is the orthogonal projection on the eigenspace of G(t) the eigenspace
corresponding to the eigenvalues λni−1+1(t), . . . , λni(t) for i = 1, . . . , r. The
equality (5.5.13) is equivalent to

(5.5.17) lim
t→∞

Pi(t) = Pi, i = 1, . . . , r.

The claim that CA = AC is equivalent to the claim that APi = PiA for
i = 1, . . . , r.

We first show these claims for i = 1. Assume that the eigenvalues of A
and B are of the form

λ1(A) = . . . = λl1(A) = α1 > λl1+1(A) = . . . = λl2(A) = α2 > . . . >

λlp−1+1(A) = . . . = λlp(A) = αp,

λ1(B) = . . . = λm1(B) = β1 > λm1+1(B) = . . . = λm2(B) = β2 > . . . >

λmq−1+1(B) = . . . = λmq (B) = βq,

l0 = 0 < l1 < . . . < lp = n, m0 = 0 < m1 < . . . < mq = n.(5.5.18)

Note that if either p = 1 or q = 1, i.e. either A or B is of the form aI,
then the theorem trivially holds. Assume that p, q > 1. Let Qi, Rj be the
orthogonal projections on the eigenspaces of A and B corresponding to the
eigenvalues αi and βj respectively, for i = 1, . . . , p, j = 1, . . . , q. So

e
1
2At =

p∑
i=1

e
1
2αitQi, e

Bt =
q∑
j=1

eβjtRj , G(t) =
p,p,q∑

i1=i2=j=1

e
1
2 (αi1+αi2+βj)tQi1RjQi2 .

Observe next that

rank QiRj = rank (QiRj)∗ = rank RjQi = rank (QiRj)(QiRj)∗ = rank QiR2
j Qi =

Qi1RjQi2 = (Qi1Rj)(RjQi2) 6= 0⇒ Qi1RjQi1 6= 0, Qi2RjQi2 6= 0,
K := {(i, j) ∈ {1, . . . , p} × {1, . . . , q}, QiRj 6= 0},

I = (
p∑
i=1

Qi)(
q∑
j=1

Rj) =
p,q∑
i,j=1

QiRj =
∑

(i,j)∈K

QiRj .
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(See Problem 14.) Let

γ1 := max
(i,j)∈K

αi + βj , K1 := {(i, j) ∈ K, αi + βj = γ1},(5.5.19)

n′1 =
∑

(i,j)∈K1

rank QiRjQi, γ′1 = max
(i,j)∈K\K1

αi + βj, .

From the above equalities we deduce thatK1 6= ∅. Assume that (i, j), (i′, j′) ∈
K1 are distinct pairs. From the maximality of γ1 and the definition of K1

it follows that i 6= i′, j 6= j′. Hence QiRjQi(Qi′Rj′Qi′) = 0. Furthermore
γ′1 is well defined and γ′1 < γ1. Let

D1(t) :=
∑

(i,j)∈K\K1

e(αi+βj−γ1)tQiRjQi +

∑
(i1,j),(i2,j)∈K,i1 6=i2

e
1
2 (αi1+αi2+2βj−2γ1)tQi1RjQi2 .

(5.5.20)

D =
∑

(i,j)∈K1

QiRjQi, D(t) = D +D1(t).

Then n′1 = rank D. (See Problem 15b). We claim that

(5.5.21) ω1 = γ1, n1 = n′1.

From the above equalities and definitions we deduce G(t) = eγ1tD(t).
Hence λi(t) = eγ1tλi(D(t)). As each term e

1
2 (αi1+αi2+2βj−2γ1)t appearing in

D1(t) is bounded above by e−
1
2 (γ1−γ′1)t we deduce D1(t) = e

1
2 (γ′1−γ1)tD2(t)

and ≤ ||D2(t)||2 ≤ K. Hence limt→∞D(t) = D. Since rank D = n′1 we
deduce that we have 0.5λi(D) < λi(D(t)) ≤ 2λi(D) for i = 1, . . . , n′1. If
n′1 < n then from Theorem 4.4.6 we obtain that

λi(D(t)) = λi(D+D1(t)) ≤ λi(D) +λ1(D1(t)) = λ1(D1(t)) ≤ e 1
2 (γ′1−γ1)tK,

for i = n1 + 1, . . . , n. Hence

ωi = γ1, i = 1, . . . , n′1, ωi ≤
1
2

(γ + γ′1), i = n′1 + 1, . . . , n,

which shows (5.5.21). Furthermore limt→∞ P1(t) = P1, where P1 is the
projection on DCn. Since QiQi′ = δii′Qi it follows that Qi′D = DQi′ for
i′ = 1, . . . , p. Hence AD = DA ⇒ AP1 = P1A. Furthermore P1Cn is a
direct sum of the orthogonal subspaces QiPjQjCn, (i, j) ∈ K1, which are
the eigen-subspaces of A corresponding to λi(A) for (i, j) ∈ K1.
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We now define partially the permutations φ, ψ. Assume that K1 =
{(i1, j1), . . . , (io, jo)}. Then ω1 = γ1 = αik + βjk for k = 1, . . . , o. Let
e0 = 0 and ek = ek−1 +rank QikRjkQik for k = 1, . . . , o. Note that eo = n′1.
Define
(5.5.22)
φ(s) = lik−1+s−ek−1, ψ(s) = mjk−1+s−ek−1, for s = ek−1+1, . . . , ek, k = 1, . . . , o.

Then ω1 = ωs = λφ(s)(A) + λψ(s)(B) for s = 1, . . . , n1.
Next we consider the matrix

G2 = ∧n1+1G(t) = ∧n1+1e
1
2AteBte

1
2At = e

1
2A∧n1+1 teB∧n1+1 te

1
2A∧

n1+1t.

So λ1(G2(t)) =
∏n1+1
i=1 λi(t) and more generally all the eigenvalues of G2(t)

are for the form

n1+1∏
i=1

λj1(t) . . . λjn1+1(t), 1 ≤ j1 < j2 < . . . < jn1+1 ≤ n.

Since we already showed that limt→∞
log λi(t)

t = ωi for i = 1, . . . n we
deduce that

lim
t→∞

(
n1+1∏
i=1

λj1(t) . . . λjn1+1(t))
1
t = e

∑n1+1
i=1 ωji .

Hence all the eigenvalues of G2(t)
1
t converge to the above values for all

choices of 1 ≤ j1 < j2 < . . . < jn1+1 ≤ n. The limit of the maximal
eigenvalue of G2(t)

1
t is equal to eω1+...+ωn1+ωi for i = n1 + 1, . . . , n2, which

is of multiplicity n2 − n1. Let P2,1(t) be the projection on the eigenspace
of G2(t) spanned by the first n2 − n1 eigenvalues of G2(t). Our results for
G(t) yield that limt→∞ P2,1(t) = P2,1, where P2,1 is the projection on a
direct sum of eigen-subspaces of A∧n1+1 . Let W(t) = P(t)Cn + P(t)Cn
be a subspace of dimension n2 spanned by the eigenvectors of G(t) corre-
sponding to λ1(t), . . . , λn2(t). Then P2,1(t) ∧n1+1 Cn is the the subspace
of the form (

∧n1 P1(t)Cn)
∧

(P2(t)Cn). Since limt→∞ P1(t)Cn = P1Cn and
limt→∞ P2,1(t)∧n1+1Cn = P2,1∧n1+1Cn we deduce that limt→∞ P2(t)Cn =
W for some subspace of dimension n2 − n1 which is orthogonal to P1Cn.
Let P2 be the orthogonal projection on W. Hence limt→∞ P2(t) = P2.
(See for details Problem 12.)

We now show that that there exists two permutations φ, ψ on {1, . . . , n}
satisfying (5.5.22) such that ωi = αφ(i) + βψ(i) for i = n1 + 1, . . . , n2.
Furthermore AP2 = P2A. To do that we need to apply carefully our results
for ω1, . . . , ωn1 . The logarithm of the first n2−n1 limit eigenvalues ofG2(t)

1
t
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must be of the form λa(A∧n1+1)) +λb(B∧n1+1). The values of indices a and
b can be identified as follows. Recall that the indices φ(i), i = 1, . . . , n1 in
ωi = λφ(i)(A) + λψ(i)(B) can be determined from the projection P1, where
P1 is viewed as the sum of the projections on the orthogonal eigen-subspaces
QiRjCn, (i, j) ∈ K1. Recall that P2,1 ∧n1+1 Cn is of the from ∧n1(P1Cn) ∧
(P2Cn). Since P2Cn is orthogonal to P1Cn and ∧n1(P1Cn) ∧ (P2Cn) is an
invariant subspace of A∧n1+1 it follows that P2Cn is an invariant subspace
of A. It is spanned by eigenvectors of A, which are orthogonal to P1Cn
spanned by the eigenvectors corresponding λφ(i)(A), i = 1, . . . , n1. Hence
the eigenvalues of the eigenvectors spanning P2Cn are of the form λk(A)
for k ∈ I2, where I2 ⊂ {1, . . . , n}\{φ(1), . . . , φ(n1)} is a set of cardinality
n2 − n1. Hence P2Qi = QiP2, i = 1, . . . , p, which implies that P2A = AP2.

Note that λa((A∧n1+1)) =
∑n1
j=1 λφ(j)(A) + λk(A) for k ∈ I2. Since

G1(t) = e
1
2AteBte

1
2At is similar to the matrix H1(t) := e

1
2BteAte

1
2At we

can apply the same arguments of H2(t) := ∧n1+1H1(t). We conclude that
that there exists a set J2 ⊂ {1, . . . , n}\{ψ(1), . . . , ψ(n1)} is a set of car-
dinality n2 − n1 such that λb((B∧n1+1)) =

∑n1
j=1 λψ(j)(B) + λk′(B) for

k′ ∈ J2. Hence the logarithm of the limit value of the largest eigenvalue
of G2(t)

1
t which is equal to ω1 + . . . + ωn1 + ωn1+1 is given by n2 − n1

the sum of the pairs λa(A∧n1+1)) + λb(B∧n1+1). The pairing (a, b) in-
duces the pairing (k, k′) in I2 × J2. Choose any permutation φ such that
φ(1), . . . , φ(n1) defined as above and {φ(n1 + 1), . . . φ(n2)} = I2. We de-
duce the existence of a permutation ψ, where ψ(1), . . . , ψ(n1) be defined as
above, {ψ(n1 + 1), . . . , ψ(n2)} = J2, and (φ(i), ψ(i)) is the pairing (k, k′)
for i = n1 + 1, . . . , n2. This shows that ωi = λφ(i)(A) + λψ(i)(B) for
i = n1 + 1, . . . , n2. By considering the matrices ∧ni+1G(t) for i = 2, . . . , r
we deduce the theorem. 2

Problems

1. Prove Proposition 5.5.2. (Hint: Show that the left-hand side of
(5.5.3) is one parameter group in t with the generator (A1, . . . , Ak)⊗.)

2. Let the assumptions of Proposition 5.5.2 hold. Assume that

λ(Ai) = (λ1(Ai), . . . , λni(Ai)) for i = 1, . . . , k. Show that the n1 . . . nk
eigenvalues of (A1, . . . , Ak)⊗ are of the form

∑k
j=1 λij (Ai), where

ji = 1, . . . , ni, i = 1, . . . k.

(Hint: Recall that the eigenvalues of⊗ki=1e
Ait are of the form

∏k
i=1 e

λji (Ai)t.)
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3. Let the assumptions of Definition 5.5.3 hold for F = C. Assume
that λ(A) = (λ1, . . . , λn). Show that the

(
n
k

)
eigenvalues of A∧k are

λi1 + . . .+ λik for all 1 ≤ i1 < . . . < ik ≤ n.

4. Let A,B ∈ Cn×n.

(a) Show that eAeB is similar e
1
2AeBe

1
2A.

(b) Show that if A,B ∈ Hn then the eigenvalues all the eigenvalues
of eAeB are real and positive.

5. Let g ∈ C[a,b]. Show that the following are equivalent

(a) g( 1
2 (x1 + x2)) ≤ 1

2 (g(x1) + g(x2)) for all x1, x2 ∈ [a, b].

(b) g(t1x1+t2x2)) ≤ t1g(x1)+t2g(x2) for all t1, t2 ∈ [0, 1], t1+t2 = 1
and x1, x2 ∈ [a, b].

Hint: Fix x1, x2 ∈ [a, b]. First show that (a)⇒(b) for any t1, t2 ∈
[0, 1] which have finite binary expansions. Use the continuity to de-
duce that (a)⇒(b).

6. (a) Let Dn(R) ⊂ Hn be the subspace of diagonal matrices. Show
that Dn(R) is a maximal commuting subspace.

(b) Let U ⊂ Hn be a commuting subspace. Show that there exists
a unitary matrix U ∈ U(n) such that U is a subspace of of a
maximal commuting subspace UDn(R)U∗.

(c) Show that a commuting subspace U ⊂ Hn is maximal if and
only if U contains A with n distinct eigenvalues.

(d) Let U ⊂ Hn be a commuting subspace. Show that for each
k ∈ [1, n] ∩ N the subspace Uk := span (A∧k : A ∈ U) is a
commuting subspace of H(nk).

7. Let A,B ∈ Hn and assume that fn(A,B) is defined as in (5.5.4).
Show that fn(A,B) = tr(A+B). Hence fn(A,B) is convex on Hn ×
Hn.

Remark. We suspect that fk : Hn ×Hn → R defined as (5.5.4) is
not a convex function for k = 1, . . . , n− 1.

8. Let g : [0,∞) → R be a continuous convex function. Show that
if g(0) = 0 the the function g(t)

t nondecreasing on (0,∞). (Hint:
Observe that g(x) ≤ x

y g(y) + (1− x
y )g(0) for any 0 < x < y.)

9. Let A,B ∈ Cn×n.
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(a) Show limt→∞
1
t (e

AteBt − I) = A+B.

(b) View (eAteBt)
1
t as (I+(eAteBt−I))

1
t . Show limt→0(eAteBt)

1
t =

eA+B .

(c) Show that if A,B ∈ Hn then limt↘0
1
t log λi(eAteBt) = λi(A+B)

for i = 1, . . . , n.

10. Let A,B ∈ Hn.

(a) Assume that there exists a vector of length x such that Ax =
λi(A)x, Bx = λj(B)x. Then

(A+B)x = (λi(A) + λj(B))x, eAeBx = eλi(A)+λj(B)x.

The convexity of λ1(·) on Hn implies that λ1(A+B) = λ1(A) +
λ1(B). The inequalities

eλ1(A)+λ1(B) ≤ λ1(eAeB) ≤ σ1(eAeB) ≤ σ1(eA)σ1(eB) = eλ1(A)+λ1(B)

imply that we have equalities in the above inequalities. This
show the equality holds for k = 1 in (5.5.7) if A and B have a
common eigenvector corresponding to the first eigenvalue of A
and B.

11. Let C(t) be defined by (5.5.10).

(a) Show that C(−t) = C(t) for any t 6= 0.

(b) Show the equality (5.5.11).

12. Let V be an n-dimensional inner product space over F = R,C, with
the inner product 〈·, ·〉. Let

(5.5.23) S(U) := {u ∈ U, 〈u,u〉 = }, U is a subspace of V

be the unit sphere in U. (S({0}) = ∅.) For two subspaces of U,W ⊆
V the distance dist(U,V) is defined to be the Hausdorff distance
between the unit spheres in U,W:

dist(U,V) := max( max
u∈S(U)

min
v∈S(V)

||u− v||, max
v∈S(V)

min
u∈S(U)

||v − u||),

(5.5.24)
dist({0}, {0}) = ,dist({0},W) = dist(W, {0}) =  if dim W ≥ .

(a) Let dim U,dim V ≥ . Show that dist(U,V) ≤ . Equality
holds if either U∩ (V)⊥ or U⊥ ∩V are nontrivial subspaces. In
particular dist(U,V) =  if dim U 6= dim V.
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(b) Show that dist is a metric on ∪nm=0 Grm(V).

(c) Show that Grm(V) is a compact connected space with respect to
the metric dist(·, ·) for m = 0, 1 . . . , n. (I.e. for each sequence of
m-dimensional subspaces Ui, i ∈ N one can choose a subsequence
ij , j ∈ N such that Uij , j ∈ N converges in the metric dist to
U ∈ Grm(V). Hint: Choose an orthonormal basis in each Ui.)

(d) Show that ∪nm=0 Grm(V) is a compact space in the metric dist.

(e) Let U,Ui ∈ Grm(V), i ∈ N,  ≤ m < n. Let P, Pi ∈ S(V)
be the orthogonal projection on U,Ui respectively. Show that
limi→∞ dist(Ui,U) =  if and only if limi→∞ Pi = P .

(f) Let Ui ∈ Grm(V),Wi ∈ Grl(V),  ≤ m,n and Ui ⊥Wi for i ∈
N. Assume that limi→∞ dist(Ui,U) =  and dist((

∧m Ui)
∧

Wi,X) =
 for some subspaces U ∈ Grm(V),X ∈ Grl(

∧m+ V). Show
that there exists W ∈ Gr(V) orthogonal to U such that limi→∞ dist(Wi,W) =
.

13. Let V be an n-dimensional inner product space over F = R,C, with
the inner product 〈·, ·〉. Let m ∈ [1, n−1]∩N and assume that U,W ∈
Grm(V). Choose orthonormal bases {u, . . . ,um}, {w, . . . ,wm} in
U,W respectively. Show

(a) det (〈ui,wj〉)mi,j= = det (〈wj ,ui〉)mi,j=.
(b) Let x, . . . ,xm another orthonormal basis in U, i.e. xi =

∑m
k=1 qkiuk, i =

, . . . ,m where Q = (qki) ∈ Fm×m is orthogonal for F = R and
unitary for F = C. Then det (〈xi,wj〉)mi,j= = det Qdet (〈uk,wj〉)mk,j=.

(c) [U,W] := |det (〈ui,wj〉)mi,j=| is independent of the choices of
orthonormal bases in U,W. Furthermore [U,W] = [W,U].

(d) Fix an orthonormal basis in {w, . . . ,wm} in W. Then there
exists an orthonormal basis {u, . . . ,um} in U such that the
matrix (〈ui,wj〉)mi,j= is upper triangular. Hint: Let Wi =
span (wi+, . . . ,wn) for i = 1, . . . ,m−1. Consider span (w)⊥∩
U which has dimension m − 1 at least. Let U be an m − 1
dimensional subspace of span (w)⊥ ∩U. Let u ∈ S(U) ∩U⊥ .
Use U,V to define an m − 2 dimensional subspace U ⊂ U

and u ∈ S(U)∩U⊥ as above. Continue in this manner to find
an orthonormal basis {u, . . . ,um}.

(e) [U,W] ≤ . ([U,W] is called the cosine of the angle between
U,W.)

(f) [U,V] =  ⇐⇒ U⊥ ∩V 6= {0} ⇐⇒ U ∩V⊥ 6= {0}. Hint:
Use (d) and induction.
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14. Let V be an n-dimensional inner product space over F = R,C,
with the inner product 〈·, ·〉. Let l,m ∈ [1, n] ∩ N and assume that
U ∈ Grl(V),W ∈ Grm(V). Let P,Q ∈ S(V) be the orthogonal
projections on U,W respectively. Show

(a) U + W = U ∩W ⊕U ∩ (U ∩W)⊥ ⊕W ∩ (U ∩W)⊥.
(b) rank PQ = rank QP = rank PQP = rank QPQ.
(c) rank PQ = dim W−dim W∩U⊥, rank QP = dim U−dim U∩

W⊥.

15. Let V be an n-dimensional inner product space over F = R,C, with
the inner product 〈·, ·〉. Assume that V = ⊕li=Ui = ⊕mj=Wi be two
decompositions of V to nontirivial orthogonal subspaces:

dim Ui = li − li−, i = , . . . , p, dim Wj = mj −mj−, j = , . . . , q,

0 = l0 < l1 < . . . < lp = n, 0 = m0 < m1 < . . . < mq = n.

Let Qi, Rj ∈ S(V) be the orthogonal projections on Ui,Wj re-
spectively for i = 1, . . . , p, j = 1, . . . , q. Let nij := rank QiRj, i =
1, . . . ,p, j = 1, . . . , q.
Denote K := {(i, j) ∈ {1, . . . , p} × {1, . . . , q} : QiRj 6= 0}. For
i ∈ {1, . . . , p}, j ∈ {1, . . . , q} let

Ji := {j′ ∈ {1, . . . , q}, (i, j′) ∈ K}, Ij := {i′ ∈ {1, . . . , p}, (i′, j) ∈ K}.

Show

(a) Qi =
∑
j∈Ji QiRj , i = 1, . . . , p.

(b) Let (i1, j1), . . . , (is, js) ∈ K and assume that ia 6= ib, ja 6= jb.
Then

rank
s∑

a=1

QiaRja = rank (
s∑

a=1

QiaRja)(
s∑

a=1

QiaRja)∗ =

rank
s∑

a=1

QiaRjaQia =
s∑

a=1

rank QiaRjaQia =
s∑

a=1

rank QiaRja .

(c) rank Pi ≤
∑

j∈Ji
nij, where strict inequality may hold

(d) Ui =
∑
j∈Ji Uij , where Uij := PiWj ,dim Uij = nij for i =

1, . . . , p, j = 1, . . . , q.
(e) Qj =

∑
i∈Ij PiQj , j = 1, . . . , q.

(f) rank Qj ≤
∑

i∈Ij nij, where strict inequality may hold.

(g) Wj =
∑
i∈Ij Wji, where Wji = QjUi,dim Wji = nij for j =

1, . . . , q, i = 1, . . . , p.



Chapter 6

Nonnegative matrices

6.1 Graphs

6.1.1 Undirected graphs

An undirected graph is denoted by G = (V,E). It consists of vertices
v ∈ V , and edges which are unordered set of pairs (u, v), where u, v ∈ V ,
and u 6= v, which are called edges of G. The set of edges in G is denoted
by E. Let n = #V be the cardinality of V , i.e. V has n vertices. Then
it is useful to identify V with 〈n〉 = {1, . . . , n}. For example, the graph
G = (〈4〉, {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}) has 4 vertices and 5 edges.

In what follows we assume that G = (V,E) unless stated otherwise. A
graph H = (W,F ) is called a subgraph of G = (V,E) if W is a subset
of V and any edge in F is an edge in E. Given a subset W of V then
E(W ) = {(u, v) ∈ E, u, v ∈W} is the set of edges in G induced by W . The
graph G(W ) := (W,E(W )) is call the subgraph induced by W . Given a
subset F of E, then V (F ) is the set of vertices which consist of all vertices
participating in the edges in F . The graph G(F ) = (V (F ), F ) is called the
subgraph induced by F .

The degree of v, denoted by deg v is the number of edges that has v as
its vertex. Since each edge has two different vertices

(6.1.1)
∑
v∈V

deg v = 2#E,

where #E is the number of edges in E. v ∈ V is called an isolated vertex
if deg v = 0. Note that V (E) is the set of nonisolated vertices in G, and
G(E) = (V (E), E) the subgraph of G obtained by deleting isolated vertices
in G.

281
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The complete graph on n vertices is the graph with all possible edges. It
is denoted by Kn = (〈n〉, En), where En = {(1, 2), . . . , (1, n), (2, 3), . . . , (n−
1, n)}. For example, K3 is called a triangle. Note that for any graph on n
vertices G = (〈n〉, E) is a a subgraph of Kn, obtained by erasing some of
edges in Kn, but not the vertices! I.e. E ⊂ En.

G = (V,E) is called biparite if V is a union of two disjoint sets of
vertices V1 ∪ V2 so that each edge in E connects some vertex in V1 to some
vertex in E2. Thus E ⊂ V1 × V2 := {(v, w), v ∈ V1, w ∈ V2}. So any
bipartite graph D = (V1 ∪ V2, E) is a subgraph of the complete bipartite
graph KV1,V2 := (V1 ∪ V2, V1 × V2). For positive integers l,m the complete
bipartite graph on l,m vertices is denoted by Kl,m := (〈l〉∪ 〈m〉, 〈l〉×〈m〉).
Note that Kl,m has l +m vertices and lm edges.

6.1.2 Directed graphs

A directed graph is denoted by D = (V,E). V is the set of vertices and E is
the set of directed edges in G. So E is a subset of V ×V = {(v, w), v, w ∈ V .
Thus (v, w) ∈ E is a directed edge from v to W . For example, the graph
D = (〈4〉, {(1, 2), (2, 1), (2, 3), (2, 4), (3, 3), (3, 4), (4, 1)}) has 4 vertices and
7 (directed) edges.

The directed edge (v, v) ∈ E is called a loop, or selfloop.

deg inv := #{(w, v) ∈ E}, deg out : v = #{(v, w) ∈ E},

the number of edges to v and out of v in D. deg in,deg out are called the
in or out degrees. Clearly we have the analog of (6.1.1)

(6.1.2)
∑
v∈V

deg inv =
∑
v∈V

deg outv = #E,

A subgraph H = (W,F ) of D = (V,E) is defined, and the induced sub-
graphs D(W ) = (W,E(W )), D(F ) = (V (F ), F ) are defined as in §6.1.1.
v ∈ V is called isolated if deg in(v) = deg out(v) = 0.

6.1.3 Multi graphs

A multigraph is graph where multiple edges, in particular and multiple
loops are allowed. So undirected multigraph G = (V,E) has undirected
edges, which may be multiple, and may have multiple loops. A directed
multigraph D = (V,E) may have multiple edges.

Each directed multigraph D = (V,E) induces an undirected multigraph
G(D) = (V,E′), where each directed edge (u, v) ∈ E is viewed as undirected
edge (u, v) ∈ E′. (Each loop (u, u) ∈ E will appear twice in E′.) Vice
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versa, an undirected multigraph G = (V,E′) induces a directed multigraph
D(G) = (V,E), where each undirected edge (u, v) is (u, v) and (v, u), when
u 6= v. The loop (u, u) appears p times in D(G) if it appears p times in G.

Most of the following notions are the same for directed or undirected
graphs or multigraphs, unless stated otherwise. We state them for directed
multigraphs D = (V,E).

Definition 6.1.1

1. A walk in D = (V,E) a given by v0v1 . . . vp, where (vi−1, vi) ∈ E for
i = 1, . . . , p. One views it as a walk that starts at v0 and ends at vp.
The length of the walk p, is the number of edges in the walk.

2. A path is a walk where vi 6= vj for i 6= j.

3. A closed walk is walk where vp = v0.

4. A cycle is a closed walk where vi 6= vj for 0 ≤ i < j < p. A loop
(v, v) ∈ E is considered a cycle of length 1. Note that a closed walk
vwv, where v 6= w, is considered as a cycle of length 2 in a digraph,
but not a cycle in undirected multigraph!

5. D is called a diforest if D does not have cycles. (An undirected multi-
graph with no cycles is called forest.)

6. Let D = (V,E) be a diforest. Then the height of v ∈ V , denoted by
height(v) is the length of the longest path ending at v.

7. Two vertices v, w ∈ V, v 6= w are called strongly connected if there
exist two walks in D, the first starts at v and ends in w, and the second
starts in w and ends in v. For undirected multigraphs G = (V,E) the
corresponding notion is u, v are connected.

8. A multidigraph D = (〈n〉, E) is called strongly connected if either
n = 1 and (1, 1) ∈ E, or n > 1 and any two vertices in D are strongly
connected.

9. A multigraph G = (V,E) is called connected if either n = 1, or n > 1
and any two vertices in G are connected. ( Note that a simple graph on
one vertex G = (〈1〉, ∅) is considered connected. The induced directed
graph D(G) = G is not strongly connected.)

10. Assume that a multidigraph D = (V,E) is strongly connected. Then
D is called primitive if there exists k ≥ 1 such that for any two
vertices u, v ∈ V there exists a walk of length k which connects u and
v. For a primitive multidigraph D, the minimal such k is called the
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index of primitivity, and denoted by indprim(D). A strongly connected
multidigraph which is not primitive is called imprimitive.

11. For W ⊂ V , the multidirected subgraph D(W ) = (W,E(W ) is called
a strongly connected component of D if D(W ) is strongly connected,
and for any W $ U ⊂ V the induced subgraph D(U) = (U,E(U)) is
not strongly connected.

12. For W ⊂ V , the undirected subgraph G(W ) = (W,E(W ), of undi-
rected multigraph G = (V,E), is called a connected component of G
if G(W ) is connected, and for any W $ U ⊂ V the induced subgraph
G(U) = (U,E(U)) is not connected.

13. An undirected forest G = (V,E) is called a tree if it is connected.

14. A diforest D = (V,E) is called a ditree if the induced undirected
multigraph G(D) is a tree.

15. Let D = (V,E) be a multidigraph. The reduced (simple) digraph
Dr = (Vr, Er) is defined as follows. Let D(Vi), i = 1, . . . , k be all
strongly connected components of D. Let V0 = V \(∪ki=1Vi be all ver-
tices in D which do not belong to any of strongly connected compo-
nents of D. (It is possible that either V0 is an empty set or k = 0, i.e
D does not have connected components, and the two conditions are
mutually exclusive.) Then Vr = (∪v∈V0{v}) ∪ki=1 {Vi}, i.e. Vr is the
set of all vertices in V which do not belong to any connected compo-
nent and the new k vertices named {V1}, . . . , {Vk}. A vertex u′ ∈ Vr
is viewed as either a set consisting of one vertex v ∈ V0 or the set Vi
for some i = 1, . . . , k. Then Er does not contain loops. Furthermore
(s, t) ∈ Er, if there exists an edge from (u, v) ∈ E, where u and v are
in the set of vertices represented by s and t in V , respectively.

16. Two multidigraphs D1 = (V1, E1), D2 = (V2, E2) are called isomor-
phic if there exists a bijection φ : V1 → V2 which induces a bijection
φ̂ : E1 → E2. That is if (u1, v1) ∈ E1 is a diedge of multiplicity k
in E1 then (φ(u1), φ(v1)) ∈ E2 is a diedge of multiplicity k and vice
versa.

Proposition 6.1.2 Let G = (V,E) be a multigraph. Then G is a dis-
joint union of its connected components. That is, there is a unique de-
composition of V to ∪ki=1Vi, up to relabeling of V1, . . . , Vk, such that the
following conditions hold:

1. V1, . . . , Vk are nonempty and mutually disjoint.
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2. Each G(Vi) = (Vi, E(Vi)) is a connected component of G.

3. E = ∪ki=1Vi.

Proof. We introduce the following relation ∼ on V . First, we assume
that v ∼ v for each v ∈ V . Second, for v, w ∈ V, v 6= w we say that v ∼ w if
v is connected to w. It is straightforward to show that ∼ is an equivalence
relation. Let V1, . . . , Vk be the equivalence classes in V . That is v, w ∈ Vi
if and only if v and w are connected. The rest of the proposition follows
straightforward. 2

Proposition 6.1.3 Let D = (E, V ) be a multidigraph. Then the re-
duced digraph Dr is a diforest.

See Problem 6.1.5.4 for proof.

Proposition 6.1.4 Let D = (V,E) be a multidigraph. Then D is di-
forest if and only if it is isomorphic to a digraph D1 = (〈n〉, E1) such that
if (i, j) ∈ E1 then i < j.

Proof. Clearly, the graph in D1 can not have a cycle. So if D is iso-
morphic to D1 then D is a diforest. Assume now that D = (V,E) is a
diforest. Let Vi be all vertices in V having height i for i = 0, . . . , k ≥ 0,
where k is the maximal height of all vertices in D. Observe that from the
definition of height it follows that if (u, v) ∈ D, where u ∈ Vi, w ∈ Vj then
i < j. Rename the vertices of V such that Vi = {ni + 1, . . . , ni+1} where
0 = n0 < n1 < . . . < nk+1 = n := #V . Then one obtains the isomorphic
graph D1 = (〈n〉, E1, such that if (i, j) ∈ E1 then i < j. 2

Theorem 6.1.5 Let D = (V,E) be as strongly connected multidigraph.
Let ` be the g.c.d, (the greatest common divisor), of lengths of all cycles in
D. Then exactly one of the following conditions hold.

1. ` = 1. Then D is primitive. Let s be the length of the shortest cycle
in D. Then indprim(D) ≤ #V + s(#V − 2).

2. ` > 1. Then D is imprimitive. Furthermore, it is possible to divide
V to ` disjoint nonempty subsets V1, . . . , V` such E ⊂ ∪`i=1Vi × Vi+1,
where V`+1 := V1.

Define Di = (Vi, Ei) to be the following digraph. (v, w) ∈ Ei if there
is a path or cycle of length ` from v to w in D, for i = 1, . . . , l. Then
each Di is strongly connected and irreducible.
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The proof of this theorem will be given later using the Perron-Frobenius
theorem. (Obviously, one can give a pure graph theoretical proof of this
theorem.) If D is a strongly connected imprimitive multidigraph, then ` > 1
given in (2) is called the index of imprimitivity of D.

6.1.4 Matrices and graphs

For a set S denote by Sm×n the set of all m × n matrices A = [aij ]
m,n
i=j=1

where each entry aij is in S. Then A> ∈ Sn×m the transposed matrix
of A. Denote by F any field, and by R,C the field of real and complex
numbers respectively. By Sn(S) ⊂ Sn×n denote the set of all symmetric
matrices A = [aij ], aij = aji with entries in S. Assume that 0 ∈ S. Then
by Sn,0(S) ⊂ Sn(S) the subset of all symmetric matrices with entries in S
and zero diagonal. Denote by Pn ⊂ {0, 1}n×n the group of permutation
matrices. I.e. each P ∈ Pn has one 1 in each row and column, and all
other n2 − n entries are zero. Denote by 1 = (, . . . , )> ∈ Rn the vector
of length n whose all coordinates are 1. For A = [aij ] ∈ Cn×n we denote
by trA :=

∑n
i=1 aii the trace of A. For any t ∈ R, we let sign t = 0 if

t = 0 and sign t = t
|t| if t 6= 0. For A,B ∈ Rm×n we denote B − A ≥

0, B − A 
 0, B − A > 0 if B − A is a nonnegative matrix, a nonnegative
nonzero matrix, and a positive matrix respectively.

Let D = (V,E) be a digraph. Assume that #V = n and label the
vertices of V as 1, . . . , n. So we have a bijection φ1 : V → 〈n〉. This bijection
induces an isomorphic graph D1 = (〈n〉, E1). With D1 we associate the
following matrix A(D1) = [aij ]ni,j=1 ∈ Z

n×n
+ . So aij is the number of

directed edges from the vertex i t the vertex j. (If aij = 0 then there no
diedges from i to j.) When no confusion arises we let A(D) := A(D1), and
we call A(D) a representation matrix of D. Note that a different bijection
φ2 : V → 〈n〉 gives rise to a different A(D2), where A(D2) = P>A(D1)P
for some permutation matrix P ∈ Pn. See Problem 7.

If D is a simple digraph then A(D) ∈ {0, 1}n×n. If G is a multigraph,
then A(G) = A(D) where D is is the induced digraph by G. Hence A(G) ∈
Sn(Z+). If G is a graph then A(G) ∈ Sn,0({0, 1}).

Proposition 6.1.6 Let D = (V,E) be a multidigraph on n vertices. Let
A(D) be a representation matrix of D. For an integer k ≥ 1 let A(D)k =
[a(k)
ij ] ∈ Zn×n+ . Then a

(k)
ij is the number of walks of length k from the vertex

i to the vertex j. In particular, 1>A1 and trA are the total number of
walks and the total number of closed walks of length k in D.

Proof. For k = 1 the proposition is obvious. Assume that k > 1.
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Recall that

(6.1.3) a
(k)
ij =

∑
i1,...,ik−1∈〈n〉

aii1ai1i2 . . . aik−1j .

The summand aii1ai1i2 . . . aik−1j gives the number of walks of the form
i0i1i2 . . . ik−1ik, where i0 = i, ik = j. Indeed if one of the terms in this
product is zero, i.e. the is no diedge (ip, ip+1) then the product is zero. Oth-
erwise each positive integer aipip+1 counts the number of diedges (ip, ip+1).
Hence aii1ai1i2 . . . aik−1j is the number of walks of the form i0i1i2 . . . ik−1ik.
The total number of walks from i = i0 to j = ik of length k is the sum
given by (6.1.3). To find out the total number of walks in D of length k is∑n
i=j=1 a

(k)
ij = 1>A1. The total number of closed walks in D of length k is∑k

i=1 a
(k)
ii = trA(D)k. 2

With a multibipartite graphG = (V1∪V2, E), where #V1 = m,#V2 = n,
we associate a representation matrix B(G) = [bij ]

m,n
i=j=1 as follows. Let

ψ1 : V1 → 〈m〉, φ1 : V2 → 〈m〉 be bijections. This bijection induces an
isomorphic graph D1 = (〈m〉 ∪ 〈n〉, E1). Then bij is the number of edges
connecting i ∈ 〈m〉 to j ∈ 〈n〉 in D1.

A nonnegative matrix A = [aij ]ni=j=1 ∈ R
n×n
+ induces the following

digraph D(A) = (〈n〉, E). The diedge (i, j) is in E if and only if aij > 0.
Note that of A(D(A)) = [sign aij] ∈ {0, 1}n×n. We have the following
definitions.

Definition 6.1.7

1. A = [aij ] ∈ Rn×n is combinatorially symmetric if sign aij = sign aji

for i, j = 1, . . . , n.

2. A ∈ Rn×n+ is irreducible, if D(A) is strongly connected.

3. A ∈ Rn×n+ is primitive if Ak is a positive matrix for some integer
k ≥ 1.

4. Assume that A ∈ Rn×n+ is primitive. Then the smallest positive inte-
ger k such that Ak > 0 is called the index of primitivity of A, and is
denoted by indprim(A).

5. A ∈ Rn×n+ is imprimitive if A is irreducible but not primitive.

Proposition 6.1.8 Let D = (〈n〉, E) be a multidigraph. Then D is
strongly connected if and only if (I + A(D))n−1 > 0. in particular, a
nonnegative matrix A ∈ Rn×n+ is irreducible if and only if (I +A)n−1 > 0.
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Proof. Apply the Newton binomial theorem for (1+t)n−1 to the matrix
(I +A(D))n−1

(I +A(D))n−1 =
n−1∑
p=0

(
n− 1
p

)
A(D)p.

Recall that all the binomial coefficients
(
n−1
p

)
are positive for p = 0, . . . , n−

1. Assume first that (I + A(D))n−1 > 0. That is for any i, j ∈ 〈n〉 the
(i, j) entry of (I +A(D))n−1 is positive. Hence the (i, j) entry of A(D)p is
positive for some p = p(i, j). Let i 6= j. Since A(D)0 = I, we deduce that
p(i, j) > 0. Use Proposition 6.1.6 to deduce that there is a walk of length
p from the vertex i to the vertex j.

Suppose that D is strongly connected. Then for each i 6= j we must
have a path of length p ∈ [1, n − 1] which connects i and j, see Problem
1. Hence all off-diagonal entries of (I + A(D))n−1 are positive. Clearly,
(I +A(D))n−1 ≥ I. Hence (I +A(D))n−1 > 0.

Let A ∈ Rn×n+ . Then the (i, j) entry of (I+A)n−1 is positive if and only
if the (i, j) entry of (I +A(D(A)))n−1 is positive. Hence A is irreducible if
and only if (I +A)n−1 > 0. 2

6.1.5 Problems

1. Assume v1 . . . vp is a walk in D = (V,E). Show that it is possible
to subdivide this walk to walks vni−1+1 . . . vni , i = 1, . . . , q, where
n0 = 0 < n1 < . . . < nq = p, and each walk is either a cycle, or a
maximal path.

Erase all cycles in v1 . . . vp and apply the above statement to the new
walk. Conclude that a walk can be “decomposed” to a union of cycles
and at most one path. item Let D be a digraph. Assume that there
exists a walk from v to w. Show that

• if v 6= w then there exists a path from u to v of length #V − 1
at most;

• if v = w there exists a cycle which which contains v, of lenght
#V at most.

2. Let G = (V,E) be a multigraph. Show that the following are equiva-
lent.

• G is bipartite;

• all cycles in G have even length;
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• G is imprimitive.

3. Let D = (V,E) be a directed multigraph. Assume that the reduced
graph Dr of D has two vertices. List all all possible Dr up to the
isomorphism, and describe the structure of all possible corresponding
D.

4. Prove Proposition 6.1.3.

5. Let A(D) ∈ Zn×n+ be the representation matrix of the multidigraph
D = (〈n〉, E). Show that A(D) +A(D)> is the representation matrix
of the undirected multigraph G(D) = (〈n〉, E′) induced by D.

6. Let G = (〈n〉, E′) be an undirected multigraph, with the representa-
tion matrix A(G) ∈ Sn(Z+). Show that A(G) is the representation
matrix of the induced directed multigraph D(G). In particular, if G
is (simple) graph, then D(G) is a (simple) graph with no loops.

7. Let D = (V,E), D1 = (V1, E1) be two multidigraphs with the same
number of vertices. Show that D and D1 are isomorphic if and only
if A(D1) = P>A(D)P for some permutation matrix.

8. Let G = (V1 ∪ V2, E) be a bipartite multigraph. Assume that #V1 =
m,#V2 = n and B(G) ∈ Zm×n+ is a representation matrix of G.
Show that a full representation matrix of G is of the form A(G) =[

0m×m B(G)
B(G)> 0n×n

]
.

6.2 Perron-Frobenius theorem

The aim of this section to prove the Perron-Frobenius theorem.

Theorem 6.2.1 Let A ∈ Rn×n+ be an irreducible matrix. Then

1. The spectral radius of A, ρ(A), is a positive eigenvalue of A.

2. ρ(A) is an algebraically simple eigenvalue of A.

3. To ρ(A) corresponds a positive eigenvector 0 < u ∈ Rn, i.e. Au =
ρ(A)u.

4. All other eigenvalues of λ of A satisfy the inequality |λ| < ρ(A) if and
only if A is primitive, i.e. Ak > 0 for some integer k ≥ 1.
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5. Assume that A is imprimitive, i.e. not primitive. If n = 1 then
A = 01×1. Assume that n > 1. Then there exists exactly h − 1 ≥ 1
distinct eigenvalues λ1, . . . , λh−1 different from ρ(A) and satisfying
|λi| = ρ(A). Furthermore, the following conditions hold.

(a) λi is an algebraically simple eigenvalue of A for i = 1, . . . , h−1.

(b) The complex numbers λi
ρ(A) , i = 1, . . . , h− 1 and 1 are all h roots

of unity, i.e. λi = ρ(A)e
2π
√
−1i
h for i = 1, . . . , h−1. Furthermore,

if Azi = λizi, zi 6= 0 then |zi| = u > , the Perron-Frobenius
eigenvector u given in 3.

(c) Let ζ be any h-root of 1, i.e. ζh = 1. Then the matrix ζA is
similar to A. Hence, if λ is an eigenvalue of A then ζλ is an
eigenvalue of A having the same algebraic and geometric multi-
plicity as λ.

(d) There exists a permutation matrix P ∈ Pn such that P>AP = B
has a block h-circulant form

B =



0 B12 0 0 . . . 0 0
0 0 B23 0 . . . 0 0
...

...
...

... . . .
...

...

0 0 0 0
... 0 B(h−1)h

Bh1 0 0 0
... 0 0


,

Bi(i+1) ∈ Rni×ni+1 , i = 1, . . . , h, Bh(h+1) = Bh1, nh+1 = n1, n1 + . . .+ nh = n.

Furthermore, the diagonal blocks of Bh are all irreducible prim-
itive matrices, i.e.
(6.2.1)
Ci := Bi(i+1) . . . B(h−1)hBh1 . . . B(i−1)i ∈ Rni×ni+ , i = 1, . . . , h,

are irreducible and primitive.

Our proof follows closely the proof of H. Wielandt [Wie50]. For a non-
negative matrix A = [aij ] ∈ Rn×n+ define

(6.2.2) r(x) := min
i,xi>

(Ax)i
xi

, where x = (x, . . . , xn)> 
 0.

It is straightforward to show, e.g. Problem 1, that

(6.2.3) r(x) = max{s ≥ , sx ≤ Ax}.
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Theorem 6.2.2 (Wielandt’s characterization) Let A = [aij ] ∈ Rn×n+

be irreducible. Then

(6.2.4) max
x
0

r(x) = max
x=(x,...,xn)>
0

min
xi>

(Ax)i
xi

= ρ(A) > .

The maximum in the above characterization is achieved exactly for all x > 0
of the form x = au, where a > 0 and u = (u, . . . , un)> > 0 is the
unique positive probability vector, i.e.

∑n
i=1 ui = 1, satisfying Au = ρ(A)u.

Moreover, ρ(A) is a geometrically simple eigenvalue.

Proof. Let r(A) := supx
0 r(x). So r(A) ≥ r(1) = mini
∑
j= aij .

Since an irreducible A can not have a zero row, e.g. Problem 2, it follows
that r(A) ≥ r(1) > .

Denote by

(6.2.5) Πn := {(x1, . . . , xn)> 
 0,
n∑
i=

xi = },

the convex set of probability vectors in Rn+. Note that Πn is a compact
set in Rn+, i.e. from any sequence xj , j = , . . ., we can find a subsequence
xj ,xj , . . . which converges to x ∈ Πn.

Clearly, for any x 
 0 and a > 0 we have r(ax) = r(x). Hence

(6.2.6) r(A) = sup
x
0

r(x) = sup
x∈Πn

r(x).

Since A is irreducible, (I + A)n−1 > 0. Hence for any x ∈ Πn y = (I +
A)n−x > 0. (See Problem 3a.) As r(y) is a continuous function on
(I +A)n−1Πn, it follows that r(y) achieves its maximum on (I +A)n−1Πn

r1(A) := max
y∈(I+A)n−Πn

= r(v), for some v in (I +A)n−Πn.

r(A) is defined as the supremum of r(x) on the set of all x 
 0 it follows
that r(A) ≥ r1(A). We now show the reversed inequality r(A) ≤ r1(A)
which is equivalent to r(x) ≤ r(A) for any x 
 0.

One has the basic inequality

(6.2.7) r(x) ≤ r((I +A)n−x),x 
 0, with equality iff Ax = r(x)x,

see Problem 3d. For x ∈ Πn we have r(x) ≤ r((I + A)n−x) ≤ r(A). In
view of (6.2.6) we have r(A) ≤ r1(A). Hence r(A) = r1(A).

Suppose that r(x) = r(A),x 
 0. Then the definition of r(A) (6.2.6)
and (6.2.7) yields that r(x) = r((I +A)n−x). The equality case in (6.2.7)
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yields that Ax = r(A)x. Hence (1 + r(A))n−1x = (I + A)n−x > 0,
which yields that x is a positive eigenvector corresponding to the eigenvalue
r(A). So x = au, a >  for the corresponding probability eigenvector
u = (u, . . . , un)>, Au = r(A)u.

Suppose that r(z) = r(A) for some vector z = (z, . . . , zn)> 
 0. So
z >  and Az = r(A)z. Let b = mini ziui . We claim that z = bu. Otherwise
w := z − bu 
 0, w has at least one coordinate equal to zero, and Aw =
r(A)w . So r(w) = r(A). This is impossible since we showed above that
w > 0! Hence z = bu. Assume now that y ∈ Rn is an eigenvector of A
corresponding to r(A). So Ay = r(A)y. There exists a big positive number
c such that z = y+cu > 0. Clearly Az = r(A)z. Hence r(z) = r(A) and we
showed above that z = bu. So y = (b− c)u. Hence r(A) is a geometrically
simple eigenvalue of A.

We now show that r(A) = ρ(A). Let λ 6= r(A) be another eigenvalue of
A, which may be complex valued. Then

(λz)i = λzi = (Az)i =
n∑
j=

aijzj , i = , . . . , n,

where 0 6= z = (z, . . . , zn)> ∈ Cn is the corresponding eigenvector of
A. Take the absolute values in the above equality, and use the triangle
inequality, and the fact that A is nonnegative matrix to obtain

|λ| |zi| ≤
n∑
j=1

aij |zj |, i = 1, . . . , n.

Let |z| := (|z|, . . . , |zn|)> 
 0. Then the above inequality is equivalent to
|λ| |z| ≤ A|z|. Use (6.2.3) to deduce that |λ| ≤ r(|z|). Since r(|z|) ≤ r(A)
we deduce that |λ| ≤ r(A). Hence ρ(A) = r(A), which yields (6.2.4). 2

Lemma 6.2.3 Let A ∈ Rn×n+ be an irreducible matrix. Then ρ(A) is
an algebraically simple eigenvalue.

Proof. (For all the notions and results used here see §??.) Theorem
6.2.2 implies that ρ(A) is geometrically simple, i.e. nul (ρ(A)I − A) = 1.
Hence rank (ρ(A)I − A) = n − 1. Hence adj (ρ(A)I − A) = tuv>, where
Au = ρ(A)u, A>v = ρ(A)v,u,v > 0 and 0 6= t ∈ R. Note that uv> is a
positive matrix, hence tr uv> = v>u > . Since

(det (λI −A))′(λ = ρ(A)) = tr adj (ρ(A)I−A) = t(v>u) 6= ,

we deduce that ρ(A) is a simple root of the characteristic polynomial of A.
2
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As usual, denote by S1 := {z ∈ C, |z| = 1} the unit circle in the complex
plane

Lemma 6.2.4 Let A ∈ Rn×n+ be irreducible, C ∈ Cn×n. Assume that
|C| ≤ A. Then ρ(C) ≤ ρ(A). Equality holds, i.e. there exists λ ∈ spec C,
such that λ = ζρ(A) for some ζ ∈ S1, if and only if there exists a complex
diagonal matrix D ∈ Cn×n, whose diagonal entries are equal to 1, such that
C = ζDAD−1. The matrix D is unique up to a multiplication by t ∈ S1.

Proof. Assume that A = [aij ], C = [cij ]. Let z = (z, . . . , zn)> 6= 0 be
an eigenvector of C corresponding to an eigenvalue λ, i.e. λz = Cz. The
arguments of the proof of Theorem 6.2.2 yield that |λ| |z| ≤ |C| |z|. Hence
|λ| |z| ≤ |A| |z|, which implies that |λ| ≤ r(|z|) ≤ r(A) = ρ(A).

Suppose that ρ(C) = ρ(A). So there exists λ ∈ spec C, such that |λ| =
ρ(A). So λ = ζρ(A) for some ζ ∈ S1. Furthermore, for the corresponding
eigenvector z we have the equalities

|λ| |z| = |Cz| = |C| |z| = A|z| = r(A)|z|.

Theorem 6.2.2 yields that |z| is a positive vector. Let zi = di|zi|, |di| = 
for i = 1, . . . , n. The equality |Cz| = |C| |z| = A|z| combined with the
triangle inequality and |C| ≤ A, yields first that |C| = A. Furthermore for
each fixed i the nonzero complex numbers ci1z1, . . . , cinzn have the same
argument, i.e. cij = ζiaij d̄j for j = 1, . . . , n and some complex number ζj ,
where |ζi| = 1. Recall that λzi = (Cz)i. Hence ζi = ζdi for i = 1, . . . , n.
Thus C = ζDAD−1, where D = diag(d1, . . . , dn). It is straightforward to
see that D is unique up tD for any t ∈ S1.

Suppose now that for D = diag(d1, . . . , dn), where |d1| = . . . = |dn| = 1
and |ζ| = 1 we have that C = ζDAD−1. Then λ(C) = ζλ(A), see Fact
(??.??). So ρ(C) = ρ(A). Furthermore cij = ζdicij d̄j , i, j = 1, . . . , n. So
|C| = A. 2

Lemma 6.2.5 Let ζ1, . . . , ζh ∈ S1 be h distinct complex numbers which
form a multiplicative semi-group, i.e. for any integers i, j ∈ [1, h] ζiζj ∈
{ζ1, . . . , ζh}. Then the set {ζ1, . . . , ζh} is the set, (the group), of all h roots
of 1: e

2πi
√
−1

h , i = 1, . . . , h.

Proof. Let ζ ∈ T := {ζ1, . . . ζh}. Consider the sequence ζi, i = 1, . . ..
Since ζi+1 = ζζi for i = 1, . . . , and T is a semigroup, it follows that each ζi

is in T . Since T is a finite set, we must have two positive integers such that
ζk = ζl for k < l. Assume that k and l are the smallest possible positive
integers. So ζp = 1, where p = l−k ≥ 1, and Tp := {ζ, ζ2, . . . , ζp−1, ζp = 1}
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are all p roots of 1. ζ is called a p-primitive root of 1. I.e. ζ = e
2πp1

√
−1

p

where p1 is an positive integer less than p. Furthermore p1 and p are
coprime, which is denoted by (p1, p) = 1. Note that ζi ∈ T for any integer
i.

Next we choose ζ ∈ T , such that ζ is a primitive p-root of 1 of the
maximal possible order. We claim that p = h, which is equivalent to the
equality T = Tp. Assume to the contrary that Tp ( T . Let η ∈ T \Tp. The
previous arguments show that η = is a q-primitive root of 1. So Tq ⊂ T ,
and Tq ( Tp. So q can not divide p. Also the maximality of p yields that
q ≤ p. Let (p, q) = r be the g.c.d., the greatest common divisor of p and q.
So 1 ≤ r < q. Recall that Euclid algorithm, which is applied to the division
of p by q with a residue, yields that there exists two integers i, j such that
ip + jq = r. Let l := pq

r > p be the least common multiplier of p and q.

Observe that ζ ′ = e
2π
√
−1
p ∈ Tp, η′ = e

2π
√
−1
q ∈ Tq. So

ξ := (η′)i(ζ ′)j = e
2π(ip+jq)

√
−1

pq = e
2π
√
−1
l ∈ T .

As ξ is an l-primitive root of 1, we obtain a contradiction to the maximality
of p. So p = h and T is the set of all h-roots of unity. 2

Lemma 6.2.6 Let A ∈ Rn×n+ be irreducible, and assume that for a
positive integer h ≥ 2, A has h− 1 distinct eigenvalues λ1, . . . , λh−1, which
are distinct from ρ(A), such that |λ1| = . . . = |λh−1| = ρ(A). Then the
conditions (5a-5c) of Theorem 6.2.1 hold. Moreover, P>AP = B, where B
is of the form given in (5d) and P is a permutation matrix.

Proof. Assume that ζi := λi
ρ(A) ∈ S1 for i = 1, . . . , h − 1 and ζh =

1. Apply Lemma 6.2.4 to C = A and λ = ζiρ(A) to deduce that A =
ζiDiAD

−1
i where Di is a diagonal matrix such that |D| = I for i = 1, . . . , h.

Hence, if λ is an eigenvalue of A then ζiλ is an eigenvalue of A, with an
algebraic and geometrical multiplicity as λ. In particular, since ρ(A) is an
algebraically simple eigenvalue of A, λi = ζiρ(A) is an algebraically simple
of A for i = 1, . . . , h− 1. This establish (5a).

Let T = {ζ1, . . . , ζh}. Note that
(6.2.8)

A = ζiDiAD
−1
i = ζiDi(ζjDjAD

−1
j )D−1

i = (ζiζj)(DiDj)A(DiDj)−1.

So ζiζjρ(A) is an eigenvalue of A. Hence ζiζj ∈ T , i.e. T is a semigroup.
Lemma 6.2.5 yields that {ζ1, . . . , ζn} are all h roots of 1. Note that if
Azi = λizi, zi 6= 0, then zi = tDiu for some 0 6= t ∈ C, where u > 0 is
the Perron-Frobenius vector given in Theorem 6.2.1. This establish (5b) of
Theorem 6.2.1.
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Let ζ = e
2π
√
−1
h ∈ T . Then A = ζDAD−1, where D is a diagonal

matrix D = (d1, . . . , dn), |D| = I. Since D can be replaced by d̄1D, we can
assume that d1 = 1. (6.2.8) yields that A = ζhDhAD−h = IAI−1. Lemma
6.2.4 yields that Dh = diag(dh1 , . . . , d

h
n) = tI. Since d1 = 1 it follows that

Dh = I. So all the diagonal entries of D are h-roots of unity. Let P ∈ Pn
be a permutation matrix such that the diagonal matrix E = P>DP is of
the following block diagonal form

E = In1⊕µ1In2⊕. . .⊕µl−1Inl , µi = e
2πki

√
−1

h , i = 1, . . . , l−1, 1 ≤ k1 < k2 < . . . < kl−1 ≤ h−1.

Note that l ≤ h and equality holds if and only if ki = i. Let µ0 = 1.
Let B = P>AP . Partition B to a block matrix [Bij ]li=j=1 where Bij ∈

Rni×nj+ for i, j = 1, . . . , l. Then the equality A = ζDAD−1 yields B =
ζEBE−1. The structure of B and E implies the equalities

Bij = ζ
µi−1

µj−1
Bij , i, j = 1, . . . , l.

Since all the entries of Bij are nonnegative we obtain that Bij = 0 if
ζ µi−1
µj−1

6= 1. Hence Bii = 0 for i = 1, . . . , l Since B is irreducible it follows
that not all Bi1, . . . , Bil are zero matrices for each i = 1, . . . , l. First start
with i = 1. Since µ0 = 1 and j1 ≥ 1 it follows that µj 6= ζ for j > 1. So
B1j = 0 for j = 3, . . . , l. Hence B12 6= 0, which implies that µ1 = ζ, i.e.
k1 = 1. Now let i = 2 and consider j = 1, . . . , l. As ki ∈ [k1 + 1, h − 1]
for i > 1, it follows that B2j = 0 for j 6= 3. Hence B23 6= 0 which yields
that k2 = 2. Applying these arguments for i = 3, . . . , l − 1 we deduce that
Bij = 0 for j 6= i + 1, Bi(i+1) 6= 0, ki = i for i = 1, . . . , l − 1. It is left to
consider i = l. Note that

ζµl−1

µj−1
=

ζl

ζj−1
= ζl−(j−1), which is different from 1 for j ∈ [2, l].

Hence Blj = 0 for j > 1. Since B is irreducible, B11 6= 0. So ζl = 1. Since
l ≤ h we deduce that l = h. Hence B has the block form given in (5d). 2

Proposition 6.2.7 Let A ∈ Rn×n+ be irreducible. Suppose that 0 �
w ∈ Rn+ is an eigenvector of A, i.e. Aw = λw. Then λ = ρ(A) and w > 0.

Proof. Let v > 0 be the Perron-Frobenius vector of A>, i.e. A>v =
ρ(A)v. Then

v>Aw = v>(λw) = ρ(A)v>w⇒ (ρ(A)− λ)v>w = .
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If ρ(A) 6= λ we deduce that v>w = , which is impossible, since v > 0 and
w 
 0. Hence λ = ρ(A). Then w is the Perron-Frobenius eigenvector and
w > 0. 2

Lemma 6.2.8 Let A ∈ Rn×+ be irreducible. Then A is primitive if and
only if each eigenvalue λ of A different from ρ(A) satisfies the inequality
|λ| < ρ(A). I.e. condition (4) of Theorem 6.2.2 holds.

Proof. By considering B = 1
ρ(A)A, it is enough to consider the case

ρ(A) = 1. Assume first that if λ 6= 1 is an eigenvalue of A then |λ| < 1.
Theorem 6.2.2 implies Au = u, A>w = w for some u,w > 0. So w>u > .
Let v := (w>u)−w. Then A>v = v and v>u = . Fact ?? yields that
limk→∞Ak = uv> > . So there exists integer k0 ≥ 1, such that Ak > 0
for k ≥ k0, i.e. A is primitive.

Assume now A is has exactly h > 1 distinct eigenvalues λ satisfying
|λ| = 1. Lemma 6.2.6 implies that there exists a permutation matrix P
such that B = P>AP is of the form (5d) of Theorem 6.2.1. Note that Bh

is a block diagonal matrix. Hence Bhj = (Bh)j is a block diagonal matrix
for j = 1, . . . , .... Hence, Bhj is never a positive matrix, so Ahj is never a
positive matrix. In view of Problem 4, A is not primitive. 2

Lemma 6.2.9 Let B ∈ Rn×n+ be an irreducible, imprimitive matrix,
having h > 1 distinct eigenvalues λ satisfying |λ| = ρ(B). Suppose fur-
thermore that B has the form (5d) of Theorem 6.2.1. Then Bh is a block
diagonal matrix, where each diagonal block is an irreducible primitive ma-
trix whose spectral radius is ρ(B)h. In particular, the last claim of (5d) of
Theorem 6.2.1 holds.

Proof. Let D(B) = (〈n〉, E) be the digraph associated with B. Let
p0 = 0, p1 = p0+n1, . . . , ph = ph−1+nh = n. Denote Vi = {pi−1+1, . . . , pi}
for i = 1, . . . , h, and let Vh+1 := V1. So 〈n〉 = ∪hi=1Vi. The form of B
implies that E ⊂ ∪hi=1Vi × Vi+1. Thus, any walk that connects vertices
j, k ∈ Vi must be divisible by h. Observe next that Bh = diag(C1, . . . , Ch),
where C1 = [c(1)

jk ]n1
j=k=1, . . . , Ch = [c(h)

jk ]nhj=k=1 are defined in (6.2.1). Let
D(Ci) = (Vi, Ei) be the digraph associated with Ci for i = 1, . . . , h. Then
there exists a path of length h from j to k in Vi if and only if c(i)jk > 0.
Since B is irreducible, D(B) is strongly connected. Hence, each D(Ci) is
strongly connected. Thus, each Ci is irreducible.

Recall thatBu = ρ(B)u for the Perron-Frobenius vector u> = (u> , . . . ,u
>
h ) >

0>,ui ∈ Rni+ , i = , . . . , h. Thus, Bhu = ρ(B)hu, which implies that
Ciui = ρ(B)hui, i = , . . . , h. Since ui > 0 Proposition 6.2.7 yields that
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ρ(Ci) = ρ(B)h, i = 1, . . . , h. Recall that the eigenvalues of Bh are the h
power of the eigenvalues of B, i.e. λ(B) = (λh1 , . . . , λ

h
n), where λ(Bh) =

(λ1, . . . , λn). Furthermore, B has h simple eigenvalues ρ(B)e
2πi
√
−1

h , i =
1, . . . , h with |λ| = ρ(B), and all other eigenvalues satisfy |λ| < ρ(B).
Hence Bh has one eigenvalues ρ(B)h of an algebraic multiplicity h and all
other eigenvalues µ satisfy |µ| < ρ(B)h.

SinceBh = diag(C1, . . . , Ch), we deduce that λ(Bh) = (λ(C1), . . . ,λ(Ch)).
As Ci is irreducible and ρ(Ci) = ρ(B)h, we deduce that all other eigenval-
ues µ of Ci satisfy |µ| < ρ(Ci). Lemma 6.2.8 yields that Ci is primitive. 2

Problems

1. Prove equality (6.2.3).

2. Show that if A ∈ Rn×n+ is irreducible then can not have a zero row or
column.

3. Assume that A ∈ Rn×n+ is irreducible. Show

(a) For each x ∈ Πn the vector (I +A)n−1x is positive.

(b) The set (I + A)n−1Πn := {y = (I + A)n−x,x ∈ Πn} is a
compact set of positive vectors.

(c) Show that r(y) is a continuous function on (I +A)n−1Πn.

(d) Show (6.2.7). Hint: use that (A+I)n−1(Ax−r(x)x) is a positive
vector, unless Ax = r(x)x.

4. Assume that A ∈ Rn×n+ is irreducible. Show the following are equiv-
alent

(a) A is primitive.

(b) There exists a positive integer k0 such that for any integer k ≥ k0

Ak > 0.

5. Let D = (〈h〉, E) be the cycle 1→ 2→ . . .→ h− 1→ h→ 1.

(a) Show that representation matrix A(D) is a permutation matrix,
which has the form of B given in (5d) of Theorem 6.2.1, where
each nonzero block is 1×1 matrix [1]. A(D) is called a circulant
matrix.

(b) Find all the eigenvalues and the corresponding eigenvectors of
A(D).
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6. Let the assumptions of Lemma 6.2.9. Assume the notation of the
proof of Lemma 6.2.9.

(a) Show that the length of any closed walk in D(B) is divisible by
h.

(b) Show that a length of any walk from a vertex in Vi to a vertex
Vj , such that 1 ≤ i < j ≤ h, minus j − i is divisible by h.

(c) What can you say on a length of any walk from a vertex in Vi
to a vertex Vj , such that 1 ≤ j < i ≤ h?

(d) Show that each Ci is irreducible.

7. Let D = (V,E) be a digraph and assume that V is a disjoint union
of h nonempty sets V1, . . . , Vh. Denote Vh+1 := V1. Assume that
E ⊂ ∪hi=1Vi × Vi+1. Let Di = (Vi, Ei) be the following digraph. The
diedge (v, w) ∈ Ei, if there is a path of length h in D from v to w in
D.

(a) Show that D is strongly connected if and only if Di is strongly
connected for i = 1, . . . , h.

(b) Assume that D is strongly connected. Let 1 ≤ i < j ≤ h. Then
Di is primitive if and only if Dj is primitive.

8. Let B ∈ Rn×n+ be a block matrix of the form given in (5d) of Theorem
6.2.1.

(a) Show that Bh is a block diagonal matrix diag(C1, . . . , Ch), where
Ci is given (6.2.1).

(b) Show that B is irreducible if and only if Ci is irreducible for
i = 1, . . . , h.

(c) Assume that B is irreducible.

i. Let 1 ≤ i < j ≤ h. Then Ci is primitive if and only if Cj is
primitive.

ii. B has h distinct eigenvalues on the circle |z| = ρ(B) if and
only if some Ci is primitive.

9. Assume the assumptions of Lemma 6.2.6. Let Au = ρ(A)u,u =
(u, . . . , un)> > 0. Assume that η is an h-root of unity, and suppose
that Az = ηz, z = (z, . . . , zn), such that |z| = u. Assume that
zi = ui for a given i ∈ 〈n〉. (This is always possible by considering
z̄i
|zi|z.) Show zj = ηk(j)uj , for a suitable integer k(j), for j = 1, . . . , n.
Furthermore, given an integer k then there exists j ∈ 〈n〉 such that
zj = ηkuj .
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Hint: Use the proof of Lemma 6.2.6.

10. Let B ∈ Rn×n+ be an irreducible block matrix of the form given in
(5d) of Theorem 6.2.1. Let C1, . . . , Ch be defined in (6.2.1). Suppose
that B has more than h distinct eigenvalues on the circle |z| = ρ(B).
Then TFAE

(a) B has qh eigenvalues the circle |z| = ρ(B), for some q > 1.
(b) Each Ci has q > 1 distinct eigenvalues on |z| = ρ(Ci) = ρ(B)h.
(c) Some Ci has q > 1 distinct eigenvalues on |z| = ρ(Ci) = ρ(B)h.
(d) Let D(B) = (〈n〉, E) and Vi = {pi−1 + 1, . . . , pi} for i = 1, . . . , h

be defined as in the proof of Lemma 6.2.9. Then each Vi is a
disjoint union of q nonempty sets Wi,Wi+h, . . . ,Wi+(q−1)h for
i = 1, . . . , h, such that E ⊂ ∪qhj=1Wj ×Wj+1, where Wqh+1 :=
W1. Let Hj = (Wj , Fj), Fj ⊂Wj×Wj be the following digraph.
The diedge (v, w) is in Fj , if and only if there is a path of length
qh in D(B) from v to w in Wj . Then each digraph Hj is strongly
connected and primitive.

Hint: Use the structure of the eigenvalues λ of B on the circle
|λ| = ρ(B), and the corresponding eigenvector z to λ given in (5b) of
Theorem 6.2.1.

11. ForA ∈ Rn×n+ and 0 < x = (x, . . . , xn)> ∈ Rn+ letR(x) = maxi∈〈n〉
(Ax)i
xi

.
Assume that A is irreducible. Show that infx>0R(x) = ρ(A). I.e.

(6.2.9) min
x=(x,...,xn)>0

max
i∈〈n〉

(Ax)i
xi

= ρ(A).

Furthermore, R(x) = ρ(A) if and only if Ax = ρ(A)x.

Hint: Mimic the proof of Theorem 6.2.2.

12. Let n > 1 and D = (〈n〉, E) be a strongly connected digraph. Show

(a) If D has exactly one cycle, it must be a Hamiltonian cycle, i.e.
the length of of this cycle is n. Then D is not primitive.

(b) Suppose that D has exactly two directed cycles. Then the short-
est cycle has length n− 1 if and only if it is possible to rename
the vertices so that the shortest cycle is of the form 1 → 2 →
. . . → n − 1 → 1 and the second cycle is a Hamiltonian cycle
1 → 2 → . . . → n − 1 → n → 1. In this case D is primitive.
Moreover A(D)k > 0 if and only if k ≥ n2 − 2n+ 2.

(c) Assume that D is primitive. Show that the shortest cycle of D
has at most length n− 1.
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6.3 Index of primitivity

Theorem 6.3.1 Let A ∈ Rn×n+ be a primitive matrix. Let s ≥ 1 be
the length of the shortest cycle in the digraph D(A) = (〈n〉, E). Then
As(n−2)+n > 0. In particular A(n−1)2+1 > 0.

Proof. For n = 1 we have that s = 1 and the theorem is trivial. Assume
that n > 1. Note that since A is primitive s ≤ n− 1. (See Problem 12c.)

Suppose first that s = 1. So D(A) contains a loop. Relabel the vertices
of D(A) to assume that (1, 1) ∈ E. I.e. we can assume that A = [aij ]
and a11 > 0. Recall that from 1 to j > 1 there exists a path of length
1 ≤ l(j) ≤ n − 1. By looping at 1 first n − 1 − l(j) times we deduce the
existence of a walk of length n− 1 from 1 to j > 1. Clearly, there exists a
walk of length n−1 from 1 to 1: 1→ 1→ . . .→ 1. Similarly, for each j > 1
there exists a walk of length n − 1 from j to 1. Hence, the first row and
the column of An−1 is positive. Thus, A2(n−1) = An−1An−1 is a positive
matrix.

Assume now that s ≥ 2. Relabel the vertices of D(A) such that one has
the cycle on vertices c := {1, 2, . . . , s}: 1 → . . . → s → 1. Then the first
s diagonal entries of As are positive. Since A was primitive, Lemma 6.2.8
implies that As is primitive. Our previous arguments show that (As)n−1

has the first s rows and columns positive. Let

An−s =
[
F11 F12

F21 F22

]
, F11 ∈ Rs×s+ , F12, F

>
21 ∈ R

s×(n−s)
+ , F22 ∈ R(n−s)×(n−s)

+ .

Clearly, F11 ≥ ([aij ]si=j=1)n−s. Since D(A) contains a cycle of length s on
〈s〉 it follows that each row and column of F11 is not zero. Clearly,

(6.3.1) As(n−2)+n = A(n−s)As(n−1).

Hence the first s rows of As(n−2)+n are positive. We claim that each row of
F21 is nonzero. Indeed, take the shortest walk from j ∈ U := 〈s+ 1, . . . , n〉
to the set of vertices V := {1, . . . , s}. This shortest walk is a path which
can contain at most n− s vertices in U , before it ends in i ∈ V . Hence the
length of this path is m(j) ≤ n− s. After that continue take a walk on the
cycle c of length n−s−m(j), to deduce that there is a walk of length n−s
from j to V . Hence the j − s row of F21 is nonzero. Use (6.3.1) and the
fact that the first s rows of (As)n−1 positive to deduce that As(n−2)+n > 0.

2

Proof of Theorem 6.1.5. Problem 6.1.5.1 yields that the length L
of any closed walk in D is a sum of lengthes of a number of cycles in D.
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Hence ` divides L. Assume that D is primitive, i.e. Ak > 0 for any k ≥ k0.
Hence for each k ≥ k0 there exists a closed walk in D of length k. Therefore
` = 1.

Suppose now that D = (V,E) is imprimitive, i.e. A(D) is imprimitive.
(5d) of Theorem 6.2.1 yields that there V decomposes to a nonempty dis-
joint sets V1, . . . , Vh, where h > 1. Moreover E ⊂ ∪hi=1Vi × Vi+1, where
Vh+1 = V1. So any closed walk must be divisible by h > 1. In particular,
the length of each cycle is divisible by h. Thus ` ≥ h > 1. Hence D is
primitive if and only if ` = 1. Suppose that D is primite. Theorem 6.3.1
yields that A(D)s(n−2)+n > 0, where s is the length of the shortest cycle.
This proves part 1 of Theorem 6.1.5.

Assume now that D is imprimitive. So A(D) has h > 1 distinct eigen-
values of modulus ρ(A(D)). Relabel the vertices of D so that A(D) is of
the form B given in (5d) of Theorem 6.2.1. As we pointed out, each cycle
in D is divisible by h. It is left to show that the ` = h. Let Di = (Vi, Ei)
be defined as in the proof of Lemma 6.2.9. It is straightforward to see that
each cycle in Di corresponds of length L to a cycle in D of length hL.
Since Ci is primitive, it follows from the first part of the proof, that the
g.c.d of lengths of all cycles in Ci is 1. Hence, the g.c.d. of lengths of the
corresponding cycles in D is h. 2

6.4 Reducible matrices

Theorem 6.4.1 Let A ∈ Rn×n+ . Then ρ(A), the spectral radius of A,
is an eigenvalue of A. There exists a probability vector x ∈ Πn such that
Ax = ρ(A)x.

Proof. Let Jn ∈ {1}n×n be a matrix whose entries are 1. For ε > 0 let
A(ε) = A+ εJn. Then A(ε) > 0. Hence,

(6.4.1) ρ(A(ε)) ∈ spec (A(ε)) and A(ε)x(ε), 0 < x(ε) ∈ Πn for ε > .

Since the coefficients of the characteristic polynomial of A(ε) are polynomial
in ε, it follows that the eigenvalues of A(ε) are continuous function of ε.
Hence

lim
ε→0

spec (A(ε)) = spec A, lim
varε→0

ρ(A(ε)) = ρ(A).

Combine that with (6.4.1) to deduce that ρ(A) ∈ spec A. Choose εk =
1
k , k = 1, . . . ,. Since Πn is a compact set, there exists a subsequence
1 < k1 < k2 < . . . such that limj→∞x(εkj = x ∈ Πn. The second equality
of (6.4.1) yields that Ax = ρ(A)x. 2
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It is easy to have examples where ρ(A) = 0 for some A ∈ Rn×n+ , and ρ(A)
is not a geometrically simple eigenvalue. (I.e. the Jordan canonical form
of A contains a Jordan block of order greater than one with the eigenvalue
ρ(A).)

Proposition 6.4.2 Let A ∈ Rn×n+ .

1. Assume that C ∈ Rn×n+ and A ≥ C. Then ρ(A) ≥ ρ(C). If either A
or C are irreducible then ρ(A) = ρ(C) if and only if A = C.

2. Assume that B ∈ Rm×m+ , 1 ≤ m < n is a principle submatrix of
A, obtained by deleting n −m rows and columns of A from a subset
J ⊂ 〈n〉 of cardinality n−m. Then ρ(B) ≤ ρ(A). If A is irreducible
then ρ(B) < ρ(A).

Proof. 1. Suppose first that A is irreducible. Then Lemma 6.2.4 yields
that ρ(A) ≥ ρ(C). Equality holds if and only if A = C. Suppose next that
C is irreducible. Then A is irreducible. Hence ρ(A) ≥ ρ(C), and equality
holds if and only if C = A.

Assume now that A is reducible. Let A(ε), C(ε) be defined as in the
proof of Theorem 6.4.1. For ε > 0 the above arguments show that ρ(A(ε)) ≥
ρ(C(ε)). Letting ε↘ 0 we deduce that ρ(A) ≥ ρ(C).

2. By considering a matrix A1 = PAP> for a corresponding P ∈ Pn
we may assume that A1 =

[
A11 A12

A21 A22

]
, where B = A11. Clearly,

ρ(A1) = ρ(A), and A1 irreducible if and only if A irreducible. Let C =[
B 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

]
. Then A1 ≥ C. 2. yields that ρ(A) =

ρ(A1) ≥ ρ(C). Suppose that A1 is irreducible. Since C is reducible,
A1 6= C. Hence ρ(C) < ρ(A1) = ρ(A). 2

Lemma 6.4.3 Let A ∈ Rn×n+ . Assume that t > ρ(A). Then (tI −
A)−1 ≥ 0. Furthermore, (tI −A)−1 > 0 if and only if A is irreducible.

Proof. Since t > ρ(A) it follows that det (tI − A) 6= 0. (Actually,
det (tI − A) > 0. See Problem 1.) So (tI − A)−1 exists and (tI − A)−1 =
1
t (I−

1
tA)−1. Since ρ( 1

tA) < 1 we deduce the Neumann expansion [Neu77],
which holds for bounded operators in Banach spaces,

(6.4.2) (tI −A)−1 =
∞∑
k=0

1
tk+1

Ak, for |t| > ρ(A).

Since Ak ≥ 0 we deduce that (tI−A)−1 ≥ 0. Let Ak = [a(k)
ij ]. The the (i, j)

entry of (tI − A)−1 is positive, if and only if a(k)
ij > 0 for some k = k(i, j).
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This shows that (tI −A)−1 > 0 if and only if A is primitive. 2

Theorem 6.4.4 Let A ∈ Rn×n+ be a nonnegative matrix. Then there
exists a permutation matrix P ∈ Pn such that B = PAP> is of the following
block upper triangular form.

B =(6.4.3)

B11 B12 . . . B1t B1(t+1) B1(t+2) . . . B1(t+f)

0 B22 . . . B2t B2(t+1) B1(t+2) . . . B2(t+f)

...
...

...
...

...
...

...
...

0 0 . . . Btt Bt(t+1) Bt(t+2) . . . Bt(t+f)

0 0 . . . 0 B(t+1)(t+1) 0 . . . 0
...

...
...

... . . .
...

...
...

0 0 0 0
... 0 0 B(t+f)(t+f)


,

Bij ∈ Rni×nj , i, j = 1, . . . , t+ f, n1 + . . .+ nt+f = n, t ≥ 0, f ≥ 1.

Each Bii is irreducible, and the submatrix B′ := [Bij ]
t+f
i=j=t+1 is block diag-

onal. If t = 0 then B is a block diagonal. If t ≥ 1 then for each i = 1, . . . , t
not all the matrices Bi(i+1), . . . , Bi(i+f) are zero matrices.

Proof. Let Dr = (W,F ) be the reduced graph of D(A) = (〈n〉, E).
Then Dr is a diforest. Let ` ≥ 1 be the length of the longest path in the
digraph Dr. For a given vertex w ∈W let `(w) be the length of the longest
path in Dr from w. So `(w) ∈ [0, `]. For j ∈ {0, . . . , `} denote by Wj the
set of of all vertices in W such that `(w) = j. Since Dr is diforest, it follows
that W`, . . . ,W0 is a decomposition of W to nonempty set. Note if there
is a diedge in Dr from Wi to Wj then i > j. Also we have always at least
one diedge from Wi to Wi−1 for i = `, . . . , 1, if ` > 0.

Assume that #Wj = m1+`−j for j = 0, . . . , `. Let M0 = 0 and Mj =∑j
i=1mi for j = 1, . . . , `. Then we name the vertices of Wj as {M`−j +

1, . . . ,M`−j + m1+`−j} for j = 0, . . . , `. Let f := #W0 = m`+1 and t :=
#(∪`j=1Wj) =

∑`
j=1mi. Note that f ≥ 1 and t = 0 if and only if ` =

0. Hence the representation matrix A(Dr) is strictly upper triangular.
Furthermore the last f rows of A(Dr) are zero rows.

Recall that each vertex in W corresponds to a maximal strongly con-
nected component of D(A). That is, to each i ∈ W = 〈t + f〉 one has
a nonempty subset Vi ⊂ 〈n〉, which correspond to the maximal connected
component of D(A). Let ni := #Vi for i = 1, . . . , t + f . Let N0 = 0
and Ni =

∑i
j=1 ni, i = 1, . . . , t + s. Rename vertices of D(A) to satisfy
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Vi = {Ni−1 + 1, . . . , Ni−1 + ni}. Then PAP> is of the form (6.4.3). Fur-
thermore, the digraph induced by Bii is a strongly connected component
of D(A). Hence Bii is irreducible. Note Bij = 0, for j > i if and only if
there is no biedge from the vertex i to the vertex j in Dr. Recall that for
i ≤ t, the vertex i represents a vertex in Wk, for some k ≥ 1. Hence, for
i ≤ t there exists j > i such that Bij 6= 0. 2

Theorem 6.4.5 Let A ∈ Rn×n+ . Then there exists a positive eigenvec-
tor x >  such that Ax = ρ(A)x if and only if the following conditions hold.
Let B be the Frobenius normal form of A given in Theorem 6.4.4. Then

1. ρ(B(t+1)(t+1)) = . . . = ρ(B(t+f)(t+f));

2. ρ(Bii) < ρ(B(t+1)(t+1)) for i = 1, . . . , t.

Proof. Clearly, A has a positive eigenvector corresponding to ρ(A), if
and only if B has a positive eigenvector corresponding to ρ(B) = ρ(A).
Thus we may assume that A = B. Suppose first that Bx = ρ(B)x for
x > 0. Let x> = (u> , . . . ,u

>
t+f ), where 0 < ui ∈ Rni for i = 1, . . . , t +

f . Since B′ = [Bij ]
t+f
i=j=t+1 is a block diagonal matrix we deduce that

Biiui = ρ(B)ui for i = t+1, . . . , t+f . Proposition 6.2.7 yields the equality
ρ(B) = ρ(B(t+1)(t+1)) = . . . = ρ(B(t+f)(t+f)). Hence 1 holds. Furthermore,

(6.4.4) Biiui +
t+f∑
j=i+

Bijuj = ρ(B)ui, i = , . . . , t.

Since for each i ∈ [1, t] there exists an integer j(i) ∈ [i+ 1, t+ f ] such that
Bij 
 0 we deduce that Biiui � ρ(B)ui for each i ∈ [1, t]. Use Problem 11
to deduce that ρ(Bii) ≤ ρ(B) = ρ(B(t+1)(t+1)) for i ∈ [1, t].

Assume now that 1 and 2 holds. Let r = ρ(B(t+1)(t+1)) = . . . =
ρ(B(t+f)(t+f)). Then Biiui = rui,ui > 0 for i = t + 1, . . . , t + f . Also,
since ρ(B) = maxi∈〈t+f〉 ρ(Bii), we deduce that ρ(B) = r.

Consider the equality (6.4.4) for i = t. Rewrite it as

vt =
∑
j=i+

Btjuj = (rI −Btt)ui.

Since some Btj 
 0 it follows that vj 
 0. As r > ρ(Btt) and Btt is
irreducible, Lemma 6.4.3 implies that (rI − Btt)−1 > 0. Hence ut :=
(rI−Btt)−vt > 0. Thus we showed that there exists ut >  so that equal-
ity (6.4.4) holds for i = t. Suppose we already showed that there exists
ut, . . . ,uk > 0 such that (6.4.4) holds for i = t, t − 1, . . . , k. Consider the
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equality (6.4.4) for i = k − 1. Viewing this equality as a system of equa-
tions in uk−, the above arguments show the existence of unique solution
uk− > 0. Let x> = (u> , . . . ,u

>
t+f ). Then Bx = rx. 2

Corollary 6.4.6 Let A ∈ Rn×n+ and assume that Ax = ρ(A)x, A>y =
ρ(A)y, where x,y > 0. Then the Frobenius normal form of A, given by
(6.4.3) is block diagonal.

Theorem 6.4.7 Let A ∈ Rn×n+ . Assume that Ax = x for some x > .
B = [Bij ]

t+f
i=j=1 be the Frobenius normal form of A given by (6.4.3). Denote

Bk = [B(k)
ij ]t+fi=j=1 for k = 1, 2, . . .. Then the block matrix form of Bk is of

the form (6.4.3). Furthermore, the following conditions hold.

1. limk→∞B
(k)
ij = 0 for i, j = 1, . . . , t.

2. Ak, k = 1, 2, . . . , converge to a limit if and only if the matrices Bii
are primitive for i = t+ 1, . . . , t+ f .

3. Assume that Bii are primitive and Biiui = ui, B>iivi = vi,ui,vi >
0,v>i ui =  for i = t + 1, . . . , t + f . Then limk→∞Bk = E =
[Eij ]

f+t
i=j=1 ≥ 0, where E has the block matrix form (6.4.3). Further-

more

(a) E is a nonnegative projection, i.e E2 = E.

(b) Eii = uiv>i for i = t+1, . . . , t+f , and Eij = 0 for i, j = 1, . . . , t.

(c) For each i ∈ 〈t〉 and a given row r in matrices Ei(t+1), . . . , Ei(t+f),
there exists j > t, j = j(r), such that Eij has a positive element
in row j.

Proof. Since B is a block upper triangular, it follows that Bk is block
upper triangular. Since Bij = 0 for j > i > t if follows that B(k)

ij = 0 for
j > i > t. (One can prove it by induction on k.) Let B̂ := [Bij ]ti=j=1. Since

B is block upper triangular it follows that B̂k = [B(k)
ij ]ti=j=1. Furthermore,

ρ(B̂) = maxi∈〈t〉 ρ(Bii). As B has a positive eigenvector, we deduce from
Theorem 6.4.5 ρ(Bii) < ρ(B(t+1)(t+1)) = 1 for i ∈ 〈t〉. Hence ρ(B̂) < 1.
Therefore limk→∞ B̂k = 0. This implies 1.

Clearly, Ak, k = 1, 2, . . . converges if and only if the sequence Bk, k =
1, 2, . . . converges. Assume that the second sequence converges. As B(k)

ii =
Bkii for k = t+ 1, . . . , t+ f , we deduce that the sequences Bkii, k = 1, 2, . . . ,
converge for i = [t + 1, t + f ]. Since Bii is irreducible and ρ(Bii) = 1 for
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i ∈ [t + 1, t + f ], the convergence of Bkii, k = 1, 2, . . . implies that the only
eigenvalue of Bii on unit circle is 1. (Recall that the eigenvalues of Bkii are
the k-powers of the eigenvalues of Bii.) So each Bii is primitive.

Assume now that each Bii is primitive. Hence, the algebraic multiplicity
of the eigenvalue of 1 of B is f . We claim that the geometric multiplicity of
1 is also f . Let ut+, . . . ,ut+f be defined as in 3. For any at+1, . . . , at+f > 0
we have that Bii(aiui) = aiui for i = t+1, . . . , t+f . From the proof of The-
orem 6.4.5 it follows that B has a positive eigenvector x, Bx = x, such that
x> = (x> , . . . ,x

>
t , at+u

>
t+, . . . , at+fut+f ),xi ∈ Rni+ , i = , . . . , t. Hence

the subspace of eigenvectors of B corresponding to the eigenvalue 1 has
dimension f at least f . Since the algebraic multiplicity of 1 is f it follows
that the geometric multiplicity of 1 is f . As all other eigenvalues λ of B
satisfy |λ| < 1 Fact ?? yields that limk→∞Bk = E. This implies 2.

Since Bk has the same block upper triangular form as B it follows that
E = [Eij ]

t+f
i=j=1 has the block triangular form. So Eij = 0 for j > i > t. Fur-

thermore, 1 implies that Eij = 0 for i, j ∈ 〈t〉. Let ui,vi, i = t+, . . . , t+f
be defined as in 3. The proof of Lemma 6.2.8 yields that limk→∞Bkii =
viu>i = Eii for i > t. Since B2k = BkBk we deduce that E2 = E. 3c will
be proved later. 2

Theorem 6.4.8 Let F ∈ Rm×m+ be a projection, i.e. F 2 = F . Then P
is permutationally similar to a nonnegative projection G, i.e. G = PFP>

for some P ∈ Pm, of exactly one of the following forms.

1. G = 0m×m.

2. G = E, where n = m and E has a block upper triangular form given
in conditions 3a-3c of Theorem 6.4.7. That is, one of the following
conditions hold.

(a) E = T , where T = diag(uv> , . . . ,utv
>
t ), where 0 < ui,vi ∈

Rmi+ ,v>i ui = , i = , . . . , t.

(b) E =
[

0 R
0 T

]
, where T is of the form given in (2a), and each k-

row of R is of the form (rk1v> , . . . , rktv
>
k ), where (rk1, . . . , rkt) 


0>.

3. G =
[
E H
0 0

]
, where E ∈ Rn×n+ is of the form described in 2, where

1 ≤ n < m. So each column of H either a zero column, or a nonzero
nonnegative eigenvector of E corresponding to the eigenvalue 1.
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Proof. Recall that spec F ⊂ {0, 1} and F is similar to a diagonal matrix.
Suppose that spec F = {0}. Then F = 0 and the condition 1 holds. Assume
now that 1 ∈ spec F. So there exists x 
 0 such that Fx = x. Since
F (F1) = (F1) it follows that x = F1 is an eigenvector of F corresponding
to 1 with the maximal number of nonzero coordinates. Suppose first that
x has no zero coordinates, i.e. F does not have zero rows. Let B be the
Frobenius normal form of F as in Theorem 6.4.7. As B2 = B we deduce
that E = B. So 2 holds.

Assume finally that F has exactly m − n zero rows. So there exists

Q ∈ Pn such that QF1 = (y>,0>n−m)>. Thus QFQ> =
[
F1 H1

0 0

]
,

where F 2
1 = F1 and F1y = y,y > . Use 2 for F1 to deduce 3. 2

Theorem 6.4.9 Let A = Rn×n+ . Then

(6.4.5) ρ(A) = lim sup
m→∞

(trAm)
1
m .

(Here trB is the trace of a square matrix B, i.e. the sum of its diagonal
entries.)

Proof. Clearly, for any B ∈ Cn×n, | trB| = |
∑n
i=1 λi(B)|. Hence

| trB| ≤ nρ(B). Therefore, trAm = | trAm| ≤ nρ(Am) = nρ(A)m. Thus,
(trAm)

1
m ≤ n

1
m ρ(A). Therefore, lim supm→∞(trAm)

1
m ≤ ρ(A). It is left

to show the opposite inequality.
Assume first thatA is an irreducible and primitive. LetAu = ρ(A)u, A>v =

ρ(A)v,0 < u,v,v>u = . Theorem 6.4.7 yields that limm→∞
1

ρ(A)mA
m =

uv>. Hence

trAm ≥ ρ(A)m
1
2

tr uv> =
ρ(A)m


⇒ lim

m→∞
(trAm)


m = ρ(A).

Assume that A is an irreducible and imprimitive. If A 1 × 1 zero ma-
trix, then (6.4.5) trivially holds. Assume that n > 1. Without loss of
generality we can assume that A is of the form given in Theorem 6.2.1
part 5d. Then Ah = diag(B1, . . . , Bh), where each Bj is primitive and
ρ(Bj) = ρ(A)h, see Lemma 6.2.9. So trAhk =

∑h
j=1 trBkj . Since each Bj

is primitive and irreducible, we deduce from the previous arguments that
limk→∞(trAhk)

1
hk = ρ(A). Hence (6.4.5) holds in this case too.

Assume now that A is not irreducible. Without loss of generality we can
assume that A is in the Frobenius form (6.4.3). Then there exists i ∈ 〈t+f〉
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such that ρ(A) = ρ(Bii). Clearly

(trAm)
1
m = (

t+f∑
j=1

trBmjj)
1
m ≥ (trBmii )

1
m ⇒ lim sup

m→∞
(trAm)

1
m ≥ lim sup

m→∞
(trBmii )

1
m = ρ(A).

2

Problems

1. Let A ∈ Rn×n. Show that for t > ρ(A) det (tI −A) > 0.

6.5 Stochastic matrices and Markov Chains

Definition 6.5.1 A matrix S is a called a stochastic matrix if S ∈
Rn×n+ , for some integer n ≥ 1, and S1 = 1. Denote by Sn ⊂ Rn×n+ the set
of n × n stochastic matrices. A matrix A is called doubly stochastic if A
and A> is a stochastic matrix. Denote by Ωn ⊂ Sn the set of n× n doubly
stochastic matrices.

Note that A ∈ Rn×n is a stochastic matrix, if and only if each row of A is
a probability vector. Furthermore the Sn and Ωn are compact semigroups
with respect to the product of matrices, see Problem 1. The following
lemma is straightforward, see Problem 2.

Lemma 6.5.2 Let A ∈ Rn×n+ . Then A = DSD−1 for some S ∈ Sn
and a diagonal matrix D ∈ Rn×n+ with positive diagonal entries if and only
if Ax = x for some positive x ∈ Rn.

Definition 6.5.3 Let S ∈ Sn be irreducible. We will assume the nor-
malization that the eigenvector of S and S> corresponding to the eigenvalue
1 are of the form 1 = (1n) ∈ Rn+ and π ∈ Πn, respectively, unless stated
otherwise. S is called aperiodic if it is primitive, and periodic if it is im-
primitive.

Theorem 6.5.4 Let A ∈ Sn. Denote by B = [Bij ]
t+f
i=j=1 the Frobenius

normal form of A given by (6.4.3). Then B,B(t+1)(t+1), . . . , B(t+f)(t+f)

are stochastic. Furthermore the conditions 1-3b of Theorem 6.4.7 hold.
The limit matrix E is stochastic. In the condition 3 we can assume that
ui = 1ni ,vi ∈ Πni for i = t+ 1, . . . , t+ f .

Finally the condition 3c of Theorem 6.4.7 is replaced by the following
stronger condition. For each i ∈ 〈t〉 the sum of the entries of a row r in
matrices Ei(t+1), . . . , Ei(t+f) is 1, for any given row r.



6.5. STOCHASTIC MATRICES AND MARKOV CHAINS 309

Proof. Since A is stochastic, in view of Problem 1b, B is stochastic.
Since B is block upper triangular and B′ = [Bij ]

t+f
i=j=t+1 is block diago-

nal, it follows that Bii is stochastic for i = t + 1, . . . , t + f . Since Bk is
stochastic, Problem 1c implies that E = [Eij ]

t+f
i=j=1 is stochastic. Since

Ê = [Eij ]ti=j=1 = 0 we deduce that the last part of the theorem. 2

Proof of condition 3c of Theorem 6.4.7. In view of Lemma 6.5.2 B
is diagonally similar to a stochastic matrix,. Hence 3c follows from the last
part of Theorem 6.5.4. 2

We now recall the classical connection between the stochastic matrices
and Markov chains. To each probability vector π = (π1, . . . , πn)> ∈ Πn we
associated a random variable X, which takes values in the set 〈n〉, such that
P(X = i) = πi for i = 1, . . . , n. Then π = π(X) is called the distribution
of X.

Assume that we are given a sequence of random variables X0, X1, . . .

each taking values in the set 〈n〉. Let s(k)
ij be the conditional probability of

Xk = j given that Xk−1 = i:

(6.5.1) s
(k)
ij := P(Xk = j|Xk−1 = i), i, j = 1, . . . , n, k = 1, . . .

Clearly, Sk = [s(k)
ij ]ni=j=1, k = 1, 2, . . . is a stochastic matrix for k = 1, . . ..

Definition 6.5.5 Let X0, X1, . . . , be a sequence of random variables
taking values in 〈n〉. Then

1. X0, X1, . . . is called a homogeneous Markov chain if

P(Xk = jk|Xk−1 = jk−1, . . . , X0 = j0) = P(X1 = jk|X0 = jk−1) for k = 1, 2, . . . .

2. X0, X1, . . . is called a nonhomogeneous Markov chain if

P(Xk = jk|Xk−1 = jk−1, . . . , X0 = j0) = P(Xk = jk|Xk−1 = jk−1) for k = 1, 2, . . . .

(Note that a homogeneous Markov chain is a special case of nonho-
mogeneous Markov chain.)

3. A nonhomogeneous Markov chain is said to have a limiting distribu-
tion if the limit π∞(π0) := limk→∞πk exists. If π∞ does not depend
on π0 then π∞ is called the stationary distribution of the Markov
chain.

The following lemma is straightforward, see Problem ??.
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Lemma 6.5.6 Let X0, X1, . . . be a sequence of random variables taking
values in 〈n〉. Let πk := π(Xk) be the distribution of Xk for k = 0, 1, . . .. If
X0, X1, . . . , is a nonhomogeneous Markov chain then π>k = π>0 S1 . . . Sk for
k = 1, . . ., where Sk are defined by (6.5.1). In particular, if X0, X1, . . . , is
a homogeneous Markov process, i.e. Sk = S, k = 1, 2, . . . , then π>k = π>0 S

k

for k = 1, . . . ,.

Theorem 6.5.7 Let X0, X1, . . . , be a homogeneous Markov chain on
〈n〉, given by a stochastic matrix S = [sij ] ∈ Sn. Let D(S) and Dr(S) be
the digraph and the reduced digraph corresponding to S. Label the vertices
of the reduced graph Dr(S) by {1, . . . , t+f}. Let V1, . . . , Vt+f be the decom-
position of 〈n〉 to the strongly connected components of the digraph D(S).
Assume that B = PSP>, P ∈ Pn is given by the form (6.4.3). The ver-
tices, (states), in ∪ti=1Vi are called the transient vertices, (states). (Note
that if t = 0 then no transient vertices exist.) The vertices, (states), in
∪t+fi=t+1Vi are called the final vertices, (states). Vt+1, . . . , Vt+f are called the
final strongly connected components. Furthermore the following conditions
hold.

1. For each i ∈ ∪tj=1Vj limk→∞ P(Xk = i) = 0.

2. X0, X1, . . . , have a limiting distribution if and only if each stochastic
matrix corresponding to Vi is aperiodic for i = t + 1, . . . , t + f . I.e.
the irreducible matrices Bii are primitive for i = t+ 1, . . . , t+ f .

3. X0, X1, . . . have a stationary distribution if and only if f = 1. I.e.
there exists only one final strongly connected component.

Proof. . Without loss of generality we may assume that S = B. Let
π>k = (π>1,k, . . . ,π

>
t+f,k) for k = 0, 1, . . .. From the proof of Theorem 6.4.7

we deduce that

π>i,k =
i∑

j=1

πj,0B
(k)
ji , for i = 1, . . . , t.

In view of part 1 of Theorem 6.4.7 we deduce that limk→∞ πi,k = 0 for
i = 1, . . . , t. This proves part 1.

Suppose that π0 = (π1, 0, . . . , is supported only on Vt+i for some i ∈ 〈f〉.
That is πj,0 = 0 if j 6∈ Vt+i. Then each πk is supported on Vt+i. Further-
more, π>t+i,k = π>t+i,0B

k
(t+i)(t+i). Assume that B(t+i)(t+i) is imprimitive.

Choose πt+i,0 to have one nonzero coordinate to be 1 and all other coor-
dinates to be zero. Assuming that B(t+i)(t+i) has the form given in 5d of
Theorem 6.2.1, we see that there no is limit distribution. Hence, to have the
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limit distribution for each π0 we must assume that B(t+i)(t+i) is primitive
for i = 1, . . . , f .

Assume that B(t+i)(t+i) is primitive for i = 1, . . . , f . Then Theorem
6.5.4 implies that π>∞ = π0E, where E = limk→∞Bk is the stochastic
projection. As we pointed out before if we assume that π0 is supported
only on Vt+i then the limit probability is also supported on Vt+i. Hence,
to have a stationary distribution we must have that f = 1.

Assume that f = 1. Then limk→∞Bkt+1 = 1t+π>t+. Observe that the
limit probability is π>0 E = (π>0 E)E. Since π>0 E is supported only on Vt+1

it follows that π>0 E
2 = (0>, . . . ,0>︸ ︷︷ ︸

t

,π>t+1), which is independent of π0. 2

The proof of the above theorem yields the well known result.

Corollary 6.5.8 Let X0, X1, . . . , be a homogeneous Markov chain on
〈n〉, given by an aperiodic stochastic matrix S = [sij ] ∈ Sn. Assume that
S>π = π for a unique 0 < π ∈ Πn. Then this Markov process has a
stationary distribution equal to π.

A stronger result is proven in [Fri06].

Theorem 6.5.9 Let X0, X1, . . . , be a nonhomogeneous Markov chain
on 〈n〉, given by the sequence of stochastic matrices S1, S2, . . . , defined in
(6.5.1). Assume that limk→∞ Sk = S, where S is a stochastic matrix,.
Suppose furthermore that the corresponding homogeneous Markov chain to
S has a stationary distribution π. Then the given nonhomogeneous Markov
process has a stationary distribution equal to π.

We close this section with Google’s Page Ranking. Let n be the current
number of Web pages. (Currently around a few billions.) Then S = [sij ] ∈
Sn is defined as follows. Let A(i) ⊂ 〈n〉 be the set of all pages accessible
from the Web page i. Assume first that i is a dangling Web page, i.e.
A(i) = ∅. Then sij = 1

n for j = 1, . . . , n. Assume now that ni = #A(i) ≥ .
Then sij = 1

ni
if j ∈ A(i) and otherwise sij = 0. Let 0 < ω ∈ Πn, t ∈ (, ).

Then the Google positive stochastic matrix is given by

(6.5.2) G = tS + (1− t)1ω>.

It is rumored that t ∼ 0.85. Then the stationary distribution corresponding
to G is given by G>π = π ∈ Πn. The coordinates of π = (π1, . . . , πn)>

constitute Google’s popularity score of each Web page. I.e. if πi > πj then
Web page i is more popular than Web page j.

A reasonable choice of ω would be the stationary distribution of yes-
terday Google stochastic matrix. To find the stationary distribution π one
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can iterate several times the equality

(6.5.3) π>k = π>k−1G, k = 1, . . . , N.

Then πN would be a good approximation of π. One can choose π0 = ω.

Problems

1. Show

(a) If S1, S2 ∈ Sn then S1S2 ∈ Sn.

(b) PSn = SnP = Sn for any P ∈ Pn.

(c) Sn is a compact set in Rn×n+ .

(d) If S1, S2 ∈ Ωn then S1S2 ∈ Ωn.

(e) PΩn = ΩnP = Ωn for any P ∈ Pn.

(f) Ωn is a compact set in Rn×n+ .

(g) Pn is a group of doubly stochastic matrices of cardinality n!.

2. Prove Lemma 6.5.2.

3. Let A,B ∈ Cn×n, and assume that A and B are similar. I.e. A =
TBT−1 for some invertible T . Then the sequence Ak, k = 1, 2, . . . ,
converges if and only if Bk, k = 1, 2, . . . , converges.

4. Prove Lemma 6.5.6.

6.6 Friedland-Karlin results

Definition 6.6.1 Let B = [bij ]ni=j=1 ∈ Rn×n. B is called a Z-matrix
if bij ≤ 0 for each i 6= j. B is called an M -matrix if B = rI − A where
A ∈ Rn×n+ and r ≥ ρ(A). For r = ρ(A) B is called a singular M -matrix.

The following result is straightforward, see Problem 1.

Lemma 6.6.2 Let B = [bij ] ∈ Rn×n be a Z-matrix. Let C = [cij ] ∈
Rn×n+ be defined as follows. cij = −bij for each i 6= j and cii = r0 − bii
for i = 1, . . . , n, where r0 = maxi∈〈n〉. Then B = r0I − C. Furthermore,
B = rI − A for some A ∈ Rn×n+ if and only if r = r0 + t, A = tI + C for
some t ≥ 0.

Theorem 6.6.3 Let B ∈ Rn×n be a Z −matrix. Then TFAE.
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1. B is an M -matrix.

2. All principal minors of B are nonnegative.

3. The sum of all k × k principal minors of B are nonnegative for k =
1, . . . , n.

4. For each t > 0 there exists 0 < x ∈ Rn+, which may depend on t, such
that Bx ≥ −tx.

Proof. 1 ⇒ 2. We first show that det B ≥ 0. Let λ1(A), . . . , λn(A)
be the eigenvalues of A. Assume that λi(A) is real. Then r − λi(A) ≥
ρ(A)− λi(A) ≥ 0. Assume that λi(A) is complex. Since A is a real valued
matrix, λi(A) is also an eigenvalue of A. Hence (r − λi(A))(r − λi(A)) =
|r−λi(A)|2 > 0. Since det B =

∏n
i=1(r−λi(A)), we deduce that det B ≥ 0.

Let B′ be a principal submatrix of B. Then B′ = rI ′ − A′, where A′ is a
corresponding principal submatrix of A and I ′ is the identity matrix of the
corresponding order. Part 2 of Proposition 6.4.2 implies that ρ(A) ≥ ρ(A′).
So B′ is an M -matrix, Hence det B′ ≥ 0.

2 ⇒ 3. Trivial.
3 ⇒ 1. Let det (tI +B) = tn +

∑n
i=k βkt

n−k. Then βk is the sum of all
principal minors of B of order k. Hence βk ≥ 0 for k = 1, . . . , n. Therefore
0 < det (tI + B) = det ((t + r)I − A). Recall that det (ρ(A)I − A) = 0.
Thus t+ r > ρ(A) for any t > 0. So r ≥ ρ(A), i.e. B is an M -matrix.

1 ⇒ 4. Let t > 0. Use the Neumann expansion (6.4.2) to deduce
that (tI + B)−1 ≥ 1

t+r I. So for any y > 0 x := (tI + B)−y > 0. So
y = (tI +B)x ≥ 0.

4 ⇒ 1. By considering PBP> = rI − PAP> we may assume that
A = [Aij ]

t+f
i=j=1 is in the Frobenius normal form (6.4.3). Let Bx ≥ −tx.

Partition x> = (x> , . . . ,x
>
t+f ). Hence (t+ r)xi ≥ Aiixi. Problem 11 yields

that t + r ≥ ρ(Aii) for i = 1, . . . , t + f . Hence t + r ≥ ρ(A). Since t > 0
was arbitrary we deduce that r ≥ ρ(A). 2

Corollary 6.6.4 Let B be a Z-matrix. Assume that there exist x > 0
such that Bx ≥ 0. Then B is an M -matrix.

Lemma 6.6.5 Let B = [fij ]ni=j=1 be real symmetric matrix with the
eigenvalues λ1(B) ≥ . . . ≥ λn(B). Assume that λn(B) is a simple eigen-
value, i.e. λn−1(B) > λn(B). Suppose that Bx = λn(B)x, where x ∈
Rn,x>x = . Let U ⊂ Rn be a subspace which does not contain x. Then

(6.6.1) min
y∈U,y>y=

y>By > λn(B).
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Proof. Recall the minimum characterization of λn(B)

(6.6.2) min
z∈Rn,z>z=

z>Bz = λn(B).

See for example http://www.math.uic.edu/∼friedlan/math310lec.pdf page
114. Equality holds if and only if Bz = λn(B)z, where z>z = . Since
λn(B) is simple it follows that z = ±x. Since U does not contain x,
hence it does not contain −x, we deduce that the minimum in (6.6.1) is
achieved for some y∗ 6= ±x. Hence this minimum is greater than λn(B). 2

Corollary 6.6.6 Let B ∈ Rn×n be an M -singular symmetric matrix of
the form B = ρ(C)I − C, where C is a nonnegative irreducible symmetric
matrix. Let U = {y ∈ Rn,1>y = 0}. Then λn(B) = 0 is a simple
eigenvalue, and (6.6.1) hold.

As usual, we let ‖z‖ :=
√

z∗z for any z ∈ Cn be the Euclidean norm of z.

Theorem 6.6.7 Let D ⊂ Rm be a bounded domain. (D is open and
connected, ∂D, the boundary of D, is a compact set, so D ∪ ∂D is a com-
pact set in Rm.) Let f ∈ D → R be C2(D). i.e. the function and is
derivatives up the second order are continuous. Suppose that f |∂D = ∞,
i.e. for each sequence xi ∈ D, i = , . . ., such that limi→∞ xi = x ∈ ∂D,
limi→∞ f(xi) = ∞. Assume furthermore, that for each critical point ξ ∈,
i.e. ∇f(ξ) = ( ∂f∂x1

(ξ), . . . , ∂f
∂xm

(ξ))> = 0, the eigenvalues of the Hessian

H(ξ) = [ ∂2f
∂xi∂xj

(ξ)]ni=j=1 are positive. Then f has a unique critical point
ξ ∈ D, which is a global minimum, i.e f(x) > f(ξ) for any x ∈ D\{ξ}.

Proof. Consider the negative gradient flow

(6.6.3)
dx(t)
dt

= −∇f(x(t)), x(t) = x ∈ D.

Clearly, the fixed points of this flow are the critical points of f . Observe
next that if x is not a critical point then f(x(t)) decreases, as df(x(t)

dt =
−‖∇f(x(t))‖. Since f |∂D = ∞, we deduce that all accumulations points
of the flow x(t), t ∈ [t,∞) are in D, and are critical points of f . Consider
the flow (6.6.3) in the neighborhood of a critical point ξ ∈ D. Let x =
y + ξ,x = y + ξ. The for x close to ξ the flow (6.6.3) is of the form

dy(t)
dt

= −(H(ξ)y + Er(y)), y(t) = y.

For a given δ > the exists ε = ε(δ) > 0 such that for ‖y‖ < ε, ‖Er(y)‖ <
δ‖y‖. Let α > 0 be the smallest positive eigenvalue of H(ξ). So z>H(ξ)z ≥
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α‖z‖ for any z ∈ Rm. Choose ε > 0 so that ‖Er(y‖ < α
 ‖y‖ for ‖y‖ < ε.

Thus

d‖y(t)‖

dt
= −2(y(t)>H(ξ)y(t) + y(t)>Er(y))| ≤ −α|y‖ if |y(t)| < ε.

This shows that if ‖y(t)‖ < ε then for t ≥ t0 ‖y(t)‖ decreases. Moreover

d log ‖y(t)‖

dt
≤ −α for t ≥ t0 ⇒ ‖y(t)‖ ≤ ‖y‖e−α(t−t) for t ≥ t.

This shows that limt→∞ y(t) = 0. Let β ≥ α be the maximal eigen-
value of H(ξ). Similar estimates show that if ‖y‖ < ε then ‖y(t)‖ ≥
‖y‖e−(β+α)(t−t).

These results, combined with the continuous dependence of the flow
(6.6.3) on the initial conditions x, imply the following facts. Any flow
(6.6.3) which starts at a noncritical point x must terminate at t = ∞
at some critical point ξ, which may depend on x. For a critical point ξ,
denote by the set A(ξ) all points x for which the flow (6.6.3) terminates
at finite or infinite time at ξ. (The termination at finite time can happen
only if x = ξ.) Then A(ξ) is an open connected set of D.

We claim that A(ξ) = D. If not, there exists a point x ∈ ∂A(ξ) ∩ D.
Since A(ξ) is open, x 6∈ A(ξ). As we showed above x ∈ A(ξ′) for some
another critical point ξ′ 6= ξ. Clearly A(ξ) ∩ A(ξ′) = ∅. As A(ξ′) is open
there exists an open neighborhood of x in D which belongs to A(ξ′). Hence
x can not be a boundary point of A(ξ), which contradicts our assumption.
Hence A(ξ) = D, and ξ is a unique critical point of f in D. Hence ξ is the
unique minimal point of f . 2

Theorem 6.6.8 Let A = [aij ]ni=j=1 ∈ R
n×n
+ be an irreducible matrix.

Suppose furthermore that aii > 0 for i = 1, . . . , n. Let w = (w, . . . , wn)> >
0. Define the following function

(6.6.4) f = fA,w =
n∑
i=1

wi log
(Ax)i
xi

, x = (x, . . . , xn) > 0.

Let D be the interior of Πn, the compact set of probability vectors in Rn.
(D can be viewed as an open connected bounded set in Rn−1, see the proof.)
Then f satisfies the assumptions of Theorem 6.6.7. Let 0 < ξ ∈ Πn be the
unique critical point of f in D. Then f(x) ≥ f(ξ) for any x > 0. Equality
holds if and only if x = tξ for some t > 0.

Proof. Observe that any probability vector p = (p, . . . , pn)> can be
written as p = 

n1 + y where y ∈ Rn,1>y =  and y ≥ − 
n1. Since
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any y ∈ Rn,1>y =  is of the form y = u(−, ,  . . . , )> + . . . +
un−(−, , . . . , , )> we deduce that we can view Πn as an compact con-
nected set in Rn−1, and its interior D, i.e. 0 < p ∈ Πn, is an open connected
bounded set in Rn−1.

We now claim that f |∂Πn = ∞. Let 0 < pk = (p,k, . . . , pn,k)> ∈
Πn, k = , . . . , converge to p = (p, . . . , pn)> ∈ ∂Πn. Let ∅ 6= Z(p) ⊂ 〈n〉
be the set of vanishing coordinates of p. Observe first that (Ax)i

xi
≥ aii > 0

for i = 1, . . . , n. Since A is irreducible, it follows that there exists l ∈
Z(p), j ∈ 〈n〉\Z(p) such that alj > 0. Hence

lim
k→∞

(Apk)l
pl,k

≥ lim
k→∞

aljpj,k
pl,k

=∞.

Thus

lim
k→∞

f(pk) ≥ lim
k→∞

log
(Apk)l
pl,k

+
∑
i 6=l

log aii =∞.

Observe next that f(x) is a homogeneous function of degree 0 on x > 0,
i.e. f(tx) = f(x) for all t > 0. Hence df(tx)

dt = 0. Thus

(6.6.5) x>∇f(x) = 

for all x > 0. Let ξ ∈ D be a critical point of f |D. Then y>∇f(ξ) =  for
each y ∈ Rn,1>y = . Combine this fact with (6.6.5) for x = ξ to deduce
that ξ is a a critical point of f in Rn+. So ∇f(ξ) = 0. Differentiate (6.6.5)
with respect to xi, i = 1, . . . , n and evaluate these expressions at x = ξ.
Since ξ is a critical point we deduce that H(ξ)ξ = 0. We claim that H(ξ)
is a symmetric singular M -matrix. Indeed

(6.6.6)
∂f

∂xj
(x) = −wj



xj
+

n∑
i=

wi
aij

(Ax)i
.

Hence for l 6= j

∂2f

∂xl∂xj
(x) = −

n∑
i=

wi
aijail
(Ax)i

≤ .

SoH(x) is a Z-matrix for any x > 0. SinceH(ξ)ξ = 0 Corollary 6.6.4 yields
that H(ξ) is a symmetric singular M -matrix. So H(ξ) = ρ(C)I − C,C =
[cij ]ni=j=1. We claim that C is an irreducible matrix. Indeed assume that
ajl > 0. Then

cjl = clj = − ∂2f

∂xl∂xj
≥ wj

ajjajl
(Aξ)2

j

> 0.
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Since A is irreducible C is irreducible. Hence 0 = λn(H(ξ))is a simple
eigenvalue of H(ξ). The restriction of the quadratic form corresponding to
the Hessian of f |Πn at ξ, corresponds to y>H(ξ)y where 1>y = . Corol-
lary 6.6.5 implies that there exists α > 0 such that y>H(ξ)y ≥ α‖y‖ for
all 1>y = . Hence the Hessian of f |D at the critical point 0 < ξ ∈ Πn

has positive eigenvalues. Theorem 6.6.7 yields that there exists a unique
critical point ξ ∈ D of f |D such that f(p) > f(ξ) for any p ∈ D\{ξ}. Since
f(x) is a homogeneous function of degree 0 we deduce that f(x) ≥ f(ξ) for
any x > 0. Equality holds if and only if x = tξ for some t > 0. 2

Theorem 6.6.9 Let A ∈ Rn×n+ and assume that

Au = ρ(A)u, A>v = ρ(A)v,  < ρ(A),0 < u = (u, . . . , un)>,v = (v, . . . , vn)>,v>u = .

Then
n∑
i=1

uivi log
(Ax)i
xi

≥ log ρ(A) for any x = (x, . . . , xn)> > 0,(6.6.7)

ρ(DA) ≥ ρ(A)
n∏
i=1

duivii for any diagonal D = diag(d1, . . . , dn) ≥ 0.(6.6.8)

Equality holds for x = tu and D = sI, where t > 0, s ≥ 0, respectively.
Assume that A is irreducible and all the diagonal entries of A are positive.
Then equality holds in (6.6.7) and (6.6.7) if and only if x = tu,D = sI for
some t > 0, s ≥ 0 respectively.

Proof. Assume that A = [aij ]ni=j=1 ∈ R
n×n
+ be irreducible and aii > 0

for i = 1, . . . , n. Let w = (uv, . . . , unvn)>. Define f(x) as in (6.6.4). We
claim that u is a critical point of f . Indeed, (6.6.6) yields

∂f

∂xj
(u) = −ujvj



uj
+

n∑
i=

uivi
aij

(Au)i
= −vj+



ρ(A)
(A>v)j = , j = , . . . , n.

Similarly, tu is a critical point of f for any t > 0. In particular, ξ = tu ∈ Πn

is a critical point of f in D. Theorem 6.6.8 implies that f(x) ≥ f(u) =
log ρ(A) and equality holds if and only if x = tu for some t > 0.

Let D be a diagonal matrix with positive diagonal entries. Then DA
is irreducible, and DAx = ρ(DA)x for some x = (x, . . . , xn)> > 0. Note
that since f(u) ≤ f(x) we deduce

log ρ(A) ≤
n∑
i=1

uivi log
(Ax)i
xi

= log ρ(DA)−
n∑
i=1

uivi log di.
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The above inequality yields (6.6.8). Suppose that equality holds in (6.6.8).
Then x = tu, which yields that D = sI for some s > 0. Suppose that
D ≥ 0 and D has at least one zero diagonal element. Then the right-
hand side of (6.6.8)is zero. Clearly ρ(DA) ≥ 0. Since diaii is a principle
submatrix of DA, Lemma 6.4.2 yields that ρ(DA) ≥ maxi∈〈n〉 diaii. Hence
ρ(DA) = 0 if and only if D = 0. These arguments prove the theorem when
A is irreducible with positive diagonal entries.

Let us now consider the general case. For ε > 0 let A(ε) := A+ εuv>.
Then A(ε) > 0 and A(ε)u = (ρ(A) + ε)u, A(ε)>v = (ρ(A) + ε)v. Hence
inequalities (6.6.7) and (6.6.8) hold for A(ε) and fixed x > 0, D ≥ . Let
ε↘ 0 to deduce (6.6.7) and (6.6.8). For x = tu, D = sI, where t > 0, s ≥ 0
one has equality. 2

Corollary 6.6.10 Let the assumptions of Theorem 6.6.9 hold. Then

(6.6.9)
n∑
i=1

uivi
(Ax)i
xi

≥ ρ(A) for any x = (x, . . . , xn)> > 0.

If A is irreducible and has positive diagonal entries then equality holds if
and only if x = tu for some t > 0.

Proof. Use the arithmetic-geometric inequality
∑
i=1 pici ≥

∏
i=1 c

pi
i

for any p = (p, . . . , pn) ∈ Πn and any c = (c, . . . , cn)> ≥ 0. 2

Definition 6.6.11 Let x = (x, . . . , xn)>,y = (y, . . . , yn)> ∈ Cn.
Denote by D(x) = diag(x) the diagonal matrix diag(x1, . . . , xn), by ex :=
(ex1 , . . . , exn)>, by x− := ( 

x
, . . . , 

xn
)> for x > 0, and by x ◦y the vector

(x1y1, . . . , xnyn)>.
For a square diagonal matrix D = diag(d1, . . . , dn) ∈ Cn×n denote by

x(D) the vector (d1, . . . , dn)>.

Theorem 6.6.12 Let 0 < u = (u, . . . , un)>,v = (v, . . . , vn)>. Let
0 < w = u ◦ v. Assume that A = [aij ]ni=j=1 ∈ R

n×n
+ is irreducible. Then

there exists two diagonal matrices D1, D2 ∈ Rn×n+ , with positive diagonal
entries, such that D1AD2u = u, (DAD)>v = v if one of the following
conditions hold. Under any of this conditions D1, D2 are unique up to the
transformation t−1D1, tD2 for some t > 0.

1. All diagonal entries of A are positive.
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2. Let N ⊂ 〈n〉 be a nonempty set of all j ∈ 〈n〉 such that ajj = 0.
Assume that all off-diagonal entries of A are positive and the following
inequalities hold.

(6.6.10)
∑

i∈〈n〉\{j}

wi > wj for all j ∈ N .

(For n = 2 and N = 〈2〉 the above inequalities are not satisfied by
any w.)

Proof. We first observe that it is enough to consider the case where
u = 1, i.e. B := D1AD2 is a stochastic matrix. See Problem 2. In this
case w = v.

1. Assume that all diagonal entries of A are positive. Let f = fA,w be
defined as in (6.6.4). The proof of Theorem 6.6.8 yields that f has a unique
critical 0 < ξ in Πn. (6.6.6) implies that

n∑
i=1

wiaij
(Aξ)i

=
wj
ξj
.

This is equivalent to the equality (D(Aξ)−1AD(ξ))>w = w. A straightfor-
ward calculation show thatD(Aξ)−1AD(ξ)1 = 1. HenceD1 = D(Aξ)−1, D2 =
D(ξ).

Suppose thatD1, D2 are diagonal matrices with positive diagonal entries
so that D1AD21 = 1 and (D1AD2)>w = w. Let u = D1. The equality
D1AD21 = 1 implies that D1 = D(Au)−. The equality (D1AD2)>w = w
is equivalent to (D(A(u))−AD(u))>w = w. Hence u is a critical point of
f . Therefore u = tξ. So D2 = tD(ξ) and D1 = t−1D(Aξ)−1.

2. As in the proof of Theorem 6.6.8, we show that f = fw,A is blows
up to ∞ as p approaches ∂Πn. Let 0 < pk = (p,k, . . . , pn,k)> ∈ Πn, k =
, . . . , converge to p = (p, . . . , pn)> ∈ ∂Πn. Let ∅ 6= Z(p) ⊂ 〈n〉 be
the set of vanishing coordinates of p. Since all off-diagonal entries of A
are positive, it follows that limk→∞

(Apk)i
pi,k

= ∞ for each i ∈ Z(p). To
show that limk→∞ f(pk) = ∞ it is enough to consider the case where
limk→∞

(Apk)m
pm,k

= 0 for some m 6∈ Z(p). In view of the proof of Theo-
rem 6.6.8 we deduce that m ∈ N . Furthermore, #Z(p) = n − . Hence
limk→∞ pm,k = 1. Assume for simplicity of notation that m = 1, i.e.
Z(p) = {, , . . . , n}. Let sk = maxi≥2 pi,k. So limk→∞ sk = 0. Let a > 0
be the value of the minimal off-diagonal entry of A. Then (Apk)i

pi,k
≥ ap1,k

sk

for i ≥ 2. Also (Apk)
p1,k

≥ ask
p1,k

. Thus

f(pk) ≥ w log
ask
p,k

+
∑
i≥

wi log
ap,k
sk

= (
n∑
i=

wi) log a+(−w+
∑
i≥

wi) log
p,k
sk

.
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(6.6.10) for j = 1 implies that limk→∞ f(pk) =∞.
Let 0 < ξ ∈ Πn be a critical point of f . We claim that H(ξ) =

ρ(C)I −C, and 0 ≤ C is irreducible. Indeed, for j 6= l cjl =
∑n
i=1 wi

aijail

(Aξ)2i
.

Since n ≥ 3 choose i 6= j, l to deduce that cjl > 0. So C has positive off-
diagonal entries, hence irreducible. Hence 0 < ξ ∈ Πn is a unique critical
point in Πn. The arguments for 1 yield the existence of D1, D2, which are
unique up to scaling. 2

Problems

1. Prove Lemma 6.6.2.

2. Let B ∈ Rn×n+ and assume that Bu = u, B>v, where 0 < u =
(u, . . . , un)>,v = (v, . . . , vn)>. Then C := D(u)−BD(u) satisfies
the following C1 = 1, C>w = w, where w = u ◦ v.

3. Let A ∈ Rn×n+ is called fully indecomposable if there exists P ∈ Pn
such that PA is irreducible and have positive diagonal elements. Show
that that if A is fully indecomposable, then there exists diagonal
matrices D1, D2, with positive diagonal entries such that D1AD2 is
doubly stochastic. D1, D2 are unique up to a scalar factor t−1D1, tD2.

6.7 Convexity and log-convexity

Definition 6.7.1

1. For any two points x,y ∈ Rn denote by (x,y) and [x,y], the open and
the closed interval spanned by x,y respectively. I.e. the set of points
of the form tx + (− t)y, where t ∈ (0, 1) and [0, 1], respectively.

2. Set D ⊂ Rn is called convex if for any x,y ∈ D the open interval
(x,y) is in D. (Note that a convex set is connected).

3. For x ≤ y ∈ Rn we denote [x,y] := {z ∈ Rn, x ≤ z ≤ y}. Clearly,
[x,y] is a convex set.

4. Let D ⊂ Rn be a convex set. Assume that f : D → R. f is called
convex if
(6.7.1)
f(tx + (− ty)) ≤ tf(x) + (− t)f(y) for all t ∈ (, ),x,y ∈ D.
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f is called log-convex if f(D) ≥ 0 and
(6.7.2)

f(tx + (− ty)) ≤ (f(x))tf(y)(−t) for all t ∈ (, ),x,y ∈ D.

f is called strictly convex or strictly log-convex if strict inequality holds
in (6.7.1) and (6.7.2), respectively.

Note that if f is a positive function on D then f is log-convex if and only if
log f is convex on D. See Problem 1. The following results are well known,
e.g. [Roc70].

Fact 6.7.2

1. H = x + U := {y ∈ Rn,y = x + u,u ∈ U}, is a convex set if U
is a convex set. If U is a subspace, then H is called a hyperplane of
dimension k, where k is the dimension of k. 0-dimensional hyperplane
is a point.

2. For a given convex set D ∈ Rn let U = span {y−x; for all y,x ∈ D}.
Then for any x ∈ D, the hyperplane x +U is the minimal hyperplane
containing D. The dimension of D is defined as the dimension of of
U, denoted as dim D = dim U. The interior of D, denoted by

∫
D, is

the set of the interior points of D − x, for a fixed x ∈ D, viewed as
a set in the dim D dimensional subspace U. Then the closure of D is
equal to the closure of

∫
D, denoted as clo D = clo

∫
D.

3. Let D ⊂ Rn be a convex set, and f : D→ R a convex function. Then
f :
∫
D → R is a continuous function. Furthermore, at each x ∈

∫
D,

f has a supporting hyperplane. That is there exists p = p(x) ∈ Rn
such that

(6.7.3) f(y) ≥ f(x) + p>(y − x) for any y ∈ D.

Assume furthermore that dim D = n. Then the following conditions
are equivalent.

(a) f is differentiable at x ∈
∫

D. I.e. the gradient of f , ∇f , at x
exists and the following equality holds.

(6.7.4) ‖f(y)− (f(x) +∇f(x)>(y − x))‖ = o(‖y − x‖).

(b) f has a unique supporting hyperplane at x.

The set of points Diff(f) ⊂
∫

(D), where f is differentiable, is a dense
set in D of the full Lebesgue measure, i.e. D\Diff(f) has zero Lebesgue
measure. Furthermore, ∇f is continuous on Diff(f).
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4. Let D ⊂ Rn be a convex set, and f : D → R a function. Assume
that f ∈ C2(

∫
D), i.e. f and its first and second partial derivatives

are continuous in
∫

D. Then f :
∫

D → R is convex iff and only the
Hessian matrix H(x) = [ ∂f

∂xi∂xj
(x)]ni=j= has nonnegative eigenvalues

for each x ∈
∫

D. If the Hessian H(x) has positive eigenvalues for
each x ∈

∫
D, then f is strictly convex on

∫
D.

5. Let D ⊂ Rn be a convex set.

(a) If f, g are convex on D then max(f, g), where max(f, g)(x) :=
max(f(x), g(x)), is convex. Furthermore, af + bg is convex for
any a, b ≥ 0.

(b) Let fi : D → R for i = 1, 2, . . .. Denote by f := lim supi fi the
function given by f(x) := lim supi f(x) for each x ∈ D. Assume
that f : D→ R, i.e. the sequence fi(x), i = 1, . . . , is bounded for
each x. If each fi is convex on D then f is convex on D.

Theorem 6.7.3 Let D ∈ Rm be a convex set. Assume that aij : D→ R
are log-convex functions for i, j = 1, . . . , n. Let A(x) := [aij(x)]ni=j= be the
induced nonnegative matrix function on D. Then ρ(A(x)) is a log-convex
function on D. Assume furthermore that each aij(x) ∈ Ck(

∫
D), for some

k ≥ 1. (All partial derivatives of aij(x) of order less or equal to k are
continuous in

∫
D.) Suppose furthermore that A(x) is irreducible. Then

0 < ρ(A(x)) ∈ Ck(
∫

D).

Proof. In view of Fact 6.7.2.5a each entry of the matrix A(x)m is log-
convex. Hence trA(x)m is log-convex, which implies that (trA(x)m)


m is

log-convex. Theorem 6.4.9 combined with Fact 6.7.2.5b yields that ρ(A(x))
is log-convex.

Assume that A(x) is irreducible for some x ∈
∫

(D). Since each aij(x)
is continuous in

∫
D, Problem 1 yields that the digraph D(A(x)) is a con-

stant digraph on
∫

D. Since D(A(x)) is strongly connected, it follows that
D(A(x))) is strongly connected for each x ∈

∫
D. Hence A(x) is irreducible

for x ∈
∫

D and ρ(A(x)) >  is a simple root of its characteristic polynomial
for x ∈

∫
D. The implicit function theorem implies that ρ(A(x)) ∈ Ck(

∫
D).

2

Theorem 6.7.4 Let A ∈ Rn×n+ . Define A(x) = D(ex)A for any x ∈
Rn. Then ρ(A(x)) is a log-convex function. Suppose furthermore that A
is irreducible. Then log ρ(A(x)) is a smooth convex function on Rn, i.e.
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log ρ(A(x)) ∈ C∞(Rn). Let

A(x)u(x) = ρ(A(x))u(x), A(x)>v(x) = ρ(A(x))v(x),
0 < u(x),v(x), with the normalization w(x) =: u(x) ◦ v(x) ∈ Πn.

Then

(6.7.5) ∇ log ρ(A(x)) =


ρ(A(x))
∇ρ(A(x)) = w(x).

That is, the inequality (6.6.8) corresponds to the standard inequality

(6.7.6) log ρ(A(y)) ≥ log ρ(A(0)) +∇ log ρ(A(0))>y,

for smooth convex functions.

Proof. Clearly, the function fi(x) = exi is a smooth log-convex function
for x = (x, . . . , xn)> ∈ Rn. Since A ≥ 0 it follows that each entry of A(x)
is a log-convex function. Theorem 6.7.3 yields that ρ(A(x)) is log-convex.

Assume in addition that A = A(0) is irreducible. Theorem 6.7.3 yields
that log ρ(A(x)) is a smooth convex function on Rn. Hence log ρ(A(x)) has
a unique supporting hyperplane at each x. For x =  this supporting hy-
perplane is given by the right-hand side of (6.7.6). Consider the inequality
(6.6.8). By letting D = D(ey) and taking the logarithm of this inequal-
ity we obtain that log ρ(A) + w(0)>y is also a supporting hyperplane for
log ρ(A(x)) at x = 0. Hence ∇ log ρ(A(0)) = w(0). Similar arguments for
any x proves the equality (6.7.5). 2

Problems

1. Let D ⊂ Rm be a convex set.

(a) Show that if f is a continuous log-convex on D, then either f
identically zero function or positive at each x ∈ D.

(b) Assume that f is positive on D, i.e. f(x) >  for each x ∈ D.
Then f is log-convex on D if and only if log f is convex on D.

(c) Assume that f is log-convex on D. Then f is continuous on
∫

D.

2. Let f : D → R be a log-convex function. show that f is a convex
function.

3. Let D ⊂ Rn be a convex set.

(a) If f, g are log-convex on D then max(f, g) is log-convex. Fur-
thermore, fagb and af + bg are log-convex for any a, b ≥ 0.

(b) Let fi : D → R i = 1, 2, . . . be log-convex. Assume that f :=
lim supi fi : D→ R. Then f is log-convex on D.
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6.8 Min-max characterizations of ρ(A)

Theorem 6.8.1 Let Ψ : R → R be a differentiable convex nondecreas-
ing function. Let A ∈ Rn×n+ , and assume that ρ(A) > 0. Then

sup
p=(p,...,pn)>∈Πn

inf
x=(x,...,xn)>0

n∑
i=1

piΨ
(

log
(Ax)i
xi

)
=

Ψ(log ρ(A)).(6.8.1)

Suppose that Ψ′(log ρ(A)) > 0 and A has a positive eigenvector u which
corresponds to ρ(A). If

(6.8.2) inf
x=(x,...,xn)>0

n∑
i=1

piΨ
(

log
(Ax)i
xi

)
= Ψ(log ρ(A))

then the vector v = p◦u− is a nonnegative eigenvector of A> correspond-
ing to ρ(A). In particular, if A is irreducible, then p satisfying (6.8.2) is
unique.

Proof. Let µ(A) be the left-hand side of (6.8.1). We first show that
µ(A) ≤ Ψ(log ρ(A)). Suppose first that there exists u > 0 such that Au =
ρ(A)u. Then

inf
x=(x,...,xn)>0

n∑
i=1

piΨ
(

log
(Ax)i
xi

)
≤

n∑
i=1

piΨ
(

log
(Au)i
ui

)
= Ψ(log ρ(A)),

for any p ∈ Πn. Hence µ(A) ≤ Ψ(log ρ(A)).
Let Jn ∈ Rn×n be the matrix whose all entries are equal to 1. For ε > 0

let A(ε) := A+ εJn. As A(ε) is positive, it has a positive Perron-Frobenius
eigenvector. Hence µ(A(ε)) ≤ Ψ(log ρ(A(ε))). Since Ψ is nondecreasing and
A(ε) > A, it follows that µ(A) ≤ µ(A(ε)) ≤ Ψ(log ρ(A(ε))). Let ε ↘ 0,
and use the continuity of Ψ(t) to deduce µ(A) ≤ Ψ(log ρ(A)).

Assume now that A ∈ Rn×n+ is irreducible. Let u,v > 0 be the the
right and the left Perron-Frobenius eigenvectors of A, such that p? =
(p?, . . . , p

?
n)> := u ◦ v ∈ Πn. Suppose first that Ψ(t) = t. Theorem 6.6.9

yields the equality

min
x=(x,...,xn)>>0

n∑
i=1

p?i log
(Ax)i
xi

= log ρ(A).

Hence we deduce that µ(A) ≥ log ρ(A). Combine that with the previous
inequality µ(A) ≤ log ρ(A) to deduce (6.8.1) in this case.
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Suppose next that Ψ is a convex differentiable nondecreasing function
on R. Let s := Ψ′(log ρ(A)). So s ≥ 0, and

Ψ(t) ≥ Ψ(log ρ(A)) + (t− log ρ(A))s, for any t ∈ R.

Thus

n∑
i=1

piΨ
(

log
(Ax)i
xi

)
≥ Ψ(log ρ(A))− log ρ(A))s+ s

n∑
i=1

pi log
(Ax)i
xi

.

Use the equality (6.8.1) for Φ(t) = t to deduce that µ(A) ≥ Ψ(log ρ(A)).
Combine that with the inequality µ(A) ≤ Ψ(log ρ(A)) to deduce (6.8.1) for
any irreducible A.

Suppose next that A ∈ Rn×n+ is reducible and ρ(A) > 0. By applying
a permutational similarity to A, if necessary, we may assume that A =
[aij ] and B = [aij ]mi=j=1 ∈ Rm×m, 1 ≤ m < n is an irreducible submatrix
of A with ρ(B) = ρ(A). Clearly, for any x > 0, (A(x1, . . . , xn)>)i ≥
(B(x1, . . . , xm)>)i for i = 1, . . . ,m. Since Ψ is nondecreasing we obtain the
following set of inequalities

µ(A) ≥ sup
q>∈Πm

inf
0<x∈Rn

m∑
i=1

qiΨ
(

log
(Ax)i
xi

)
≥

sup
q>∈Πm

inf
0<y∈Rm

m∑
i=1

qiΨ
(

log
(By)i
yi

)
= Ψ(log ρ(B)).

Use the equality ρ(A) = ρ(B) and the inequality µ(A) ≤ Ψ(log ρ(A)) to
deduce the theorem.

Assume now that

ρ(A) > 0, Ψ′(log ρ(A)) > 0, Au = ρ(A)u, u > 0,

and equality (6.8.2) holds. So the infimum is achieved at x = u. Since
x = u is a critical point we deduce that A>p ◦ u− = ρ(A)p ◦ u−. If A is
irreducible then p is unique.

2

Corollary 6.8.2 Let A ∈ Rn×n+ . Then

(6.8.3) sup
p=(p,...,pn)>∈Πn

inf
x=(x,...,xn)>0

n∑
i=1

pi
(Ax)i
xi

= ρ(A).
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Suppose that ρ(A) > 0 and A has a positive eigenvector u which corresponds
to ρ(A). If

(6.8.4) inf
x=(x,...,xn)>0

n∑
i=1

pi
(Ax)i
xi

= ρ(A)

then the vector v = p◦u− is a nonnegative eigenvector of A> correspond-
ing to ρ(A). In particular, if A is irreducible, then p satisfying (6.8.3) is
unique.

Proof. If ρ(A) > 0 the corollary follows from Theorem 6.8.1 by letting
Ψ(t) = et. For ρ(A) = 0 apply the corollary to A1 = A + I to deduce the
corollary in this case. 2

Theorem 6.8.3 Let Dn,+ denote the convex set of all n×n nonnegative
diagonal matrices. Assume that A ∈ Rn×n+ . Then

(6.8.5) ρ(A+ tD1 + (1− t)D2) ≤ tρ(A+D1) + (1− t)ρ(A+D2)

for t ∈ (0, 1) and D1, D2 ∈ Dn,+. If A is irreducible then equality holds if
and only if D1 −D2 = aI.

Proof. Let φ(p) = infx>0

∑n
i= pi

(Ax)i
xi

for p ∈ Πn. Since ((A+D)x)i
xi

=

di + (Ax)i
xi

for D = diag(d1, . . . , dn) we deduce that

ψ(D,p) := inf
x>0

n∑
i=

pi
((A+D)x)i

xi
=
∑
i=

pidi + φ(p).

Thus ψ(D,p) is an affine function, hence convex on Dn,+. Therefore, ρ(A+
D) = supp∈Πn ψ(D,p) is a convex function on Dn,+. Hence (6.8.5) holds
for any t ∈ (0, 1) and D1, D2 ∈ Dn,+.

Suppose that A is irreducible and equality holds in (6.8.5). Since ρ(A+
bI + D) = b + ρ(A + D) for any b > 0, we may assume without loss
of generality that all the diagonal elements of A are positive. Let A0 =
A+ tD1 + (1− t)D2. Since A0 has a positive diagonal and is irreducible we
deduce that A0u = ru, A> v = rv where r > 0,u,v > 0,w := v ◦ u ∈ Πn.
Corollary 6.8.2 yields that

ρ(A0) = ψ(tD1 + (1− t)D2,w) = tψ(D,w) + (− t)ψ(D,w).
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Hence, equality in (6.8.5) implies that

ρ(A+D1) = ψ(D1,w) = ρ(A) + (− t)
n∑
i=

(d,i − d,i),

ρ(A+D2) = ψ(D2,w) = ρ(A) + t

n∑
i=

(d,i − d,i),

D1 = diag(d1,1, . . . , dn,1), D2 = diag(d1,2, . . . , dn,2).

Furthermore, the infima on x > 0 in the ψ(D1,w) and ψ(D2,w) are
achieved for x = u. Corollary 6.8.2 that u is the Perron-Frobenius eigen-
vector of A+D1 and A+D2. Hence D1−D2 = aI. Clearly, if D1−D2 = aI
then equality holds in (6.8.5). 2

Theorem 6.8.4 Let A ∈ Rn×n+ be an inverse of an M -matrix. Then

(6.8.6) ρ((tD1 + (1− t)D2)A) ≤ tρ(D1A) + (1− t)ρ(D2A),

for t ∈ (0, 1), D1, D2 ∈ Dn,+. If A > 0 and D1, D2 have positive diagonal
entries then equality holds if and only if D1 = aD2.

Proof. Let A = B−1, where B = rI −C,C ∈ Rn×n+ and ρ(C) < r. Use
Neumann expansion to deduce that A =

∑∞
i=0 r

−(i+1)Bi. Hence, A > 0 if
and only if C is irreducible. Assume first that A is positive. Denote by Don,+
the set diagonal matrices with positive diagonal, i.e. the interior of Dn,+.
Clearly, DA > 0 for D ∈ Don,+. Thus, ρ(DA) > 0 is a simple eigenvalue
of det (λI −DA). Hence ρ(DA) is an analytic function on Don,+. Denote
by ∇ρ(DA) ∈ Rn the gradient of ρ(DA) as a function on Dn,+. Since
ρ(DA) ∈ C2(Do

n,+ it follows that convexity of ρ(DA) on Don,+ is equivalent
to the following inequality.

(6.8.7) ρ(D(d)A) ≥ ρ(D(d)A) +∇ρ(D(d)A)>(d− d), d,d > 0.

See Problem 1. We now show (6.8.7). Let

D0Au = ρ(D)u,v>DA = ρ(DA)v>,u,v > ,v ◦ u ∈ Πn, D = D(d).

Theorem 6.7.4 implies that ∇ρ(D0A) = ρ(D0A)v ◦ u ◦ d− . Hence, (6.8.7)
is equivalent to

ρ(D(d)A) ≥ ρ(DA)(v ◦ u)>(d ◦ d− ).

Let D(d)Aw = ρ(D(d)A)w,w > 0. Then the above inequality follows
from the inequality

(6.8.8) ρ(D0A)−1 ≥ (v ◦ u)>(w ◦ (DAw)−).
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This inequality follows from the inf sup characterization of ρ(D0A)−1. See
Problem 2. The equality case in (6.8.7) follows from the similar arguments
for the equality case in (6.8.6). Since ρ(DA) is a continuous function on
Dn,+, the convexity of ρ(DA) on Don,+ yields the convexity of ρ(DA) on
Dn,+.

Consider now the case where A−1 = rI − B,B ∈ Rn×n+ , r > ρ(B), and
B is reducible. Then there exists b > 0 such that for ρ(B + b1>1) < r.
For ε ∈ (0, b) let A(ε) := (rI − (B + ε11>))−. Then the inequality (6.8.7)
holds if A is replaced by A(ε). Let ε↘ 0 to deduce (6.8.7). 2

Problems

1. (a) Let f ∈ C2(a,b). Show that f ′′(x) ≥ 0 for x ∈ (a, b) if and only
if f(x) ≥ f(x0) + f ′(x0)(x− x0) for each x, x0 ∈ (a, b).

(b) Let D ⊂ Rn be an open convex set. Assume that f ∈ C2(D).
Let H(f)(x) = [ ∂f

∂xi∂xj
](x) ∈ S(n,R) for x ∈ D. Show that

H(f)(x) ≥0 for all x ∈ D if and only if f(x) ≥ f(x)+∇f(x)>(x−
x) for all x,x ∈ D. (Hint: Restrict f to an interval (u,v) ⊂ D
and use part (a) of the problem.)

2.

(a) Let F ∈ Rn×n+ be an inverse of an M -matrix. Show

1
ρ(F )

= inf
p=(p,...,pn)>∈Πn

sup
x=(x,...,xn)>0

n∑
i=1

pi
xi

(Fx)i
.

Hint: Use Corollary 6.8.2.

(b) Let 0 < F ∈ Rn×n+ be an inverse of an M -matrix. Assume that

Fu = ρ(F )u, F>v = ρ(F )v,u,v > 0,v ◦ u ∈ Πn.

Show
1

ρ(F )
= sup

x=(x,...,xn)>0

n∑
i=1

viui
xi

(Fx)i
.

Furthermore, 1
ρ(F ) =

∑n
i=1 viui

xi
(Fx)i

for x >  if and only if
Fx = ρ(F )x.

(c) Show (6.8.8). Hint: Use Corollary 6.6.4 to show that A−1D−1
0

is an M -matrix.



6.9. APPLICATION TO CELLULAR COMMUNICATION 329

3. Let P = [δi(j+1)] ∈ Pn be a cyclic permutation matrix. Show that
ρ(D(d)P ) = (

∏n
i= di)


n for any d ∈ Rn+.

4. Show that (6.8.7) does not hold for all A ∈ Rn×n+ .

5. Let A ∈ Rn×n+ be an inverse of an M -matrix. Show that the convexity
of ρ(D(ex)A) on Rn is implied by the convexity of ρ(DA) on Dn,+.
Hint: Use the generalized arithmetic-geometric inequality.

6.9 Application to cellular communication

6.9.1 Introduction

Power control is used in cellular and ad-hoc networks to provide a high
signal-to-noise ratio (SNR) for a reliable connection. A higher SNR also
allows a wireless system that uses link adaptation to transmit at a higher
data rate, thus leading to a greater spectral efficiency. Transmission rate
adaptation by power control is an active research area in communication
networks that can be used for both interference management and utility
maximization [Sri03].

The motivation of the problems studied in this section comes from max-
imizing sum rate, (data throughput), in wireless communications. Due to
the broadcast nature of radio transmission, data rates in a wireless network
are affected by interference. This is particularly true in Code Division Mul-
tiple Access (CDMA) systems, where users transmit at the same time over
the same frequency bands and their spreading codes are not perfectly or-
thogonal. Transmit power control is often used to control signal interference
to maximize the total transmission rates of all users.

6.9.2 Statement of problems

Consider a wireless network, e.g., cellular network, with L logical trans-
mitter/receiver pairs. Transmit powers are denoted as p1, . . . , pL. Let
p = (p, . . . , pL)> ≥ 0 be the power transmission vector. In many situ-
ation we will assume that p ≤ p̄ := (p̄, . . . , p̄l)>, where p̄l is the maximal
transmit power of the user l. In the cellular uplink case, all logical re-
ceivers may reside in the same physical receiver, i.e., the base station. Let
G = [gij ]Li,j=1 > 0L×L representing the channel gain, where gij is the chan-
nel gain from the jth transmitter to the ith receiver, and nl is the noise
power for the lth receiver be given. The Signal-to-Interference Ratio (SIR)
for the lth receiver is denoted by γl = γl(p). The map p 7→ γ(p) is given
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by
(6.9.1)

γl(p) :=
gllpl∑

j 6=l gljpj + nl
, l = , . . . , L, γ(p) = (γ(p), . . . , γL(p))>.

That is, the power pl is amplified by the factor gll, and diminished by other
users and the noise, inversely proportional to

∑
j 6=l gljpj + nl.

Define

(6.9.2) F = [fij ]Li,j=1, where fij =
{

0, if i = j
gij
gii
, if i 6= j

and

g = (g, . . . , gLL)>, n = (n, . . . , nL)>,(6.9.3)

s = (s1, . . . , sL)> := (
n1

g11
,

n2

g22
, . . . ,

nL

gLL
)>.

Then

(6.9.4) γ(p) = p ◦ (Fp + s)−.

Let
(6.9.5)

Φw(γ) :=
L∑
i=1

wi log(1 + γi), where w = (w, . . . , wn)> ∈ Πn,γ ∈ RL+.

The function Φw(γ(p)) is the sum rate of the interference-limited channel.
We can study the following optimal problems in the power vector p. The

first problem is concerned with finding the optimal power that maximizes
the minimal SIR for all users:

(6.9.6) max
p∈[0,p̄]

min
i∈〈L〉

γl(p)

Then second, more interesting problem, is the sum rate maximization
problem in interference-limited channels

(6.9.7) max
p∈[0,p̄]

Φw(γ(p)).

The exact solution to this problem is known to be NP-complete [Luo08].
Note that for a fixed p1, . . . , pl−1, pl+1, . . . , pL each γj(p), j 6= l is a de-
creasing function of pl, while γl(p) is an increasing function of l. Thus, if
wl = 0 we can assume that in the maximal problem (6.9.7) we can choose
pl = 0. Hence, it is enough to study the maximal problem (6.9.7) in the
case w > 0.
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6.9.3 Relaxations of optimal problems

In this subsection, we study several relaxed versions of (6.9.6) and (6.9.7).
We will assume first that we do not have the restriction p ≤ p̄. Let γ(p,n)
be given by (6.9.1). Note that since n >  we obtain

γ(tp,n) = γ(p,


t
n)⇒ γ(tp,n) > γ(p,n) for t > .

Thus, to increase the values of the optimal problems in (6.9.6) and (6.9.7),
we let t→∞, which is equivalent to the assumption in this subsection that
n = 0.

Theorem 6.9.1 Let F ∈ RL×L+ , L ≥ 2 be a matrix with positive off-
diagonal entries. Let Fu = ρ(F )u for a unique 0 < u ∈ ΠL. Then

(6.9.8) max
0<p∈ΠL

min
l∈〈L〉

pl∑L
j=1 fljpj

=
1

ρ(F )
,

which is achieved only for p = u. In particular, The value of the optimal
problem given in (6.9.6) is less than 1

ρ(F ) .

Proof. Clearly, the left-hand side of 6.9.8 is equal to (min0<p maxl∈〈L〉
(Fp)l
pl

)−1.
Since F is irreducible, our theorem follows from Problem 11.

Clearly γ(p,n) < γ(p,0). Hence, for p > 0 minl∈〈L〉 γ(p,n) < minl∈〈L〉 γ(p,0).
Since p ∈ [0, p̄] ⊂ RL+ we deduce that the value of the optimal problem given
in (6.9.6) is less than 1

ρ(F ) . 2

We now consider the relaxation problem of (6.9.7). We approximate
log(1 + x) by log x for x ≥ 0. Clearly, log(1 + x) ≥ log x. Let

(6.9.9) Ψw(γ) =
L∑
j=1

wi log γj , γ = (γ1, . . . , γL)>.

Theorem 6.9.2 Let F = [fij ] ∈ RL×L+ have positive off-diagonal ele-
ments and zero diagonal entries. Assume that L ≥ 3, w = (w, . . . , wL)> >
0, and suppose that w satisfies the inequalities (6.6.10) for each j ∈ 〈L〉,
where n = L. Let D1 = diag(d1,1, . . . , dL,1), D2 = diag(d1,2, . . . , dL,2)
be two diagonal matrices, with positive diagonal entries, such that B =
D1FD2, B1 = 1, B>w = w.(As given by Theorem 6.6.12.) Then

(6.9.10) max
p>0

Ψw(p) =
L∑
j=

wj log dj,dj,.

Equality holds if and only if p = tD− 1 for some t > 0.



332 CHAPTER 6. NONNEGATIVE MATRICES

Proof. Let p = Dx. Then

Ψw(D2x) =
L∑
j=

wj log dj,dj, −
L∑
j=

wj
(Bx)j
xj

.

Use Theorem 6.6.9 to deduce that the above expression is not more than
the right-hand side of (6.9.10). For x = 1 equality holds. From the proof of
the second part of Theorem 6.6.12 it follows that this minimum is achieved
only for x = t1, which is equivalent to p = tD− 1. 2

6.9.4 Preliminary results

Claim 6.9.3 Let p ≥ 0 be a nonnegative vector. Assume that γ(p) is
defined by (6.9.1). Then ρ(diag(γ(p))F ) < , where F is defined by (6.9.2).
Hence, for γ = γ(p),

(6.9.11) p = P (γ) := (I − diag(γ)F )− diag(γ)v.

Vice versa, if γ is in the set

(6.9.12) Γ := {γ ≥ 0, ρ(diag(γ)F ) < },

then the vector p defined by (6.9.11) is nonnegative. Furthermore, γ(P (p)) =
γ. That is, γ : RL+ → Γ, and P : Γ→ RL+ are inverse mappings.

Proof. Observe that (6.9.1) is equivalent to the equality

(6.9.13) p = diag(γ)Fp + diag(γ)v.

Assume first that p is a positive vector, i.e., p > 0. Hence, γ(p) > 0.
Since all off-diagonal entries of F are positive it follows that the matrix
diag(γ)F is irreducible. As v > 0, we deduce that maxi∈[1,n]

(diag(γ)Fp)i
pi

<

1. The min max characterization of Wielandt of ρ(diag(γ)F ), [?] implies
ρ(diag(γ)F ) < 1. Hence, γ(p) ∈ Γ. Assume now that p ≥ 0. Note that
pi > 0 ⇐⇒ γi(p) > . So p = 0 ⇐⇒ γ(p) = . Clearly, ρ(γ(0)F ) =
ρ(L×L) =  < . Assume now that p 
 0. Let A = {i : pi > }. Denote
γ(p)(A) the vector composed of positive entries of γ(p). Let F (A) be the
principal submatrix of F with rows and columns in A. It is straightforward
to see that ρ(diag(γ(p))F ) = ρ(diag(γ(p)(A)F (A)). The arguments above
imply that

ρ(diag(γ(p))F ) = ρ(diag(γ(p)(A)F(A)) < .
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Assume now that γ ∈ Γ. Then

(6.9.14) (I − diag(γ)F )−1 =
∞∑
k=0

(diag(γ)F )k ≥ 0L×L.

Hence, P (γ) ≥ 0. The definition of P (γ) implies that γ(P (γ)) = γ. 2

Claim 6.9.4 The set Γ ⊂ RL+ is monotonic with respect to the order
≥. That is if γ ∈ Γ and γ ≥ β ≥ 0 then β ∈ Γ. Furthermore, the function
P (γ) is monotone on Γ.

(6.9.15) P (γ) ≥ P (β) if γ ∈ Γ and γ ≥ β ≥ 0.

Equality holds if and only if γ = β.

Proof. Clearly, if γ ≥ β ≥ 0 then diag(γ)F ≥ diag(β)F which implies
ρ(diag(γ)F ) ≥ ρ(diag(β)F ). Hence, Γ is monotonic. Use the Neumann
expansion (6.9.14) to deduce the monotonicity of P . The equality case is
straightforward. 2

Note that γ(p) is not monotonic in p. Indeed, if one increases only
the ith coordinate of p, then one increases the ith coordinate of γ(p) and
decreases all other coordinates of γ(p).

As usual, let ei = (δi, . . . , δiL)>, i = , . . . , L be the standard basis in
RL. In what follows, we need the following result.

Theorem 6.9.5 Let l ∈ [1, L] be an integer and a > 0. Denote [0, a]l×
RL−1

+ the set of all p = (p, . . . , pL)> ∈ RL+ satisfying pl ≤ a. Then the
image of the set [0, a]l × RL−1

+ by the map γ (6.9.1), is given by

(6.9.16) ρ(diag(γ)(F +
1
a

ve>l )) ≤ , 0 ≤ γ.

Furthermore, p = (p, . . . , pL) ∈ RL+ satisfies the condition pl = a if and
only if γ = γ(p) satisfies

(6.9.17) ρ(diag(γ)(F +
1
a

ve>l )) = .

Proof. Suppose that γ satisfies (6.9.16). We claim that γ ∈ Γ. Suppose
first that γ > 0. Then diag(γ)(F + t1ve>l ) � diag(γ)(F + tve>l ) for any
t1 < t2. Lemma 6.2.4 yields

ρ(diag(γ)F ) < ρ(diag(γ)(F + t1ve>l )) < ρ(diag(γ)(F + tve>l )) <(6.9.18)

ρ(diag(γ)(F +
1
a

ve>l )) ≤  for  < t < t <


a
.
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Thus γ ∈ Γ. Combine the above argument with the arguments of the proof
of Claim 6.9.3 to deduce that γ ∈ Γ for γ ≥ 0.

We now show that P (γ)l ≤ a. The continuity of P implies that it is
enough to consider the case γ > 0. Combine the Perron-Frobenius theorem
with (6.9.18) to deduce

(6.9.19) 0 < det (I − diag(γ)(F + tve>l )) for t ∈ [, a−).

We now expand the right-hand side of the above inequality. Let B = xy> ∈
RL×L be a rank one matrix. Then B has L − 1 zero eigenvalues and one
eigenvalue equal to y>x. Hence, I − xy> has L − 1 eigenvalues equal to
1 and one eigenvalue is (1 − y>x). Therefore, det (I − xy>) =  − y>x.
Since γ ∈ Γ we get that (I − diag(γ)F ) is invertible. Thus, for any t ∈ R

det (I − diag(γ)(F + tve>l )) =
det (I − diag(γ)F )det (I − t((I − diag(γ)F )−1 diag(γ)v)e>l )(6.9.20)
det (I − diag(γ)F )(1− te>l (I − diag(γ)F )− diag(γ)v).

Combine (6.9.19) with the above identity to deduce

(6.9.21) 1 > te>l (I − diag(γ)F )− diag(γ)v = tP (γ)l for t ∈ [, a−).

Letting t↗ a−1, we deduce that P (γ)l ≤ a. Hence, the set of γ defined by
(6.9.16) is a subset of γ([0, a]l × RL−1

+ ).
Let p ∈ [, a]l × RL−+ and denote γ = γ(p). We show that γ satisfies

(6.9.16). Claim 6.9.3 implies that ρ(diag(γ)F ) < 1. Since p = P (γ)
and pl ≤ a we deduce (6.9.21). Use (6.9.20) to deduce (6.9.19). As
ρ(diag(γ)F ) < 1, the inequality (6.9.19) implies that ρ(diag(γ)F+tv>el) <
 for t ∈ (0, a−1). Hence, (6.9.16) holds.

It is left to show the condition (6.9.17) holds if and only if P (γ)l = a.
Assume that p = (p, . . . , pL)> ∈ RL+, pl = a and let γ = γ(p). We claim
that equality holds in (6.9.16). Assume to the contrary that ρ(diag(γ)(F +
1
ave>l )) < . Then, there exists β > γ such that ρ(diag(β)(F+ 1

ave>l )) < .
Since P is monotonic P (β)l > pl = a. On the other hand, since β satisfies
(6.9.16), we deduce that P (β)l ≤ a. This contradiction yields (6.9.17).
Similarly, if γ ≥ 0 and (6.9.17) then P (γ)l = a. 2

Corollary 6.9.6 Let p̄ = (p̄1, . . . , p̄L)> > 0 be a given positive vector.
Then γ([0, p̄]), the image of the set [0, p̄] by the map γ (6.9.1), is given by

(6.9.22) ρ

(
diag(γ)

(
F +

1
p̄l

ve>l

))
≤ 1, for l = 1, . . . , L, and γ ∈ RL+.
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In particular, any γ ∈ RL+ satisfying the conditions (6.9.22) satisfies the
inequalities

(6.9.23) γ ≤ γ̄ = (γ̄1, . . . , γ̄L)>, where γ̄l =
p̄l
vl
, i = 1, . . . , L.

Proof. Theorem 6.9.5 yields that γ([0, p̄]) is given by (6.9.22). (6.9.4)
yields

γl(p) =
pl

((Fp)l + vl)
≤ pl
vl
≤ p̄l
vl

for p ∈ [0, p̄].

Note that equality holds for p = p̄lel. 2

6.9.5 Reformulation of optimal problems

Theorem 6.9.7 The maximum problem (6.9.7) is equivalent to the
maximum problem.

(6.9.24)
maximize

∑
l wl log(1 + γl)

subject to ρ(diag(γ)(F + (1/p̄l)ve>l )) ≤ 1 ∀ l ∈ 〈L〉,
variables: γl, ∀ l.

γ? is a maximal solution of the above problem if and only if P (γ?) is a
maximal solution p? of the problem (6.9.7). In particular, any maximal
solution γ? satisfies the equality (6.9.22) for some integer l ∈ [1, L].

We now give the following simple necessary conditions for a maximal
solution p? of (6.9.7). We first need the following result, which is obtained
by straightforward differentiation.

Lemma 6.9.8 Denote by

∇Φw(γ) =
(

w1

1 + γ1
, . . . ,

wL
1 + γL

)>
= w ◦ (1 + γ)−

the gradient of Φw. Let γ(p) be defined as in (6.9.1). Then H(p) =
[ ∂γi∂pj

]Li=j=, the Hessian matrix of γ(p), is given by

H(p) = diag((Fp + v)−)(−diag(γ(p))F + I).

In particular,
∇pΦw(γ(p)) = H(p)>∇Φw(γ(p)).
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Corollary 6.9.9 Let p? = (p?, . . . , p
?
L)> be a maximal solution to the

problem (6.9.7). Divide the set 〈L〉 = {1, . . . , L} to the following three
disjoint sets Smax,Sin,S0:

Smax = {i ∈ 〈L〉, p?i = p̄i}, Sin = {i ∈ 〈L〉, p?i ∈ (0, p̄i)}, S0 = {i ∈ 〈L〉, p?i = 0}.

Then the following conditions hold.

(H(p?)>∇Φw(γ(p?)))i ≥  for i ∈ Smax,

(H(p?)>∇Φw(γ(p?)))i =  for i ∈ Sin,(6.9.25)
(H(p?)>∇Φw(γ(p?)))i ≤  for i ∈ S0

Proof. Assume that p?i = p̄i. Then ∂
∂pi

Φw(γ(p))(p?) ≥ . Assume
that 0 < p?i < p̄i. Then ∂

∂pi
Φw(γ(p))(p?) = . Assume that p?i = 0. Then

∂
∂pi

Φw(γ(p))(p?) ≤ . 2

We now show that the maximum problem (6.9.24) can be restated as
the maximum problem of convex function on a closed unbounded domain.
For γ = (γ1, . . . , γL)> > 0 let γ̃ = log γ, i.e. γ = eγ̃ . Recall that for a
nonnegative irreducible matrix B ∈ RL×L+ log ρ(exB) is a convex function,
Theorem 6.7.4. Furthermore, log(1+et) is a strict convex function in t ∈ R.
Hence, the maximum problem (6.9.24) is equivalent to the problem

(6.9.26)
maximize

∑
l wl log(1 + eγ̃l)

subject to log ρ(diag(eγ̃)(F + (1/p̄l)ve>l )) ≤ 0 ∀ l ∈ 〈L〉,
variables: γ̃ = (γ̃1, . . . , γ̃n)> ∈ RL.

The unboundedness of the convex set in (6.9.26) is due to the identity
0 = e−∞.

Theorem 6.9.10 Let w > 0 be a probability vector. Consider the max-
imum problem (6.9.7). Then any point 0 ≤ p? ≤ p̄ satisfying the conditions
(6.9.25) is a local maximum.

Proof. Since w > 0, Φw(eγ̃) is a strict convex function in γ̃ ∈ RL.
Hence, the maximum of (6.9.26) is achieved exactly on the extreme points
of the closed unbounded set specified in (6.9.26). (It may happen that some
coordinate of the extreme point are −∞.) Translating this observation to
the maximal problem (6.9.7), we deduce the theorem. 2

We now give simple lower and upper bounds on the value of (6.9.7).
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Lemma 6.9.11 Consider the maximal problem (6.9.7). Let Bl = (F +
(1/p̄l)ve>l )) for l = 1, . . . , L. Denote R = maxl∈〈L〉 ρ(Bl). Let γ̄ be defined
by (6.9.23). Then

Φw((1/R)1) ≤ max
p∈[0,p̄]

Φw(γ(p) ≤ Φw(γ̄).

Proof. By Corollary 6.9.6, γ(p) ≤ γ̄ for p ∈ [0, p̄]. Hence, the upper
bounds holds. Clearly, for γ = (1/R)1, we have that ρ(diag(γ)Bl) ≤ 1
for l ∈ 〈L〉. Then, from Theorem 6.9.7, Φw((1/R)1) yields the lower
bound. Equality is achieved in the lower bound when p? = tx(Bi), where
i = arg maxl∈〈L〉 ρ(Bl), for some t > 0. 2

We now show that the substitution 0 < p = eq, i.e. pl = eql , l =
1, . . . , L, can be used to find an efficient algorithm to solve the optimal
problem (6.9.6). As in §6.9.3 we can consider the inverse of the maxmin
problem of (6.9.6). It is equivalent to the problem
(6.9.27)

min
q≤q̄

g(q), g(q) = max
l∈〈L〉

sle
−ql +

L∑
j=

flje
qj−ql , q̄ = (log p̄, . . . , log p̄L)>.

Note that sle−ql +
∑L
j=1 flje

qj−ql is a convex function. Fact 6.7.2.5a im-
plies that g(q) is a convex function. We have quite a good software and
mathematical theory to find fast the minimum of a convex function in a
convex set as q ≤ q̄, i.e. [NoW99].

6.9.6 Algorithms for sum rate maximization

In this section, we outline three algorithms for finding and estimating the
maximal sum rates. As above we assume that w > 0. Theorem 6.9.10
gives rise to the following algorithm, which is the gradient algorithm in the
variable p in the compact polyhedron [0, p̄].

Algorithm 6.9.12

1. Choose p ∈ [0, p̄]:

(a) Either at random;

(b) or p = p̄.

2. Given pk = (p,k, . . . , pL,k)> ∈ [0, p̄] for k ≥ 0, compute a = (a, . . . , aL)> =
∇pΦw(γ(pk)). If a satisfies the conditions (6.9.25) for p? = pk, then
pk is the output. Otherwise let b = (b, . . . , bL)> be defined as fol-
lows.
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(a) bi = 0 if pi,k = 0 and ai < 0;

(b) bi = 0 if pi,k = p̄i and ai > 0;

(c) bi = ai if 0 < pi < p̄i.

Then pk+ = pk + tkb, where tk > 0 satisfies the conditions pk+ ∈
[0, p̄] and Φw(γ(pk + tkbk)) increases on the interval [0, tk].

The problem with the gradient method, and its variations as a conjugate
gradient method is that it is hard to choose the optimal value of tk in each
step, e.g. [Avr03]. We now use the reformulation of the maximal problem
given by (6.9.26). Since w > 0, the function Φw(eγ̃) is strictly convex.
Thus, the maximum is achieved only on the boundary of the convex set

(6.9.28) D({F}) = {γ̃ ∈ RL, log ρ(diag(eγ̃)(F + (1/p̄l)ve>l )) ≤ 0, ∀ l}.

If one wants to use numerical methods and software for finding the
maximum value of convex functions on bounded closed convex sets , e.g.,
[NoW99], then one needs to consider the maximization problem (6.9.26)
with additional constraints:

(6.9.29) D({F},K) = {γ̃ ∈ D({F}), γ̃ ≥ −K1}.

for a suitable K � 1. Note that the above closed set is compact and convex.
The following lemma gives the description of the set D({F},K).

Lemma 6.9.13 Let p̄ > 0 be given and let R be defined as in Lemma
6.9.11. Assume that K > logR. Let p = P (e−K1) = (eKI −F )−v. Then
D({F},K) ⊆ log γ([p, p̄]).

Proof. From the definition of K, we have that eK > R. Hence,
ρ(e−KBl) < 1 for l = 1, . . . , L. Thus −K1 ∈ D({F}). Let γ = e−K1.
Assume that γ̃ ∈ D({F},K). Then γ̃ ≥ −K1. Hence, γ = eγ̃ ≥ γ. Since
ρ(diag(γ)F ) < 1, Claim 6.9.4 yields that p = P (γ) ≥ P (γ) = p, where
P is defined by (6.9.11). The inequality P (γ) ≤ p̄ follows from Corollary
6.9.6. 2

Thus, we can apply the numerical methods to find the maximum of the
strictly convex function Φw(eγ̃) on the closed bounded set D({F},K), e.g.
[NoW99]. In particular, we can use the gradient method. It takes the given
boundary point γ̃k to another boundary point of γ̃k+1 ∈ D({F},K), in
the direction induced by the gradient of Φw(eγ̃). However, the complicated
boundary of D({F},K) will make any algorithm expensive.

Furthermore, even though the constraint set in (6.9.24) can be trans-
formed into a strict convex set, it is in general difficult to determine precisely
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the spectral radius of a given matrix [Var63]. To make the problem simpler
and to enable fast algorithms, we approximate the convex set D({F},K) by
a bigger polyhedral convex sets as follows. Choose a finite number of points
ζ1, . . . , ζM on the boundary of D({F}), which preferably lie in D({F},K).
Let
H1(ξ), . . . ,HN (ξ), ξ ∈ RL be the N supporting hyperplanes of D({F}.
(Note that we can have more than one supporting hyperplane at ζi, and
at most L supporting hyperplanes.) So each ξ ∈ D({F},K) satisfies the
inequality Hj(ξ) ≤ 0 for j = 1, . . . , N . Let γ̄ be defined by (6.9.23). Define
(6.9.30)
D(ζ1, . . . , ζM ,K) = {ξ ∈ RL, −K1 ≤ ξ ≤ log γ̄, Hj(ξ) ≤  for j = , . . . , N}.

Hence, D(ζ1, . . . , ζM ,K) is a polytope which contains D({F},K). Thus

max
γ̃∈D(ζ1,...,ζM ,K)

Φw(eγ̃) ≥(6.9.31)

max
γ̃∈D({F},K)

Φw(eγ̃).(6.9.32)

Since Φw(eγ̃) is strictly convex, the maximum in (6.9.31) is achieved only
at the extreme points of D(ζ1, . . . , ζM ,K). The maximal solution can be
found using a variant of a simplex algorithm [?]. More precisely, one starts
at some extreme point of ξ ∈ D(ζ1, . . . , ζM ,K). Replace the strictly convex
function Φw(eγ̃) by its first order Taylor expansion Ψξ at ξ. Then we find
another extreme point η of D(ζ1, . . . , ζM ,K), such that Ψξ(η) > Ψξ(ξ) =
Φw(eξ). Then we replace Φw(eγ̃) by its first order Taylor expansion Ψη at
η and continue the algorithm. Our second proposed algorithm for finding
an optimal γ̃? that maximizes (6.9.31) is given as follows.

Algorithm 6.9.14

1. Choose an arbitrarily extreme point ξ0 ∈ D(ζ1, . . . , ζM ,K).

2. Let Ψξk(ξ) = Φw(eξk) + (w ◦ (1 + eξk)−1 ◦ eξk)
>

(ξ − ξk). Solve
the linear program maxξ Ψξk(ξ) subject to ξ ∈ D(ζ1, . . . , ζM ,K) us-
ing the simplex algorithm in [?] by finding an extreme point ξk+1 of
D(ζ1, . . . , ζM ,K), such that Ψξk(ξk+1) > Ψξk(ξk) = Φw(eξk).

3. Compute pk = P (eξk+). If pk ∈ [, p̄], compute a = (a, . . . , aL)> =
∇pΦw(γ(pk)). If a satisfies the conditions (6.9.25) for p? = pk, then
pk is the output. Otherwise, go to Step 2 using Ψξk+1

(ξ).

As in §6.9.3, it would be useful to consider the following related maximal
problem:

(6.9.33) max
γ̃∈D(ζ1,...,ζM ,K)

w>γ̃.
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This problem given by (6.9.33) is a standard linear program, which can
be solved in polynomial time by the classical ellipsoid algorithm [?]. Our
third proposed algorithm for finding an optimal γ̃? that maximizes (6.9.33)
is given as follows. Then p? = P (eγ̃?).

Algorithm 6.9.15

1. Solve the linear program maxγ̃ w>γ̃ subject to γ̃ ∈ D(ζ1, . . . , ζM ,K)
using the ellipsoid algorithm in [?].

2. Compute p = P (eγ̃). If p ∈ [, p̄], then p is the output. Otherwise,
project p onto [0, p̄].

We note that γ̃ ∈ D(ζ1, . . . , ζM ,K) in Algorithm 6.9.15 can be replaced
by the set of supporting hyperplane D(F̃ ,K) = {γ̃ ∈ ρ(diag(eγ̃)F̃ ) ≤
1, γ̃ ≥ −K1} or, if L ≥ 3 and w satisfies the conditions (6.6.10),
D(F,K) = {γ̃ ∈ ρ(diag(eγ̃)F ) ≤ 1, γ̃ ≥ −K1} based on the relaxed
maximal problems in Section 4. Then Theorem 6.9.2 quantify the closed-
form solution γ̃ computed by Algorithm 6.9.15.

We conclude this section by showing how to compute the supporting hy-
perplanes Hj , j = 1, . . . , N , which define D(ζ1, . . . , ζM ,K). To do that, we
give a characterization of supporting hyperlanes of D({F}) at a boundary
point ζ ∈ ∂D({F}).

Theorem 6.9.16 Let p̄ = (p̄1, . . . p̄L)> > 0 be given. Consider the
convex set (6.9.28). Let ζ be a boundary point of ∂D({F}). Then ζ =
log γ(p), where 0 ≤ p = (p, . . . , pL)> ≤ p̄. The set B := {l ∈ 〈L〉, pl =
p̄l} is nonempty. For each Bl = (F+(1/p̄l)ve>l )) let Hl(ζ) be the supporting
hyperplane of diag(ex)Bl at ζ, defined as in Theorem 6.7.4. Then Hl ≤ 0,
for l ∈ B, are the supporting hyperplanes of D({F}) at ζ.

Proof. Let p = P (eζ). Theorem 6.9.5 implies the set B is nonempty.
Furthermore, ρ(eζBl) = 1 if and only if pl = p̄l. Hence, ζ lies exactly at
the intersection of the hypersurfaces log ρ(eζBl) = 0, l ∈ B. Theorem 6.7.4
implies that the supporting hyperplanes of D({F}) at ζ are Hl(ξ) ≤ 0 for
l ∈ B. 2

We now show how to choose the boundary points ζ1, . . . , ζM ∈ ∂D({F})
and to compute the supporting hyperplanes of D({F}) at each ζi. Let
p = P (e−K1) = (p, . . . , pL)> be defined as in Lemma 6.9.13. Choose
Mi ≥ 2 equidistant points in each interval [p

i
, p̄i].

(6.9.34) pji,i =
jipi + (Mi − ji)p̄i

Mi
for ji = 1, . . . ,Mi, and i = 1, . . . , L.



6.9. APPLICATION TO CELLULAR COMMUNICATION 341

Let

P = {pj,...,jL = (pj,, . . . , pjL,L)>, min(p̄ − pj,, . . . , p̄L − pjL,L) = }.

That is, pj,...,jL ∈ P if and only pj,...,jL ≮ p̄. Then

{ζ1, . . . , ζM} = log γ(P).

The supporting hyperplanes of D({F}) at each ζi are given by Theorem
6.9.16.
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Chapter 7

Convexity

7.1 Convex sets

In this chapter all vector spaces are finite dimensional.

Definition 7.1.1 Let V be a finite dimensional vector space over F =
R,C.

1. For x,y ∈ V denote

[x,y] := {z : z = αx + (− α)y for all α ∈ [, ]},
(x,y) := {z : z = αx + (− α)y for all α ∈ (, )}.

[x,y], (x,y) are called closed and open intervals respectively, with the
end point x,y.

2. For a nonempty S ⊂ V denote convS = ∪x,y∈S [x,y], called the
convex hull of S. (conv ∅ = ∅.)

3. A set C ⊂ V is called convex if for each x,y ∈ V [x,y] ⊂ C. (∅ is
convex.)

4. Assume that C ⊂ V is a convex set and let x ∈ C. Denote by C−x the
set {z : z = y−x, y ∈ C}. Let U = span R(C−x), i.e. the set of all
linear combinations of elements of C − x with real coefficients. Then
U is a finite dimensional real space. The dimension of C, denoted by
dim C, is the dimension of the vector space U. (dim ∅ = −1.) C − x
has interior as a subset of U, which is called the relative interior and
denoted by ri (C − x). Then the relative interior of C is defined as
ri C equal to ri (C − x) + x.

343
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5. A point x in a convex set C is called an extreme point if there are no
two points y, z ∈ C\{x} such that x ∈ [y, z]. Denote by E(C) the set
of the extreme points of the convex set C.

6. Let C be a convex set and E(C) the set of its extreme points. For k dis-
tinct extreme points x, . . . ,xk ∈ E(C) the convex set conv{x, . . . ,xk}
is called the k-face of C if the following property holds. Let x,y ∈
C and assume that (x,y) ∩ conv{x, . . . ,xk} 6= ∅. Then [x,y] ⊂
conv{x, . . . ,xk}.

7. Let C be a convex set in a finite dimensional vector space V. For
f ∈ V∗ and x ∈ V denote

H0(f ,x) := {y ∈ V, <f(y) = <f(x)},
H+(f ,x) := {y ∈ V, <f(y) ≥ <f(x)},
H−(f ,x) := {y ∈ V, <f(y) ≤ <f(x)}.

H0(f ,x) is called the (real) hyperplane, H+(f ,x),H−(f ,x) are called
the upper and the lower half spaces respectively, or simply the half
spaces.

It is straightforward to show that dim C, ri C do not depend on the
choice of x ∈ C. Furthermore ri C is convex. See Problem 3 or [Roc70].

Assume that V is a complex finite dimensional subspace, of dimension
n. Then V can be viewed as a real vector space VR of dimension 2n. A
convex set C ⊂ V is a convex set CR ⊂ VR. However, as we see later,
sometimes it is natural to consider convex sets as subsets of complex vector
space V, rather then subsets of VR.

Clearly, H0(f ,x),H+(f ,x),H−(f ,x) are convex sets. Note also that
H−(f ,x) = H+(−f ,x).

Definition 7.1.2 An intersection of a finite number of half spaces
∩mi=1H+(fi,xi) is called a polyhedron. A nonempty compact polyhedron is
called polytope.

Clearly, a polyhedron is a closed convex set. Given a polyhedron C,
it is a natural problem to find if this polyhedron is empty or not empty.
The complexity of finding out if this polyhedron is empty or not depends
polynomially on: the dimension of V, and the complexity of all the half
spaces in the characterizing C. This is not a trivial fact, which is obtained
using an ellipsoid method. See [Kha79, Kar84, Lov86].

It is well known that any polytope has a finite number of extreme points,
and is equal to the convex hull of its extreme points [Roc70, p’12]. The
following result is a generalization of this fact [Roc70, Part IV,§17-18].
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Theorem 7.1.3 Let C be a compact convex set in a finite dimensional
vector space V of dimension d. Then E := E(C) is nonempty set and
C = conv E. Furthermore for each x ∈ C there exists at most d+1 extreme
points x, . . . ,xk ∈ E , k ≤ d+ , such that x ∈ conv{x, . . . ,xk}.

In general it is a difficult problem to find explicitly all the extreme
points of the given compact convex set, or even of a given polyhedron. The
following example is a classic in matrix theory.

Theorem 7.1.4 Let Hn,+,1 ⊂ Cn×n be the convex set of nonnegative
definite hermitian matrices with trace 1. Then

E(Hn,+,1) = {xx∗, x ∈ Cn,x∗x = },(7.1.1)
E(Hn,+,1 ∩ S(n,R)) = {xx>, x ∈ Rn,x>x = }.(7.1.2)

Each matrix in Hn,+,1 or Hn,+,1 ∩ S(n,R) is a convex combination of at
most n extreme points.

Proof. Let A = xx∗,x ∈ Cn,x∗x = . Clearly A ∈ Hn,+,1. Suppose
that A = aB + (1 − a)C for some B,C ∈ Hn,+,1 and a ∈ (0, 1). Hence
A < aB < 0. Since y∗Ay ≥ ay∗By ≥  it follows that y∗By =  for
y∗x = . Hence By = 0 for y∗x = . Thus B is a rank one nonnegative
definite matrix of the form txx∗ where t > 0. Since trB = 1 we deduce
that t = 1 and B = A. Similarly C = A. Hence A is an extremal point.

Let F ∈ Hn,+,1. Then the spectral decomposition of F yields that
F =

∑n
i=1 λixix

∗
i , where x∗ixj = δij , i, j = , . . . , n. Furthermore, since F

is nonnegative definite of trace 1, λ1, . . . , λn, the eigenvalues of F , are non-
negative and sum to 1. So F ∈ conv{xx∗, . . . ,xnx∗n}. Similar arguments
apply to nonnegative real symmetric matrices of rank 1. 2

Definition 7.1.5 Let C1, C2 ⊂ V, where V is a finite dimensional
vector space over F. C1, C2 are called hyperplane separated if there exists
f ∈ V∗ and x ∈ V such that C1 ⊂ H+(f ,x), C ⊂ H−(f ,x). H0(f ,x) is
called the separating (real) hyperplane. H0(f ,x) is said to separate C1 and
C2 properly if H0(f ,x) separates C1 and C2 and H0(f ,x) does contain C1

and C2.

The following result is well known [Roc70, Theorems 11.3].

Theorem 7.1.6 Let C1, C2 be nonempty convex sets in a finite dimen-
sional vector space V. Then there exists a hyperplane separating C1 and
C2 properly if and only ri C1 ∩ ri C2 = ∅.
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Corollary 7.1.7 Let C1 be a compact convex set in a finite dimensional
vector space V over F = R,C. Assume that C1 contains more than one
point. Let x be a an extreme point of C. Then there exists a hyperplane
which supports properly C1 at x. I.e., there exists 0 6= f ∈ V∗, such that
<f(x) ≤ <f(y) for each y ∈ C. Furthermore, there exists y ∈ C such that
<f(x) < <f(y).

Proof. Let C2 = {x}. So C2 is a convex set. Problem 4 yields that
ri C1 ∩ ri C2 = ∅. Use Theorem 7.1.4 to deduce the Corollary. 2

Definition 7.1.8 A point x of a convex set C in a finite dimensional
vector space V is called exposed, if there there exist a linear functional
f ∈ V∗ such that <f(x) > <f(y) for any y ∈ C\{x}.

Clearly, an exposed point of C is an extreme point, (Problem 5). There
exist compact convex sets with extreme points which are not exposed. See
Problem 6. In what follows we need Straszewiz [Str35].

Theorem 7.1.9 . Let C be a closed convex set. Then the set of exposed
points of C is a dense subset of extreme points of C. Thus every extreme
point is the limit of some sequence of exposed points.

Corollary 7.1.10 Let C be a closed convex set. Let x ∈ C be an iso-
lated extreme point. (I.e. there is a neighborhood of x, where x is the only
extreme point of C.) Then x is an exposed point.

Problems

1. Show

(a) For any nonempty subset S of a finite dimensional vector space
V over F, convS is a convex set.

(b) Furthermore, if S is compact, then convS is compact and E(C) ⊂
C.

2. Let C be a convex set in a finite dimensional subspace, with the set
of extreme points E(C). Let E1 ⊂ E(C) and C1 = convE1. Show
that E(C1) = E1.



7.2. DOUBLY STOCHASTIC MATRICES 347

3. Let V be a finite dimensional space and C ⊂ V a nonempty convex
set. Let x ∈ C. Show

a. The subspace U := span (C− x) does not depend on x ∈ C.

b. C − x has a nonempty convex interior in U

4. Let C be a convex set in a finite dimensional vector space V. Assume
that C contains at least two distinct points. Show

(a) Show that dim C ≥ 1.

(b) Show that ri C ∩ E(C) = ∅.

5. Let x ∈ C be an exposed point. Show that x is an extreme point of
C.

6. Consider the convex set C ∈ R2, which is a union of the three convex
sets:

C1 := {(x, y)>, |x| ≤ 1, |y| ≤ 1}, C2 = {(x, y)>, (x− 1)2 + y2 ≤ 1},
C3 = {(x, y)>, (x + 1)2 + y2 ≤ 1}.

Show that C has exactly 4 extreme points (±1,±1)> which are not
exposed points.

7.2 Doubly stochastic matrices

Definition 7.2.1 A ∈ Rn×n+ is called doubly stochastic matrix if the
sum of each row and column of A is equal to 1. Denote by Ωn ⊂ Rn×n+ the
set of doubly stochastic matrices. Denote by 1

nJn the n×n doubly stochastic
matrix whose all entries are equal to 1

n , i.e. Jn ∈ Rn×n+ is the matrix whose
each entry is 1.

Definition 7.2.2 P ∈ Rn×n+ is called a permutation matrix if each row
and column of P a contains exactly one nonzero element which is equal to
1. Denote by Pn the set of n× n permutation matrices.

Lemma 7.2.3 The following properties hold.

1. A ∈ Rn×n+ is double stochastic if and only if A1 = A>1 = 1, where
1 = (, . . . , )> ∈ Rn.

2. Ω1 = {1}.

3. A,B ∈ Ωn ⇒ tA+ (1− t)B ∈ Ωn for each t ∈ [0, 1].
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4. A,B ∈ Ωn ⇒ AB ∈ Ωn.

5. Pn ⊂ Ωn.

6. Pn is a group with respect to the multiplication of matrices, with In
the identity and P−1 = P>.

7. A ∈ Ωl, B ∈ Ωm → A⊕B ∈ Ωl+m.

See Problem 1.

Theorem 7.2.4 The set Ωn is a polytope of dimension (n−1)2, whose
extreme points is the set of permutation matrices Pn.

Proof. Clearly, Ωn is a nonempty compact convex set in Rn×n. Ωn is
a polytope since it is intersection of 4n+ n2 half spaces

n∑
k=1

xkj ≥ 1,
n∑
k=1

−xkj ≥ −1,
n∑
k=1

xjk ≥ 1,
n∑
k=1

−xjk ≥ −1,(7.2.1)

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n,

where X = [xij ]ni=j=1.
Let Ωn,0 = Ω − { 1

nJn}, i.e. Ωn,0 is the set of all matrices of the form
A− 1

nJn, where A ∈ Ωn. Denote

(7.2.2) Xn = {X ∈ Rn×n, X1 = X>1 = 0}.

Clearly Xn is a subspace of Rn×n, which contains Ωn,0. Let Q ∈ Rn×n
be an orthogonal matrix whose first column is the vector 1√

n
1. We claim

that X ∈ Xn if and only if Q>XQ = [0] ⊕ Y for some Y ∈ R(n−1)×(n−1).
Indeed, observe that Z = [0] ⊕ Y if and only if Ze = Z>e = 0, where
e = (, , . . . , )> ∈ Rn. Clearly, Qe = √

n
1, hence Q>XQ = [0] ⊕ Y

if and only if X1 = X>1 = 0. So Xn = Q([0] ⊕ R(n−1)×(n−1))Q>, hence
dim Xn = dim R(n−1)×(n−1) = (n− 1)2.

Let

(7.2.3) B(0, r) = {X ∈ Rn×n, trX>X ≤ r2}

be the closed ball of radius r in Frobenius, i.e. Euclidean norm, in Rn×n
centered in the origin. We claim that B(0, 1

n ) ∩ Xn ⊂ Ωn,0. Indeed, let
X = [xij ]ni=j=1 ∈ B(0, 1

n ) ∩ Xn. Then |xij | ≤ 1
n and X1 = X>1 = 0.

Let A = X + 1
nJn. So X ≥ 0 and A1 = A>1 = 1 and A ∈ Ωn. Hence

dim Ωn = (n− 1)2.
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We next observer that any permutation matrix P = [pij ] ∈ Pn is an
extreme point of Ωn. Indeed, assume that P = tA + (1 − t)B for some
A = [aij ], B = [bij ] ∈ Ωn and t ∈ (0, 1). Hence, aij = bij = 0 if pij = 0. So
A and B have at most one nonzero element in each row i. As A,B ∈ Ωn
it follows that aij = bij = pij if pij = 1. Thus A = B = P and P is an
extremal point.

It is left to show that E(Ωn) = Pn. This is equivalent to the statement
that A ∈ Rn×n+ is doubly stochastic if and only

(7.2.4) A =
∑
P∈Pn

aPP for some aP ≥ 0, P ∈ Pn,
∑
P∈Pn

aP = 1.

We now show by induction on n that any A ∈ Ωn is of the form (7.2.4). For
n = 1 the result trivially holds. Assume that the result holds for n = m−1
and assume that n = m. Let A = (aij) ∈ Ωn. Denote by l(A) be the
number of nonzero entries of A. Since each row sum of A is 1 it follows
that l(A) ≥ n. Suppose first l(A) ≤ 2n − 1. Then there exists a row i of
A which has exactly one nonzero element, which must be 1. Hence there
exists i, j ∈ 〈n〉 such that aij = 1. Then all other elements of A on the
row i and column j are zero. Denote by Aij ∈ R(n−1)×(n−1)

+ the matrix
obtained from A by deleting the row and column j. Clearly Aij ∈ Ωn−1.
Use the induction hypothesis on Aij to deduce (7.2.4), where aP = 0 if the
entry (i, j) of P is not 1.

We now show by induction on l(A) ≥ 2n − 1 that A is of the form
(7.2.4). Suppose that any A ∈ Ωn such that l(A) ≤ l − 1, l ≥ 2n is of
the form (7.2.4). Assume that l(A) = l. Let S ⊂ 〈n〉 × 〈n〉 be the set
of all indices (i, j) ∈ 〈n〉 × 〈n〉 where aij > 0. Note #S = l(A) ≥ 2n.
Consider the following system of equations in n2 variables, which are the
entries X = (xij)ni,j=1 ∈ Rn×n:

n∑
j=1

xij =
n∑
j=1

xji = 0, i = 1, . . . , n.

Since the sum of all rows of X is equal to the sum of all columns of X
we deduce that the above system has at most 2n − 1 linear independent
equations. Assume furthermore the conditions xij = 0 for (i, j) 6∈ S. Since
we have at least 2n variables it follows that there exist X 6= 0n×n satisfying
the above conditions. Note that X has zero entry in the places where A
has zero entry. Furthermore, X has at least one positive and one negative
entry. Therefore the exists b, c > 0 such that A − bX,A + cX ∈ Ωn and
l(A − bX), l(A + cX) < l. So A − bX,A + cX are of the form (7.2.4). As
A = c

b+c (A−bX)+ b
b+c (A+cX) we deduce that A is of the form (7.2.4). 2
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Definition 7.2.5 Let

Rn↘ := {x = (x, ..., xn)T ∈ Rn : x ≥ x ≥ ... ≥ xn}.

For x = (x, ..., xn)T ∈ Rn let x̄ = (x̄1, ..., x̄n)T ∈ Rn↘ be the unique
rearrangement of the coordinates of x in a decreasing order. That is there
exists a permutation π on {1, ..., n} such that x̄i = xπ(i), i = 1, ..., n.

Let x = (x, ..., xn)T ,y = (y, ..., yn)T ∈ Rn. Then x is weakly ma-
jorized by y (y weakly majorizes x), which is denoted by x � y, if

(7.2.5)
k∑
i=1

x̄i ≤
k∑
i=1

ȳi, k = 1, ..., n.

x is majorized by y (y majorizes x), which is denoted by x ≺ y, if x � y
and

∑n
i=1 xi =

∑n
i=1 yi.

Theorem 7.2.6 . For y ∈ Rn let

(7.2.6) M(y) := {x ∈ Rn, x ≺ y}.

Then M(y) is a polyhedron whose extreme points are Py for all P ∈ Pn.
In particular, x ≺ y if and only if there exists A ∈ Ωn such that x = Ay.

Proof. Observe first that x = (x, . . . , xn)> ≺ y = (y, . . . , yn)> is
equivalent to the following conditions

n∑
i=1

xi =
n∑
i=1

yi = 1,(7.2.7)

k∑
i=1

(Px)i ≤
k∑
i=

ȳi, k = , . . . , n− , for each P ∈ Pn.(7.2.8)

Clearly, M(y) is a closed convex set. Also xi ≤ ȳ1 for i = 1, . . . , n. Hence

xi = yi +
n∑

j=1,6=i

(yj − xj) ≥ −(n− 1)ȳ1 +
n∑
j=1

yj .

Thus M(y) is a compact convex set containing Qy for all Q ∈ Pn. Hence
M(y) is a polytope.

Clearly

(7.2.9) PM(Qy) =M(y) for each P,Q ∈ Pn.
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Assume that x is an extremal point of M(x). Then the above equality
implies that Px is also an extreme point of M(x) for each P ∈ Pn. Let
Px = x̄, Qy = ȳ for some P,Q ∈ Pn. We claim that x̄ = ȳ. Without loss
of generality we consider the case that x = x̄,y = ȳ. We prove this claim
by induction on n. For n = 1 this claim is trivial. Assume that this claim
holds for any m ≤ n− 1.

Let m = n. Assume to the contrary that x 6= y. Suppose first that for
some 1 ≤ k ≤ n− 1 we have the equality

∑k
i=1 xi =

∑k
i=1 yi. Let

x = (x, . . . , xk)>,y = (y, . . . , yk)> ∈ Rk,
x = (xk+, . . . , xn)>,y = (yk+, . . . , yn)> ∈ Rn−k.

Then x ≺ y,x ≺ y. Use the induction hypothesis that xi = yi, i = , .
Hence x = y contrary to our assumption.

It is left to consider the case where strict inequalities hold in (7.2.5) for
k = 1, . . . , n − 1. In particular y1 > yn and y1 > x1, xn > yn. Assume
first that x1 = . . . = xn. Then x =

∑
i=


n!Py and x can not be an

extremal point in M(y) contrary to our assumption. Hence, there exists
and integer k ∈ [1, n− 1] such that x1 = . . . = xk > xk+1. For t ∈ R define
x(t) = (x(t), . . . , xn(t))>, where

xi(t) = xi + t for i = 1, . . . , k, xi(t) = xi −
k

n− k
t for i = k + 1, . . . , n.

It is straightforward to see that there exists ε > 0 such that for each
t ∈ [ε,−ε] x(t) ∈ Rn↘ ∩M(y). As x = 

x(ε) + 
x(−ε) we deduce that x

is not an extremal point, contrary to our assumption. Hence E(M(y)) =
∪P∈PnPy.

Let x ∈M(y). Then

x =
∑
P∈Pn

aP (Py) = (
∑
P∈Pn

aPP )y,(7.2.10)

where aP ≥ 0, P ∈ Pn,
∑
P∈Pn

aP = 1.

Hence x = Ay for a corresponding A ∈ Ωn. Vice versa, any A ∈ Ωn is a
convex combination of the permutation matrices. Therefore Ax ∈ M(y)
for any doubly stochastic matrix. 2

Problems

1. Prove Lemma 7.2.3.
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2. Let x,y ∈ Rn. Show that x ≺ y ⇐⇒ −y ≺ −x.

3. Let m,n ∈ N. Denote by Ωm,n ⊂ Rm×n+ the set of stochastic matrices,
i.e. each row is a probability vector, such each column has sum m

n .
Assume that m 6= n. Show

(a) Ωm,n is a polytope.

(b) dim Ωm,n = (m− 1)(n− 1).

(c) Each extreme point of Ωm,n at most m+n−1 nonzero elements.

4. Let x = (x, . . . , xn) ∈ Rn. Recall that one needs O(n log n) swaps
to obtain the coordinates of x̄. Deduce that for a given x,y ∈ Rn
one needs O(n log n) swaps and 2n2 additions of entries of x and y to
determine if x is or is not in the set M(y).

7.3 Convex functions

Definition 7.3.1 Let C be a convex set in a finite dimensional subspace
V over F = R,C. A function φ : C → R is called convex if for any x,y ∈ C
and t ∈ [0, 1]

(7.3.1) φ(tx + (− t)y) ≤ tφ(x) + (− t)φ(y).

φ is called strictly convex on C if for any x,y ∈ C,x 6= y and t ∈ (0, 1)
strict inequality holds in (7.3.1). A function ψ : C → R is called concave or
strictly concave if the function −ψ is convex or strictly convex respectively.

We remark that in [Roc70] a convex function on φ on a convex set is
allowed to have the values ±∞. To avoid the complications, we restrict our
attention to convex function with finite values. The following result is well
known [Roc70, Theorem 10.1]

Theorem 7.3.2 Let C be a convex set in a finite dimensional subspace
V over F = R,C. Assume that φ : C → R is convex. The φ : ri C → R is
continuous.

For any set T ∈ V we let ClT be the closure of T in the standard topology
in V (which is identified with the standard topology of Rdim RV).

Proposition 7.3.3 Let C ⊂ V be convex. Then ClC is convex. As-
sume that ri C is an open set in V and f ∈ C0(Cl C). Then f is convex in
ClC if and only if f is convex in C.

See Problem 3.
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Theorem 7.3.4 Let C be a compact convex set in a finite dimensional
subspace V over F = R,C. Assume that φ : C → R is continuous. Then

(7.3.2) max
x∈C

φ(x) = max
y∈E(C)

φ(y).

Assume in addition that φ is strictly convex. If φ achieves its maximum at
x?, then x? is an extreme point of φ.

Proof. Assume that maxx∈C φ(x) = φ(x?). Suppose first that x? is
an extreme point of C. Then (7.3.2) trivially holds. Assume now that x?

is not an extreme point of C. Theorem 7.1.3 yields that x? =
∑m
i= aixi,

where ai ∈ (0, 1),xi ∈ E(C), i = , . . . ,m and m ≥ 2. The convexity of φ
and 7.3.8 yield that

φ(x?) ≤
m∑
i=

aiφ(xi) ≤ max
i=,...,m

φ(xi) = φ(xj) for some j ∈ 〈m〉.

Since φ achieves its maximum at x? we deduce that φ(x?) = φ(xj). Hence
(7.3.2) holds.

Suppose now that φ is strictly convex. Then Problem 1b implies that
strict inequality holds in the above inequality. Hence φ(x?) < φ(xj), which
contradicts the maximality x?. 2

Theorem 7.3.5 Let x = (x, ..., xn)>,y = (y, ..., yn)> ∈ Rn and as-
sume that x ≺ y. Let φ : [ȳn, ȳ1]→ R be a convex function. Then

(7.3.3)
n∑
i=1

φ(xi) ≤
n∑
i=1

φ(yi).

If φ is strictly convex on [ȳn, ȳ1] and Px 6= y for all P ∈ Pn then strict
inequality holds in the above inequality.

Proof. Define ψ :M(y)→ R by the equality ψ((x1, . . . , xn)) =
∑n
i=1 φ(xi).

Since for any (x1, . . . , xn)> ∈ M(y) xi ∈ [ȳn, ȳ1] it follows that ψ is
well defined on M(y). Clearly for each P ∈ Pn we have the equality
ψ(Py) = ψ(y). (7.2.10) and the convexity of φ yield

φ(xi) = φ(
∑
P∈Pn

aP (Py)i) ≤
∑
P∈Pn

aPφ((Py)i).

Sum on i = 1, . . . , n to deduce that

ψ(x) ≤
∑
P∈Pn

aPψ(Py) =
∑
P∈Pn

aPψ(y) = ψ(y).
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If φ is strictly convex and x 6∈ E(M(y)) then the above inequalities are
strict. 2

The following result is well known. (See Problems 2-3)

Theorem 7.3.6 Let C ⊂ V be a convex set. Assume that ri C is an
open set in V and φ ∈ C2(C). Then φ is convex if and only if the sym-
metric matrix H(φ) := ( ∂2φ

∂xixj
)di,j=1 is nonnegative definite for each y ∈ C.

Furthermore, if H(φ) is positive definite for each y ∈ C then φ is strictly
convex.

Let φ : C → R be a convex function. Then φ has the following continuity
and differentiability properties: In the one dimensional case where C =
(a, b) ⊂ R φ is continuous on C and φ has a derivative φ′(x) at all but a
countable set of points. φ′(x) is an nondecreasing function (where defined).
In particular φ has left and right derivatives at each x, which is given as
the left and the right limits of φ′(x) (where defined).

In the general case C ⊂ V, φ is continuous function in ri C, has a
differential Dφ in a dense set C1 of ri C, the complement of C1 in ri C has
a zero measure, and Dφ is continuous in C1. Furthermore at each x ∈ ri C
φ has a subdifferential f ∈ Hom(V,R) such that

(7.3.4) φ(y) ≥ φ(x) + f(y − x) for all y ∈ C.

See for example [Roc70].

Definition 7.3.7 Let C ⊂ V be a convex set. Then f : C → R is called
an affine function if for each x,y ∈ C f(tx+(−t)y) = tf(x)+(−t)f(y)
for each t ∈ [0, 1]

Clearly an affine function f on a convex set the functions f and −f are
convex. Theorem 7.3.4 yield.

Corollary 7.3.8 Let C ⊂ V be a compact convex set. Assume that
f : C → R be an affine function. Then

max
x∈C

f(x) = max
y∈E(C)

f(y), min
x∈C

f(x) = min
y∈E(C)

f(y).

Let C ⊂ V be a polytope. Then finding the maximum or the minimum of
of an affine function on C is called the linear programming. It is known that
the complexity of the linear programming is polynomial in the dimension
of V, and the complexity of all the half spaces in the characterizing C and
f [Kha79, Kar84].
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We now give a simple example. Let A = [aij ] ∈ Rn×n. Denote by Sn

the group of permutations π : 〈n〉 → 〈n〉. Consider the maximal problem
to maximize the sum of a generalized diagonal of A:

(7.3.5) µ(A) := max
π∈Sn

n∑
i=1

aiπ(i).

Since #Sn = n!, a brute force algorithm to try all the permutation will need
n! ≈ (ne )n computations times. (We ignore the complexity of computing
the sum

∑n
i=1 aiπ(i).) However, µ(A) can be computed polynomially in n.

Define an affine f : Ωn → R by f(X) = trAX, for any doubly stochastic
X. It is straightforward to show that

(7.3.6) µ(A) = max
X∈Ωn

trAX.

Since Ωn is a polytope given by at most 4n+n2 inequalities, and the com-
plexity of f is n2 times the complexity of entries, we see that the complexity
of computing the maximum of f(X) is polynomial in n.

Definition 7.3.9 Let V,V be finite dimensional vector spaces. As-
sume that C1 ⊂ V, C ⊂ V are convex sets. A functions φ : C1×C2 → R
is called concave-convex if the functions φ(·,y) : C → R, φ(x, ·) : C → R
are concave for each y ∈ C and convex for each x ∈ C respectively.

The following result is known as minimax theorem [Roc70, Cor. 37.6.2].

Theorem 7.3.10 Let Ci be a compact convex set in a finite dimen-
sional vector space Vi for = 1, 2. Assume that φ : C1 × C2 → R be a
continuous concave-convex function. Then

min
y∈C

max
x∈C

φ(x,y) = max
x∈C

min
y∈C

φ(x,y) = φ(x?,y?)(7.3.7)

for some x? ∈ C,y? ∈ C.

The point (x?,y?) is called a saddle point. More general types of the min-
imax theorems are can be found in [Roc70].

Problems

1. Let C ⊆ V be a convex set and assume that φ : C → R is convex.
Let x, . . . ,xm ∈ C,m ≥ . Show

(a) Let a1, . . . , am ∈ [0, 1] and assume that
∑m
i=1 ai = 1. Then

(7.3.8) φ(
m∑
i=1

aixi) ≤
m∑
i=1

aiφ(xi).
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(b) Assume in addition that φ is strictly convex, xi 6= xj for i 6= j
and a1, . . . , am > 0. Then strict inequality holds in (7.3.8).

2. (a) Let f ∈ C1(a,b). Show that f is convex on (a, b) if and only if
f ′(x) is nondecreasing on (a, b). Show that if f ′(x) is increasing on
(a, b) then f is strictly convex on (a, b).

(b) Let f ∈ C[a,b] ∩ C1(a,b). Show that f is convex in [a, b] if and
only if f is convex in (a, b). Show that if f ′(x) is increasing on (a, b)
then f is strictly convex on [a, b].

(c) Let f ∈ C2(a,b). Show that f is convex on (a, b) if and only if f ′′

is a nonnegative function on (a, b). Show that if f ′′(x) > 0 for each
x ∈ (a, b) then f is strictly convex on (a, b).

(d) Prove Theorem 7.3.6.

3. Prove Proposition 7.3.3.

4. Let Ci ⊂ Vi be a compact set in a finite dimensional vector space for
i = 1, 2. Let φ : C1 × C2 → R be a continuous function. Show the
inequality

(7.3.9) min
y∈C

max
x∈C

φ(x,y) ≥ max
x∈C

min
y∈C

φ(x,y).

7.4 Norms over vector spaces

In this Chapter we assume that F = R,C unless stated otherwise.

Definition 7.4.1 Let V be a vector space over F. A continuous func-
tion ‖ · ‖ : V → [,∞) is called a norm if the following conditions are
satisfied:

1. Positivity: ‖v‖ =  if and only if v = 0.

2. Homogeneity: ‖av‖ = |a| ‖v‖ for each a ∈ F and v ∈ V.

3. Subadditivity: ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u,v ∈ V.

A continuous function ‖ · ‖ : V → [,∞) which satisfies the conditions 2
and 3 is called a seminorm. The sets

B‖·‖ := {v ∈ V, ‖v‖ ≤ }, Bo‖·‖ := {v ∈ V, ‖v‖ < },
S‖·‖ := {v ∈ V, ‖v‖ = },
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are called the (closed) unit ball, the open unit ball and the unit sphere of
the norm respectively. For a ∈ V and r > 0 we let

B‖·‖(a, r) = {x ∈ V : ‖x− a‖ ≤ r}, Bo‖·‖(a, r) = {x ∈ V : ‖x− a‖ < r}

be the closed and the open ball of radius r centered at a respectively. If the
norm ‖ · ‖ is fixed, we use the notation

B(a, r) = B‖·‖(a, r), Bo(a, r) = Bo‖·‖(a, r).

See Problem 2 for the properties of unit balls. The standard norms on
Fn are the lp norms:

‖(x1, . . . , xn)>‖p =
( n∑
i=1

|xi|p
) 1
p , p ∈ [1,∞),(7.4.1)

‖(x1, . . . , xn)>‖∞ = max
1≤i≤n

|xi|.

See Problem 8.

Definition 7.4.2 Let V be a finite dimensional vector space over F.
Denote by V∗ the set of all linear functionals f : V→ F. Assume that ‖ · ‖
is a norm on V. The conjugate norm ‖ · ‖ : V∗ → F is defined as

‖f‖∗ = max
x∈B‖·‖

|f(x)|, for f ∈ V∗.

For a norm ‖ · ‖ on Fn the conjugate norm ‖ · ‖ on Fn is given by

(7.4.2) ‖x‖∗ = max
y∈B‖·‖

|y>x| for x ∈ Fn.

A norm ‖ · ‖ on V is called strictly convex if for any two distinct points
x,y ∈ S‖·‖ and t ∈ (0, 1) the inequality ‖tx + (− t)y‖ <  holds. A norm
‖ · ‖ on Fn is called Ck, for k ∈ N, if the sphere S‖·‖ is a Ck manifold. ‖ · ‖
is called smooth if it is Ck for each k ∈ N.

For x = (x, . . . , xn)> ∈ Cn let abs x = (|x|, . . . , |xn|)>. A norm ‖ · ‖
on Fn is called absolute if ‖x‖ = ‖abs x‖ for each x ∈ Fn. A norm |‖ · |‖
on Fn is called a transform absolute if there exists an absolute norm ‖ · ‖
on Fn and P ∈ GL(n,F) such that |‖x|‖ = ‖Px‖ for each x ∈ Fn.

A norm ‖ · ‖ on Fn is called symmetric if the function ‖(x1, . . . , xn)>‖
is a symmetric function in x1, . . . , xn. (I.e. for each permutation π : 〈n〉 →
〈n〉 and each x = (x, . . . , xn)> ∈ Fn equality ‖(xπ(1), . . . , xπ(n))>‖ =
‖(x1, . . . , xn)>‖ holds.
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Theorem 7.4.3 Let ‖ · ‖ be a norm on Fn. Then the following are
equivalent.

1. ‖ · ‖ is an absolute norm.

2. ‖ · ‖∗ is an absolute norm.

3. There exists a compact set L ⊂ Fn not contained in the hyperplane
Hi = {(y1, . . . , yn)> ∈ Fn, yi = 0} for i = 1, . . . , n, such that ||x|| =
maxy∈L(abs y)>abs x for each x ∈ Fn.

4. ‖x‖ ≤ ‖z‖ if abs x ≤ abs z.

Proof. 1⇒2. Assume that x,y ∈ Fn. Then there exists z ∈ Fn, abs z =
abs y such that |z>x| = (abs y)>abs x. Since ‖ · ‖ is absolute ‖z‖ = ‖y‖.
Clearly |y>x| ≤ (abs y)>abs x. The characterization (7.4.2) yields that

(7.4.3) ||x||∗ = max
y∈B‖·‖

(abs y)>abs x.

Clearly ‖x‖ = ‖abs x‖.
2⇒3. The equality (‖ · ‖∗)∗ = ‖ · ‖, see Problem 3, and the equality

(7.4.3) implies 3 with L = B‖·‖∗ . Clearly B‖·‖∗ contains a vector whose all
coordinates are different from zero.

3⇒4. Assume that abs x ≤ abs z. Then (abs y)>abs x ≤ (abs y)>abs z
for any y ∈ Fn. In view of the characterization of the absolute norm given
in 3 we deduce 4.

4⇒1. Assume that abs x = abs y. Since abs x ≤ abs y we deduce that
‖x‖ ≤ ‖y‖. Similarly ‖x‖ ≥ ‖y‖. Hence 1 holds. 2

Definition 7.4.4 A set L ⊂ Fn is called symmetric if for each y =
(y, . . . , yn)> in L the vector (yπ(1), . . . , yπ(n))> is in L, for each permuta-
tion π : 〈n〉 → 〈n〉.

Corollary 7.4.5 Let ‖ · ‖ be a norm on Fn. Then the following are
equivalent.

1. ‖ · ‖ is an absolute symmetric norm.

2. ‖ · ‖∗ is an absolute symmetric norm.

3. There exists a compact symmetric set L ⊂ Fn, not contained in the
hyperplane Hi = {(y1, . . . , yn)> ∈ Fn, yi = 0} for i = 1, . . . , n, such
that ||x|| = maxy∈L(abs y)>abs x for each x ∈ Fn.
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See Problem 6.

Proposition 7.4.6 Assume that ‖ · ‖ is a symmetric absolute norm on
R2. Then

(7.4.4) ‖x‖ ≤ ‖x‖∗‖x‖ ≤ ‖x‖∞‖x‖ for any x ∈ R.

Proof. The lower bound follows from the Problem 9. We claim that
for any two points on x,y satisfying the condition ‖x‖ = ‖y‖ =  the
following inequality holds

(7.4.5) (‖x‖ − ‖y‖)(‖x‖∞ − ‖y‖∞) ≤ .

Since ‖·‖ is symmetric and absolute it is enough to prove the above inequal-
ity in the case that x = (x, x)>, x ≥ x ≥ ,y = (y, y)>, y ≥ y ≥ .
View B‖·‖ as a convex balanced set in R2, which is symmetric with re-
spect to the line z1 = z2. The symmetricity of ‖ · ‖ implies that all
the points (z1, z2)> ∈ B‖·‖ satisfy the inequality z1 + z2 ≤ 2c, where
‖(c, c)>‖ = 1, c > 0. Let C,D be the intersection of B‖·‖,C‖·‖ the with
octant K = {(z1, z2)> ∈ R2, z1 ≥ z2 ≥ 0} respectively. Observe that
the line z1 + z2 = 2c may intersect D at an interval. However the line
z1 + z2 = 2t will intersect D at a unique point (z1(t), z2(t))> for t ∈ [b, c),
where ‖(2b, 0)‖ = 1, b > 0. Furthermore z1(t),−z2(t) are decreasing in
(b, c). Hence, if x1 + x2 > y1 + y2 it follows that y1 > x1. Similarly,
x1 + x2 < y1 + y2 it follows that y1 < x1. This proves (7.4.5).

To show the right-hand side of (7.4.4) we may assume that ‖x‖ = . So
‖x‖∗ = |y>x| for some y ∈ S‖·‖. Hence ‖x‖ ‖x‖∗ = |y>x|. Clearly

|y>x| ≤ min(‖x‖‖y‖∞, ‖x‖∞‖y‖).

Suppose that ‖y‖ ≤ ‖x‖. Then the right-hand side of (7.4.4) follows.
Assume that |y| > ‖x‖. Then Then (7.4.5) yields that ‖y‖∞ ≤ ‖x‖∞
and the right-hand side of (7.4.4) follows. 2

A norm ‖·‖ : Fm×n → R+ is called a matrix norm. A standard example
of matrix norm is the Frobenius norm of A = [aij ] ∈ Fm×n:

(7.4.6) ‖A‖F :=

√√√√ m,n∑
i=j=1

|aij |2 .
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Recall that ‖A‖F = (
∑m
i=1 σi(A)2)

1
2 , where σi(A), i = 1, . . . , are the singu-

lar values of A. More generally, for each q ∈ [1,∞]

(7.4.7) ‖A‖q,S := (
m∑
i=1

σi(A)q)
1
q

is a norm on Fm×n, which is called the q-Schatten norm of A. Furthermore,
for any integer p ∈ [1,m] and w1 ≥ . . . ≥ wp > 0, the function f(A) given
in Corollary 4.10.5 is a norm on Fm×n. See Problem 4.10.4. We denote
‖ · ‖∞,S = σ1(·) as the ‖ · ‖2 operator norm:

(7.4.8) ‖A‖2,2 := σ1(A) for A ∈ Cm×n.

See §7.7.

Definition 7.4.7 A norm ‖ · ‖ on Cm×n is called a unitary invariant
if ‖UAV ‖ = ‖A‖ for any A ∈ Cm×n and unitary U ∈ U(m), V ∈ V(n).

Clearly, any p-Schatten norm on Cm×n is unitary invariant.

Theorem 7.4.8 For positive integers m,n let l = min(m,n). For A ∈
Cm×n let σ(A) := (σ1(A), . . . , σl(A))>. Then ‖ · ‖ is a unitary invariant
norm on Cm×n if and only if there exists an absolute symmetric norm |‖ · |‖
on Cl such that ‖A‖ = |‖σ(A)|‖ for any A ∈ Cm×n.

Proof. Let D(m,n) ⊂ Cm×n be the subspace of diagonal matrices.
Clearly, D(m,n) is isomorphic to Cl. Each D ∈ D(m,n) is of the form
diag(x),x = (x, . . . , xl)>, where x1, . . . , xl are the diagonal entries of D.
Assume that ‖·‖ is a norm on Cm×n. Then the restriction of ‖·‖ to D(m,n)
induces a norm |‖ · |‖ on Cl given by |‖x|‖ := ‖ diag(x)‖. Assume now that
‖ · ‖ is a unitary invariant norm. For a given x ∈ Cl, there exists a diagonal
unitary matrix such that U diag(x) = diag(abs x). Hence

|‖x|‖ = ‖ diag(x)‖ = ‖U diag(x)‖ = ‖diag(abs x)‖ = |‖abs x|‖.

Let π : 〈l〉 → 〈l〉 be a permutation. Denote xπ := (xπ(), . . . , xπ(l))>.
Clearly there exists two permutation matrices P ∈ U(m), Q ∈ U(n) such
that diag(xπ) = U diag(x)V . Hence |‖xπ|‖ = |‖x|‖, and |‖ · |‖ is absolute
symmetric. Clearly, there exists unitary U, V such thatA = U diag(σ(A))V .
Hence ‖A‖ = |‖σ(A)|‖.

Assume now that ||| · ||| is an absolute symmetric norm on Cl. Set
‖A‖ = |||σ(A)||| for any A. Clearly ‖ · ‖ : Cm×n → R+ is a continuous
function, which satisfies the properties 1–2 of Definition 7.4.1. it is left to
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show that ‖ · ‖ satisfies the triangle inequality. Since ||| · ||| is an absolute
symmetric and σ1(A) ≥ . . . ≥ σl(A) ≥ 0, Corollary 7.4.5 yields that

(7.4.9) ‖A‖ = max
y=(y,...,yl)>∈L,|y|≥...≥|yl|

(abs y)>σ(A)

for a corresponding a compact symmetric set L ⊂ Cn, not contained in
the hyperplane Hi = {(y1, . . . , yn)> ∈ Fn, yi = 0} for i = 1, . . . , n. Use
Problem 4.10.6b to deduce from (7.4.9) that ‖A+B‖ ≤ ‖A‖+ ‖B‖. 2

Definition 7.4.9 A norm on ‖·‖ on Fn×n is called a spectral dominant
norm if ‖A‖ is not less than ρ(A), the spectral radius of A, for every A ∈
Fn×n.

Since σ1(A) ≥ ρ(A), see (4.10.14) for k = 1, we deduce that any q-
Schatten norm is spectral dominant.

Problems

1. Let V be a finite dimensional vector space over F. Show that a
seminorm ‖ · ‖ : V→ R+ is a convex function.

2. Let V be a finite dimensional vector space over F. X ⊆ V is called
balanced if tX = X for every t ∈ F such that |t| = 1. Identify V with
Fdim V. Then the topology on V is the topology induced by open sets
in Fn. Assume that ‖ · ‖ is a norm on V. Show

(a) B‖·‖ is convex and compact.

(b) B‖·‖ is balanced.

(c) 0 is an interior point of B‖·‖.

3. Let V be a finite dimensional vector space over F. Let X ⊂ V be a
compact convex set balanced set such 0 is its interior point. For each
x ∈ V\{0} let f(x) = min{r >  : 

rx ∈ X}. Set f(0) = . Show
that f is a norm on V whose unit ball is X.

4. Let V be a finite dimensional vector space over F with a norm ‖ · ‖.
Show

(a) ‖f‖∗ = maxy∈S‖·‖ |f(x)| for any f ∈ V∗.

(b) Show that for any x ∈ V and f ∈ V∗ the inequality |f(x)| ≤
‖f‖∗‖x‖.
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(c) Identify (V∗)∗ with V, i.e. any linear functional on λ : V∗ → F
is of the form λ(f) = f(x) for some x ∈ V. Then (‖x‖∗)∗ = ‖x‖.

(d) Let L ⊂ V∗ be a compact set which contains a basis of V∗.
Define ‖x‖L = maxf∈L |f(x)|. Then ‖x‖L is a norm on V.

(e) Show that ‖ · ‖ = ‖ · ‖L for a corresponding compact set L ⊂ V∗.
Give a simple choice of L.

5. Let V be a finite dimensional vector space over F, dim V ≥ , with
a norm ‖ · ‖. Show

(a) E(B‖·‖) ⊂ S‖·‖.

(b) E(B‖·‖) = S‖·‖ if and only if for any x 6= y ∈ S‖·‖ (x,y) ⊂ Bo‖·‖.

(c) For each x ∈ S‖·‖ there exists f ∈ S‖·‖∗ such that 1 = f(x) ≥
|f(y)| for any y ∈ B‖·‖.

(d) Each f ∈ S‖·‖∗ is a proper supporting hyperplane of B‖·‖ at some
point x ∈ S‖·‖.

6. Prove Corollary 7.4.5.

7. Let V be a finite dimensional vector space over F. Assume that
‖ · ‖1, ‖ · ‖2 are two norms on V. Show

(a) ‖x‖ ≤ ‖x‖ for all x ∈ V if and only if B‖·‖1 ⊇ B‖·‖2 .

(b) Show that there exists C ≥ c > 0 such that c‖x‖ ≤ ‖x‖ ≤
C‖x‖ for all x ∈ V.

8. For any p ∈ [1,∞] define the conjugate p∗ = q ∈ [1,∞] to satisfy the
equality 1

p + 1
q = 1. Show

(a) Hölder’s inequality: |y∗x| ≤ (abs y)>abs x ≤ ‖x‖p‖y‖p∗ for any
x,y ∈ Cn\{0} and p ∈ [1,∞]. (For p = 2 this inequality is
called the Cauchy-Schwarz inequality.) Furthermore, equalities
hold in all inequalities if and only if y = ax for some a ∈ C\{0}.
(Prove Hölder’s inequality for x,y ∈ Rn+.)

(b) ‖x‖p is a norm on Cn for p ∈ [1,∞].

(c) ‖x‖p is strictly convex if and only if p ∈ (1,∞).

(d) For p ∈ (1,∞) E(B‖·‖p) = S‖·‖p .

(e) Characterize E(B‖·‖p) for p = 1,∞ for F = R,C.

(f) For each x ∈ Cn the function ‖x‖p is a nonincreasing function
for p ∈ [1,∞].
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9. Show that for any norm ‖ · ‖ on Fn the inequality

‖x‖ ≤ min(‖x̄‖∗‖x‖, ‖x‖∗‖x̄‖) for any x ∈ Fn.

In particular, if ‖ · ‖ is absolute then ‖x‖ ≤ ‖x‖∗‖x‖. (Hint: use
the equality ‖x‖ = x̄>x.)

10. Let L ⊂ Fn satisfy the assumptions of condition 3 of Theorem 7.4.3.
Let ν(x) = maxy∈L(abs y)>abs x for each x ∈ Fn. Show that ν(x)
is an absolute norm on Fn.

11. Let ‖ ·‖ be an absolute norm on Rn. Show that it extends in a unique
way to an absolute norm on Cn.

12. Let V be a finite dimensional vector space over F = R,C.

(a) Assume that ‖ · ‖ is a seminorm on V. Let W := {x ∈ V, ‖x‖ =
}. Show that W is a subspace of V, and for each x ∈ V the
function ‖ · ‖ is a constant function on x + W.

(b) Let W be defined as above. Let Û be the quotient space V/W.
So v̂ ∈ V̂ is viewed as any y ∈ v + V for a corresponding v ∈ V
Define the function |‖ · |‖ : V̂ → R+ by |‖v̂|‖ = ‖y‖. Show that
|‖ · |‖ is a norm on V̂.

(c) Let U,U are finite dimensional vector spaces over F. Assume
that |‖ · |‖ : U → R+ is a norm. Let V = U ⊕ U. Define
‖u ⊕ u‖ = |‖u|‖ for each ui ∈ Ui, i = , . Show that ‖ · ‖ is
a seminorm on V. Furthermore, the subspace 0⊕U is the set
where ‖ · ‖ vanishes.

13. Show that for any A ∈ Cm×n ‖A‖2,2 = σ(A) = max‖x‖= ‖Ax‖.
(Hint: Observe that ‖Ax‖ = x∗(A∗A)x.)

14. For F = R,C, identify (Fm×n)∗ with Fm×n by letting φA : Cm×n → F
be tr(A>X) for any A ∈ Fm×n. Show that for any p ∈ [1,∞] the
conjugate of the p-Schatten norm ‖ · ‖p,S is the q-Schatten norm on
Fm×n, where 1

p + 1
q = 1.

7.5 Numerical ranges and radii

Let S2n−1 := {x ∈ Cn, x∗x = } be the unit sphere of the `2 norm on Cn.

Definition 7.5.1 A map φ from S2n−1 to 2C
n

, the set of all subsets of
Cn, is called a ν-map, if the following conditions hold.
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1. For each x ∈ S2n−1 the set φ(x) is a nonempty compact set.

2. The set ∪x∈S2n−1φ(x) is compact.

3. Let xk ∈ S2n−1,yk ∈ φ(xk) for k ∈ N. Assume that limk→∞ xk = x
and limk→∞ yk = y. (Note that x ∈ S2n−1.) Then y ∈ φ(x).

4. y>x =  for each x ∈ S2n−1 and y ∈ φ(x).

Assume that φ from Sn−1 to 2C
n

is ν-map. Then for A ∈ Cn×n

ωφ(A) := ∪x∈S2n−1 ∪y∈φ(x) {y>Ax},(7.5.1)

rφ(A) = max
x∈φ(x),y∈φ(x)

|y>Ax|(7.5.2)

are called the φ-numerical range and the φ-numerical radius respectively.

It is straightforward to show that rφ is a seminorm on Cn×n, see Problem
1.

Lemma 7.5.2 Let φ : Sn−1 → 2C
n

be a ν-map. Then spec (A), the
spectrum of A, is contained in the φ-numerical range of A. In particular
rφ(A) ≥ ρ(A).

Proof. Let A ∈ Cn×n and and assume that λ is an eigenvalue of A.
Then there exists an eigenvector x ∈ S2n−1 such that Ax = λx. Choose
y ∈ φ(x). Then y>Ax = λy>x = λ. Hence λ ∈ ωφ(A). Thus rφ(A) ≥ |λ|.

2

Lemma 7.5.3 Let ‖ · ‖ : Cn×n → R+ be a seminorm, which is spectral
dominant, i.e. ‖A‖ ≥ ρ(A) for any A ∈ Cn×n. Then ‖ · ‖ is a norm on
Cn×n.

Proof. Assume to the contrary that ‖ · ‖ is not a norm. Hence there
exists 0 6= A ∈ Cn×n such that ‖A‖ = 0. Since 0 = ‖A‖ ≥ ρ(A) we
deduce that A is a nonzero nilpotent matrix. Hence, T−1AT = ⊕ki=1Ji,
where each Ji a nilpotent Jordan block and T ∈ GL(n,C). Since A 6= 0
we may assume that J1 ∈ Cl×l, has an upper diagonal equal to 1, all other
entries equal to 0 and l ≥ 2. Let B = ⊕ki=1Bi where each Bi has the same
dimensions as Ji. Assume that Bi are zero matrices for i > 1, if k > 1. Let
B1 = [bij,1] ∈ Cl×l, where b21,1 = 1 and all other entries of B1 equal to 0. It
is straightforward to show that the matrix ⊕ki=1(Ji + tBi) has two nonzero
eigenvalues ±

√
t for t > 0. Let C := T (⊕ki=1Bi)T

−1. Then ρ(A+ tB) =
√
t

for t > 0. Hence for t > 0 we obtain the inequalities

ρ(A+ tB) =
√
t ≤ ‖A+ tB‖ ≤ ‖A‖+ ‖tB‖ = t‖B‖ ⇒ ‖B‖ ≥ 1√

t
.
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The above inequality cannot hold for an arbitrary small positive t. This
contradiction implies the lemma. 2

Use the above Lemmas and Problem 1 to deduce.

Theorem 7.5.4 Let φ : Sn−1 → 2C
n

be a ν-map. Then rφ(·) is a
spectral dominant norm on Cn×n.

We now consider a few examples of ν-maps.

Example 7.5.5 The function φ2 : S2n−1 → 2C
n

given by φ2(x) := {x̄}
is a ν-map. The corresponding numerical range and numerical radius of
A ∈ Cn×n are given by

ω2(A) = {z = x∗Ax, for all x ∈ Cn satisfying x∗x = } ⊂ C,
r2(A) := max

x∈Cn,x∗x=
|x∗Ax|.

It is called the classical numerical range and numerical radius of A, or
simply the numerical range and numerical radius of A.

More general

Example 7.5.6 For p ∈ (1,∞) the function φp : S2n−1 → 2C
n

given
by φp((x1, . . . , xn)>) := {‖x‖−pp (|x|p−x̄, . . . , |xn|p−x̄n)>} is a ν-map.
The corresponding numerical range and numerical radius of A ∈ Cn×n are
denoted by ωp(A) and rp(A) respectively.

The most general example related to a norm on Cn is as follows.

Example 7.5.7 Let ‖ · ‖ be a norm on Cn. For each x ∈ S2n−1 let
φ‖·‖(x) be the set of all y ∈ Cn with the dual norm ‖y‖∗ = 

‖x‖ satisfying
y>x = . Then φ‖·‖ is a ν-map. (See Problem 6.) The corresponding nu-
merical range ω‖·‖(A) and the numerical radius r‖·‖(A) is called the Bauer
numerical range and the Bauer numerical radius respectively of A ∈ Cn×n.

Definition 7.5.8 A norm ‖ · ‖ on Cn×n is called stable if there exists
K > 0 such that ‖Am‖ ≤ K‖A‖m for all A ∈ Cn×n.

Clearly, ‖ · ‖ is stable if and only if the unit ball B‖·‖ ⊂ Cn×n is power
bounded, see Definition 3.4.5.

Theorem 7.5.9 Let φ : S2n−1 → 2C
n

be a ν-map. Set c := maxU∈U(n) rφ(U).
Then

(7.5.3) ‖(zI −A)−1‖2 ≤
c

|z| − 1
for all |z| > 1, rφ(A) ≤ 1.

In particular, a φ-numerical radius is a stable norm.
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Proof. Fix x ∈ S2n−1 We first note that ‖y‖ ≤ c for each y ∈ φ(x).
Let z = 

‖y‖ ȳ ∈ S2n−1. Then there exists U ∈ U(n) such that Ux =
z. Hence ‖y‖ = y>Ux ≤ rφ(U) ≤ c. Assume next that rφ(A) ≤ 1.
Hence ρ(A) ≤ rφ(A) ≤ 1. So (zI − A)−1 is defined for |z| > 1. Let
v := (zI −A)−x,v := 

‖v‖v. Then for y ∈ φ(v) we have

|y>x|
‖v‖

= |y>(zI −A)v| = |z − y>Av| ≥ |z| − .

On the other hand

|y>x| ≤ ‖y‖‖x‖ = ‖y‖ ≤ c.

Combine the above inequalities to deduce ‖(zI − A)x‖ ≤ c
|z|− for all

‖x‖ = . Use Problem 7.4.13 to deduce (7.5.3). Theorem 3.4.9 yields that
the unit ball corresponding to the norm rφ(·) is a power bounded set, i.e.
the norm rφ(·) is stable. 2

Theorem 7.5.10 Let ‖ · ‖ be a norm on Cn×n. Then ‖ · ‖ is stable if
and only if it is spectral dominant.

Proof. Assume first that ‖ · ‖ is stable. So B‖·‖ is a power bounded
set. Theorem 3.3.2 yields that each A ∈ B‖·‖ satisfies ρ(A) ≤ 1. So if
A 6= 0 we get that ρ( 1

‖A‖A) ≤ 1, i.e. ρ(A) ≤ ‖A‖ for any A 6= 0. Clearly
ρ(0) = ‖0‖ = 0. Hence a stable norm is spectral dominant.

Assume now that ‖·‖ is a spectral dominant norm on Cn×n. Recall that
B‖·‖ is a convex compact balanced set, and 0 is an interior point. Define a
new set

A := {B ∈ Cn×n, B = (− a)A+ zI, a ∈ [, ], z ∈ C, |z| ≤ a, A ∈ B‖·‖}.

It is straightforward to show that A is a convex compact balanced set. Note
that by choosing a = 1 we deduce that I ∈ A. Furthermore, by choosing
a = 0 we deduce that B‖·‖ ⊆ A. So 0 is an interior point ofA. Problem 7.4.3
yields that there exists a norm ||| · ||| on Cn×n such that B|||·||| = A. Since
S‖·‖ ⊂ B|||·||| it follows |||A||| ≤ ‖A‖ for each A ∈ Cn×n. We claim that |||·|||
is spectral dominant. Assume that |||B||| = 1. So B = (1 − a)A + zI for
some a ∈ [0, 1], z ∈ C, |z| ≤ a and A ∈ B‖·‖. Since ‖ · ‖ is spectral dominant
it follows that ρ(A) ≤ ‖A‖ ≤ 1. Note that spec (B) = (1− a)spec (A) + z.
Hence ρ(B) ≤ (1 − a)ρ(A) + |z| ≤ (1 − a) + a = 1. So ||| · ||| is spectral
dominant. Since |||I|||| ≤ 1 and |||I||| ≥ ρ(I) = 1 we deduce that |||I||| = 1.
Hence, for any z ∈ C, |z| < 1 we have |||zI||| < 1.
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For x ∈ S2n−1 let

C(x) = {u ∈ Cn, u = Bx, |||B||| < }.

Clearly C(x) is a convex set in Cn. Since for each |||B||| < 1 we have that
ρ(B) < 1 it follows that x 6∈ C(x). The hyperplane separation theorem
Theorem 7.1.6 implies the existence of y ∈ Cn such that

(7.5.4) <(y>x) > <(y>Bx) for all |||B||| < .

Substitute in the above inequalityB = zI, |z| < 1 we deduce that <(y>x) >
<(zy>x). By choosing an appropriate argument of z we deduce <(y>x) >
|z||y>x|. Hence <(y>x) ≥ |y>x|. In view of the strict inequality in (7.5.4)
we deduce that y>x is real and positive. Thus we can renormalize y so
that y>x. Let φ(x) be the set of all w ∈ Cn such that

w>x = , max
|||B|||≤

|w>Bx| = .

Clearly, y ∈ φ(x). It is straightforward to show that φ : S2n−1 → 2C
n

is a
ν-map.

As w>Bx = trB(xw>) we deduce that |||xw>|||∗ = , where ||| · |||∗ is
the dual norm of ||| · ||| on Cn×n:

(7.5.5) |||C|||∗ = max
B∈B|||·|||

| trBC| = max
B∈S|||·|||

| trBC|.

Let R(1, n, n) ⊂ Cn×n be the variety of all matrices of rank one at most.
Clearly, R(1, n, n) is a closed set consisting of all matrices of rank one and
0n×n. Hence R(1, n, n) ∩ S|||·|||∗ is a compact set consisting of all xw>,
where x ∈ S2n−1 and w ∈ φ(x). Since (||| · |||∗)∗ = ||| · ||| it follows that

rφ(B) = max
x∈S2n−1,w∈φ(x)

|w>Bx| = max
x∈S2n−1,w∈φ(x)

| trB(xw>)| ≤

max
C∈S|||·|||∗

| trBC| = |||B||| ≤ ‖B‖.

Hence B‖·‖ ⊆ B|||·||| ⊆ Brφ(·). Theorem 7.5.9 yields that rφ(·) is a stable
norm. Hence ‖ · ‖ and ||| · ||| are stable norms. 2

Use Theorem 7.5.10 and Problem 3 to deduce.

Corollary 7.5.11 Let A ⊂ Cn×n be a compact, convex, balanced set,
whose interior contains 0. Then A is stable if and only ρ(A) ≤ 1 for each
A ∈ A.

Definition 7.5.12 Let F be field. A subspace 0 6= U ⊂ Fn×n is called
stable if there exists an integer k ∈ [1, n] such that the dimension of the
subspace Ux ⊂ Fn is k for any 0 6= x ∈ Fn. U is called maximally stable
if k = n.
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The following result is a generalization of Theorem 7.5.10.

Theorem 7.5.13 Let A ⊂ Cn×n be a compact convex balanced set, (see
Problem 7.4.2 for the definition of a convex balanced set), which contains
the identity matrix. Assume that L := span A is a stable subspace. Then
A is a stable set if and only if ρ(A) ≤ 1 for each A ∈ A.

Proof. Clearly, if A is stable, then each A ∈ A is power bounded,
hence ρ(A) ≤ 1. Assume now that A is a compact convex balanced set
containing identity such that L is a stable subspace. Let x ∈ S2n−1 and
consider the subspace Lx of dimension k. Since A is a compact convex
balanced set it follows that Ax is a compact convex balanced set in L since
span Ax = Lx it follows that ri Ax. Hence Ax is a unit ball of the norm
‖ · ‖x on the subspace Lx. Since I ∈ A it follows that ξ ∈ Ax. We claim
that ‖x‖x = . Assume to the contrary ‖x‖x < . Then (1 + ε)x ∈ Ax
for some ε > 0. So there exists A ∈ A such that Ax = ( + ε)x. Hence
ρ(A) ≥ (1 + ε) contrary to our assumptions.

Identify (Lx)∗ with Lx. So a linear functional f : Lx → C is given by
f(y) = z>y for some z ∈ Lx. Let ‖ · ‖∗x be the conjugate norm on Lx.
Denote by B(x) ⊂ Lx the unit ball of the norm ‖ · ‖∗x. Since ‖x‖∗x =  it
follows that there exists z(x) ∈ Lx such that z(x)>x =  and ‖z(x)‖∗x = .
We claim that ∪x∈S2n−1B(x) is a compact set in Cn.

Indeed, since Lx has a fixed dimension k for each for each x ∈ Cn we
can view Lx of the form U(x)W for some fixed subspace W ⊂ Cn of di-
mension k and a unitary matrix U(x). (U(x) maps an orthonormal basis
of W to an orthonormal basis of Lx.) Hence the set C(x) := U∗(x)Ax is
a compact convex balanced set in W, with 0 an interior point. Since A is
compact, it follows that C(x) varies continuously on x ∈ S2n−1. Therefore
the set D(x) := U∗B(x) ⊂ W varies continuously with x ∈ S2n−1. Hence
∪x∈S2n−1D(x) is a compact set in W, which yields that ∪x∈S2n−1B(x) is
a compact set in Cn. In particular, there exists a constant K such that
‖z(x)‖ ≤ K. We now claim that A satisfies the condition 3.4.13 of Theo-
rem 3.4.9. Indeed, for x ∈ S2n1−1,A ∈ A we have that Ax ∈ A(x), hence
‖Ax‖x ≤ . Hence for |λ| > 1 we have

‖(λI −A)x‖ ≥
‖z(x)>(λI −A)x‖

K
=
|λ− z(x)>Ax|

K
≥

|λ| − |z(x)>Ax|
K

≥ |λ| − |z(x)>Ax|
K

≥

|λ| − ‖Ax‖x‖z(x)‖∗x
K

≥ |λ| − 1
K

=
|λ| − 1
K

‖x‖.
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Thus for each |λ| > 1 and 0 6= x ∈ Cn we have the inequality ‖(λI−A)x‖ ≥
|λ|−
K ‖x‖. Choose x = (λI −A)−y to deduce the inequality

‖(λI −A)y‖
‖y‖

≤ K

|λ| − 1
.

So σ1(λI −A)−1) ≤ K
|λ|−1 . Hence A satisfies the condition 3.4.13 of Theo-

rem 3.4.9 with the norm σ1(·). Theorem 3.4.9 yields that A is stable. 2

Problem 7 shows that in Theorem 7.5.13 the assumption that L is a stable
subspace can not be dropped. In Chapter ? [Fri84] we show the following
result.

Theorem 7.5.14 Let n ≥ 2, d ∈ [2n−1, n2] be integers. Then a generic
subspace L of Cn×n of dimension d is maximally stable.

Problems

1. Let φ : S2n−1 → 2C
n

be a ν-map. Show that rφ : Cn×n → R+ is a
seminorm.

2. Let φ : S2n−1 → 2C
n

be a ν-map. Show that rφ(In) = 1.

3. Show that for any p ∈ (1,∞) the map φp given in Example 7.5.6 is a
ν-map.

4. Show

(a) For any unitary U ∈ Cn×n and A ∈ Cn×n ω2(U∗AU) = ω2(A)
and r2(U∗AU) = r2(A).

(b) For a normal A ∈ Cn×n the numerical range ω2(A) is a convex
hull of the eigenvalues of A. In particular r2(A) = ρ(A) for a
normal A.

(c) ω2(A) is a convex set for any A ∈ Cn×n. (Observe that it is
enough to prove this claim only for n = 2.)

5. Let A = J4(0) ∈ C4×4 be a nilpotent Jordan block of order 4.
Show that r2(A) < 1, r2(A2) = 1

2 , r2(A3) = 1
2 . Hence the inequal-

ity r2(A3) ≤ r2(A)r2(A2) does not hold in general.

6. Show that the map φ‖·‖ : S2n−1 → 2C
n

given in Example 7.5.7 is a
ν-map.
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7. Let ‖·‖ be the norm on Cn×n given by ‖[aij ]ni=j=1‖ := maxi,j∈[1,n] |aij |.
Denote by Un ⊂ Cn×n the subspace of upper triangular matrices. For
n ≥ 2 show.

(a) Un is not a stable subspace of Cn×n.

(b) Un ∩ B‖·‖ is a compact, convex, balanced set.

(c) ρ(A) ≤ 1 for each A ∈ Un ∩ B‖·‖.

(d) Un ∩ B‖·‖ is not a stable set.

7.6 Superstable norms

Definition 7.6.1 A norm ‖ · ‖ on Cn×n is called superstable if ‖Ak‖ ≤
‖A‖k for k = 2, . . . , and each A ∈ Cn×n.

Clearly, any operator norm on Cn×n is a superstable norm, see §7.7.

Theorem 7.6.2 The standard numerical radius r2(A) = maxx∈Cn,‖x‖= |x∗Ax|
is a superstable norm.

To prove the theorem we need the following lemma.

Lemma 7.6.3 Assume that A ∈ Cn×n, ρ(A) < 1 and x ∈ S2n−1. Let
zj = e

2πj
√
−1

m and assume that In− zjA ∈ GL(n,C) for j = 1, . . . ,m. Then

1− x∗Amx =


m

m∑
j=

‖xj‖(− zjy∗jAyj),(7.6.1)

where xj = (
∏

k∈〈m〉\{j}

(− zkA))x, yj =


‖xj‖xj
, j = , . . . ,m.

Proof. Observe the following two polynomial identities in z variable

1− zm =
m∏
k=1

(1− zkz), 1 =
1
m

m∑
j=1

∏
k∈〈m〉\{j}

(1− zkz).

Replace the variable z by A obtain the identities

(7.6.2) In −Am =
m∏
k=1

(In − zkA), In =
1
m

m∑
j=1

∏
k∈〈m〉\{j}

(In − zkA).

Multiply the second identity from the right by x to get the identity x =

m

∑
j= xj . Multiply the first identity by x from the right respectively to
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obtain x − Amx = (
∏m
k=(In − zkA))x. Since In − zkA for k = 1, . . . ,m

commute, we deduce that for each k, x−Amx = (In − zkA)xk. Hence

1− x∗Amx = x∗(x−Amx) =


m

m∑
j=

x∗j (x−Amx) =

1
m

m∑
j=1

x∗j (In − zjA)xj =


m

m∑
j=

‖xj‖(− zjy∗jAyj).

2

Proof of Theorem 7.6.2. From the the proof of Lemma 7.6.3 it
follows that (7.6.1) holds for any A ∈ Cn×n and some y, . . . ,ym ∈ S2n−1,
since for xj =  in (7.6.1) we can choose any yj ∈ S2n−1. Suppose that
that r2(A) = 1. Let ζ ∈ C, |ζ| = 1. Apply the equality (7.6.1) to ζA and
x ∈ S2n−1 to deduce

1− ζmx∗Amx =


m

m∑
j=

‖uj‖(− zjζw∗jAwj)

for corresponding w, . . . ,wm ∈ S2n−1. Choose ζ such that ζmx∗Amx =
|x∗Amx|. Since r2(zkζA) = r2(A) = 1, it follows that <(1− zjζw∗jAwj) ≥
. Hence, the above displayed equality yields 1 − |x∗Amx| ≥ , i.e 1 ≤
|x∗Amx|. Since x ∈ S2n−1 is arbitrary, it follows that r2(Am) ≤ 1 if
r2(A) = 1. Hence r2(·) is a superstable norm. 2

Definition 7.6.4 For an integer n ≥ 2 and p ∈ [1,∞] let Kp,n ≥ 1 be
the smallest constant satisfying rp(Am) ≤ Kp,nrp(A)m for all A ∈ Cn×n.

Theorem 7.6.2 is equivalent to the equality K2,n = 1. Problem 1b shows
thatK1,n = K∞,n = 1. It is an open problem if supn∈Nmaxp∈∞[1,∞]Kp,n <
∞.

Theorem 7.6.5 Let ‖ · ‖ be a norm on Cn×n which is invariant under
the similarity by unitary matrices, i.e. ‖UAU−1‖ = ‖A‖ for each A ∈ Cn×n
and U ∈ U(n). Then ‖ · ‖ is spectral dominant if and only if ‖A‖ ≥ r2(A)
for any A ∈ Cn×n.

To prove the theorem we bring the following two lemmas which are of
independent interest.
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Lemma 7.6.6 Let ‖ · ‖ be a norm on Cn×n. Assume that ‖ · ‖ is in-
variant under the similarity by U ∈ GL(n,C), i.e. ‖A‖ = ‖UAU−1‖ for
each A ∈ Cn×n. Then U is similar to diagonal matrix Λ:

(7.6.3) Λ = diag(λ1, . . . , λn), |λ1| = . . . = |λn| > 0.

Proof. Let λ, µ ∈ C be two distinct eigenvalues of U . So there are two
corresponding nonzero vectors x,y ∈ Cn such that Ux = λx, U>y = µy.
For A = xy> we deduce that UAU−1 = λ

νA. Since ‖A‖ = ‖UAU−1‖ > 0
it follows that |λ| = |µ|. Hence all the eigenvalues of U have the same
modulus.

it is left to show that U is diagonable. Assume to the contrary that
U is not diagonable. Then there exists an invertible matrix T and upper
triangular matrix V = [vij ]ni=j=1 such that v11 = v22 = λ 6= 0, v12 = 1, and
V = TV T−1. Choose A = TBT−1, where B = [bij ]ni=j=1, where b22 = 1

λ2 .
Since ‖UkAU−k‖ = ‖A‖ for k =∈ N it follows that the sequence of matrices
UkAU−k, k ∈ N is bounded. A straightforward calculation shows that the
(1, 2) entry of T−1(UkAU−k)T is k2. Hence the sequence UkAU−k, k ∈ N
is not bounded, contrary to our previous claim. The above contradiction
establishes lemma. 2

Lemma 7.6.7 Let Λ = diag(λ1, . . . , λn) ∈ Cn×n and assume that |λ1| =
. . . = |λn| > 0 and λi 6= λj for i 6= j. Suppose that ‖ · ‖ is a norm on Cn×n
which is invariant under the similarity by Λ. Then

(7.6.4) ‖diag(A)‖ ≤ ‖A‖.

Proof. Λ-similarity invariance implies

‖ 1
m+ 1

m∑
k=0

ΛkAΛ−k‖ ≤ 1
m+ 1

m∑
k=0

‖ΛkAΛ−k‖ = ‖A‖.

For A = [aij ] ∈ Cn×n let

Am = [aij,m] =
1

m+ 1

m∑
k=0

ΛkAΛ−k,

where aii,m = aii, aij,m = aij

1− λm+1
i

λm+1
j

(m+ 1)(1− λi
λj

)
for i 6= j.

Hence limm→∞Am = diag(A). Since ‖Am‖ ≤ ‖A‖ we deduce the inequal-
ity (7.6.4). 2
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Proof of Theorem 7.6.5. Assume first that ‖A‖ ≥ r2(A) for each
A ∈ Cn×n. Clearly, ‖ · ‖ is spectral dominant. Assume now that ‖ · ‖
is invariant under similarity by any unitary matrix U , and ‖ · ‖ is spectral
dominant. Since ‖ · ‖ is invariant under the similarity by a diagonal matrix
Λ = diag(λ1, . . . , λn), where |λ1| = . . . = |λn| and λi 6= λj for i 6= j, Lemma
7.6.7 yields (7.6.4). Let A = [aij ]. Since diag(A) = diag(a11, . . . , ann) and
‖ · ‖ is spectral dominant we obtain that

‖A‖ ≥ ‖diag(A)‖ ≥ ρ(diag(A)) = max
i∈〈n〉

|aii|.

Let V ∈ U(n). Then the first column of V is x ∈ S2n−1. Furthermore,
the (1, 1) entry of V ∗AV is x∗Ax. Since ‖ · ‖ is invariant under unitary
similarity we obtain ‖A‖ = ‖V ∗AV ‖ ≥ |x∗Ax|. As for any x ∈ S2n−1 there
exists a unitary V with the first column x we deduce that ‖A‖ ≥ r2(A). 2

Problems

1. (a) Describe the ν-maps φ‖·‖1 , φ‖·‖∞ .

(b) Show that for for p = 1,∞ rp(A) is equal to the operator norm
of ‖A‖p, for A ∈ Cn×n viewed as a linear operator A : Cn →
Cn. (See §7.7). Hence K1,n = K∞,n = 1, where Kp,n is given
Definition 7.6.4.

(c) Show that for each p ∈ (1,∞) and integer n ≥ 2 there exists
A ∈ Cn×n such that rp(A) < ‖A‖p, where ‖A‖p the operator
norm of A.

7.7 Operator norms

Let Va,Vb be two finite dimensional vector spaces over F = R,C. Assume
that ‖ · ‖a, ‖ · ‖b are norms on Va,Vb respectively. Let T : Va → Vb be a
linear transformation. Then

(7.7.1) ‖T‖a,b := max
06=x∈Va

‖Tx‖b
‖x‖a

,

is called the operator norm of T . Clearly

(7.7.2) ‖T‖a,b = max
‖x‖a≤

‖Tx‖b = max
‖x‖a=

‖Tx‖b
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See Problem 1. Let Vc be a third finite dimensional vector space over F
with a norm ‖ · ‖c. Assume that Q : Vb → Vc is a linear transformation.
The we have the well known inequality

(7.7.3) ‖QT‖a,c ≤ ‖Q‖b,c‖T‖a,b.

See Problem 2.
Assume now that Va = Vb = V and ‖ · ‖a = ‖ · ‖b = ‖ · ‖c = ‖ · ‖. We

then denote ‖T‖ := ‖T‖a,b and ‖Q‖ := ‖Q‖b,c. Let Id : V → V be the
identity operator. Hence

(7.7.4) ‖Id‖ = 1, ‖QT‖ ≤ ‖Q‖ ‖T‖, ‖Tm‖ ≤ ‖T‖m for m = 2, . . . .

Assume that Va = Fn,Vb = Fm. Then T : Fn → Fm is represented by a
matrix A ∈ Fm×n. Thus ‖A‖a,b is the operator norm of A. For m = n and
‖ · ‖a = ‖ · ‖b = ‖ · ‖ we denote by ‖A‖ the operator norm. Assume that
s, t ∈ [1,∞]. Then for A ∈ Fm×n we denote by ‖A‖s,t the operator norm of
A, where Fn,Fm are equipped with the norms `s, `t respectively. Note that
‖A‖2,2 = σ1(A), see Problem 7.4.13. For m = n and s = t = p we denote
by ‖A‖p the `p operator norm of A.

Lemma 7.7.1 Let A = [aij ] ∈ Fm×n and ‖ · ‖a, ‖ · ‖b be norms on
Cn,Cm respectively. If ‖ · ‖b is an absolute norm then

(7.7.5) ‖A‖a,b ≤ ‖(‖(a11, . . . , a1n)>‖∗a, . . . , ‖(am1, . . . , amn)>‖∗a)>‖b.

If ‖ · ‖a is an absolute norm then

(7.7.6) ‖A‖a,b ≤ ‖(‖(a11, . . . , am1)>‖b, . . . , ‖(a1n, . . . , amn)>‖b)>‖∗a.

In both inequalities, equality holds for matrices of rank one.

Proof. Let x ∈ Fn. Then

(Ax)i =
n∑
j=

aijxj ⇒ |(Ax)i| ≤ ‖(ai, . . . , ain)>‖∗a‖x‖a, i = , . . . ,m⇒

|Ax| ≤ ‖x‖a(‖(a, . . . , an)>‖∗a, . . . , ‖(am, . . . , amn)>‖∗a)>.

Assume that ‖ · ‖b is an absolute norm. Then

‖Ax‖b ≤ ‖x‖a‖(‖(a, . . . , an)>‖∗a, . . . , ‖(am, . . . , amn)>‖∗a)>‖b,

which yields (7.7.5). Suppose that A is rank one matrix. So A = uv>,
where 0 6= u ∈ Fm,0 6= v ∈ Fn. There exists 0 6= x ∈ Fn such that
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v>x = ‖v‖∗a‖x‖a. For this x we have that |Ax| = ‖v‖∗a‖x‖a|u|. Hence
‖Ax‖b
‖x‖a = ‖v‖∗a‖u‖b. Thus ‖A‖a,b ≥ ‖v‖∗a‖u‖b. On the other hand the

right-hand of (7.7.5) is ‖v‖∗a‖u‖b. This shows that (7.7.5) is sharp for rank
one matrices.

Assume now that ‖ · ‖a is an absolute norm. Theorem 7.4.3 claims that
‖ · ‖∗a is an absolute norm. Apply (7.7.5) to ‖A>‖b∗,a∗ and use Problem 1e
to deduce the inequality (7.7.6). Assume that A is rank one matrix. Then
A> is a rank one matrix and equality holds in (7.7.6). 2

Theorem 7.7.2 Let m,n ≥ 2 be integers. Assume that s, t ∈ [1,∞] and
suppose Fn,Fm are endowed with Hölder with norms ‖·‖s, ‖·‖t respectively.
Let s∗ be defined by the equality 1

s + 1
s∗ = 1. Then for A = [aij ]

m,n
i=j=1Fm×n

the following hold.

‖A‖s,t ≤ min((
m∑
i=1

(
n∑
j=1

|aij |s
∗
)
t
s∗ )

1
t , (

n∑
j=1

(
m∑
i=1

|aij |t)
s∗
t )

1
s∗ ),(7.7.7)

‖A‖∞,1 ≤
m,n∑
i=j=1

|aij |,(7.7.8)

‖A‖1,1 = max
1≤j≤n

m∑
i=1

|aij |,(7.7.9)

‖A‖∞,∞ = max
1≤i≤m

n∑
j=1

|aij |,(7.7.10)

‖A‖1,∞ = max
1≤i≤m,1≤j≤n

|aij |.(7.7.11)

Proof. Since ‖ · ‖s, ‖ · ‖t are absolute norm the inequalities (7.7.5) and
(7.7.6) hold. As ‖ · ‖∗s = ‖ · ‖s∗ we deduce (7.7.7). For s = ∞ we have
s∗ = 1, and for t = 1 (7.7.7) yields (7.7.8).

Assume that s = t = 1. So s∗ = ∞. The second part of the in-
equality (7.7.7) yields the inequality ‖A‖1,1 ≤ max1≤j≤n

∑m
i=1 |aij |. Let

ej = (δj, . . . , δjn)>. Clearly, ‖ej‖ =  and ‖Aej‖ =
∑m
i= |aij |. Hence

‖A‖1,1 ≥
∑m
i=1 |aij |. So ‖A‖1,1 ≥ max1≤j≤n

∑m
i=1 |aij |, which yields (7.7.9).

Since ‖A‖∞,∞ = ‖A>‖1,1, see Problem 1e, we deduce (7.7.10) from (7.7.9).
Let s = 1, t =∞. Then (7.7.7) yields the inequality

‖A‖1,∞ ≤ max1≤i≤m,1≤j≤n |aij | = |ai1j1 |. Clearly, ‖Aej‖∞ = |aij |.
Hence ‖A‖1,∞ ≥ |ai1j1 |, which proves (7.7.11). 2
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Theorem 7.7.3 Let V be a finite dimensional vector space over C with
an norm ‖ · ‖. Let ‖ · ‖ be the induced operator norm Hom (V,V). Then
for A ∈ Hom (V,V) the inequality ρ(A) ≤ ‖A‖ holds.

Proof. Assume that λ ∈ spec A. Then there exists 0 6= x ∈ V such
that Ax = λx. So ‖A‖ ≥ ‖Ax‖

‖x‖ = |λ|. 2

Problems

1. Show

(a) The equality (7.7.2).

(b) For each t > 0 there exists a vector y ∈ Va, ‖y‖b = t such that
‖T‖a,b = ‖Ty‖b

‖y‖a .

(c) ‖T‖a,b = maxf∈S‖·‖∗b
,x∈S‖·‖ |f(Tx)|.

(d) Denote by ‖T ∗‖b∗,a∗ the operator norm of T ∗ : V∗b → V∗a
with respect to the norms ‖ · ‖∗b , ‖ · ‖∗a respectively. Show that
‖T ∗‖b∗,a∗ = ‖T‖a,b.

(e) ‖A>‖b∗,a∗ = ‖A‖a,b for A ∈ Fm×n.

2. Show the inequality (7.7.3).

3. Let T : V → V be a linear transformation on a finite dimensional
vector space V over C with a norm ‖ · ‖. Show that ρ(T ) ≤ ‖T‖.

4. Let A ∈ Cn×n. Then A = Q−1(Λ + N)Q, where Λ is a diagonal
matrix, N strictly upper triangular and Λ+N is the Jordan canonical
form of A. Show

(a) A is similar to Λ+tN for any 0 6= t ∈ C, i.e. A = Q−1
t (Λ+tN)Qt.

Show that Qt = QDt for an appropriate diagonal matrix Dt.

(b) Let ε > 0 be given. Show that one can choose a norm ‖ · ‖t on
Cn of the form ‖x‖t := ‖Qtx‖ for |t|-small enough such that
‖A‖t ≤ ρ(A)+ε. Hint: Note that ‖Λ+tN‖2 ≤ ‖Λ‖2+|t|‖N‖2 =
ρ(A) + t‖N‖2.)

(c) If N = 0 then ‖A‖ = ρ(A) where ‖x‖ = |Qx|.
(d) Suppose that each eigenvalue λ of modulus ρ(A) is geometrically

simple. Then there exists |t| small enough such that ‖A‖t =
ρ(A).
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5. Let A ∈ Cn×n. Then there exists a norm on ‖ · ‖ on Cn such that
ρ(A) = ‖A‖ if and only if A each eigenvalue λ of modulus ρ(A)
is geometrically simple. Hint: Note that if ρ(A) = 1 and there
is an eigenvalue λ, |λ| = 1 which is not geometrically simple, then
Am,m ∈ N is not a bounded sequence.

6. Assume that ‖ · · · ‖a, ‖ · ‖b are two absolute norm on Cn and Cm.
Assume that Q1Cm×m, Q2 ∈ Cn×n are two diagonal matrices such
that the absolute value of each diagonal entry is 1. Show that for any
A ∈ Cm×n ‖Q1AQ2‖a,b = ‖A‖a,b.

7. Show

(a) Show that ifA ∈ Rm×n+ or−A ∈ Rm×n+ then ‖A‖∞,1 =
∑m,n
i=j=1 |aij |.

(b) Let x = (x, . . . , xn),y = (y, . . . , yn)> ∈ Rn. We say that y
has a weak sign pattern as x if yi = 0 for xi = 0 and yixi ≥ 0 for
xi 6= 0. Let A ∈ Rm×n. Assume that there exists x ∈ Rn such
that each row ri of A either ri or −ri has a weak sign pattern
as x. Then ‖A‖∞,1 =

∑m,n
i=j=1 |aij |.

(c) Let A =
[
a11 a12

a21 a22

]
. Assume that a11, a12, a21,−a22 > 0.

Show that ‖A‖∞,1 < a11 + a12 + a21 − a22.

(d) Generalize the results of Problem 7c to A ∈ Cm×n.

7.8 Tensor products of convex sets

Definition 7.8.1 Denote Vibe a finite dimensional vector space over
F = R,C for i = 1, . . . ,m. Let V = ⊗i=Vi. Assume that Xi ⊂ Vi for
i = 1, . . . ,m. Denote

�mi=1Xi := {⊗mi=1xi, for all xi ∈ Xi, i = , . . . ,m}.

We call �mi=1Xi set tensor product of X1, . . . , Xm, or simply tensor product
of X1, . . . , Xm.

Lemma 7.8.2 Let Ci be a compact convex set in a finite dimensional
vector space Vi for i = 1, . . . ,m. Then conv�mi=1Ci is a compact convex set
in ⊗mi=1Vi, whose extreme points are contained in �mi=1E(Ci). In particular,
if C1 and C2 are polytopes then convC1 � C2 is a polytope.

Proof. Since Ci is compact for i = 1, . . . ,m, it is straightforward to
show that C := �mi=1Ci is a compact set in V = ⊗mi=Vi. Hence convC is
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compact. Let dim Vi = di. Since Ci is compact, Theorem 7.1.3 implies that
each xi ∈ Ci is of the form xi =

∑di+
ji=

aijiyiji where aiji ≥ 0,yiji ∈ E(Ci)

for ji = 1, . . . , di + 1, and
∑di+1
ji=1 aiji = 1. Hence

⊗mi=1xi =
d+,...,dm+∑
j=...=jm=

(
m∏
i=

aiji)(⊗mi=yiji).

Note that
∏m
i=1 aiji ≥ 0 and

∑d1+1,...,dm+1
j1=...=jm=1

∏m
i=1 aiji = 1. Hence C ⊂

conv�mi=1E(Ci), which implies convC ⊂ conv�mi=1E(Ci) ⊂ convC.
Assume that C1, C2 are polytopes. Then convC1�C2 is nonempty, com-

pact and convex whose set of extreme points is finite. Hence convC1 � C2

is a polytope. 2

See Problem 1 for en example where E(C1 � C2) is strictly contained in
E(C1) � E(C2). The next two examples give two important cases where
E(C1�C2) = E(C1)�E(C2). In these two examples we view Cp×q⊗Cm×n
is viewed as a subspace of Cpm×qn, where the tensor product of two matrices
A⊗B is the Kronecker tensor product.

Proposition 7.8.3 Let m,n ≥ 2 be integers. Then Ωm � Ωn ⊂ Ωmn,
and E(conv Ωm � Ωn) = Pm � Pn.

Proof. Let A = [aij ] ∈ Ωn, B = [bpq] ∈ Ωn. The the entries of A⊗B =
[c(i,p)(j,q)] ∈ Rmn×mn+ , where c(i,p)(j,q) = aijbpq. Clearly

m∑
j=1

c(i,p)(j,q) =
m∑
j=1

aijbpq = bpq,

m∑
i=1

c(i,p)(j,q) =
m∑
i=1

aijbpq = bpq,

n∑
q=1

c(i,p)(j,q) =
n∑
q=1

aijbpq = aij ,

n∑
p=1

c(i,p)(j,q) =
n∑
p=1

aijbpq = aij

Hence A ⊗ B ∈ Ωmn, where we identify the set 〈m〉 × 〈n〉 with 〈mn〉.
Since Ωmn is convex it follows that conv Ωm � Ωn ⊂ Ωmn. Recall that
E(Ωmn) = Pmn. Clearly Pm � Pn ⊂ Pmn. Problem 7.1.2 yields that
E(conv Ωm � Ωn) = Pm � Pn. 2

Proposition 7.8.4 Let m,n ≥ 2 be integers. Then Hm,+,1 � Hn,+,1 ⊂
Hmn,+,1, and E(conv Hm,+,1 �Hn,+,1) = E(Hm,+,1)� E(Hn,+,1).

Proof. Let A ∈ Hm, B ∈ Hn be nonnegative definite hermitian matri-
ces. Then A ⊗ B is nonnegative definite. Since trA ⊗ B = (trA)(trB) it
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follows that Hm,+,1 �Hn,+,1 ⊂ Hmn,+,1. Hence E(conv Hm,+,1 �Hn,+,1) ⊂
E(Hm,+,1)� E(Hn,+,1).

Recall that E(Hm,+,1), E(Hn,+,1), E(Hmn,+,1) are hermitian rank one
matrix of trace 1 of corresponding orders. Since A⊗B is a rank one matrix
if A and B is a rank one matrix it follows that E(Hm,+,1) � E(Hn,+,1) ⊂
E(Hmn,+,1. Hence E(conv Hm,+,1 �Hn,+,1) = E(Hm,+,1)� E(Hn,+,1). 2

Problem 7.8.5 Let Ci be a compact convex set in a finite dimensional
space Vi for i = 1, 2. Suppose that Ci = ∩α∈FiH(fα,xα), were Fi is the
set of all supporting hyperplanes of Ci which characterize Ci, for i = 1, 2.
(Fi may not be finite or countable.) The problem is to characterize the set
of all supporting hyperplanes of convC1 � C2.

Equivalently, suppose we know how to decide if xi belongs or does not
belong to Ci for i = 1, 2. How do we determine if x belongs or does not
belong convC1 � C2?

It seems that the complexity of characterization convC1�C2 can be much
more complex then the complexity of C1 and C2. We will explain this
remark in the two examples discussed in Propositions 7.8.3 and 7.8.4.

Consider first Hm,+1, � Hn,+,1. So any element in Hm,+1, � Hn,+,1

is of the form A ⊗ B, where A and B are nonnegative definite hermitian
matrices of trace one. The matrix A⊗B is called a pure state in quantum
mechanics. A matrix C ∈ convHm,+1, �Hn,+,1 is called a separable state.
So convHm,+1, � Hn,+,1 is the convex set of separable states. The set
Hmn,+1,1\ convHm,+1,�Hn,+,1 the set of entangled states. See for example
[BeZ06]. The following result is due to L. Gurvits [Gur03]

Theorem 7.8.6 For general positive integers m,n and A ∈ Hmn,+,1

the problem of decision if A is separable, i.e. A ∈ convHm,+1, �Hn,+,1, is
NP-Hard.

On the other hand, given a hermitian matrix A ∈ Hn, it well known that one
can determine in polynomial time if A belongs or does not belong to Hn,+,1.
See Problem 3. We will discuss the similar situation for conv Ωm � Ωn in
the §7.11.

Definition 7.8.7 Let Vi be a finite dimensional vector space over F =
R,C with a norm ‖ · ‖i for i = 1, . . . , k. Let V := ⊗ki=Vi with the norm
‖ · ‖. Then ‖ · ‖ is called a cross norm if

(7.8.1) ‖ ⊗ki=1 xi‖ =
k∏
i=

‖xi‖i
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for all rank one tensors.
Identify ⊗ki=1V

∗
i with V∗, where (⊗ki=1fi)(⊗ki=xi) =

∏k
i= fi(xi). Then

‖ · ‖ is called a normal cross norm if the norm ‖ · ‖∗ on V∗ is a cross norm
with respect to the norms ‖ · ‖∗i on V∗i for i = 1, . . . , k.

See [Sch50] for properties of the cross norms. We discuss the following
known results needed in the sequel.

Theorem 7.8.8 Let Vi be a finite dimensional vector space over F =
R,C with a norm ‖ · ‖i for i = 1, . . . , k. Let V := ⊗ki=Vi. Then there
exists a norm ‖ · ‖ on V satisfying (7.8.7) Furthermore, there exist unique
norms ‖ · ‖max, ‖ · ‖min satisfying the following properties. First, ‖ · ‖max

and ‖ · ‖min are normal cross norms. Moreover ‖z‖min ≤ ‖z‖max for all
z ∈ V. Any cross norm ‖ · ‖ on V satisfies the inequality ‖z‖ ≤ ‖z‖max for
all z ∈ V. Third, assume that ‖ · ‖a on V satisfies the equality

(7.8.2) ‖ ⊗ki=1 fi‖∗a =
k∏
i=

‖fi‖∗i for all fi ∈ V∗i , i = , . . . , k.

I.e. ‖ · ‖∗a is a cross norm with respect to the norms ‖ · ‖∗i on V∗i for
i = 1, . . . , k. Then ‖z‖min ≤ ‖z‖a for all z ∈ V. More precisely,
(7.8.3)

B‖·‖max = conv B‖·‖1 � . . .� B‖·‖k , B‖·‖∗min
= conv B‖·‖∗1 � . . .� B‖·‖∗k .

Proof. For simplicity of the exposition we let k = 2. Define the set
B := conv B‖·‖1 � B‖·‖2 . Clearly, B is a compact convex balanced that 0 is
in its interior. Hence there exists a norm ‖ · ‖max such that B = B‖·‖max .
We claim that ‖x⊗ y‖max = ‖x‖‖y‖. Clearly, to show that it is enough
to assume that ‖x‖ = ‖y‖ = . Since x ⊗ y ∈ B‖·‖max we deduce that
‖x⊗y‖max ≤ . Problem 7.4.5c yields that there exists f ∈ S‖·‖∗1 ,g ∈ S‖·‖∗2
such that

1 = f(x) ≥ |f(x)|, ∀x ∈ B‖·‖ ,  = g(y) ≥ |f(y)|, ∀y ∈ B‖·‖ .

Hence

(7.8.4) 1 = (f ⊗ g)(x⊗ y) ≥ |(f ⊗ g)(z)| for all z ∈ B‖·‖max .

Hence x⊗y ∈ ∂B‖·‖max = S‖·‖max , i.e. ‖x⊗y‖max = . Therefore the norm
‖ · ‖max satisfies (7.8.1). Let ‖ · ‖ be another norm on V satisfying (7.8.1).
Hence B‖·‖1�B‖·‖2 ⊂ B‖·‖, which yields B‖·‖max = conv B‖·‖1�B‖·‖2 ⊂ B‖·‖.
Therefore, ‖z‖ ≤ ‖z‖max.

We next observe that that ‖ · ‖c := ‖ · ‖∗max on V∗ satisfies the equality

(7.8.5) ‖f ⊗ g‖c = ‖f‖∗‖g‖∗ for all f ∈ V∗,g ∈ V∗.
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Recall that ‖f ⊗ g‖c = maxz∈B‖·‖ |(f ⊗ g)(z)|. Use the (7.8.4) to deduce
(7.8.5). Hence ‖z‖max is a normal cross norm.

Let ‖ · ‖b be the norm given by the unit ball conv B‖·‖∗1 � B‖·‖∗2 on V∗.
Hence the above results show that ‖ · ‖b is a normal cross norm. Recall
that for any norm ‖ · ‖∗a on V∗ satisfying (7.8.5) we showed the inequality
‖h‖∗a ≤ ‖h‖b for any h ∈ V∗. Define ‖·‖min := ‖·‖∗b . Hence ‖z‖min ≤ ‖z‖a.
The previous arguments show that ‖ · ‖min satisfies the equality (7.8.1).
Hence ‖z‖min ≤ ‖z‖max for all z ∈ V. Also ‖z‖min is a normal cross norm.

2

Proposition 7.8.9 Let k > 1 be an integer. Assume that V, . . . ,Vk

are inner product spaces over F = R,C. Let V = ⊗ki=Vi with the inner
product induced by the inner products on V, . . . ,Vk. Assume that ‖ ·
‖1, . . . , ‖·‖k, ‖·‖ are the induced norms by the corresponding inner products
on V, . . . ,Vk,V. Then ‖ · ‖ is a normal cross norm. If dim Vi >  for
i = 1, . . . , k then ‖ · ‖ is different from ‖ · ‖max and ‖ · ‖min.

See Problem 7.

Theorem 7.8.10 Let U,V be finite dimensional vector spaces over
F = R,C with norms ‖ · ‖, ||| · ||| respectively. Identify W = V ⊗U∗ with
Hom (U,V), via isomorphism θ : W→ Hom (U,V), where θ(v ⊗ f)(u) =
f(u)v for any f ∈ U∗. Then the minimal cross norm on ‖ · ‖min on W
is the operator norm on Hom (U,V), where the norms on U∗ and V are
‖ · ‖∗ and ||| · ||| respectively. Identify W∗ with V∗ ⊗U ∼ Hom (U∗,V∗).
Then the maximal cross norm ‖·‖max on W is the conjugate to the operator
norm on Hom (U∗,V∗), which is identified with W∗.

Proof. Let T ∈ Hom (U,V). Then

‖T‖ = max
u∈S‖·‖

|||T (u)||| = max
g∈S|||·|||∗ ,u∈S‖·‖

|g(T (u))|.

Let θ−1 : Hom (U,V)→ V⊗U∗ be the isomorphism given in the theorem.
Then g(T (u)) = (g⊗ u)(θ−(T )). Let ‖ · ‖b be the norm given by the unit
ball conv B|||·|||∗ �B‖·‖ on V∗⊗U ∼W∗, as in the proof of Theorem 7.8.8.
Then

‖θ−1(T )‖∗b = max
g∈S|||·|||∗ ,u∈S‖·‖

= |(g ⊗ u)(θ−(T ))|.

Use the proof of Theorem 7.8.8 to deduce that ‖T‖ = ‖φ(T )‖min.
Similar arguments show that the conjugate norm to the operator norm

of Hom (U∗,V∗), identified with V∗⊗U ∼W∗ gives the norm ‖ · ‖max on
W. 2
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Use the above theorem and Problem 7.4.14 to deduce.

Corollary 7.8.11 Let U,V be finite dimensional inner product spaces
over F = R,C, with the corresponding induced norms. Identify W = V ⊗
U∗ with Hom (U,V) as in Theorem 7.8.10. Then ‖T‖min = σ1(T ) and
‖T‖max =

∑dim V

i=1 σi(T ).

More generally, given finite dimensional vectors spaces Ui,Vi over F =
R,C for i = 1, . . . , k we identify the tensor spaces ⊗ki=1Hom (Ui,Ui) with
Hom (⊗ki=1Ui,⊗ki=Vi) using isomorphism

ι : ⊗ki=1Hom (Ui,Vi)→ Hom (⊗ki=Ui,⊗ki=Vi) satisfying
ι(⊗ki=1Ti)(⊗ki=1ui) = ⊗ki=(Tiui)(7.8.6)

where Ti ∈ Hom (Ui,Vi),ui ∈ Ui, i = , . . . , k.

Theorem 7.8.12 Let Ui,Vi are finite dimensional vector spaces over
F = R,C with the norms ‖ · ‖i, ||| · |||i respectively for i = 1, . . . , k. Let
Ni(·) be the operator on Hom (Ui,Vi) for i = 1, . . . , k. Let ‖ · ‖max be
the maximal cross norms on U := ⊗ki=Ui and ||| · ||| be any cross norm
on V := ⊗ki=Vi. Then the operator norm N(·) on Hom (U,V), identified
with ⊗ki=1Hom (Ui,Vi), is a cross norm with respect to the norms Ni(·), i =
1, . . . , k.

Proof. Since B‖·‖max = �ki=1B‖·‖i we deduce that for any T ∈ Hom(U,V)
one has

N(T ) = max
ui∈B‖·‖i ,i∈〈k〉

|||T (⊗ki=1ui)|||.

Let T = ⊗ki=1Ti. Since ||| · ||| is a cross norm on V we deduce

N(T ) = max
ui∈B‖·‖i ,i∈〈k〉

|||⊗ki=1Ti(ui)||| = max
ui∈B‖·‖i ,i∈〈k〉

k∏
i=

|||Ti(ui)|||i =
k∏
i=

Ni(Ti).

2

Problems

1. Let V,V be one dimensional subspaces with bases v,v respec-
tively. Let C1 = [−e, e], C = [−e, e]. Show that C1 � C2 =
[−3(e ⊗ e), e ⊗ e]. Hence E(C1 � C2) is contained strictly in
E(C1)�E(C2). Lemma 7.8.2 yields that convC1�C2 = convPm�Pn.
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2. Index the entries of C ∈ Ωmn as c(i,p),(j,q). Show

(a) Assume that C ∈ conv Ωm � Ωn. Then the entries of C satisfy

m∑
i=1

c(i,p)(j,q) =
m∑
j=1

c(i,p)(j,q) for each i, j ∈ 〈m〉, p, q ∈ 〈n〉,

n∑
p=1

c(i,p)(j,q) =
n∑
q=1

c(i,p)(j,q) for each i, j ∈ 〈m〉 p, q ∈ 〈n〉.

(b) For m = n = 2 the standard conditions for 4×4 doubly stochas-
tic matrices, and the conditions in part 2a characterize the set
conv Ω2 � Ω2.

(c) For m = n ≥ 4 the standard conditions for n2 × n2 doubly
stochastic matrices, and the conditions in part 2a gives a set
which contains strictly conv Ωn�Ωn. Hint: Consult with [Fri08].

3. Show

(a) A ∈ Hn,+,1 if and only if trA = 1 and A ≥ 0.

(b) A ∈ Hn,+ ⇒ det A ≥ 0.

(c) Assume that A = [aij ]ni=j=1 ∈ Hn and det A > 0. Then A ≥ 0 if
and only det [aij ]

p
i=j=1 > 0 for p = 1, . . . , n− 1.

(d) Assume that A = [aij ]ni=j=1 ∈ Hn and det A = 0. Find 0 6= x ∈
Cn such that Ax = 0. Let xn = 

‖x‖x and complete xn to an
orthonormal basis x, . . . ,xn. Let An−1 = [x∗iAxj ]n−i=j=. Then
An−1 ∈ Hn−1. Furthermore, A ≥ 0 if and only if An−1 ≥ 0.

4. Let τ : Cn×n be the transpose map: τ(A) = A>. Show

(a) τ(A) is similar to A for any A ∈ Cn×n.

(b) τ leaves invariant the following subsets of Cn×n:

Rn×n,Sn(R),Sn(C),O(n,R),O(n,C),
U(n,R),N(n,R),N(n,C),Hn,Hn,+,Hn,+,1.

5. On Cmn×mn viewed as Cm×m⊗Cn×n we define the partial transpose
τpar as follows. Let C = [c(i,p),(j,q)]

m,m,n,n
i=j=p=q=1] ∈ Cm×m ⊗ Cn×n.

Them τpar(C) = [c̃(i,p),(j,q)]
m,m,n,n
i=j=p=q=1], where c̃(i,p),(j,q) = c(i,q),(j,p)

for i, j ∈ 〈m〉, p, q ∈ 〈n〉. Equivalently, τpar is uniquely determined by
the condition τpar(A ⊗ B) = A ⊗ B> for any A ∈ Cm×n, B ∈ Cn×n.
Show
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(a) τpar leaves the following subsets of Cmn×mn invariant: Smn(R),Hmn,
and all the set of the form X � Y , where X ⊂ Cm×m and
Y ⊂ Cn×n are given in Problem 4b. In particular the convex set
of separable states conv Hm,+,1 � Hn,+,1 is invariant under the
partial transpose.

(b) Show that for m = 2 and n = 2, 3 C ∈ Hmn is a separable state,
i.e. C ∈ conv Hm,+,1 �Hn,+,1, if and only C, τpar(C) ∈ Hmn,+,1.
(This is the Horodecki-Peres condition [Hor96, Per96].)

6. Let the assumptions of Theorem 7.8.8 hold. Show

(a) Each z ∈ V can be decomposed, usually in many ways, as a sum
of rank one tensors

z =
N∑
j=

⊗ki=xj,i, xj,i ∈ Vi, i = , . . . , k, j = , . . . , N,

where N =
∏k
i=1 dim Vi. Then ‖z‖max is the minimum of∑N

j=1

∏k
i=1 ‖xj,i‖i over all the above decompositions of z.

(b)
‖z‖min = max

fi∈B‖·‖∗
i
,i=,...,k

|(⊗ki=fi)(z)|.

7. Prove Proposiiton 7.8.9. Hint: To prove the first part of the problem
choose orthonormal bases in V, . . . ,Vk. To prove the second part
observe that ‖ · ‖ is smooth, while ‖ · ‖min, ‖ · ‖max are not smooth if
dim Vi >  for i = 1, . . . , k > 1.

7.9 Variation of tensor powers and spectra

Definition 7.9.1 Let V,V be finite dimensional vector spaces over
F = R,C with norms ‖ · ‖1, ‖ · ‖2 respectively. Let µ : V → V be a
nonlinear map. The map µ has a Fréchet derivative at x ∈ U, or simply
differentiable at x, if there exists a linear transformation Tx ∈ Hom (U,V)
such that

µ(x + u) = µ(x) + Txu + o(u)‖u‖,

where ‖o(u)‖ →  uniformly as ‖u‖ → . Denote Dµ(x) := Tx. µ is
differentiable, if it has the Fréchet derivative at each x ∈ V, and Dµ(x) is
continuous on V. (Note that by choosing fixed bases in V,V each Dµ(x)
is represented by a matrix A(x) = [aij(x)] ∈ Fm×n, where n = dim V,m =
dim V. Then aij(x) is continuous on V for each i ∈ 〈m〉, j ∈ 〈n〉.)
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Since all norms on a finite dimensional vector space are equivalent, it is
straightforward to show that the notion of Fréchet derivative depend only
on the standard topologies in V,V. See Problem 1. For properties of the
Fréchet derivative consult with [Die69].

Proposition 7.9.2 Let V,V be finite dimensional vector spaces over
F = R,C with norms ‖ · ‖1, ‖ · ‖2 respectively. Assume that µ : V →
V is differentiable. Then for any x,y ∈ V the following equality and
inequalities holds.

µ(y)− µ(x) =
∫ 



Dµ((− t)x + ty)(y − x)dt,(7.9.1)

‖µ(y)− µ(x)‖ ≤ ‖y − x‖
∫ 



‖Dµ((− t)x + ty)‖,dt(7.9.2)

≤ ‖y − x‖ max
t∈[,]

‖Dµ((− t)x + ty)‖,.

(7.9.1) and (7.9.2) are called here the mean value theorem and the mean
value inequalities respectively.

Proof. Let x,u ∈ V be fixed. Clearly, the function µ(x + tu) is a
differentiable function from R to V, where

(7.9.3)
dµ(x + tu)

dt
= Dµ(x + tu)u.

Letting u = y− x and integrating the above inequality for t ∈ [0, 1] we get
(7.9.1). Replacing the integration in (7.9.1) by the limiting summation and
using the triangle inequality we obtain

‖µ(y)− µ(x)‖ ≤
∫ 



‖Dµ((− t)x + ty)(y − x)‖dt ≤∫ 1

0

‖Dµ((1− t)x + ty)‖,‖(y − x)‖dt ≤

‖y − x‖ max
t∈[,]

‖Dµ((− t)x + ty)‖,.

2

Theorem 7.9.3 Let V be a finite dimensional vector space. Let k ∈ N.
Denote V⊗k := V ⊗ . . .⊗V︸ ︷︷ ︸

k

. Consider the map δk : V → V⊗k , where

δk(x) = x⊗ . . .⊗ x︸ ︷︷ ︸
k

. Then

(7.9.4)
Dδk(x)(u) = u⊗ x⊗ . . .⊗ x︸ ︷︷ ︸

k−

+x⊗ u⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
k−

+ . . .+ x⊗ . . .⊗ x︸ ︷︷ ︸
k−

⊗u.
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Let ‖ · ‖ be a norm on V and assume that ‖ · ‖k is a cross norm on V⊗k :

(7.9.5) ‖x ⊗ x ⊗ . . .⊗ xk‖k =
k∏
i=

‖xi‖ for x, . . . ,xk ∈ V.

Denote by Nk(T ) := ‖T‖‖·‖,‖·‖k the operator norm of T ∈ Hom (V,V⊗k).
Then

(7.9.6) Nk(Dδk(x)) = k‖x‖k−.

Proof. Fix x,u ∈ V. For t ∈ R expand the vector δk(x + tu) in powers
of t. Then

δk(x + tu) = δk(x) + t(u⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
k−

+x⊗ u⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
k−

+

. . .+ x⊗ . . .⊗ x︸ ︷︷ ︸
k−1

⊗u) + higher order terms in t.

Hence (7.9.4) holds. Apply the triangle inequality to (7.9.4) and use the as-
sumption that ‖·‖k is a cross norms to deduce the inequality ‖Dδk(x)(u)‖k ≤
k‖x‖k−‖u‖. Hence Nk(Dδk(x)) ≤ k‖x‖k−. Clearly, equality holds if
x = 0. Suppose that x 6= 0. Then ‖Dδk(x)(x)‖k = k‖x‖k. Hence
Nk(Dδk(x)) ≥ k‖x‖k−, which establishes (7.9.6). 2

Theorem 7.9.4 Let U be a finite dimensional vector space over F =
R,C. For an integer k > 1 consider the map δk : Hom (U,U)→ Hom (U,U)⊗k
∼ Hom (U⊗k ,U⊗k) given by δk(T ) = T ⊗ . . .⊗ T︸ ︷︷ ︸

k

. Let Wk ⊂ U⊗k be a

subspace which is invariant for each δk(T ), T ∈ Hom (U,U). Denote by
δ̂k : Hom (U,U) → Hom (Wk,Wk) the restriction map δk(T )|Wk. As-
sume that ‖ · ‖ is a norm on U. Let ‖ · ‖k be the maximal cross norm
U⊗k Let ‖ · ‖, ‖ · ‖k, ||| · |||k be the induced operator norms on Hom (U,U),
Hom (U,U)⊗k ,Hom (Wk,Wk) respectively. Let Nk(·), N̂k(·) be the opera-
tor norm on Hom (Hom (U,U),Hom (U,U)⊗k),
Hom (Hom (U,U),Hom (Wk,Wk)) respectively. Then

(7.9.7) Nk(Dδk(T )) = k‖T‖k−1, N̂k(Dδ̂k)(T )) ≤ k‖T‖k−1

for any T ∈ Hom (V,V).

Proof. Theorem 7.8.12 yields that the operator norm ‖·‖k on Hom (U⊗k ,U⊗k),
identified with Hom (U,U)⊗k , is a cross norm with respect to the operator
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norm on Hom (U,U). Theorem 7.9.3 yields the equality in (7.9.7). Ob-
serve next that Dδ̂k(T ) is Dδk(T )|Wk. Hence N̂k(Dδ̂k(T )) ≤ N(Dδk(T )),
which implies the inequality in (7.9.7). 2

A simple example of Wk is the subspace
∧k U. See Problem 3.

Theorem 7.9.5 Let U be an n-dimensional vector space over F = R,C,
with a norm ‖·‖. Denote by ‖·‖ the induced operator norm on Hom (V,V).
Then for A,B ∈ Hom (U,U)
(7.9.8)

|det A− det B| ≤ ‖A−B‖‖A‖
n − ‖B‖n

‖A‖ − ‖B‖
≤ n‖A−B‖[max(‖A‖, ‖B‖)]n−1.

Here an−an
a−a := nan−1 for any a ∈ C. The first inequality is sharp for

A = aIn, B = bIn for a, b ≥ 0. The constant n in the second inequality is
sharp.

Proof. In U⊗n consider the one dimensional invariant subspace Wn :=∧n U for each δn(T ), T ∈ Hom (U,U). See Problem 3. Let e, . . . , en be a
basis in U. Then e ∧ e ∧ . . .∧ en is a basis vector in

∧n U. Furthermore

δn(T )(e ∧ e ∧ . . . ∧ en) = (det T )e ∧ e ∧ . . . ∧ en.

See Proposition 5.2.7. Note that δ̂n(T ) := δn(T )|
∧n U is the above opera-

tor. Observe next that any Q ∈ Hom (
∧n U,

∧n U), is of the from

Q(e ∧ e ∧ . . . ∧ en) = te ∧ e ∧ . . . ∧ en.

Hence the operator norm of Q is |t|. We now apply Theorem 7.9.4 to this
case. The inequality in (7.9.7) yields

N̂n(Dδ̂n(T )) ≤ n‖T‖n−1.

Next we apply Proposition 7.9.2, where V := Hom (U,U) and V =
Hom (

∧n U,
∧n U) equipped with the operator norms, and µ(T ) = δ̂n(T ).

So ‖µ(A)−µ(B)‖2 = |det A−det B|. The inequality (7.9.2) combined with
the inequality in (7.9.7) yield

|det A− det B| ≤ n‖A−B‖
∫ 1

0

‖(1− t)A+ tB‖n−1dt ≤

n‖A−B‖
∫ 1

0

((1− t)‖A‖+ t‖B‖)n−1dt =

‖A−B‖‖A‖
n − ‖B‖n

‖A‖ − ‖B‖
= ‖A−B‖

n−1∑
i=0

‖A‖n−1−i‖B‖i =

n‖A−B‖[max(‖A‖, ‖B‖)]n−1.
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This shows (7.9.8). Recall that ‖xI‖ = |x| for any x ∈ F. Hence, for
A = aI,B = bI and a, b ≥ 0 equality holds in the first inequality of (7.9.8).
To show that the constant n can not be improved let A = (1 + x)I,B = I,
where x > 0. Then (7.9.8) is equivalent to the inequality (1 + x)n − 1 ≤
nx(1 + x)n−1. Since limx↘0

(1+x)n−1
x(1+x)n−1 = n the constant n can not be im-

proved. 2

Definition 7.9.6 Let Σn be the group of permutations σ : 〈n〉 → 〈n〉.
Let S = {λ1, . . . , λn},T = {µ1, . . . , µn} be two multisets in C containing n
elements each. Let

dist(S,T) = max
j∈〈n〉

min
i∈〈n〉

|λj − µi|,

hdist(S,T) = max(dist(S,T),dist(T,S)),
pdist(S,T) = min

σ∈Σn
max
i∈〈n〉

|λi − µσ(i)|.

Note: dist(S,T) is the distance from S to T, viewed as sets; hdist(S,T) is
the Hausdorff distance between S and T, viewed as sets; pdist(S,T) is called
permutational distance between two multisets of cardinality n. Clearly

hdist(S,T) = hdist(T,S), pdist(S,T) = pdist(T,S),
(7.9.9)

dist(S,T) ≤ hdist(S,T) ≤ pdist(S,T).

See Problem 4.

Theorem 7.9.7 Let U be an n-dimensional vector space of C with the
norm ‖ · ‖. Let ‖ · ‖ be the induced operator norm on Hom (U,U). For
A,B ∈ Hom (U,U) let S(A),S(B) be the eigenvalue multisets of A,B of
cardinality n respectively. Then

(7.9.10) pdist(S(A),S(B)) ≤ 4e
1
2e n‖A− B‖ 1

n [max(‖A‖, ‖B‖)]
n−1
n .

To prove the theorem we need the following lemma.

Lemma 7.9.8 Let the assumptions of Theorem 7.9.7 holds. Define

(7.9.11) h(A,B) := max
t∈[0,1]

dist(S((1− t)A + tB),S(B)).

Then

(7.9.12) pdist(S(A),S(B)) ≤ (2n− 1)h(A,B).
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Proof. Let S(A) = {λ1(A), . . . , λn(A)},S(B) = {λ1(B), . . . , λn(B)}.
Let D(z, r) := {w ∈ C, |w − z| ≤ r}. Denote KB = ∪n

i=1D(λi(B),h(A,B)).
Then KB is a closed compact set, which decomposes as union of a k ∈ 〈n〉
connected components. LetA(t) = (1−t)A+tB. Since dist(S(A(t)),S(B)) ≤
h(A,B) we deduce that KB contains S(A(t)) for each t ∈ [0, 1]. As S(A(t))
various continuously for t ∈ [0, 1], each connected component of KB contains
a fixed number of the eigenvalues of S(A(t)) counting with their multiplic-
ities. Since A(1) = B, each connected component of KB contains a fixed
number of the eigenvalues of A and B counting with their multiplicities.
Rename the eigenvalues of B such that indices of the eigenvalues of A and
B are the same in each component of KB.

Let C = ∪p
i=1D(zi,h(A,B)) be such a connected component, where

z1, . . . , zp are p distinct eigenvalues of B. C contains exactly q ≥ p eigen-
values of A and B respectively. We claim that if λ ∈ S(A) ∩ C then
maxj∈〈p〉 |λ − zj | ≤ (2p − 1)h(A,B). Consider a simple graph G = (V,E),
where V = 〈p〉 and (i, j) ∈ E if and only if |zi − zj | ≤ 2h(A,B). Since C
is connected it follows that G is connected hence the maximal distance be-
tween two distinct point in G is p − 1. So |zi − zj | ≤ 2(p − 1)h(A,B).
Since |λ − zi| ≤ h(A,B) for some i ∈ 〈p〉, it follows that |λ − zj | ≤
(2p − 1)h(A,B) ≤ (2n − 1)h(A,B). Therefore for this particular renam-
ing of the eigenvalues of B we have the inequality |λi(A) − λi(B)| ≤
(2n− 1)h(A,B), i = 1, . . . , n. 2

Problem 5 shows that the inequality (7.9.12) is sharp.

Proof of Theorem 7.9.7. First observe that

dist(S(A),S(B))n ≤ max
i∈〈n〉

|
n∏

j=1

(λi(A)− λj(B))| =

max
i∈〈n〉

|det (λi(A)I −B)− det (λi(A)I −A)| ≤

max
z∈C,|z|≤ρ(A)

|det (zI −B)− det (zI −A)|.

We now apply (7.9.8) to deduce that for |z| ≤ ρ(A) ≤ ‖A‖ we have

|det (zI −B)− det (zI −A)| ≤ n‖A−B‖[max(‖zI −A‖, ‖zI −B‖)]n−1

≤ n‖A−B‖[max(|z|+ ‖A‖, (|z|+ ‖B‖)]n−1 ≤
n‖A−B‖[max(2‖A‖, ‖A‖+ ‖B‖)]n−1.

Thus

(7.9.13) dist(S(A),S(B)) ≤ n
1
n ‖A− B‖ 1

n [max(2‖A‖, ‖A‖+ ‖B‖)]
n−1
n .
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We apply the above inequality to A(t) for each t ∈ [0, 1]. Clearly, for
t ∈ [0, 1]

‖A(t)‖ ≤ (1− t)‖A‖+ t‖B‖ ≤ max(‖A‖, ‖B‖)⇒
max(2‖A(t)‖, ‖A(t)‖+ ‖B‖) ≤ 2 max(‖A‖, ‖B‖).

Also ‖A(t)−B‖ = (1− t)‖A−B‖ ≤ ‖A−B‖. Hence we deduce

(7.9.14) h(A,B) ≤ n 1
n ‖A−B‖ 1

n [2 max(|A‖, ‖B‖)]
n−1
n .

Use (7.9.12) to obtain

(7.9.15) pdist(S(A),S(B)) ≤ (2n− 1)n
1
n ‖A− B‖ 1

n [2 max(|A‖, ‖B‖)]
n−1
n .

Use the inequality

(7.9.16) (2n− 1)2
(n

2
)

1
n ≤ 4n

(n
2

)
1
n ≤ 4ne

1
2e for n ∈ N,

to deduce (7.9.10). (See Problem 6.) 2

The inequality (7.9.10) can be improved by fact 2 using the following the-
orem [EJRS83]. ( See Problem 7.)

Theorem 7.9.9 Let U be an n-dimensional vector space of C. For
A,B ∈ Hom (U,U) let S(A),S(B) be the eigenvalue multisets of A,B of
cardinality n respectively. Then

(7.9.17) pdist(S(A),S(B)) ≤ (2bn + 1
2
c − 1) max(h(A,B),h(B,A)).

The above constant are sharp.

Problems

1. Let µ : V → V be a nonlinear map. Show

(a) Assume that µ has a Fréchet derivative at x with respect to
given two norms ‖ · ‖1, , ‖ · ‖2. Then µ has a Fréchet derivative
at x with respect to any two norms ‖ · ‖a, , ‖ · ‖b.

(b) Suppose that µ has a Fréchet derivative at x. Then µ is contin-
uous at x with respect to the standard topologies on V,V.
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(c) Assume that µ has a Fréchet derivative at each point of a com-
pact set O ⊂ V. Then µ : O → V is uniformly continuous.

2. Let U, . . . ,Uk,V, . . . ,Vk be finite dimensional inner product vec-
tor space overs F = R,C. Assume that U := ⊗ki=Ui,V := ⊗ki=Vi

have the induced inner product. Identify Hom (U,V) with∏k
i=1 Hom (Ui,Vi). Show

(a) The operator norm on Hom (U,V), with respect to Hilbert
norms, is a normal cross norm with respect to the operator
norms on Hom (Ui,Vi), the Hilbert norms, for i = 1, . . . , k.
Hint: Express the operator norm on Hom (Ui,Vi) and its con-
jugate norm in terms of singular values of Ti ∈ Hom (Ui,Vi) for
i = 1, . . . , k.

(b) Assume that U = V = . . . = Uk = Vk. Let δk : Hom (U,U)→
Hom (U,U). Then Nk(δk(T )) = k‖T‖k−1, where ‖ · ‖ is the op-
erator norm on Hom (U,U).

3. Let U be a vector space over F = R,C of dimension n > 1. Let
k ∈ [2, n] be an integer. Show

(a) Wk :=
∧k U is an invariant subspace for each δk(T ) given in

Theorem 7.9.4.

(b) Assume that U is an inner product space. Let T ∈ Hom (U,U),
and denote by ‖T‖ = σ1(T ) ≥ . . . ≥ σk(T ) ≥ . . . the singular
values of T . Then

N̂k(Dδ̂k(T )) =
k∑
i=1

σ1(T ) . . . σi−1(T )σi+1(T ) . . . σk(T ).

In particular, N̂k(Dδ̂k(T )) ≤ kσ1(T )k−1 = k‖T‖k−1 = Nk(Dδk(T )).
Equality holds if and only if σ1(T ) = . . . = σk(T ). Hint: Con-
sult with [BhF81].

4. Prove (7.9.9).

5. Let A = diag(0, 2, 4, . . . , 2n− 2), B = (2n− 1)In ∈ Rn×n. Show that
in this case equality holds in (7.9.12)

6. Using the fact that mint∈[0,1]−t log t = 1
e deduce the last part of

(7.9.16).

7. Show
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(a) Let n = 2k + 1 and

A = diag(0, . . . , 0︸ ︷︷ ︸
k+1

, 2, 4, . . . , 2k),

B = diag(1, 3, . . . , 2k − 1, 2k + 1, . . . , 2k + 1︸ ︷︷ ︸
k+1

).

Then equality holds in (7.9.17).

(b) Let n = 2k and

A = diag(0, . . . , 0︸ ︷︷ ︸
k

, 2, 4, . . . , 2k),

B = diag(1, 3, . . . , 2k − 1, 2k + 1, . . . , 2k + 1︸ ︷︷ ︸
k

).

Then equality holds in (7.9.17).

(c) max(h(A,B), h(B,A)) is bounded above by the right-hand side
of (7.9.14).

(d) Deduce from (7.9.17) and the previous part of the problem the
improved version of (7.9.10).
(7.9.18)

pdist(S(A),S(B)) ≤ 2e
1
2e n‖A− B‖ 1

n [max(‖A‖, ‖B‖)]
n−1
n .

7.10 Variation of permanents

Definition 7.10.1 For A = [aij ] ∈ Dn×n the permanent of A, denoted
as perm A

perm A =
∑
σ∈Σn

n∏
i=1

aiσ(i),

where Σn is the group of permutations σ : 〈n〉 → 〈n〉.

The determinant and the permanent share some common properties as
mulitlinear functions on Dn×n, as Laplace expansions. However, from the
computational point of view the determinants are easy to compute while
permanents are hard to compute over all fields, except the fields of char-
acteristic 2. (Over the field of characteristic 2 perm A = det A.) For
A ∈ Zn×n+ the permanent of A has a fundamental importance in combina-
torics, and usually is hard to evaluate [Val79]. The main aim of this section
is to generalize the inequality (7.9.8) to the permanents of matrices. The
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analog of (7.9.8) holds for the norms `p, p ∈ [1,∞] [BhE90]. However, it
was also shown in [BhE90] that the analog of fails for some operator norm
on Cn×n.

Theorem 7.10.2 Let ‖ · ‖ be a norm on Cn, and denote by ‖ · ‖ the
induced operator norm on Cn. Let A,B ∈ Cn×n. Then

|perm A− perm B| ≤(7.10.1)
‖A−B‖(‖A‖n − ‖B‖n)

2(‖A‖ − ‖B‖)
+
‖A∗ −B∗‖(‖A∗‖n − ‖B∗‖n)

2(‖A∗‖ − ‖B∗‖)
.

To prove this theorem we need two lemmas. The first lemma gives the
following formula for the standard numerical radius of a square matrix
with complex entries.

Lemma 7.10.3 Let A ∈ Cn×n. Then

(7.10.2) r2(A) = max
|z|=1

ρ(
zA+ z̄A

2
).

In particular r2(A) ≤ 1
2 (‖A‖+ ‖A∗‖) for any operator norm on Cn.

Proof. Let z ∈ S1,B = zA. Assume that x is an eigenvector of 1
2 (B +

B∗) of length one corresponding to the eigenvalue λ. Then

|λ| = |<(x∗(zA)x)| ≤ |x∗(zA)x| = |x∗Ax| ≤ r(A).

Hence the right-hand side of (7.10.2) is not bigger its left-hand side. On
the other hand there exists x ∈ Cn,x∗x =  and z ∈ C, |z| = 1 such that
r2(A) = |x∗Ax| = x∗(zA)x. For this value of z we have that

r2(A) ≤ λ1(
zA+ z̄A

2
) ≤ ρ(

zA+ z̄A

2
).

Clearly,

ρ(
zA+ z̄A

2
) ≤ ‖zA+ z̄A

2
‖ ≤ ‖A‖+ ‖A‖

2
.

Hence r2(A) ≤ 1
2 (‖A‖+ ‖A∗‖). 2

For A ∈ Cn×n, view the matrix ⊗nA as a linear operator on ⊗nCn,
which is identified with Cnn . ω2(⊗nA), r2(⊗nA) are the numerical range
and the numerical radius of ⊗nA corresponding to the inner product 〈·, ·〉
on ⊗nCn induced by the standard inner product y∗x on Cn.
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Lemma 7.10.4 Let A ∈ Cn×n. Then perm A ∈ ω2(⊗nA).

Proof. Assume that ei = (δtai, . . . , δin)>, i ∈ 〈an〉 is a standard basis
in Cn. Then ⊗nj=1eij , where ij ∈ 〈n〉, j = 1, . . . , n, is the standard basis in
⊗nCn. A straightforward calculation shows that

(7.10.3) 〈⊗nAx,x〉 = perm A, x =
√
n!

∑
σ∈Σn

⊗ni=eσ(i), 〈x,x〉 = ,

where Σn is the set of permutations σ : 〈n〉 → 〈n〉. (See Problem 1.) Hence
perm A ∈ ω2(⊗nA). 2

Proof of Theorem 7.10.2. Since x given in (7.10.3) does not depend
on A we deduce perm A−perm B ∈ ω2(⊗nA−⊗nB). Let |||·||| the maximal
cross norm on ⊗nCn induced by the norm ‖ · ‖ on Cn. Denote by ||| · ||| the
operator norm on ||| · ||| on ⊗nCn×n, induced by the norm ||| · ||| on ⊗nCn.
Use the definition of r2(⊗nA−⊗nB) and Lemma 7.10.3 to deduce

|perm A− perm B| ≤ r2(⊗nA−⊗nB ≤(7.10.4)
1
2

(||| ⊗n A−⊗nB|||+ ||| ⊗n A∗ −⊗nB∗|||).

Theorem 7.8.12 implies that the operator norm ||| · ||| on ⊗nCn×n, induced
by the norm ||| · ||| on ⊗nCn, is a cross norm with respect to the operator
norm ‖ · ‖ on Cn×n. Observe next

⊗nA−⊗nB =
n−1∑
i=0

(⊗iB)⊗ (A−B)⊗n−1−i A.

(Here ⊗0A means that this term does not appear at all.) Use the triangular
inequality and the fact that the operator norm ||| · ||| is a cross norm we
deduce

||| ⊗n A−⊗nB||| ≤
n−1∑
i=0

|||(⊗iB)⊗ (A−B)⊗n−1−i A||| ≤

n−1−i∑
i=0

‖B‖i‖A−B‖ ‖A‖n−1−i =
‖A−B‖(‖A‖n − ‖B‖n)

‖A‖ − ‖B‖
.

Apply the above inequality to (7.10.4) to deduce the theorem. 2

Problems
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1. Prove (7.10.3).

2. Let the assumptions of Theorem 7.10.2 hold. Show that

(7.10.5) |perm A− perm B| ≤ ‖A− B‖‖A‖
n − ‖B‖n

‖A‖ − ‖B‖

in the following cases.

(a) A = A∗, B = B∗.

(b) The norm ‖ · ‖ on Cn is ‖ · ‖2.

3. Show that (7.10.5) holds for the norms ‖·‖1, ‖·‖∞ using the following
steps.

(a) For A = [aij ] ∈ Cn denote |A| := [|aij |] ∈ Rn×n+ . Show

|perm A| ≤ perm |A| ≤
n∏

i=1

n∑
j=1

|aji|

(b) Let A = [a, . . . ,an], B = [b, . . . ,bn] ∈ Cn×n, where ai,bi are
the i− th columns of A,B respectively, for i = 1, . . . , n. Let

C0 = [a − b,a, . . . ,an], Cn− = [b, . . . ,bn−,an − bn],
Ci = [b, . . . ,bi,ai+ − bi+,ai+, . . . ,an], for i = , . . . , n− .

Then

perm A− perm B =
n∑

i=1

perm Ci−1 ⇒

|perm A− perm B| ≤
n∑

i=1

perm |Ci−1|.

(c) Recall that ‖A‖1 = ‖ |A| ‖ = maxi∈〈n〉 ‖ai‖. Then

‖ Ci−1 ‖ ≤ ‖ai−bi‖‖B‖i− ‖A‖n−i ≤ ‖A−B‖‖B‖i− ‖A‖n−i ,

for i = 1, . . . , n. Hence, (7.10.5) holds for ‖ · ‖1 norm.

(d) Use the equalities perm A> = perm A, ‖A‖∞ = |A>|1 deduce
that (7.10.5) holds for ‖ · ‖∞ norm.
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7.11 The complexity of conv Ωn � Ωm

In this section we show that there a linear programming problem on Ωn,m :=
conv Ωn � Ωm, whose solution gives an answer to the subgraph isomor-
phism problem, that will be stated precisely below. The subgraph isomor-
phism problem belongs to the class of NP -complete problems [GaJ79]. This
shows, in our opinion, that the number of half spaces characterizing Ωn,m
is probably not polynomial in max(m,n), which is analogous to Theorem
7.8.6.

By graph G in this section we mean an undirected simple graph on the
set of vertices V and the set of edges E. Here E is a subset of unordered
pairs P(V ) : {(u, v), u 6= v ∈ V }, where (u, v) and (v, u) are identified. We
will denote by G = (V,E) the graph to emphasize the set of vertices and
edges of G. The degree of v ∈ V , denoted by deg v is the number of edges
that re connected to v, i.e. #{u, (v, u) ∈ E‖. Clearly,

∑
v∈V deg v = 2#E.

A vertex v ∈ V is called isolated if deg v = 0. Denote by Viso the set of
isolated vertices in V . A subgraph of G1 = (V1, E1) of G is given by the
condition V1 ⊂ V,E1 ⊂ E ∩ P(V ).

Definition 7.11.1 Let G = (V,E), G′ = (V ′, E′) be two undirected
simple graphs. Then G and G′ are called isomorphic if the following con-
dition hold. There is a bijection φ : V \{Viso} → V ′\{V ′iso} such that
(u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E′. G′ is called isomorphic to a
subgraph of G if there exists a subgraph G1 of G such that G′ is isomorphic
to G1.

We note that our definition of isomorphisms of two graphs are slightly dif-
ferent from the standard definition of graph isomorphism. Since the set of
isolated vertices in graph are easily identified, i.e. (#V )2 steps, from the
complexity point of view our definition is equivalent to the standard defi-
nition of graph and subgraph isomorphisms. We recall that the subgraphs
isomorphism problem, which asks asking if G′ is isomorphic to a subgraph
of G, is an NP -complete problem [GaJ79].

We now relate the SGIP to certain linear programming problems on
Ωm,n. We first recall the notion adjacency matrix of G. Assume that
#V = m and label the vertices in V as 1, . . . ,m, i.e. we let #V = 〈m〉.
Then the incidence matrix A(G) = [aij ]mi=j=1 ∈ {0, 1}m×m is a symmetric
matrix with zero diagonal such that aij = 1 if and only the edge (i, j)
is in E. Note that a different labeling of the elements of V gives rise
to the adjacency matrix A′ = PA(G)P> for some permutation matrix
P ∈ Pm. Thus the graph G gives rise to the conjugacy class of matrices
A(G) = {PA(G)P>, P ∈ Pm}. The following result is straightforward, see
Problem 1.
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Lemma 7.11.2 Let G = (V,E), G′ = (V ′, E′) are two undirected graphs.
Assume that #V = #V ′. Then G and G′ are isomorphic if and only if
A(G) = A(G′).

We next introduce the notion of the vertex-edge incidence matrixB(G) ∈
{0, 1}#V×#E . Assume that G = (V,E) and let m = #V, n#E. Label the
vertices of V and E by 〈m〉 and 〈n〉 respectively. Then B(G) = [bij ]

m,n
i=j=1 ∈

{0, 1}m×n, such that bij = 1 if and only the edge j contain the vertex i. A
different labeling of V and E gives rise to the vertex-edge incidence matrix
B′ = PB(A)Q for some P ∈ Pm, Q ∈ Pn. Thus the graph G gives rise to
the equivalence class of matrices B(G) = {PB(G)Q, P ∈ Pm, Q ∈ Pn}.

Lemma 7.11.3 Let G = (V,E), G′ = (V ′, E′) are two undirected graphs.
Assume that #V = #V ′,#E = #E′. Then G and G′ are isomorphic if
and only if B(G) = B(G′).

We now restate the SGIP in terms of bilinear programming on Ωm × Ωn.
It is enough to consider the following case.

Lemma 7.11.4 Let G′ = (V ′, E′), G = (V,E) and assume m′ :=
#V ′ ≤ m := #V, n′ := #E′ ≤ n := #E. Let B(G′) ∈ {0, 1}m′×n′ , B(G) ∈
{0, 1}m×n be the vertex-edges incidence matrices of G′ and G. Denote by
C(G′) ∈ {0, 1}m×n the matrix obtained from B(G′) by adding additional
m−m′ and n− n′ zero rows and columns respectively. Then

(7.11.1) max
P∈Pm,Q∈Pn

tr(C(G′)QB(A)>P ) ≤ 2n′.

Equality holds if and only if G′ is isomorphic to a subgraph of G.

Proof. Let B1 = [bij,1]m×ni=j=1 := P>B(A)Q> ∈ B(G). Note that B1

has exactly the same number of ones as B(G), namely 2n, since each edge
is connected is connected to two vertices. Similarly C(G′) = [cij ]

m,n
i=j=1

has exactly the same number of ones as B(G′), namely 2n′. Hence the
〈C(G′), B1〉 = tr(C(G1)B>1 ) ≤ 2n′. Assume that tr(C(G1)B>1 ) = 2n′. So
we can delete 2(n − n′) ones in B1 to obtain C(G′). Note that deleting
2(n−n′) from B1, means to delete n−n′ edges from the graph G. Indeed,
assume cij = bij,1 = 1. So the vertex i is connected to the edge j. Hence
there exists another vertex i′ 6= i such that ci′j = 1. As tr(C(G′)B>1 ) = 2n′

we deduce that bi′j,1 = 1. Hence, if we rename the vertices and the edges
of G corresponding to B1 we deduce that G′, represented by the matrix
B(G′), is a subgraph of G. 2

We now show how to translate the maximum in (7.11.1) to linear pro-
gramming problem on Ωm,n. As in §2.8 for F ∈ Rn×m let F̂ ∈ Rnm
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be a vector composed of the columns of F , i.e. first we have the coor-
dinates of the first column, then the coordinates of the second column,
and the last n coordinates are the coordinates of the last column. Hence
X̂FY = (Y > ⊗X)F̂ , where Y > ⊗X is the Kronecker tensor product.

Lemma 7.11.5 Let C,B ∈ Rm×n. Then

(7.11.2) max
P∈Pm,Q∈Pn

tr(CQB>P ) = max
Z∈Ωn,m

(Ĉ)>ZB̂.

Proof. Since Ω> = Ω and E(Ωm) = Pm we deduce

max
P∈Pm,Q∈Pn

tr(CQB>P ) = max
X∈Ωm,Y ∈Ωn

tr(CY B>X).

Observe next that

tr(CY B>X) = tr(C>(X>BY >)) = (Ĉ)>(Y ⊗X>)B̂.

As Ωn,m = conv Ωn � Ωm we deduce (7.11.2). 2

In summary we showed that if we can solve exactly the linear pro-
gramming problem (7.11.2), using Lemma 7.11.4 we can determine if G′

is isomorphic to a subgraph of G. Since the SGIP is NP-complete, we
believe that this implies that for general m,n the number of half spaces
characterizing Ωn,m can not be polynomial.

Problems

1. Prove Lemma 7.11.2.

2. Prove Lemma 7.11.3.

7.12 Vivanti-Pringsheim theorem and appli-
cations

We start with the following basic result on the power series in one complex
variable, which is usually called the Cauchy-Hadamard formula on power
series [Rem98, §4.1].
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Theorem 7.12.1 Let

(7.12.1) f(z) =
∞∑
i=0

aiz
i, ai ∈ C, i = 0, 1, . . . , and z ∈ C,

be power series. Define

(7.12.2) R = R(f) :=
1

lim supi |ai|
1
i

∈ [0,∞].

(R-is called the radius of convergence of the series.) Then

1. For R = 0 the series converge only for z = 0.

2. For R = ∞ the series converge absolutely and uniformly for each
z ∈ C, and f(z) is an entire function, i.e. analytic on C.

3. For R ∈ (0,∞) the series converge absolutely and uniformly to an
analytic function for each z, |z| < R, and diverge for each |z| > R.
Furthermore, there exist ζ, |ζ| = R, such that f(z) can not be ex-
tended to an analytic function in any neighborhood of ζ. (ζ is called
a singular point of f .)

Consider the Taylor series for the function complex valued 1
1−z

1
1− z

=
∞∑
i=0

zi.

Then R = 1, the function 1
1−z is analytic in C\{1}, and has a singular

point at z = 1. Vivanti-Pringsheim theorem is an extension of this example
[Viv93, Pri94].

Theorem 7.12.2 Let the power series f(z) =
∑∞
i=0 aiz

i have positive
finite radius of convergence R, and suppose that the sequence ai, i = 0, 1, . . .,
is eventually nonnegative. (I.e. all but finitely many of its coefficients are
real and nonnegative.) Then ζ := R is a singular point of f .

See [Rem98, §8.1] for a proof. In what follows we need a stronger version
of this theorem for rational functions, e.g. [Fri78b, Thm 2]. Assume that
f(z) is a rational function with 0 as a point of analyticity. So f has power
series (7.12.1). Assume that f is not polynomial, i.e. R(f) ∈ (0,∞). Then
f has the following form.

f(z) = P (z) +
N∑
i=1

pi∑
j=1

bj,i
(1− λiz)j

,(7.12.3)

P ∈ C[z], λi, bpi,i ∈ C\{0}, λi 6= λi′ for i 6= i′.
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Note that

(7.12.4) R(f) =
1

maxi |λi|
.

Definition 7.12.3 Let f(z) be a rational function of the form (7.12.3).
Let p := max|λi|=R(f)−1 pi. Denote

fprin =
∑

i:|λi|=R(f)−1 and pi=p

bp,i
(1− λiz)p

.

fprin is called the principle part of f , i.e. f − fprin does not have poles of
order p on |z| = R(f).

Theorem 7.12.4 Let f(z) be a rational function of the form (7.12.3).
Assume that the sequence of coefficients in the power expansion (7.12.1) is
eventually nonnegative. Then

1. The set {λ1, . . . , λN} is symmetric with respect to R. That is, for
each i ∈ 〈N〉 there exists i′ ∈ 〈N〉 such that λ̄i = λi′ . Furthermore
pi = pi′ , and b̄j,i = bj,i′ for j = 1, . . . pi and i = 1, . . . , N .

2. After renaming the indices in 〈N〉 we have: λ1 = 1
R(f) , |λi| = λ1 for

i = 2, . . . ,M , and |λi| > λ1 for i > M . (Here M ∈ [1, N ].).

3. Let p := p1. There exists an integer L ∈ [1,M ] such that pi = p for
i ∈ [2, L], and pi < p for i > L.

4. bp,1 > 0 and there exists m ∈ [1, L] such that |bp,i| = bp,1 for i =
1, . . . ,m and |bp,i| < bp,1 for i ∈ [m+ 1, L].

5. Let ζ = e
2π
√
−1

m . After renaming the indices 2, . . . ,m, λi = ζi−1λ1 for
i = 2, . . . ,m. Furthermore there exists an integer l ∈ [1,m] such that
bp,i = ζl(i−1)bp,1 for i = 2, . . . ,m.

6. fprin(ζz) = ζ−lfprin(z).

Proof. We outline the major steps in the proof of this theorem. For all
details see the proof of [Fri78b, Thm 2]. By considering g(z) = f(z) + P1

for some polynomial P1, we may assume that the MacLaurin coefficients
of g are real and nonnegative. As gprin = fprin, without loss of generality
we may assume that the MacLaurin coefficients of f real and nonnegative.
Hence f(z̄) = f(z) for each z where f is defined. This shows part 1.
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Part 2 follows from Theorem 7.12.2. For simplicity of the exposition
assume that R(f) = 1. Recall that for each singular point λ−1

i = λ̄i of f
on the circle |z| = 1 we have the equality

(7.12.5) bpi,i = lim
r↗1

(1− r)pif(λ̄ir).

In particular bp1,1 = limr↗1(1 − r)p1f(r) ≥ 0. Since bp1,1 6= 0 we obtain
that bp1,1 > 0. Let p := p1. Since all the MacLaurin coefficients of f are
nonnegative we have the inequality |f(z)| ≤ f(|z|) for all |z| < 1. Hence
lim supr↗1(1−r)p|f(λ̄ir)| ≤ bp,1. This inequality and (7.12.5) implies parts
3– 4.

For m = 1 parts 5– 6 are trivial. Assume that m > 1. Let bp,i =
ηibp,1, |ηi| = 1 for i = 2, . . . ,m. In view of the part 1 for each integer
i ∈ [2,m] there exists integer i′ ∈ [2,m] such that λ̄i = λi′ , η̄i = ηi′ .
Consider the function

g(z) = 2f(z)− ηif(λiz)− η̄if(λ̄iz) =
∞∑
j=0

2(1−<(ηiλ
j
i ))ajz

j .

So the MacLaurin coefficients of g are nonnegative. Clearly R(g) ≥ 1, and
if g has a pole at 1, its order is at most p− 1. This implies the equality

2fprin(z)− ηifprin(λiz)− η̄ifprin(λ̄iz) = 0.

Therefore the set {λ1, . . . , λm} form a multiplicative group of order m.
Hence, it is a group of of all m-roots of unity. So we can rename the indices
2, . . . ,m such that λi = ζ(i−1) for i = 1, . . . ,m. Similarly, η1 = 1, η2, . . . , ηm
form a multiplicative group, which must be a subgroup of m roots of 1. Fur-
thermore ηi 7→ λi is a group homomorphism. This shows part 5. Part 5
straightforward implies part 6. 2

Definition 7.12.5 Let S = {λ1, . . . , λn} ⊂ C be a finite multiset. I.e.
a point z ∈ S appears exactly m(z) ≥ 1 times in S. Denote

1. r(S) := maxz∈S |z|.

2. For any t ≥ 0 denote by S(t) the multiset S ∩ {z ∈ C, |z| = t}.

3. For an integer k ∈ N denote by sk(S) :=
∑n

i=1 λ
k
i the k − th moment

of S. Let s0(S) = n.

4. For z = (z, . . . , zN )> ∈ CN denote by σk(z) =
∑
≤i<...ik≤N zi . . . ziN ,

for k = 1, . . . , N the elementary symmetric polynomials in z1, . . . , zN .
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5. Denote z(S) = (λ1, . . . , λn)> ∈ Cn. Then σk(S) := σk(z(S)) for
k = 1, . . . , n are called the elementary symmetric polynomials of S.

S is called a Frobenius multiset if the following conditions hold.

1. S̄ = S.

2. r(S) ∈ S.

3. m(z) = 1 for each z ∈ S(r(S)).

4. Assume that #S(r(S)) = m. Then ζS = S for ζ = e
2π
√
−1

m .

A simple example of Frobenius multiset is the set of eigenvalues, counted
with their mulitplicities, of a square nonnegative irreducible matrix.

Theorem 7.12.6 Let S ⊂ C be a multiset. Assume that the moments
sk(S), k ∈ N are eventually nonnegative. Then the following conditions
hold.

1. r(S) ∈ S.

2. Denote µ := m(r(S)). Assume that λ ∈ S(r(S)). Then m(λ) ≤ µ.

3. Assume that r(S) > 0 and suppose that λ1 = r(S), λ2, . . . , λm are all
the distinct elements of S satisfying the conditions |λi| = r(S),m(λi) =
µ for i = 1, . . . ,m. Then λi

r(S) , i = 1, . . . ,m are the m distinct roots
of 1.

4. Let ζ = e
2π
√
−1

m . Then ζS(r(S)) = S(r(S)).

5. If r(S) > 0, µ = 1 and none of the other elements of S are positive,
then S is a Frobenius multiset.

Proof. For a finite multiset S ⊂ C define

(7.12.6) fS(z) :=
∑
λ∈S

1
1− λz

=
∞∑
k=0

sk(S)zk.

Apply Theorem 7.12.4 to deduce the parts 1–4.
Assume that r(S) is the only positive element of S and µ = 1. If m = 1

then S is a Frobenius set. Suppose the m > 1. Consider the function
g(z) = 2fS(z)−fS(ζz)−fS(ζ̄z). We claim that g is the zero function. Sup-
pose to the contrary that g 6= 0. In view of 4 we deduce R(f) < R(g) <∞.
Since the MacLaurin coefficients of g are eventually nonnegative, Theorem
7.12.4 yields that g must have a singular point ξ > 0 whose residue at ξ is
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positive. Since ρ(A) is the only positive eigenvalue of A, all other positive
residues of g, coming from 2fS are not located on positive numbers. Hence
the residues of g at its poles located on the positive axes are negative in-
tegers. The above contradiction shows that g = 0, i.e. S is a Frobenius
multiset. 2

Let A ∈ Cn×n and assume that S(A) is the eigenvalue multiset of A. Then

(7.12.7) fS(A)(z) = tr(I − zA)−1 =
∞∑
i=0

(trAi)zi.

Corollary 7.12.7 Let A ∈ Cn×n. Denote by S be the multiset con-
sisting of all eigenvalues of A, counted with multiplicities. Assume that
the traces of Ak, k ∈ N are eventually nonnegative. Then the following
conditions hold.

1. ρ(A) is an eigenvalue of A.

2. Assume that the algebraic multiplicity of ρ(A) is µ. Let λ be an eigen-
value of A of multiplicity m(λ) satisfying |λ| = ρ(A). Then m(λ) ≤ µ.

3. Assume that ρ(A) > 0 and suppose that λ1 = ρ(A), λ2, . . . , λm are all
the distinct eigenvalues of A satisfying the conditions |λi| = ρ(A),m(λi) =
µ for i = 1, . . . ,m. Then λi

ρ(A) , i = 1, . . . ,m are the m distinct roots
of 1.

4. Let ζ = e
2π
√
−1

m . Then ζS(ρ(A)) = S.

5. If ρ(A) > 0 is an algebraically simple eigenvalue of A, and none of
the other eigenvalues of A are positive, then S is a Frobenius multiset.

Definition 7.12.8 A ∈ Rn×n is called eventually nonnegative if Ak ≥ 0
for all integers k > N .

Lemma 7.12.9 Let B ∈ Rn×n. Then there exists a positive integer M
with the following property. Assume that L > M is a prime. Suppose that
BL is similar to a nonnegative matrix. Then the eigenvalue multiset of B
is a union of Frobenius multisets.

Proof. Associate with the eigenvalues of B the following set T ⊂ S1.
For 0 6= λ ∈ spec B we let λ

|λ| ∈ T. For λ 6= κ ∈ spec B satisfying the
conditions |λ| = |κ| > 0 we assume that λ

κ ,
κ
λ ∈ T. Let T1 ⊂ T be the

set of all roots of 1 that are in T. Recall that η ∈ S1 is called a primitive
k-root of 1, if ηk = 1, and ηk

′ 6= 1 for all integers k′ ∈ [1, k). k is called
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the primitivity index of η. Let L > k be a prime. Then ηL is a k-primitive
root of 1. Furthermore, the map η 7→ ηL is an isomorphism of the group of
of all k − th roots of 1, which commutes with conjugation η 7→ η̄. Clearly,
if η ∈ S, and η is not a root of unity then ηL is not root of unity. Define
M ∈ N to be the maximum over all primitivity indices of η ∈ T1. If
T1 = ∅ then M = 1. Let L > M be a prime. Assume that BL is similar
to C ∈ Rn×n+ . Apply Theorem 6.4.4 and the Perron-Frobenius theorem to
each irreducible diagonal block of of the matrix in (6.4.3), to deduce that
the eigenvalue multiset of S(C) is ∪t+fj=1Fj and each Fj a Frobenius multiset.

Clearly, spec B = spec B and spec BL = spec C. Observe next that
the condition that L is a prime satisfying L > M implies that the map
z 7→ zL induces a 1 − 1 and onto map φ : spec B → spec C. Moreover,
φ−1(r) > 0 if and only of r > 0. Hence φ can be extended to a 1 − 1 and
onto map φ̃ : S(B)→ S(C). Furthermore, φ−1(Fj) is a Frobenius set, where
the number of distinct points Fj(r(Fj)) is equal to the number of points in
φ−1(Fj)(r(φ−1(Fj)). Hence S(B) = ∪t+f

j=1φ
−1(Fj) is a decomposition of S(B)

to a union of Frobenius multisets. 2

Corollary 7.12.10 Assume that a matrix B ∈ Rn×n is similar to an
eventually nonnegative matrix. Then the eigenvalue multiset S(B) of B is
a union of Frobenius multisets.

Theorem 7.12.11 Assume that the eigenvalue multiset S(B) of B ∈
Rn×n is a union of Frobenius multisets. Then there an eventually nonneg-
ative A ∈ Rn×n, such that S(A) = S(B).

Proof. It is enough to show that for a given Frobenius multiset F there
exists an eventually A ∈ Rn×n such that S(A) = F. The claim is trivial
if F = {0}. Assume that r(F) > 0. Without loss of generality we can
assume that r(F) = 1. Suppose first that F ∩ S1 = {1}. To each real
point λ ∈ F of multiplicity m(λ) we associate m(λ) the diagonal matrix
G(λ) = λIm(λ) ∈ Rm(λ)×m(λ). For nonreal points λ ∈ F of multiplicitym(λ)

we associate the block diagonal matrix H(λ) = Im(λ) ⊗
[

2<(λ) |λ|2
−1 0

]
.

Note that H(λ̄) = H(λ). Let

C := [1]⊕λ∈F∩R\{1} G(λ)⊕λ∈F,=λ>0 H(λ),
C = C0 + C1, C0 = [1]⊕ 0(n−1)×(n−1),

C1 = [0]⊕ (⊕λ∈F∩R\{1}G(λ)⊕λ∈F,=λ>0 H(λ)).
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Clearly,

S(C) = F, C0C1 = C1C0 = 0, Cm
0 = C0,

Cm = Cm0 + Cm1 , ρ(C1) < 1, lim
m→∞

Cm1 = 0.

Let X ∈ GL(n,R) be a matrix such X1 = X>1 = e. Define

A0 := X−1C0X =
1
n

11>, A = X−CX, A := A +A = X−X.

So S(A) = S(C) = F. Also

Am = Am0 +Am1 , A
m
0 = A0, lim

m→∞
Am1 ⇒ lim

m→∞
Am = A0.

So A is eventually positive.
Assume now that F is a Frobenius set with r(F) = 1 such that F ∩ S1

consist of exactly m > 1 roots of unity. Let ζ = e
2π
√
−1

m . Recall that
ζF = F. Let F = F1∪F0, where 0 6∈ F1 and F0 consists of m(0) copies of 0.
(m(0) = 0 ⇐⇒ F0 = ∅. If F0 6= ∅ then the zero matrix of order m(0) has
F0 as its eigenvalue multiset. Thus it is enough to show that there exists an
eventually nonnegative matrix B whose eigenvalue multiset is F1. Clearly,
F1 is a Frobenius set satisfying r(F1) = 1 and F ∩ S1 consist of exactly
m > 1 roots of unity. Assume that all the elements of F1, counted with
their mulitplicity are the coordinates of the vector z = (z, . . . , zN )> ∈ CN .
Let

be the the elementary symmetric polynomials in z1, . . . , zN . Hence the
multiset F1 consists of the roots of P (z) := zN +

∑N
k=1(−1)kσk(z)zN−k.

Since F̄1 = F1 it follows that each σk(z) is real. As ζF1 = F1 we deduce that
N = mN ′ and σk = 0 if m does not divide k. Let F2 be the root multiset
Q(z) := zN

′
+
∑N ′

k=1(−1)mkσkm(z)zN
′−k. Clearly, F̄2 = F2 Since 1 ∈ F1

it follows that 1 ∈ F2. Furthermore, F1 = φ−1(F2), where φ(z) : C → C
is the map z 7→ zm. That is, if z ∈ F2 has multiplicity m(z) then φ−1(z)
consists of m points, each of multiplicity m(z) such that these m-points
are all the solutions of wm = z. Hence F2 ∩ S1 = {1}. Therefore F2 is a
Frobenius set.

According to the previous case there exists an eventually nonnegative
matrix A ∈ RN ′×N ′ such that F2 is its eigenvalue multiset. Let P ∈ Pm
be a permutation matrix corresponding to the cyclic permutation on 〈m〉
i 7→ i+1, for i = 1, . . . ,m, where m+1 ≡ 1. Consider the matrix B = P⊗A.
Then B is eventually nonnegative, and the eigenvalue multiset of B is F1

2
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7.13 Inverse eigenvalue problem for nonneg-
ative matrices

The following problem is called the inverse eigenvalue problem for nonneg-
ative matrices, abbreviated an IEPFNM:

Problem 7.13.1 Let S ⊂ C be a multiset consisting of n points, (count-
ing with their multiplicities.) Find necessary and sufficient conditions such
that there exists a nonnegative A ∈ Rn×n whose eigenvalue multiset is S.

Proposition 7.13.2 Let A ∈ Rn×n+ . Then the eigenvalue multiset S
satisfies the following conditions.

1. S is a union of Frobenius multisets.

2. All the moments of sk(S) ≥ 0.

3. skl(S) ≥ sk(S)l

nl−1 for each k, l ∈ N.

Proof. 1 Follows from Theorem 6.4.4 and the Perron-Frobenius theorem
applied to each irreducible diagonal block of of the matrix in (6.4.3). Since
Ak ≥ 0 it follows that trAk ≥ 0. Hence 2 holds. Since Ak ≥ 0 it is enough
to show the inequality in 3 for k = 1. Decompose A = [aij ] as D + A0,
where D = diag(a11, . . . , ann) and A0 := A−D ≥ 0. So Al−Dl ≥ Al0 ≥ 0.
Hence trAl ≥ trDl =

∑l
i=1 a

l
ii. Hólder inequality for p = l yield that∑n

i=1 aii ≤ (
∑n
i=1 a

l
ii)

1
l n

l−1
l , which yields 3. 2

The following result gives simple sufficient conditions for a mulitset S to be
the eigenvalue multiset of a nonnegative matrix.

Proposition 7.13.3 Let S ⊂ C be a multiset containing n elements,
counting with multiplicities. Assume that the elementary symmetric poly-
nomials corresponding to S satisfy (−1)k−1σk(S) ≥ 0 for k = 1, . . . , n.
Then there exists A ∈ Rn×n+ such that S is the eigenvalue multiset of A.

Proof. Note that the companion matrix to the polynomial P (z) =
zn +

∑n
i=1(−1)iσi(S)zn−i is a nonnegative matrix. 2

Recall the MacLaurin inequalities [HPL52, p’ 52].

Proposition 7.13.4 Let w = (w, . . . , wn−)> ∈ Rn−+ . Then the se-

quence
(σk(w)

(n−1
k )
) 1
k nonincreasing for k = 1, . . . , n− 1.
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Proposition 7.13.5 Let S be a multiset of real numbers, which con-
tains exactly one positive number. Assume that the sum of all elements in
S is nonnegative. Then S satisfies the conditions of Proposition 7.13.3. In
particular, there exists A ∈ Rn×n+ such that S is the eigenvalue multiset of
A.

Proof. Without loss of generality we may assume that
S = {1,−w1, . . . , wn−1} where wi ≥ 0 for i = 1, . . . , n−1 and 1 ≥

∑n−1
i=1 wi.

Denote z = (,−w, . . . ,−wn−)> and w = (w, . . . , wn−)>. Clearly,
σ1(z) ≥ , (−)n−σn(z) = σn−(w) ≥ . Observe next that

σk+1(z) = (−)k(σk(w)− σk+(w)) for k = , . . . , n− .

Thus to prove that (−1)kσk+1(z) ≥  it is enough to show that that the
sequence σi(w), i = , . . . , n−  is nonincreasing.

Observe that σ1(w) ≤ . We now use Use Proposiiton 7.13.5. First
observe that(σk(w)(

n−1
k

) ) 1
k ≤ σ1(w)

n− 1
≤ 1
n− 1

for k = 1, . . . , n− 1.

Next

σk(w)− σk+(w) ≥ σk(w)−
[σk(w)(

n−
k

) ] k+k (n− 
k + 

)
=

σk(w)(
n−1
k

) [(n− 1
k

)
−
(σk(w)(

n−1
k

) ) 1
k

(
n− 1
k + 1

)]
≥

σk(w)(
n−1
k

) [(n− 1
k

)
− 1
n− 1

(
n− 1
k + 1

)]
≥ 0

Hence S satisfies the conditions of Proposition 7.13.3. The last part of
Proposition 7.13.3 yields that there exists A ∈ Rn×n+ such that S is the
eigenvalue multiset of A. 2

Example 7.13.6 Let S = {
√

2,
√
−1,−

√
−1}. Then S is a Frobenius

set. Furthermore, s2(S) = 0 and all other moments of S are positive. Hence
the condition 3 of Proposition 7.13.2 does not hold for k = 1, l = 2. In
particular, there is an eventually nonnengative matrix A ∈ R3×3

+ , which
can not be nonnegative, whose eigenvalue multiset is S.

Theorem 7.13.7 Let S = {λ1, λ2, λ3} be a multiset satisfying the fol-
lowing properties.
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1. r(S) ∈ S.

2. S = S.

3. s1(S) ≥ 0.

4. (s1(S))2 ≤ 3s2(S).

Then there exist A ∈ R3×3
+ such that S is the eigenvalue multiset of A.

Proof. Suppose first that S ⊂ R. It is straightforward to show that S
is a union of Frobenius multisets. In that case the theorem can be shown
straightforward. See Problem 2. It is left to discuss the following renormal-
ized case S = {r, e

√
−1θ, e−

√
−1θ}, where r ≥ 1, θ ∈ (0, π). The condition

s1(S) ≥ 0 yields that

(7.13.1) 2 cos θ + r ≥ 0.

The condition (s1(S))2 ≤ 3s2(S) boils down to

(r − 2 cos(
π

3
+ θ))(r − 2 cos(

π

3
− θ)) ≥ 0.

For r ≥ 1, θ ∈ (0, π) we have r− 2 cos(π3 + θ) > 0. Hence the condition 4 is
equivalent to

(7.13.2) r − 2 cos(
π

3
− θ) ≥ 0.

Let U be the orthogonal matrix 1
6

 √2
√

3 −1√
2 0 2√
2 −

√
3 −1

 and J = 11> . So

U>JU = diag(3, 0, 0). S is the eigenvalue set of B =

 r 0 0
0 cos θ sin θ
0 − sin θ cos θ

.

Then A := UBU> is the following matrix

r

3

 1 1 1
1 1 1
1 1 1

− 2
3

 − cos θ cos(π3 + θ) cos(π3 − θ)
cos(π3 − θ) − cos θ cos(π3 + θ)
cos(π3 + θ) cos(π3 − θ) − cos θ

 .
The above inequalities show that A ≥ 0. 2

A weaker version of the solution of Problem 7.13.1 was given in [BoH91].

Theorem 7.13.8 Let T ⊂ C\{0} be Frobenius mulitiset satisfying the
following conditions.
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1. T(r(T)) = {r(T)}.

2. sk(T) ≥ 0 for k ∈ N.

3. If sk(T) > 0 then skl(T) > 0 for all l ∈ N.

Then there exist a square nonnegative primitive matrix A, whose eigenval-
ues multiset is a union of T and m0 ≥ 0 copies of 0.

We prove the above theorem under the stronger assumption

(7.13.3) sk(T) > 0 for k ≥ 2,

following the arguments of [Laf10].

Lemma 7.13.9 Let An ∈ Cn×n be the following lower Hessenberg ma-
trix

(7.13.4) An =



s1 1 0 . . . 0
s2 s1 2 0 . . . 0
s3 s2 s1 3 0 . . . 0
. s3 . . . .
. . . . .
. .

.

sn−1 sn−2 . . . s2 s1 n− 1
sn sn−1 . . . s3 s2 s1


Let S = {λ1, . . . , λn} ⊂ C be the unique multiset such that sk = sk(S)

for k = 1, . . . , n. Let σ1, . . . , σn be the n-elementary symmetric polynomials
corresponding to S. Then the characteristic polynomial of Anis given by

(7.13.5) det (zIn −An) = zn +
n∑
i=1

(−1)ii!
(
n

i

)
σi.

Proof. Recall the Newton identities.

s1 = σ1, sk = (−1)k−1kσk +
k−1∑
i=1

(−1)i−1σisk−i for k = 2, . . . , n.

Let p(z) be the polynomial given by the right-hand side of (7.13.5). Denote
by C(p(z)) ∈ Cn×n the companion matrix corresponding to p(z). Let Q =
[qij ] ∈ Cn×n be the following lower triangular matrix.

qij =
(−1)i−jσi−j

(j − 1)!
, j = 1, . . . , i, i = 1, . . . , n, where σ0 := 1.
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Use the Newton identities to verify the equality AnQ = C(p(z))Q. Hence
An is similar to C(p(z)), and the characteristic polynomial of An is given
by (7.13.5). 2

Proof of Theorem 7.13.8 under the assumption 7.13.3. Let T =
{λ1, . . . , λn} be a multiset in C. Denote by σ1, . . . , σn the elementary sym-
metric polynomials corresponding to T. Let p(z) = zn +

∑n
i=1(−1)iσizn−i

be the normalized polynomial whose zero set is T. For m ∈ N denote
Sm := T ∪ {0, . . . , 0︸ ︷︷ ︸

m

}. Let σi,m be the i − th elementary symmetric poly-

nomial corresponding to Sm for i = 1, . . . , n + m. Then σi,m = σi for
i = 1, . . . , n and σi,m = 0 for i = n+ 1, . . . , n+m. The sk(T) = sk(Sm) for
all k ∈ N. Denote by An+m ∈ C(n+m)×(n+m) the matrix (7.13.4), where
sk = sk(T) for k = 1, . . . , n+m. Observe that

det (zIn+m −
1

n+m
An+m) = (zn +

n∑
i=1

(
i∏

j=1

(1− j − 1
n+m

))(−1)iσizn−i)zm.

Let

(7.13.6) pm(z) := zn +
n∑
i=1

(
i∏

j=1

(1− j − 1
n+m

)−1)(−1)iσizn−i.

Denote by Tm = {λ1,m, . . . , λn,m} the multiset formed the n zeros of pm.
Since limm→∞ pm(z) = p(z) we deduce that limm→∞ pdist(Tm,T) = 0.
That is, we can rename λ1,m, . . . , λn,m,m ∈ N such that limm→∞ λi,m = λi
for i = 1, . . . , n. Let Bm+n ∈ C(m+n)×(m+n) be the matrix defined by
(7.13.4), where sk, k = 1, . . . ,m+n are the moments corresponding to Tm.
Then det (zIn+m− 1

n+mBn+m) = zmp(z). Thus, if the first n+m moments
corresponding to Tm are nonnegative, it follows that that the multiset Sm

is realized as an eigenvalue set of a nonnegative matrix.
We now show that the above condition holds for m ≥ N , if T satisfies

the assumption 1 of Theorem 7.13.8 and (7.13.3). It is enough to consider
the case where T = {λ1 = 1, λ2, . . . , λn}, where 1 > |λ2| ≥ . . . ≥ |λn|. Let
ε := 1−|λ2|

4 . First we choose M big enough such that after renaming the
elements of the multiset of Tm we have that |λi,m − λi| ≤ ε for i = 1, . . . , n
and m ≥ M . Note that since T̄m = Tm it follows that λ1,m ∈ R and
λ1,m ≥ 1 − ε for m ≥ M . Furthermore, |λi,m| ≤ 1 − 3ε for i = 2, . . . , n.
Hence

sk(Tm) ≥ (− ε)k(− (n− )(− ε
− ε

)k).
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Thus for k > k(ε) := log(n−1)
log(1−ε)−log(1−3ε) and m ≥ N we have that sk(Tm) >

0. Clearly s1(Tm) = s1(T ) and limm→∞ sk(Tm) = sk(T ) for k = 2, . . . , dk(ε)e.
Since sk(T ) > 0 for n > 1 we deduce the positivity of all sk(Tm) for all
k > 1 if m ≥ N ≥M . 2

It is straightforward to generalize this result to a general Frobenius
multiset. See [Fri09].

Theorem 7.13.10 Let T ⊂ C\{0} be a Frobenius mulitiset satisfying
the following conditions.

1. T(r(T)) = {r(T), ζr(T), . . . , ζm−1r(T)} for ζ = e
2π
√
−1

m where m > 1
is an integer.

2. sk(T) ≥ 0 for k ∈ N.

3. If sk(T) > 0 then skl(T) > 0 for all l ∈ N.

Then there exist a square nonnegative irreducible matrix A, whose eigen-
values multiset is a union of T and m0 ≥ 0 copies of 0.

Proof. Observe first that sk(T) = 0 if m 6 |k. Let φ : C → C be the
map z 7→ zm. Since ζT = T it follows that for z ∈ T with multiplicity
m(z) we obtain the multiplicity zm in φ(T) is mm(z). Hence φ(T) is
a union of m copies of a Frobenius set T1, where r(T1) = r(T)m and
T1(r(T1)) = {r(T1)}. Moreover skm(T) = msk(T1). Hence T1 satisfies
the assumptions of Theorem 7.13.8. Thus there exists a primitive matrix
B ∈ Rn×n+ whose nonzero eigenvalue multiset is T1. Let A = [Aij ]mi=j=1 be
the following nonnegative matrix of order mn.

(7.13.7) A =


0n×n In 0n×n 0n×n . . . 0n×n
0n×n 0n×n In 0n×n . . . 0n×n

...
...

...
...

...
...

0n×n 0n×n 0n×n 0n×n . . . In
B 0n×n 0n×n 0n×n . . . 0n×n

 .

Then A is irreducible and the nonzero part of eigenvalue multiset if T. (See
Problems 4 and 5.)

Problems
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1. Definition 7.13.11 Let S ⊂ C be a finite multiset. S is called a semi
Frobenius multiset if either S has m elements all equal to 0, or the
following conditions hold.

(a) r(S) > 0, S̄ = S, r(S) ∈ S.
(b) m(z) ≤ µ := m(r(S)) for each z ∈ S such that |z| = r(S).
(c) Assume that S contains exactly m distinct points satisfying |z| =

r(S),m(z) = µ. Then ζS = S for ζ = e
2π
√
−1

m .

S is called an almost a Frobenius multiset if the the number points in S,
counted with their mulitplicites, satisfying z ∈ S, |z| = r(S),m(z) < µ
is strictly less than mµ.

Let fS by (7.12.6). Show

(a) S = {1, 1, z, z̄}, with |z| = 1, z 6= ±1 is a semi Frobenius multiset,
and fS has nonnegative moments.

(b) Let S = ∪j
i=1Si, where each Si is almost a Frobenius multiset.

Then fS has eventually nonnegative MacLaurin coeffients.
(c) Assume that the MacLaurin coefficients fS are eventually non-

negative. Then r(S) ∈ S. Suppose furthermore that 0 < α <
r(S) is the second largest positive number contained in S. Then
S ∩ {z ∈ C, α < |z| ≤ r(S)} is a semi Frobenius set.

(d) Assume that the MacLaurin coefficients fS are eventually non-
negative. Suppose that S contains only one positive number of
mulitplicity one. Then S is semi Frobenius.

(e) Assume that the MacLaurin coefficients fS are eventually non-
negative. Suppose that S contains only two positive number
of mulitplicity one each: r(S) > α > 0. Decompose S to
S1 ∪ S2, where S1 is a maximal semi Frobenius set containing
{z ∈ C, α < |z| ≤ r(S)}. If α ∈ S1 then S2 = ∅. Suppose that
α ∈ S2. Then S3 := S2 ∩ {z ∈ C, |z| = α} is a set, i.e. m(z) = 1
for each z ∈ S3. Assume for simplicity of the exposition that
α = 1. Let m′ ∈ [1, l) be the greatest divisor of m > 1, entering
in the definition of the Frobenius multiset S1, such that all m′

roots of 1 are in S3. Let m′′ := m
m′ > 1. Then there exists r ∈ N

coprime with m′′ such that one of the following conditions hold.
i. If m′′ is even then S3 = S4, where S4 consists of all m′r

roots of 1.
ii. If m′′ is odd then either S3 = S4 or S3 = S4 ∪ S5, where

S5 = ∪m′,r,m′′−1
q,k,j=1 e2π

√
−1((q+ 2k−1

2r + j
m′′ )

1
m′ ).
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Hint: Use the function g in the proof of Theorem 7.12.6, or/and
consult with [Fri78b, Thm 4] and its proof.

2. Let S = {λ1, . . . , λn} ⊂ R be a union of Frobenius multiset. Assume
furthermore that

∑n
i=1 λi ≥ 0. Show that if n ≤ 4 then there exists a

nonnegative n× n matrix whose eigenvalue multiset if S. Hint: For
n = 3 use Proposition 7.13.5. For n = 4 and the case where S contains
exactly two negative numbers consult with the proof of [LoL78, Thm.
3].

3. Show that for n ≥ 4 the multiset S := {
√

2,
√

2,
√
−1,−

√
−1, 0, . . . , 0}

satisfies all the conditions of Proposition 7.13.2. However there is no
A ∈ Rn×n+ with the eigenvalue set S.

4. Let B ∈ Rn×n+ be a primitive matrix. Show that the matrix A ∈
Rmn×mn+ defined (7.13.7) is irreducible for any integer m > 1.

5. Let B ∈ Cn×n. Assume that T is the eigenvalue multiset of B Assume
that A ∈ Cmn×mn is defined by (7.13.7). Let S be the eigenvalue
multiset of A. Show that w ∈ S if and only if wm ∈ T. Furthermore
the multiplicity of 0 6= w ∈ S equals to the multiplicity of wm in T.
The mulitplicity of 0 ∈ S is m times the multiplicity of 0 ∈ T.

7.14 Cones

Let V be a vector space over C. Then V is a vector space over R, which
we denote by VR, or simply V when no ambiguity arises. See Problem 1.

Definition 7.14.1 Let V be a finite dimensional vector space over F =
R,C. A set K ⊂ V is called a cone if

1. K + K ⊂ K, i.e. x + y ∈ K for each x,y ∈ K.

2. R+K ⊂ K, i.e. ax ∈ K for each a ∈ [0,∞) and x ∈ K

Assume that K ⊂ V is a cone. (Note that K is convex set.) Then

1. ri K, dim K, is the relative interior and the dimension of K, viewed
as a convex set.

2. K∗ := {f ∈ V∗, <f(x) ≥  for all x ∈ V} is called the conjugate
cone, (in V∗).

3. K is called pointed if K ∩K = {0}.
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4. K is called generating if K−K = V, i.e. any z ∈ V can be represented
as x− y for some x,y ∈ K.

5. K is called proper if K is closed, pointed and generating.

6. For x,y ∈ V we denote: x ≥K y if x − y ∈ K; x 
K y if x ≥K y
and x 6= y; x >K y if x− y ∈ ri K.

7. For x ∈ V we call: x nonnegative relative to K if x ≥K 0; x is
semipositive relative to K if x 
K 0; x is positive relative to K if
x ∈ ri K. When there is no ambiguity about the cone K we drop the
term relative to K.

8. K1 ⊂ K is called a subcone of K if K1 is a cone in V. F ⊂ K is
called a face of K, if F is a subcone of K, and y ∈ F if y ∈ K and
there exists x ∈ F such that x ≥K y. dim F, the dimension of F, is
called the dimension of F. F = {0},F = K are called trivial faces,
(dim {0} = 0). x 
 0 is called an extreme ray if R+x is a face in K,
(of dimension 1). For a set X ⊂ K, the face F(X) generated by X, is
the intersections of all faces of K containing X.

9. Let T ∈ Hom (V,V). Then: T ≥K 0, and T is called nonnegative
with respect to K, if TK ⊂ K; T 
K 0, and T is called semipositive
with respect to K, if T ≥K 0 and T 6= 0; T >K 0, and T is called
positive with respect to K, if T (K\{0}) ⊂ ri K. T ≥K 0 is called
primitive with respect to K, if F is a face of K satisfying TF ⊂ F,
i.e. F is T invariant, then F is a trivial face of K. T is called
eventually positive with respect to K if T l >K 0 for all integers l ≥
L(≥ 1). When there is no ambiguity about the cone K we drop the
term relative to K. Denote by Hom (V,V)K the set of all T ≥K 0.
For T, S ∈ Hom (V,V) we denote: T ≥K S ⇐⇒ T − S ≥K 0,
T 
K S ⇐⇒ T − S 
K 0, T >K S ⇐⇒ T − S >K 0.

As pointed out in Problem 3, without loss of generality we can discuss only
the cones in real vector spaces. Also, in most of the applications the cones
of interest lie in the real vector spaces. Since most of the results we state
hold for cones over complex vector spaces, we state our results for cones in
real or complex vector spaces, and give a proof only for the real case, when
possible.

Lemma 7.14.2 Let V be a finite dimensional vector space over F =
R,C. Let K be a cone in V. Then V = K−K, i.e. K is generating, if and
only if the interior of K is nonempty, i.e. dim K = dim RV.
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Proof. It is enough to assume that V is an n dimensional vector space
over R. Let k = dim K. Then span K is a k dimensional vector space in V.
Assume that K−K = V. Since K−K ⊂ span K we deduce that dim K = n.
Hence K must have an interior.

Assume now that K has an interior. Hence it interior must contain
n linearly independent vectors x, . . . ,xn which form a basis in V. So∑n
i=1 aixi ∈ K for any a1, . . . , an ≥ 0. Since any z ∈ V is of the form∑n
i=1 zixi is of the form

∑
zi≥0 zixi−

∑
zi<0(−zi)xi we deduce that K−K =

V. 2

Theorem 7.14.3 Let K ⊂ V be a proper cone over F = R,C, where
dim V ∈ [,∞). Then the following conditions holds.

1. There exists f ∈ K∗ which is strictly positive, i.e. <f(x) >  if
x 
K 0.

2. Every x 
 0 is a nonnegative linear combination of at most dim RU
extreme rays of K.

3. The conjugate cone K∗ ⊂ V∗ is proper.

Proof. It is enough to assume that V is a vector space over R. Observe
that for any u 
K 0 the set I(u) := {x ∈ V, u ≥K x ≥K −u} is a compact
set. Clearly, I(u) is closed. It is left to show that that I(u) is bounded.
Fix a norm ‖ · ‖ on V. Assume to the contrary that there exists a sequence
0 6= xm ∈ C such that limm→∞ ‖xm‖ = ∞. Let ym = 

‖xm‖xm,m ∈ N.
Since ‖ym‖ = ,m ∈ N it follows that there exists a subsequence mk, k ∈ N
such that limk→∞ ymk = y, ‖y‖ = . Since ym ∈ I( 1

‖xm‖u) it follows that
y ∈ I(0). So y ∈ K∩−K = {0} which is impossible. Hence I(u) is compact.

Choose u ∈ ri K. We claim that u is an isolated extreme point of I(u).
Since u ∈ ri K it follows that there exist r > 0 so that u + x ∈ K for each
‖x‖ ≤ r. Suppose that there exist v,w ∈ I(u) such that tv + (− t)w = u
for some t ∈ (0, 1). So v = u− v,w = u− v for some v,w ≥K 0. The
equality u = ( − t)v + tw yields 0 = ( − t)v + tw ≥ ( − t)v ≥ 0.
Hence v = . (See Problem 2). Similarly, w = 0. Hence u is an extreme
point.

We now show that for any x ∈ U such that x 
K 0, ‖x‖ ≤ r the point
u − x is not an extreme point of I(u). Indeed, u − 

x,u −

x ∈ I(u) and

u − x = 
 (u − 

x) + 
 (u − 

 )x. Since u is an isolated extreme point,
Corollary 7.1.10 yields that u is exposed. Hence there exists f ∈ U∗ such
that f(u) > f(u − x) for any x 
K 0 satisfying ‖x‖ < r. So f(x) >  for
any x 
K 0 satisfying ‖x‖ < r. Hence f(y) = ‖y‖

r f( r
‖y‖y) >  for any

y 
K 0. This proves the part 1 of the theorem.
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Let C = {x 
K 0, f(x) = }. Since K is closed, it follows that C
is a convex closed set. We claim that C is compact, i.e. bounded. Fix
a norm ‖ · ‖ on U. Assume to the contrary that there exists a sequence
xm ∈ C such that limm→∞ ‖xm‖ = ∞. Let ym = 

‖xm‖xm,m ∈ N. Since
‖ym‖ = ,m ∈ N it follows that there exists a subsequence mk, k ∈ N such
that limk→∞ ymk = y, ‖y‖ = . Since K is closed it follows that y 
K 0.
Note that

f(y) = lim
k→∞

f(ymk) = lim
k→∞

f(xmk)
‖xk‖

= lim
k→∞



‖xmk‖
= .

This contradicts the assumption that f is strictly positive on K. Thus C is
a convex compact set. We next observe that dim C = n− 1. First observe
that f(C − x) =  for any x ∈ C. Hence dim C ≤ n − 1. Observe next
that if f(z) =  and ‖z‖ ≤ r then u + z ∈ C. Hence dim C = n − 1. Let
w 
K 0. Define w = 

f(w)w ∈ C. Caratheodory theorem claims that w

is a convex combination of at most n extreme points of C. This proves the
part 2 of the theorem.

Let R := {max ‖x‖, x ∈ C}. Let g ∈ U∗, ‖g‖∗ ≤ 
R . Then for x ∈ C

|g(x)| ≤ . Hence (f + g)(x) ≥  − |g(x)| ≥ . Thus f + g ∈ K∗. So f is
an interior point of K∗. Clearly K∗ is a closed and a pointed cone. Hence
part 3 of the theorem hold. 2

Theorem 7.14.4 Let V be a vector space over F = R,C. Assume that
K ⊂ V be a proper cone. Assume that T ∈ Hom (V,V)K. Let S(T) ⊂
C be the eigenvalue multiset of T , (i.e. the root set of the polynomial
det (zI − T ).) Then

1. ρ(T ) ∈ S(T).

2. Let λ ∈ S(T)(ρ(T)). Then index (λ, T )) ≤ k := index (ρ(T ), T ).

3. There exists x 
K 0 such that Tx = ρ(T )x, and x ∈ (ρ(T )I −
T )k−V.

4. If T >K 0 then ρ(T ) > 0, k = 1,S(T)(ρ(T)) = {ρ(T)} and ρ(A) is
a simple root of the characteristic polynomial of T . (This statement
can hold only if F = R.)

Assume in addition that ρ(T ) = 1. Let P ∈ Hom (V,V) be the spectral
projection, associated with T , on the generalized eigenspace corresponding
to 1. Then

(7.14.1) lim
m→∞

k!
mk

m−1∑
i=0

T i = (T − I)k−1P 
K 0.
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Assume finally that F = R, λ 6= 1, |λ| = 1 is an eigenvalue of T of index
k. Let P (λ) ∈ Hom (V,V) be the spectral projection, associated with T , on
the generalized eigenspace corresponding to λ. View P (λ) = P1 +

√
−1P2,

where P1, P2 ∈ Hom (V,V). Then

(7.14.2) |f((T−λI)k−P (λ)y)| ≤ f((T−I)k−Py) for any y ∈ K, f ∈ K∗.

Proof. Suppose first that ρ(T ) = 0, i.e. T is nilpotent. Then parts 1-2
are trivial. Choose y 
K 0. Then there exists an integer j ∈ [0, k − 1] so
that T jy 
K 0 and T j+1y = 0. Then x := T jy is an eigenvector of A
which lies in K. Since Ax = 0 it follows that A can not be positive.

From now on we assume that ρ(T ) > 0, and without loss of generality
we assume that ρ(T ) = 1. In particular, dim V ≥ . Choose a basis
b, . . . ,bn in V. Assume first that F = R. Then T represented in the basis
b, . . . ,bn by A = [aij ] ∈ Rn×n. Consider the matrix B(z) = (I−zA)−1 =
[bij ]ni=j=1C(z)n×n. Using the Jordan canonical form of A we deduce that all
the singular points of all bij(z) are of the form µ := 1

λ where λ is a nonzero
eigenvalue of A. Furthermore, if 0 6= λ ∈ spec (A), and λ has index l = l(λ).
Then for each i, j, bij(z) may have a pole at µ of order l at most, and there
is at least one entry bij(z), where i = i(λ), j = j(λ), such that bij(z) has
a pole of order l exactly. In particular, for each x,y ∈ Rn the rational
function y>B(z)x may have a pole of order l at most µ. Furthermore,
there exists x,y ∈ Rn, x = x(λ),y = y(λ) such that y>B(z)x has a pole
at µ of order l. (See Problem 7.)

Let K̂ ∈ Rn denote the induced cone by K ⊂ V. Then K̂ is a proper
cone. Denote by

K̂∗ := {y ∈ Rn,y>x ≥  for all x ∈ K̂∗}.

Theorem 7.14.3 implies that K̂∗ is a proper cone. Observe next that AK̂ ⊂
K̂. Clearly, we have the following MacLaurin expansion

B(z) = (I − zA)−1 =
∞∑
i=0

ziAi, for |z| < 1
ρ(A)

,(7.14.3)

y>B(z)x =
∞∑
i=

(y>Aix)zi, for |z| < 

ρ(A)
.(7.14.4)

Note that y>B(z)x is a rational function. Denote by r(x,y) ∈ (,∞] the
convergence radius of y>B(z)x. So r(x,y) = ∞ if and only if y>B(z)x
is polynomial. Assume first that x ∈ K̂,y ∈ K̂∗. Then the MacLaurin
coefficients of y>B(z)x are nonnegative. Hence we can apply the Vivanti-
Pringsheim theorem 7.12.2, i.e. r(x,y) is a singular point of y>B(z)x.
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Hence 1
r(x,y) ∈ spec (A) if r(x, y) <∞. Suppose now that x,y ∈ Rn. Since

K̂ and K̂∗ are generating it follows x = x+ − x−, y = y+ − y− for some
x+,x− ∈ K̂, y+,y− ∈ K̂∗. So

y>B(z)x = y>+B(z)x+ + y>−B(z)x− − y>−B(z)x+ − y>+B(z)x−.

Hence
(7.14.5)
r(x,y) ≥ r(x+,x−,y+,y−) := min(r(x+,y+), r(x−,y−), r(x+,y−), r(x−,y+)).

Let λ ∈ spec (A), |λ| = ρ(A), and assume that l = index (λ). Choose
x,y such that µ = 1

λ is a pole of y>B(z)x of order l. Hence we must
have equality in (7.14.5). More presicely, there exists x ∈ {x+,x−},y ∈
{y+,y−} such that r(x,y) = r(x,y) and y> B(z)x has a pole of at
µ of order l. Vivanti-Pringsheim theorem yields that r(x,y) is pole of
order k′ ≥ l of y> B(z)x. Hence ρ(A) ∈ spec (A) and index (ρ(A)) ≥
k′ ≥ l = index (λ). This proves parts 1-2. Choose λ = ρ(A) that satisfies
the above assumptions. Hence B(z)x must have at least one coordinate
with a pole at ρ(A)−1 of order k = index (ρ(A)). Problem 7 yields that
limt↗1B(tρ(A)−1x = u 6= 0 such that Au = ρ(A)u, and u ∈ (ρ(A)I −
A)k−Rn. Use the fact that for z = tρ(A)−1, t ∈ (0, 1) we have the equality
(7.14.3). So (1− t)kB(tρ(A)−1)x ∈ K̂ for each t ∈ (0, 1). Since K̂ is closed
we deduce that u ∈ K̂. This proves part 3.

The equality (7.14.1) follows from the Tauberian theorem 8 and it ap-
plication to the series (7.14.3).

Assume now that A >K̂ 0. Observe first that the eigenvector x 
K̂

0, Ax = x satisfies x >K̂ 0, i.e. x ∈ ri K̂. Next we claim that the dimension
of the eigenspace {y, (A − I)y = 0} is 1. Assume to the contrary that
Ay = y and x,y are linearly independent. Since 6.7.limparexpbzx(s0) =
Ax(s) >K̂ 0 we obtain a contradiction. Hence x is a geometrically simple
eigenvalue.

Nest we claim that k = index (1) = 1. Assume to the contrary that k >
1. Recall that x ∈ (A− I)k−Rn. So x = (A− I)y. Hence x = (A− I)(y +
tx). Choose t > 0 big enough so that z = y + tx = t(ty + x) >K̂ 0. Since
x >K̂ 0 it follows that there exists s > 0 such that (A−I)z−rz = x−rz >K̂

0. That is Az >K̂ ( + r)z. Hence Amz ≥ ( + r)mz ⇒ ( 
+rA)mz ≥K̂ z.

Since ρ( 1
1+rA) = 1

1+r < 1 it follows that 0 = limm→∞( 
+rA)mz ≥K̂ zK̂ >K̂

0, which is impossible. Hence index (1) = 1.
We now show that if λ ∈ spec (A) and |λ| = 1 then λ = 1. Let J :=

{y ∈ K̂, ‖y‖ = }. Since K̂ is closed it follows that J is compact set. Since
A >K̂ 0 it follows that AJ ∈ ri K̂. Hence there exists s ∈ (0, 1) such that
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Ay−sz >K̂ 0 for any y ∈ J, z ∈ Rn, ‖y‖ = . In particular, Ay−sy >K̂ 0
for each y ∈ J. That is (A − sI)J ∈ ri K̂. Hence (A − sI) >K̂ 0. Note
that (A − sI)x = ( − s)x >K̂ 0. So ρ(A − sI) = 1 − s. Each eigenvalue
of A − sI is λ − s, where λ ∈ spec (A). Apply part 1 of the theorem to
deduce that |λ − s| ≤ 1 − s. Since for any ζ ∈ S\{1} we must have that
|ζ − s| > |ζ| − s = 1 − s, we obtain that S(A)(1) = {1}, which concludes
the proof of part 4 for F = R.

Assume next that ρ(T ) = ρ(A) = 1, and k = index (1). (7.14.11) of
Problem 9 yields the equality in (7.14.1). Since any sum in the left-hand
side of (7.14.1) is nonnegative with respect to the cone K it follows that
(A−I)k−1P ≥K 0. Let λ1 = 1 so s1 = k, see notation of Problem 7. Recall
that (A− I)k−1P in the basis b, . . . ,bn is represented by the component
Z1(k−1) 6= 0. Hence (A− I)k−1P 
K 0.

Assume finally that λ ∈ spec (T), |λ| = 1, λ 6= 1, index (λ) = k. Let
P (λ) be the spectral projection on the eigenvalue λ. Then (7.14.11) yields

(7.14.6) lim
m→∞

k!
mk

m−1∑
r=0

λ̄rT r = λ̄k−1(T − λI)k−1P (λ).

Let y ∈ K, f ∈ K. Since f(T ry) ≥  and |λ| = 1 we obtain |f(λ̄rT ry)| =
f(T ry). The triangle inequality

| k!
mk

m−1∑
r=0

f(λ̄rT ry)| ≤ k!
mk

m−∑
r=

f(T ry)

Let m→∞ and use the equalities (7.14.6) and (7.14.1) to deduce (7.14.2).
We now point out why our results hold for a vector space V over C.

Let T ∈ Hom (V,V) and assume that b, . . . ,bn is a basis V. Then VR
has a basis b, . . . ,bn,

√
−b, . . . ,

√
−bn. Clearly T induces an operator

T̃ ∈ Hom (VR,VR). Let A ∈ Cn×n represents T in the basis b, . . . ,bn.
Observe that A = B+

√
−1C, where B,C ∈ Rn×n. Then T̃ is presented by

the matrix Ã =
[
B −C
C B

]
in the basis b, . . . ,bn,

√
−b, . . . ,

√
−bn.

See Problem 10.

Problems

1. Let V be a vector space of dimension n over C, with a basis z, . . . , zn.
Show.
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(a) V is a vector space over R of dimension 2n, with a basis
z,
√
−z, . . . , zn,

√
−zn. We denote this real vector space by

VR and its dimension dim RV.

(b) Let the assumptions of 1a hold. Then V∗ can be identified with
(VR)∗ as follows. Each f ∈ V∗ gives rise to f̂ ∈ (VR)∗ by the
formula f̂(z) = <f(z). In particular, if f, . . . , fn form a basis in

V∗ then f̂1,
√̂
−1f, . . . , f̂n,

√̂
−1fn is a basis in (VR)∗.

2. Let K be a cone. Show that K is pointed if and only the two inequal-
ities x ≥K y,y ≥K x imply that x = y.

3. Let the assumptions of Problem 1 hold. Assume that K ⊂ V is a
cone. Denote by KR the induced cone in VR. Show

(a) K is closed if and only if KR is closed.

(b) K is pointed if and only if KR is pointed.

(c) K is generating if and only if KR is generating.

(d) K is pointed if and only if KR is pointed.

4. Let U be a real vector space. Denote by UC as in Proposition 4.1.2.
Assume that K ⊂ U is a cone. Let KC := {(x,y), x,y ∈ K}. Show

(a) KC is a cone in UC.

(b) K is closed if and only if KC is closed.

(c) K is pointed if and only if KC is pointed.

(d) K is generating if and only if KC is generating.

(e) K is proper if and only if KC is proper.

5. Let the assumptions of Problem 4 hold. Assume thatA ∈ Hom (U,U)K.
Define Â : UC → UC by Â(x,y) = (Ax, Ay). Show

(a) Â ∈ Hom (UC,UC)KC .

(b) det (zI −A) = det (zI − Â).

(c) Â is not positive with respect to KC.

6. Let V be a vector space over F = R,C. Assume that K ⊂ V and
A ∈ Hom (V,V)K. Then A∗ ∈ Hom (V∗,V∗)K∗ .

7. Let A ∈ Cn×n. Assume that S(A) = {λ1, . . . , λn} is the eigenvalue
multiset of A. Consider the matrix

B(z) = (I − zA)−1 = [bij ]ni=j=1 ∈ C(z)n×n. Show
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(a) Let Zi1, . . . , Zi(si−0), i = 1, . . . , ` be all the matrix components
of A as in §3.1. Then

i. Zi0 is the spectral projection of A on λi. (See §3.4.) Fur-
thermore

(7.14.7) (A− λiI)si−1Zi0 = Zi(si−1) for i = 1, . . . , `.

(Use (3.1.6).) So Zi(si−1)Cn is a subspace of eigenvectors of
A corresponding to all Jordan blocks of A of order si and
eigenvalue λi.

ii.

(I − zA)−1 =
∑̀
i=1

si−1∑
j=0

zj

(1− λiz)j+1
Zij ,(7.14.8)

lim
t↗1

(1− t)si(I − t

λi
A)−1 =

1
λsii

Zi(si−1).(7.14.9)

(Hint: To show the first equality use (3.4.1) by letting λ = 1
z

and divide (3.4.1) by z.)

(b) All the singular points of all bij(z) are of the form µ := 1
λ where

λ is a nonzero eigenvalue of A. Furthermore, if 0 6= λ ∈ spec (A),
and λ has index l = l(λ). Then for each i, j bij(z) may have a
pole at µ of order l at most, and there is at least one entry bij(z),
where i = i(λ), j = j(λ), such that bij(z) has a pole of order l
exactly. Furthermore Suppose furthermore, that for x ∈ Cn, at
least one of the entries of B(z)x has a pole of order l at µ. Then
limt↗1(1−t)lB(tµ)x = y 6= 0, Ay = λy and y ∈ (λI−A)l−Cn.

(c) Let ei = (δi, . . . , δin)>, i ∈ 〈n〉. For each 0 6= λ ∈ spec (A) of
index l = l(λ) there exists ei, ej , i = i(λ), j = j(λ) such that
e>i B(z)ej has a pole at 1

λ of order l exactly.

8. Let k, l ∈ N and consider the rational function

f(z) =
1

(1− µz)l
=
∞∑
i=0

(−1)i
(
−l
i

)
µizi.

Show

(a)
k!
mk

m−1∑
i=0

(−1)i
(
−k
i

)
=

k!
mk

m−1∑
i=0

|
(
−k
i

)
| = 1.
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Hint: Use the Riemann sums for the integral
∫ 1

0
xk−1dx to show

lim
m→∞

k

nk

m∑
i=1

ik−1 = 1.

(b)
k!
mk

m−1∑
i=0

(−1)i
(
−l
i

)
µi = 0.

Under the following assumptions
i. |µ| = 1, µ 6= 1 and l = k. Hint: Recall the identity

sm(z) =
m−1∑
i=0

(−1)i
(
−1
i

)
zi =

m−1∑
i=0

zi =
1− zm

1− z
.

Show that

1
(k − 1)!

dk−1

dzk−1
sm+k−1(z) =

m−1∑
i=0

(−1)i
(
−k
i

)
zi.

ii. |µ| = 1 and l < k. Hint: Sum the absolute values of the
corresponding terms and use part 8a.

iii. |µ| < 1. Hint: Use the Cauchy-Hadamard formula to show
that

∑m−1
i=0 |

(−l
i

)
| |µ|i <∞.

9. Let the assumptions of Problem 7 hold.

(a) For m ≥ max(s1, . . . , s`)
(7.14.10)

m−1∑
r=0

zrAr =
∑̀
i=1

si−1∑
j=0

zj
(m−1−j∑

r=0

(−1)r
(
−(j + 1)

r

)
λri z

rZij
)
.

(Use the first m terms of MacLaurin expansion of both sides of
(7.14.8).)

(b) Assume furthermore that ρ(A) = 1 and k is the maximal index of
all eigenvalues λi satisfying |λi| = 1. Assume that λ = λ1, |λ| =
1, and k = index (λ1) = s1. Let P (λ) = Z10 be the spectral
projection on λ and Z1(s1−1) = (A−λ)k−1P (λ1). Then (7.14.10)
and Problem 8 implies.

(7.14.11) lim
m→∞

k!
mk

m−1∑
r=0

λ̄rAr = λ̄k−1(A− λI)k−1P (λ).
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10. Let V be a vector space over C with a basis b, . . . ,bn. Then VR
has a basis b, . . . ,bn,

√
−b, . . . ,

√
−bn. Let T ∈ Hom (V,V).

Show Clearly T induces an operator T̃ ∈ Hom (VR,VR). Let A ∈
Cn×n represents T in the basis b, . . . ,bn. Observe that A = B +√
−1C, where B,C ∈ Rn×n. Then T̃ is presented by the matrix

Ã =
[
B −C
C B

]
in the basis b, . . . ,bn,

√
−b, . . . ,

√
−bn
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