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Chapter 1

Domains, Modules and
Matrices

1.1 Rings, Domains and Fields

Definition 1.1.1 A non empty set R is called a Ting if R has two binary
operations, called addition and multiplication, such that for all a,b,c € R
the following holds:

(1.1.1)a+be R;

(1.12)a+b=b+a (thecommutative law);
(1.13)(a+b)+c=a+ (b+c) (the associative law) :
(1.1.4)30€ Rsuchthata+0=04+a =a, Va € R;
(1.1.5)Ya € R, 3—a € Rsuch that a 4+ (—a) = 0;
(1.1.6)ab € R;

(1.1.7)a
(1.1.8) af

(be) = (ab)c  (the associative law);
(b+c)=ab+ac, (b+c)a=ba+ca, (thedistribution laws).

R has an identity element 1 if al = 1la for all a € R. R is called
commutative if

(1.1.9) ab="ba, foralla,be R.

Note that the properties (1.1.2) — (1.1.8) imply that a0 = 0a = 0. If ¢ and
b are two nonzero elements such that

(1.1.10) ab =0
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then a and b are called zero divisors.

Definition 1.1.2 D is called an integral domain if D is a commutative
ring without zero divisors and containing identity 1.

The classical example of an integral domain is the ring of integers Z. In
this book we shall use the following example of an integral domain.

Example 1.1.3 Let Q@ C C™ be a nonempty set. Then H(2) denotes
the ring of analytic functions f(z1,...,2,) such that for each { € Q there
exists an open neighborhood O(f,C) of ¢ such that f is analytic on O(f, ().
If Q is open we assume that f is defined only on Q. If Q consists of one
point ¢ then He stands for H({(}).

Note that zero element is the zero function and the identity element
is the constant function which is equal to 1. The properties of analytic
functions imply that H(£2) is an integral domain if and only if 2 is a con-
nected set. (€2 is connected if for any open set O D 2 there exists an open
connected set O’ such that O D O’ D Q.) In this book we shall assume
that €2 is connected unless otherwise stated. See [Rud74] and [GuR65] for
properties of analytic functions in one and several complex variables.

For a,b € D, a divides b, (or a is a divisor of b), denoted by a|b, if b = ab;
for some b; € D. An element a is called invertible, (unit, unimodular), if
all. a,b € D are associates, denoted by a = b, if a|b and bla. Denote
{{b}} = {a € D: a =b}. The associates of a and units are called improper
divisors of a. For an invertible a denote by a~! the unique element such
that

(1.1.11) aa”t'=a"ta=1.
f € H(Q) is invertible if and only if f does not vanish at any point of Q.

Definition 1.1.4 A field F is an integral domain D such that any non
zero element is invertible.

The familiar examples of fields are the set of rational numbers Q, the
set of real numbers R, and the set of complex numbers C. Given an integral
domain D there is a standard way to construct the field F of its quotients.
[ is formed by the set of equivalence classes of all quotients §,b # 0 such
that
a ¢ ad+bc ac ac
vtaT w0 va e 47O

Definition 1.1.5 For Q C C",( € C™ let M(Q2), M. denote the quo-
tient fields of H(Y), H¢ respectively.

(1.1.12) +
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Definition 1.1.6 Let D[z, ...,x,] be the ring of all polynomials in n
variables with coefficients in D:

(1.1.13)  p(x1,..,zpn) = Z anx®,

lal<m

n
a=(a1,...,on) €LY, |aof:= ZO‘“ ¥ =t
=1

The degree of p(x1,...,x,) # 0 (deg p) is m if there exists a, # 0 such
that || = m. (deg 0 = 0.) A polynomial p is called homogeneous if a, =0
for all |a| < deg p. It is a standard fact that D[z, ..., z,] is an integral
domain. (See Problems 2-3.) As usual F(x4,...,2z,) denotes the quotient
field of Flxy, ..., 2]

Problems

1. Let C[a, b] be the set of real valued continuous functions on the inter-
val [a, b],a < b. Show that C[a, ] is a commutative ring with identity
and zero divisors.

2. Prove that D[] is an integral domain.

3. Prove that D[z, ..., x,] is an integral domain. (Use the previous prob-
lem and the identity D[x1, ..., 2] = D[z1, ..., Tn—1][zn].)

4. Let p(z1,...,x,) € D[z1,...,25]. Show that p = Zigdegppiv where
each p; is either a zero polynomial or a homogeneous polynomial of
degree i for ¢ > 1. If p is not a constant polynomial then m = deg p >
1 and p,, # 0. The polynomial p,, is called the principle part of p
and is denoted by p.. (If p is a constant polynomial then p, = p.)

5. Let p,q € D[z, ..., x,]. Show (pq)r = PrGx-

1.2 Bezout Domains

Let ay,...,a, € D. Assume first that not all of ay, ..., a, are equal to zero.
An element d € D is a greatest common divisor (g.c.d) of a1, ...,a, if dla;
for i = 1,...,n, and for any d’ such that d'|a;,i = 1,...,n, d'|d. Denote by
(a1, ...,ay) any g.c.d. of ay,...,a,. Then {{(a1,...,a,)}} is the equivalence
class of all g.c.d. of ay,...,a,. Fora; =...=a, =0, we define 0 to be the
g.cd. of ay,...,a,, i.e. (a,...,a,) = 0. The elements ay, ..., a, are called

coprime if {{(a1,...,an)}} = {{1}}.
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Definition 1.2.1 D is called a greatest common divisor domain, or
simply GCD domain and denoted by Dq, if any two elements in D have
a g.c.d..

A simple example of D¢ is Z. See Problem 5 for a non GCD domain.

Definition 1.2.2 A subset I C D is called an ideal if for any a,b € 1
and p,q € D the element pa + gb belongs to I.

In Z any nontrivial ideal is the set of all numbers divisible by an integer
k # 0. In H(Q), the set of functions which vanishes on a prescribed set
UcCQ,ie.

(1.2.1) IU):={feHE): [f()=0,(eU},

is an ideal. Ideal in I is called prime if ab € I implies that either a or b is
in I. I C Z is a prime ideal if and only if [ is the set of integers divisible
by some prime number p. An ideal I is called mazimal if the only ideals
which contain I are I and . I is called finitely generated if there exists k
elements (generators) p1,...,px € I such that any ¢ € T is of the form

(122) 7 = a1p1 =+ -4 aLPk

for some ay, ...,ar, € D. For example, in D[z, y] the set of all polynomials
p(x,y) such that

(1.2.3) p(0,0) =0,

is an ideal generated by x and y. An ideal is called principal ideal if it is
generated by one element p.

Definition 1.2.3 D is called a Bezout domain, or simply BD and de-
noted by Dp, if any two elements a,b € D have g.c.d. (a,b) such that

(1.2.4) (a,b) = pa + gb,
for some p,q € D.
It is easy to show by induction that for aq,...,a, € Dpg
n
(1.2.5) (a1, ...,an) = Zpiai, for some pq,...,p, € Dp.
i=1

Lemma 1.2.4 An integral domain is a Bezout domain if and only if
any finitely generated ideal is principal.
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Proof. Assume that an ideal of Dg is generated by aq,...,a,. Then
(1.2.5) implies that (aq,...,ay,) € I. Clearly (ay,...,a,) is a generator of I.
Assume now that any finitely generated ideal of D is principal. For given
a,b € D let I be the ideal generated by a and b. Let d be a generator of I.
So

(1.2.6) d = pa + qb.

Since d generates I d divides a and b. (1.2.6) implies that if d’ divides a
and b then d’|d. Hence d = (a,b) and D is Dg. O

Let I C D[z,y] be the ideal given by (1.2.3). Clearly (z,y) = 1. As
1 & I, I is not principal. As x,y generate I we obtain that D[z, y] is not
Dg. In particular Flxq,...,x,] is not Dp for n > 2. The same argument
shows that H(Q) is not Dg for & C C™ and n > 2. It is a standard fact
that F[x] is a Bezout domain [Lan67]. (See 1.3.) For a connected set  C C
H(Q?) is Dp. This result is implied by the following interpolation theorem
[Rud74, Thms 15.11, 15.15]:

Theorem 1.2.5 Let Q C C be an open set, A C Q2 be a countable set
with no accumulation point in Q2. Assume that for each ¢ € A, m(¢) and
WO,¢5 s Win(e),c T @ nonnegative integer and m(C) + 1 complex numbers,
respectively. Then there exists f € H(Q2) such that

f(n)(c) =nlw,¢, n=0,..,m(¢), forall(e A

Furthermore, if all w,, ¢ = 0 then there exists g € H(Q) such that all zeros
of g are in A and g has a zero of order m(¢) + 1 at each ¢ € A.

Theorem 1.2.6 Let Q C C be an open connected set. Then for a,b €
H(Q) there exists p € H(Q) such that (a,b) = pa + b.

Proof. If a = 0 or b = 0 then (a,b) = la+ 1b. Assume that ab # 0. Let
A be the set of common zeros of a(z) and b(z). For each ( € Alet m(¢)+1
be the minimum multiplicity of the zero z = ¢ of a(z) and b(z). Theorem
1.2.5 implies the existence of f € H(2) which has its zeros at A, such that
at each ¢ € A f(z) has a zero of order m(¢) + 1. Hence

a=af, b=>bf, a,be H(Q).
Thus & and b do not have common zeros. If A is empty then a = a, b=1b.

Let A be the set of zeros of a. Assume that for each ( € A a has a
zero of multiplicity n(¢) + 1. Since b(¢) # 0 for any ¢ € A, Theorem 1.2.5
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implies the existence of a function g € H(Q2) which satisfies the interpolation
conditions:
d* d* -
(2) — —
ﬁ( glz )‘Z:C— ﬁb(z)‘zzg7 k—O,,n(C), CEA
Then R
ed—b
b= PO (a,b)Zfeg:pa+b
a

and the theorem follows. O

Corollary 1.2.7 Let Q C C be a connected set. Then H(Q) is a Bezout
domain.

Problems

1. Let a,b,c € Dp. Assume that (a,b) = 1, (a,c¢) = 1. Show that
(a,bc) = 1.

2. Let I be a prime ideal in D. Show that D/I (the set of all cosets of
the form I 4 a) is an integral domain.

3. Let I an ideal in D. For p € D denote by I(p) the set:
Ip):={aeD: a=bp+gq, forallbeD, qe I}.

Show that I(p) is an ideal. Prove that I is a maximal ideal if and
only if for any p ¢ I I(p) = D.

4. Show that an ideal I is maximal if and only if D/T is a field.

5. Let Z[v-3] ={a €C, a=p+qv/-3, p,q € Z}. Show

(a) Z[\/—3], viewed as a subset of C, is a domain with respect to
the addition and multiplication in C.

(b) Let z =a+ by/—3 € Z[\/—3|. Then
2| =1 <= z=%41, |2|=2 <= z=220rz=%1++vV-3.

|z| > V7 for all other values of z # 0. In particular if |z| =2
then z is a prime.

(c) Let
a=4=22=(1+V/=3)(1-v=3), b= (1+vV-3)2 = —(1-v/—=3)%.
Then any d that divides a and b divides one of the following

primes dy :=14++v/=3, dy =1 — /=3, dy := 2.
(d) Z[v/-3] is not GCD domain.
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1.3 Dy,Dp and Dy domains

p € D is irreducible (prime) if it is not a unit and every divisor of p is
improper. A positive integer p € Z is irreducible if and only if p is prime.
A linear polynomial in D[z, ..., z,] is irreducible.

Lemma 1.3.1 Let Q) C C be a connected set. Then all irreducible ele-
ments of H(Q) (up to multiplication by invertible element) are of the form
z — ( for each ¢ € Q.

Proof. Let f € H(Q2) be noninvertible. Then there exists ( € 2 such
that f(¢) = 0. Hence z — ¢|f(z). Therefore the only irreducible elements
are z — (. Clearly % is analytic in  if and only if n = (. O

For ¢ € C H¢ has one irreducible element z — (.

Definition 1.3.2 D is unique factorization domain, or simply UFD
and denoted by Dy, if any nonzero, noninvertible element a can be factored
as a product of irreducible elements

(1.3.1) a=p1-Pr,
and these primes are uniquely determined within order and invertible fac-
tors.
Z and H¢, ¢ € C are Dy. Flzy,...,z,] is Dy [Lan67].
Lemma 1.3.3 Let Q C C be a connected open set. Then H(Q) is not

unique factorization domain.

Proof. Theorem 1.2.6 yields the existence of a nonzero function a(z) €
H(Q) which has a countable infinite number of zeros Q (which do not
accumulate in €2). Use Lemma 1.3.1 to deduce that a can not be a product
of a finite number of irreducible elements. O.

A straightforward consequence of this lemma that for any open set Q C
C™, H() is not Dy. See Problem 2.

Definition 1.3.4 D is principal ideal domain, or simply PID and de-
noted by Dp, if every ideal of D is principal.

Z and F[z] are Dp. It is known that any Dp is Dy [Lan67] or [vdW59].
Thus H () is not Dp for any open connected set Q@ C C™.

Definition 1.3.5 D is a Fuclidean domain, or simply ED and denoted
by Dy, if there exists a function d : D\{0} — Z, such that:

(1.3.2) foralla,be D, ab# 0 d(a) < d(ad);
for any a,b € D, ab # 0, there exists t,r € D such that
(1.3.3) a = tb+ r, where either r = 0 or d(r) < d(b).
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We define d(0) = —o0.

Standard examples of Euclidean domains are Z and F[z], see Problem

Lemma 1.3.6 Any ideal {0} # I C Dg is principal.
Proof. Let mingep oy d(2) = d(a). Then I is generated by a. O

Lemma 1.3.7 Let Q C C be a compact connected set. Then H(S) is
Dg. Here d(a) is the number of zeros of a nonzero function a € H(Q)
counted with their multiplicities.

Proof. Let a be a nonzero analytic functions on an open connected set
O D Q. Since each zero of a is an isolated zero of finite multiplicity, the
assumption that € is compact yields that a has a finite number of zeros in
Q. Hence d(a) < oo. Let p, be a nonzero polynomial of degree d(a) such
that ao := ;- does not vanish on 2. By the definition d(a) = d(pa) = deg p.
Let a,b € H(Q), ab# 0. Since C[z] is D we deduce that
pa(2) = t(2)pp(2) + r(2), r=0ord(r)<d(ps).

Hence
a= CZ—Otb +agr, aor =0ord(agr) =d(r) < d(py) = d(b).
0

O
The Weierstrass preparation theorem [GuR65] can be used to prove the
following extension of the above lemma to several complex variables:

Lemma 1.3.8 Let Q C C" be a compact connected set. Then H(Q) is
Dy .

Let aj,a2 € Dg\{0}. Assume that d(a1) > d(az). The FEuclidean
algorithm consists of a sequence ay, ..., ax+1 which is defined recursively as
follows:

(1.3.4) a; = tiai+1 + Qjr2, Q42 =0o0r d(ai+2) < d(ai+1).

Since d(a) > 0 the Euclidean algorithm terminates a1 # 0,...,a; # 0 and
ai+1 = 0. Hence

(1.3.5) (a1,a2) = a.
See Problem 3.

Problems
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1. Show that the following domains are Euclidean.

(a) Z, where d(a) = |a| for any a € Z.
(b) Flz], where d(p(x)) = deg p(z) for each nonzero polynomial
p(z) € Flz].

2. Let Q@ € C™ be an open set. Construct a nonzero function f depending
on one variable in , which has an infinite number of zeros in €.
Prove that f can not be decomposed to a finite product of irreducible
elements. Hence H(Q) is not Dy.

3. Consider the equation (1.3.3) for » # 0. Show that (a,b) = (a,r).
Using this result prove (1.3.5).

1.4 Factorizations in D[z]

Let F be the field of quotients of D. Assume that p(z) € D[z]. Suppose
that

p(x) = pr(x)pa(x),  pi(x),p2(z) € Fla].

We discuss the problem when p;(x),pa(z) € D[z]. One has to take in
account that for any ¢(x) € F[z]

(1.4.1) q(x) =——, p(z) €eDz], a €D.
Definition 1.4.1 Let
(1.4.2) p(x) = apx™ + -+ - + an, € D[z].

p(z) is called normalized if ag = 1. Let D be GCD domain and denote
c(p) = (ag, ..., am). p(x) is called primitive if c¢(p) = 1.

The following result follows from Problem 2.

Lemma 1.4.2 Let F be the quotient field of Dg. Then for any q(x) €
Flx] there exists a decomposition (1.4.1) where (¢(p),a) = 1. The polyno-
mial p(z) is uniquely determined up to an invertible factor in Dg. Further-
more,

(1.4.3) q(x) = gr(z), r(z) € Dglz], a,b € Dg,

where (a,b) = 1 and r(x) is primitive.
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Lemma 1.4.3 (Gauss’s lemma) Let p(z), q(x) € Dy[z] be primitive.
Then p(x)q(x) is primitive.

The proof of Gauss lemma follows from the following proposition.

Proposition 1.4.4 Let p,q € Dglx]. Assume that 7 € D is a prime
element which divides c¢(pq). Then 7 divides either c(p) or ¢(q).

Proof. Clearly, it is enough to assume that p,q # 0. We prove the
Proposition by induction on k = deg p+deg ¢q. For k = 0 p(z) = po, q(x) =
go. Hence ¢(pg) = pogo. Since 7|pogo we deduce that 7 divides either
po = c(p) or qo = c(q).

Assume that the proposition holds for k£ <[ and assume that k =11+ 1.
Let p = Y jaz’,q = Z?:o bjz?, where anb, # 0 and [ +1 = m + n.
So 7|pmqm. Without loss of generality we may assume that nontrivial case
7|pm and m > 0. Let r(z) = Y27 " a;z’. Since |c(pq) it is straightforward
that wc(rq). As degr + deg ¢ < I we deduce that 7|c(r)c(q). If 7|c(q) the
proposition follows. If 7|c(r) then 7|c(p) and the proposition follows in this
case too. U

Corollary 1.4.5 Let p(x) € Dylz] be primitive. Assume that p(x) is
irreducible in Flx], where F is the quotient field of Dy. Then p(x) is irre-
ducible in Dy [z].

Theorem 1.4.6 Let F be the quotient field of Dy. Then any p(xz) €
Dy [x] has unique decomposition (up to invertible elements in Dy ):

(1.4.4) p(z) =aq1 () qs(x), aq1,...,qs € Dylz], a € Dy,

where q1(x), ..., qs(x) are primitive and irreducible in F[z] and a has decom-
position (1.3.1). Hence Dy[z] is UFD.

See [Lan67] and Problems 3-5.

Normalization 1.4.7 Let F be a field an assume that p(z) € Flz] is
a nonconstant normalized polynomial in F[x]. Let (1.4.4) be a decompo-
sition to irreducible factors. Normalize the decomposition (1.4.4) by let-
ting q1(x), ..., qs(x) to be normalized irreducible polynomial in F[z]. (Then
a=1.)

Lemmas 1.4.3 and 1.4.5 yield (see Problem 5):
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Theorem 1.4.8 Let p(x) be a normalized nonconstant polynomial in
Dy[z]. Let (1.4.4) be a normalized decomposition in Fx], where F is the
quotient field of Dy. Then q1(x),...,qs(x) are irreducible polynomials in

]D)U [fE] .

Theorem 1.4.9 Let Q C C™ be a connected set. Assume that p(x) is a
normalized nonconstant polynomial in H(Q)[x]. Let (1.4.4) be a normalized
decomposition in M|z]|, where M 1is the field of meromorphic functions in
Q. Then each q;(z) is an irreducible polynomial in H(Q)[z].

Proof. By the definition of H({2) we may assume that p(z) € H(Qo)[z], ¢;(z) €
M(Qo)[z], 5 =1,...,s for some open connected 2y D Q. Let

(1.4.5) q(z,2) = 2" + Z g:gz

zeC, z €, ar(2),8-(2) € H ), =1, ...,t.

) xt—r
) b

Then ¢(z, z) is analytic on Qp\I', where I' is an analytic variety given by

F={ze: Hﬂ,.(z) = 0}.
r=1

Let 21(z),...,2¢(2) be the roots of ¢(z,z) = 0, which is well defined as
unordered set of functions {z1(z),...,z:(2)} on Q\I'. Suppose that each
2k (2) is bounded on some neighborhood O of a point ¢ € . Then each
gjég, which is the j symmetric function of {x1(z), ..., :(2), is bounded on

a;(z)

O. The Riemann extension theorem [GrH78] implies that G 18 analytic
in O. If each z(z) is bounded in the neighborhood of each ¢ € T" it follows

that g:g;g €H(Q), k=1,...t

The assumption that p(x, z) is a normalized polynomial in H () yields
that all the roots of p(x,z) = 0 are bounded on any compact set S C .
The above arguments show that each ¢;(x,z) in the decomposition (1.4.4)

of p(z, z) is an irreducible polynomial in H(Q)[z]. O

Problems

1. a1,...,a € D\{0} are said to have the least common multiple,
denoted by lem(aq,...,ax) and abbreviated as the lem, if the fol-
lowing conditions hold. Assume that b € D is divisible by each
a;,i = 1,...,k. Then lem(aq,...,ar)|b. (Note that the lem is de-
fined up to an invertible element.) Let D be GCD domain. Show
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— _a1a2
(a1,a2)"

(a) lem(ay,az)

(b) For k > 2 lem(aq,...,a;) = lem(ay,..,ak -1 )an

~ (Iem(a1,...,ax—1),ak) "

2. Let F be the division field of Dg. Assume that 0 # ¢(z) € Flz].

Write q(z) = >, %xz where a;,b; € Dg\{0} for each ¢ € I, and
I'={0<4y <... <} is a finite subset of Z,. Let af = %55, b; =

b for i € I. Then (1.4.1) holds, where a = lem(aj,, ..., a;,)

(ai;b;) ) gy

and p(r) = ) ;c; bé,axi. Show that (¢(p),a) = 1. Furthermore, if

i

q(z) = @ for some r(z) € Dg(z], ¢ € D¢ then ¢ = ea,r(x) = ep(x)
for some e € D\ {0}.

3. Let p(z) be given by (1.4.2) and put
q(x) = box™ + -+ by, 7(x) =p(x)q(x) = o™ + -+ Cotn-

Assume that p(x),q(x) € Dy[z]. Let 7 be an irreducible element in
Dy such that

mlai, i =0,..,a, 7bj, j=0,...,0, 7|catpt2-
Then either m|ag4+1 or 7|bgy1.

4. Prove that if p(z), ¢(x) € Dy[z] then ¢(pg) = c(p)c(q).

Deduce from the above equality Lemma 1.4.3. Also if p(x) and ¢(z)
normalized polynomials then p(x)q(x) is primitive.

5. Prove Theorem 1.4.8.

6. Using the equality D[z1, ..., Zp—1][zn] = D[4, ..., x,] prove that Dy [x, ...
is UFD. Deduce that F[z1, ..., z,] is UFD.

1.5 Elementary Divisor Domain

Definition 1.5.1 D¢ is elementary divisor domain, or simply EDD
and denoted by (Dgp), if for any three elements a,b,c € D there exists
p,q,x,y €D such that

(1.5.1) (a,b,¢) = (px)a + (py)b + (gy)e.

By letting ¢ = 0 we obtain that (a,b) is a linear combination of a and b.
Hence an elementary divisor domain is a Bezout domain.
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Theorem 1.5.2 Let D be a principal ideal domain. Then D is an ele-
mentary divisor domain.

Proof. Without loss of generality we may assume that abc # 0, (a, b, ¢)
1. Let (a,¢) = d. Since D is Dy ([Lan67]), we decompose a = a’a”, where in
the prime decomposition (1.3.1) of a, a’ contains all the irreducible factors
of a, which appear in the decomposition of d to irreducible factors. Thus
(1'52) a = ala,/? (a/’ a”) = 17 (a/7c) = (a7 C)’ (a,/7c) = 1’

and if @, f are not coprime then ¢, f are not coprime.
Hence there exists ¢ and a such that
(1.5.3) b—1=—gc+ad".

Let d' = (a,b+ qc). The above equality implies that (d’,a”) = 1. Suppose
that d’ is not coprime with a’. Then there exists a noninvertible f such that
f divides d' and a’. According to (1.5.2) (f,¢) = f" and f’ is not invertible.
Thus f/|b which implies that f’ divides a,c and b. Contradictory to our
assumption that (a,b,¢) = 1. So (d’,a’) = 1 which implies (d’,a) = 1.
Therefore there exists z,y € D such that za + y(b + g¢) = 1. This shows
(1.51) withp=1. O

Theorem 1.5.3 Let Q C C be a connected set. Then H(Y) is an ele-
mentary divisor domain.

Proof. Given a,b,c € H(Q2) we may assume that a,b,c € H(y) for
some open connected set 2y D ). Theorem 1.2.6 yields

(L54)  (a:b.¢) = (4, (5,0)) = a+y(b,c) = a+y(b+qo).

a

Problems

1. D is called adequate if for any 0 # a,c € D (1.5.2) holds. Use the
proof of Theorem 1.5.2 to show that any adequate Dp is Dgp.

2. Prove that for any connected set  C C, H(Q?) is an adequate domain
([Hel43]).

1.6 Modules

Definition 1.6.1 M is an abelian group if it has a binary operation,
denoted by +, which satisfies the conditions (1.1.1 — 1.1.5).
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Definition 1.6.2 Let S be a ring with identity. An abelian group M,
which has an operation +, is called a (left) S-module if for eachr € S, v €
M the product rv is an element of M such that the following properties
hold:

r(vi+ve) =rvy+1rve, (r1+7r)v=r1v+rov,
(1.6.1)

(rs)v=r(sv), 1lv=wv.

N C M is called a submodule if N is an S-module.
Assume that S does not have zero divisors. (Le. if r,s € S and rs =0
then either r =0 or s =0.) Then M does not have zero divisors if

(1.6.2) rv =0 if and only if v.=0 for any r # o.

Assume that D is a domain. Then M is a called a D-module if in addition
to the above property M does not have zero divisors.

A standard example of S-module is
(1.6.3) S = {v=(v1,.,0m) : v €S, i=1,..,m},

where

u+vs= (ul + Ul eeey Um + Um)Tv

(1.6.4)
)T

A= (TUL, ooy TUR) , T ES.

Note that if S does not have zero divisors then S™ is an S-module with no
zero divisors.

Definition 1.6.3 A D-module M is finitely generated if there exist n-
elements (generators) vi,...,vy, € M such that any v € M is of the form

(1.6.5) v=>avi, aeD i=1,.n

=1

If each v can be expressed uniquely in the above form then vi,...,v, is
called a basis in M, and M is said to have a finite basis. We denote by
[Vi, ..., V] @ basis in M.

Note that D™ has a standard basis v; = (0;1,...,0in) ,i=1,...,n.
Let F be a field. Then an F-module is called a vector space V over F. It
is a standard fact in linear algebra [HJ88] that a finitely generated V has
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a finite basis. A finitely generated vector space is called finite dimensional.
The number of vectors of a basis for a finite dimensional vector space V
is constant. It is called the dimension of V, and is denoted by dim V. A
submodule of V is called a subspace of V.

Let M be a D-module with a finite basis. Let F be a quotient ring of D.
It is possible to imbed M in a vector space V by considering all vectors v
of the form (1.6.5), where a; € F, i = 1,...,n. (For more general statement
see Problem 1.) Thus dim V = n. Using this fact we obtain:

Lemma 1.6.4 Any two finite bases of a D module contain the same
number of elements dim V.

One of the standard examples of submodules in D" is as follows. Con-

sider the linear homogeneous system

n
(1.6.6) Zaijacj =0, Qij,Tj € D, i=1,....m, j=1,...,n.
j=1

Then the set of solutions x = (7, ...,Jcn)—r is a submodule of D™. In §1.12
we show that the above module has a basis if D is a Bezout domain.

Definition 1.6.5 Let M be a module over . Assume that M; is
a submodule of M for i = 1,...,k. Then M is called a direct sum of
M,,..., My, and denoted as M = ©F_ M, if every element m € M can

. . k
be expressed in unique way as a sum m =y

i—, m;, where m; € M; for
i=1,...,k.

Definition 1.6.6 Then ring of quaternions H is a four dimensional
vector space over R with the basis 1,1, j,k, i.e. vectors of the form
(1.6.7) q=a+bi+cj+dk, a,bcdeR,
where
(16.8) i2=j*=k*=—1,ij=—ji=k, jk=—kj=i, ki= —ik =j.

It is known that H is a noncommutative division algebra over R. See
Problem 5.

Problems

1. Let M be a finite generated module over D. Let F be the quotient
field of D. Show
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(a) Assume that M is generated by a,,...,a,. Let N = {x =
(T1y. . zm) " €D™, 3" x;a; = 0}. Then N is a D-module.

(b) Let U C F™ be the subspace generated by all vectors in N. (Any
vector in U is a finite linear combination of vectors in N.) Then
any vector in u € U is of the form %b, where b € N.

(c) Let V.=TF™/U. (V can be constructed as follows. Assume that
dim U = [. Pick a basis [u,, ..., ] in U and complete this basis
to a basis in F™. So [u,,...,u;, Wy,..., W] is a basis in F"™.
Let W = span (w,,...,W,,—;). Then any vector in V is of the
form of a coset w + U for a unique vector w € W.)

(d) Define ¢ : M — V as follows. Let a € M and write a =
> aiay. Set ¢(a) = (ay,...,am)" +U. Then

i. ¢ is well defined, i.e. does not depend on a particular rep-
resentation of a as a linear combination of a,, ..., a,,.
ii. ¢(a) =¢(b) <= a=h.
ili. ¢(aa+ bb) = ap(a)+ be(b) for any a,b € D and a,b € M.
iv. For any v € V there exists a € D and a € M such that
o(a) = av.

(e) Let Y be a finite dimensional vector space over F with the fol-

lowing properties.

i. There is an injection ¢ : M — Y, i.e. ¢ is one to one, such
that ¢(am + bn) = ap(m) + bp(n) for any a,b € D and
m,n € M.

ii. For any y € Y there exists a € D and m € M such that
¢(m) = ay.

Then dim X = dim V, where V is defined in lc.

Definition 1.6.7 D-module M is called k-dimensional, if M is
finitely generated and dim 'V = k.

2. Let M be a D-module with a finite basis. Let N be a submodule of

M. Show that if D is Dp then N has a finite basis.

. Let M be a D-module with a finite basis. Assume that N is a finitely

generated submodule of M. Show that if D is Dp then N has a finite
basis.

. Let M be a module over ID. Assume that M; is a submodule of M

fori=1,...,k. Then N := M, + ...+ My is the set of all m of the
form m, + ...+ my, where m; € M, for i =1,...,k. Show
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(a) N is a submodule of M.
(b) N*_ N; is a submodule of M.
(c) Assume that M,,...,My are finitely generated. Then N is
finitely generated and dim N < 2521 dim M;.
(d) Assume that M,,..., M}, are have bases and N = @©F_ M.
Then N has a basis and dim NI = Zle dim M;.
5. Show

(a) H can be viewed as C?, where each q € H of the form (1.6.7)
can be written as q = z + wj, where z = a + bi,w = ¢+ di € C.
Furthermore, for any z € C, jz = Zj.

(b) H is a ring with the identity 1 =1 + 0i 4 0j + Ok.

(¢) (rq)s = q(rs) for any q,s € H and r € R. Hence H is an algebra
over R.

(d) Denote |q| = Va2 + b2 +c2 +d?, q=a—bi—cj— dk for any q
of the form (1.6.7). Then qq = qq = |q|>. Hence |q|~2q is the
right and the left inverse of q # o.

1.7 Algebraically closed fields

Definition 1.7.1 A field F is algebraically closed if any polynomial
p(z) € Flx] of the form (1.4.2) splits to linear factors in F:

m

(171) p(x) = Qo H(‘T - 52)7 52 € ]Fa i=1,..,m, ap 7& 0.

i=1

The classical example of an algebraically closed field is the field of complex
numbers C. The field of real numbers R is not algebraically closed.

Definition 1.7.2 Let K D F be fields. Then K is an extension field of
F. K is called a finite extension of F if K is a finite dimensional vector
space over F. The dimension of the vector space K over F is called the

degree of K and is denoted by [K : F].

Thus C is a finite extension of R of degree 2. It is known [Lan67], see
Problems 1-2:

Theorem 1.7.3 Let p(z) € Flx]. Then there exists a finite extension
K of F such that p(x) splits into linear factors in K|x].
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The classical Weierstrass preparation theorem in two complex variables
is an explicit example of the above theorem. We state the Weierstrass
preparation theorem in a form needed later [GuR65].

Theorem 1.7.4 Let Hy be the ring of analytic functions in one variable
in the neighborhood of the origin 0 € C. Let p(\) € Hy[A] be a normalized
polynomial of degree n

(1.7.2) PN 2) = X"+ a;(2)A", aj(z) €Hy, j=1,...n.
j=1
Then there exists a positive integer s|n! such that
(1.7.3) P w) =[N = XA(w), Aj(w) €Hg, j=1,...,n.
j=1

In this particular case the extension field K of F = Mg is the set of multi-
valued functions in z, which are analytic in z© in the neighborhood of the
origin. Thus K = Mo (w), where

(1.7.4) w’® = z.

The degree of K over F is s.

Problems

1. Let F be a field and assume that p(z) = 2% + agz?' + ...+ a; €
F[z], where d > 1. On the vector field F? define a product as fol-
lows. (b1,...,bq)(c1,.--,¢q) = (r1,...,74), where (r1,...,rq) de-
fined as follows. Let b(z) = Z?Zl birt~t c(r) = Z?:l cixt~ r(z) =
Z?Zl r;z'~1. Then r(zx) is the remainder of b(z)c(z) be the division
by p(z). Le. b(x)c(x) = g(x)p(z) + r(x) where deg r(z) < d. Let Py
be F¢ with the above product.

Show
(a) P4 is a commutative ring with identity e, = (1,0,...,0).
(b) F is isomorphic to span (e, ), where f — fe,.
(C) Let e; = (611’; .. .,(5di),i =2,.. .,d. Then
e;:el-‘riaizoa"'vd_la p(e2):0'

(d) Pg4 is a domain if and only if p(z) is an irreducible polynomial
over F[z].
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(e) Pgis a field if and only if p(z) is an irreducible polynomial over

(f) Assume that p(z) € F[z] is irreducible. Then K := Py is an
extension field of F with [K : F] = d. Furthermore p(z) viewed
as p(x) € K[z] decompose to p(z) = (x — e,)q(z), where ¢(z) =
2 gl e Klal.

2. Let F be a field and p(z) € Flx]. Show that there exists a finite
extension field K such that p(z) splits in K. Furthermore [K : F] <

(deg p)!

1.8 The resultant and the discriminant
Let D be an integral domain. Suppose that
(1.8.1) p(z) = apz™ + - + am, q(x) = box™ + - + by € D[z].

Assume furthermore that m,n > 1 and agby # 0. Let F be the quotient
field D and assume that K is a finite extension of F such that p(x) and ¢(x)
split to linear factors in K. That is

m

p(x):aol_[(x_gi)7 fZEKa izla"wma 0,07&0.
i=1

(1.8.2)

q(fl]):bo H(x_nj)a 77] EKu j:177n7 b07é0
j=1

Then the resultant R(p, q) of p, ¢ and the discriminant D(p) of p are defined
as follows.

m,n

R(p,q) = agby” [ (& —ny)

i,j=1
(1.8.3)
D(p)=ag™ Y T (&-€)*

1<i<j<m

It is a classical result that R(p,q) € Dlag, ..., @m,bo, ..., bn] and D(p) €
Dlag, ..., am], e.g. [vdW59]. More precisely, we have.
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Theorem 1.8.1 Let

a=(ag,...,am) € D™ b= (by,...,b,) € D"

Then R(p,q) = det C(a,b), where

apgp ai; ag A, 0 0 .. 0
0 ay a1 v Q1 am 0 .. 0
_ 0O 0 0 aop ay ag Am
Clab)=| b . bs by b, O .. 0
0 by b vee bpo by1 b, O
. 0 0 O bo by b2 bn |

is an (m 4+ n) x (m + n) matriz.

Proof. Let F be the quotient field of D, and assume that p, ¢ € D[z]
split in a finite extension field K of F. Let ¢(x) = Z?:_Ol cix" T d(x) =
Z;n;ol djz™ I € Flz]. Then c(z)p(x)+d(z)g(z) = Sint gamtn—1-L,
Denote

f = (o, sCn1,dos-ydm—1),8 = (Jos-++,Gmin_) € DT A
straightforward calculation show that fC(a,b) = g.

Assume that det C'(a,b) # o. Let f = (0,...,0,1)C(a,b)™*. Hence
there exists c¢(z),d(z) € F[x] of the above form such that c(z)p(x) +
d(x)q(x) = 1. Hence p, ¢ do not have common zeros in K.

We now show that if agby # 0 then R(p,q) = det C(a,b). Divide the
first n rows of C'(a,b) by ag and the last m rows of C(a,b) by by, to
deduce that it is enough to show the equality R(p,q) = det C(a,b) in the
case ag = by = 1. Then p(z) = [[[2 (x — w), q(x) = [[j_, (z — vj) € K[z].
Recall that (—1)’a; and (—1)7b; the i —th and j —th elementary symmetric
polynomials in uq,...,u,, and vy, ...,v,, respectively:

(184) ai=(-1" > w,..w, i=1,...,m,

1<h <...<li<m

bj:(—l)J E vy -V, j:l,...,n.
1<l <..<l;<n
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Then C(a,b) is a matrix with polynomial entries in u = (uy, ..., up), v =
(vq,...,0,). Hence s(u,v) := det C(a, b) is a polynomial in m+n variables.

Assume that u;, = v; for some ¢ € [1,m],j € [1,n]. Then p(z) and ¢(z)
have a common factor x — u; =  — v;. The above arguments shows that
s(u,v) = o. Hence s(u,v) is divisible by t(u,v) = [[;Z];_, (u; — v;). So
s(u,v) = h(u,v)t(u,v), for some polynomial h(u,v).

Consider s(u,v),t(u,v),h(u,v) as polynomials in v with coefficients
in D[u]. Then deg ,t(u,v) = nm and the term of the highest degree is
(=1)™™o ... v, Observe next that the contribution of the variables v in
det C(a,b) comes from it last m rows. The term of the maximal degree in
each such row is n which comes only from b, = (—1)"v; ...v,. Hence the
coefficient of the product b)) comes from the minor of C'(a,b) based on the
first n rows and columns. Clearly, this minor is equal to af = 1. So h(u,v)
is only polynomial in u. Furthermore h(u) = 1.

a

If F is a field of characteristic 0 then
(1.8.5) D(p) = £ag ' R(p,p).

Note that if a;, b; are given the weight ¢ for ¢ = 0, ..., then R(p,q) and D(p)
are polynomials with total degrees mn and m(m — 1) respectively. See
Problem 4.

Problems

m

1. Let D be a domain and assume that p(z) = 2™, ¢(x) = (z+1)". Show

(a) R(p,q) =1.

(b) Let a = (1,0,...,0) € D™ b = ((3),(}),-.-, () € DL
) 1.8.1.

( n
Let C(a, b) be defined as in Theorem Then det C(a,b) =
1.

2. Let u = (uy,...,um),v = (v1,...,0,). Assume that each a; €
D[u],b; € D[v], is a multilinear polynomial for ¢ = 0,...,m,j =
0,...,n. (The degree of a;,b; with respect to any variable is at most
1.) Let C(a,b) be defined as in Theorem 1.8.1. Show that det C'(a, b)
is a polynomial of degree at most n and m with respect to u; and v,
respectively, for any i =1,... . mand j=1,...,n.

3. Let the assumptions of Theorem 1.8.1 hold. Show

(a) If ap = by then det C(a,b) = 0.
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(b) Assume that p(z) is not a zero polynomial and ag = 0,by # 0.
Then det C(a,b) = 0 if and only if p and ¢ have a common root
in an extension field K of IF, where p and ¢ split.

4. Let C(a,b) be defined as Theorem 1.8.1. View det C'(a, b) as a poly-
nomial F(a,b). Assume that the weight w(a;) = i,w(b;) = j. Then
the weight of a monomial in the variables a,b is the sum of the
weights of each variable times the number of times in appears in this
monomial. Show

(a) Each nontrivial monomial in F'(a,b) is of weight mn.

(b) Assume as in the proof of Theorem 1.8.1 that ag = by = 1 and a;
and b; are the i—th and j—th elementary symmetric polynomials
in u and v respectively. Then each nontrivial monomial in u, v
appearing in F'(a(u),b(v)) is of total degree mn.

1.9 The ring Flzy, ..., ;]

In 1.2 we pointed out that F[zq,...,2,] is not Dp for n > 2. It is known
[Lan67] that Flxy, ..., z,] is Noetherian:

Definition 1.9.1 D is Noetherian, denoted by Dy, if any ideal of D is
finitely generated.

In what follows we assume that F is algebraically closed. Let p1,...,px €
Flx1, ..., 2,]. Denote by U(py, ..., pr) the common set of zeros of py, ..., pg:

(1.9.1) U1, epr) = {x= (21, .,zn)’ : pj(x) =0, j=1,....k}.

U(p1, ..., pr) may be an empty set. U(py, ..., p) is called an algebraic variety
(in F™). It is known [Lan67] that any nonempty variety in F™ splits as

(1.9.2) U=U,Vi,

where each V; is an irreducible algebraic variety, which is not contained in
any other V;. Over C each irreducible variety V' C C" is a closed connected
set. Furthermore, there exists a strict subvariety W C V (of singular points
of V') such that V\W is a connected analytic manifold of complex dimension
din C". dim V :=d is called the dimension of V. If d = 0 then V consists
of one point. For any set U C F™ let I(U) be the ideal of polynomials
vanishing on U:

(1.9.3) IU)={p eFlxy,...,x,]: p(x)=0, Vx € U}.
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Theorem 1.9.2 (Hilbert Nullstellensatz) Let IF be an algebraically closed
field. Let I C Flxy,...,zy] be an ideal generated by p1, ..., px. Assume that
g € Flxy,....,z,]. Then g7 € I for some positive integer j if and only if

Corollary 1.9.3 Let p1,...,pi € Flxy,...,2,], where F is algebraically
closed field. Then py, ..., pi generate F[xq, ..., x,] if and only if U(p1, ..., pr) =
0.

1.10 Matrices and homomorphisms

Notation 1.10.1 For a set S denote by S™*™ the set of all m x n

matrices A = [a;;];_;21"", where each a;; € S.

Definition 1.10.2 Let M, N be D-modules. Let T : N — M. T is a
homomorphism if

(1.10.1) T(au+bv) =aTu+bTv, forallu,veN, a,beD.
Let
Range T = {ueM: u=7v,veN}
Ker T = {veN: Tv=0},

be the range and the kernel of T. Denote by Hom(IN,M) the set of all
homomorphisms of N to M.

T € Hom(N,M) is an isomorphism if there exists Q@ € Hom(M, N)
such that QT and TQ are the identity maps on M and N respectively. M
and N are isomorphic if there exists an isomorphism T € Hom(IN, M).

Hom(N, M) is a D-module with
(aS+bT)v=aSv+blv, a,beD, S,T € Hom(N,M), v € N.

Assume that M and N have finite bases. Let [uy, ..., u,,] and [vy, ..., v;,]
be bases in M and N respectively. Then there exists a natural isomorphism
between Hom(IN, M) and D" *". For each T' € Hom(IN, M) let A = [a,5] €
D™*™ be defined as follows:

(1.10.2) Tv;=> aijwi, j=1,..,n
i=1
Conversely, for each A = [a;;] € D™*" there exists a unique T' € Hom(N, M)

which satisfies (1.10.2). The matrix A is called the representation matrix
of T in the bases [uy, ..., U] and [vy, ..., v,].
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Notation 1.10.3 For a positive integer n. denote [n] = {1,...,n}. For
k € [n] denote by [n]i the set of all subsets of [n] of cardinality k. Each o €
[n]g is represented by (a1, ..., ar), where aq,...,qr are integers satisfying
1< <...<ap <n.

Definition 1.10.4 Let D be a domain and A € D™*™. Assume that
a = (ar,...,a5) € mlg, 8 = (61,...,01) € [n)i. Denote by Ala, 5] =
[aaiﬁj]ﬁ,jZI the k x | submatriz of A. For k =1, det Ala, 5] is called an
(a0, B) minor, k-minor, or simply a minor of A. The rank of A, denoted by
rank A, is the mazimal size of a nonvanishing minor of A. (The rank of
the zero matrixz is 0.) The nullity of A, denoted by nul A, is n —rank A.

Any A € D™*™ can be viewed as T € Hom (D™, D™), where Tx := Ax, x =
(71, ...,7,) . We will sometime denote 7' by A. If D is Dp then Range A
has a finite basis of dimension rank A (Problem 1).

We now study the relations between the representation matrices of a
fixed T' € Hom(N, M) with respect to different bases in M and N.

Definition 1.10.5 U € D"*" is called invertible (unimodular) if det U
is an invertible element in D.

Proposition 1.10.6 U € D"*™ is invertible if and only if there exists
V e D™ such that either UV or VU is equal to the identity matriz I.

Proof. Let F be the divison field of . Assume first that det U is an
invertible element in ID. Then U is an invertible matrix in F™*", where

1
(1.10.3) Ut = iy MU

(1.10.4)  adj A= [(—1)"det Al[n] \ {7}, [n] \ {e}]]iz;=1-
Clearly V := U~! € D"*". Assume now that there exists V' € D™*" such

that VU = I. Then 1 = det VU = det Vdet U and det U™ = det V € D.
Similarly det U is invertible in D if UV = I. O

Notation 1.10.7 Denote by GL(n,D) the group of invertible matrices
in D™,

Lemma 1.10.8 Let M be a D-module with a finite basis [Qy, ..., Uy].
Then [uy, ..., U] s a basis in M if and only if the matriz Q = [qx;] € D™*™
given by the equalities

(1.10.5) W= gy, i=1,...,m,
k=1

is an invertible matriz.
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Proof. Suppose first that [uy, ..., u,,] is a basis in M. Then
(1.10.6) =Y mpw, k=1,..,m
1=1

Let R = [ry]7". Insert (1.10.6) to (1.10.5) and use the assumption that
[ug, ..., u;] is a basis to obtain that RQ = I. Proposition 1.10.6 yields that
Q € GL(m,D). Assume now that @ is invertible. Let R = Q~!. Hence
(1.10.6) holds. It is straightforward to deduce that [qy, ..., U] is a basis in
M. O

Definition 1.10.9 Let A, B € D™*"™. Then A and B are right equiv-
alent, left equivalent and equivalent if the following conditions hold respec-
tively:

(1.10.7)B= AP for some P € GL(n,D) (A ~, B),
(1.10.8) B= QA for some @ € GL(m,D) (A ~; B),
(1.10.9) B = QAP for some P € GL(n,D), Q € GL(m,D) (A~ B).

Clearly, all the above relations are equivalence relations.

Theorem 1.10.10 Let M and N be D-modules with finite bases having
m and n elements respectively. Then A, B € D"™*™ represent some T €
Hom (N, M) in certain bases as follows:
(1) A ~; B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.10) U1, ..., Up), [Vi,er, V] and  [Q1, ..., U], [V1, .oy Vi)

(r) A ~, B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.11) Ui, ..., up), [Vi,.., vp] and  [ug,...,up], [V1,..., Vp].

(e) A ~ B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.10.12) U1, .y U], [Vi, e, V] and  [Q1, ..., @), [V1, .., Vil

Sketch of a proof. Let A be the representation matrix of 7" in the bases
[ui, ..., uy] and [vy,...,v,] given in (1.10.2). Assume that the relation be-
tween the bases [uy, ..., U] and [@1, ..., Wy, ] is given by (1.10.5). Then

m

m
TVj = E aiju,» = E qkiaijﬁk, ] = 1, ceey N
=1 i=k=1
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Hence the representation matrix B in bases [y, ..., Uy,] and [vy,...,v,] is
given by (1.10.8).
Change the basis [v,, ..., Vy,] to [V1, ..., V] according to

V= Zpljvl, j=1,..,n, P=Ipj] € GL(n,D).
=1

Then a similar computation shows that 7' is presented in the bases [uy, ..., U]
and [V1,...,V,] by AP. Combine the above results to deduce that the rep-
resentation matrix B of T in bases [Qy, ..., Uy,] and [V1,...,V,] is given by
(1.10.9). O

Problems

1. Let A € DF*". View A a as linear transformation from A : D} —
D%. to show that Range A is a module with basis of dimension
rank A. (Hint: Use Problem 1.6.3.)

2. For A, B € D"™*" show.

(a) If A ~; B then Ker A = Ker B and Range A and Range B are
isomorphic.

(b) A ~, B then Range A = Range B and Ker A and Ker B are
isomorphic.

1.11 Hermite normal form
We start this section with two motivating problems.

Problem 1.11.1 Given A, B € D"™*™. When are A and B
(1) left equivalent;
(r) right equivalent;
(e) equivalent.

Problem 1.11.2 For a given A € D™*™ characterize the equivalence
classes corresponding to the left equivalence, to the right equivalence and to

the equivalence relation as defined in Problem 1.11.1.

For D¢ the equivalence relation has the following natural invariants:
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Lemma 1.11.3 For A € DZ™" let

pla, A) = g.cd. ({det Ala, 0], 0 € [n]r}, «€ [m]k),
(1.11.1) v(B, A) :==g.c.d. ({det A[p, 3], ¢ € [m })7 B € [n]k,
k(A) := g.c.d. ({det A[¢,0], ¢ € [m]y, 0 € [n]x}),

(0x(A) is called the k-th determinant invariant of A.) Then

wla, A) = p(a, B) forall« € [m], if A~, B,
(1.11.2) v(B,A)=v(B,B) forall g€ [n], if A~ B,
Su(A) = 6,(B) if A~ B,

for k=1,..,min(m,n). (Recall that for a,b € D a =b if a = be for some
invertible c € D.)

Proof. Suppose that (1.10.7) holds. Then the Cauchy-Binet formula
(e.g. [Ganb9]) implies

det Bla,v] = Z det Alw, 8]det P[0, ].
0€n]k

Hence p(a, A) divides p(a, B). As A = BP~! we get u(a, B)|u(a, A).
Thus p(a, A) = p(a, B). The other equalities in (1.11.2) are established in
a similar way. |

Clearly
(1.11.3) A~y B «— AT ~,. BT, A,BeD™*".

Hence it is enough to consider the left equivalence relation. We characterize
the left equivalence classes for Bezout domains Dg. To do that we need a
few notations.

Recall that P € D™*™ is called a permutation matrix if P is a matrix
having at each row and each column one nonzero element which is equal to
the identity element 1. A permutation matrix is invertible since P~! = PT.

Definition 1.11.4 Let II,, C GL(n,D) be the group of n X n permuta-
tion matrices.

Definition 1.11.5 An invertible matriz U € GL(n,D) is called simple

if there exists P,Q € 11,, such that
vV 0
(1.11.4) U=P [0 In2:|
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where

(1.11.5) V= [‘;‘ g] € GL(2,D), (ad — By is invertible).

U is called elementary if U is of the form (1.11.4) and

(1.11.6) V= [g g] € GL(2,D), and «, ¢ are invertible.

Definition 1.11.6 Let A € D™*™. The following row (column) opera-
tions are called elementary:
(a) interchange any two rows (columns) of A;
(b) multiply row (column) ¢ by an invertible element a;
(¢c) add to row (column) j b times row (column) i (i # j).
The following row (column) operation is called simple:
(d) replace row (column) i by a times row (column) @ plus b times row
(column) j,
and row (column) j by ¢ times row (column) i plus d times row (column) j,
where i # j and ad — be is invertible in D.

Tt is straightforward to see that the elementary row (column) operations
can be carried out by multiplication of A by a suitable elementary matrix
from left (right), and the simple row (column) operations are carried out
by multiplication of A by a simple matrix U from (left) right.

Theorem 1.11.7 Let Dp be a Bezout domain. Let A € DG*™. Assume
that rank A =r. Then there exists B = [b;;| € D'} ™™ which is equivalent to
A and satisfies the following conditions:

(1.11.7) i — th row of B is a nonzero row if and only if i < r.
Let by, be the first nonzero entry in i-th row for i =1,....,r. Then
(1.11.8) 1<ni<ng<---<n.<n.

The numbers ny, ...,n, are uniquely determined and the elements by, © =
1,...,r, which are called pivots, are uniquely determined, up to invertible
factors, by the conditions

V((nl,...,ni),A) :b1n1 "'binia Z: 1,...,’[",
(1.11.9)
viobA) =0, a € Qin,—1, =1,...,1
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For1 < j < i<, adding to the row j a multiple of the row i does not
change the above form of B. Assume that B = [b;;],C = [c;j] € D™*" are
left equivalent to A and satisfy the above conditions. If bjn, = cjn,, § =
1,.yi,i = 1,...,7 then B = C. The invertible matrix Q@ which satisfies
(1.10.8) can be given by a finite product of simple matrices.

Proof. Clearly, it is enough to consider the case A # 0, i.e. » > 1. Our
proof is by induction on n and m. For n = m = 1 the theorem is obvious.
Let n = 1 and assume that for a given m > 1 there exists a matrix @,
which is a finite product of simple matrices, such that the entries (i,1) of

Q are zero for i = 2,...,m if m > 2. Let A1 = [a;1] € ]D)SB,"H'DXl and denote
by A the submatrix [a;1]7",. Set
_|Q@ 0
a=|2 Y.
Then the (i,1) entries of Ay = [ag)] = @Q1A; are equal to zero for i =

2,...,m. Interchange the second and the last row of A to obtain As.
Clearly Az = [al(-:f)] = Q2 A, for some permutation matrix Q2. Let Ay =
(aﬁ), ag‘?)—r. As Dp is Bezout domain there exists a, 8 € Dp such that

(1.11.10) aaf} + Basy = (i}, al}) = d.
As («, 8) = 1 there exists v, € D such that
(1.11.11) ad — By = 1.

Let V be a 2 x 2 invertible matrix given by (1.11.5). Then

weva [

Lemma 1.11.3 implies v((1), As) = v((1), A4) = d. Hence d’ = pd for some
p € Dg. Thus

M WA, W= [ 1 0] € GL(2,Dp).

0 - 1
Let W 0 1% 0
@ = [0 ImJ {o Iml} '
Then the last m rows of Ag = [al(?)] = (@Q3As3 are zero rows. So a(ﬁ) =

v((1), Ag) = v((1), A1) and the theorem is proved in this case.
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Assume now that we proved the theorem for all A; € DE*" where

n<p Letn=p+1land A € DP*PTY Let 4, = lai;]ii—;. The

induction hypothesis implies the existence of @1 € GL(m,Dg), which is

a finite product of simple matrices, such that B = [bg;)];izz.:l = Q14
satisfies the assumptions of our theorem. Let nf,...,n} be the integers
defined by A;. Let By = [b\))7_ = QiA. If b)) = 0 for i > s then

n; =n}, ¢ =1,...,s and By is in the right form. Suppose now that bl(»,ll) #£0
for some s < ¢ < m. Let By = [bE})]gSH € ngmfs)“. We proved above

that there exists Q2 € GL(m—s,Dp) such that Q2 B> = (c,0,...,0)T, ¢ # 0.

Then
I 0
Bs=|7° B
: [0 QJ :

is in the right form with
— 1 — — —
s=r—1,n=ny,. N1 =Np_q1, N =N.

We now show (1.11.9). First if « € [n; — 1]; then any matrix B[f|a], 8 €
[m]; has at least one zero row. Hence det B[f|a] = 0. Therefore v(a, B) =
0. Lemma 1.11.3 yields that v(a, A) = 0. Let @ = (n1,...,m;). Then
B[B|a], B € [m];. Then B[B|a] has at least one zero row unless 3 is equal
to vy =(1,2,...,7). Therefore

v(a, A) = v(a, B) = det Blyla] = biy, -+ bin, # 0.

This establishes (1.11.9).

It is obvious that b1, ..., by, are determined up to invertible elements.
For 1 < j < ¢ < r we can perform the following elementary row operation
on B: add to row j a multiple of row ¢. The new matrix C' will satisfy the
assumption of the theorem. It is left to show that if B = [b;;],C = [¢;5] €
DE*™ are left equivalent to A, have the same form given by the theorem
and satisfying

(1.11.12) bjng = Cjnyy J=1,.,4, i=1,..,r
then B = C. See Problem 1. O

A matrix B € D)5*" is said to to be in a Hermite normal form, abbre-
viated as HNF, if it satisfies conditions (1.11.7-1.11.8).

Normalization 1.11.8 Let B = [b;;] € DE*" in a Hermite normal
form. If by, is invertible we set bp, =1 and bj,, =0 fori < j.
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Theorem 1.11.9 Let U be an invertible matriz over a Bezout domain.
Then U is a finite product of simple matrices.

Proof. Since det U is invertible, Theorem 1.11.7 yields that b;; is in-
vertible. Normalization 1.11.8 implies that the Hermite normal form of U is
I. Hence the inverse of U is a finite product of simple matrices. Therefore
U itself is a finite product of simple matrices. O

Normalization 1.11.10 For Euclidean domains assume
(1.11.13) either bjn,, =0 or d(bjn,) < d(bin,) for j <i.

For Z we assume that bin, > 1 and 0 < by, < by, for j < i. For Flz] we
assume that b, is a normalized polynomial.

Corollary 1.11.11 Let Dy = Z,F[z]. Under Normalization 1.11.10
any A € DE*"™ has a unique Hermite normal form.

It is a well known fact that over Euclidean domains Hermite normal form
can be achieved by performing elementary row operations.

Theorem 1.11.12 Let A € DR*". Then B = QA, Q € GL(m,Dg)
where B is in a Hermite normal form satisfying Normalization 1.11.10 and
Q is a product of finite elementary matrices.

Proof. From the proof of Theorem 1.11.7 it follows that it is enough to
show that any A € GL(2,Dg) is a finite product of elementary invertible
matrices in GL(2,Dg). As I is the Hermite normal form of any 2 x 2
invertible matrix, it suffices to show that any A € ]D)%EX2 can be brought to
its Hermite form by a finite number of elementary row operations. Let

a; b;
A= " 1, A = PA,
Lli—&-l bi+1:| !

where P is a permutation matrix such that d(a;) > d(az). Suppose first
that as # 0. Compute a;y2 by (1.3.4). Then

o 1t -], .
A7;+1 = |:1 O:| |:O 1 :| Al, 1= 1,

As the Euclidean algorithm terminates after a finite number of steps we
obtain that axy; = 0. Then Ay is the Hermite normal form of A. If
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bi+1 = 0 we are done. If by41 # 0 substract from the first row of Ay a
corresponding multiple of the second row of Ay to obtain the matrix

B =% b d(bpy1) > d(bl)
- 0 bk+1 5 k+1 k/-

Multiply each row of B’ by invertible element if necessary to obtain Her-
mite’s form of B according to Normalization 1.11.10. We obtained B by

a finite number of elementary row operations. If a; = as = 0 perform the
Euclid algorithm on the second column of A. |

Corollary 1.11.13 Let U € GL(n,Dg). Then U is a finite product of
elementary invertible matrices.

Corollary 1.11.14 Let F be a field. Then A € F™*™ can be brought to
its unique reduced row echelon form given by Theorem 1.11.7 with

bin, =1, bjn, =0, j=1,.,i—1,i=1,..,r

by a finite number of elementary row operations.

Problems

1. Show

(a) Let A,B € D™*™ be two upper triangular matrices with the
same nonzero diagonal entries. Assume that QA = B for some
Q € D™*™. Then @ is un upper triangular matrix with one on
the main diagonal. (Hint: First prove this claim for the quotient
field F of D.)

(b) Let @ € D™*™ be an upper triangular matrix with 1 on the
main diagonal. Show that Q@ = Rs...R,, = T}, ...T5 where
R; — I,,,,Q; — I, may have nonzero entries only in the places
(jyi)forj=1,...;i—landi=2,...,m.

(c) Let A,B € D™*™. Assume that A ~; B, and A and B are in
HNF and have the same pivots. Then B can be obtained from
A, by adding multiples of the row b;,,, to therows j =1,...,i—1
fori=2,...,r.

(d) Let B = [b;],C = [ci;] € D™*™. Assume that B,C are in
Hermite’s normal form with the same » numbers 1 <n; < --- <
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n, < n.Suppose furthermore (1.11.12) holds and B = QC for
some @ € D"™*™. Then

Qz[o' ﬂ = B=C.

(Here * denotes a matrix of a corresponding size.)

(e) Let M be a Dp module, N = D% and T" € Hom (N,M). Let
Range (T) be the range of T in M. Then the module Range (T')
has a basis Tuy, ..., T'uy such that

(1.11.14) W= cyvy, e 0, i=1,..k
j=1

where v,, ..., v, is a permutation of the standard basis
(1.11.15) e = (0ir, .y 0in)T, i=1,..,n.

2. Let A € DF*" and assume that B is it’s Hermite’s normal form.
Assume that n; < j < n;41. Prove that

v(a, A) = bin, -+ bii—1yn,_, bij,  for a = (n1,...,ni—1,7).

3. Definition 1.11.15 Let F be a field and V a vector space over F
of dimension n. A flag F, on V is a strictly increasing sequence of
subspaces

0=F,cF,c---CcF,=V,
(1.11.16)

dmF, =4 i=1,...,n=dimV.

Show
(a) Let L be a subspace of V of dimension ¢. Then

(1.11.17) dim LNF;_, < dim LNF; < dim LNF;_, +1, i = 1,..., n.

(b) Let Gr(¢, V) be the space of all ¢-dimensional subspaces of V.
Let J={1<j; <- - <je<n} be asubset of <n > of cardinality
¢ =1J|. Then

Q°(LF,) ={LeGr((,V): dimLNF,;, =i i=1,..,¢}
(1.11.18)

Q,F,) ={LeGr({,V): dimLNF;, >i, i=1,..,/¢}
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which are called the open and the closed Schubert cell in Gr(¢, V)
respectively. Show that a given L € Gr(¢, V) belongs to the smallest
open Grassmanian cell Q%, where J = J(L, F) given by the condition

(1.11.19) dimLNF; =i, dmLNF;,_,=i—1, i=1,..L

(c) Let V. =F" and assume that e,, .., e, is the standard basis of F".
Let

(1.11.20) F; =span (en,€p—1,.-s€p_it1), &=1,...,M

be the reversed standard flag in F". Let A € F™*". Assume that
¢ =rank A > 1. Let L € Gr(¢,F™) be the vector space spanned by
the columns of AT. Let N = {1 <n; < --- < ny < n} be the integers
given by the row echelon form of A. Then J(L,F,) = N.

1.12 Systems of linear equations over Bezout

domains

Consider a system of m linear equations in n unknowns:

n
E AT = bi, 1= ]., ey M,
Jj=1

(1.12.1)

aij,bi eD,i=1,....m, j=1,...,n.

In matrix notation (1.12.1) is equivalent to

(1.12.2) Ax=b, AcD™" xecD", beD™
Let
(1.12.3) A =[A,b] € DX(n+D),

The matrix A is called the coefficient matrix and the matrix A is called the
augmented coefficient matrix. If D is a field, the classical Kronecker-Capelli
theorem states [Gan59] that (1.12.1) is solvable if and only if

(1.12.4) rank A = rank A.

Let F be the quotient field of D. If (1.12.1) is solvable over D it is also solv-
able over F. Therefore (1.12.4) is a necessary condition for the solvability
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of (1.12.1) over D. Clearly, even in the case m = n = 1 this condition is
not sufficient. In this section we give necessary and sufficient conditions on
A for the solvability of (1.12.1) over a Bezout domain. First we need the
following lemma:

Lemma 1.12.1 Let 0 # A € D3*". Then there exist P € II,,,, U €
GL(n,Dpg) such that

C = [Cij] = PAU,
(1.12.5) cii 70, i=1,..,rank A,
ci; =0 if either j >4 or j > rank A.

Proof. Consider the matrix A". By interchanging the columns of A7,
i.e. multiplying AT from the right by some permutation matrix PT, we
can assume that the Hermite normal form of AT P satisfies n; =4, i =
1,...,rank A. a

Theorem 1.12.2 Let D be a Bezout domain. Then the system (1.12.1)
is solvable if and only if

(1.12.6) r=rank A =rank A, §,(A) =6, (A).

Proof. Assume first the existence of x € D™ which satisfies (1.12.2).
Hence (1.12.4) holds, i.e. the first part of (1.12.6) holds. As any minor
r xr of Ais a minor of A we deduce that §,(A4)|d,(A). (1.12.2) implies that
b is a linear combination of the columns of A. Consider any r x r minor of
A which contains the n + 1-st column b. Since b is a linear combination of
columns of A it follows that 6,(A) divides this minor. Hence 8,(A)|5,(A),
which establishes the second part of (1.12.6). (Actually we showed that if
(1.12.1) is solvable over D¢ then (1.12.6) holds.)

Assume now that (1.12.6) holds. Let

VA=B=[B,bl e D™ ") V e GL(mn,D)

be Hermite’s normal form of A. Hence B is Hermite’s normal form of A.
Furthermore

VA=B, rankB =rank A =rank A =rank B =r,
6.(B) = 6,(A) = 6,.(A) = 6,.(B).

Hence n, in Hermite’s norr}lal form of A is at most n. Note that the last
m — r equations of Bx = b are the trivial equations 0 = 0. That is, it is
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enough to show the solvability of the system (1.12.2) under the assumptions
(1.12.6) with » = m. By changing the order of equations in (1.12.1) and
introducing a new set of variables

(1.12.7) y=U"'x, Ue€GL(n,D),
we may assume that the system (1.12.2) is
(1.12.8) Cy=d, C=PAU, d=(d,,..,dy,)" = Pb,

where C' is given as in Lemma 1.12.5 with r = m. Let C =lC,d]. Ttis
straightforward to see that A ~ C, A ~ C. Hence

rank C = rank A = rank A = rank C =m, 6,,(C) = 0 (A) = 6 (A) = 6,,(C).

Thus it is enough to show that the system (1.12.8) is solvable. In view of
the form of C the solvability of the system (1.12.8) over D is equivalent the
solvability of the system

(1.12.9) Cy=d, C=leylitjm, €D™, 3=y, tm)"-

Note that 8,,(C) = 6,,(C) = det C. Cramer’s rule for the above system in
the quotient field F of D yields

- det él
det C’

Yi

Here C; is obtained by replacing column ¢ of C by d. Clearly det C;
is an m X m minor of C up to the factor +1. Hence it is divisible by

Im(C) = 6,,(C) = det (C). Therefore y; €D, i =1,...,m. O

Theorem 1.12.3 Let A € D}*". Then Range A and Ker A are mod-
ules in DY and D having finite bases with rank A and nul A elements

respectively. Moreover, the basis of Ker A can be completed to a basis of
D%.

Proof. As in the proof of Theorem 1.12.2 we may assume that rank A =
m and A = C, where C is given by (1.12.5) with r = m. Let e,, ..., e, be
the standard basis of D%. Then Ce,,...,Ce,, is a basis in Range C' and
€mt1,--- €y 1s a basis for Ker A. O

Let A € DZ*". Expand any ¢ X ¢ minor of A by any ¢ — p rows, where
1 < p < q. We then deduce

(1.12.10) 0p(A)]64(A) for any 1 < p < g < min(m,n).
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Definition 1.12.4 For A € D" let
. 5;(A)
ii(A) = =
]( ) (5j71<A)
ij(A) =0 forrank A <j < min(m,n),

j=1,..,rtank A, (Jp(A)=1),

be the invariant factors of A. i;(A) is called a trivial factor if i;(A) is
invertible in D¢

Suppose that (1.12.1) is solvable over Dg. Using the fact that b is
a linear combination of the columns of A and Theorem 1.12.2 we get an
equivalent version of Theorem 1.12.2. (See Problem 2.)

Corollary 1.12.5 Let A € D*", b € D}. Then the system (1.12.1)
is solvable over Dg if and only if

(1.12.11) r = rank A = rank A, iK(A) = ik(A), k=1,..,r.

Problems

1. Let A € DE*". Assume that r = rank A. Show

(a)
(1.12.12)

0;(A) = wji1(A)---i;(A), where w; is invertible in Dg for j =1,...

(b) i1(A)|i;(A) for j =2,...,r. (Hint: Expand any minor of order
j by any row.)

(c) Let2 < k,2k—1 < j <r. Thenii(A)...ix(A)|ij—r+1(A)...3;(A).

2. Give a complete proof of Corollary 1.12.5.

3. Let A € D5*". Assume that all the pivots in HNF of AT are invert-
ible elements. Show

(a) Any basis of Range A can be completed to a basis in D7.
(b) i1(A)=... =drank a(4A) = L.

4. Assume that D = Dg, M is a D-module with a basis, M,, M, are
finitely generated modules of M. Show

(a) M, N M, has a basis which can be completed to bases in M,
and M,.

1.
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(b) M; =M, NM, @ N; for i = 1,2, where each N; has a basis.
dim M; = dim (M1 n M2) +dim N;,i =1, 2,
M; + M, = (MlﬂMz)@Nl@Ng.

In particular, dim (M, +M,) = dim M, +dim M, —dim (M, N
M.,).

1.13 Smith normal form

A matrix D = [d;;] € D™*" is called a diagonal matrix if d;; = 0 for all
1 # j. The entries dq1, ..., dge, £ = min(m,n) are called the diagonal entries
of D. D is denoted as D = diag(dy1, ..., de).

Theorem 1.13.1 Let 0 # A € D™*". Assume that D is an elementary
divisor domain. Then A is equivalent to a diagonal matrix

(1.13.1) B = diag(i1(A), ...,ir(A4),0,...,0), r =rank A.
Furthermore
(1.13.2) ij_1(A)]i;(A4), forj=2,.. rank A.

Proof. Recall that an elementary divisor domain is a Bezout domain.
For n = 1 Hermite’s normal form of A is a diagonal matrix with i, (A) =
01(A). Next we consider the case m = n = 2. Let

a b

A1:WA:[0 C], W € GL(2,D),

be Hermite’s normal form of A. As D = Dgp there exists p,q,z,y € D
such that
(pz)a+ (py)b + (qy)c = (a,b,c) = 61 (A).

Clearly (p,q) = (z,y) = 1. Hence there exist p, g, Z,y such that

pp—qq =xT —yy = 1.

el

G VAU — {MA) glﬂ |
g21 922

Let

Thus
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Since 01(G) = 61(A) we deduce that d1(A) divides gi2 and go1. Apply
appropriate elementary row and column operations to deduce that A is
equivalent to a diagonal matrix C' = diag(i1(A), dz2). As 02(C) = i1(A)dy =
d2(A) we see that C' is equivalent to the matrix of the form (1.13.1), where
we can assume that do = i2(A). Since i1(A)|d2 we have that iq(A)[i2(A).
We now prove the theorem in the case m > 3, n = 2 by induction starting
from m = 2. Let A = [a;;] € D"™*2 and denote by A = [a”]:i;ilz Use the
induction hypothesis to assume that A is in the form (1.13.1). Interchange
the second row of A with the last one to obtain A; € D™*2. Apply simple
row and column operations on the first two rows and columns of A; to
obtain Ay = [al(?)] € D™*2 where a(121) = i1(A). Use the elementary row
and column operations to obtain Ag of the form

11(A) 0

(1.13.3) Ay = [ o A,

:l , A4 c ]D(mfl)xl.

Recall that i1(A) divides all the entries of A4. Hence Ay = i1(A)By and
i1(A4) = i1(A)i1(B4). Use simple row operations on the rows 2,...,m of
A3 to bring B4 to a diagonal form. Thus A is equivalent to the diagonal
matrix

C = diag(i1(A),i1(A)i1(By)) € D™*2. Recall that

Thus i1 (A)|i1(Ag) so i1(A) = i1(C) and i2(A) = i1(As). Hence C is equiv-
alent to B of the form (1.13.1) and i1 (A)|i2(A).

By considering AT we deduce that we proved the theorem in the case
min(m,n) < 2. We now prove the remaining cases by a double induc-
tion on m > 3 and n > 3. Assume that the theorem holds for all ma-

trices in DM=1X" for p = 2,3,... Assume that m > 3 and is fixed,
and theorem holds for any £ € D™*("1 for n > 3. Let A = [a;;] €
Dmxn A = [aij]?;’?:_f. Use the induction hypothesis to assume that

A = diag(dy, ...,d;), | = min(m,n — 1). Here dy|d;, i = 2,...,1. Interchange
the second and the last column of A to obtain 4; = [a% | € D™*™. Perform
simple row operations on the rows of A; and simple column operations on
the the first m — 1 columns of A; to obtain the matrix Ay = [ag)] € pmxn

such that Ay = [ag)]?;’;:ll = diag(aﬁ), ...,al(f)) is Smith’s normal form
of Ay = [ag;)]?l’;zll. The definition of A, yields that i1 (A4) = a'2. Use

elementary row operations to obtain an equivalent matrix to As:

_[i(4) 0 (m—1)x(n—1)
AB - |: 0 A4:| , A4 S D .
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As i1(A) = 61(A) = 61(A3) it follows that 41 (A) divides all the entries of
A4. So A4 = il(A)B4. Hence ’LJ(A4) = Zl(A)’LJ(B4) Use Simple row and
column operations on the last m — 1 rows and the last n — 1 columns of Az
to bring B4 to Smith’s normal form using the induction hypothesis:

Amdy— [0A 0 . .
0 i1(A)diag(ir(Ba), ..., i1(Ba))
By induction hypothesis

ij(Ba)|ij41(Ba), j=1,...,trank A—1, §(Bys) =0, j>rank A —1.
Similar claim holds for A4. Hence

(5k(A) = 5}€(A5) = il(A)il (A4) ce ik_1(A4), k= 2, ...,rank A.

Thus
Z'j(A4) = ij+1(A), ] = 1, ...,rank A-1

and As is equivalent to B given by (1.13.1). Furthermore, we showed
(1.13.2). O

The matrix (1.13.1) is called the Smith normal form of A.

Corollary 1.13.2 Let A,B € D;". Then A and B are equivalent if
and only if A and B have the same rank and the same invariant factors.

Over an elementary divisor domain, the system (1.12.2) is equivalent to
a simple system

ir(Ayy = ck, k=1,.. rank A,
(1.13.4)
0=cg, k=rankA+41,...,m,

(1.13.5) y=P 'x, c=Qb.

Here P and @ are the invertible matrices appearing in (1.10.9) and B is of
the form (1.13.1). For the system (1.13.4) Theorems 1.12.2 and 1.12.3 are
straightforward. Clearly

Theorem 1.13.3 Let A € Dy". Assume that all the invariant factors
of A are invertible elements in Dgp. Then the basis of Range A can be
completed to a basis of D p.

In what follows we adopt
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Normalization 1.13.4 Let A € Flx]™*". Then the invariant polyno-
mials ( the invariant factors) of A are assumed to be normalized polynomi-
als.

Notation 1.13.5 Let A; € D™*" fori =1,... k. Then @ A, =
diag(Ay, ..., Ag) denote the block diagonal matriz B = [Bij]ﬁjzl € Dmxn,
where B;; € D™X" ford,j=1,...,k, m= Zle m;, n= 2?21 nj, such
that Bii = Al and Bij =0 fO’I“i 7é j

Problems

1. Let A = {g 2} € D%*2. Then A is equivalent to diag((p, q), (;’)‘é)).

2. Let A € DE*", B € D7 Suppose that either is(A)|i;(B) or
it(B)|is(A) for s = 1,...,tank A = o, t = 1,...,tank B = 3. Show

that the set of the invariant factors A®B is {i1(4), ..., 10 (A),91(B), ...,ig(B)}.

3. Let M C N be Dgp modules with finite bases. Prove that there
exists a basis uy,...,u, in N such that ¢;uy, ..., 7,1, is a basis in M,
where 41, ..., € Dgp and 4;]ij4q for j=1,...,r — 1.

4. Let M be a D-module and N,, N, € M be submodules. N, and N,
are called equivalent if there exists an isomorphism 7" € Hom (M, M)
(T~ € Hom (M, M)) such that TN; = Ns. Suppose that M, N, Ny
have bases [uy, ..., upn], [V1,...,vy] and [wq, ..., w,] respectively. Let

m m
V= E ai;Uq, W, = E bijui, ] = 1, ey 1,
i=1 i=1

(1.13.6)

A=lagliZi,, B = [byliZi .

Show that N, and N, are equivalent if and only if A ~ B.

5. Let N C M be D modules with bases. Assume that IN has the division
property: if ax € N for 0 # a € D and x € M then x € N. Show that
if D is an elementary divisor domain and N has the division property
then any basis in N can be completed to a basis in M.

6. Let D be elementary divisor domain. Assume that N C D™ is a
submodule with basis of dimension k € [1,m]. Let N’ C D™ be the
following set. n € N’ if there exists 0 # a € D such that an € N.
Show that N’ is a submodule of D™, which has the division property.
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Furthermore, N’ has a basis of dimension k& which can be obtained
from a basis of N as follows. Let wy,...,wy be a basis of N. Let
W € D™** be the matrix whose columns are w,, ..., w;. Assume
that D = diag(ni,...,ny) is the Smith normal form of W. So W =
UDV,U € GL(m,D),V € GL(k,D). Let uy,...,u; are the first k
columns of U. Then uy,...,u; is a basis of N’.

1.14 The ring of local analytic functions in
one variable

In this section we consider applications of the Smith normal to the system of
linear equations over Hy, the ring of local analytic functions in one variable
at the origin. In 1.3 we showed that the only noninvertible irreducible
element in Hy is 2. Let A € Hy"*". Then A = A(2) = [a;;(2)];2]_, and
A(z) has the McLaurin expansion

o0
(1.14.1) A(z) = Agzb, A eC™, k=0,
k=0

which converges in some disk |z| < R(A). Here R(A) is a positive number
which depends on A. That is, each entry a;;(z) has convergent McLaurin
series for |z| < R(A).

Notations and Definitions 1.14.1 Let A € H{"*". Then local in-
variant polynomials (the invariant factors) of A are normalized to be

(1.14.2) ip(A) = 2@ 0 < 1y(A) < 19(A) < ... < 1.(A), r=rank A.

The number 1.(A) is called the index of A and is denoted by n = n(A). For
a nonnegative integer p denote by k, = kp,(A)-the number of local invariant
polynomials of A whose degree is equal to p.

We start with the following perturbation result.
Lemma 1.14.2 Let A, B € H{"*". Let
(1.14.3) O(z) = A(z) + 2" B(2),

where k is a nonnegative integer. Then A and C have the same local in-
variant polynomials up to degree k. Moreover, if k is equal to the index of
A, and A and C have the same ranks then A is equivalent to C.
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Proof. Since Hy is an Euclidean domain we may already assume that
A is in Smith’s normal form

(1.14.4) A = diag(z", ..., 27,0, ...,0).

Let s = Z?:o kj(A). Assume first that s > ¢ € N. Consider any any ¢ X ¢
submatrix D(z) of C(z) = [¢;;(2)]. View det D(z) as a sum of ¢! products.
As k + 1 > ¢ it follows each such product is divisible by z*TT¢  Let
D(z) = [cij(2)]izj=;- Then the product of the diagonal entries is of the
form z1FF (1 + 20(2)). All other ¢! — 1 products appearing in det D(z)
are divisible by zt1Ftt-2+2(k+1)  Hence

(1.14.5) 5:(C) = 21T =5, (A), t=1,..s,
which implies that
(1.14.6) u(C)=1u(A), t=1,..,s.
As s = Z?:o k;(A) it follows that

ki(C)=£kj(A4), j=0,... k=1, £rr(4) <ri(C).
Write A = C — 2*T1B and deduce from the above arguments that
(1.14.7) ki(C)=ki(4), j=0,..k.

Hence A and C have the same local invariant polynomials up to degree k.
Suppose that rank A = rank C. Then (1.14.6) implies that A and C' have
the same local invariant polynomials. Hence A ~ B. O

Consider a system of linear equations over Hg
(1.14.8) A(z)u=b(z), A(z) e H™", b(z) € HY,

where we look for a solution u(z) € H?. Theorem 1.12.2 claims that the
above system is solvable if and only if rank A = rank A =r and the g.c.d.
of all  x r minors of A and A are equal. In the area of analytic functions
it is common to try to solve (1.3.6) by the method of power series. Assume
that A(z) has the expansion (1.14.1) and b(z) has the expansion

(1.14.9) b(z) =Y bpz¥, b,eC™ k=0,..
k=0

Then one looks for a formal solution

o0
(1.14.10) u(z) = Zukzk, u, €C" k=0,..,
k=0
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which satisfies
k
(1.14.11) > Ap_ju; =Dy,
=0

for k=0,.... A vector u(z) is called a formal solution of (1.14.8) if (1.14.11)
holds for any k € Z. A vector u(z) is called an analytic solution if u(z) is
a formal solution and the series (1.14.10) converges in some neighborhood

of the origin, i.e. u(z) € H?. We now give the exact conditions for which
(1.14.11) is solvable for k =0, ..., q.

Theorem 1.14.3 Consider the system (1.14.11) for k = 0,...,q € Z.
Then this system is solvable if and only if A(z) and A(z) have the same
local invariant polynomials up to degree q:

(1.14.12) ki (A) = ki (A), 7=0,...q

Assume that the system (1.14.8) is solvable over Hy. Let ¢ = n(A) and
suppose that g, ..., u, satisfies (1.14.11) for k =0, ...,q. Then there exists
u(z) € HY satisfying (1.14.8) and u(0) = ug.

Let ¢ € Zy and W, C C" be the subspace of all vectors wq such that
W, ..., Wq 5 a solution to the homogenous system

k
(1.14.13) > Apjw;=0, k=0,..q
j=0
Then
q
(1.14.14) dim W, =n— > ;(A)
§=0

In particular, for n =n(A) and any wo € W, there exists w(z) € Hfj such
that

(1.14.15) A(z)w(z) =0, w(0)= wy.
Proof. Let
W, = (Up 1y Upn) ', k=0, ...q.
We first establish the theorem when A(z) is Smith’s normal form (1.14.4).
In that case the system (1.14.11) reduces to
Uk—ig,s = bk,s if 15 < kv
(1.14.16)
0 =bg,s if either 15 > k or s > rank A.
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The above equations are solvable for k = 0, ..., ¢ if and only if z*s divides
bs(2) for all 1, < g, and for 15 > q, 297t divides bs(z). If 15 < q then subtract
bs(z)

zts

. So A is equivalent to

from the last column of A the s-column times
the matrix

Ay (z) = diag(2", ..., 2) @ 291 Ay(2),

a
1= ki(A), Ay en{" x0Tm0,
§=0
According to Problem 2 the local invariant polynomials of A;(z) whose
degree does not exceed ¢ are 21, ..., 2. So A(z) and A;(z) have the same

local invariant polynomials up the degree q. Assume now that A and A
have the same local invariant polynomial up to degree q. Hence

bt = 5 (A) = 6p(A), k=1,..,1,
St tutgtl ‘51_‘_1(/1).

The first set of the equalities implies that z*s|bs(z), s = 1,...,I. The last
equality yields that for s > I, 297%bs(2). Hence (1.14.11) is solvable for
k=0,...,qif and only if A and A have the same local invariant polynomials
up to the degree q.

Assume next that (1.14.8) is solvable. Since A(z) is of the form (1.14.4)
the general solution of (1.14.8) in that case is

uj(z) = — > j=1,.rank A,

u;j(#) is an arbitrary function in Hy, j=rank A+1,...,n.
Hence

u;(0) = bi;, j=1,..,rank A,
(1.14.17)

u;(0) is an arbitrary complex number, j=rank A+1,...,n.

Clearly (1.14.16) implies that ug s = us(0) for k& = i,. The solvability of
(1.14.8) implies that bs(z) = 0 for s > rank A. So wg s is not determined
by (1.14.16) for s > rank A. This proves the existence of u(z) satisfying
(1.14.8) such that u(0) = ug. Consider the homogeneous system (1.14.13)
for k=0,...,q. Then wy s = 0 for i, < and otherwise ug s is a free variable.
Hence (1.14.14) holds. Let ¢ = n = n(A). Then the system (1.14.13)
implies that the coordinates of wy satisfy the conditions (1.14.17). Hence
the system (1.14.15) is solvable.
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Assume now that A(z) € H{"*" is an arbitrary matrix. Theorem 1.13.1
implies the existence of
P(z) € GL(n,Hp), Q(z) € GL(m,Hp) such that

Q(2)A(2)P(z) = B(z) = diag(z", ..., 2*",0,...,0), 0<u <..<y., r=rank A.

It is straightforward to show that P(z) € GL(n,Hp) if and only if P(z) €
H{ ™™ and P(0) is invertible. To this end let

S
P(z):Zszk, PkECnxn’ kZO,---, det PO7§O7
k=0

Q(z) =Y Qre", QreC™" k=0,... detQy#0.
k=0

Introduce a new set of variables v(z) and vg, vy, ... such that

u(z) = P(2)v(2),
k
uk:ZPk_jvj, kZO,
j=0

Since det Py # 0 v(z) = P(z) !u(z) and we can express each v}, in terms
of ug,...,up for k = 0,1,... Then (1.14.8) and (1.14.11) are respectively
equivalent to

k
E By_jv;=ci, k=o,..q.
Jj=0

As B~ Aand B=QA(P&I,) ~ A we deduce the theorem. O

Problems

1. The system (1.14.8) is called solvable in the punctured disc if the
system
(1.14.18) A(zo)u(zo) = b(2p),

is solvable for any point 0 < |2z9| < R as a linear system over C for
some R > 0, i.e.

(1.14.19) rank A(zg) = rank A(zo), for all 0 < |zg| < R.

Show that (1.14.8) is solvable in the punctured disk if and only if
(1.14.8) is solvable over Mo-the quotient field of Hy.
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The system (1.14.8) is called pointwise solvable if (1.14.18) is solvable
for all zg in some open disk |zp| < R. Show that (1.14.8) is pointwise
solvable if and only if (1.14.8) is solvable over M, and

(1.14.20) rank A(0) = rank A(0).

Let A(z) € H{"*". A(z) is called generic if whenever the system
(1.3.6) is pointwise solvable then it is analytically solvable, i.e. solv-
able over Hy. Prove that A(z) is generic if and only if n(4) < 1.

Let 2 C C be a domain and consider the system
(1.14.21) A(z)u=b(z), A(z) € HQ)™ ", b(z) € H(Q)™.

Show that the above system is solvable over H(Q?) if and only if for
each ¢ € Q this system is solvable in He. (Hint: As H(Q) is Dgp it
suffices to analyze the case where A(z) is in its Smith’s normal form.)

Let A(z) and b(z) satisfy the assumptions of Problem 4. A(z) is called
generic if whenever (1.14.21) is pointwise solvable it is solvable over
H(Q?). Show that A(z) is generic if and only the invariant functions
(factors) of A(z) have only simple zeros. (¢ is a simple zero of f €

H(Q) if £(¢) = 0 and f(¢) #0.)

Let A(z) € H(Q2)™*™, where €2 is a domain in C. Prove that the
invariant factors of A(z) are invertible in H(f2) if and only if

(1.14.22) rank A(¢) =rank A, forall ¢ € Q.

Let A(z) € H(Q)™*", where Q is a domain in C. Assume that
(1.14.22) holds. View A(z) € Hom (H(Q)™,H(Q2)™). Show that
Range A(z) has a basis which can be completed to a basis in H(2)™.
(Hint: Use Theorem 1.14.5.)

1.15 The local-global domains in C?

Let p be a positive integer and assume that Q@ C CP is a domain. Consider
the system of m nonhomogeneous equations in n unknowns:

(1.15.1) A(z)u =b(z), A(z) € H(Q2)™ ", b(z) € H(Q2)™.
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In this section we are concerned with the problem of existence of a
solution u(z) € H(£2)™ to the above system. Clearly a necessary condition
for the solvability is the local condition:

Condition 1.15.1 Let Q C CP be a domain. For each ¢ € Q) the system
A(z)u = b(z) has a solution uc(z) € H".

Definition 1.15.2 A domain © C CP is called a local-global domain,
if any system of the form (1.15.1), satisfying the condition 1.15.1, has a
solution u(z) € H(2)™.

Problem 1.14.4 implies that any domain 2 C C is a local-global domain.
In this section we assume that p > 1. Problem 1 shows that not every
domain in CP is a local-global domain. We give a sufficient condition on
domain §2 to be a local-global domain.

Definition 1.15.3 A domain Q C CP is called a domain of holomor-
phy, if there exist f € H(Q) such that for any larger domain Q; C CP,
strictly containing 2, there is no f1 € H(Qq) which coincides with f on €.

The following theorem is a very special case of Hartog’s theorem [GuR65].

Theorem 1.15.4 Let Q C CP p > 1 be a domain. Assume that ( € Q)
and f € H(Q\{C}). Then f € H(Q).

Thus H(Q\{¢}) is not domain of holomorphy. A simple example of
domain of holomorphy is [GuR65]:

Example 1.15.5 Let 2 C CP be an open convex set. Then () is domain
of holomorphy.

(See 7.1 for the definition of convexity.) The main result of this section
is:

Theorem 1.15.6 Let Q C CP,p > 1 be domain of holomorphy. Then
Q is a local-global domain.

The proof needs basic knowledge of sheaves and is brought for the
reader who was exposed to the basic concepts in this field. See for ex-
ample [GuR65]. We discuss only very special type of sheaves which are
needed for the proof of Theorem 1.15.6.

Definition 1.15.7 Let Q C CP be an open set. Then
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1. F(Q), called the sheaf of rings of holomorphic functions on §, is the
union all H(U), where U ranges over all open subsets of Q. Then
for each ( € Q the local ring H¢ is viewed as a subset of F(Q2) and
is called the stalk of F(2) over ¢. A function f € H(U) is called a
section of F(2) on U.

2. For an integer n > 1, F,, (), called an F(2)-sheaf of modules, is the
union all H(U)", where U ranges over all open subsets of Q. Then
for each ¢ € € the local module Hi is viewed as a subset of Fn(Q)
and is called the stalk of F,(2) over (. (Note HY is an He module.)
A vector u € H(U)™ is called a section on U. (If U =0 then H(U)"
consists of the zero element 0.)

3. F C Fn(Q) is called a subsheaf if the following conditions holds. First
FNH"(U) contains the trivial section 0 for each open set U C Q.
Second, assume thatu € H{U)"NF,v € HV)"NF and W CUNV is
an open nonempty set. Then for any f, g € H(W) the vector fu+gv €
FOH(W)™. (Restriction property.) Third, ifu=v on W then the
sectionw € H™(UUV'), which coincides withu,v on U,V respectively,
belongs to FNH"(UUV). (Extension property.) F¢:=F NH[ is
the stalk of F over ¢ € (.

(a) Let U be an open subset of Q. Then F(U) := FNF,(U) is called
the restriction of the sheaf F to U.

(b) Let U be an open subset of Q. The sections u,,...,uy € FN
H(U)"™ are said to generate F on U, if for any ( € U F¢ is
generated by u,,...,uy over He. F is called finitely generated
over U if suchu,,...,u, € FONH(U)" exists. F is called finitely
generated if it is finitely generated over 2. F is called of finite
type if for each for each ¢ € Q there exists an open set Us C (2,
containing ¢, such that F is finitely generated over U. (Le. each
Fe¢ is finitely generated.)

(c) F is called a coherent sheaf if the following two conditions hold.
First F is finite type. Second, for each open set U C § and for
any q > 1 sections u,,...,us € FNH(2)" let G C F,(U) be a
subsheaf generated by the condition Y ¢_, fiw; = o. That is, G
is a union of all (f1,...,f,)" € H(V)4 satisfying the condition
>4, fiw; =0 for all open V. C U. Then G is of finite type.

The following result is a straight consequence of Oka’s coherence theo-
rem [GuR65].

Theorem 1.15.8 Let Q C CF be an open set. Then
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o The sheaf F,,(Y) is coherent.

o Let A € H(Q)™*™ be given. Let F C F(Q) be the subsheaf consisting
of allu € H(U)" satisfying Au = o for all open sets U C Q. Then F
is coherent.

Note that F,(Q) is generated by n constant sections u; := (J;1, ..., 0m) "
H(2)™,i = 1,...,n. The following theorem is a special case of Cartan’s
Theorem A.

Theorem 1.15.9 Let Q@ C CP be a domain of holomorphy. Let F C
Fn(Q) be a subsheaf defined in Definition 1.15.7. If F is coherent then F
is finitely generated.

Corollary 1.15.10 Let Q@ C CP be a domain of holomorphy and A €
H(Q)™*™. Then there exists uy,...u; € H(Q)", such that for any ¢ € Q,
every solution of the system Au = 0 over Hf is of the form 22:1 fiu; for
some fi,..., fi € He.

We now introduce the notion of sheaf cohomology of F C F,(Q).

Definition 1.15.11 Let Q C CP be an open set. LetU :={U; CQ, i €
I} be an open cover of Q. (Le. each U; is open, and U;ezU; = Q.) For
each integer p > 0 and p + 1 tuples of indices (i, ...,i,) € IPT! denote
Uig...i, = M5_oUi; -

Assume that F C Fp,(Q) is a subsheaf. A p-cochain ¢ is a map carrying
each p+1-tuples of indices (io, . . . i) to a section FOH"(Uy,..s,) satisfying
the following properties.

1. C(io, e ,ip) =0 Zf Uio-nip = @

2. ¢(m(ig), ..., m(ip)) = sgn(m)c(io, - . - ,ip) for any permutation 7 : {0, . ..
{0,...,p}. (Note that c(io,...,ip) is the trivial section if i; = iy, for

j# k)
Zero cochain is the cochain which assigns a zero section to any (io . . . p).
Two cochains ¢, d are added and subtracted by the identity (c£d)(ig ...1,) =

c(io, - .., 1p)E£d(io, . .. ,ip). Denote by CP(Q, F,U) the group of p+1 cochains.

The p — th coboundary operator §, : CP(Q, F,U) — CPTYHQ, F,U) is
defined as follows:

p+1

(0pC) (s - - vipp1) = 3 (=1 clin, ... ij,. . ips1),

Jj=0

where %j 1s a deleted index. Then p — th cohomology group is given by

P} —
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1. HY(Q, F,U) := Ker 4.
2. For p>1HP(Q,F,U) = Ker 6,/Range 6,_1. (See Problem 2.)

Lemma 1.15.12 Let the assumptions of Definition 1.15.11 hold. Let
c € COUQ, F,U). Then c € HY(Q, F,U) if and only if ¢ represents a global
section u € F NH(2)™.

Proof. Let ¢ € C°(Q, F,U). Assume that ¢ € H°(Q,F,U). Let
Uy, Uy be two open sets in U. Then c(ig)—c(i1) is the zero section on UyNUj.
Thus for each ¢ € Uy NU; ¢(ip)(¢) = ¢(i1)(¢). Let u(z) := c(ig)(z) € C".
It follows that u € H(Q)"™. The extension property of subsheaf F yields
that u € F N H"(Q). Vice versa, assume that u € F N H"(Q). Define
c(ip) = u|Uy. Then ¢ € H(Q, F,U). O

We identify H?(Q, F,U/) with the set of global sections F NH(Q)". The
cohomology groups HP(Q, F,U),p > 1 depend on the open cover U of 2. By
refining the covers of €2 one can define the cohomology groups HP (Q, ), p >
0. See Problem 3. Cartan’s Theorem B claims [GuR65].

Theorem 1.15.13 Let Q2 C CP be domain of holomorphy. Assume that
the sheaf F given in Definition 1.15.7 is coherent. Then HP (S, F) is trivial
for anyp > 1.

Proof of Theorem 1.15.6. Consider the system (1.15.1). Let F be
the coherent sheaf defined in Theorem 1.15.8. Assume that the system
(1.15.1) is locally solvable over Q. Let ¢ € Q. Then there exists an open set
U¢ C § such that there exists ue € H"(Uy) satisfying (1.15.1) over H(U¢).
Let U := {U,¢ € 2} be an open cover of . Define ¢ € C'(Q2, F,U) by
¢(¢,n) = u¢c — u,. Note that

(610)(¢;m,0) = c(n,0) — c((,0) + (¢, n) = 0.

Hence ¢ € Ker é;. Since F is coherent Cartan’s Theorem B yields that
HY(Q, F) is trivial. Hence H'(Q, F,U) is trivial. (See Problem 3c.) Thus,
there exists an element d € C°(Q, F,U) such that dod = c. Thus for each
¢,n € Q such that Us N U, there exist sections d(¢) € F NH"(U¢),d(n) €
F NnH"(U,) such that d(n) —d(¢) = uc — u,, on U NU,,. Hence d(n) +
u, = d(¢) + u¢c on Us NU,. Since Ad¢ = 0 € H(U,)™ it follows that
A(d¢+ue) =b e HU:)™. Asd(n) +u, =d(¢)+u¢ on UsNU, it follows
that all these section can be patched to the vector v € H(£2)™ which is a
global solution of (1.15.1). O

Problems



52 CHAPTER 1. DOMAINS, MODULES AND MATRICES

1. Consider a system of one equation over C?,p > 1
P
Zzlu7 =1, u= (ul,...,up)T, z=(21,...,%p)-
i=1

Let © := CP\{0}.

(a) Show that Condition 1.15.1 holds for 2.

(b) Show that the system is not solvable at z = 0. (Hence it dose
not have a solution u(z) € Hj.)

(c¢) Show that the system does not have a solution u(z) € H(2)?.
(Hint: Prove by contradiction using Hartog’s theorem.)

2. Let the assumptions of Definition 1.15.11 hold. Show for any p > 0.

(a) dp416p =0.
(b) Range d, C Ker dp41.

3. Let U = {U;,i € I},V = {V;,j € J} be two open covers of an open
set @ C CP. V is called a refinement of U, denoted V < U, if each
V; is contained in some U;. For each V; we fix an arbitrary U; with
V; C U, and write it as Us(;) @ Vj C Uy(j)- Let F be a subsheaf as in
Definition 1.15.11. Show

(a) Define ¢ : CP(Q,F,U) — CP(Q,F,V) as follows. For ¢ €
CP(Q, F,U) let (¢(c))(Jo,---,Jp) € CP(Q,F,V) be the restric-
tion of the section c(i(jo),...,4(jp)) to Vj,..;,- Then ¢ is a ho-
momorphism.

(b) ¢ is induces a_homomorphism ¢ : HP(Q, F,U) — HP(Q, F, V).
Furthermore, ¢ depends only on the covers U, V. (Le., the choice
of i(j) is irrelevant.)

(¢) By refining the covers one obtains the p — th cohomology group
HP(Q, F) with the following property. The homomorphism é
described in 3b induces an injective homomorphism that (5 :
HP(Q, F,U) — HP(Q, F) for p > 1. (Recall that H°(Q, F,U)
FNH™(Q).) In particular, HP(2, F) is trivial, i.e. HP(Q, F)
{0}, if and only if each H?(Q, F,U) is trivial.

1.16 Historical remarks

Most of the material in Sections 1.1-1.10 are standard. See [Lan58], [Lan67]
and [vdW59] for the algebraic concepts. Consult [GuR65] and [Rud74] for
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the concepts and results concerning the analytic functions. See [Kap49)] for
the properties of elementary divisor domains. It is not known if there exists
a Bezout domain which is not an elementary divisor domain. Theorem 1.5.3
for Q = C is due to [Hel40]. For §1.10 see [CuR62] or [McD33]. Most of §1.11
is well known, e.g. [McD33]. §1.12 seems to be new since the underlying
ring is assumed to be only a Bezout domain. Theorems 1.12.2 and 1.12.3
are well known for an elementary divisor domain, since A is equivalent to a
diagonal matrix. It would be interesting to generalize Theorem 1.12.2 for
D = Flz4,...,xp) for p > 2. The fact that the Smith normal form can be
achieved for Dgp is due to Helmer [Hel43]. More can be found in [Kap49].

Most of the results of §1.14 are from [Fri80b]. I assume that Theorem
1.15.6 is known to the experts.



o4

CHAPTER 1. DOMAINS, MODULES AND MATRICES



Chapter 2

Canonical Forms for
Similarity

2.1 Strict equivalence of pencils
Definition 2.1.1 A matriz A(z) € D[z]™*"™ is a pencil if
(2.1.1) A(z) = Ag + 2Ay, Ao, Ay e Dpmxr,

A pencil A(x) is regular if m = n and det A(z) # 0. Otherwise A(x) is a
singular pencil. Two pencils A(z), B(xz) € D[z]™*™ are strictly equivalent

if
(2.1.2)
A(x)RB(z) <= B(z) = QA(x)P, P € GL(n,D), Q € GL(m,D).

The classical works of Weierstrass [Wei67] and Kronecker [Kro90] clas-
sify the equivalence classes of pencils under the strict equivalence relation
in the case D is a field F. We give a short account of their main results.

First note that the strict equivalence of A(z), B(x) implies the equiva-
lence of A(zx), B(x) over the domain D[z]. Furthermore let

(2.1.3) B(z) = By + zB;.
Then the condition (2.1.2) is equivalent to
(214) By = QA()P, By = QA1P, P e GL(H,D), Q S GL(m,D)

Thus we can interchange Ag with A, and By with By without affecting the
strict equivalence relation. Hence it is natural to consider a homogeneous

95
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pencil
(2.1.5) Az, 1) = z0Ao + 2141.

Assume that D is Dy. Then Dylxg,z1] is also Dy (Problem 1.4.6.) In
particular Dy [xo, z1] is Dg. Let 0k (2o, x1), ix(z0,21) be the invariant de-
terminants and factors of A(zg,x1) respectively for k = 1, ..., rank A(xq,x1).

Lemma 2.1.2 Let A(zg,21) be a homogeneous pencil over Dy [z, x1].
Then its invariant determinants and the invariant polynomials
Ok(x0, 1), ix(zo,21), k =1,...,rank A(xg,x1) are homogeneous polynomi-
als. Moreover, if 0y (x) andiy(z) are the invariant determinants and factors
of the pencil A(x) for k =1,...,rank A(x), then

(2.1.6) Op(z) = 0k(1, ), ix(z) =ir(l,x), k=1,.. rank A(x).

Proof. Clearly any k x k minor of A(xg,x1) is either zero or a
homogeneous polynomial of degree k. In view of Problem 1 we deduce that
the g.c.d. of all nonvanishing k x k& minors is a homogeneous polynomial
% Problem 1 implies that ix(xg,z1) is
a homogeneous polynomial. Consider the pencil A(z) = A(1,z). So d(x) -
the g.c.d. of k x k minors of A(x) is obviously divisible by dx(1,z). On the
other hand we have the following relation between the minors of A(xg, 1)

and A(x)

5k($07$1)- As ik(xo,l‘l) =

(2.1.7) det A(zo, 1), 8] = zkdet A(i—;)[a,ﬂ], a, B € [nlx.

This shows that z(*0 (%) (px = deg dx(x)) divides any k x k minor of

0

A(zo,x1). So 2" 0 (£1)|0k (20, 21). This proves the first part of (2.1.6). So

zo
(2.1.8) S (o, 1) = 20 (xg’“&c(%)% pr, = deg 6 (z), ¢r > 0.
The equality i )

. k(Lo, L1

ik (To,71) = Be 1 (o)
implies
(2.1.9) in(zo,21) = 2P (@F iR (L)),  op = deg in(@), ¥i > 0.

T
O

Ok (o, 1) and ix(xg,x1) are called the invariant homogeneous deter-
minants and the invariant homogeneous polynomials (factors) respectively.
The classical result due to Weierstrass [Wei67] states:
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Theorem 2.1.3 Let A(x) € Fla]™*"™ be a regular pencil. Then a pencil
B(zx) € Flz]™*™ is strictly equivalent to A(x) if and only if A(x) and B(x)
have the same invariant homogeneous polynomials.

Proof. The necessary part of the theorem holds for any A(x), B(x)
which are strictly equivalent. Suppose now that A(z) and B(x) have the
same invariant homogeneous polynomials. According to (1.4.4) the pencils
A(x) and B(x) have the same invariant polynomials. So A(z) ~ B(x) over
F[x]. Therefore

(2.1.10) W(z)B(x) = A(x)U(z), U(x), W(z) € GL(n,F[z]).
Assume first that A; and B; are nonsingular. Then (see Problem 2) it is
possible to divide W (z) by A(z) from the right and to divide U(z) by B(z)
from the left
(2.1.11) W(z) = A(z)Wyi(x) + R, U(zx)=U(z)B(x)+ P,
where P and R are constant matrices. So

A(x)(Wr(z) — Uy (2))B(z) = A(xz)P — RB(x).

Since A, By € GL(n,F) we must have that Wi (z) = Uy(z), otherwise
the left-hand side of the above equality would be of degree 2 at least (see
Definition 2.1.5), while the right-hand side of this equality is at most 1. So

(2.1.12) Wi(z) = Ui(z), RB(x)= A(x)P.
It is left to show that P and @ are nonsingular. Let V(z) = W(z)™! €

GL(n,F[z]). Then I = W(z)V(x). Let V(z) = B(x)Vi(x) + S. Use the
second identity of (2.1.12) to obtain

I = (A(x)Wi(z) + R)V(z) = A(z)W1i(2)V (z) + RV (2) =
A(x)W;(z)V (z) + RB(z)Vi(z) + RS =

A(z)Wi(2)V (z) + A(x) PVi(z) + RS =

A(z) (W (2)V (x) + PVi(z)) + RS.

Since 4; € GL(n,F) the above equality implies
Wi (z)V(xz)+ PVi(z) =0, RS=1.

Hence R is invertible. Similar arguments show that P is invertible. Thus
A(z)2B(x) if det Ay, det By # 0.
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Consider now the general case. Introduce new variables g, y1:
Yo = axg + br1, y1 = crg+dry, ad—cb#D0.

Then

A(yo, 1) = oAy + 1147, B(yo,y1) = yoBy + 1By
Clearly A(yo,y1) and B(yo, y1) have the same invariant homogeneous poly-
nomials. Also A(yo,y1)~B(yo,v1) <= A(xo,21)~B(20,21). Since
A(zo,z1) and B(xg,x1) are regular pencils it is possible to choose a,b, ¢, d
such that A} and B} are nonsingular. This shows that A(yo,y1)~B(yo, y1)-
Hence A(x)XB(z). O

Using the proof of Theorem 2.1.3 and Problem 2 we obtain:

Theorem 2.1.4 Let A(x),B(z) € D[z]"*"™. Assume that Ay,B; €
GL(n,D). Then A(x)XB(z) <= A(x) ~ B(x).

For singular pencils the invariant homogeneous polynomials alone do
not determine the class of strictly equivalent pencils. We now introduce
the notion of column and row indices for A(x) € Flz]™*™. Consider the
system (1.14.15). The set of all solutions w(z) is an Flz]-module M with
a a finite basis wi(z), ..., ws(z). (Theorem 1.12.3.) To specify a choice of
a basis we need the following definition.

Definition 2.1.5 Let A € D[zy, ..., x;]™*". So
Az, ..yxp) = Z Anz®, A, € DX

|| <d

a=(a1,...,a;) €EZ, |a| = Zaz, G =tk

(2.1.13)

Then the degree of A(xy,...,xx) # 0 (deg A) is d if there exists Ay # 0 with
|a] = d. Let deg 0 = 0.

Definition 2.1.6 Let A € F[z]™*"™ and consider the module M C Fx]"
of all solutions of (1.14.15). Choose a basis wi(x), ..., ws(x), s = n—rank A
in M such that wi(xz) € M has the lowest degree among all w(z) € M
which are linearly independent over F(x) of wi,....,wi_1(z) fork=1,...;s
Then the column indices 0 < a1 < as < ... < a5 of A(z) are given as

(2.1.14) ap =degwi(z), k=1,..,s

The row indices 0 < 1 < By < ... < By, t = m —rank A, of A(x) are the
column indices of A(x)"



2.1. STRICT EQUIVALENCE OF PENCILS 99

It can be shown [Gan59] that the column (row) indices are independent
of a particular allowed choice of a basis wi(x),...,wg(z). We state the
Kronecker result [Kro90]. (See [Gan59] for a proof.)

Theorem 2.1.7 The pencils A(z), B(x) € Flz]™*™ are strictly equiva-
lent if and only if they have the same invariant homogeneous polynomials
and the same row and column indices.

For a canonical form of a singular pencil under the strict equivalence see
Problems 8- 12.

Problems

1. Using the fact that Dy [z1, ..., 2] is Dy and the equality (1.13.5) show
that if a € Dy[zy,...,2,] is a homogeneous polynomial then in the
decomposition (1.3.1) each p; is a homogeneous polynomial.

2. Let

q P
(2.1.15) W(z) =Y Wik, U(z) = Upa® € D"
k=0 k=0

Assume that A(z) = Ap + ©A4; such that 4g € D"*™ and A; €
GL(n,D). Show that if p,q > 1 then
W(z) = A(@) AT (Weat™ )+ W (2), Ulz) = (Upa? AT A2)+0 (2),
where ~ y

deg W(z) <gq, degU(x)<p.
Prove the equalities (2.1.11) where R and P are constant matrices.
Suppose that A; = I. Show that R and P in (2.1.11) can be given as

q

(2.1.16) R=> (=AW, P= zp: Ui (—Ao)*.

k=0 k=0

3. Let A(z) € Dy[z]™*™ be a regular pencil such that det A; # 0. Prove
that in (2.1.8) and (2.1.9) ¢y = ¢, =0 for k = 1,...,n. (Use equality
(1.12.12) for A(x) and A(zo,x1).)

4. Consider the following two pencils

24z 1+z 343z 24z 1+z 1+x
Alz)=[3+2 24z 5+2z|,Blx)= |14z 242 2+
34+ 24z 542z 142 142 1+=x

over R[z]. Show that A(z) and B(z) are equivalent but not strictly
equivalent.
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5. Let )
Az) = ZAkxk € Fla]™*".
k=0
Put .
A(zo, 1) = Z Ak:cg_kxlf, q = deg A(x).
k=0

Prove that ig (2, 1) is a homogeneous polynomial for k = 1, ..., rank A(x).
Show that i1 (1, ), ...,9%(1, x) are the invariant factors of A(x).

6. Let A(x), B(x) € Flz]™*™. A(z) and B(z) are called strictly equiva-
lent (A(z)*XB(x)) if

B(z) = PA(z)Q, P e GL(m,F), Q€ GL(n,F).

Show that if A(x)2B(x) then A(zg,z1) and B(zg,z;) have the same
invariant factors.

7. Let A(z), B(x) € Flz]™*". Show that A(x)XB(z) <= A(x)"XB(z)".

8. (a) Let Ly, (x) € F[z]™*(™*1) be matrix with 1 on the main diagonal
and z on the diagonal above it, and all other entries 0:

1 =z 0 ... 0

01 =z ... 0
L,(z) = .

0 0 1 =z

Show that rank L, = m and a1 = m.

(b) Let 1 <y <...<a,, 1 <0 <...< 0 be integers. Assume
that B(x) = By + 2By € F[z]"*! is a regular pencil. Show that
A(z) = B(z) ®j_; La, ®5_, L;j has the column and the row
indices 1 < a3 <...<as, 1 <0G <...<p respectively.

9. Show if a pencil A(x) is a direct sum of pencils of the below form,
where one of the summands of the form 9a-9b appears, it is a singular
pencil.

(a) Lom(
(b) Lon(
(c) B(x) = By + xB; € F[z]"*! is a regular pencil.

z)’.
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10. Show that a singular pencil A(z) is strictly similar to the singular
pencil given in Problem 9, if and only if there are no column and row
indices equal to O.

11. Assume that A(x) € Flx]™*" is a singular pencil.

(a) Show that A(z) has exactly k column indices equal to 0, if and
only if it is strict equivalent to [0,,xx A1(z)], A1 (z) € Fla]™>m=F)
where either A;(z) is regular or singular. If A;(x) is singular
then the row indices of A;(z) are the row indices of A(x), and
the column indices of A;(x) are the nonzero column indices of
of A(x).

(b) By considering A(z) T state and prove similar result for the row
indices of A(x).

12. Use Problems 8-11 to find a canonical from for a singular pencil A(x)
under the strict equivalence.

2.2 Similarity of matrices

Definition 2.2.1 Let A,B € D™*™. Then A and B are similar (A =
B) if

(2.2.1) B =QAQ !,
for some Q € GL(m,D).

Clearly the similarity relation is an equivalence relation. So D™*™ is di-
vided into equivalences classes which are called the similarity classes. For
a D module M we let Hom (M) := Hom (M,M). It is a standard fact
that each similarity class corresponds to all possible representations of
some T' € Hom (M), where M is a D-module having a basis of m ele-
ments. Indeed, let [uy, ..., u,,] be a basis in M. Then T is represented by
A = [a;;] € D™*™ where

m
(222) TUj = Z a;;Uq, j =1,....,Mm.

Let [a1,..., Q] be another basis in M. Assume that Q@ € GL(m,D) is
given by (1.10.5). According to (2.2.2) and the arguments of §1.10, the
representation of 7" in the basis [@1, ..., U] is given by the matrix B of the
form (2.2.1).

The similarity notion of matrices is closely related to strict equivalence
of certain regular pencils.
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Lemma 2.2.2 Let A,B € D™*™. Associate with these matrices the
following regular pencils

(2.2.3) A(x)=—A+zI, B(z)=-B+uzl.
Then A and B are similar if and only if the pencils A(x) and B(x) are
strictly equivalent.

Proof. Assume first that A &~ B. Then (2.2.1) implies (2.1.2) where
P = Q~'. Suppose now that A(z)*B(z). So B = QAP, I = QP. That is
P=Q 'and A~ B. O

Clearly A(z)~B(z) = A(x) ~ B(x).

Corollary 2.2.3 Let A, B € D}*™. Assume that A and B are similar.
Then the corresponding pencils A(x), B(x) given by (2.2.3) have the same
invariant polynomials.

In the case Dy = F the above condition is also a sufficient condition in view
of Lemma 2.2.2 and Corollary 2.1.4

Theorem 2.2.4 Let A, B € F™*™. Then A and B are similar if and
only if the pencils A(x) and B(z) given by (2.2.3) have the same invariant
polynomials.

It can be shown (see Problem 1) that even over Euclidean domains the
condition that A(z) and B(x) have the same invariant polynomials does
not imply in general that A ~ B.

Problems
1. Let

0 5 0 5

Show that A(z) and B(x) given by (2.2.3) have the same invariant
polynomials over Z[z]. Show that A and B are not similar over Z.

A:[l 0},3:[1 1} € 72%2,

2. Let A(x) € Dy[z]™*™ be given by (2.2.3). Let i1(x),...,in(z) be the
invariant polynomial of A(x). Using the equality (1.12.12) show that
each i, (z) can be assumed to be normalized polynomial and

(2.2.4) > deg ik(x) = n.
k=1

3. Let A € F»*", Show that A ~ AT.
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2.3 The companion matrix

Theorem 2.2.4 shows that if A € F"*" then the invariant polynomials
determine the similarity class of A. We now show that any set of normalized
polynomials i1 (), ..., i, (x) € Dy[z], such that i;(z)|i;41(x), j=1,...,n—1
and which satisfy (2.2.4), are invariant polynomials of I — A for some
A e D", To do so we introduce the notion of a companion matrix.

Definition 2.3.1 Let p(x) € D[z] be a normalized polynomial
p(z) = 2™+ a1z L+ ap,.
Then C(p) = [ci;]7" € D™*™ is the companion matriz of p(z) if

Cij = 5(i+1)j7 t=1,...m—1, j=1,...,m,

(231) Cmj = —O0m—j+1, j = 1, ey M,
0 1 0 .. 0 0
0 0 1 0 0
Clp) = : : : : :
0 0 0 ... 0 1
—ay —AQm—-1 —Amp—2 ... —Q2 —ai1

Lemma 2.3.2 Let p(z) € Dylz] be a normalized polynomial of degree
m. Consider the pencil C(x) = xI — C(p). Then the invariant polynomials
of C(z) are

(2.3.2) i(C) = oo =iy 1 (C) =1, ip(C) = p(a).

Proof. For k < m consider a minor of C(z) composed of the rows 1, ..., k
and the columns 2, ...,k + 1. Since this minor is the determinant of a lower
triangular matrix with —1 on the main diagonal we deduce that its value
is (—1)¥. So §x(C) =1, k =1,...,m — 1. This establishes the first equality
in (2.3.2). Clearly 9,,(C) = det (xI — C). Expand the determinant of C'(z)
by the first row and use induction to prove that det (zI — C') = p(x). This

shows that i,,(C) = 5:’1(1?%) = p(z). 0

Using the results of Problem 2.1.13 and Lemma 2.3.2 we get:

Theorem 2.3.3 Let pj(x) € Dy|x] be normalized polynomials of posi-
tive degrees such that pj(x)|pj+1(x), j =1,....,k — 1. Consider the matric

(2.3.3) C(p1, - pk) = B5_1C(py).

Then the nontrivial invariant polynomials of xI — C(p1, ...,px) ( i.e. those
polynomials which are not the identity element) are p1(x), ..., pr(x).
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Combining Theorems 2.2.4 and 2.3.3 we obtain a canonical representa-
tion for the similarity class in F™*"™.

Theorem 2.3.4 Let A € F"*" and assume that pj(xz) € Flz], j =
1, ...,k are the nontrivial normalized invariant polynomials of xtI — A. Then
A is similar to C(p1, ..., Pk)-

Definition 2.3.5 For A € F"*" the matriz C(p1,...,pr) is called the
rational canonical form of A.

Let F be the quotient field of D. Assume that A € D"*". Let C(p1, ..., px)
be the rational canonical form of A in F™**™. We now discuss the case when
C(p1y...,pk) € D™, Assume that D is Dy. Let 0 be the g.c.d of k x k
minors of 21 — A. So §j, divides the minor p(z) = det (xI — A)[a, ], a =
{1,...,k}. Clearly p(z) is normalized polynomial in Dy[z]. Recall that
Dy (x] is also Dy (§1.4).

According to Theorem 1.4.8 the decomposition of p(z) into irreducible
factors in Dy [z] is of the form (1.4.4), where a = 1 and each ¢;(x)is a non-

trivial normalized polynomial in Dy [z]. Hence i = 6ff - is either identity

or a nontrivial polynomial in Dy [z]. Thus

Theorem 2.3.6 Let A € Dj*". Then the rational canonical form
C(p1,...,pk) of A over the quotient field F of Dy belongs to Di™.

Corollary 2.3.7 Let A € Clxy, ..., x| *"™. Then the rational canoni-
cal form of A over C(z1,...,x,) belongs to Clzy, ..., xm]"*"™.

Using the results of Theorem 1.4.9 we deduce that Theorem 2.3.6 applies
to the ring of analytic functions in several variables although this ring is
not Dy (§1.3).

Theorem 2.3.8 Let A € H(Q)"*" (@ C C™). Then the rational
canonical form of A over the field of meromorphic functions in € belongs
to H(S)™=™.

Problems

1. Let p(x) € Dy[z] be a normalized nontrivial polynomial. Assume that
p(z) = p1(x)p2(z), where p;(x) is a normalized nontrivial polynomial
in Dy|x] for ¢ = 1,2. Using Problem 1.13.1 and 2 show that =l —
C(p1,p2) given by (2.3.3) have the same invariant polynomials as
I — C(p) if and only if (p1,p2) = 1.
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2. Let A € D" and assume that pi(z),...,pg(x) are the nontrivial
normalized invariant polynomials of I — A. Let

(2.3.4) pi() = (61(2))™ .. (dy(x))™, j=1,...k,

where ¢1(z), ..., ¢ () are nontrivial normalized irreducible polynomi-
als in Dy [x] such that (¢;,¢;) =1 for ¢ # j. Prove that

Lk
(2.3.5)  ma > 1, mak > myg—1) > ... >my >0, Z mi; = n.
3,7=1

The polynomials cz);"” for m;; > 0 are called the elementary divisors
of I — A. Let

(2.3.6) E = ®m,;50C(;"").

Show that I — A and zI — E have the same invariant polynomials.

Hence A = FE over the quotient field F of Dy;. (In some references E
is called the rational canonical form of A.)

2.4 Splitting to invariant subspaces

Let V be an m dimensional vector space over F and let T € Hom (V). In
§2.2 we showed that the set of all matrices A C F™*™ which represents
T in different bases, is an equivalence class of matrices with respect to the
similarity relation. Theorem 2.2.4 shows that the class A is characterized
by the invariant polynomials of xI — A for some A € A. Since I — A and
2l — B have the same invariant polynomials if and only if A ~ B we define:

Definition 2.4.1 Let T' € Hom (V) and let A € F™*™ be a represen-
tation matriz of T given by the equality (2.2.2) in some basis uy, ..., Uy, of
V. Then the invariant polynomials i1(x), ..., im(x) of T are defined as the
invariant polynomials of xI — A. The characteristic polynomial of T is the
polynomial det (xI — A).

The fact that the characteristic polynomial of 7' is independent of a
representation matrix A follows from the identity (1.12.12)

(2.4.1) det (xI — A) = p1(x)...pr(x),

where p1 (), ..., pr(x) are the nontrivial invariant polynomials of I — A. In
§2.3 we showed that the matrix C(py, ..., pr) is a representation matrix of
T. In this section we consider another representation of 7' which is closely
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related to the matrix F given in (2.3.6). This form is achieved by splitting
V to a direct sum

(2.4.2) V=al_,U,
where each U; is an invariant subspace of T defined as follows:

Definition 2.4.2 Let V be a finite dimensional vector space over F
and T € Hom (V). A subspace U C 'V is an invariant subspace of T
(T -invariant) if

(2.4.3) TUC U.

U is called trivial if U = {0} or U = V. U is called nontrivial, (proper),
if {0} #U # V. U is called irreducible if U can not be expressed a direct
sum of two nontrivial invariant subspaces of T. The restriction of T to a
T-invariant subspace U is denoted by T|U.

Thus if 'V splits into a direct sum of nontrivial invariant subspaces of
T, then a direct sum of matrix representations of 7" on each U; gives a
representation of 7. So, a simple representation of 1" can be achieved by
splitting V into a direct sum of irreducible invariant subspaces. To do so
we need to introduce the notion of the minimal polynomial of T". Consider
the linear operators I = T9,T, T2, ...,T™", where I is the identity operator
(Iv = v). As dim Hom (V) = m?, these m? + 1 operators are linearly
dependent. So there exists an integer ¢ € [0,m?] such that I,7,..., 77!
are linearly independent and I,T,...,T9 are linearly dependent. Let 0 €
Hom (V) be the zero operator: Ov = 0. For ¢ € F[z] let ¢(T) be the

operator
l

1
o(T) = Z T, ¢(x) = Zczxz
i=0

i=1

¢ is annihilated by T if ¢(T") = 0.

Definition 2.4.3 A polynomial ¥(z) € Flz] is a minimal polynomial
of T € Hom (V) if ¥(z) is a normalized polynomial of the smallest degree
annihilated by T'.

Lemma 2.4.4 Let (x) € F[z] be the minimal polynomial T € Hom (V).
Assume that T annihilates ¢. Then 1)|¢.

Proof. Divide ¢ by ¢:

d(z) = x(z)(x) + p(x), deg p < deg .
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As ¢(T) = (T) = 0 it follows that p(T) = 0. From the definition of ¢ (x)
it follows that p(z) = 0. O

Since F[z] is a unique factorization domain, let

¥(z) = @70,
(¢iyd;) =1for1<i<j<l, dege;>1,i=1,..,1I,
(2.4.4)

where each ¢; is a normalized irreducible polynomial if Fz].

Theorem 2.4.5 Let 1) be the minimal polynomial of T € Hom (V).
Assume that i splits to a product of coprime factors given in (2.4.4). Then
the vector space V splits to a direct sum (2.4.2), where each Uj; is a non-
trivial invariant subspace of T|U;. Moreover qb;j is the minimal polynomial

Of T‘U j-
The proof of the theorem follows immediately from the lemma below.

Lemma 2.4.6 Let ¢ be the minimal polynomial of T € Hom (V). As-
sume that ¥ splits to a product of two nontrivial coprime factors

(24.5) (@) =i(x)Pa(z), degeyy >1,i=12, (Y1,92) =1,
where each ; is normalized. Then
(2.4.6) V =U,; & Uy,

where each Uj is a nontrivial T-invariant subspace and 1); is the minimal
polynomial of T := T'|U;.

Proof. The assumptions of the lemma imply the existence of polyno-
mials 6 (x) and 63(z) such that

(2.4.7) 01 (m)wl (33) + 92(.’1?)’(/)2(I) =1.
Define
(2.4.8) U; = {u eV: %—(T)u = 0}, 7 =1,2.

Since any two polynomials in T commute (i.e. u(T)v(T) = v(T)u(T)) it
follows that each U; is T-invariant. The equality (2.4.7) implies

I'=91(T)01(T) + 2(1)02(T).
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Hence for any u € V we have
u=u; +u, u = 1/)2(T)92(T)u e Uy, uy = 1/)1(T)01(T)u € Us,.

So V = U;+Us. Suppose that u € U3 NUs,. Then ¢ (T)u = 92 (T)u = 0.
Hence 61 (T)¥1(T)u = 05(T)2(T)u = 0. Thus

u=1Y1(T)u+ ¢2(T)u=0.
So U; NUs = {0} and (2.4.6) holds. Clearly 7, annihilates v;. Let 1; be
the minimal polynomial of Tj. So @jhpj, 7 =1,2. Now
D1(T)2(T)u = 1(T)2(T) (ur+us) = Y2 (1)1 (T)ur+¢1 ()2 (T)uz = 0.

Hence T" annihilates 1/7)1@_2 Since 1 is the minimal polynomial of T" we have
1a|11Pa. Therefore ¢; = ¢;, 7 = 1,2. As deg ¢; > 1 it follows that
dim Uj > 1. O

Problems

1. Assume that (2.4.6) holds, where TU; C Uj, j = 1,2. Let ¢; be

the minimal polynomial of T; = T'|U; for j = 1,2. Show that the

minimal polynomial ¢ of T is equal to (,;f’ll ’ﬁ)

2. Let the assumptions of Problem 1 hold. Assume furthermore that
= ¢°, where ¢ is irreducible over F[x]. Then either ¢y = % or

o = 1p.

3. Let C(p) € D™*™ be the companion matrix given by (2.3.1). Let
e = (6i1,.,6im) ", i =1,...,m be the standard basis in D™. Show

(249) C’(p)ez =€;,—1 — Qm—i+1€m; 1= 17 e, m, (eo = 0)

Prove that p(C') = 0 and that any polynomial 0 # ¢ € D[], deg ¢ <
m is not annihilated by C. (Consider ¢(C)e; and use (2.4.9).) That
is: p is the minimal polynomial of C(p).

Hint: Use the induction on m as follows. Set f; = e;_;4, for

i=1,....,m Let ¢ = 2™ ' +az™ '+ ... 4+ am_1. Set Q =
T

[ 0 0 067,”@3 } Use the induction hypothesis on C(q), i.e. ¢(C(q)) =

0, and the facts that C(p)f; = Qf; for i = 1,...,m — 1, C(p)f,, =

f+1 + Qf,, to obtain that p(C(p))fi = 0. Now use (2.4.9) to show

that p(C(p)fi =0fori=2,...,m+ 1.
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. Let A € F™*™. Using Theorem 2.3.4 and Problems 1 and 3 show

that the minimal polynomial ¢ of A is the last invariant polynomial
of xI — A. That is:

(2.4.10) Y(x) = W7

where 6,,—1(x) is the g.c.d. of all (m —1) x (m — 1) minors of I — A.

. Show that the results of Problem 4 apply to A € D} ™. In particular,

if A~ B then A and B have the same minimal polynomials.

. Deduce from Problem 4 the Cayley-Hamilton theorem which states

that T € Hom (V) annihilates its characteristic polynomial.

. Let A € D™*™_ Prove that A annihilates its characteristic polyno-

mial. (Consider the quotient field F of D.)

. Use Problem 6 and Lemma 2.4.4 to show

(2.4.11) deg v < dim V.

. Let ¢ = ¢*°, where ¢ is irreducible in F[z]. Assume that deg v =

dim V. Use Problems 2 and 8 to show that V is an irreducible in-
variant subspace of T

Let p(z) € F[z] be a nontrivial normalized polynomial such that p =
¢*, where ¢ is a normalized irreducible in F[z]. Let T' € Hom (V) be
represented by C'(p). Use Problem 9 to show that V is an irreducible
invariant subspace of T

Let T € Hom (V) and let E be the matrix given by (2.3.6), which is
determined by the elementary divisors of T'. Using Problem 10 show
that the representation F of T corresponds to a splitting of V' to a
direct sum of irreducible invariant subspaces of T

Deduce from Problem 9 and 11 that V is an irreducible invariant
subspace of T if and only if the minimal polynomial ¢ of T satisfies
the assumptions of Problem 9

2.5 An upper triangular form

Definition 2.5.1 Let M be a D-module and assume that T € Hom (M).
A €D is an eigenvalue of T if there exists 0 £ u € M such that

(2.5.1) Tu = u
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The element, (vector), u is an eigenelement, (eigenvector), corresponding
to A. An element 0 # u is a generalized eigenelement, (eigenvector), if

(2.5.2) M —-T)u=0

for some positive integer k, where X is an eigenvalue of T'. For T € D™*™
A is an eigenvalue if (2.5.1) holds for some 0 £ u € D™. The element u is
eigenelement, (eigenvector), or generalized eigenelement, (eigenvector), if
either (2.5.1) or (2.5.2) holds respectively.

Lemma 2.5.2 Let T € D™*™. Then A is an eigenvalue of T if and
only if X is a root of the characteristic polynomial det (xI —T).

Proof. Let F be the quotient field of . Assume first that A is an
eigenvalue of T. As (2.5.1) is equivalent to (Al —T)u = 0 and u # 0, then
above system has a nontrivial solution. Therefore det (AI —T) = 0. Vice
versa, if det (A — T') = 0 then the system (A — T')v = 0 has a nontrivial
solution v € F™. Then there exists 0 # a € D such that u := av € D™ and
Tu = Au. O

Definition 2.5.3 A matriz A = [a;;] € D™*™ is an upper, (lower), tri-
angular if a;; =0 for j <4, (j > ). Let UT(m,D), (LT(m,D)) C D™*™
be the ring of upper, (lower), triangular mxm matrices. Let UTG(m,D) =
UT(m,D) N GL(m,D), (LTG(m,D) = LT(m,D) N GL,,(D)).

Theorem 2.5.4 Let T € D™*™. Assume that the characteristic poly-
nomial of T splits to linear factors over D

(2.5.3) det (zI = T) =[J(x—=N), NeD, i=1..m.

i=1
Assume furthermore that D is a Bezout domain. Then
(254) T=QAQ™', QcGL(mD), A=ay]" € UT(m,D),

such that ay1, ..., Gmm are the eigenvalues A1, ..., A\, appearing in any spec-

ified order.

Proof. Let A be an eigenvalue of T" and consider the set of all u € D™
which satisfies (2.5.1). Clearly this set is a D-module M. Lemma 2.5.2
yields that M contains nonzero vectors. Assume that D is Dg. According
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to Theorem 1.12.3 M has a basis uy, ..., uy which can be completed to a
basis uy, ..., u,, in D™. Let

(2.5.5) Tu;=» bju;, i=1,...,m, B=[b;]eD™™
j=1

A straightforward computation shows that T' =~ B. As Tu; = Auy, i =
1,...,k we have that b;; =0 for 5 > 1. So

det (I —T) = det (zI — B) = (& — N)det (I — B),

where B = [b;;]";_, € DIm=D*(m=1)_Here the last equality is achieved by
expanding det (zI — B) by the first column. Use the induction hypothesis
to obtain that B ~ Ay, where A; € UT(m — 1,D), with the eigenvalues of
B on the main diagonal of A; appearing in any prescribed order. Hence

T =~ C = [ci;]t, where C € UT(m, D) with c11 = A, [e5]} ;-0 = A1 O

The upper triangular form of A is not unique unless A is a scalar matriz:
A =al. See Problem 1.

Definition 2.5.5 Let T € D™*™ and assume that (2.5.3) holds. Then
the eigenvalue multiset of T is the set S(T) = {1, ..., Am}. The multiplicity
of A € S(T), denoted by m(X), is the number of elements in S(T) which are
equal to X. X is called a simple eigenvalue if m(\) = 1. The spectrum of T,
denoted by spec (T), is the set of all distinct eigenvalues of T':

(2.5.6) Z m(A) =m.

A€spec (T)

ForT € C™*™ arrange the eigenvalues of T' in the decreasing order of their
absolute values (unless otherwise stated):

(2.5.7) i = e > [A] 20,

The spectral radius of T, denoted by p(T'), is equal to |A1].

Problems

1. Let @ correspond to the elementary row operation described in Def-
inition 1.11.6(iii). Assume that A € UT(m,D). Show that if j < 4
then QAQ~! € UT(m,D) with the same diagonal as A. More gen-
eral, for any Q € UTG,,(D) QAQ~! € UT(m,D) with the same
diagonal as A.
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. Show that if T' € D™*™ is similar to A € UT(m,D) then the charac-

teristic polynomial of T splits to linear factors over D|z].

. Let T € D™*™ and put

(2.5.8) det (zI —T)=2"+ Z A 7.
j=1

Assume that the assumptions of Theorem 2.5.4 holds. Show that
(2.5.9)
(—1)*ay, = Z det T[a, a] = sk (A1, oy Am), kE=1,..,m.
a€[m]k
Here si (1, ..., ) is the k — th elementary symmetric polynomial of

T1,...,Tm. The coefficient —aq is called the trace of A:

m

(2510) trA= iaii = Z A
=1 =1

. Let T'e D™*™ and assume the assumptions of Theorem 2.5.4. Sup-

pose furthermore that D is Dy. Using the results of Theorem 2.5.4
and Problem 2.4.5 show that the minimal polynomial ¢ (z) of T is of
the form

l

Y(z) = [[(@ = i)™,
i=1
o Fajfori#j, 1<s <m:=m(e), 1=1,..,1,
(2.5.11)

where spec (T) = {a1, ..., q}. (Hint: Consider the diagonal elements

of ¥(A).)

. Let T € D}*™ and assume that the minimal polynomial of T is given

by (2.5.11). Using Problem 2.4.4 and the equality (2.4.1) show

l
(2.5.12) det (21 = T) = [J (& — i)™

i=1

2.6 Jordan canonical form

Theorem 2.5.4 and Problem 2.5.2 shows that T' € D™*™ is similar to an
upper triangular matrix if and only if the characteristic polynomial of T
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splits to linear factors. Unfortunately, the upper triangular form of T is not
unique. If D is a field then there is a special upper triangular form in the
similarity class of T" which is essentially unique. For convenience we state
the theorem for an operator T' € Hom (V).

Theorem 2.6.1 Let V be a vector space over the field F. Let T €
Hom (V) and assume that the minimal polynomial (x) of T splits to a
product of linear factors as given by (2.5.11). Then 'V splits to a direct sum
of nontrivial irreducible invariant subspaces of T

(2.6.1) V=W,a.0W,

In each invariant subspace W (= W) it is possible to choose a basis con-
sisting of generalized eigenvectors X1, ..., X, such that

Tx; = AoXy,
(2.6.2)
TXpr1 = AoXk+1 + Xk, k=1,..,r—1,

where Ao is equal to some «; and r < s;. (For r = 1 the second part of
(2.6.2) is void.) Moreover for each o there exists an invariant subspace W
whose basis satisfies (2.6.2) with \g = oy and r = s;.

Proof. Assume first that the minimal polynomial of T is

(2.6.3) () = 2°.

Recall that ¢ (z) is the last invariant polynomial of T'. Hence each nontrivial
invariant polynomial of T is of the form x" for 1 < r < s. Theorem 2.3.4
implies that V has a basis in which T is presented by its rational canonical
form

Clam)@®..eC@@™), 1<r<r<..<r,=s.

Hence V splits to a direct sum of T-invariant subspaces (2.6.1). Let W be
an invariant subspace in the decomposition (2.6.1). Then T := T|W has the
minimal polynomial z", 1 < r < s. Furthermore, W has a basis x1, ..., X,
so that T is represented in this basis by the companion matrix C(z"). It
is straightforward to show that 1, ..., z, satisfies (2.6.2) with A\g = 0. As
W is spanned by XT7TXT, ...,Tr_lxr it follows that W is an irreducible
invariant subspace of T. Assume now that the minimal polynomial of T
is (x — Xo)®. Let To = T — MgI. Clearly z* is the minimal polynomial of
To. Let (2.6.1) be the decomposition of V to invariant subspaces of Tj as
above. In each invariant subspace W choose a basis for Tj as above. Then
our theorem holds in this case too.
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Assume now that the minimal polynomial of T' is given by (2.5.11). Use

Theorem 2.4.5 and the above arguments to deduce the theorem. O
Let
010 0 0
0 0 1 0 0
(2.6.4) H,:=C(")=1|: + + 1 !
000 ... 01
000 ... 00

Sometimes we denote H,, by H when the dimension of H is well defined.

Let W = span (x1,Xa,...,X;). Let T € Hom (W) be given by (2.6.2).
Then T is presented in the basis x1, ..., x,. by the Jordan block \oI, + H,.
Theorem 2.6.1 yields:

Theorem 2.6.2 Let A € F"*"™. Assume that the minimal polynomial
P(x) of A splits to linear factors as in (2.5.11). Then there exists P €
GL(n,F) such that

pPlAP =,
(2'6'5) J = @2:1 69;h:l (ai]mij + Hmij)7
(266) 1 S Mig; S Mig; 4 S S m;1 = S;, 1= ].7 ,l

Definition 2.6.3 Let A € F™*™ satisfy the assumptions of Theorem
2.6.2. The matriz J in (2.6.5) is called the Jordan canonical form of A.
Let T € Hom (V) and assume that its minimal polynomial splits over F.

Then a representation matriz J (2.6.5) is called the Jordan canonical form
of T.

Remark 2.6.4 Let A € F™*" and suppose that the minimal polynomial
1 of A does not split over F. Then there exits a finite extension K of F
such that v splits over K. Then (2.6.5) holds for some P € GL(n,K). J

is referred as the Jordan canonical form of A.

Corollary 2.6.5 Let A € F"*™. Assume that the minimal polynomial
of A is given by (2.5.11). Let J be the Jordan canonical form of A given by
(2.6.5). Set

(267) Migi+1 = .. = My = O, 1= 1, ,l

Then the elementary polynomials of xI — A, which are the elementary di-
visors of xI — A defined in Problem 2, are

(268) ¢ij = (IE — O[i)m”, j=1..,n,1=1,..1
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Hence the invariant polynomials i1(x), ...,in(x) of I — A are

l

(2.6.9) ir(x) = [[(@ = i)™=, e =1,.m,
i=1

The above Corollary shows that the Jordan canonical form is unique up
to a permutation of Jordan blocks.

Problems

1. Show directly that to each eigenvalue Ay of a companion matrix
C(p) € F™*™ corresponds one dimensional eigenvalues subspace spanned
by the vector (1, Ao, A2, ..., Ao~ H)T.

2. Let A € F™*™ and assume that the minimal polynomial of A splits in
F. Let Uy, Uy C F™ be the subspaces of all generalized eigenvectors of
A, AT respectively corresponding to A € spec (A). Show that there
exists bases x1,...,X,, and y1,...,y¥.» in U; and Us respectively so
that

ViX;=0ij, i,j=1,..,m.

(Hint: Assume first that A is in its Jordan canonical form.)

3. Let A € F"*". Let A\, u € F be two distinct eigenvalues of A. Let
x,y € F™ be two generalized eigenvectors of A, AT corresponding to
A, 11 respectively. Show that y 'x = 0.

4. Verify directly that J (given in (2.6.5)) annihilates its characteristic
polynomial. Using the fact that any A € F"*" is similar to its Jordan
canonical form over the finite extension field K of F deduce the Cayley-
Hamilton theorem.

5. Let A, B € F"*™. Show that A =~ B if and only if A and B have the

same Jordan canonical form.

2.7 Some applications of Jordan canonical form

Definition 2.7.1 Let A € F™*" and assume that det (zI — A) splits in
F. Let \g be an eigenvalue of A. Then the number of factors of the form
x— X appearing in the minimal polynomial 1 (x) of A is called the index of
Ao and is denoted by index \g. The dimension of the eigenvalue subspace
of A corresponding to A\ is called the geometric multiplicity of Ag.

Using the results of the previous section we obtain.
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Lemma 2.7.2 Let the assumptions of Definition 2.7.1 hold. Then index g
is the size of the largest Jordan block corresponding to \g, and the geometric
multiplicity of Ao is the number of the Jordan blocks corresponding to \g.

Let T' € Hom (V), X € spec (T) and consider the invariant subspaces

(2.7.1) X, ={xeV: MNI-T)x=0}, r=01,...,
Y, =N -T)V, r=0,1,....

Theorem 2.7.3 Let T € Hom (V) and assume that Xy is the eigen-
value of T'. Let index \g = mq > mg > ... > my, > 1 be the dimensions of
all Jordan blocks corresponding to Ay which appear in the Jordan canonical
form of T. Then

P
(2.7.2) dim X, = Zmin(n m;), r=0,1,..,
i=1

dimY,=dimV —dimX,, r=0,1,..

In particular

0=X0 X1 GX2 G . & X,

X(Ao) =X = X1 = ...,  m = index Ao.
(2.7.3) V=Y2Y12Y:2..2Y,,

Y()\O) = Ym = Ym+1 -

V =X(Xo) &Y ()
Let

(2.74) vi=dimX; —dimX;_y, i=1,...,m+1, m:=index Ag.

Then v; is the number of Jordan block of size i at least corresponding to Ag.
In particular

(2.7.5) V1> Ve > oo 2 Uy > Upy1 = 0.
Furthermore
(2.7.6) v; — Vg1 is the number of Jordan blocks of order

7 in the Jordan canonical form of T'corresponding to Ag.

Proof. Assume first that det (zI —T) = ¢(z) = (x — X\g)™. That is T
has one Jordan block of order m corresponding to A\g. Then the theorem
follows straightforward. Observe next that for

Ker (Al —T)=0, RangeKer (M -T)=V, X#Ao.
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Assume now that det (zI — T) splits in F and V has the decomposition
(2.6.1). Apply the above arguments to each T|W,; for i = 1, ..., ¢ to deduce
the theorem in this case. In the general case, where det (I — T) does not
split to linear factors, use the rational canonical form of T' to deduce the
theorem. O

Thus (2.7.3) gives yet another characterization of the index A\g. Note
that in view of Definition 2.5.1 each 0 # x € X, is a generalized eigenvector
of T. The sequence (2.7.4) is called the Weyr sequence corresponding to
Ao-

Definition 2.7.4 A transformation T € Hom (V) is diagonable if there
exists a basis in 'V which consists entirely of eigenvectors of T'. That is any
representation matrix A of T is diagonable, i.e. A is similar to a diagonal
matriz.

For such T we have that X; = X,,, for each Ay € spec (T). Theorem
2.6.1 yields.

Theorem 2.7.5 Let T € Hom (V). Then T is diagonable if and only
if the minimal polynomial b of T splits to linear, pairwise different factors.
That is the index of any eigenvalue of T equals to 1.

Definition 2.7.6 Let M be a D-module and let T € Hom (M). T is
nilpotent if T° = 0 for some positive integer s.

Let T € Hom (V) and assume that det (zI — T) splits in F. For A\g €
spec (T) let X(Ao) C V be the T-invariant subspace defined in (2.7.3).
Then the decomposition (2.6.1) yields the spectral decomposition of V:

(277) V= Gaz\espec (T)X(A)

The above decomposition is courser then the fine decomposition (2.6.1).
The advantage of the spectral decomposition is that it is uniquely defined.
Note that each X(A), A € spec (T) is direct sum of irreducible T-invariant
subspaces corresponding to the eigenvalue A in the decomposition (2.6.1).
Clearly T — AI|X(A) is a nilpotent operator. In the following theorem we
address the problem of the choices of irreducible invariant subspaces in the
decomposition (2.6.1) for a nilpotent transformation T'.

Theorem 2.7.7 Let T € Hom (V) be nilpotent. Let index0 = m =
myp > Mg > ... > my > 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T. Let (2.6.1) be a decomposition of V to
a direct sum of irreducible T-invariant subspaces such that

dim Wi =my > dim Wy =mg > ... > dim W, =m, > 1,
(2.7.8)
My = ... =My > My 41 = oo = My > 000 > My 141 = oo =My

pzmq.
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Assume that each W has a basis y; 1, ..., Yim, Satisfying (2.6.2), with Ao =
0. Let X;,Y;,i =0,... be defined as in (2.7.1) for \g = 0. Then the above
bases in W1, ..., W can be chosen recursively as follows:

(a) ¥1.15--Yiy,1 s an arbitrary basis in Y p,_1.

(b) Let 1 < k < m. Assume that y;; are given for all | such that
my > m—k+1 and all j such that 1 < 57 < m;y —m + k. Then each
Yi,(k+1) 8 any element in T 'y N Yyok—1, which is a coset of the
subspace Yp—p—1 N Xy = Ker T|Y -1 If m — k = my for some
1<t <, thenys, 141,15 Y41 18 any set of linearly independent vectors
mn Y p,_g—1 N Xy, which complements the above chosen vectors y; ;, m; >
m—k+1, m—m+k+1>7 toabasisin Yy_k_1-

See Problem 1 for the proof of the Theorem.

Corollary 2.7.8 Let the assumptions of Theorem 2.7.7 hold. Suppose
furthermore that Z C 'V is an eigenspace of T'. Then there exists a decompo-
sition (2.6.1) of 'V to a direct sum of irreducible T-invariant subspaces such
that Z has a basis consisting of | = dim Z eigenvectors of the restrictions
of TIWj,,....,TIW;, for1 <ji <...<j <q.

Proof. Let Z; .= ZNY,,_1 C ... C Z,, := ZN Yy and denote
l; = dimZ; for i = 1,...,m. We then construct bases in Wy,..., W,
as in Theorem 2.7.7 in the following way. If [y = dim Z; > 0 we pick
Yi,15---,Y1,,1 tobe from Z;. In general, foreachk =1,...,m—1,1 <t <4,
and m; = m — k such that Iy 1 > lp welet yi, 41,1, Yis 1+l —1p,1 DE
any set of linearly independent vectors in Zjy;1, which form a basis in

Zk+1/Zk. O

Problems

1. Prove Theorem 2.7.7

2.8 The matrix equation AX — XB =0

Let A, B € D™*™. A possible way to determine if A and B are similar over
GL(n,D) is to consider the matrix equation

(2.8.1) AX — XB=0.

Then A ~ B if and only if there exists a solution X € D"*" such that
det X is an invertible element in . For X € D™*" let X € D™ be the
column vector composed of the n columns of X:

¢ T
(282) X = (1’11, ey 15 L12y -o0y T2, ...,xm(n_l),xln, veny xmn) s
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where X = [z;;] € D™*". Then the equation (2.8.1), where A € D""*™ B €
D™*™ has a simple form in tensor notation [MaM64]. (See also Problems
1 and 2.8.13.)

(2.8.3) (I A-B'® DX =0.

Assume that D is a Bezout domain. Then the set of all X € D™*"™ satisfying
(2.8.1) forms a D-module with a basis Xy, ..., X,, (Theorem 1.12.3). So any
matrix X which satisfies (2.8.1) is of the form

v
X = ZxX neD, i=1,..,u.
i=1

It is "left” to find whether a function
0(x1,...,xy,) := det (Z x; X;)
i=1

has an invertible value. In such a generality this is a difficult problem. A
more modest task is to find the value of v and to determine if 6(x1, ..., x,)
vanish identically. For that purpose it is enough to assume that I is actually
a field F (for example the quotient field of D). Also we may replace F by a
finite extension field K in which the characteristic polynomial of A and B
split. Finally we are going to study the equation (2.8.1) where

AeK™m  BeK™"™ X e K™*",

) )

Let 9(x), ¢(x) and J, K be the minimal polynomials and the Jordan
canonical forms of A, B respectively.

Ai)%, spec (A) = {1, ..., A},

<
&
i
—-
8
I

s
Il
-

(:C - Mj)tju spec (B) = {/11’ "'7/~Lk}’

<
I
—

<
=
!
—.

PlAP=J=¢a'_,J,
(2.8.4)
Ji = ® (Nl + Hiy)y 1<myg, <o <myp =5, i=1,...1,
Q7'BQ =K = o}, K;,
Kj =& (uiln,, + Hy, ), 1<mj, <..<nj=t;, j=1,..k
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Let Y = P71 XQ. Then the system (2.8.1) is equivalent to JY — YK = 0.
Partition Y according to the partitions of J and K as given in (2.8.4). So

Y= (V) Yy e R,
qi Pj

m; = Zmir) ng = anT7 i= la "'al7 j = 17 7k
r=1 r=1

Then the matrix equation for Y reduces to [k matrix equations
(2.8.5) JiYey =Y K; =0, i=1,..,1,j=1,..,k.
The following two lemmas analyze the above matrix equations.

Lemma 2.8.1 Let i € [l], j € [k]. If \i # p; then the corresponding
matriz equation in (2.8.5) has the unique trivial solution Y;; = 0.

Proof. Let

Ji =N, + 5, Ji = @I Hp,,,
Kj = pjln, + K;j, Kj=®;L Hy, .

Note that J* = K¥ =0 for u > m; and v > n;. Then (2.8.5) becomes
(Ni = pj)Yij = =JYij + Yi; K.
Thus

(Ni = 15)*Yi5 = =Ji(Ni = ) Yij + (N — ) Yig K =
—Ji(=JiYij + Yy Kj) + (= JiYi; + Yy Kj) K =
(*Ji)zyvij + 2(7JZ)Y’”KJ + Y;Jsz

Continuing this procedure we get
T - r T\U [T U
(v Yy = 3 (D) Iy
u=0

Hence for r = m; + n; either J¥ or f(;_“ is a zero matrix. Since X\; # p;
we deduce that Y;; = 0. O

Lemma 2.8.2 Let Z = [zo8] € F™*™ satisfy the equation

(2.8.6) H,.7 = ZH,.
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Then the entries of Z are of the form

Zag =0 for 8 < a+mn — min(m,n),
(2.8.7)

ZaB = Z(a+1)(B+1) for B> a+n —min(m,n).

In particular, the subspace of all m x n matrices Z satisfying (2.8.6) has
dimension min(m,n).

Proof. Note that the first column and the last row of H; are equal to
zero. Hence the first column and the last row of ZH,, = H,,Z are equal to
zero. That is

Zal1 =2mp =0, a=2,..,m,B=1,..,n—1
In all other cases, equating the («, 3) entries of H,,Z and ZH,, we obtain

2(a+1)8 = Za(f-1)s a=1,..m—1 =2,..n

The above two sets of equalities yield (2.8.7). O
Combine the above two lemmas to obtain.

Theorem 2.8.3 Consider the system of (2.8.5). If A\; # p; then Y;; =
0. Assume that \; = pj. Partition Y;; according to the partitions of J; and
K, as given in (2.8.4):

Y = [}ng)]a Yé"”) e KmuXmv y=1,..,¢, v=1,..,p;.

Then each Yig»w) s of the form given in Lemma 2.8.2 with m = my, and
n = nj,. Assume that

s = Mi, t=1,..,1,
(2.8.8)
)\i#ﬂj; i=t+1,..,0, j=t+1,... k.

Then the dimension of the subspace ¥ C K™*™ of block matrices Y =
[Yij]fj:l satisfying (2.8.5) is given by the formula

qiPi

¢
(2.8.9) dim Y = Z Z min (M, Niy ).

=1 u,v=1
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Consider a special case of (2.8.1)
(2.8.10) C(A)={XeD™": AX -XA=0}

Then C(A) is an algebra over D with the identity I. In case D is a field F,
or more generally D is a Bezout domain, C(A) has a finite basis. Theorem
2.8.3 yields

l qi
dim C(A) = Z Z min(miua miv)~
i=1 u,v=1

(Note that the dimension of C(A) does not change if we pass from F to an
finite extension field K in which the characteristic polynomial of A splits.)
As {m;, )P, is a decreasing sequence we have

qi qi
E mln(mMu miv) = UMy, + § My

v=1 v=u+1

So

L g
(2.8.11) dim C(A) =) > " (2u— )miu.

i=1u=1

Let i1(x), ..., in(z) be the invariant polynomials of I — A. Use (2.6.7-2.6.9)
to deduce
(2.8.12) dim C(A) =) " (2u — 1)deg in_us1(2).

u=1

The above formula enables us to determine when any commuting matrix
with A is a polynomial in A. Clearly, the dimension of the subspace spanned
by the powers of A is equal to the degree of the minimal polynomial of A.

Corollary 2.8.4 Let A € F*"*". Then each commuting matriz with
A can be expressed as a polynomial in A if and only if the minimal and
the characteristic polynomial of A are equal. That is, A is similar to a
companion matriz C(p), where p(x) = det (zI — A).

A matrix for which the minimal and characteristic polynomial coincide is
called nonderogatory. If the minimal polynomial of A is a strict factor of the
characteristic polynomial of A, i.e. the degree of the minimal polynomial
is strictly less than the degree of the characteristic polynomial, then A is
called derogatory.

Problems
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1. For A = [a;;] € D™, B = (by) € D"* let
(2813) A® B := [G,”B] c ]D)Trm,xzoq7
be the tensor (Kronecker) product of A and B. Show

(A1®A2)(Bl®32) = (A131)®(A232), A; € ]D)m,;xn;,’ B; € DniXpi, 1=1,2.

2. Let g : D™*™ — ™" be given by u(X) = X, where X is defined be
(2.8.2). Show that

p(AX) = (L,@A)u(X), wXB)= (B ®@L,)uX), AecD™™ BeD™"
3. Let P € ™™ Q€ F™", R € F™*". Let

_ P R _ P 0 (m4+n)Xx(m+n)
A_{O Q]’B_[O Q}E]F .

Assume that the characteristic polynomials of P and @) are coprime.

I Y] which satisfies (2.8.1). Hence

Show that there exists X = [ 0 I

A=~ B.
4. Let A=Y"'_ ®A; € F"*". Show that

4
(2.8.14) dim C(A) > ) dim C(4,),

and the equality holds if and only if

(det (xI — A;),det (zI —A;))=1 fori=1,...¢ j=1,..,0—1.

5. Let A € D"*™. Show that the ring C(A) is a commutative ring if
and only if A satisfies the conditions of Corollary 2.8.4, where F is
the quotient field of D.

6. Let A € D"*", B € C(A). Then B is an invertible element in the
ring C(A) if and only if B is a unimodular matrix.

7. Let A e D™*™ B e D" ™. Define
(2.8.15) C(A,B):={X eD™": AX - XB=0}.

Show that C'(A, B) is a left (right) module of C'(A) (C(B)) under the
matrix multiplication.
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8. Let A, B € D"*". Show that A ~ B if and only if the following two
conditions hold:

(a) C(A, B) is a C(A)-module with a basis consisting of one element
U;

(b) any basis element U is a unimodular matrix.

2.9 A criterion for similarity of two matrices

Definition 2.9.1 Let A € D™*™ B € D"*™. Denote by r(4, B) and
v(A, B) the rank and the nullity of the matriz I, ® A — B' ® I,,, viewed as

a matriz acting on the vector space F™*™ where F is the quotient field of
D.

According to Theorem 2.8.3 we have

(2.9.1)
qi;Pi

r(A,B) = mn — Z Z min (Mq,, My )-

i=1 u,v=1

Theorem 2.9.2 Let A € D™*™, B e D"*". Then

v(A,B) < -(v(A,A) +v(B, B)).

N =

Equality holds if and only if m = n and A and B are similar over the
quotient field F.

Proof. Without loss of generality we may assume that D = F and the
characteristic polynomials of A and B split over F[z]. For x,y € R let
min(z,y) (max(z,y)) be the minimum (maximum) of the values of x and
y. Clearly min(z,y) is a homogeneous concave function on R?. Hence

min(a, ¢) + min(b, d) + min(a, d) + min(b, c)

(2.9.2) min(a+b,c+d) > 5

A straightforward calculation shows that if « = ¢ and b = d then equality
holds if and only if a = b. Let

N = max(m,n), mi, =mnj, =0,
foer'<u§N7 pi<U§N7 i:]-w"vgv .7:1’7k
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Then
¢,N k,N
v(A,A)+v(B,B) = Y (2u—Dmiu + »_ (2u—Dnjy >
i, u=1 Jyu=1
t,N
> (2u— 1) (M + niu).
i, u=1

and the equality holds if and ¢ = k = ¢. Next consider the inequality

t,N t N
D Qu—= 1) (i 4 niw) = DY min(miy + i, My + 1iy) >
i,u=1 i=1 u,v=1

t N
1
3 Z Z (min(my, My ) + min(miy, 1) +

min(nm, miy) + min(niu; nw)) =

t,N t  qipi

1 .

3 E (2u — 1) (M, + M) + E E min (M, Ny ).
7, u=1 i u,v=1

Combine the above results to obtain the inequality (2.9.2). Equality sign
holds in (2.9.2) if and only if A and B have the same Jordan canonical
forms. That is m = n and A is similar to B over F. O

Suppose that A ~ B. Hence (2.2.1) holds. The rules for the tensor
product (Problem 2.8.1) imply

IA-B ' eI=((QNH 'elIeA-ATeQ" aI),
(2.9.3)

IA-B'@I=(Q")"'eQUeA-ATeN@Q Q™).
Hence the three matrices
(2.9.4) IA-A"®@I, I®A-B'®I I®B-B'®I

are similar. In particular, these matrices are equivalent. Over a field F
the above matrices are equivalent if and only if the have the same nullity.
Hence Theorem 2.9.2 yields.

Theorem 2.9.3 Let A, B € F"*"™. Then A and B are similar if and
only if the three matrices in (2.9.4) are equivalent.

The obvious part of Theorem 2.9.3 extends trivially to any integral domain
D.
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Proposition 2.9.4 Let A,B € D"*™. If A and B are similar over D
then the three matrices in (2.9.4) are equivalent over D.

However, this condition is not sufficient for the similarity of A and B even
in the case D = Z. (See Problem 1.) The disadvantage of the similarity
criterion stated in Theorem 2.9.3 is due to the appearance of the matrix
I® A — BT @I, which depends on A and B. It is interesting to note that
the equivalence of just two matrices in (2.9.4) does not imply the similarity
of A and B. Indeed

IRA-AT@I=T0(A+A)—-(A+X)T T

for any A € F. If F has an infinite characteristic then A % A + A for
any A # 0. (Problem 2.) Also if A = H, and B = 0 then v(A,A) =
v(A, B) = n. (Problem 3.) however, under certain assumptions the equality
v(A, A) = v(A, B) implies A ~ B.

Theorem 2.9.5 Let A € C™**™. Then there exists a neighborhood of
A = [ai;]

(2.9.5) D(A,p) :={B=[bi] € C™": " |byj — ay|* < p*},
i,j=1

for some positive p depending on A, such that if
(2.9.6) v(A,A)=v(A,B), B¢ D(A,p),
then B is similar to A.

Proof. Let 7 be the rank of T® A — AT ® I. So there exist indices

a = {(ai1,a21), ..., (1, @2) }, B={(B11,021); s (Birs Bor)} C [n] x [n],

viewed as elements of [n?],., such that det (I® A — AT @ I)[a, 8] # 0. Also
det I® A— AT ®1)[y,d] = 0 for any v, € [n?],,1. First choose a positive
o' such that

(2.9.7) det I®A— BT @I)[a, ] #0,forall B D(A,p).

Consider the system (2.8.1) as a system in n? variables, which are the

entries of X = [z;;]7. In the system (2.8.1) consider the subsystem of r
equations corresponding to the set a:

n
(2.9.8) > aiwr; — wikbe; =0, i =o0np, j =0z, p=1,..,7.
k=1
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Let

(299) T = 5k] for (k7.]) 7& (61p7ﬁ2p)) b= 17 vy T

The condition (2.9.7) yields that the system (2.9.8)-(2.9.9) has a unique
solution X (B) for any B € D(A,p’). Also X(A) = I. Use the continuity
argument to deduce the the existence of p € (0, p’] so that det X (B) # 0 for
all B € D(A,p). Let V be the algebraic variety of all matrices B € C**™
satisfying

(2.9.10) det (@ A—B' @1)[y,6] =0 foranyv,0 € Q1) n2-

We claim that V N D(A4, p) is the set of matrices of the form (2.9.6). In-
deed, let B € VN D(A,p). Then (2.9.7) and (2.9.10) yield that v(A4, B) =
v(A,A) = n? — r. Assume that B satisfies (2.9.6). Hence (2.9.10) holds
and B € VN D(A,p). Assume that B € VN D(A, p). Then

AX(B)— X(B)B=0, detX(B)#0 = A~ B.

Problems

1. Show that for A and B given in Problem 2.2.1 the three matrices in
(2.9.4) are equivalent over Z, but A and B are not similar over Z.
(See Problem 2.2.1.)

2. Show that if F has an infinite characteristic then for any A € F™**™
A~ A+ Al if and only if A = 0. (Compare the traces of A and
A+ AL)

3. Show that if A = H,, and B =0 then v(A, A) = v(A, B) =n.

4. Let A,B € D™*™. Assume that the three matrices in (2.9.4) are
equivalent. Let Z be a maximal ideal in D. Let F = D/Z and view
A, B as matrices over F. Prove that A and B similar over F. (Show
that the matrices in (2.9.4) are equivalent over F.)

2.10 The matrix equation AX — XB =C

A related equation to (2.8.1) is the nonhomogeneous equation

(210.1) AX-XB=C, AeF™™ BeF"™" C,XecFm",
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This equation can be written in the tensor notation as
(2.10.2) (I, A-B"®1,)X =C.

The necessary and sufficient condition for the solvability of (2.10.2) can
be stated in the dual form as follows. Consider the homogenous system
whose coefficient matrix is the transposed coefficient matrix of (2.10.2),
(see Problem 1),

(I, AT —B®1,)Y =0.

Then (2.10.2) is solvable if and only if any solution Y of the above system
is orthogonal to C' (e.g. Problem 2). In matrix form the above equation is
equivalent to

ATY - YBT =0, Y eF™x",

)

The orthogonality of Y and C are written as trY TC = 0. (See Problem
3.) Thus we showed:

Theorem 2.10.1 Let A € F™*™ B € F"*"™. Then (2.10.1) is solvable
if and only if

(2.10.3) trZC =0
for all Z € T™*"™ satisfying
(2.10.4) ZA—-BZ =0.
Using the above Theorem we can obtain a stronger version of Problem 4.
Theorem 2.10.2 Let
G =[Gyl Gy €FY ™ Gy=0forj<i,ij=1,..,L

Then

14
(2.10.5) dim C(G) > Y " dim C(Gy)).

Proof. Consider first the case £ = 2. Let G = {A E} Assume that

0 B

U X .
T = {O V] commutes with G. So

(2.106) AU -UA=0, BV-VB=0, AX-XB=UE-EV.
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Theorem 2.10.1 implies that U € C(A), V € C(B) satisfy the last equation
of (2.10.6) if and only if tr Z(UE — EV) = 0 for all Z satisfying (2.10.4).
Thus the dimension of pairs (U, V) satisfying (2.10.6) is at least
dim C(A) + dim C(B) — dim C(B, A).

On the other hand, for a fixed (U, V) satisfying (2.10.6), the set of all X
satisfying the last equation of (2.10.6) is of the form Xy + C(A, B). The
equality (2.8.9) yields dim C'(4, B) = dim C(B, A). Hence (2.10.5) holds
for £ = 2. The general case follows straightforward by induction on ¢. O

We remark that contrary to the results given in Problem 2.8.4 the equal-

ity in (2.10.5) may occur even if G;; = G;; for some i # j. (See Problem
4.)

Theorem 2.10.3 Let A ¢ F™*™ B e F"*" C € F™*™. Let

0 B 0 B
Show that F' =~ G if and only if the matriz equation (2.10.1) is solvable.
Proof. Assume that (2.10.1) solvable. Then U = {Igb f} € GL(m+

n,F) and G = U1FU.

Assume now that F ~ G. We prove the solvability of (2.10.1)) by
induction on m + n, where m,n > 1. Let K be a finite extension of F such
that the characteristic polynomial of A and B split to linear factors. Clearly
it is enough to prove the solvability of (2.10.1) for the field K. Suppose first
that A and B do not have common eigenvalues. Then Problem 2.8.3 yields
that F' ~ G. Assume now that A and B have a common eigenvalue A;.
For m = n =1 it means that A = B = Ay € F. Then the assumption that
F ~ G implies that C' = 0 and (2.10.1) is solvable with X = 0.

Assume now that the theorem holds for all 2 < m +n < L. Let m +
n = L. The above arguments yield that it is enough to consider the case
where the characteristic polynomials of A and B split to linear factors
and \; is a common eigenvalue of A and B. By considering the matrices
F—MInin, G— Ay, we may assume that 0 is an eigenvalue of A
and B. By considering the similar matrices U FU, U~'GU where U =
Uy ® U, Uy € GL(m,F), U, € GL(n,F) we may assume that A and B

are in a Jordan canonical form of the form
A=A10Ay, B=B1®By, AT'=0, B} =0, 0 ¢ (spec (A2)Uspec (Bz)).
(It is possible that either A = A; or B = By.) Let

M Im X 1 0 X _|Ci1 Cr2
U[O In:|’ X{le 0]’0[021 022]'
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Use Problem 2.8.3 to deduce that one can choose X2, X5 such that G’ =
A C
—1 _
U'GU =G = {0 B
we will assume that Ci5 = 0, Cy; = 0. Permute second and third blocks in
F, G to obtain that F, G are permutationally similar to

and C1, =0, C4; = 0. For simplicity of notation

A, 0 0 0 Al Ci 0 0
|0 B 0 0 . 10 B 0 0
F=10 0 a4 o ["%]0 0 4 C» |’

0 0 0 B 0 0 0 B

respectively. So the Jordan canonical form of F.G corresponding to 0 are
A 0 A Cn

0 BJ ’ [o BJ e

spectively. The Jordan canonical form of F.G corresponding to other eigen-

Ay 0 Ay Oy

0 B2:| ’ { 0 B

determined by the Jordan canonical forms of {

values are determined by the Jordan canonical forms of [
respectively. Hence

A1 0 ~ A1 011 A2 0 - A2 022

0 Bi| |0 Bi|” |0 By |0 Byl
Thus if either A or B are not nilpotent the theorem follows by induction.

It is left to consider the case where A and B are nilpotent matrices,

which are in their Jordan canonical form. If A =0, B = 0 then C' = 0 and
the theorem follows. So we assume that either at least one of the matrices
in {A, B} is not a zero matrix. Since dim ker ' = dim ker G Problem

6 yields that (after the upper triangular similarity applied to G) we may
assume that ker F' = ker G. Let

A= @leAi? B = @?:133"

where each A;, B; is an upper triangular Jordan block of dimension m;, n;
respectively. Let

C= [CZ]]7 C’LJ € (Cmixnj> 1= 17 "'7puj = 17 - g,

be the block partition of C' induced by the block partition of A and B re-
spectively. The assumption that ker F' = ker GG is equivalent to the assump-
tion that the first column of each Cj; is zero. Consider V. = F"™*+" /ker F.
Then F,G induce the operators F', G on V which are obtained from F,G
by deleting the rows and columns corresponding to the vectors in the ker-
nels of A and B. (These vectors are formed by some of the vectors in the
canonical basis of F7*".) Note that the Jordan canonical forms of F', G are

|
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direct sums of reduced Jordan blocks (obtained by deleting the first row
and column in each Jordan block) corresponding to F G respectively. As
F and G have the same Jordan blocks it follows that £ , G have the same
Jordan blocks, i.e. F~G. It is easy to see that

. A o . [A C
A= G9?:11211'7 B= 69?=1Bj7 C= (Cij)’

Ai c F(mfl)x(mﬁl), ij c ]F(nj—l)x(nj—l), éij e Flmi—1)x(n;—-1)

Here Ai,Bj7C’ij obtained from A;, B;,C;; be deleting the first row and
column respectively. Since F ~ G we can use the induction hypothesis.
That is there exists X = (X;;) € F™*" partitioned as C with the following
properties: The first row and the column of each X;; is zero. A;X;; —
X;;Bj—C;; have zero entries in the last m; —1 rows and in the first column.
By considering U~'GU with U = 181 7

n
the last m; — 1 rows and the first column of each Cj; are zero. Finally we
observe that if A; and B; are Jordan blocks that the equation (2.10.1) is
solvable by letting X;; be a corresponding matrix with the last m; — 1 rows
equal to zero. O

we already may assume that

Problems
1. Let A® B be defined as in (2.8.13). Prove that (A®B)"T = AT®@BT.
2. Consider the system

Az =b, AeF™" beF"

Show the above system is solvable if and only any solution of ATy =0
satisfies y 'b = 0. (Change variables to bring A to its diagonal form
as in §1.12.)

3. Let X, Y € D™*™. Let u(X),u(Y) € D™ be defined as in Problem
2.8.1. Show that

wX)Tu(Y)=trY X,

4. Assume in Theorem 2.10.2 £ = 2, G11 = Gaos = 0, G125 = I. Show
that in this case the equality sign holds in (2.10.5).
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5. Let A; € F**"i 4 =1,2 and suppose that A; and As do not have a
common eigenvalue. Assume that A = A; & Ay. Let

C=[Cyli, X =[X;]], Ciy, Xij €F"7™ i j=1,2.

Using Problem 2.8.4 prove that the equation AX —X A = C'is solvable
if and only if the equations A; X;; — X;; A; = Cy;, i = 1,2 are solvable.

6. Let A € F™*™ B € F"*" be two nilpotent matrix. Let C € F™*"
and define the matrices F,G € F(m+n)x(m+n) a5 in Theorem 2.10.3.
Show that dim ker F' > dim ker G. Equality holds if and only if
Cker B C Range A. Equivalently, equality holds if and only if there
exists X € F™*™ such that

ker F = ker U 'GU, U:Fm X]

0 I,

2.11 A case of two nilpotent matrices

Theorem 2.11.1 Let T € Hom (V) be nilpotent. Let index 0 = m =
mp > my > ... > my > 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T. Let Z C V be an eigenspace of T
corresponding to the eigenvalue 0. Denote by W = V /Z. Then T induces
a nilpotent operator T' € Hom (W). The dimension of Jordan blocks of T’
correspond to the positive integers in the sequence mj,mb, ... ,m;), where
m}; is either m; or m; — 1. Furthermore, exactly dim Z of indices of m); are
equal to m; — 1.

Proof. Suppose first that p = 1, i.e. W is an irreducible invariant
subspace of T. Then Z is the eigenspace of T and the theorem is straight-
forward. Use Corollary 2.7.8 in the general case to deduce the theorem. O

Theorem 2.11.2 Let A € F™*™ be a nilpotent matriz. Put
X,={xeF": Afx=0}, k=0,..
Then
(2.11.1) Xo={0} and X;CX;41,i=0,...
Assume that

X; #Xip1 fori=0,..,p—1, and X, =F", p=index0.
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Suppose that B € F"*" satisfies

(2.11.2) BX;;1 CcX;, fori=1,...,p—1.
Then B is nilpotent and

(2.11.3) v(A, A) <v(B,B).
Equality holds if and only if B is similar to A.

Proof. Clearly (2.11.2) holds for any A € F**". As BPF" = BPX,, C
Xo = {0}, it follows that B is nilpotent. We prove the claim by induction
on p. For p=1 A = B = 0 and equality holds in (2.11.3). Suppose that
the theorem holds for p = ¢ — 1. Let p = q.

Assume that the Jordan blocks of A and B are the sizes g =mq1 > ... >
m; > 1and l; > ... > [, > 1respectively. Recall that X is the eigenspace
of A corresponding to A = 0. Hence j = dim X;. Since BX; = Xy = {0}
it follows that the dimension of the eigenspace of B is at least j. Hence
k> j.

Let W := V/X,. Since AX; = {0} A induces a nilpotent operator
A" € Hom (W). Let X, = ker(A’)",i = 1,.... Then X!, = X;;1/X1,i =
0,1,.... Hence the index of A’ = ¢ — 1. Furthermore the Jordan blocks
of A" correspond to the positive numbers in the sequence m} = m; — 1 >
... >m =m;—1. Since BX; = {0} it follows that B induces the operator
B’ € Hom (W). The equality X, = X;41/X; implies that B'X, C X|_;
fori=1,....

Theorem 2.11.1 implies that the Jordan blocks of B’ correspond to
nonzero lf,...,1;, where I} is either I; or l; — 1. Furthermore exactly j
of I} are equal to [; — 1. Recall (2.8.11) that

V(A A) = (20— 1)m; =Y (20— Dmj+ > (2 — 1) = v(A, A') + j°.

i=1 i=1 i=1

Assume that

I =...=lk1 >lk1+1 =...:lk2 >lk2+1 =... >l/€r71+1 =... :lk,,wa
where k,. = k. let kg = 0. Suppose that in the set of {ks_1 +1,...,ks} we
have exactly ¢ < ks — ks—1 indices such that I, =, — 1 for r € {ks—1 +
1,...,ks}. We then assume that Il =1, — 1 for r = ks, ks —1,..., ks —i+1.
Hence I1 > ... > 1 > 0. Thus v(B',B') = Zle(% —1)li. So

k k

v(B,B) =) (2i— )i =v(B',B)+ > (2i —1)(l; = ;) > v(B', B') + j*.

i=1 =1
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equality holds if and only if I} = [; — 1 for ¢ = 1,...,j. The induc-
tion hypothesis implies that v(A’, A’) < v(B’, B’) and equality holds if
and only if A ~ B’, i.e A’ and B’ have the same Jordan blocks. Hence
v(A, A) < v(B, B) and equality holds if and only if A ~ B. O

2.12 Historical remarks

The exposition of §2.1 is close to [Gan59]. The content of §2.2 is standard.
Theorem 2.3.4 is well known [Gan59]. Other results of §2.3 are not common
and some of them may be new. §2.4 is standard and its exposition is close
to [Ganb9]. Theorem 2.5.4 is probably known for D4 (see [Lead8] for the
case D = H(Q), Q C C.) Perhaps it is new for Bezout domains. The
results of §2.6 are standard. Most of §2.7 is standard. The exposition of
§2.8 is close to [Ganb9|. For additional properties of tensor product see
[MaM64]. Problem 2.8.8 is close to the results of [Fad66]. See also [Gur80]
for an arbitrary integral domain D. Theorems 2.9.2 and 2.9.3 are taken
from [Fri80b]. See [GaB77] for a weaker version of Theorem 2.9.3. Some of
the results of §2.10 may be new. Theorem 2.10.1 was taken from [Fri80al.
Theorem 2.10.3 is called Roth’s theorem [Rot52]. Theorem 2.11.2 is taken
from [Fri80b].



Chapter 3

Functions of Matrices and
Analytic Similarity

3.1 Components of a matrix and functions of
matrices

In this Chapter we assume that all the matrices are complex valued (F = C)
unless otherwise stated. Let ¢(z) be a polynomial (¢ € C[z]). The following
relations are easily established

#(B) = Pp(A)P~', B=PAP™', A, BecC"™", Pec GL,(C),
(3.1.1)

(A1 @ A2) = ¢(A1) @ ¢(Az2).
It often pays to know the explicit formula for ¢(A) in terms of the Jordan

canonical form of A. In view of (3.1.1) it is enough to consider the case
where J is composed of one Jordan block.

Lemma 3.1.1 Let J = \gl + H € C"*", where H = H,,. Then for
any ¢ € Clz]

n—1
o) =3 L0 g

k!
k=0

Proof. For any ¢ we have the Taylor expansion

N )
P(z) = Z ¢ k(!/\o) (x — o), N =max(deg ¢,n).

k=0

95
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As H® = 0 for ¢ > n from the above equality we deduce the lemma. O
Using the Jordan canonical form of A we obtain.

Theorem 3.1.2 Let A € C"*". Assume that the Jordan canonical
form of A is given by (2.6.5). Then for ¢ € Clx] we have

mij—

(k )
(3.1.2) $(A) = P(af_, 0l Z ¢ m”)P_l.

Definition 3.1.3 Let the assumptions of Theorem 3.1.2 hold. Then
Zi = Zik(A) is called the (i, k) component of A and is given by
Zip =P0® .00, HY, ©0..00)P ",
(3.1.3)
k:O,...,Sifl, S; = My, ’L:L,g

Compare (3.1.2) with (3.1.3) to deduce

C sl v
(3.1.4) ¢>(A):ZA ¢ ,(Mzij.

Definition 3.1.4 Let A € C" "™ and assume that Q C C contains
spec (A). Then for ¢ € H(QY) define ¢p(A) by (3.1.4).

Using (3.1.3) it is easy verify that the components of A satisfy

Zij, 1=1,...,0, j=1,...,8, — 1, are linearly independent,
ZijZpq =0 if eitheri #p, ori=pandj+q>s;,
(3.1.5)
ZijZiq = Zi(j+q), forj+q<s;—1,
‘
= P(Z NiZio + Zil)P_l.

i=1
Consider the component Zj, _1). The above relations imply

(3.1.6) AZi(sifl) = Zi(sifl)A = AiZi(si71)~

Thus the nonzero columns of Zj,_1), Z;(—si_l) are the eigenvectors of

A, AT respectively corresponding to \;. (Note that Zi(s;—1) #0.)
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Lemma 3.1.5 Let A € C*"*". Assume that \; is an eigenvalue of A.
Let X; be the generalized eigenspace of A corresponding to \;:

(3.1.7) X, ={xeC": (MI—-A)x=0}.
Then
(3.1.8) rank Zis,—1) = dim (I — A)* !X

Proof. It is enough to assume that A is in its Jordan form. Then X;
is the subspace of all x = (x1,...,7,) ", where the first Zzp_:ll 1 My co-
ordinates and the last Zf,:iﬂ Z?"Zl mp; coordinates vanish. So (A —
A)*i=1X; contains only those eigenvectors which correspond to Jordan
blocks of the length s;. Clearly, the rank of Z;,,_) is exactly the number
of such blocks. O

Definition 3.1.6 Let A € C"*™. Then the spectral radius p(A), the

peripheral spectrum spec ..;(A) and the index A of A are given by
A) = Al
p(A) yelax RY
(3.1.9) Spec peri(A) = {A €spec (A) 1 [N = p(A)},
index A = max index A.
AEspec e (A)

Problems

1. Let A € C"*™ and let ¢ € C[z]| be the minimal polynomial of A.
Assume that Q C C is an open set in C such that spec (A) C . Let
¢ € H(Q?). Then the values

(3.1.10) dF(N), k=0,..index A\ —1, X € spec (A)

are called the values of ¢ on the spectrum of A. Two functions ¢, 0 €
H(2) are said to coincide on spec (A) if they have the same values on
spec (A). Assume that ¢ € Clz] and let

o=wip+0, degh < degr).

Show that € coincide with ¢ on spec (A). Let

_ () _ SoN g . o
= w(gc)—i-ﬁ = w(x)—&—zz m, s; =index N\;, 1 =1, ..., ¢,

< |

i=1 j=1



98CHAPTER 3. FUNCTIONS OF MATRICES AND ANALYTIC SIMILARITY

where ¢ is given by (2.5.11). Show that «;;, j = si,...,5; — p are
determined recursively by ¢(), j = 0,...,p. (Multiply the above
equality by ¥(z) and evaluate this identity at A;.) For any ¢ € H(Q)
define 6 by the equality

Si

(3.1.11) O(x) = ¢(x)z ‘ m

i=1 j=1

The polynomial € is called the Lagrange-Sylvester (L-S) interpolation
polynomial of ¢ (corresponding to ). Prove that

(3.1.12) H(A) = O(A).

Let 0; be the L-S polynomials of ¢; € H(Q2) for j = 1,2. Show that
0165 coincides with L-S polynomial of ¢1¢2 on spec (A). Use this fact
to prove the identity

(3.1.13) P1(A)2(A) = ¢(4), ¢ = d162.

2. Prove (3.1.13) by using the definition (3.1.4) and the relation (3.1.5).

3. Let the assumptions of Problem 1 hold. Assume that a sequence
{dm}$° € H(Q) converges to ¢ € H(Q). That is {¢,}5° converges
uniformly on any compact set of 2. Hence

lim ¢ (\) = ¢ (N\), foranyj e Zy and A € Q.

m—0o0

Use the definition (3.1.4) to show

(3.1.14) Hm ¢ (A) = ¢(A).

m—00

Apply this result to prove

(3.1.15) e = E ) T (= Jim E ’ T ).
(3.1.16) (N — At = g A for [A| > p(A)
1 = e p(A).
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3.2 Cesaro convergence of matrices

Let
(3.2.1) Ap =[P eCc™n, k=0,1,..

be a sequence of matrices. The p—th Cesaro sequence is defined as follows.
First Ayo = Ay for each k € Z;. Then for p € N Ay, defined recursively
by

k

1
(3.2.2) App = lall?) == ) Y Ajpa. k€Zy peN.
§=0

Definition 3.2.1 A sequence {A}§° converges to A = [a;;] € C"™*" if

(k)

lim a;;" =a;, i=1,..m, j=1..,n < lim Ay = A.
k—oo k—oo
A sequence {Ar}§° converges p-Cesaro to A = [a;;] if imp_ oo App = A

forp € Zy. A sequence {Ap}§ converges p-Cesaro exactly to A = [a,;] if
limy o0 App = A and {Ag p—1}572, does not converge.

It is known (e.g. [Har49]) that if { Ay} is p-Cesaro convergent then {A;} is
also p + 1-Cesaro convergent. A simple example of exact 1-Cesaro conver-
gent sequence is the sequence {\*}, where |\| = 1, A\ # 1. More generally,
see [Har49] or Problem 1:

Lemma 3.2.2 Let |A\] = 1, X # 1. Then for p € N the sequence
{(pfl) kYoo is ezactly p-Cesaro convergent.

We now show how to recover the component Z, s, —1)(A4) for 0 # A\, €

SPeC i (A) using the notion of Cesaro convergence.

Theorem 3.2.3 Let A € C™ ™. Assume that p(A) > 0 and A\, €

SPeC peri(A). Let
a— D! XA ,
(3.2.3) A = (Sksal)(p\ |2)k, Sq = index A\,.
Then
(3.2.4) kli_)n;@ Akp = Za(sa—1), P =index A —index \, + 1.

The sequence Ay, is exactly p-Cesaro convergent unless either spec ,q,;(A) =
{Aa} or index A < index A\, for any A # Ao in spec ,,;(A). In these
exceptional cases limy_,o0 Ap = Zo(s,—1)-
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Proof. It is enough to consider the case where A\, = p(4) = 1. By
letting ¢(x) = z¥ in (3.1.4) we get

si—1
(3.2.5) Ak =3%" <k> NI 7.

So

= (sa — D k(= Dk —j+1)
A :ZZ (I:su—1) : ) j(! — ))‘? " Zij.
i=1 j=0
Since the components Z;;, i = 1,...,¢, j =0, ..., s; — 1 are linearly indepen-
dent it is enough to analyze the sequence (,i.?a__ll) ! (];) /\f_j s k=7,741,...
Clearly for |A\| < 1 and any j or for |A] =1 and j < s, — 1 this sequence
converges to zero. For \; =1 and j = s, — 1 the above sequence converges
to 1. For |\ =1, \; # 1 and j > s, — 1 the given sequence is exactly
7 — Sa + 2 convergent to 0 in view of Lemma 3.2.2. From these arguments
the theorem easily follows. O

The proof of Theorem 3.2.3 yields:

Corollary 3.2.4 Let the assumptions of Theorem 3.2.3 hold. Then

N
. 1 (s=1!, A ., .
2. | =7 = A.
(3.2.6) A = ,;:0 e (p(A)) , s =index

If p(A) € spec (A) and index p(A) = s then Z = Z,ay(s—1). Otherwise
Z =0.

Problems

1. Let [A] =1, A # 1 be fixed. Differentiate the formula

A1

r times with respect to A and divide by r! to obtain
k—1 . r—1
AN kE—1\ .11 A —1
M=k Ayl A 1)
z() > s (57 P e e

where f(A,r,¢) are some fixed nonzero functions. Use the induction
on r to prove Lemma 3.2.2.
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2. Let ¢(z) be a normalized polynomial of degree p — 1. Prove that
the sequence {¢(k)A*}2° ) for [A| = 1, A # 1 is exactly p-Cesaro
convergent.

3. Let A € C™ ™. For \; € spec (A) let

(3.2.7) Zii(A) = [z j=0,..,index \; — 1.

py lp,v=1
Let
(3.2.8) index,,\; := 1+ max{j: 2(7) #0, j =0,...,index \; — 1},

where index,,, \; = 0 if z,(f,z) =0 for 7 =0,...,index;\; — 1.
(3.2.9) Puv(A) = max{|\;| : index,, A; > 0},

where p,, (A) = —oo if index,, A; = 0 for all A\; € spec (A). The
quantities index ., A;, pu.(A) are called the (u,v) index of A; and
the (u,v) spectral radius respectively. Alternatively these quantities
are called the local index and the local spectral radius respectively.
Show that Theorem 3.2.3 and Corollary 3.2.4 could be stated in a
local form. That is for 1 < u,v < n assume that

Aa = puv(4), Sa = indexy,Aa, AF = (aﬂf,))v Ar = lapw k], Akp = lauw,kpls
where Ay, and Ay, are given by (3.2.3) and (3.2.2) respectively. Prove
klirréo v kp = zft‘f‘,(s‘**l)), p = index,, A — index,;, Ao + 1,
N

. 1 (s=1' aur & .
1\}21100 Nl kZ:O = (pW(A)) =2y, §=index,, A, pu(A) >0,

where z,,,, = O unless \; = p,,,(A) € spec (A) and index,,, A\ =index,,, =
. . _ (1(s—1))
s. In this exceptional case z,, = zu .

Finally A is called irreducible if p,,, (A) = p(A) for each p,v =1, ..., n.
Thus for an irreducible A the local and the global versions of Theorem
3.2.3 and Corollary 3.2.4 coincide.

3.3 An iteration scheme
Consider an iteration given by

(3.3.1) Xt =Ax'+b, i=0,1,...,
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where A € C™*™ and x’,b € C™. Such an iteration can be used to solve a
system

(3.3.2) x = Ax +b.
Assume that x is the unique solution of (3.3.2) and let y* := x* — x. Then
(3.3.3) ytl=Ay', i=0,1,..

~ Definition 3.3.1 The system (3.3.3) is called stable if the sequence
vyt i =0,1,... converges to zero for any choice of y°. The system (3.3.3)
is called bounded if the sequence y*, i = 0,1, ... is bounded for any choice

of y°.

Clearly, the solution to (3.3.3) is y* = Aly% i =0,1,... So (3.3.3) is stable
if and only if

(3.3.4) lim A® = 0.

11— 00

Furthermore (3.3.3) is bounded if and only if
(3.3.5) A < M, i=0,1,..,

for some (or any) vector norm || - || : C**™ — Ry and some M > 0. For
example one can choose the [, norm on C™*™ to obtain the induced matrix
norm:

.3. Bl = biil, B =[b; mxn,
(336)  |Bl=_ max |l B=lbleC
See §7.4 and §7.7 for definitions and properties of vector and operator
norms.

Theorem 3.3.2 Let A € C"*™. Then conditions (3.3.4) holds if and
only if p(A) < 1. Conditions (3.3.5) hold if either p(A) < 1 or p(A) =1
and index A = 1.

Proof. Consider the identity (3.2.5). Since all the components of A are
linearly independent (3.3.4) is equivalent to

k ,
lim < ,))\fj =0, \; €spec(A),j=0,1,..,index \; — 1.

k—oo \ ]

Clearly the above conditions are equivalent to p(A4) < 1.
Since all vector norms on C™*" are equivalent, the condition (3.3.5)
is equivalent to the statement that the sequence (’;) )\f_J, k=0,.. is



3.4. CAUCHY INTEGRAL FORMULA FOR FUNCTIONS OF MATRICES103

bounded for each A; € spec (A) and each j € [0,index A\; — 1]. Hence
p(A) < 1. Furthermore if |A;| = 1 then index A\; = 1. O

Problems

1. Let A € C"" and ¢ be the minimal polynomial of A given by
(2.5.11). Verify

L s;—1 G oAt
(3.3.7) - C 7.
i=1 j=0
Use (3.1.5) or (3.1.15) to show
d a At _ At
(3.3.8) —et = Ae™ = e A,

dt

(In general ¢t may be complex valued, but in this problem we assume
that ¢ is real.) Verify that the system

d
(3.3.9) d—’; = Ax, x(t)eC"
has the unique solution
(3.3.10) x(t) = eA=t)x(t,).

The system (3.3.9) is called stable if lim;_, o, x(t) = o for any solution
(3.3.10). The system (3.3.9) is called bounded if any solution x(t)
(3.3.10) is bounded on [tg, o). Prove that (3.3.9) is stable if and only

if

(3.3.11) RA <0 foreach A € spec (A).

Furthermore (3.3.9) is bounded if and only if each A € spec (A) sat-
isfies

(3.3.12) RA<0 and index A =1if RA=0.

3.4 Cauchy integral formula for functions of
matrices

Let A € C™*", ¢ € H(Q?), where ) is an open set in C. If spec (A) C Q it
is possible to define ¢(A) by (3.1.4). The aim of this section is to give an
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integral formula for ¢(A) using the Cauchy integration formula for ¢(\).
The resulting expression is simply looking and very useful in theoretical
studies of ¢(A). Moreover, this formula remains valid for bounded operators
in Banach spaces (e.g. [Kat80]-[Kat82]).

Consider the function ¢(z,\) = (A — z)~!. The domain of analyticity
of ¢(x, ) (with respect to x) is the punctured complex plane C at A. Thus
if A & spec (A) (3.1.4) yields

[

l s;—
(3.4.1) A —A)t=>" ARV
=1 _7:0

Definition 3.4.1 The function (A — A)~! is called the resolvent of A
and is denoted by

(3.4.2) R\ A) = (M- A)™!

Let I' = {T'1, ...,k } be a set of disjoint simply connected rectifiable curves
such that I' forms the boundary 0D of an open set D and

(3.4.3) DUT CQ, T =0D.

For ¢ € H(R2) the classical Cauchy integration formula states (e.g. [Rud74])

1
3.4.4 = A=O)7to(NdN, ¢ eD.
B44)  9O=5 o= [0 ¢
Differentiate the above equality j times to obtain
U (¢) _ / —(+1 ’
3.4.5 A— )"0+ A\, CeD,j=01,2..
an) S = = [0 e, (e D,

Theorem 3.4.2 Let Q) be an open set in C. Assume thatT' = {T'q, ..., }
is a set of disjoint simple, connected, rectifiable curves such that T’ is a
boundary of an open set D, and T U D C . Assume that A € C™*" and
spec (A) C D. The for any ¢ € H(Q)

(3.4.6) 6(4) = %\% /F RO\, A)d(A)dA.

Proof. Insert the expression (3.4.1) into the above integral to obtain

L s;—1

1 41
m/FR(A,A A)dA = ZZ%F/A X)) "ItV BN dN) Zy,.

i=1j
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Use the identity (3.4.5) to deduce

1 l Siflgb‘
——— | R\, A)p(N)dA =
27r\/—1/r . Z

=1 j5=0

The definition (3.1.4) yields the equality (3.4.6). O
We generalize the above theorem as follows.

Theorem 3.4.3 Let Q) be an open set in C. Assume thatT = {T'q,...,T'x}
is a set of disjoint simple, connected, rectifiable curves such that ' is a
boundary of an open set D, and T'U D C . Assume that A € C™"*" and
spec (A) NI = (. Let spec p(A) :=spec (A) ND. The for any ¢ € H(Q)

(J)
(3.4.7) 3 Z ¢ 2 = %\E /F RO, A)g(\)dA.

Ai€spec p(A) J

If spec p(A) = 0 then the left-hand side of the above identity is zero.

See Problem 1.
We illustrate the usefulness of Cauchy integral formula by two examples.

Theorem 3.4.4 Let A € C™*" and assume that A\, € spec (A). Sup-
pose that D and T satisfy the assumptions of Theorem 3.4.3 (2 = C).
Assume furthermore that spec (A) ND = {\,}. Then the (p,q) component
of A is given by

(3.4.8) Zpa(A) = A= \p)TdA.

1
RN A
277\/—1 T
(Zpq =0 for g > s, —1.)

See Problem 2.
Our next examples generalizes the first part of Theorem 3.3.2 to a com-
pact set of matrices.

Definition 3.4.5 A set A C C"*" is called power stable if
(3.4.9) lim (sup ||Ak\|) =0,
k—oo AcA
for some vector norm on C"*". A set A C C"*" is called power bounded
if
(3.4.10) ||[A¥|| < K, forany A€ Aandk=0,1,...,

for some positive K and some vector norm on C"*".
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Theorem 3.4.6 Let A C C" ™ be a compact set. Then A is power
stable if and only if p(A) < 1 for any A € A.

To prove the theorem we need a well known result on the roots of
normalized polynomials in C[z] (e.g. [Ost66]).

Lemma 3.4.7 Let p(z) = 2™ + Y i~ a;z™ " € Clz]. Then the zeros
&1,y &m of p(x) are continuous functions of its coefficients. That is for
a given ay,...,an and € > 0 there exists §(¢), depending on ay, ..., an, such
that if |b; — a;| < §(€), i = 1,...,m it is possible to enumerate the zeros of
q(z) =™+ 37 0™ by 1, ooy M, Such that [, — & <ei=1,..,m
In particular the function

(3.4.11) p(p) = max [&

1<i<m
is a continuous function of ai, ..., Q.

Corollary 3.4.8 The function p : C**™ — R, which assigns to A €
C™*™ jts spectral radius p(A) is a continuous function.

Proof of Theorem 3.4.6. Suppose that (3.4.9) holds. Then by Theorem
3.3.2 p(A) < 1 for each A € A. Assume that A is compact and p(A4) < 1.
Corollary 3.4.8 yields

pi=maxp(d) =p(4) <1, AcA

Recall that (A — A)~1 = [#(IYA)H‘, where p;;(A) is the (j,4) cofactor of
A — A. Let Aq, ..., A\, be the eigenvalues of A counted with multiplicities.

Then for [A| > p

|[det (AT — A)| ﬁ ﬁ (A =

Let p < r < 1. Since A is a bounded set, the above arguments yield that
there exists a positive constant K such that ||(AM — A)7!|| < K for each
A€ A, |\ =r. Apply (3.4.6) to obtain

1
27y =1 Ja|=r

for each A € A. Combine this equality with the estimate ||\ — A)71|| < K
for |A\| = r to obtain ||AP|| < KrP*! for any A € A. As r < 1 the theorem
follows. O

(3.4.12) AP = (A — A)"IAPa),
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Theorem 3.4.9 Let A C C"*". Then A is power bounded if and only

(3.4.13) [|(A— A)7Y| < forall A € Aand |\ > 1,

K
[A[ =1’
for some vector norm || - || on C**™ and K > ||I,]|.

Proof. For |A\| > p(A) we have the Neumann series

(3.4.14) (M — A)~ Z T

Hence for any vector norm on C™*"

(3.4.15) [EYEVIRIED B = MR}

— A
=0
(See Problem 3.) Assume first that (3.4.10) hold. As A° = I, it follows
that K > ||I,||. Furthermore as each A € A is power bounded Theorem
3.3.2 yields that p(A) < 1 for each A € A. Combine (3.4.10) and (3.4.15)
to obtain (3.4.13).
Assume now that (3.4.13) holds. Since all vector norms on C™"*™ are
equivalent we assume that the norm in (3.4.13) is the [, norm given in
(3.3.6). Let A € A. Note that (AI — A) in invertible for each || > 1.

Hence p(A) < 1. Let A\ — A)~! = [’);(7&’;)] Here p(A\) = det (M — A)
is a polynomial of degree n and p;;(\) (the (j,i) cofactor of A\I — A) is a
polynomial of degree n — 1 at most. Let AP = [ag’)], p=20,1,... Then for

any r > 1 the equality (3.4.12) yields that

o= 1 PN gy = L / (e ) i v gy,
YT 9T e PN 2m p(reV=19)
Problem 6 implies that
4(2n — 1)rrt+! on — 1)rPHK
0] < @n = Dt (P 4C@n = DT K
m(p+1)  Ix=r p(A) m(p+1)(r—1)
Choose r =1 + p+1 to obtain
42n — 1eK
(3416) |a£§))| S w7 1,] = 1u N, p= 07 ]-7 ) A S A

™

Hence ||A7|| < 2@n=leK o

Problems
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1. Use the proof of Theorem 3.4.2 to prove Theorem 3.4.3.
2. Prove Theorem 3.4.4

3. Let A € C™"*™. Show the Neumann series converge to the resolvent
(3.4.14) for any || > p(A4). (You may use (3.4.1).) Prove (3.4.15) for

any vector norm on C™"*"™,

4. Let f(x) be a real continuous periodic function on R with period 27.
Assume furthermore that f’ is a continuous function on R. (f’ is
periodic of period 27.) Then the Fourier series of f converge to f
(e.g. [Pin09, Cor. 1.2.28]).

f0) = Z age¥ "
kEZ
(3.4.17)
1 Oo+2m

ap = ag F(0)e V™40, k€ Z, 6, € R.

o 2 0o

Use integration by parts to conclude that

1 Oo+2m
3.4.18 =—— "(0)e V=040, k € Z\{0}.
= AL \(0)

Assume that f/(#) vanishes exactly at m(> 2) points on the interval
[0,27). Show that

< m
|ao| < p £ (0)],
(3.4.19)

lax| < ax |f(9)|, for all k € Z\{0}

m 0?[%),2#)

(Hint. The first inequality of (3.4.19) follows immediately from (3.4.17).
Assume that f’ vanishesat 0 < 6y < ... < 0,,_1 < 27 < 0,, = 0y +27.
Then

0;

0;
/0 727r\/jlk0d9 19 do =
| e <[ 17l

i—1

1£(0:) = F(0:1)] < 2 max [F(O)], ¢ =1,....m.

Use (3.4.18) to deduce the second part of (3.4.19).)
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5. A real periodic function f is called a trigonometric polynomial of
degree n if f has the expansion (3.4.17), where a; = 0 for |k| > n and
an # 0. Show

(a) A non zero trigonometric polynomial () of degree n vanishes at
most 2n points on the interval [0,27). (Hint. Let z = eV~1. Then
J = 27"p(2)]|z)=1 for a corresponding polynomial p of degree 2n.)

(b) Let f(0) = % be a nonconstant function, where g is a nonzero
trigonometric polynomial of degree m at most and h is a nowhere
vanishing trigonometric polynomial of degree n. Show that f’ has at
most 2(m + n) zeros on [0, 27).

6. Let p(2), ¢(z) be nonconstant polynomials of degree m, n respectively.
Suppose that ¢(z) does not vanish on the circle |z| = r > 0. Let

M := max|,|—, 12’8" Show that for all & € Z

27 —16
(3.4.20) |i/ PreY™) | mina gy < AMmax(m +n,2n — 1)
0

T q(re\/jw) 7rmax(|k|71)

Hint. Let F(z) = 2& = p(2)4(2) 16 5 ponconstant rational function.
a(z)  q(2)a(2)

Then F(reV=1) = f1(8) + V—=1f5(6), where f1, f2 as in Problem 5.
Clearly |f1(0)], |f2(8)] < M. Observe next that

F6) -+ VTH(0) -
Ve T (reV ) g(re V) — p(reY 1) g/ (reV 1) (g(revVT0))?
la(rev=19)[2 '

Hence f{, f5 vanish at most 2max(m + n,2n — 1) points on [0, 27).
Use (3.4.19) for f1, f2 to deduce (3.4.20).

7. Let &« > 0 be fixed and assume that A C C"*™. Show that the
following statements are equivalent:

(3.4.21) ||A¥|| < k*K, forany A€ Aandk =0,1,...,

K/|>\|a

(3.4.22) [|(M —A)7H| < (e

forall A € Aand |A| > 1.

Hint. Use the fact that (fl)k(_(llja))k*”‘ € [a,b], k=1,... for some
0<a<b, (eg[Olvr4], p’119).)
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8.

10.

11.

12.

Let A € C™"*™. Using (3.4.1) deduce

(3.4.23) Zisi—1y = lim (x = \)*% (2l — A)~', i=1,..,L

T—\;

let R(x, A) = [r,]. Using the definitions of Problem 3 show

(3.4.24) zf}jiil) = lim (& — \)® rp (), if s =index 4\ > 0.

T—N;

A set A C C™*™ is called exponentially stable if

(3.4.25) lim sup ||e??|| = 0.
T—o0 t>T

Show that a compact set A is exponentially stable if and only if
RA < 0 for each A € spec (A) and each A € A.

A matrix B € C"*" is called projection (idempotent) if B2 = B. Let
I" be a set of simply connected rectifiable curves such that I'" from a
boundary of an open bounded set D C C. Let A € C™*™ and assume
that I' N spec (A) = (). Define

(3.4.26) Pp(A) = %\% /F R(z, A)dz,

1

R(x, A)xdz.
T
Show that Pp(A) is a projection. Pp(A) is called the projection of
A on D, and A(D) is called the restriction of A to D. Prove
(3.4.27)

Pp(A)= > Zo, AD)= > (NZio+ Za).

Xi€spec p(A) A;€spec p(A)

A(D) :=

Show that the rank of Pp(A) is equal to the number of eigenvalues
of A in D counted with their multiplicities. Prove that there exists a
neighborhood of A such that Pp(B) and B(D) are analytic functions
in B in this neighborhood. In particular, if D satisfies the assumptions
of Theorem 3.4.4 then Pp(A) is called the projection of A on A,:
Pp(A) = Zyo.

Let B = QAQ~! € C™*™. Assume that D satisfies the assumptions
of Problem 10. Show that Pp(B) = QPp(A)Q~1 .

Let A € C**™ and assume that the minimal polynomial #(x) of
A is given by (2.5.11). Let C* = U; @ ... @ Uy, where each U,
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is an invariant subspace of A (AU, C U,), such that the minimal
polynomial of A|U, is (z — A,)®. Show that

(3.4.28) U, = Z,0C".

Hint. It is enough to consider the case where A is in the Jordan
canonical form.

13. Let D; satisfy the assumptions of Problem 10 for ¢ = 1,...k. Assume
that D; N D; = ) for i # j. Show that Pp,(A)C" N Pp,(A)C" = {0}
for i # j. Assume furthermore that D; Nspec (A) # 0, i = 1,...,k,
and spec (A) C UK, D;. Let
Pp,(A)C" = span (ygi)7 ...,yr(lii)), i=1,..k,
X =y ey ey e e

Show that
(3.4.29)

k
X1AX = Z®Bi’ spec (B;) = D;Nspec (A), i=1,....k.

i=1
14. Let A € C™*™ and A, € spec (A). Show that if index A\, =1 then
A—\I)%
ZpO = H #, S; = index >‘j'
(/\p - /\j)SJ
Aj€spec (A),\j#Xp

Hint. Use the Jordan canonical form of A.

3.5 A canonical form over Hy

Consider the space C"*™. Clearly C"*" can be identified with C™. As
in Example 1.1.3 denote by H, the set of analytic functions f(B), where
B ranges over a neighborhood D(A, p) of the form (2.9.5) (p = p(f) > 0).
Thus B = [b;;] is an element in H}*". Let C € H)*" and assume that
C = C(B) is similar to B over Hy4. Then

(3.5.1) C(B) = X"'(B)BX(B),

where X (B) € H}*" and det X (A4) # 0. We want to find a ”simple” from
for C(B) (simpler than B!). Let M4 be the quotient field of Hy (the set
of meromorphic functions in the neighborhood of A). If we let X € M’*"
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then we may take C(B) to be R(B) - the rational canonical form of B
(2.3.3). According to Theorem 2.3.8 R(B) € H,*". However B and R(B)
are not similar over Hy in general. (We shall give below the necessary
and sufficient conditions for B ~ R(B) over Hs.) For C(B) = [c;;(B)] we
may ask how many independent variables are among ¢;;(B), ¢,j = 1,...,n.
For X(B) = I the number of independent variables in C(B) = B is n?.
Thus we call C(B) to be simpler than B if C'(B) contains less independent
variable than B. For a given C'(B) we can view C(B) as a map

(3.5.2) C(): D(A,p) — C™™,

where D(A, p) is given by (2.9.5), for some p > 0. It is well known, e.g.
[GuR65], that the number of independent variables is equal to the rank of
the Jacobian matrix DC(-) over My

ou(C)

2 2
B H’n Xn
oy, (B) € L,

(3.5.3) DC(B) = (

where p is the map given in Problem 2.8.2.

Definition 3.5.1 Letrank DC, rank DC(A) be the ranks of DC(-), DC(A)
over the fields M 4, C respectively.

Lemma 3.5.2 Let C(B) be similar to B over Hay. Then

(3.5.4) rank DC(A) > v(A, A).
Proof. Differentiating the relation X ~}(B)X(B) = I with respect to

bi; we get

ox—! 0X

=-X"'1_—X""

8bij (‘3b”

So
ocC 0X 0X

3.5.5 =X"1(- X "YB+B XY+ Ej)NX
where
(356) Eij = [(5ia5j[3]2;(;l:1 c (men7 1= ]., e, m, ] = ]., ey,

and m =n. So

oC
o, (A)XY(A)=AP;; — PjA+ E;;, Pj=

X(A)
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Clearly, AP;; — P;;A is in Range A, where

(3.5.7) A=(I@A-AT@I):C™" - C™",
According to Definition 2.9.1 dim Range A = r(A, A). Let
(3.5.8) C™*" = Range A @ span (T'y, ..., Tyiany)-

As Eyj;, i,j =1,...,n is a basis in C"*"

r,= Z az(-;))Eij, p=1,...,v(A4A).

i,j=1

Let

T,= S 0@ 2% (4) = X1 (A)(@, + T)X(A), @, € Ramge (A),

i,j=1 o Obi;
p=1,...,v(A4A).

According to (3.5.8) T1,...,T,(4,4) are linearly independent. Hence (3.5.4)
holds. O
Clearly rank DC > rank DC(A) > v(A, A).

Theorem 3.5.3 Let A € C"*" and assume that T'y,...,T', 4 4) be any
v(A, A) matrices satisfying (3.5.8). Then for any nonsingular matriz P €
C™ ™ it is possible to find X(B) € H)*", X(A) = P, such that

v(AA)
X"YB)BX(B)=P 'AP+ Y fi(B)PT'T;P,
i=1
(3.5.9)
fi € Ha, fz(A):Ov i:L'“aV(AvA)'

Proof. Let Ry, ..., R,(4,4) be a basis in Range A. So there exist T} such
that AT, — T;,A = R; for i = 1,...,7(A4, A). Assume that X(B) is of the
form

r(A,A)
XBP =1+ > g(B)T;, g;€Ha, gi(A)=0, j=1,.,r(4A).
j=1

(3.5.10)

The theorem will follow if we can show that the system

r(A,A) r(A,A) v(A,A)

(3.5.11) B(I+ Z 9;T;) = (I + Z 9;T) (A + Z £iT3)
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is solvable for some g1, ..., g,(4,4), f1, - fu(a,4) € Ha which vanish at A.
Clearly, the above system is trivially satisfied at B = A. The implicit
function theorem implies that the above system is solved uniquely if the
Jacobian of this system is nonsingular. Let B = A+ F, F = [f;;] €
C™*". Let a;(F'),B;(F) be the linear terms of the Taylor expansions of
fi(A+F),g;(A+ F). The linear part of (3.5.11) reduces to

r(A,A) r(A,A) v(A,A)

j=1 j=1 i=1

That is
r(AA v(AA

) )
F = Z ﬁjRj + Z aiFi.
j=1 i=1

In view of (3.5.8) a1,...,(4,a), B1, -+, Br(a,4) are uniquely determined by
F. O

Note that if A = al then the form (3.5.9) is not simpler than B. Also
by mapping T — P~'TP we get

(3.5.12) €™ " = Range P~1AP ®span (P[P, ...,P"'T, (s 2)P).

Lemma 3.5.4 Let B € H}*". Then the rational canonical form of B
over M 4 is a companion matriz C(p), where p(z) = det (xI — B).

Proof. The rational canonical form of B is C(p1,...,pr) is given by
(2.3.3). We claim that £k = 1. Otherwise p(z) and p’(z) have a common
factor over M 4. In view of Theorem 2.1.9 implies that p(x) and p/(z)
have a common factor over Hy. That is any B € D(A, p) has at least
one multiple eigenvalue. Evidently this is false. Consider C = P~'BP
where P € C™"™ and J = P~ !AP is the Jordan canonical form of A.
So C € D(J,p'). Choose C to be an upper diagonal. (This is possible
since J is an upper diagonal matrix.) So the eigenvalues of C are the
diagonal elements of C'; and we can choose them to be pairwise distinct.
Thus p(z) and p'(x) are coprime over M4, hence k& = 1. Furthermore
pi(x) = det (xI — C(p)) =det (zI — B). O

Theorem 3.5.5 Let A € C"*". Then B € H*" is similar to the
companion matriz C(p), p(x) = det (I — B) over Hy if and only if
v(A,A) = n. That is the minimal and the characteristic polynomial of
A coincide, i.e. A is nonderogatory.

Proof. Assume first that C'(B) in (3.5.1) can be chosen to be C(p).
Then for B = A we obtain that A is similar to the companion matrix.
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Corollary 2.8.4 yields v(A, A) = n. Assume now that v(A, A) = n. Accord-
ing to (2.8.12) we have that i1 (z) = is(x) = ... = i,—1(z) = 1. That is, the
minimal and the characteristic polynomials of A coincide, i.e. A is similar
to a companion matrix. Use (3.5.9) to see that we may assume that A is a
companion matrix. Choose I'; = E,,;, i = 1, ...,n, where E,,; are defined in
(3.5.6).

It is left to show that Range A N span (Enty -, Enn) = {0}. Suppose
that T = Y7 | a;E,; € Range (A). Theorem 2.10.1 and Corollary 2.8.4
yield that trTA* =0, k = 0,1,....,n — 1. Let a = (a1, ...,,). Since the
first n — 1 rows of I are zero rows we have

0 = trITAF = aAd¥e,, e = (5j1,...,5jn)T, j=1,..n.

For k£ = 0 the above equality implies that a,, = 0. Suppose that we already
proved that these equalities for k£ =0, ..., £ imply that o, = ... = aj,—; = 0.
Consider the equality tr ' AT = 0. Use Problem 2.4.9 to deduce

4

{+1
At e, =€p_y—1+ Zf(l+l)jen7j~
Jj=0

So trT'A*! = ap_y_1 as oy, = ... = ap—y = 0. Thus a,_¢r_1 = 0, which
implies that I' = 0.
Theorem 3.5.3 yields that

C(B)=X"YB)BX(B)=A+ zn: fi(B)E,;.

So C(B) is a companion matrix. As det (zI — C(B)) = det (zI — B) it
follows that C(B) = C(p). O.
Problem 5 yields.

Lemma 3.5.6 Let A; € C™"*™ ¢ =1,2 and assume that
C™*™ = Range A; ® span (ng), ...,FS()AhAi)), i=1,2.
Suppose that A1 and Ay do not have a common eigenvalue. Then
Cmtn2)x(mitn2) — Range Ay @ Ay @
span (rgl) ®0,..., Ff/l(le,Al) @ 0,0 F(12)7 .,08 Ff()AQ,AQ)).

Theorem 3.5.7 Let A € C"*™. Assume that spec (A) consists of ¢
distinct eigenvalues A1, ..., A\¢, where the multiplicity of \; is n; for i =
1,...,4. Then B is similar over Hy to the matriz
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14
C(B) =Y @Cy(B), C;(B) € Hy*™, (Ml — Ci(A)™ =0, i=1,..,L
i=1
(3.5.13)

Moreover C(A) is the Jordan canonical form of A.

Proof. Choose P in the equality (3.5.9) such that P71AP is the

Jordan canonical of A and each P~1T; P is of the form ijl Fl(»j ) as follows
from Lemma 3.5.6. Then (3.5.9) yields the theorem. O

Problems

1. Let A = Zle ®H,,, n = Zle n;. Partition any B € C"*" as a
block matrix as A: B = [B;;], B;; € C"*™ 4,5 =1,....k. Using the
results of Theorem 2.8.3 and Theorem 2.10.1 show that the matrices

Lapn = (P e Cmem,
(c.8,7) _ ng XN : .o
Fij =0eC ) if (0‘76)75(27.])7

(a,8,7) _ @
Faaﬁ v — Ena'y cCn Xng7
v=1,..,min(n,,ng), o, =1,..., k,

satisfy (3.5.8).

2. Let A be a matrix given by (2.8.4). Use Theorem 3.5.7 and Problem
1 to find a set of matrices I'1, ...,I",(4,4) which satisfy (3.5.8).

3. Let A € C™*™ and assume that \; is a simple eigenvalue of A, i.e. \; is
a simple root of the characteristic polynomial of A. Use Theorem 2.8.3
to show the existence of A(B) € Hy such that A\(B) is an eigenvalue
of B and A(A) = \;.

4. Let A satisfy the assumptions of Theorem 3.5.7. Denote by D,
an open set satisfying the assumptions of Theorem 3.4.4 for p =
1,..,0. Let Py(B) be the projection of B € H}*" on Dy, k =
1,...,¢. Problem 10 implies that Py(B) € H}*", k = 1,...,¢. Let
Py(A)C" = span (x¥, ..., x*") k = 1,....4, B € D(A,p), where
p is some positive number. Let X (B) € H*" be formed by the
columns Py, (B)x*, ..., Py(B)x*"* k= 1,...,¢. Show that C(B) given
by (3.5.1) satisfies (3.5.13). (This yields another proof of Theorem
3.5.7.)
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3.6 Analytic, pointwise and rational similar-
ity
Definition 3.6.1 Let Q C C™ and A, B € H(Q)"*". Then

(a) A and B are called analytically similar, denoted by AgdB, if A and B
are similar over H(2).

(b) A and B are called pointwise similar, denoted by A%B, if A(x) and
B(x) are similar over C for all x € Qq, for some open set Qy D .

(¢) A and B are called rationally similar, denoted by AQB, if A and B are
sitmilar over the field of meromorphic functions M(Q).

Theorem 3.6.2 Let Q@ C C™ and assume that A, B € H(Q)"*™. Then
ARB = AXB = AXB.
Proof. Suppose that
(3.6.1) B(z) = P~ (2)A(z)P(x),

where P, P~1 € H(Q)"*". Let 29 € Q. Then (3.6.1) holds in some neigh-

borhood of xzy. So AXB. Assume now that AXB. Let C(p1,...,px) and
C(q1,.--,q¢) be the rational canonical forms of A and B respectively over
M(Q). Then

Clpy,-,pk) = S(x) " A(2)S(z), Claq,- q) = T(x) " B(x)T (),
S(x), T(x) € H(Q)"™", det A(z) #£0, det B(x) £ 0.
Theorem 2.3.8 yields that C(p1,...,pr), C(q1, ..., q¢) € H(Q)"*™. Let Qg D
) be an open set such that A, B, S, T € H(Qy)"*" and A(z) and B(x)
are similar over C for any x € Qy. Let zg € ¢ be a point such that

det S(x0)T(xo) # 0. Then for all x € D(xo,p) C(p1,....,0x) = C(q1, ..., qe)-
The analyticity of C(p1,...,pr) and C(qi, ..., q¢) imply that these matrices

are identical in H(), i.e. A~B. O
Assume that A~B. Then according to Lemma 2.9.4 the three matrices
I@A@x)—Alx)" @I, T®Al)-B@)' ®I, T®B()-Bk)' oI
(3.6.2)

are equivalent over H(2). Theorem 2.9.3 yields.

Theorem 3.6.3 Let A, B € H(Q)"*". Assume that the three matrices
in (3.6.2) are equivalent over H(QY). Then ARB.
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Assume that  C C is a domain. Then H(Q2) is EDD. Hence we can
determine when these matrices are equivalent.

The problem of finding a canonical form of A € Q™*™ under analytic
similarity is a very hard problem. This problem for the ring of local analytic
functions in one variables will be discussed in the next sections. We now
determine when A is analytically similar to its rational canonical form over
He, the ring of local analytic functions in the neighborhood of ¢ € C™.

For A, B € H(Q)"*™ denote by r(A, B) and v(A, B) the rank and the
nullity of the matrix C' = I ® A — BT ® I over the field M(). Denote by
r(A(x), B(x)) and v(A(z), B(x)) the rank of C(z) over C. As the rank of
C'(z) is the largest size of a nonvanishing minor, we deduce

r(A(C), B(C)) < r(A(z), B(z)) < r(4, B)
(3.6.3)
v(4, B) < v(A(z), B(x)) < v(A(C), B(C)), x€ D((,p)

for some positive p. Moreover for any p > 0 there exists at least one
xo € D(C, p) such that

(3.6.4) r(A(xo), B(zo)) =1(A, B), v(A(xo, B(zg)) =v(A4,B).

Theorem 3.6.4 Let ¢ € C™ and A € H™". Assume that C(p, ..., px)
is the rational canonical form of A over M¢ and C(oy, ..., 0¢) is the ratio-
nal canonical form of A(C) over C. That is p; = p;(\,z) and o;(N\) are
normalized polynomials in \ belonging to H¢[A] and C[\] respectively for
i=1,...,kand j=1,...0. Then
(a) > k;

(b) ngo O—Z—i(A)‘ gzopk—i()‘v C) fOT’ q= 07 ]-a EES) k—1.
Moreover £ =k and p;(\, () = 0;(A) fori=1,.. k if and only if

(3.6.5) r(A(¢), B(Q)) =r(A,B), v(A((),B(()) = v(A,B),
which is equivalent to the condition
(3.6.6) r(A(¢), B(C)) = r(A(z), B(x)),

V(A(C)’B(C)) = V(A(.”L'),B(x)), T € D(C,p)
for some positive p.

Proof. Let

un—k-l-i()‘)m) = H pa()‘vx)v Uﬂ—é-’-j()‘) = H 0,3()‘)’

a=1 B=1
i=1,.k, j=1,..0
Ue(N,z) =vg(A\) =1, for a<n—k B<n—"L
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So wu;(A,x) and v;(A\) are the g.c.d. of all minors of order ¢ of matrices
M — A and M — A(C) over the rings M[A] and C[)] respectively. As
u; (A, z) € He[A] it is clear that u; (X, () divides all the minors of I — A(()
of order i. So w;(X,()|vi(A) for i = 1,...,n. Since v,—¢ = 1 it follows that
Up—¢(A, ) = 1. Hence k < ¢. Furthermore

un (A, ) = det (A — A(x)), v,(N) =det (AT — A(Q)).

Therefore u, (A, ¢) = v,(\) and 27((:)”27((;\(()) . This establishes claims (a)
and (b) of the theorem. Clearly if C(qu,...,q¢) = C(p1,...,pr)(¢) then k =
¢ and p;(N\, () = ¢(A) for i = 1,..,¢. Assume now that (3.6.5) holds.

According to (2.8.12)

v(A,A) = (20 — 1)deg pr—it1(\, ),

&
I M?r
L

L

V(A(C), A(Q)) = D (25 — 1)deg gr—j41 ().

j=1

Note that the degrees of the invariant polynomials of AT — A and AI — A(¢)
satisfy the assumptions of Problem 2. From the results of Problem 2 it
follows that the second equality in (3.6.5) holds if and only if k¥ = ¢ and
deg p;(A,z) = deg ¢;(\) for ¢ = 1,...,k. Finally (3.6.3-3.6.4) imply the
equivalence of the conditions of (3.6.5) and (3.6.6). O

Corollary 3.6.5 Let A € H{"". Assume that (3.6.6) holds. Then
A~B if and only if AXB.

Proof. According to Theorem 3.6.2 it is enough to show that AXB
implies that A~B. Since A satisfies (3.6.6) the assumption that ARB
implies that B satisfies (3.6.6) too. According to Theorem 3.6.4 A and B
are analytically similar to their canonical rational form. From Theorem
3.6.2 it follows that A and B have the same rational canonical form. O

Problems

1. Let
0 =z 0 x2]

A("T)[o 0}’ B(x){o 0
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Show that A(x) and B(z) are rationally similar over C(x) to Hy =
A(1). Prove that

A AH,, B AH,, AXB, A ~B
over Cl[z].

2. Let n be a positive integer and assume that {¢;}T, {m;}} are two
nonincreasing sequences of nonnegative integers satisfying

Z€ <Zml, =1,...,n—1,

i=1
i=1 i=1

Show (by induction) that

in—l i%—l
i=1 i=1

and equality holds if and only if £; =m;, i=1,....n

3. Let (, e C, n=1,..., and lim,,_, o, (,, = ¢. Suppose that Q@ C Cis a
connected set and ¢, € Q, n=1,..., ¢ € Q. Recall that if f € H(Q)
and f(¢,) =0, n=1,..., then f =0. Show that for A, B € H(Q2)"*"

the assumption that A((,) ~ B((,), n = 1,..., implies that AAB.

3.7 A Global Splitting

From this section to the end of the chapter we assume that 2 is a domain
in C. We now give a global version of Theorem 3.5.7.

Theorem 3.7.1 Let A € H(Q)"*". Suppose that
(3.7.1) det (AT — A(x)) = ¢1(\, 2)pa (N, x),

where ¢1, ¢2 are two nontrivial normalized polynomials in H(Q)[\] of posi-
tive degrees m1 and ng respectively. Assume that (¢1(\, zo), d2(A, z0)) =1
for each xy € Q. Then there exists X € GL(n,H(2)) such that

X H2)CO(2)X (2) = Ci(z) © Ca(2),
(3.7.2)
Ci(z) e H(Q)™*™,  det (M — Ci(z)) = ¢i(N\,z), i=1,2.
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Proof. Let P;(z) be the projection of A(z) on the eigenvalues of A(z)
satisfying ¢;(A,z) = 0. Since (¢1(A\, x0), p2(A,x9)) = 1 it follows that
Pi(z) € H(Q)™*™ for i = 1,2. (See Problem 3.4.10.) Also for any xo the
rank of P;(xg) is n;. Since H(Q2) is EDD each P;(z) can be brought to the
Smith normal form

Pi(z) = Uj(z) diag(e? (z), ..., € (2), 0, ..., 0) Vi (),
U;,V; € GL(n;, H(Q)), i = 1,2.

)

Asrank Pi(xg) = n; for any g €  we deduce that ey =1,5=1,...n,i=

1,2. Let ugi)(x), ...,ugf)(x) be the columns of U;(z) for i = 1,2. AsV €
GL(n,H(f2) we obtain

(3.7.3) P;(z)C" = span (ugi) (x), ...,ufj} (%)),

for any = € €. Let

X(z) = [ (@), .. ul (@), 0P (@), ..., u? ()] € H(Q)"".

coy Upy

According to Problem 3.4.13 det X(xo) # 0 for any zo € H(Q2). So
X(x) € GL(n,H(£2)). Then (3.7.2) follows from (3.4.29). O

3.8 First variation of a geometrically simple
eigenvalue

Theorem 3.8.1 Let A(z) be a continuous family of n x n complex val-
ued matrices for |v — xo| < 0, where the parameter x is either real or
complex. Suppose that

(3.8.1) Alx) = Ao+ (& — z0) A1 + |z — xo|o(1).

Assume furthermore that \g is a geometrically simple eigenvalue of Ay of
multiplicity m. Let x1,...,X,;, and yi,....,ym be eigenvectors of Ay and
Ag respectively corresponding to \o, which form a biorthonormal system
y;'—xj =05, 4,5 =1,...,m. Then it is possible to enumerate the eigenvalues
of A(x) by \i(z), i =1,...,n, such that

(3.8.2) Ai(x) = Xo + (& — o) + | — 20l0(1), i=1,...,m,
where [y, ..., by are the eigenvalues of the matrix

(383) S = [S”] e cmxm Sij = yiTAlxj, i, =1,...,m.
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Proof. By considering the matrix P~1A(x)P, for an appropriate P €
GL(n,C), we can assume that Ag is in the Jordan canonical form such that
the first m diagonal entries of Ay are Ag. The proofs of Theorems 3.5.3 and
3.5.7 implies the existence of

X(B)=1I1+Z(B), ZeH™", Z(0)=0,

such that
(3.8.4) X1(B)(Ao+ B)X(B) = > @Ci(B), C1(0) = AoIp.

Substituting

B(z) = A(z) — Ao = (& — 20) A1 + |z — x0]0(1),
X(z)=X(B(z)) =1+ (z —x0)X1 + |z — x0|o(1)

we get
C(X) = X_lA(a:)X(x) = Ao + (.’L‘—xo)(Al +AOX1 —Xle) + |J}—J}0‘0(1).

According (3.8.4) Ai(z),..., \m(z) are the eigenvalues of Cy(B(z)). As
C1(B(x0)) = Aolm, by considering (C1(B(x)) — Xolm)/(x — o) we deduce
that (A\;(z) — Xo)/(x — o) are continuous functions at xg. Also

(C1(B(x)) = Xolm)/ (& — o) = [vi | (A1 + Ao X1 — X1 Ao)u,] iy + o(1),

where u; = v; = (0i1,...,0;n)' for i = 1,...,m. Since u; and v; are the
eigenvectors of Ag and A] respectively corresponding to Ao for i = 1,...,m,
it follows that V;F(AOXl — X 1Ap)u; =0 fori,j =1,...,m. This establishes
the result for a particular choice of eigenvectors uy, ..., w,, and vy, ..., V.
It is left to note that any other choice of the eigenvectors x, ..., x,, and
Y1, .-, Ym, which form a biorthonormal system amounts to a new matrix
S1 which is similar to S. In particular S and S; have the same eigenvalues.

O

Problems

0 1
1. Let A(z) = LU 0
A(z) in terms of /x. Show that (3.8.2) does not apply for zo = 0
in this case. Let B(x) = A(2?). Show that (3.8.2) holds for zy even
though A9 = 0 is not geometrically simple for B(0).

. Find the eigenvalues and the eigenvectors of
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3.9 Analytic similarity over Hj

Let A, B € H{*". That is

Ax) = E Az, |z| < r(A4),
k=0
(3.9.1)

B(z) =Y Bia*, [z] <r(B).
k=0

Definition 3.9.1 For A,B € H{*" let n(A, B) and k,(A, B) be the
index and the number of local invariant polynomials of degree p of the matrix
I, ® A(x) — B(z)" ® I, respectively.

Theorem 3.9.2 Let A,B € H{*". Then A and B are analytically
similar over Hy if and only if A and B are rationally similar over Hy and
there exists n(A, A) +1 matrices Ty, ..., T, € C™*™ (n =n(A, A)), such that
det Ty # 0 and

k
(3.9.2) S ATe i —TiiBi =0, k=0,..n(A A).
=0

Proof. The necessary part of the theorem is obvious. Assume now that
A(z)~B(z) and the matrices Tp, ..., T,, satisfy (3.9.2), where Ty € GL(n, C).
Put

C(z) =T(x)Bx)T"(z), T(x)=) Tpz".
k=0

As det Ty # 0 we deduce that B(z)~C(z). Hence A(z)~C(z). In
particular (A, A) = r(A,C). Also (3.9.2) is equivalent to A(z) — C(z) =
z"10(1). Thus

(I, ® A(z) — A(z)T ®@ I,) — (I, ® A(z) — C(z)T @ I,) = 2" 0(1).

In view of Lemma 1.14.2 the matrices (I, @ A(x) — A(z) T ®1,,), (I, @ A(x) —
C(z)" ®I,,) are equivalent over Hy. In particular (A, A) = n(A,C). Also
1,0,...,0 satisfy the system (3.9.2) where B; = C;,i = 0,1,...,n7. Theorem
1.14.3 yields the existence P(z) € Hy*" such that
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Hence A(z)~C(z). By the definition C(z)~B(z). Therefore A(z)~B(x).
O

Note that if n(A, A) = 0 the assumptions of Theorem 3.9.2 are equiv-
alent to A(z)~B(z). Then the implication that A(z)~B(z) follows from
Corollary 3.6.5.

Suppose that the characteristic polynomial of A(x) splits over Hy. That
is
(3.9.3)  det (\ — A(z)) = [[(A = Xi(@)), Xi(2) €Ho, i=1,..,n.

i=1

As Hy is ED Theorem 2.5.4 yields that A(x) is similar to an upper triangular
matrix. Using Theorem 3.5.7 and Theorem 2.5.4 we obtain that A(x) is
analytically similar to

C(x) = @leC’i(x), Ci(l’) c Hgl ><n7;’
(3.9.4)

(a;ln, — Ci(0))" =0, a; = A\, (0), oy # o fori # 4, 4,5 =1,..., L.

Furthermore each C;(z) is an upper triangular matrix. In what follows we
are more specific on the form of the upper triangular matrix.

Theorem 3.9.3 Let A(x) € H{*". Assume that the characteristic
polynomial of A(x) splits in Hy. Then A(x) is analytically similar to a block
diagonal matriz C(x) of the form (3.9.4) such that each C;(x) is an upper
triangular matriz whose off-diagonal entries are polynomial in x. More-

over, the degree of each polynomial entry above the diagonal in the matriz
C;(x) does not exceed n(C;, C;) fori=1,.... L.

Proof. In view of Theorem 3.5.7 we may assume that £ = 1. That is,
A(0) has one eigenvalue . Furthermore, by considering A(x)—agl we may
assume that A(0) is nilpotent. Also in view of Theorem 3 we may assume
that A(x) is already in the upper triangular form. Suppose in addition to
all the above assumptions A(z) is nilpotent. Define

X,={y: Afy=0,yeHj}, k=01,..,.

Then
{0}:X0§X1§X2;...§Xp:H6‘.

Using Theorem 1.12.3 one can show the existence of a basis y1(x), ..., yn(x)
in Hf, such that yi(z),...,yy,(x) is a basis in X for k = 1,...,p. As
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A(x)Xj41 C X we have

Vi
Az)y; = Zgini(x)a Vi < J < Y.
1=1

Define g;; = 0 for i > 95, and ¢y, < j < ¢Yp41. Put
G(x) =gt T(x) = [y1(z), ..., yn(x)] € HG™".

Since y1(z),...,yn(z) is a basis in Hj we deduce that T'(z) € GL(n,Hy).
Hence
G(z) =T~ (2)A(@)T(x), s=mn(A,A)=n(G,G).

Let X
G(x):iijj, GM =3 "Gal, k=01,..,.
7=0 =0
We claim that G()&G(z). First note that
(I, @ Gz) —Gx)" @ 1,) — (I, o G (z) — G ()" @ I,,) = 2°T1O(1).

Lemma 1.14.2 implies that the matrices (I, ® G(z) — G(z)" ® I,,), (I, ®
G (z) — G®(2)T @ I,,) have the same local invariant polynomial up to
the degree s. So 7(G,G) < (G, G)) which is equivalent to

(3.9.5) v(G®,G¥) < (G, Q).
Let

Yk :{y: (yla"'uyn)—r : Yj :Oforj >¢k}» k:()vvp

Clearly if g;; = 0 then (4, j) — th entry of G is also equal to zero. By the
definition g;;(z) = 0 for i > 1, and ¥, < j < Yp41. So GO (2) Y1 C Y
for k =0,...,p— 1. Theorem 2.11.2 implies

(3.9.6) v(G(x0), G(xg)) < V(G(S) (xo),G(s)(xo))

for all z in the neighborhood of the origin. Hence v(G,G) < v(G®),G®).
This establishes equality in (3.9.5), which in return implies equality in
(3.9.6) for 0 < |zg| < p. Theorem 2.11.2 yields that G(z¢) ~ G ()

for 0 < |zg| < p. From Theorem 3.6.2 we deduce that GARG(). As
G(z)I — IG® = 25710(1) Theorem 3.9.2 implies that GRG(). This es-
tablishes the theorem in case that A(x) is a nilpotent matrix.
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We now consider the general case where A(z) is an upper triangular
matrix. Without loss of generality we may assume that A(zx) is of the form

A(x) = [Aij}ﬁ, A” € Hy' ™™,
Ai #ENj(x), fori#j, 4,5=1,..4¢
We already showed that
A”(.’I) = E(Z’)ian(CE)TZ(Z), E S GL(TL,HO),
and each Fy;(x) — \;()I,, is a nilpotent upper triangular matrix with poly-
nomial entries of the form described above. Let

T(x) = ZTi(w), G(z) = [Gij(2))i = T(x) " A(2)T(2).

As Ai(x) # Aj(x) for ¢ # j Problem 3 implies v(G, G) = Zle v(Giiy Gii)-
Let G®¥)(z) = [fo)] be defined as above. Theorem 2.10.2 implies

~

(EARNE: Z v( Zf), G(k) .
i=1
Using Theorem 2.11.2 as above we obtain v(Gy;, G;) < V(Gl(f), Ggf)) Com-
bine the above inequalities we obtain v(G, G) < v(G),G*)). Compare this
inequality with the inequality (3.9.5) to deduce equality in (3.9.5). Hence

(3.9.8) v(GY .G = (G, Gi), i=1,..,L
Let

Di(z) = In, ZD”J?j D(k) ZDsz
(3.9.9)

D(x) = &{_, Di(x), D®(x) = &(_, D" (x).
Then (3.9.8) is equivalent to
(G - DY G — DY = (G — Dii, Gii — D), i=1,...,L.

As above Theorem 2.11.2 yields that Ggf) - DES)éGii - D; = Gf-f) -
DES) + D;~Gy. Since Ai(z) # Aj(x) for i # j we finally deduce that
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G~G® — D 4+ D. Also GI — I(G) — D) 4 D) = 25710(1). Theorem
3.9.2 yields GAG®) — D) 4+ D. The proof of the theorem is completed. O

Theorem 3.9.4 Let P(z) and Q(x) be matrices of the form (3.9.4)

p
P(z) =Y @Pi(x), Pi(x) € Hy"*™,
=1

(aiImi - PZ(O))WL7 =0, oy 7& Qj for i #]) Z?] =1..,p,
(3.9.10)

Q(z) = ©_,Q;(x), Q(x) € Hy" ™™,

(6]1711 - Q](O))nj = 07 ﬁi 7& ﬁ] for ¢ 7é.]7 Zv.] = 17"'7q'

Assume furthermore that

i=t+1,..p,j=t+1,..,q, 0 <t <min(p,q).
Then the nonconstant local invariant polynomials of I @ P(z) — Q(x)" ® I

are the nonconstant local invariant polynomials of I @ Pi(x) — Qi(x)T @ I
fori=1,...,t. That is

t

(3912) K/p(PaQ) = ZKP(Pini)7 p= 17 teey e

i=1
In particular if C(x) is of the form (3.9.4) then
(3.9.13) n(C,C) = 1n§1ia%<€77(6’i, Cy).

Proof. Theorem 1.14.3 implies k,(P, Q) = dim W,_; —dim W,,, where
W, C C™*™ is the subspace of n x n matrices X, such that

k
(3.9.14) ZP]@,J‘XJ‘ - X;Qr—j =0, k=0,..,p.
7j=0
Here
P = 3 P, Pl = S P, By = o
j=0 j=1

o0

Qz) = Zijj’ Qi(r) = ZC2§Z')1.J'7 Q; = @;_1:1625_1')'
7=0

Jj=1
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Partition X; to [X( )] X(ﬁ cCme®w o =1,...,p, B=1,...,q. We claim
that X((X]ﬁ) =0 if either « >t+1,0or 8>t +1, or a # (. Indeed in view of

Lemma 2.8.1 the equation Péa)Y — YQ(()ﬁ) = 0 has only the trivial solution

for a, B satisfying the above conditions. Then the claim that Xéjﬁ) =0
follows by induction. Thus (3.9.14) splits to the system

k
SR xP - xPQY =0, i=1,..t

J=0

Apply the characterizations of k,(P, Q) and k,(P;,Q;) for i = 1,...,t to
deduce (3.9.12). Clearly (3.9.12) implies (3.9.13). O

We conclude this section by remarking that main assumptions of Theo-
rem 3.9.3, the splitting of the characteristic polynomial of A(z) in Hy, is not
a heavy restriction in view of the Weierstrass preparation theorem (Theo-
rem 1.7.4). That is the eigenvalues of A(y™) split in Hy for some value of
m. Recall that m can be always be chosen n!, i.e. the minimal m divides
n!. Problem 1 claims A(x)’ng(x) = A(ym)éB(ym). In view of Theo-
rem 3.9.3 the classification problem of analytic similarity classes reduces to
the description of the polynomial entries which are above the diagonal (in
the matrix C' in Theorem 3.9.3). Thus given the rational canonical form of
A(z) and the index n(A, A) the set of all possible analytic similarity classes
which correspond to A is a certain finite dimensional variety.

The case n = 2 is classified completely (Problem 2). In this case to
a given rational canonical form there are at most countable number of
analytic similarity classes. For n = 3 we have an example in which to a
given rational canonical form there the family of distinct similarity classes
correspond to a finite dimensional variety (Problem 3).

Problems

1. Let A(z), B(x) € Hy*™ and let m be a positive integer. Assume that
A(y™T(y) = T(y)A(y™) where T(y) € H}*". Show
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2. Let A(z) € H2*? and assume that
det (M — A(z)) = (A = M(2))(A = Az(2),
\i(z) = i/\y)x-j €Hy, i=1,2,
=0
AP =2Pi=0,.p, ALY

p+1
p=00 <= Ai(x) = A\a(x).

A, —1<p< oo,

Show that A(x) is analytically similar either to a diagonal matrix or

to
X xk
B(z) = [Al(g ) )\Q(x)} ., k=0,...,p(p>0).

Furthermore if A(z)~B(z) then n(A, A) = k. (Hint: Use a similarity
transformation of the form DAD~!, where D is a diagonal matrix.)

3. Let A(z) € H3*3. Assume that
A@)=C(p), p\z)=AA\—2>) A=z, m>1.
Show that A(x) is analytically similar to a matrix
0 zF a(z)

B(z,a) = |0 2™ aF2 | 0<ky, ko < oo (2 =0),
0o 0 azim

where a(z) is a polynomial of degree 4m — 1 at most. (Use Problem
2.) Assume that ky = ks = m. Show that B(z, a)~B(z,b) if and only
if

(1) if a(0) # 1 then b — a is divisible by ™.

(2)ifa(0) =1and 2 =0, i =1,.,k—1, £¢ £ 0for 1 <k <m
m+k

then b — a is divisible by x
(3)ifa(0) =1 and 42 = 0, i = 1,...,m then b—a is divisible by 2.
Then for k1 = k2 = m and a(0) € C\{1} we can assume that a(z) is a
polynomial of degree less than m. Furthermore the similarity classes

of A(z) is uniquely determined by such a(z). These similarity classes
are parameterized by C\{1} x C™~1 (the Taylor coefficients of a(z)).

4. Let P and @ satisfy the assumptions of Theorem 3.9.4. Show that P
and @ are analytically similar if and only if

p=qg=t, m;=n,, Pi(x)éQi(x), 1=1,..,t.
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3.10 Similarity to diagonal matrices

Theorem 3.10.1 Let A(z) € H*"™ and assume that the characteristic
polynomial of A(x) splits in Hy as in (3.9.3). Let

(3.10.1) B(z) = diag(M1(z), ..., A (2)).

Then A(zx) and B(x) are not analytically similar if and only if there exists
a nonnegative integer p such that

kp(A, A) + K,y (B, B) < 26,(A, B),
(3.10.2)
Hj(A,A) + Kj(B,B) = 2I€j(A,B)7 j = 0, ey P — 1, ifp > 1.

In particular A(x)%B(x) if and only if the three matrices given in (2.9.4)
are equivalent over Hg.

Proof. Suppose first that (3.10.2) holds. Then the three matrices in

(2.9.4) are not equivalent. Hence A(x)a/&B(x) Assume now that A(m)a/éB(m)
Without a loss in generality we may assume that A(z) = C(z) where C(z)
is given in (3.9.4). Let

B(z) = @}_,B;(x), Bj(0) = ajl,,, j=1,..,L

We prove (3.10.2) by induction on n. For n =1 (3.10.2) is obvious. Assume
that the (3.10.2) holds for n < N — 1. Let n = N. If A(0) % B(0) then
Theorem 2.9.2 implies the inequality (3.10.2) for p = 0. Suppose now
A(0) = B(0). That is A;(0) = B;(0) = ajlp;, j = 1,...,£. Suppose first
that ¢ > 1. Theorem 3.9.4 yields

£ L
RP(Aa A) = ZKP(AjaAj)v RP(A7B) = ZKJIJ(AJ'ij);
Jj=1 Jj=1
4
rp(B,B) =) ry(Bj. Bj).
j=1

Problem 4 implies that A(x)a/&B(x) = Aj(x)a;ﬁ:Bj (z) for some j. Use
the induction hypothesis to deduce (3.10.2). It is left to consider the case

A(O) = B(O) = Qp, Ho(A,A) = /Q()(A, B) = K,o(B,B) =0.

Let

A(l)(it) _ A({E) — C“OI’ B(l)(ﬂf) _ B(:L’) — O‘OI.

T xT
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Clearly
kp(A, A) = kp_1 (AN, AV, (A, B) = k1 (AW, BY),
kip(B,B) = kp_1(BY, BW).

Furthermore A(z)~B(z) < A(l)(m)é (1)(33) Continue this process. If
at some (first) stage k either A%)(0) % B®) (0) or A®)(0) has at least two
distinct eigenvalues we conclude (3.10.2) as above. Suppose finally that
such k does not exist. Then A(xz) = B(z) = A(x)I, which contradicts the

assumption A(z) AB(z). O

3.11 Strict similarity of matrix polynomials

Definition 3.11.1 Let A(x), B(z) € Clz]"*™. Then A(x) and B(z)

),
are called strictly similar (A éB) if there exists P € GL(n,C) such that
B(x) = PA(z)P~!

Definition 3.11.2 Let ¢ be a positive integer and (Ao, A1, ..., A¢), (Bo, ..., Be) €
(C>*my+L ] Then (Ag, Ay, ..., Ag) and (Bo, ..., By) are called simultaneously
similar (Ao, A1, ..., A¢) = (Bo, ..., Be) if there exists P € GL(n, C) such that
B, = PAiP_l,i =0,..74, iec. (B(),Bl7 ...,Bg) = F’(z‘lo,z417 ...,Ag)P_l.

Clearly

Proposition 3.11.3 Let
‘

(3.11.1) ZAJ; B(z) =) _ B’ € Cla]™".

1=0
Then (AéB) if and only if (Ao, A1, ..., Ag) = (Bo, ..., Be).

The problem of simultaneous similarity of matrices, i.e. to describe the
similarity class of a given m (> 2) tuple of matrices or to decide when a
given two tuples of matrices are simultaneously similar, is a hard problem.
See [Fri83]. There are some cases where this problem has a relatively simple
solution.

Theorem 3.11.4 Let{ > 1 and (Ao, ..., As) € (C"*™)+L. Then (Ao, ..., Ar)
is simultaneously similar to a diagonal tuple (Bo, ..., B) € C™*™)H1 e,
each B; is a diagonal matriz, if and only if Ao, ..., Ay are £ + 1 commuting
diagonable matrices:

(3.11.2) AiA; = AjA;, i,j=0,..,L
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Proof. Clearly if (Ag, ..., A¢) is simultaneously similar to a diagonal
tuple then Ay, ..., Ay a set of commuting diagonal matrices. Assume that
Ag, ..., Ag a set of commuting diagonal matrices. We show that (Ao, ..., Ay)
is simultaneously similar to a diagonal tuple by the double induction on n
and £. It is convenient to let £ > 0. For n = 1 the theorem trivially holds
for any £ > 0. For £ = 0 the theorem trivially holds for any n > 1. Assume
now that p > 1, ¢ > 1 and assume that the theorem holds for n < p—1
and all £ and for n = p and £ < ¢ — 1. Assume that Ag,...,4, € CP*P
are ¢ + 1 commuting diagonable matrices. Suppose first that Ag = alj.
The induction hypothesis yields that (B, ..., By) = P(A1,...,4,)P ! is a
diagonal g-tuple for some P € GL(n,C). As PAP~! = Ay = al, we
deduce that (Ao, B1, ..., B) = P(Ag, A1, ..., Ag)P~L.

Assume that Ay is not a scalar matrix, i.e Ay # %trA Ip,. Let

Ay =QApQ ™ = ®F_aiI,,,

k
1 <Dpi, a; 750/3 fOI'i?éj, Z?]: 17"'7ka an =D
=1

Then the ¢ 4 1 tuple (Ao, ..., 4,) = Q(Ag, ..., A)Q " is a ¢ + 1 tuple of di-
agonable commuting matrices. The specific form of A and the assumption
that Ap and A; commute implies

Aj=ab Ay, Ay eCr v i=1,k j=1,..4

The assumption that ([10, ...,flq) is a ¢ + 1 tuple of diagonable commut-
ing matrices implies that each ¢ the tuple (ailpi,fll,i..., flq,i) is ¢ + 1 tuple
of diagonable commuting matrices. Hence the induction hypothesis yields
that (a;l,,, A1 ..., Ag;) is similar to a ¢ + 1 diagonal tuple for i = 1, ..., k.
It follows straightforward that (flo, A, flq) is simultaneously similar to a
diagonal ¢ + 1 tuple. O

The problem when A(x) € Clz]™*™ is strictly similar to an upper tri-
angular matrix B(z) € C[z]"*™ is equivalent to the problem when an ¢+ 1
tuple (Ao, ..., Ag) € (C™™)**! is simultaneously an upper triangular tu-
ple (By,..., By), i.e. each B; is an upper triangular matrix, is solved in
[DDG51]. We bring their result without a proof.

Definition 3.11.5 Let D be a domain, let n,m be positive integers and
let Cq,...,Cp, € D" ™. Then A(C,,...,Cp,) C D™ denotes the minimal
algebra in D™ *™ containing I, and C4,...,C,,. That is every matriz F €
A(Cy, ...,Cp) is a noncommutative polynomial in C1, ...,Chp,.
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Theorem 3.11.6 Let m, ¢ be positive integers and let Ao, ..., Ay € (C™*™)¢+1,
TFAE:
(a) (Ao, ..., Ap) is simultaneously similar to an upper triangular tuple (By, ..., By) €
MH(C)Z+1,
(b) For any 0 < i < j <l and F € A(A,,...,Ap)) the matriz (A;A; —
A;A;)F is nilpotent.

The implication (a) = (b) is trivial. (See Problem 2.) The verification
of condition (b) can be done quite efficiently. (See Problem 3.)

Corollary 3.11.7 Let m, ¢ be positive integers and assume that Ag, ..., Ay €
C™*™ are commuting matrices. Then (Ay, ..., A¢) is simultaneously similar
to an upper triangular tuple (B, ..., By).

See Problem 4.

Problems

1. Let F be a field. View F"*" as an n? dimensional vector space over
F. Note that any A € F"*"™ acts as a linear transformation on F**"
by left multiplication: B — AB, B € C"*". Let Ay,..., Ay € F"*",
Let W = span (I,) and define

¢
Wi=Wi 1+ Y AWy, k=1,
j=0
Show that W;_; C Wy, for each k£ > 1. Let p be the minimal non-
negative integer for which the equality Wi = Wy, holds. Show
that A(Ao, ..., Ae) = Wp. In particular A(A,,..., A¢) is a finite di-
mensional subspace of F™*™.

2. Show the implication (a) = (b) in Theorem 3.11.6.

3. Let the assumptions of Problem 1 hold. Let Xg = A(A,, ..., A¢) and
define recursively

Xy = Z (AA; — AjANX oy CEFY) k=1, ..,
0<i<j<t

Show that the condition (a) of Theorem 3.11.6 to the following two
conditions:
(€) AiXy € Xppy i=0,.l, k=0,.....

(d) There exists ¢ > 1 such that X, = {0} and X}, is a strict subspace
of Xy_1 fork=1,...,q.
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4. Let Ag,...,Ap € F™*™. Assume that 0 # x € F" and Agx = AoX.
Suppose that AgA; = A;Ag, i1 =1,..., L.
(a) Show that any nonzero vector in A(A,, ..., A¢)span (x)(D span (x))
is an eigenvector of Ay corresponding Ag.
(b) Assume in addition that A, ..., Ay are commuting matrices whose
characteristic polynomials split in F to linear factors. Show by induc-
tion that there exists 0 # y € A(A,,..., A¢)span (x) such Ay =
)\iYa 1= 0, ,f
(c) Show that if Ag,..., Ay € F**™ are commuting matrices whose
characteristic polynomials split in IF to linear factors then (Ao, ..., Ag)
is simultaneously similar over GL(n,F) to an upper triangular ¢ + 1
tuple.

3.12 Similarity to diagonal matrices

Let A(xz) € H{*". The Welerstrass preparation theorem (Theorem 1.7.4)
implies that the eigenvalues of A(y®) are analytic in y for some s|n!. That
is the eigenvalues A;(z), ..., \,(2) are multivalued analytic functions in z
which have the expansion

o0
k .
Aj(z) = Z)\jkms, j=1..,n.
k=0

In particular each \; has s; branches, where s;|m. For more properties of
the eigenvalues A1 (), ..., Ap(2) see for example [Kat80, Chap.2].
Let A(z) € C[z]"*™. Then

¢
(3.12.1) A(z) = Aga®, A, eC™" k=0,..,L
k=0
The eigenvalues of A(z) satisfy the equation
det (AT — A(x)) = A"+ Zaj(a:))\"_j, a;(x) € Clz], j=1,..,n.
j=1

(3.12.2)

Thus the eigenvalues A\ (z), ..., \p(z) are algebraic functions of . (See for
example [GuR65].) For each ¢ € C we apply the Weierstrass preparation
theorem in H¢ to obtain the Puiseauz expansion of \j(x) around z = (:

k
s

(3.12.3) A(@) = X =0+, j=1,..n
k=0
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For simplicity of notation we choose s < n! for which the above expansion
holds for each ¢ € C. (For example s = n! is always a valid choice.) Since
A(x) is a polynomial matrix each \;(z) has Puiseaux expansion at co. Let

4
AWw) =aBL), Bly) =Y A’
k=0

Then the Puiseaux expansion of the eigenvalues of B(y) at y = 0 yields

k

(3.12.4) Aj(@) =2 Ng(oo)z™+, j=1,..,n.
k=0

3

Equivalently, we view the eigenvalues A;(z) as multivalued analytic func-
tions over the Riemann sphere P = C U co. To view A(z) as a matrix
function over P we need to homogenize as in §2.1.

Definition 3.12.1 Let A(x) be given by (3.12.1). Denote by A(zo,x1)
the corresponding homogeneous matrix

e/
(3.12.5) A(zo, 1) = ZAke:rg_kx’f € Clzg, 1]™*",

k=0
where ¢! = —1 if A(z) = 0 and Ay # 0 and A; = 0 for ' < j < {if
A(z) #0.

Let A(x), B(z) € Clz]™*™. Then A(z) and B(x) are similar over C[z],
denoted by A(z) ~ B(z), if B(z) = P(z)A(z)P~!(z) for some P(z) €
GL(n,C[z]). Lemma 2.9.4 implies that if A(z) ~ B(z) then the three
matrices in (3.6.2) are equivalent over Clz]. Assume a stronger condition

ARB. Clearly if B(z) = PA(z)P~! then B(zg,21) = PA(xg,z1)P L.
According to Lemma 2.9.4 the matrices
(3. 1264 (20, x1) — A(xo, ml)T @I, I® A(xg,21) — B(ar:o,gcl)—r ® 1,

I® B({E(],.’El) — B(.’Eo,xl)—r ® I,

are equivalent over Clzg,z1]. Lemma 1.11.3 yields.

Lemma 3.12.2 Let A(z), B(z) € Clz]™". Assume that A(z)~B(z).
Then the three matrices in (3.12.6) have the same invariant polynomials
over Clxg, z1].

Definition 3.12.3 Let A(x), B(x) € Clx]™*". Let A(zo,x1), B(zo,x1)
be the homogeneous matrices corresponding to A(x), B(x) respectively. De-
note by ix(A, B,xo,x1), k = 1,....,7(A4, B) the invariant factors of I ®
A(.’Eo,xl) — B(il'(hfl'l)—r ® 1.
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The arguments of the proof of Lemma 2.1.2 imply that i (A, B, 2o, x1)
is a homogeneous polynomial for k = 1,...,7(A, B). Moreover iy(4, B, 1,x)
are the invariants factors of I ® A(z) — B(z)" ® I. (See Problems 5-6.)

Theorem 3.12.4 Let A(z) € Clz]|"*™. Assume that the characteristic
polynomial of A(z) splits to linear factors over Clz]. Let B(x) be the di-
agonal matriz of the form (3.10.1). Then A(x) = B(z) if and only if the
three matrices in (3.6.2) are equivalent over Clz]. Furthermore A(x)~B(x)
if and only if the three matrices in (1.34.8) have the same invariant factors
over Clxg, z1].

Proof. Clearly if A(xz) ~ B(x) then the three matrices in (3.6.2) are
equivalent over Clz]. Similarly if A(z)~B(z) then the three matrices in
(1.34.8) have the same invariant factors over Clzg,x1]. We now show the
opposite implications.

Without loss of generality we may assume that B(z) is of the form

B(w) = @ Mi(@) ], € ™™, X(@) # Aj(@), i £, 6,5 = 1,
(3.12.7)

Thus for all but a finite number of points ( € C we have that

(3.12.8) N(QO)# N fori#4, i,j=1,..,m.

Assume first that A(z) ~ B(x). Let P;(A) be the projection of A(x) on
Aj(x) for j = 1,...,m. Suppose that (3.12.8) is satisfied at . Problem 3.4.10
yields that each P;j(z) is analytic in the neighborhood of (. Assume that
(3.12.8) does not hold for ¢ € C. The assumptions that the three matrices
in (3.12.6) have the same invariant polynomials imply that the matrices in
(3.6.2) are equivalent over He. Now use Theorem 3.10.1 to get that A(x) =
Q(z)B(z)Q(z)"!, Q € GL(n,H¢). Clearly P;(B), the projection of B(z)
on \j(x), is 0@ I,; ®0. In particular P;(B) is analytic in the neighborhood
of any ¢ € C and its rank is always equal to n;. Problem 3.4.11 yields that
Pj(A)(z) = Q(z)Pj(B)(x)Q(z)~" € HZ*™. Hence rank Pj(A)(¢) = nj for
all ¢ € C. Furthermore P;(A)(z) € Hf*", i.e. each entry of Pj(A) is an
entire function (analytic function on C). Problem 3.4.14 yields that

T A — (I

(3.12.9) Pi(A)(¢) = i MO =)

=1,...,n.

Hence each entry of P;(A)(¢) is a rational function of ¢ on C. Since
P;(A)(z) is analytic in the neighborhood of each { € C it follows that
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P;(xz) € Clz]™*™. We also showed that its rank is locally constant, hence
rank Pi(x) = nj, i = 1,...,m. Therefore the Smith normal form of P;(x)
over Cz] is P;i(z) = Ui(z) (I, ® 0)Vi(z), U;,V; € GL(n,C[z]). Let

uy (), ..., upy, i(z) be the first n; columns of U;(z). Then P;(x)C" =
span (uy i(x),..., up, i(x)). Recall that Pi(x) + ... + Pn(x) = I,. Hence
u11(2), ooy Uny 1(2);5 oo, W1 (2), .oy Uy, m () 18 a basis for C™ for each z €
C. Let S(x) be the matrix with the columns

uy,1(2), ey Upy 1(2),s oo, U (2), oy Wiy, o ().

Then S(z) € GL(n,C[z]). Let D(z) = S~(z)A(z)S(x) € Clz]"*". Since
A(x) is pointwise diagonable D(¢) = B((), where ( satisfies (3.12.8) and
B(z) is of the form (3.12.7). Since only finite number of points ¢ € C do
not satisfy the condition (3.12.7) it follows that D(x) = B(x). This proves
the first part of the theorem.

Assume now that the three matrices in (1.34.8) have the same invariant

factors over Clzg,z1]. The same arguments imply that A(zg, 1)~B(z, 1)
over the ring Hy. That is P;(A) is also analytic at the neighborhood ¢ = cc.
So Pj(A) is analytic on P hence bounded, i.e. each entry of P;(A) is
bounded. Hence P;(A) is a constant matrix. Therefore S(x) is a con-

stant invertible matrix, i.e. A(x)éB(x) O

Let A(x) € C[z]™*™ be of the form (3.12.1) with £ > 1 and A, # 0.
Assume that A(z) is strictly similar to a diagonal matrix B(z). Then
A(z) is pointwise diagonable, i.e. A(x) is similar to a diagonal matrix
for each z € C, and Ay, # 0 is diagonable. Equivalently, consider the
homogeneous polynomial matrix A(xzg,z1). Then A(zg,x1) is pointwise
diagonable (in C?). However the assumption that any A(xg, ;) is pointwise
diagonable does not imply that A(z) is strictly equivalent to a diagonal
matrix. Consider for example

2

2
K T S Zox1
(3.12.10) A(x) = [0 ng} = A(zo,71) = [0 x3+x%] ~

(See Problem 2.)

Definition 3.12.5 Let A(x) € Clz]|™™™ be of the form (3.12.1) with
¢>1 and Ay # 0. Let M\p(x) and Ag(z) be two distinct eigenvalues of
A(z). (Ap(z) and Ny(x) have distinct Puiseauz expansion for any ¢ € P.)
The eigenvalues A\,(x) and Aj(x) are said to be tangent at ¢ € P if their
Puiseauz expansion at ¢ satisfy

(3.12.11) Ape(€) = Agi(€), k=0,....5.
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(Note that two distinct eigenvalues are tangent at oo if the corresponding
eigenvalues of A(x,1) are tangent at 0.)

Note that for A(x) given in (3.12.10) the two eigenvalues of A(x) x? and
1 + 22 are tangent at one point ¢ = oo. (The eigenvalues of A(x,1) are 1
and 1+ 22.)

Theorem 3.12.6 Let A(z) € Clz]™*™ be of the form (3.12.1) with
£ > 1 and Ay # 0. Then one of the following conditions imply that
A(z) = S(z)B(x)S™(x), where S(z) € GL(n,C[z]) and B(z) € Clx]"*"
is a diagonal matriz of the form Y..*, N;(z)Ix,, where kyi,... kyn > 1.
Furthermore A1(x), ..., \p(x) are m distinct polynomials satisfying the fol-
lowing conditions:

(a) £ >deg \i(z), i=1,...,m.
(b) The polynomial A\;(xz) — Xj(z) has only simple roots in C for i # j.
(Ai(€) = A;(Q) = Ai(€) # A3(C))-

I. The characteristic polynomial of A(x) splits in Clz], i.e. all the
eigenvalues of A(x) are polynomials. A(x) is point-wise diagonable in C
and no two distinct eigenvalues are tangent at any ¢ € C .

II. A(x) is point-wise diagonable in C and Ay is diagonable. No two
distinct eigenvalues are tangent at any point ¢ € CU {oco}. Then A(x) is
strictly similar to B(z), i.e. S(x) can be chosen in GL(n,C). Furthermore
A1(x), ooy A () satisfy the additional condition:

(¢) deg A1(x) = . Furthermore, for i # j either dX (0) # ey (0) or

dfx alx
Y oy =1y . -1y .
%{;L (0) = Ifi}; (0) and dde:ﬁ; (0) # '1(1271/\; (0).

Proof. View A(x) as matrix in M™*™, where M is field of rational
functions. Let K be a finite extension of M such that det (A — A(x)) splits
to linear factors over K. Then A(z) has m distinct eigenvalues Ay, ..., Ay, €
K of multiplicities nq, ..., n,, respectively. We view these eigenvalues as
multivalued functions Aj(x), ..., A\pp(x). Thus for all but a finite number
of points ¢ (3.12.8) holds. Assume that ¢ satisfies (3.12.8). Denote by
P;(¢) the projection of A(¢) on A;(¢). Problem 10 implies that P;(x)
is a multivalued analytic in the neighborhood of ¢ and rank P;(¢) = n;.
Problem 14 yields (3.12.9). We claim that in the neighborhood of any ¢ € C
each A\; and P; is multivalued analytic and rank P;(x) = n;. Let ¢ € C for
which (3.12.8) is violated. For simplicity of notation we consider A\; (z) and
Py(x). Let

MO == MO #M(O), k=r+1,...,m.
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Theorem 3.5.7 implies the existence of Q(z) € GL(n,H,) such that
Q™! (2)A(2)Q(x) = C1(z) & Ca(w),

r
Cj(m)eH?jxmjaj:1a27 mlzznh mg =N —m;q.
i=1

The eigenvalues of Cy (z) and Co(z) are A1 (x), ..., Ar(2) and Ap11(2), ..., A ()
respectively in some neighborhood of {. Since C(x) is pointwise diagonable
in He it follows that C(x) and Cy(x) are pointwise diagonable in H.. We

claim that \;(x) € He, the projection P;(x) of Cy () on A\i(z) is in H’meml
and rank P;(¢) = n; for i = 1,....r. If r = 1 M\ (z) = niltrC’l(x) € He
and Py(z) = I,,,. Assume that r > 1. Since C}(¢) is diagonable and has

one eigenvalue A;(¢) of multiplicity m; it follows that C1(¢) = A () Im,-
Hence

Cr(@) = M (O, + (2 = )Ci(x),  Ci(w) € HPPX™,
Clearly C;(x) has r distinct eigenvalues A (z), ..., A.(z) such that
Ai(@) = (O + (@ = Qhilw), i=1,m

Each S\Z(x) has Puiseaux expansion (3.12.3). The above equality shows
that for 1 < i < j < r \(z) and Aj(x) are not tangent if and only if
Ai(€) # 5\]-(1]). By the assumption of theorem no two different eigenval-
ues of A(z) are tangent in C. Hence \;(¢) # j\j(n) for all i # j < 7.
That is C1(¢) has r distinct eigenvalues. Apply Theorem 3.5.7 to Cy (€)
to deduce that C7(¢) is analytically similar Cy @ ... ® C, such that C;
has a unique eigenvalues 5\1(33) of multiplicity n; for ¢ = 1,...,7. Hence
Aiz) = n%_tr Ci(z) € He = \i(z) € He. Clearly the projection of Cj(x)
on A;(z) is I,,. Hence f’z(l‘) is analytically similar to the projection to
0@ ... @ In,... ®0. So Pi(x) € HM™™, rank Py(z) = n; for i = 1,..,r.
Hence Pi(z) € H™", rank Pi(z) = ny as we claimed.

Assume now that A\;(x), ..., A\, (z) are polynomials. Hence and P;(z) are
entire functions on C. (See for example [Rud74].) Since lim|,|— o A;f) = A

it follows that lim supy,|_, p‘éﬁ)‘ < p(A), where p(A) is the spectral radius

of As. Hence each \j(x) is polynomial of degree ¢ at most. Since Ay # 0
it follows that at least one of \;(x) is a polynomial of degree ¢ exactly.
We may assume that deg A\j(z) = ¢. This proves the condition (a) of the
theorem. The condition (b) is equivalent to the statement that no two
distinct eigenvalues of A(x) are tangent in C.
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Define P;(¢) by (3.12.9). As in the proof of Theorem 3.12.4 it follows
that P;(z) € Clz]™*™ and rank P;(x) = n;, ¢ = 1,...,m. Furthermore we
define S(z) € GL(n,C|z]) as in the proof of Theorem 3.12.4 such that
B(z) = S~(z)A(x)S(z). This proves the first part of the theorem.

To prove the second part of the theorem observe that in view of our
definition of tangency at oo the condition (c) is equivalent to the condition
that no two distinct eigenvalues of A are tangent at infinity. Assume now
that A; is diagonable and no two distinct eigenvalues are tangent at oo.
Then the above arguments show that each P;(x) is also multivalued analytic
at co. By considering z7!A(z) it follows that P;(z) is bounded at the
neighborhood of co. Hence P;(x) = P;(0) for ¢ = 1,...,m. Thus S €
GL(n,C). So A(x) is diagonable by a constant matrix. In particular all
the eigenvalues of A(x) are polynomials. Sice no two distinct eigenvalues
are tangent at oo we deduce the condition (c) holds. O

Problems

1. Let A(x) € Clz]™*™. Assume that there exists an infinite sequence
of distinct points {(x}5° such that A((x) is diagonable for k =1, ...,.
Show that A(z) is diagonable for all but a finite number of points.
(Hint: Consider the rational canonical form of A(z) over the field of
rational functions C(x).)

2. Consider the matrix A(x) given in (3.12.10). Show

(a) A(x) and A(zg,x1) are pointwise similar to diagonal matrices in
C and C? respectively.

(b) The eigenvalues of A(x) are not tangent at any point in C.
(c) Find S(x) € GL(2,C[z]) such that S~ (z)A(z)S(z) = diag(x?, 1+
x

(d) Show that A(x) is not strictly similar to diag(z?,1 + 22).
(¢) Show that the eigenvalues of A(x) are tangent at ( = co.

3.13 Property L

In this section and the next one we assume that all pencils A(x) = Ag+A1x
are square pencils, i.e. A(xz) € C[z]™*", and A; # 0 unless stated otherwise.
Then A(J}o, 1‘1) = AQJ?O + A13€1-
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Definition 3.13.1 A pencil A(z) € Clx]"*"™ has property L if all the
eigenvalues of A(xg,x1) are linear functions. That is A\;i(xg, 1) = @;xo +
Bixy is an eigenvalue of A(xo,x1) of multiplicity n; for i =1,...,m, where

n:Zni7 (au/gl)#(a]aﬁj)v f0r1§z<j§m
i=1

The proofs of the following propositions is left to the reader. (See Problems
1-2)

Proposition 3.13.2 Let A(x) = Ag + zA; be a pencil in Clx]™*™.
TFAE:
(a) A(x) has property L.
(b) The eigenvalues of A(x) are polynomials of degree 1 at most.
(¢) The characteristic polynomial of A(x) splits to linear factors over Clx].
(d) There is an ordering of the eigenvalues of Ay and Ay, ai,...,a, and
b1, ..., b, respectively, such that the eigenvalues of Agxg+ A1x1 are axg +
blxl, ey Ao + bn(El.

Proposition 3.13.3 Let A(x) be a pencil in Clz]"*™. Then A(z) has
property L if one of the following conditions hold:
(a) A(x) is similar over C(x) to an upper triangular matriz U(z) € C(z)
(b) A(z) is strictly similar to an upper triangular pencil U(z) = Uy + Uz,
i.e. Uy, Uy are upper triangular.
(¢) A(x) is similar over Clz] to a diagonal matriz B(x) € Clz]™*™.
(d) A(x) s strictly similar to diagonal pencil.

nxn

Note that for pencils with property L any two distinct eigenvalues are
not tangent at any point of P. For pencils one can significantly improve
Theorem 3.12.6.

Theorem 3.13.4 Let A(x) = Ag + A1z € Clz]™*™ be a nonconstant
pencil (A1 # 0). Assume that A(x) is pointwise diagonable on C. Then
A(x) has property L. Furthermore A(x) is similar over Clx] to a diagonal
pencil B(x) = By + Bix. Suppose furthermore that Ay is diagonable, i.e.
A(xg, 1) is pointwise diagonable on C2. Then A(x) is strictly similar to the
diagonal pencil B(x), i.e. Ag and Ay are commuting diagonable matrices.

Proof. We follow the proof of Theorem 3.12.6. Let A1(x), ..., A () be
the eigenvalues of A(z) of multiplicities n1, ..., n,, respectively, where each
Aj(z) is viewed as multivalued function of z. More precisely, there exists
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an irreducible polynomial

B, X) = N + > dg(x) A7 € Cla, A,

(3.13.1) i
o(x, N)|det (AT — A(x)),

such that \;(z) satisfies the algebraic equation
(3.13.2) bz, \) = 0.

Moreover all branches generated by A;(z) on C will generate all the solu-
tions A(x) of (3.13.2). Equivalently all pairs (z, A) satisfying (3.13.2) form
an affine algebraic variety Vo C C2. If we compactify Vj to a projective
variety V' C P? then V is a compact Riemann surface. V'\V; consists of a
finite number of points, the points of Vj at infinity. The compactification
of Vp is equivalent to considering \;(z) as a multivalued function on P.
See for example [GuR65]. Note that any local solution of (3.13.2) is some
eigenvalue \;(z) of A(x). Since A(() is diagonable at { € C Theorem 3.8.1
implies that the Puiseaux expansion of \;(x) around ¢ in (3.12.3) is of the
form

Ni(@) = M0 + D MO = 0)*
k=s

Then
d\j(z) =k hes
— —A — ER
DD VICIER
So %ﬂiz) is a multivalued locally bounded function on C. Equivalently,

using the fact that \;(z) satisfy (3.13.2) we deduce

Op(x, A
(3 13 3) d/\J(‘T) _ ¢ém :
T de 99N
Oy
dx ()

Hence === is a rational function on V', which is analytic on Vj in view
of the assumption that A(x) is pointwise diagonable in C. The Puiseaux
expansion of \;(z) it oo (3.12.4) is

k

Aj(z) = xz Ajk(00)r ™.
k=0

3
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Hence
d\j(z) Zs—k _k
7 = )\jo(OO) + kE:1 s /\jk(oo)x ElR

That is the multivalued function %ix) is bounded at the neighborhood of
oo. Equivalently the rational function in (3.13.3) is bounded at all points
of V\Vy. Thus the rational function in (3.13.3) is bounded on a compact
Riemann surface (3.13.2). Hence it must be constant, i.e. d’\é%y) =b;, =
Aj(z) = a; +bjz. So we have property L by part (b) of Proposition 3.13.2.
In particular two distinct eigenvalues of A(z) are not tangent at any ¢ € P.
The first part of Theorem 3.12.6 implies that A(z) is similar to B(z) =
>oiey @©(aj +bjx)1,; over Cla.

Assume now that A; is diagonable. Then the second part of Theorem
3.12.6 yields that A(x) is strictly similar to B(z), which is equivalent to
the assumption that Ag, A; are commuting diagonable matrices (Theorem
3.11.4). O

Theorem 3.13.5 Let A(x) = Ag + A1z € Clz]™™*™. Assume that Az
and As are diagonable and AgAy # A1 Ag. Then exactly one of the following
conditions hold:

(a) A(z) is not diagonable exactly at the points (i,...,¢p, where 1 < p <
n(n —1).
(b) A(z) is diagonable exactly at the points (1 =0,...,(, for some ¢ > 1.

Proof. Combine the assumptions of the theorem with Theorem 3.13.4
to deduce the existence of 0 # ¢ € C such that A(¢) is not diagonable.
Consider the homogenized pencil A(xzg, 1) = Agzo + A121. Let

C<p17 ~-~7pk)($07x1) = @lec(pj) S C[m(hxl]nxna
k
Hpi(a:o,arl,)\) = det ()\I — A(ﬂ?o,l‘l)),

=1

p¢($0,$1, )\) = \"i -+ Z)\mlijplj(‘f) c (C[zo,LElH)\L 1 S m; 7= 1, ...,k,
j=1

p1lp2|..-| Pk,

be the rational canonical form A(zg,x1) over C(zg,x1). (See 2.3.) That is

each p;(xo,x1, ) is a nontrivial invariant polynomial of A\ — A(xg,z1).

Hence each p;(xg,z1,)) is a homogeneous polynomial of degree m; in

xg, x1, A. Furthermore A(zg,z1) = S(xo,71))C(p1, -, D) (x0, 21)S (20, 21) !
for some



144CHAPTER 3. FUNCTIONS OF MATRICES AND ANALYTIC SIMILARITY

S(zo,x1) € Clzg, z1]"*"™ N GL(n,C(ze, x,)). Choose o = 7 # 0 such that
det S(7,21) is not identically zero in x1. Then A(z) = A(1,x) is pointwise
similar to

LC(p1,....,pr)(7,7x) at all point for which det S(7,7x) # 0, i.e. at all but
a finite number of points in C.

Since Clzg,z1, ] is Dy, then py(zo, 21, \) = [[;_, ¢i(zo, 21, M\, where
each ¢; is a nonconstant irreducible (homogeneous) polynomial and ¢; is
coprime with ¢; for i # j. Assume first that some ¢; > 1. Then C(py)(7,t)
has a multiple eigenvalue for any ¢ € C, hence it is not diagonable. That is
the condition (b) of the theorem holds.

Assume now that ¢; = ... = £, = 1. This is equivalent to the assump-
tion that pg(zo,21,A) = 0 does not have multiple roots for some (g, z1).
We claim that it is possible to choose 7 # 0 such that pg(7, 1, A) has my
pairwise distinct roots (in A) except in the points (i, ...,{;. Consider the
discriminant D(zg, z1) of pg(zo,z1,A) € Clzo,z1][A]. See 1.8. Since py;
is a homogeneous polynomial of degree i for i = 1,...,m; it follows that
D(zg,x1) is homogeneous polynomial of degree my(my — 1) < n(n — 1).
Since pg(zo,z1,A) = 0 does not have multiple roots for some (xg,x1) it
follows that D(xg,x1) is not a zero polynomial, and pg(xg,x1,A) = 0 has a
multiple root if and only if D(xg,z1) = 0. Choose 7 # 0 such that D(7, x;)
is not a zero polynomial. Let (1, ..., {; be the distinct roots of D(r, 7z) = 0.
Since the degree of D(zg,x1) is at most n(n — 1) it follows that the degree
of D(r,x) is at most n(n — 1). Hence 0 < ¢ < n(n — 1). By the defini-
tion of the invariant polynomials it follows that pg(xo,x1, A(zo,21)) = 0.
Hence pi (7, 7t, A(7,7t)) = 0. Let t € X = C\{(1, ..., }. Since pi(7,7t, \)
has my, distinct roots, which are all eigenvalues of A(7,7t) it follows that
A(r,7t) = TA(t) is a diagonable matrix. O

For n = 2 the case (b) in Theorem 3.13.5 does not arise. See Problem
4. We do not know if the case (b) of Theorem 3.13.5 arises. Recall that a
hermitian matrix A € C**", AT = A is always diagonable.

Definition 3.13.6 A pencil A(x) = Ag + Az is called hermitian if
A, Ay € C™*™ are hermitian.

Theorem 3.13.7 Let A(x) = Ag+ A1z € Clz|"*™ be a hermitian pen-
cil. Assume that AgA; # A1Ag. Then there exists 2q distinct complex
points (1,1, Cq, ¢y € C\R, 1 < g < @ such that A(x) is not diago-
nable if and only if v € {¢1,C1, -0, (g, Co }-

Proof. Clearly A(x) is a hermitian matrix for any real z. Hence A(z)
is diagonable for x € R. Thus the condition (a) of Theorem 3.13.5 holds.
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Assume that A(() is not diagonable. Then ¢ € C\R. Let A(¢) = QJQ ™1,
where J is a Jordan canonical form of A(¢). Then

AQ =40 =@ T Q.

Hence A(() is not diagonable. Thus the number of distinct points ¢ for
which A(¢) is not diagonable is 1 < 2¢ < n(n — 1). O

The points (i, ...,(; are called the resonance states of the hermitian
pencil A(z). They are important in certain chemical models [MoF80].

Problems

1. Prove Proposition 3.13.2.

2. (a) Show that property L is equivalent to the condition (a) of Propo-
sition 3.13.3.
(b) Prove the other conditions of Proposition 3.13.3.

3. Show that a pencil A(z) = Ag + A1z € C[z]**? have property L if
and only if A(z) is strictly similar to an upper triangular pencil.

4. Let A(wg, 1) = Agxo + A121 € Clx0,71]?*2. Then exactly one the
following conditions hold.
(a) A(zp,x1) is strictly similar to a diagonal pencil. (Property L
holds).
(b) A(z, 1) is not diagonable except exactly for the points (g, x1) #
(0,0) lying on a line axg+bx; = 0. (Property L holds, AgA; = A; Ag
but A; is not diagonable for some i € {1,2}, A(xg,z1) has a double
eigenvalue.)
(¢) A(xg, 1) is diagonable except exactly for the points (xg,z1) #
(0,0) lying on a line axg + bxy = 0. (Property L holds.)
(d) A(xg, 1) is diagonable except exactly the points (zg,x1) # (0,0)
which lie on two distinct lines in C2. (Property L does not hold.)

5. Let
01 0 1 1 2
Ag= |0 0 1|, A1=1|1 1 2
0 0 O -1 -1 -2

(a) Show that Ao, A; are nilpotent while Ay 4+ A; is nonsingular.
(b) Show that A(x) = Ag + A1z does not have property L.
(c) Show that A(x) is diagonable for all  # 0.
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3.14 Strict similarity of pencils and analytic
similarity

Let A(z) = Ao + A1z, B(z) = By + Biz € Clz]™*™. Recall the notion of

strict equivalence A(z)2B(z) (2.1) and strict similarity A(z)~B(z) (3.11).

Clearly A(z)~B(z) = A(z)<B(z). (2.9.3) yields.

Proposition 3.14.1 Let A(z), B(x) € C[z]"*"™ be two strictly similar
pencils. Then the three pencils in (3.6.2) are strictly equivalent.

Using Kronecker’s result (Theorem 2.1.7) we can determine if the three
pencils in (3.6.2) are strictly equivalent. We now study the implications of
Proposition 3.14.1.

Lemma 3.14.2 Let A(z) = Ag + A1z, B(z) = By + Biz € Clz]™*™ be
two pencils such that

(3.14.1) I®Alx) - Alx)" @ IRT® A(z) — B(z)" @ 1.
Then there exists two nonzero U,V € C"*™ such that

(3.14.2) A(x)U —UB(z) =0, VA(z)— B(x)V =0.

In particular

(3.14.3) Aoker V. A1 kerV C kerV, BgkerU, By kerU C kerU.

Proof. As A(z)I — I A(x) = 0 it follows that the kernels of I ® A(z) —
Alx)T®I € (C[J;]”ZX"2 and its transpose contain a nonzero vector I,, € C"”
which is induced by I,,. (See 2.8.) Hence the kernel of I® A(z) — B(z)" @1
contain nonzero constant vectors. This is equivalent to (3.14.2).

Assume that (3.14.2) holds. Let x € ker V. Multiply the second equal-
ity in (3.14.2) from the right by x to deduce the first part (3.14.3). The
second part of (3.14.3) is obtained similarly. O

Definition 3.14.3 Ay, A; € C"*™ have a common invariant subspace
if there exist a subspace U C C", 1 < dim U < n—1 such that AgU, AU C
U.

The following claims are left to the reader (see Problems 1-2).
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Proposition 3.14.4 Let A(x) = Ay + xA; € Clz|"*"™. Then A(x) is
strictly similar to an upper triangular pencil

_ | Bu(z) Bia(x)
O i
(3.14.4) Bui(z) € Clz]™ ™™, Bia(z) € Clz]™*"*, Baa(x) € Clz]™"",

1 S ni,n2, Ny +ng = n,
if and only if Ag, A1 have a common invariant subspace.

Proposition 3.14.5 Assume that A(x) € Clz]"*™ is similar over C(z)
to an upper triangular matriz B(x) of the form (3.14.4). Then det (A —
A(z)) € Clz, A] is reducible.

Theorem 3.14.6 Let A(z) = Ag + Aix, B(x) = By + Biz € Clz]™ ™.
Assume that either det (A — A(zx)) or det (A — B(x)) is irreducible over
Clz,A]. Then A(z)ZB(z) if and only if (3.14.1) holds.

Proof. Assume that (3.14.1) holds. Suppose that det (A — A(z)) is
irreducible. Propositions 3.14.4-3.14.5 imply that Ag, A; do not have a
common invariant subspace. Lemma 3.14.2 implies that the matrix V in
(3.14.2) is invertible, i.e. B(x) = VA(z)V L. Similarly if det (A\I — B(x))
is irreducible then B(z) = Ut A(z)U. O

Definition 3.14.7 Let Z,, C (C"*™)?2 be the set of all pairs (Ao, A1)
such that det (A — (Ao + A1x)) irreducible.

We will show later that Z,, = (C"*")?\ X,, where X,, is a strict subvariety
of (C"*™)2. That is, for most of the pencils A(z),(Ag, A1) € (C"*™)?
det (A — A(z)) is irreducible. Clearly if (Ao, A1)*(Bo, B;) then cither
(Ao, Al), (Bo, Bl) €1, or (Ao,Al), (Bo,Bl) ¢ In.

Corollary 3.14.8 Let (AO7 Al), (BO, Bl) €7Z,. Then A(.Z‘) =Ao+Aix
is strictly similar to B(x) = By + Bix if and only if (3.14.1) holds.

We now discuss the connection between the notion of analytic similarity
of matrices over Hy and strict similarity of pencils. Let A(z), B(z) € Hj*"
and assume that n(A, A) = 1. Suppose that AéB(x). Theorem 3.9.2
claims that A(z) ~ B(z) if and only if there exists two matrices Ty €
GL(n,C), T, € C™*" such that

ATy =ToBy, ATy + Aoy =Ty By + T By.
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Let

Ao Ay

(3.14.5) F(Ag, A1) = { o A

:| c (C2n><2n

Then (3.9.2) is equivalent in this case to
(3.14.6) F(Ao, AV)F(Ty, T1) = F(Tp, T1)F(Bo, By).

As det F(Ty, Ty) = (det Tp)? it follows that Tp is invertible if and only if
F(Ty,Ty) is invertible.

Definition 3.14.9 Let Ag, A1, Bo, By € C"*"™. Then F(Ap, A1) and
F(By, By) are called strongly similar (F(Ag, A1) & F (Ao, A1)) if there ex-
ists F(Tp, T1) € GL(2n,C) such that (3.14.6) holds.

Clearly F(AQ,Al) = F(AQ,Al) = F(Ao,Al) =~ F(Bo,Bl). It can be
shown that the notion of strong similarity is stronger that the notion of
similarity. (Problem 10.)

Proposition 3.14.10 The matrices F(Ag, A1) and F(By, By) are strongly
similar if and only if the pencils

A(I) = F(Oal) + F(AOaAl)‘Ta B(I) = F(07I) + F(BOaBl)‘T
are strictly similar.
Proof. Let [P;;]? € C?"*2". Then F(0,I)P = PF(0,I) if and only if

Py = Poy, Py; = 0. That is P = F(Py1, P12) and the proposition follows.
O

Clearly F(Ap, A1) = F(Ap, B1) = Ag = By. Without loss of generality
we may assume that Ay = By. (See Problem 5.) Consider all matrices
Ty, Ty satisfying (3.14.6). For Ay = By (3.14.6) reduces to

AoTO = T()Ao, A0T1 — T1A0 = T()Bl — AlT().

Theorem 2.10.1 yields that the set of matrices T, which satisfies the above
conditions is of the form

(3147) P(A]_,Bl) = {TO S C(Ao) :
tr(V(T031 — AlT‘())) =0, forall V € C(A())}

Hence
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Proposition 3.14.11 Suppose that F(Ag, A1) = F(Ag, B1). Then

As in Theorem 2.9.5 for a fixed Ag, A; there exists a neighborhood
D(A;, p) such that the first two equalities in (3.12.7) imply that F'(Ag, A1) =
F(Ag, By) for all By € D(Ay1,p) (Problem 4).

We now considering a splitting result analogous to Theorem 3.5.7.

Theorem 3.14.12 Assume that

0
A o

0|, A ecrxm =12,
0o AL

(3.14.9) Ay =

where Ag(i) and Agg) do not have a common eigenvalue. Let

1 1
By B
BQl B22

1 1
Ay AR

Ay = 1 1
A5 Af)

) Blz

be the block partition of A1, By as the block partition of Ag. Then
(3.14.10) P(A1, Bi) = P(A), BY) & P(AY, BYy).
Moreover

F(Ag, A1) = F(Ag, B) < F(AY Ay~ PAY B fori=1,2.
Proof. According to Problem 4 C'(A4p) = C(qu)) D C(Aé%)). Then the
trace condition in (3.14.7) reduces to

0 1 1 0 0 1 1 0
o (Vi(T{"V Bl — AYT) + V(1" BY) — A5 T") =0,
where
V=niaW I =1V« 1"” c c(4AV) & c(4D).

Choosing either V5 = 0 or V; = 0 we obtain (3.14.10). The right impli-
cation of the last claim of the theorem is straightforward. As det Ty =

det TV det T it follows that Ty € GL(n,C) <= T\” € GL(n;,C), i =

7

1,2. This establishes the left implication of the last claim of the theorem. O

Thus, the classification of strong similarity classes for matrices F'(Ag, A1)
reduces to the case where Ay is nilpotent (Problem 6). In the case Ag =0
F(0,4;) 2 F(0,B1) < A; =~ B;. In the case Ay = H,, the strong
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similarity classes of F(H,,A;) classified completely (Problem 9). This
case corresponds to the case discussed in Theorem 3.5.5. The case Ay =
H,,® H,, can be classified completely using the results of Problem 2 (Prob-
lem 3.14.11).

Problems

1.
2.
3.

Prove Proposition 3.14.4.
Prove Proposition 3.14.5.

Let A(xz) € C[z]™*™ and assume that A(z)U C U C C" is a non-
trivial invariant subspace of A(z), i.e 1 < dimU < n — 1. Let
p(z,A) € Clz, ] be the minimal polynomial of A(z)|U. Thus 1 <
deg yp(z,\) < n — 1. Show that p(z,\)|det (Al — A(z)). Hence
det (AI — A(x)) is reducible over C[z, A].

Modify the proof of Theorem 2.9.5 to show that for a fixed Ag, A1 €
C™*™ there exists p > 0 such that the first two equalities in (3.14.8)
for By € D(Ay, p) imply that F(Ag, A1) & F(Ag, By).

Show that for any P € GL(n,C)
F(Ap,A)) = F(By,B1) <= F(Ag, A)) =2 F(PByP~',PB, P ).

Assume that F(Ag, A1) = F(By, B1). Show that there exists P €
GL(n,C) such that Ay = PByP~ 1.

. Show that for any A € C

F(Ao, A1) =2 F(Bo, B1) <= F(Ao— A, Ay) = F(By — M, By).

. Let A; € C"*"™ i =0,...,s — 1. Define

Ay A1 Ay .. As_4

0 Ay Ay ... As_o
F(AQ,...,AS_l) = i . . . € Comxsm,

0 0 0 .. A

F(Ap,...,As_1) and F(By, ..., Bs_1) are called strongly similar

(F(Ayp,...,As—1) = F(By, ..., Bs_1))

F(Ag,y ...y As—1) = F(Tp, ... Ts—1)F(Bo, ..., Bs—1) F(To, ..., Ts—1) ",
F(To, ...,Tsfl) S GL(STL,(C)

Show that F'(Ao, ..., As—1) = F(By, ..., Bs—1) if and only if the equal-
ities (3.9.2) hold for k=0, ...,s — 1 and T, € GL(n,C).
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8. Let

7 = Hn D ... D an X = [qu]‘i, [qu]i c (CS’I’LXSTL7
X;Dq = [‘Tg)q)]?v qu = [yz(fq)]? € Cnxn, p,g=1,...,s.
Show that if each X, is an upper triangular matrix then

det X = H det [2PD]?

rrlp.g=1
r=1

(Expand the determinant of X by the rows n,2n, ..., sn and use the
induction.) Define

Ay = [alD]3, B = [p(]5 € T,

r+1 r+1
) _ (pq) ) _ (pa) —
az(nz) = § :m(n—r-m‘—l)z‘v bz(lq) = E :y(n—r+i—1)i7 r=0,..,n—1L
i=1 i=1

Using Theorem 2.8.3 show

F(Z,X)2 F(Z,Y) < F(Ag, ..., Ap_1)

1%

F(BOa ) Bn—l)'

9. Let X = [z45]7, Y = [y;5]7 € C**". Using Problems 7-8 show that
F(H,,X) = F(H,,Y) if and only if

Z T(n—rti)yi = Z Y(n—rti)is forr=1,...,n.
i=1

=1

10. Let X = [x;;]3 € C?*2. Show that if zo1 # 0 then F(Hs, X) = Hy.
Combine this result with Problem 9 to show the existence of ¥ €
C2*2 such that F(Hz, X) is similar to F(Hz,Y) but F(Ha, X) is not
strongly similar to F'(Hs,Y).

(3.14.11)

Assume in Problem 8 s = 2. Let

n—1 n—1

A(z) = A, B(x) =Y B’ € Hy**.
1=0

i=0

Use the results of Problems 7-8, (3.9.2) and Problem 2 to show that
F(Z,X) = F(Z,Y) if and only if the three matrices in (3.6.2) have
the same local invariant polynomials up to degree n — 1.
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3.15 Historical remarks

The exposition of §3.1 is close to [Ganb9]. The results of §3.2 were inspired
by [Rot81]. The notion of local indices (Problem 3.2.3) can be found in
[FrS80]. The content of §3.3 are standard. Theorem 3.3.2 can be found
in [Wie67] and Problem §3.3.1 in [Gan59]. The use of Cauchy integration
formula to study the properties of analytic functions of operators and ma-
trices as in §3.4 is now common, e.g. [Kat80] and [Kat82]. Theorem 3.4.6
is standard. Theorem 3.4.9 is a part of the Kreiss matrix stability theorem
[Kre62]. The inequality (3.4.16) is due to [Tad81]. The results of Problem
3.4.7 are from [Fri81]. The results of §3.5 influenced by Arnold [Arn71], in
particular Theorem 3.5.3 is from [Arn71]. See also [Was77]. The subject
of §3.6 and its applications in theory of differential equations in neighbor-
hood of singularities was emphasized in works of Wasow [Was63],[Was77]
and [Was78]. Theorem 3.6.4 for one complex variable appears in [Fri80b].
Corollary 3.6.5 is due to [Was63]. Theorem 3.7.1 for simply connected do-
main is due to [Gin78]. See [WasT78] for the extension of Theorem 3.7.1 to
certain domains 2 C CP. It is shown there that Theorem 3.7.1 fails even
for simply connected domains in C3.

Theorem 3.8.1 can be found in [Kat80] or [Fri78]. The results of §3.9-
§3.10 were taken from [Fri80b]. It is worthwhile to mention that the conjec-
ture stated in [Fri80b] that A(z) and B(z) are analytically similar over Hy
if the three matrices in (3.6.2) are equivalent over Hj is false [Gur81, §6].
The contents of §3.11 are known to the experts. The nontrivial part of this
section (Theorem 3.11.6) is due to [DDG51]. Some of the results in §3.12,
in particular Theorem 3.12.4, seem to be new. Property L of §3.13 was
introduced by Motzkin-Taussky [MoT52] and [MoT55]. Theorem 3.13.4 is
a slight improvement of [MoT55]. Our proof of property L in Theorem
3.13.4 follows [Kat80]. Theorem 3.13.7 is taken from [MoF80]. Theorem
3.13.7 associates the ”defective” points (i, ..., (; with the resonance states
of molecules. Many results in §3.14 are taken from [Fri80a] and [Fri80b]. It
connects the analytic similarity of matrices with simultaneous similarity of
certain pairs of matrices. Simultaneous similarity of matrices is discussed
in [Fris3].



Chapter 4

Inner product spaces

4.1 Inner product

Definition 4.1.1 Let F = R,C and let V be a vector space over F.
Then (-,-) : VXV — F is called an inner product if the following conditions
hold:

(a) (ax+by,z) =a(x,z)+bly,z), foralla,beF, x,y,z€V,
(br) forF=R (y,x)=(x,y), foralx,y € V;

(be) forF=C (y,x)=(x,y), forallx,y e V;

(¢c) (x,x) >0 forallxe V\{0}.

Other standard properties of inner products are mentioned in Problems
1-2. We will use the abbreviation IPS for inner product space. In this
chapter we assume that F = R, C unless stated otherwise.

Proposition 4.1.2 Let V be a vector space over R. Identify V¢ with
the set of pairs (x,y), X,y € V. Then V¢ is a vector space over C with

(a+v-1b)(x,y) := a(x,y) + b(—y,x), forala,beR, x,y V.

If V has a basis e, ...,e, over R then (e,,0),...,(e,,0) is a basis of V¢
over C. Any inner product {-,-) on V over F induces the following inner
product on V¢:

(x,y), (w,v)) = (x,u) + {y,v) + V=1({y,u) - (x,v)), x,y,u,v € V.

153
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We leave the proof of this proposition to the reader (Problem 3).

Definition 4.1.3 Let 'V be an IPS. Then
(a) x,y € V are called orthogonal if (x,y) = o.
(b) S, T CV are called orthogonal if (x,y) =0 for anyx€ S, y e T.
(c) For any S C V S+ C V is the mazimal orthogonal set to S.
(d) Xy, ..., Xy 18 called an orthonormal set if

<Xiaxj> = (51‘3‘, 1, = 1,...,m.

(e) Xy, ..., Xp, is called an orthonormal basis if it is an orthonormal set which
is a basis in V.

Definition 4.1.4 (Gram-Schmidt algorithm.) Let V be an IPS and
S = {Xy,...,Xm} C V a finite (possibly empty) set (m > 0). Then S =
{e.,...,ep} is the orthonormal set (p > 1) or the empty set (p = 0) obtained
from S wusing the following recursive steps:
(a) If x, = 0 remove it from S. Otherwise replace x, by ||x,|~*x,.
(b) Assume that X,,...,x) is an orthonormal set and 1 < k < m. Let
Vitr = Xgt1 — Zf:1<xk+l,xi>xi. If Y+, = 0 Temove X4, from S. Oth-
erwise replace Xpys by [[Yital| ™ Yhta-

Corollary 4.1.5 Let 'V be an IPS and S = {X,,...,Xx,} C V ben
linearly independent vectors. Then the Gram-Schmidt algorithm on S is
given as follows:

1
Vi i=Xq, 71 = ||ya €= —ya,
7111

(4.1.1) Tji = (X, €5), J=1,..,0—1,

1—1
1 .
Yi =X — eriej; Tig = HyzH7 € = —Yyi t=2,..,M
= Tis

In particular, e; € S; and ||y;|| = dist(x;, S;—.), where S; = span (X, ...,X;)
fori=1,...,n and Sy = {0}. (See Problem 4 for the definition of dist(x;, S;—.).)

Corollary 4.1.6 Any (ordered) basis in a finite dimensional IPS 'V
induces an orthonormal basis by the Gram-Schmidt algorithm.

See Problem 4 for some known properties related to the above notions.

Problems
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1. Let V be an IPS over F. Show

(0,x) = (x,0) =o,
for F =R (z,ax + by) = a(z,x) + b(z,y), forall a,b € R, x,y,z € V,
for F = C (z,ax + by) = a(z,x) + b(z,y), forall a,b € C, x,y,z € V.

2. Let V be an IPS. Show
(a) |lax]|| = |a| ||x]|| for a € F and x € V.

(b) The Cauchy-Schwarz inequality:

16yl < Il

and equality holds if and only if x, y are linearly dependent (collinear).

(¢) The triangle inequality
Ix+yll < lIxl + iyl
and equality holds if either x =0 or y = ax for a € Ry.
3. Prove Proposition 4.1.2.
4. Let V be a finite dimensional IPS of dimension n. Assume that

S C V. Show

(a) If x,,...,X,, is an orthonormal set then x,,...,x,, are linearly
independent.

(b) Assume that e, ..., e, is an orthonormal basis in V. Show that
for any x € V the orthonormal expansion holds

n

(4.1.2) X = Z(x,ei>ei.

i=1
Furthermore for any x,y € V

n

(4.1.3) (xy) =) (xe)ly.e)

=1

(c) Assume that S is a finite set. Let S be the set obtained by the
Gram-Schmidt process. Show that S = () <= span S = {0}. Show
that if S'# () then e,, ..., e, is an orthonormal basis in span S.
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(d) There exists an orthonormal basis e, ...,e, in Vand 0 <m <n
such that

€,,....,en €5, span S =span (e,,...,en),
S+ =span (emis, s €n),
()t = span S.

(e) Assume from here to the end of the problem that S is a subspace.
Show V = S @ S+

(f) Let x € V and let x = u + v for unique u € S, v € St. Let
P(x) := u be the projection of x on S. Show that P: V — Visa
linear transformation satisfying

P?=P, RangeP =S, KerP =S5t
(g) Show

dist(x,.5) := ||x — Px|| < ||x — w|| for any w € S
(4.1.4) and equality <= w = Px.

(h) Show that dist(x,S) = |jx — w|| for some w € S if and only if
x — w is orthogonal to S.

Let X € C™*" and assume that m > n and rank X = n. Let
Xy, .oy Xy € C™ be the columns of X, ie. X = (x,,...,X,,). Assume
that C™ is an IPS with the standard inner product (x,y) = y*x.
Perform the Gram-Schmidt algorithm (4.1.5) to obtain the matrix
Q= (e, ....,e,) € C™*". Let R = (r;;)} € C"*™ be the upper trian-
gular matrix with r;;, j < i given by (4.1.1). Show that QTQ = I,
and X = QR. (This is the QR algorithm.) Show that if in addition
X € R™*"™ then @) and R are real valued matrices.

Let C € C™*™ and assume that {\1,..., A\, } are n eigenvalues of C
counted with their multiplicities. View C as an operator C : C" —
C". View C" as 2n-dimensional vector space over R?®. Let C =
A++/—-1B, A, B ¢ R™*™,

A -B
B A
C™ — C™ as an operator over R in suitably chosen basis.

a. Then C := [ ] e RZM*(2n) represents the operator C :

b. Show that {\1, A1, ..., An, A } are the 2n eigenvalues of C counting
with multiplicities.

¢. Show that the Jordan canonical form of C, is obtained by replacing
each Jordan block AI + H in C by two Jordan blocks AI + H and
M+ H.
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4.2 Special transformations in IPS

Proposition 4.2.1 Let V be an IPS and T : V — V a linear transfor-
mation Then there exists a unique linear transformation T* : V. — V such
that (Tx,y) = (x,T*y) for all x,y € V.

See Problems 1-2.

Definition 4.2.2 Let V be an IPS and let T : V. — V be a linear
transformation. Then
(a) T is called self-adjoint if T* =T ;
(b) T is called anti self-adjoint if T* = =T}
(¢) T is called unitary if T*T =TT* = 1I;
(d) T is called normal if T*T = TT*.

Denote by S(V), AS(V), U(V), N(V) the sets of self-adjoint, anti
self-adjoint, unitary and normal operators on V respectively.

Proposition 4.2.3 Let V be an IPS over F = R, C with an orthonor-
mal basis E = {e,,...,e,}. Let T : V. — V be a linear transformation. Let
A = (a;;) € F™*™ be the representation matriz of T in the basis E:

(421) Qi = (Tej,ei>, Z,j =1,...,MN.
Then for F =R:

T* is represented by A,
T is selfadjoint <= A= AT,
T is anti selfadjoint <= A= —A",

a

(

(b
(c
(
(

— =

d) T isunitary <= A isorthogonal <= AAT = ATA =1,
e) Tisnormal <= Aisnormal <= AAT = AT A,
and for F = C:

T* is represented by A* (:= AT),

Q
~—

b) T isselfadjoint <= A is hermitian <= A = A",
T is anti selfadjoint <= A is anti hermitian <— A = —A",
d) T isunitary <= Aisunitary <= AA*=A"A=1,

T isnormal <= Aisnormal <= AA* = A*A.

~ Y~~~
(9]
~ =

@
~—

See Problem 3.
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Proposition 4.2.4 Let V be an IPS over R, and let T € Hom (V).
Let V. be the complezification of V. Show that there exists a unique T, €
Hom (V.) such that T.|V = T. Furthermore T is self-adjoint, unitary or
normal if and only if T, is self-adjoint, unitary or normal respectively.

See Problem 4
Definition 4.2.5 For a domain D with identity 1 let

S(n,D):={AcD™™: A=A"},
AS(n,D):={AecD™": A=-A"},
O(n,D):={AecD™": AAT = ATA=1},
SO(n,D) :={A € O(n,D): detA=1},
DO(n,D) := D(n,D) N O(n,D),

N(n,R) :={AcR™": AAT = AT A},
N(n,C):={AeC"": AA* = A*A},
H,={AeC"": A=A"},

AH, ={AeC"": A=-A%},
U,:={4AeC"": AA"=A"A=1},
SU,:={A€U,: detA=1},

DU,, :=D(n,C)NU,.

See Problem 5 for relations between these classes.

Theorem 4.2.6 Let'V be an IPS over C of dimensionn. Then a linear
transformation T : V — 'V is normal if and only if V has an orthonormal
basis consiting of eigenvectors of T .

Proof. Suppose first that V has an orthonormal basis e, ...,e, such
that Te; = \je;, i« = 1,...,n. From the definition of T* it follows that
T*e; = Xiei, i=1,...,n. Hence TT* =T*T.

Assume now T is normal. Since C is algebraically closed T has an
eigenvalue A\;. Let V, be the subspace of V spanned by all eigenvectors
of T corresponding to the eigenvalue \;. Clearly TV, C V,. Let x € V,.
Then T'x = \;x. Thus

T(T*x) = (TT*)x = (T"T)x =T*(Tx) = \\T"x = T*V, C V,.

Hence TV, T*V, C Vi, Since V =V, @ Vi it is enough to prove the
theorem for T|V, and T|V7.

As T|V, = M\, Iy, it is straightforward to show T*|V, = X\, Iy, (see
Problem 2). Hence for T|V, the theorem trivially holds. For T|Vi the
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theorem follows by induction. O

The proof of Theorem 4.2.6 yields:

Corollary 4.2.7 Let V be an IPS over R of dimension n. Then the
linear transformation T : 'V — V with a real spectrum is normal if and
only if V has an orthonormal basis consiting of eigenvectors of T.

Proposition 4.2.8 Let 'V be an IPS over C. Let T € N(V). Then

T is self — adjoint <= spec (T) C R,
T is unitary <= spec (T) CS'={z€C: |72/ =1}.

Proof. Since T is normal there exists an orthonormal basis e, ...,e,
such that T'e; = \;e;, ¢ = 1,...,n. Hence T*e; = \;e;. Then

T=T" <— )\izj\i,izl,...,’lL
TT* =T*T=1 < |[\|=1,i=1,...,n.

a

Combine Proposition 4.2.4 and Corollary 4.2.7 with the above proposi-
tion to deduce:

Corollary 4.2.9 Let V be an IPS over R and let T € S(V). Then
spec (T) C R and V has an orthonormal basis consisting of the eigenvectors
of T.

Proposition 4.2.10 Let V be an IPS over R and let T € U(V). Then
V = ®ic{-1,1,2,...k} Vi, where k > 1, V; and V; are orthogonal for i # j,
such that
(a) T|V_, =—-Iy_, dim V_, >o,
(b) T|V, = Iy, dim V, > o,
(¢) TV, =V;, dim V; =2, spec (T|V;) C S*\{—1,1} fori=2,...,k.

See Problem 7.

Proposition 4.2.11 Let 'V be an IPS over R and let T € AS(V).
Then V = @jc(y,2,.. 1}y Vi, where k > 1, V; and V; are orthogonal for
i # j, such that
(a) TV, = oy, dim V, > o,

(b) TV; =V,;, dim V; = 2, spec (T|V;) C V/—1R\{o} fori=2,.. k.

,,,,,

See Problem 8.
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Theorem 4.2.12 Let 'V be an IPS over C of dimension n. Let T €
Hom (V). Let \i,...,\, € C be n eigenvalues of T counted with their
multiplicities. Then there exists a unitary basis g,,...,g, of V with the
following properties:

(4.2.2)

Tspan (g, ...,8:) C span (&, ...,8i), (T8, &) =Ni, i = 1,...,N.

Let 'V be an IPS over R of dimension n. Let T € Hom (V) and assume
that spec (T) C R. Let A1,..., A\, € R be n eigenvalues of T counted with
their multiplicities. Then there exists an orthonormal basis ., ...,8n of V
such that (4.2.2) holds.

Proof. Assume first that V is IPS over C of dimension n. The proof
is by induction on n. For n = 1 the theorem is trivial. Assume that
n > 1. Since \; € spec (T) it follows that there exists g, € V, (g,,g,) =1
such that Tg, = \,g,. Let U := span (g,)*. Let P be the orthogonal
projection on U. Let Ty := PT|y. Then 77 € Hom (U). Let A2, ooy An
be the eigenvalues of T counted with their multiplicities. The induction
hypothesis yields the existence of an orthonormal basis g, ..., g, of U such
that

Tispan (8, ...,8;) C span (8, ..., &), (118, 8i) = 5\1-, 1=1,..,0.

It is straightforward to show that T'span (g, ...,&;) C span (g,,...,g;:) for
t = 1,...,n. Hence in the orthonormal basis g,,...,g, T is presented by
an upper diagonal matrix B = (b;;)}, with by1 = A\ and b; = X, © =
2,...,n. Hence )\1,5\2, e A, are the eigenvalues of T' counted with their
multiplicities. This establishes the theorem in this case. The real case is
treated similarly. |

Combine the above results with Problems 6 and 12 to deduce:

Corollary 4.2.13 Let A € C™"*™. Let A\1,...,\n € C be n eigenvalues
of A counted with their multiplicities. Then there exist an upper triangular
matriz B = (b;;)7 € C"*", such that b;; = N, i = 1,...,n, and a unitary
matriz U € U, such that A=UBU™'. If A € N(n,C) then B is a diagonal
matrix.

Let A € R™*™ and assume that spec (T) C R. Then A= UBU ™! where
U can be chosen a real orthogonal matriz and B a real upper triangular
matriz. If A € N(n,R) and spec (A) C R then B is a diagonal matrix.

It is easy to show that U in the above Corollary can be chosen in SU,, or
SO(n,R) respectively (Problem 11).
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Definition 4.2.14 Let 'V be a vector space and assume thatT : V — 'V
is a linear operator. Let 0 # v € V. Then W = span (v, Tv,T?v,...) is
called a cyclic invariant subspace of T generated by v. (It is also referred
as a Krylov subspace of T generated by v.) Sometimes we will call W just
a cyclic subspace, or Krylov subspace.

Theorem 4.2.15 Let V be a finite dimensional IPS. Let T : V. — V
be a linear operator. For 0 #v € V let W = span (v,Tv,...,T""'v) be a
cyclic T-invariant subspace of dimension r generated by v. Let u,,...,u,

be an orthonormal basis of W obtained by the Gram-Schmidt process from
the basis [v,TV,....,T""*v] of W. Then (Tu;,u;) =o0 for1 <i<j—2,

i.e. the representation matriz of T|W in the basis [u,,...,u,]| is upper
Hessenberg. If T is self-adjoint then the representation matriz of T|W in
the basis [u,,...,u,] is a tridiagonal hermitian matriz.

Proof. Let W, = span (v,...,797'v) for j = 1,....,r + 1. Clearly
TW; C W, for j = 1,...,r. The assumption that W is T-invariant
subspace yields W = W, = W, ,. Since dim W = r it follows that
V,...,T"7*v are linearly independent. Hence [v,...,T""*v] is a basis for
W. Recall that span (u,,...,u;) = Wj for j=1,...,r. Let r > j > i+ 2.
Then Tu;, € TW,; C W4,. As u; L Wy, it follows that (Tu;,u;) = o.
Assume that T* = T. Let r >4 > j + 2. Then (Tu;,u;) = (u;,Tu;) = o.

Hence the representation matrix of T'|W in the basis [u,,...,u,] is a tridi-
agonal hermitian matrix. O
Problems

1. Prove Proposition 4.2.1.
2. Let P,Q € Hom (V),a,b € F. Show that (aP + bQ)* = aP* + bQ*.
3. Prove Proposition 4.2.3.

4. Prove Proposition 4.2.4 for finite dimensional V. (Hint: Choose an
orthonormal basis in V.)
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5. Show the following

SO(n,D) Cc O(n,D) C GL(n,D),

S(n,R) c H,, C N(n,C),

AS(n,R) € AH, c N(n,C),
S(n,R),AS(n,R) C N(n,R) C N(n,C),
O(n,R) c U, C N(n,C),

SO(n,D), O(n,D), SU,,, U, are groups

S(n,D) is a D — module of dimension (n—;— 1>,

AS(n,D) is aD — module of dimension <Z> ,

H, isan R — vector space of dimension n°.
AH,=v-1H,

6. Let £ = {e,,...,e,} be an orthonormal basis in IPS V over F. Let
G ={g,,...,8n} be another basis in V. Show that F' is an orthonor-
mal basis if and only if the tranfer matrix either from F to G or from
G to FE is a unitary matrix.

7. Prove Proposition 4.2.10
8. Prove Proposition 4.2.11

cosf sinf

9. a. Show that A € SO(2,R) is of the form A = .
—sinf cosf

},GGR.

b. Show that SO(2,R) = eAS(R) That is for any B € AS(2,R)
eP € SO(2,R) and any A € SO(n,R) is e for some B € AS(2,R).
(Hint: Consider the power series for e, B = [_09 g] J)

c. Show that SO(n,R) = eAS("R)  (Hint: Use Propositions 4.2.10
and 4.2.11 and part b.)

d. Show that SO(n,R) is a path connected space. (See part e.)

e. Let V be an n(> 1)-dimensional IPS over F =R. Let p € (n — 1).
Assume that x,,...,x, and y,,...,y, be two orthonormal systems in
V. Show that these two o.n.s. are path connected. That is there
are p continuous mappings z;(t) : [0,1] — V, @ = 1,...,p such that
for each ¢t € [0,1] z,(¢),...,2,(¢) is an o.n.s. and z;(0) = x;,2;(1) =
yiai =1,..,p.
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11.

12.

13.
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a. Show that U, = eAHn. (Hint: Use Proposition 4.2.8 and its
proof.)

b. Show that U, is path connected.
c. Prove Problem 9e for F = C.

Show
(a) D1DD% = D for any D € D(n,C), D, € DU,,.
(b) Ae N(n,C) < A=UDU*, U € SU,,, D € D(n,C).

(c) A € N(n,R), 0(A) CR < A=UDU", U €S0,, D€
D(n,R).

Show that an upper triangular or a lower triangular matrix B € C**"
is normal if and only if B is diagonal. (Hint: consider the equality
(BB*)11 = (B*B)11.)

Let the assumptions of Theorem 4.2.15 hold. Show that instead of
performing the Gram-Schmidt process on v,Tv,....,T""'v one can
perform the following process. Let w, := ﬁv. Assume that one
already obtained ¢ orthonormal vectors w,, ..., w;. Let w1 1= Tw;—

Z;:1<Twi, w;)w;. If W;11 = 0 then stop the process, i.e. one is left

with ¢ orthonormal vectors. If w;;, # o then w;;, := mvaﬂ_l
and continue the process. Show that the process ends after obtaining
r orthonormal vectors w,,...,w, and u; = w; for i = 1,...,r. (This

is a version of Lanczos tridiagonalization process.)

4.3 Symmetric bilinear and hermitian forms

Definition 4.3.1 Let V be a module over D and Q : VXV —D. Q
is called a symmetric bilinear form (on V) if the following conditions are
satisfied:

(a) Q(x,y) = Q(y,x) for all x,y € V (symmetricity);
(b) Qlax + bz,y) = aQ(x,y) + bQ(z,y) for all a,b € D and x,y,z € V
(bilinearity).

For D = C Q is called hermitian form (on V) if Q satisfies the condi-
tions (a') and (b) where
(@) Q(x,y) = Q(y,x) for all x,y € V (barsymmetricity).

The following results are elementary (see Problems 1-2):
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Proposition 4.3.2 Let'V be a module over D with a basis E = {e,,...,e,}.
Then there is 1 — 1 correspondence between a symmetric bilinear form Q
on'V and A € S(n,D):

Qx,y) =n' AL,
X = Zgieia y= Znieia g = (fla -~-a§n)T777 = (nla "'ann)T € D™,

Let 'V be a vector space over C with a basis E = {e,,...,e,}. Then there is
1 —1 correspondence between a hermitian form @ on 'V and A € H,,:

Q(x,y) = n"Ag,
X = Zfieh y = Zmeiu §= (517 ~~~7§n)T777 = (7717 "'777n)—r eC".

Definition 4.3.3 Let the assumptions of Proposition 4.3.2 hold. Then
A is called the representation matriz of Q in the basis E.

Proposition 4.3.4 Let the assumptions of Proposition 4.3.2 Let F =
{f1,...,fn} be another basis of the D module V.. Then the symmetric bilinear
form Q is represented by B € S(n,D) in the basis F', where B is congruent
A:

B=UTAU, U < GL(n,D)

and U is the matriz corresponding to the basis change from F to E. For
D = C the hermitian form Q is presented by B € H,, in the basis F, where
B hermicongruent to A:

B=U*AU, U € GL(n,C)
and U is the matriz corresponding to the basis change from F to E.

In what follows we assume that D =F =R, C.

Proposition 4.3.5 Let V be an n dimensional vector space over R.
Let Q : V.xV — R be a symmetric bilinear form. Let A € S(n,R)
the representation matriz of QQ with respect to a basis E in V. Let V,
be the extension of V over C. Then there exists a unique hermitian form
Q. : Ve x V. — C such that Q.|vxv = Q and Q. is presented by A with
respect to the basis F in V..

See Problem 3
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Normalization 4.3.6 Let V is a finite dimensional IPS over F. Let
Q : VXV — F be either a symmetric bilinear form for F = R or a
hermitian form for F = C. Then a representation matriz A of Q is chosen
with respect to an orthonormal basis E.

The following proposition is straightforward (see Problem 4).

Proposition 4.3.7 Let V is an n-dimensional IPS over F. Let Q :
V xV — T be either a symmetric bilinear form for F = R or a hermi-
tian form for F = C. Then there exists a unique T € S(V) such that
Q(x,y) = (Tx,y) for any x,y € V. In any orthonormal basis of V. Q
and T represented by the same matriz A. In particular the characteristic
polynomial p(A) of T is called the characteristic polynomial of Q. Q has
only real roots:

M(Q) 2 > M(Q),

which are called the eigenvalues of Q. Furthermore there exists an orthonor-
mal basis F = {f1,....,£,} in V such that D = diag(A1(Q), ..., A\n(Q)) is the
representation matrix of Q in F.

Vice versa, for any T € S(V) and any subspace U C V the form
Q(T,U) defined by

Q(T,U)(x,y) = (I'x,y) forx,yecU

is either a symmetric bilinear form for F = R or a hermitian form for
F=C.

In the rest of the book we use the following normalization unless stated
otherwise.

Normalization 4.3.8 Let V is an n-dimensional IPS over F. Assume
that T € S(V). Then arrange the eigenvalues of T counted with their
multiplicities in the decreasing order

M(T) > .. > 2(1).

Same normalization applies to real symmetric matrices and complex her-
matian matrices.
Problems

1. Prove Proposition 4.3.2.

2. Prove Proposition 4.3.4.

3. Prove Proposition 4.3.5.

4. Prove Proposition 4.3.7.
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4.4 Max-min characterizations of eigenvalues

Definition 4.4.1 Let V be a finite dimensional space over the field F.
Denote by Gr(m, V) be the space of all m-dimensional subspaces in U of
dimension m € [0,n] N Z.

Theorem 4.4.2 (The convoy principle) Let 'V be an n-dimensional
IPS. Let T € S(V). Then

T
(4.4.1) M(T)= max  min (T, x) =
UeGr(k,V) 0#x€U (X, X)

) T =
Uelélf}f,vf\"(@( ,U), k=1,..,n,

where the quadratic form Q(T,U) is defined in Proposition 4.3.7. For
ke [1,n]NN let U be an invariant subspace of T spanned by eigenvectors
€e,,...,e corresponding to the eigenvalues \1(T), ..., \p(T). Then M\ (T) =
M(Q(T,U)). Let U € Gr(k, V) and assume that \p(T) = M\ (Q(T,U)).
Then U contains and eigenvector of T' corresponding to A,(T).

In particular

(4.4.2) M(T) = max) <<x X)

Moreover for any x # 0

M (T) = <Z;X’X ’;> e Tx =\ (T)x,
An(T) = <<1;(X;( ’;> Tx = A (T)x,

The quotient 22X 0 £ x € V is called Rayleigh quotient. The

(x,x) 2
characterization (4.4.2) is called convoy principle.
Proof. Choose an orthonormal basis E = {e,, ...,e,} such that

(443) Te; = /\i(T)ei7 <ej, e >= 6ij 1, = 1,...,M.
Then

T (T |z ? =
(4.44) < X7X> 222:1’” ( )|x| , XZZQ@EI#O

{x,x) 2imy |il?
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The above equality yields straightforward (4.4.2) and the equality cases in
these characterizations. Let U € Gr(k, V). Then the minimal characteri-
zation of A\, (Q(T,U)) yields the equality

@45 QT V) = i, T

for any U € Gr(k, U).

Next there exists 0 # x € U such that (x,e;) =o fori =1,...,k — 1. (For
k =1 this condition is void.) Hence
(Tx,%) _ s M)l

CED T

Let
M(T) = 1 (T) > MT)py41(T) = oo = Xy (T) > .. >
(4.4.6)\,, _ 1Jrl(T) == D) =20T), ng=0<n; <..<n,=n.

Assume that nj_1 < k < n;. Suppose that A\ (Q(T,U)) = A\g(T). Then
for x € U such that (x,e;) = o we have equality )\k( (T,U)) = M\e(T) it
and only if x = Y17, x;e;. Thus Tx = A\g(T)x.

Let Uy = span (e,,...,e;). Let 0 # x = qu € Ug. Then

(Txx) _ D@l 5y 1y 3@, 0i) 2 D).
{x,x) Yoy |l

Hence M\ (Q(T, Uy)) = (7). O

It can be shown that for & > 1 and A\ (T) > Mg (T) there exist U €
Gr(k, V) such that A\, (T) = A\(T,U) and U is not an invariant subspace
of T, in particular U does not contain all e, ..., e satisfying (4.4.3). (See
Problem 1.)

Corollary 4.4.3 Let the assumptions of Theorem 4.4.2 hold. Let 1 <
{<n. Then

(4.4.7) M(T) = s A(Q(T, W), b=,

Proof. For k < ¢ apply Theorem 4.4.2 to A\ (Q(T, W)) to deduce that
M (Q(T,W)) < A\ (T). Let Uy = span (e, ...,e¢). Then

M(Q(T,Up)) = M(T),  k=1,...,L
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Theorem 4.4.4 (Courant-Fisher principle) Let V be an n-dimensional
IPS and T € S(V). Then

A\(T) = min max (%, %)
WeGr(k—1,V) 0£xeWL (X, X)

, k=1,..,n.

See Problem 2 for the proof of the theorem and the following corollary.

Corollary 4.4.5 Let 'V be an n-dimensional IPS and T € S(V). Let
k.l € [1,n] be integers satisfying k <1. Then

/\n—é-‘rk’(T) < Ak(Q(Ta W)) < Ak(T)a for any W e GI‘(K, V)

Theorem 4.4.6 Let V be an n-dimensional IPS and S,T € S(V).
Then for any i,j € N,i+j—1 < n the inequality \iy;—1(S+T) < X (S) +
A (T') holds.

Proof. Let U;_,,V,;_, CV be eigenspaces of S, T spanned by the
first ¢ — 1,7 — 1 eigenvectors of S, T respectively. So

(S%,%) < Mi(8)(x, %), (Ty,y) < A(T)(y.y) forall x € UL,y € V} .

Note that dimU;_, = ¢ —1,dmV;_, = j—1. Let W = U,_, +
V,_,. Then dimW = [ -1 < i+ j — 2 Assume that z € wt.
Then ((S + T)z,z) = (Sz,2z) + (Tz,2) < (N(S) + A\;(T))(z,z). Hence

Maxg,cw L W < Xi(S)+X;(T). Use Theorem 4.4.4 to deduce that
Xitj—1(S+T) < NS +T) < N(S) + M (D). O

Definition 4.4.7 Let V be an n-dimensional IPS. Fiz an integer k €
[1,n]. Then Fy, = {f1,...,fi} is called an orthonormal k-frame if < f;,£; >=
dij fori,j=1,.., k. Denote by Fr(k, V) the set of all orthonormal k-frames
in V.

Note that each Fy € Fr(k, V) induces U = span Fy € Gr(k, V). Vice
versa, any U € Gr(k, V) induces the set Fr(k, U) of all orthonormal k-
frames which span U.

Theorem 4.4.8 Let V be an n-dimensional IPS and T € S(V). Then
for any integer k € [1,n]

k k
A (T) = T, £;).
D NI = omax Y (TEE)

i=1 i=1
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Furthermore
k k

S ON(T) =) (T )

i=1 i=1
for some k-orthonormal frame Fy, = {f1,...,fx} if and only if span Fy is
spanned by e, ...,ex satisfying (4.4.3).

Proof. Define

k
trQ(T,U) =Y _ N(Q(T,U)) for U e Gr(k, V),

(4.4.8)
k
tr T =Y A(T).
i=1

Let Fr, = {f1,....fx} € Fr(k, V). Set U = span F. Then in view of
Corollary 4.4.3

k

k
> (Th,£) = tr Q(T,U) < > Mi(T).

=1

Let By := {e,,...,ex} where e,,...,e, are given by (4.4.3). Clearly try T =
tr Q(T, span Ey). This shows the maximal characterization of try T'.

Let U € Gr(k, V) and assume that try T = tr Q(T, U). Hence A\;(T) =
A (Q(T,U)) for i =1, ..., k. Then there exists G, = {g., ..., 8} € Fr(k, U))
such that

T
min {Tx, %)

=XN(Q(T,U)) = X(T), i = 1,..., k.
0#x€span (g ...} (X,X) (@Q( ) (T)

Use Theorem 4.4.2 to deduce that T'g; = \;(T)g; for : = 1,..., k. O

Theorem 4.4.9 Let V be an n-dimensional IPS and T € S(V). Then
for any integer k,l € [1,n], such that k+1<n

I+k k
N(T)= min max Tt £;).
Z i(T) WeGH(l,V) {fl,...,fk}EFr(k,VﬂW*)Z< iofi)
i=l+1 i=1
Proof. Let W, := span (e,,...,e;),j = 1,...,n, where e,,...,e, are

given by (4.4.3). Then V, := VN'W; is an invariant subspace of T. Let
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Ty :=T|V,. Then \;(T1) = Ny(T) for i = 1,...,n —I. Theorem 4.4.8 for
Ty yields

k I+k
max § Tflﬂf § : )\
1
{f1,...fx }€Fr(E,VAW;-) i=1 i=l+1

Let Ty := T|Wyy, and W € Gr(l,V). Set U := W;,, N W, Then
dim U > k. Apply Theorem 4.4.8 to —T5 to deduce

k k
> Xi(-Ty) zz —Tf;,£;) for {fy,...,f;} € Fr(k, U).
=1

The above inequality is equal to the inequality

I+k k

> (T Z Tf;, £;) for {fy, ..., fx} € Fr(k,U) <
i=l+1 i=1

k
Tf;, f;).
{fl,...,fk}g??‘();,vﬁwL) 1:21< >
The above inequalities yield the theorem. O
Problems

1. Let V be 3 dimensional IPS and T' € Hom (V) be self-adjoint. As-
sume that

)\1(T) > )\2(T) > )\3(T)7 Te; = )\i(T)ei7 1=1,2,3.

Let W = span (e, , e;).

(a) Show that for each ¢ € [A3(T), A1(T)] there exists a unique W (t) €
Gr(1, W) such that A\ (Q(T, W(t))) =t.

(b) Let t € [A2(T), A\1(T")]. Let U(t) = span (W(t),e,) € Gr(2, V).
Show that A\o(T) = A2 (Q(T, U(t)).

2. (a) Let the assumptions of Theorem 4.4.4 hold. Let W € Gr(k—1, V).
Show that there exists 0 # x € W+ such that (x,e;) = o for k +
1,...,n, where e, ..., e, satisfy (4.4.3). Conclude that \; (Q(T, W+)) >

G (m)

(b) Let Uy = span (e,, ...,e¢). Show that A (Q(T,Uy)) = Nt (T)
for{=1,...,n—1.

(c) Prove Theorem 4.4.4.
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(d) Prove Corollary 4.4.5. (Hint: Choose U € Gr(k, W) such that
U C Wﬁspan (en_g+k+1, ...,en)L. Then /\,L_g+k(T) < /\k(Q(T, U)) <
Me(Q(T, W)).)

3. Let B = [b;]}';,—; € H,, and denote by A € H,,_, the matrix obtained
from B by deleting the j — th row and column.

(a) Show the Cauchy interlacing inequalities
)\1(3) Z )\z(A) Z )\1'_;,_1(3), for ¢ = 1, ey — 1.

(b) Show that inequality A1 (B) + An(B) < A1(A) + bi;.
Hint. Express the traces of B and A respectively in terms of
eigenvalues to obtain

AL (B) 4 An(B) = bii + A1 (A) + nz_:(Ai(A) — \i(B)).

i=2
Then use the Cauchy interlacing inequalities.

4. Show the following generalization of Problem 3.b ([Big96, p.56]). Let
B € H, be the following 2 x 2 block matrix B = B}} B |
By Bx
Show that
A(B) + An(B) < Mi(Bi1) + A1(Baz).

Hint. Assume that Bx = \,(B)x,x' = (x/],x]), partitioned as

B. Consider U = span ((x),0)",(0,x])7). Analyze \{(Q(T,U)) +
A=2(Q(T, U)).

5. Let B = (b;;)} € H,,. Show that B > 0 if and only if det (b;;)¥ > 0
for k=1,...,n.

6. Let T € S(V). Denote by t4(T),to(T),t—(T) the number of posi-
tive, negative and zero eigenvalues among A1(7T") > ... > A\, (T). The
triple «(T) = (¢4-(T),t0(T),t—(T)) is called the inertia of T. For
B e H, let «(B) := (14+(B),to(B),t—(B)) be the inertia of B, where
t+(B),19(B), t—(B) is the number of positive, negative and zero eigen-
values of B respectively. Let U € Gr(k, V). Show
(a) Assume that A\, (Q(T,U)) > o,ie. Q(T,U) > 0. Then k < 14 (T).
If kK = ¢ (T) then U is the unique invariant subspace of V spanned
by the eigenvectors of T corresponding to positive eigenvalues of T'.
(b) Assume that \p(Q(T,U)) > o, i.e. Q(T,U) > o. Then k <
14+ (T) +1o(T). If k = 14(T) + to(T) then U is the unique invariant
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subspace of V spanned by the eigenvectors of T corresponding to
nonnegative eigenvalues of T'.

(¢) Assume that A\ (Q(T,U)) < o, i.e. Q(T,U) <o. Then k < ._(T).
If kK =¢_(T) then U is a unique invariant subspace of V spanned by
the eigenvectors of T corresponding to negative eigenvalues of T

(d) Assume that A\ (Q(T,U)) < o, i.e. Q(T,U) < o. Then k <
t—(T) + 0o(T). Ifk = 1_(T)+ to(T) then U is a unique invariant
subspace of V spanned by the eigenvectors of 1" corresponding to

nonpositive eigenvalues of T

7. Let B € H,, and assume that A = PBP* for some P € GL(n,C).
Then ¢(A) = «(B).

4.5 Positive definite operators and matrices

Definition 4.5.1 Let V be a finite dimensional IPS over F = C,R.
Let S,T € S(V). Then T > S, (T > S) if (Tx,x) > (5x,x), ((T'x,x) >
(Sx,x)) for all 0 # x € V. T is called positive (nonnegative) definite if
T >0 (T > 0), where 0 is the zero operator in Hom (V).

Denote by S (V)° C S; (V) C S(V) the open set of positive definite
self adjoint operators and the closed set of nonnegative selfadjoint operators
respectively.

Let P, Q be either quadratic forms if F = R or hermitian forms if F = C.
Then @ > P, (Q > P) if Q(x,x) > P(x,x), (Q(x,x) > P(x,x)) for all
0 £ x € V. Q is called positive (nonnegative) definite if Q@ > 0 (Q > 0),
where 0 is the zero operator in Hom (V).

For ABe€H, B>A (B >A) if x*Bx > x*Ax (x*Bx > x*Ax)
for all 0 # x € C*. B € H,, is called is called positive (nonnegative)
definite if B > 0 (B > 0). Denote by H, , C H, 1 C H,, the open set
of positive definite n X n hermitian matrices and the closed set of n x n
nonnegative hermitian matrices respectively. Let Sy (n,R) := S(n,R) N
H, +, S+(n,R)?:=8S(n,R)NH ..

Use (4.4.1) to deduce.

Corollary 4.5.2 Let V be n-dimensional IPS. Let T € S(V). Then
T >0 (T >0) if and only if \p(T) > 0 (An(T) > 0). Let S € S(V) and
assume that T > S (T > S). Then \(T) > X\(S) (Ni(T) > Mi(S)) for
t=1,...,n.

Proposition 4.5.3 Let 'V be a finite dimensional IPS. Assume that
T €8S(V). Then T > 0 if and only if there exists S € S(V) such that T =
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S2. Furthermore T > 0 if and only if S is invertible. For 0 < T € S(V)
there exists a unique 0 < S € S(V) such that T = S%. This S is called the
square Toot of T and is denoted by Tz,

Proof. Assume first that T > 0. Let ey, ..., e, be an orthonormal basis
consisting of eigenvectors of T as in (4.4.3). Since \;(T) >0, i =1,...,n
we can define P € Hom (V) as follows

Pe; =/ Ni(T)e;, i=1,..,n.

Clearly P is self-adjoint nonnegative and 7' = P2.

Suppose now that 7' = S? for some S € S(V). Then T € S(V) and
(Tx,x) = (Sx,5%) > 0. Hence T' > 0. Clearly (Tx,x) =0 < Sx =o.
Hence T'> 0 <= S € GL(V). Suppose that S > 0. Then X\;(S) =

Xi(T), i = 1,...,n. Furthermore each eigenvector of S is an eigenvector
of T. It is straightforward to show that S = P, where P is defined above.
Clearly T > 0 if and only if /A, (T) > 0, i.e. if and only if S is invertible. O

Corollary 4.5.4 Let B € H,, (S(n,R)). Then B > 0 if and only there
ezists A € H,, (S(n,R)) such that B = A2. Furthermore B > 0 if and only
if A is invertible. For B > 0 there exists a unique A > 0 such that B = A2,
This A is denoted by B3,

Theorem 4.5.5 Let V be an IPS over F = C,R. Let x,,...,X, €
V. Then the grammian matric G(X,,...,X,) = ((Xi,X;))7 is a hermitian
nonnegative definite matriz. (If F =R then G(x,,...,X,) is real symmetric
nonnegative definite.) G(Xy,...,Xn) > 0 if and only X,,...,X, are linearly

independent. Furthemore for any integer k € [1,n — 1]
(4.5.1) det G(x,,...,%y) < det G(Xy,...,Xg) det G(Xgt1y ey Xn)-

Equality holds if and only if either det G(x,,...,X) det G(Xg41, -, Xn) =0
or (x;,x;) =0 fori=1,..,kandj=k+1,...,n.

Proof. Clearly G(x,, ..., x,) € H,,. If Vis an IPS over R then G(x,,...,X,) €

S(n,R). Let a = (a,,...,a,)" € F". Then
a*G(Xy, .y Xp)a = (Z a;X;, Zajxj> > o.
=1 Jj=1

Equality holds if and only if > )"  a;x; = o. Hence G(x,,...,Xx,) > 0
and G(x,,...,x,) > o if and only if x,, ..., X, are linearly independent. In
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particular det G(X,,...,x,) > o0 and det G(x,,...,x,) > o if and only if
Xy, ..., Xy are linearly independent.

We now prove the inequality (4.5.1). Assume first that the right-hand
side of (4.5.1) is zero. Then either x,,...,X; or Xgi,,...,X, are linearly
dependent. Hence x,, ..., x,, are linearly dependent and det G = 0.

Assume now that the right-hand side of (4.5.1) is positive. Hence
X,y X and Xpyq,..., X, are linearly independent. If x,,...,x, are lin-
early dependent then det G = 0 and strict inequality holds in (4.5.1). It is
left to show the inequality (4.5.1) and the equality case when x,, ...,x,, are
linearly independent. Perform the Gram-Schmidt algorithm on x,...,x,
as given in (4.1.1). Let S; = span (x,,...,x;) for j = 1,...,n. Corollary
4.1.1 yields that span (e, ...,e,_,) = Sp,_,. Hence y,, = x,, — Z;:ll bix;
for some by, ...,b,—1 € F. Let G’ be the matrix obtained from G(x.,...,xy)
by subtracting from the n-th row b; times j-th row. Thus the last row of
G 15 (Y X2)s o (Y X)) = (0,20, [yal)- Clearly det G(x,, .., o) =
det G'. Expand det G’ by the last row to deduce

det G(Xy,...,xp) = det G(X;, ooy Xp—y) |l¥nl]> = ... =
(45.2)  det G(xi,oxi) ] lyill® =
1=k+1

det G(X4, ..., Xk) H dist(x;,8;-,)%, k=n—1,..,1.
i=k+1

Perform the Gram-Schmidt process on Xy, ..., X, to obtain the orthogonal
set of vectors yx41, ..., ¥n such that

S} 1= Span (Xg41, - X;) = Span (Fii1, -, ¥j), dist(x;,5;-,) = 1751,

for j = k+1,...,n, where S = {0}. Use (4.5.2) to deduce that det G(Xjt1, ..., Xp) =
[T, Iy07- As Sj—1 C Sj—1 for j > k it follows that

;| = dist(x;, S;-,) < dist(x;, Sj—2) = [[95]l, =k + 1, ..., n.

This shows (4.5.1). Assume now equality holds in (4.5.1). Then |y, =

H}A’JH fOI‘j = k+ 1,...,n. Since Sj—l C Sj—l and yj — Xj € Sj—l C
S;—. it follows that dist(x;, S;—,) = dist(§;,Sj—1) = |ly;||. Hence ||y;| =
dist(y;, Sj—1). Part (h) of Problem 4.1.4 yields that y; is orthogonal on
S;j—1. In particular each y; is orthogonal to Sy for j = k +1,...,n. Hence
x; L Spforj=k+1,..,n,ie (x;,%x;) =o0forj>kand i <k. Clearly,
if the last condition holds then

det G(x,, ..., xy,) = det G(X,,...,xXg) det G(Xgirs vy Xn)- O
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det G(x,, ..., X,) has the following geometric meaning. Consider a par-
allelepiped II in V spanned by x,, ..., x,, starting from the origin 0. That is
IT is a convex hull spanned by the vectors 0 and ) ;g x; for all nonempty
subsets S C {1,...,n}. Then y/det G(x,,...,X;) is the n-volume of II. The
inequality (4.5.1) and equalities (4.5.2) are "obvious” from this geometrical
point of view.

Corollary 4.5.6 Let 0 < B = (b;;)} € H,, +. Then
det B < det (b;;)¥ det (bi;)i,q, fork=1,..,n — 1.

For a fixed k equality holds if and only if either the right-hand side of the
above inequality is zero or by; =0 fori=1,...,k and j =k +1,...,n.

Proof. From Corollary 4.5.4 it follows that B = X? for some X € H,,.
Let x,,...,X, € C" be the n-columns of X* = (x,,...,x,). Let (x,y) =
y*x. Since X € H,, we deduce that B = G(X,, ..., Xp)- O

Theorem 4.5.7 Let V be an n-dimensional IPS. Let T € S. TFAE:
(a) T > 0.
(b) Let g,,...,8, be a basis of V. Then det ((Tgi,gj>)ﬁj:1 >0, k =
1,..,0.

Proof. (a) = (b). According to Proposition 4.5.3 T = S? for some S €

S(V)NGL(V). Then (Tg;, g;) = (Sg;, Sg;). Hence det ((T'gi,g;))f -, =
det G(Sg,, ..., Sgk). Since S is invertible and g, ..., g linearly independent
it follows that Sg,, ..., Sgy are linearly independent. Theorem 4.5.1 implies
that det G(Sg,,...,Sgk) > o for k=1,....,n.
(b) = (a). The proof is by induction on n. For n = 1 (a) is obvious.
Assume that (a) holds for n = m—1. Let U := span (g,,...,8n—.) and Q :=
Q(T,U). Then there exists P € S(U) such that < Px,y >= Q(x,y) =<
Tx,y > for any x,y € U. By induction P > 0. Corollary 4.4.3 yields that
An—1(T) > Ap—1(P) > 0. Hence T has at least n — 1 positive eigenvalues.
Let ey, ..., e, be given by (4.4.3). Then det ((Te;,e;));—, = [[;—, \i(T) >
0. Let A = (apq)7 € GL(n,C) be the transformation matrix from the basis
g.,..,8n to €y, ...,e,, 16

n
g = E Qpi€p, 1 = 1,...,N.
p=1
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It is straightforward to show that

(Tgi,g;))" = AT((Te,,e,))A =
(4.5.3)

det ((T'g;, g;))7 = det ((Te;, e;))7|det A[* = |det Al [T Mi(T).

Since det ((T'g;, g;))7 > o and \(T) > ... > A1 (T) > 0 it follows that
An(T) > 0. O

Corollary 4.5.8 Let B = (b;;)7 € H,,. Then B > 0 if and only if
det (bi;)¥ >0 fork=1,....,n.

The following result is straightforward (see Problem 1):

Proposition 4.5.9 Let V be a finite dimensional IPS over F = R,C
with the inner product (-,-). Assume that T € S(V). Then T > 0 if and
only if (x,y) := (Tx,y) is an inner product on V. Vice versa any inner
product (-,-) : V.x 'V — R is of the form (x,y) =< Tx,y > for a unique
self-adjoint positive definite operator T € Hom (V).

Example 4.5.10 Each 0 < B € H,, induces and inner product on C™:
(x,y) = y*Bx. Each 0 < B € S(n,R) induces and inner product on R":
(x,y) = yT Bx. Furthermore any inner product on C" or R™ is of the above
form. In particular, the standard inner products on C™ and R™ are induces
by the identity matriz I.

Definition 4.5.11 Let 'V be a finite dimensional IPS with the inner
product (-,-). Let S € Hom (V). Then S is called symmetrizable if there
exists an inner product (-,-) on 'V such that S is self-adjoint with respect

to (-, ).

Problems
1. Show Proposition 4.5.9.
2. Recall the Holder inequality

n n 1 n 1
(4.5.4) szylal < (Z xfal)P(Z yla)s
=1 =1 =1

for any x = (x17...,$n)T,y = ( 17~-‘7yn)—r7a = (a17"'7an) € Ri
and p,q € (1,00) such that %—&— % = 1. Show
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(a) Let A€ H,y,x € C" and 0 < i < j < k be three integers.
Then

(4:5.5) X" Ax < (x" A'x) B (x" Abx) 5

Hint: Diagonalize A.

(b) Assume that A = e for some B € H,,. Show that (4.5.5) holds
for any three real numbers ¢ < j < k.

4.6 Majorization and applications
Definition 4.6.1 Let
= {x= (24, )T ERY oy > x> >3, )

For x = (z,,...,2,)T € R let X = (Z1,...,2,)T € R be the unique
rearrangement of the coordinates of x in a decreasing order. That is there
exists a permutation w on {1,...,n} such that T; = x.(;), i =1,...,n.

Let x = (2y,...,2)0,y = (Ya,.syn)? € R™. Then x is weakly ma-
jorized by y (y weakly majorizes x), which is denoted by x <y, if

k k
(4.6.1) >z <> g k=1,..n
=1 =1

x 1is majorized by y (y majorizes x), which is denoted by x <y, if x Xy
n n
and Y T =Y Yi-

Definition 4.6.2 A € R}*" is called doubly stochastic matriz if the
sum of each row and column of A is equal to 1. Denote by Q,, C R} ™ the
set of doubly stochastic matrices. Denote by %Jn the n xn doubly stochastic
matriz whose all entries are equal to %, i.e. Jp € RI*™ is the matriz whose
each entry is 1.

Definition 4.6.3 P € R}*" is called a permutation matriz if each row
and column of P a contains exactly one nonzero element which is equal to
1. Denote by P,, the set of n x n permutation matrices.

Lemma 4.6.4 The following properties hold.

1. A e RY*" is double stochastic if and only if A1 = AT1 =1, where
1=(1,...,1)" €R™

2. Q) = {1}.
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A, BeQ,=tA+(1—t)B€Q, for each t € [0,1].
A, BeQ, = ABecQ,.
P C .

S v

P. is a group with respect to the multiplication of matrices, with I,
the identity and P~ = PT.

7. AeQ, BEQ, > ADBE Q.
See Problem 1.

Theorem 4.6.5 A € R*" is doubly stochastic if and only

(4.6.2) A= Z apP for some ap >0, P € P, Z ap = 1.
PcP, PcP,

Proof. In view of properties 3 and 5 of Lemma 4.6.4 it follows that
any A of the form (4.6.2) is doubly stochastic. We now show by induction
on n that any A € Q,, is of the form (4.6.2). For n =1 the result trivially
holds. Assume that the result holds for n = m — 1 and assume that n = m.

Assume that A = (a;;) € Q. Let [(A) be the number of nonzero entries
of A. Since each row sum of A is 1 it follows that [(A) > n. Suppose first
[(A) < 2n—1. Then there exists a row i of A which has exactly one nonzero
element, which must be 1. Hence there exists ¢,j € (n) such that a;; = 1.
Then all other elements of A on the row i and column j are zero. Denote
by A;; € ]RS?_UX(”_U the matrix obtained from A by deleting the row and
column j. Clearly A;; € €Q,—1. Use the induction hypothesis on A;; to
deduce (4.6.2), where ap = 0 if the entry (i,7) of P is not 1.

We now show by induction on [(A) > 2n — 1 that A is of the form
(4.6.2). Suppose that any A € Q, such that I(A) < ! — 1,1 > 2n is of
the form (4.6.2). Assume that I(A) = . Let & C (n) x (n) be the set
of all indices (¢,j) € (n) x (n) where a;; > 0. Note #S = I(4) > 2n.
Consider the following system of equations in n? variables, which are the
entries X = (z45);';_, € R™*™:

n n
E Tij = E $ji:O, i:l,...,n.
j=1 j=1

Since the sum of all rows of X is equal to the sum of all columns of X
we deduce that the above system has at most 2n — 1 linear independent
equations. Assume furthermore the conditions z;; = 0 for (¢, j) € S. Since
we have at least 2n variables it follows that there exist X # 0,,x,, satisfying
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the above conditions. Note that X has zero entry in the places where A
has zero entry. Furthermore, X has at least one positive and one negative
entry. Therefore the exists b,c > 0 such that A — bX, A+ ¢X € Q,, and
l(A—bX) (A+CX) <l. So A—bX,A+ cX are of the form (4.6.2). As
A= (A-bX)+ = (A+cX) we deduce that A is of the form (4.6.2). O

b+c b+c

Theorem 4.6.6 . Let x,y € R". Then x <y if and only if there exists
A € Q,, such that x = Ay.

Proof. Assume first that x = Py for some P € P,. Then it is
straightforward to see that x < y. Assume that x = Ay for some A € Q,,.
Use Theorem 4.6.5 to deduce that x < y.

Assume now that x,y € R™ and x < y. Since x = PX,y = Qy for some
P,Q € P,, it follows that X < §¥. In view of Lemma 4.6.4 it is enough to
show that X = By some B € ),,. We prove this claim by induction on n.
For n = 1 this claim is trivial. Assume that if X < ¥ € R! then X = By for
some B € Q; for all | < m — 1. Assume that n = m and x <y. Suppose
first that for some 1 < k < n — 1 we have the equality Zl LT = Zl 1 Ui-
Let

X, = (:Z.17"'afk)—r7y1 = (glv"wgk)—r € Rk7
X2 = (i’k+1,,,,,i’n)—r,y2 = (gk+1a~-~7gn)—r € R™F,

Then x, < y,,X, < y,. Use the induction hypothesis that x; = B;y;,7 =

1,2 where By € Qj, By € Q,,_j. Hence x = (B; @ By)y and By ® Bs € Q.
Tt is left to consider the case where strict inequalities hold in (4.6.1) for

k=1,...,n—1. We now define a finite number of vectors

Y=2,>2,=1Z, ... 2ZN =ZN > X,
where N > 2, such that
1. 2,4, =Bjz;fori=1,... N — 1.
2. Zf:l z; = Zle w; for some k € (n—1), where zy = w = (w,,...,w,)".

Observe first that we can not have 3 = ... = ¢,. Otherwise X = ¥
and we have equalities in (4.6.1) for all ¥ € (n), which contradicts out
assumptions. Assume that we defined

V=2, >2,=Z, > ... =2 =Zp = (Uy,...,Up)

for 1 < r such that Zle T; < Zle u; for k. =1,...,n — 1. Assume that
UL = ..o = Up > Uppl = ... = Upygq, WheTe Uppq > Uprg1 i p+¢q < n.
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Let O(t) = (1 = )prq + 55 Jpta) ® Ln_(pig)) for t € [0,1] and define
u(t) = C(t)z,. We vary t continuously from ¢ = 0 to ¢ = 1. Note that

u(t) = u(¢) for all ¢ € [0,1]. We have two possibilities. First there exists
exits tg € (0,1] such that u(t) > x for all ¢ € [0,t0]. Furthermore for

w = u(t,) = (w,,...,w,)" we have the equality Zle T; = Zle w; for
some k € (n — 1). In that case r = N — 1 and zy = u(t,).
Otherwise let z,, = u(1) = (vy,...,v,)", where v; = ... = v, >

Up+q+1- Repeat this process for z,,, and so on until we deduce the condi-
tions 1 and 2. So x = Byzy = BNBy_.Zy_, = By ... B,y. In view of 4
of Lemma 4.6.4 we deduce that x = Ay for some A € Q,.

O

Combine Theorems 4.6.6 and 4.6.5 to deduce.

Corollary 4.6.7 Let x,y € R™". Then x <y if and only if

(4.6.3) x= Z apPy for some ap > o, P € P, where Z ap = 1.
PeP, PeP,

Furthermore, if x <y and x # Py for all P € P, then in (4.6.3) each
ap < 1.

Definition 4.6.8 Let I C R be an interval. A function ¢ : I — R is
called convex if for any xz,y € I and t € [0,1] ¢(tx + (1 — t)y) < té(z) +
(1 =t)o(y). ¢ is called strictly convex on I if for any x,y € I,x # y and

t€(0,1) op(te + (1= t)y) <td(x) + (1 —1)o(y).
A function : I — R is called concave or strictly concave if the function
—1 is convex or strictly convexr respectively.

Theorem 4.6.9 Let X = (2,,....2,)" <y = (Ys,syn) . Let ¢ :
[Un,71] — R be a convex function. Then

(4.6.4) > o) < bl

i=1 i=1
If ¢ is strictly convex on [Gn,71] and Px # 'y for all P € P, then strict
inequality holds in (4.6.4).

Proof. Problem 3 implies that if x = (z,,...,2,) " <y = (Y1, Un)
then z; € [gn, 71] for i = 1,...,n. Use Corollary 4.6.7 and the convexity of
¢, see Problem 2, to deduce:

$x:) < > app((Py);), i=1,...,n.

PePy
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Observe next that Y . ¢(y;) = >y #((Py);) for all P € P,. Sum up
the above inequalities to deduce (4.6.4).

Assume now that ¢ is strictly convex and x # Py for all P € P,,. Then
Corollary 4.6.7 and strict convexity of ¢ implies that at least in one the

above i — th inequality one has strict inequality. Hence strict inequality
holds in (4.6.4). 0

Corollary 4.6.10 Let 'V be an n-dimensional IPS. Let T € S(V). De-
note N(T) := (AL(T), ..., \n(T))T € RY . Let Fy, = {f1,..£,} € Fr(n, V).
Then

(Tf1,£1), ..., (TEn £,)) T < A(T).

Let ¢ : [Ap(T), M1 (T)] — R be a convex function. Then

Z P(X(T)) = max > o((TE, 1)),

{160} €Fx (n,V)

If ¢ is strictly convex then Y i ¢(Ni(T)) = >, ¢((T'f;, £)) if and only
if f1,...,f is a set of n orthonormal eigenvectors of T.

See Problem 4.
Problems
1. Prove Lemma 4.6.4.

2. Let I C R be an interval and assume that ¢ : I — R is convex. Let
T1,..., Ty € I,m > 3. Show

(a) Let ai,...,am € [0,1] and assume that > .., a; = 1. Then

(4.6.5) () i) < aid(x:).
i=1

i=1

(b) Assume in addition that ¢ is strictly convex, z; # x; for i # j
and ay,...,am, > 0. Then strict inequality holds in (4.6.5).

3. Let x,y € R". Show that x <y <— —y < —x.

4. Prove Corollary 4.6.10.
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4.7 Spectral functions

Let T C S(V), where V is an n-dimensional IPS over F = R,C. Denote
MT)={NT)eRY : TeT} Afunction f:7 — Ris called a spectral
function if there exists a set D C R and h: D — R such that A\(7) C D
and f(T) = h(A(T)) for each T € 7. D is called a Schur set if

xy R x<y,yeD=x€D.

Let D C ]R"\ be a Schur set. A function h : D — R is called Schur’s order
preserving if

h(x) < h(y) forany x,y € Dsuchx <y.

h is called strict Schur’s order preserving if a strict inequality holds in the
above inequality whenever x # y. h is called strong Schur’s order preserving
if
h(x) < h(y) forany x,y € Dsuchx <y.

h is called strict strong Schur’s order preserving if a strict inequality holds
in the above inequality whenever x # y.

Note that h((z1,...,2n)) = Y i g(z;) for some convex function g :
R — R then Corollary 4.6.10 implies that ~» : RC — R is Schur’s order
preserving. The results of Section 4.4 yield:

Proposition 4.7.1 Let V be an n-dimensional IPS, D C RY_ be a
Schur set and h : D — R be Schur’s order preserving function. Let T €
S(V) and assume that A\(T') € D. Then

AT)) = xEDH}f:X)\(T) hlx).

Definition 4.7.2 A set D C R" is called a reqular set if the interior of
D, denoted by D° C R", is a nonempty set, and D is a subset of the closure
De, denoted by C1(D®). For a regular set D a function F : D — R is in
the class C¥(D), i.e. F has k continuous derivatives, if F € C¥(D°) and
F and any of its derivative of order not greater than k has a continuous
extension to D.

Definition 4.7.3 Let V be a vector space over R. Forx,y € V denote
x,y]:=={z: z=ax+(1—a)yforall a € o,1]}.

A set C C 'V is called convex if for each x,y € V [x,y] C C. Assume that
C C V is a nonempty convex set and let x € C. Denote by C — x the set
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{z: z=y—-x,y € C}. Let U= span (C — x). Then the dimension
C, denoted by dim C, is the dimension of the vector space U. C' — x has
interior as a subset of U called relative interior and denoted by ri (C — x).
Then the relative interior of C is defined as ri (C — x) + x.

It is straightforward to show that dim C, ri C' do not depend on the
choice of x € C. Furthermore ri C' is convex. See Problem 7 or [Roc70].

Proposition 4.7.4 Lety = (y,,...,yn) | € RY . Denote
M(y) ={xeR{: x<y}
Then M(y) is a closed convex set.
See Problem 1.

Theorem 4.7.5 Let D C RY_ be a regular Schur set in R™. Let F' €
CY(D). Then F is Schur’s order preserving if and only if

OF or
>

(4.7.1) e P

(x), for each x = (2,,...,2,)" € D.

If for any point x = (x,,...,x,)" € D such that x; > ;11 the inequality

%(X) > 8?,21 (x) holds then F' is strict Schur’s order preserving.

Proof. Assume that F' € C1(D) and F is Schur’s order preserving. Let
X = (2y,...,2,)" € D°. Hence 1 > ... > x,,. Let e = (§i1,...,0i) ,i =
1,..,n. Fori € [1,n—1]NZy let x(t) :=x + t(e; — €;4,). Then

min,; _ To s
x(t) € R for [t| <7 := JE[L,n 1]r;z+ 5 J+1,

(4.7.2)
and x(t,) < x(t,) for —7 <t, <t, <.

See Problem 2. Since D° is open there exists € > 0 such that x(¢t) € D° for
t € [—€,€]. Then f(t) := F(x(t)) is an increasing function on [—e, €]. Hence
f1(0) = g—;(x) — Bgil (x) > 0. This proves (4.7.1) in D°. The continuity
argument yields (4.7.1) in D.

Assume now that (4.7.1) holds. Let y = (Y1, .., yn) 12 = (21,1, 2n) | €

D and define

y(t) =1 —t)y +tz, g(t) := F((1 — t)y + tz), for t € [0,1].
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Suppose that y < z. Then y(t,) < y(¢.) for 0 < t; <ty < 1. Since D is
Schur set [y,z] C D. Then

n—1 7

OF(y(t)) _ oF(y(1)

4.7. "(t) = - ).
See Problem 3. Hence ¢'(t) > 0, i.e. ¢(t) is a nondecreasing function
on [0,1]. Thus F(y) = g(o) < g(1) = F(z). Assume that for any point

X = (%, ...,2,) | € Dsuchthat z; > ;41 the inequality & (x) > 33}1 (x).

Suppose that y # z. Then ¢'(t) > 0 and F(y) = g(o) < g(1) = F(z). O

Theorem 4.7.6 Let D C R be a regular Schur set in R". Let I €
CY(D). If F is strong Schur’s order preserving then

(4.7.4) g—i(x) > .. > %(X) > o, for each x = (x,,...,2,)" € D.

Suppose that in addition to the above assumptions D is convex. If F' satisfies
the above inequalities then F' is strong Schur’s order preserving. If for any
point X = (T1,...,x,)" € D BE)TI-Z(X) > 0 and %(X) > aiil (x) whenever
x; > xi41 holds then F is strict strong Schur’s order preserving.

Proof. Assume that F' is strong Schur’s order preserving. Since F' is
Schur’s order preserving (4.7.1) holds. Let x = (z,,...,x,)" € D°. Define
w(t) = x+te,. Then there exists € > 0 such that w(t) € D° for ¢ € [—e, €.
Clearly w(t,) = w(t,) for —e < #; <ty < e. Hence the function h(t) :=
F(w(t)) is not decreasing on the interval [—¢, €]. Thus 887}1()() =h'(0) > o.
Use the continuity argument to deduce that %(x) > o for any x € D.

Assume that D is convex and (4.7.4) holds. Let y,z € D and define
y(t) and g(t) as in the proof of Theorem 4.7.5. Then

Jy = SHEEOE) PG, s~

3£Ei 5‘:51-“ =1

i=1

(4.7.5)

n

+%‘y:t)) ;(Zj —Yj)-

See Problem 3. Assume that y < z. Then ¢'(¢t) > 0. Hence F(y) < F(z).
Assume now that for any point x = (z,,...,2,) ' € D %(x) > 0 and

OF

5-(x) 8—F(x) whenever x; > x;411. Let y,z € D and assume that

> Ox iy
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y =<z and y # z. Define g(¢) on [0,1] as above. Use (4.7.5) to deduce that
g'(t) > 0 on [0,1]. Hence F(y) < F(z). 0

Let C be a convex set. A function f:C — R is called convex if
(47.6)  flax+ (1= a)y) < af(x)+ (1 —a)f(y), for any o € [0, 1],

and x,y € C.

f is called strictly convex if for any x,y € C, x #y and « € (0,1) the
strict inequality holds in the above inequality. The following result is well
known. (See Problems 4-9)

Theorem 4.7.7 Let C C R? be a regular convexr set. Assume that
f € C2(C). Then f is convex if and only if the symmetric matriz H(f) :=

2
(aiiij )ij:l is nonnnegative definite for each y € C. Furthermore, if H(f)
is positive definite for each'y € C then f is strictly convez.

For any set T € V we let C1T be the closure of T in the standard
topology in V (which is identified with the standard topology of R4m =V},

Proposition 4.7.8 Let C C V be convexr. Then CIC is convex. As-
sume that C is a reqular set and f € C°(C1C). Then f is convex in C1C
if and only if f is convex in C.

See Problem 8.

Denote by R := R U {—00, 0} the extended real line. Then a + oo =
co+a=o00forace RU{x},a—00=-00+a=—o0foracRU{-o0}
and oo — 0o, —o0 4 0o are not defined. For a > 0 we let aco = ocoa =
00, a(—o0) = (—o0)a = —o0 and 0co = o000 = 0, 0(—o0) = (—o0)0 = 0.
Clearly for any a € R —oco < a < oo. Let C' be a convex set. Then
f : C — R is called an extended convex function if (4.7.6) holds. Let
f:C — R be a convex function. Then f has the following continuity and
differentiability properties:

In the one dimensional case where C' = (a,b) C R f is continuous on
C and f has a derivative f’(x) at all but a countable set of points. f'(z)
is an nondecreasing function (where defined). In particular f has left and
right derivatives at each x, which is given as the left and the right limits of
f'(z) (where defined).

In the general case C C V, f is continuous function in ri C, has a
differential D f in a dense set Cy of ri C, the complement of C; in ri C has
a zero measure, and D f is continuous in C;. Furthermore at each x € ri C
f has a subdifferential ¢ € Hom(V,R) such that

(4.7.7) fy) > fx)+ oy —x) forally e C.
See for example [Roc70].
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Proposition 4.7.9 (The mazimal principle) Let C' be a convex set and
let fp : C'— R be an extended convex function for each ¢ a set ®. Then

f(x) :==sup fy(x), foreachx eV,
peP

is an extended convex function on C'.

Theorem 4.7.10 Let V be an n-dimensional IPS over F = R,C. Then
the function ¢; : S(V) — R given by

(4.7.8) ¢i(T) ==Y _N(T), TeS(V),i=1,..n,
j=1
is a continuous homogeneous convex function fori=1,...n—1. ¢,(T) =
tr T is a linear function on S(V).
Proof. Clearly ¢;(aT) = a¢;(T) for a € [0,00). Hence ¢; is a homoge-
neous function. Since the eigenvalues of T" are continuous it follows that ¢;
is a continuous function. Clearly ¢,, is a linear function on the vector space

S(V). Combine Theorem 4.4.8 with Proposition 4.7.9 to deduce that ¢; is
convex. O

Corollary 4.7.11 Let V be a finite dimensional IPS over F = R, C.
Then

Mad+ (1—a)B) < aX(A)+ (1 —a)A(B), for any A, B € S(V), a € [0,1].

For a € (0,1) equality holds if an only if there exists an orthonormal basis
[Vi, .oy V] in 'V such that

AVZ‘ = )\i(A)llZ‘, BVi = AZ(B)VZ7 1= 1,...,Nn.
See Problem 10.

Proposition 4.7.12 Let V be n-dimensional IPS over F =R, C. For
D C R" let

(4.7.9) AHD):={T €S(V): XT)e D}

If D C R" is a regular convex Schur set then A\™1(D) is regular convex set
in the vector space S(V).
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Proof. The continuity of the function A : S(V) — RU_ implies that
A~1(D) is aregular set in S(V). Suppose that A, B € A(D)~! and a € [0, 1].
Since D is convex a\(A)+(1—a)A(B) € D. Since D is a Schur set Corollary
4.7.11 yields that A(aA+(1—a)B) € D. Hence aA+(1—a)B € A™1(D). O

Theorem 4.7.13 Let D C RT be a regular convex Schur set and let
h: D — R. Let V be an n-dimensional IPS over F = R,C. Let f :
A~L(D) — R be the spectral function given by f(A) := h(\(A)). Then the
following are equivalent:

(a) f is (strictly) convex on \~1(D).
(b) h is (strictly) convex and (strictly) Schur’s order preserving on D.

Proof. Choose a fixed orthonormal basis [u,, ..., u,]. We then identify
S(V) with H,,(F). Thus we view 7 := A~(D) is a subset of H,,(F). Since
D is a regular convex Schur set Proposition 4.7.12 yields that 7 is a regular
convex set. For x = (x,,...,m,)" € R" let D(x) := diag(x,, ..., 7,). Then
AMD(x)) =x. Thus D(x) € T <= x € D and f(D(x)) = h(x) for x € D.
(a) = (b). Assume that f convex on 7. By restricting f to D(x),x € D
we deduce that h is convex on D. If f is strictly convex on 7 we deduce
that h is strictly convex on D.

Let x,y € D and assume that x <y. Then (4.6.3) holds. Hence

D(x)= Y apPD(y)P".
PeP,

Clearly A(PD(y)P") = AM(D(y)) = y. The convexity of f yields
hx) = f(Dx) < Y apf(PD(y)PT) = f(D(y)) = h(y).

PeP,

See Problem 6. Hence h is Schur’s order preserving. If f is strictly convex
on 7 then in the above inequality one has a strict inequality if x # y.
Hence h is strictly Schur’s order preserving.

(b) = (a). Assume that h is convex. Then for A, B € T

af(A)+(1-a)f(B) = ah(A(A))+(1-a)h(M(B)) = h(aA(A)+(1-a)A(B)).

Use Corollary 4.7.11 and the assumption that and h is Schur’s order pre-
serving to deduce the convexity of f. Suppose that h is strictly convex
and strictly Schur’s order preserving. Assume that f(aA+ (1 — a)B) =
af(A)+(1—a)f(B) for some A, B € T and o € (0,1). Hence A(4) = A\(B)
and A(aA + (1 — a)B) = aA(A) + (1 — a)A(B). Use Corollary 4.7.11 to
deduce that A = B. Hence f is strictly convex. O
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Theorem 4.7.14 Let D C R be a regular convex Schur set and let
h € CYD). Let V be an n-dimensional IPS over F = R,C. Let f :
A~1(D) — R be the spectral function given by f(A) := h(\(A)). Then the
following are equivalent:
(a) f is convex on A\=1(D) and f(A) < f(B) for any A, B € A=Y(D) such
that A < B.

(b) h is convex and strongly Schur’s order preserving on D.

Proof. We repeat the proof of Theorem 4.7.13 with the following mod-
ifications.
(b) = (a). Since h is convex and Schur’s order preserving Theorem 4.7.13
yields that f is convex on 7. Let A,B € 7 and assume that A < B.
Then A(A) < A(B). As h is strongly Schur’s order preserving h(A(A)) <
BAB)) = F(A) < 1(B).
(a) = (b). Since f is convex on 7 Theorem 4.7.13 implies that h is
convex and Schur’s order preserving. Since h € C!(D) Theorem 4.7.5
yields that h satisfies the inequalities (4.7.1). Let x € D° and define
x(t) := x + te,. Then for a small a > 0 x(¢t) € D° for ¢t € (—a,a). Clearly
D(x(t,)) < D(x(t.)) for t; < ta. Hence g(t) := f(D(x(t)) = h(x(t)) is a
nondecreasing function on (—a, a). Hence %(x) = ¢'(0) > o. Use the con-
tinuity hypothesis to deduce that h satisfies (4.7.4). Theorem 4.7.6 yields
that h is strong Schur’s order preserving. a

Theorem 4.7.15 Let 'V be an N -dimensional IPS over F =R, C. For
n,N € N and n < N let Ay : S(V) — RU be the map A — A\n)(A) ==
(A (A), s M\ (AT, Assume that D C RY is a regular conver Schur set
and let T := A(nl)(D) C S(V). Let f : T — R be the spectral function
given by f(A) := h(An)(A)). Assume that n < N Then the following are
equivalent:

(a) f is convex on T.

(b) h is convex and strongly Schur’s order preserving on D.
(c) f is convex on T and f(A) < f(B) for any A,B € T such that A < B.

Proof. Let 7 : RJ{ — RT_ be the projection on the first n coordinates.
Let Dy :==7"%(D) C R{. It is straightforward to show that D, is a regular
convex set. Let hy := hom: D; — R. Then % =0fori=n+1,...,N.
(a) = (b). Suppose that f is convex on 7. Then Theorem 4.7.13 yields
that h; is convex and Schur’s order preserving. Theorem 4.7.5 yields the
inequalities (4.7.1). Hence 91 (y) > 2 (y) = o for any y € D,. Clearly

an — 0$n+ 1
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h is convex and
oh (%) oh,
X) =
axi (91‘z
Thus h satisfies (4.7.4). Theorem 4.7.6 yields that h is strongly Schur’s

order preserving.
Other nontrivial implications follow as in the proof of Theorem 4.7.14.

(y),i=1,...,n, wherex € D, y € D,, and n(y) = x.

Problems
1. Show Proposition 4.7.4

2. Let x = (2,,...,2,) € R" and assume z; > ... > x,. Let x(t) be
defined as in the proof of Theorem 4.7.5. Prove (4.7.2).

3. Let D C R™ be a regular set and assume that [y,z] C D,y =
(Yrs s Yn) ", 2= (21, ..., 2n) . Let F € C}(D) and assume that g(t) is
defined as in the proof of Theorem 4.7.5. Show the equality (4.7.5).
Suppose furthermore that >, y; = Y. 2. Show the equality
(4.7.3).

4. (a) Let f € Cl(a,b). Show that f is convex on (a,b) if and only if
f'(z) is nondecreasing on (a,b). Show that if f/(z) is increasing on
(a,b) then f is strictly convex on (a,b).

(b) Let f € Cla,b] N C!(a,b). Show that f is convex in [a,b] if and
only if f is convex in (a,b). Show that if f'(z) is increasing on (a,b)
then f is strictly convex on [a, b].

(c) Let f € C?(a,b). Show that f is convex on (a,b) if and only if f”
is a nonnegative function on (a,b). Show that if f”(z) > 0 for each
x € (a,b) then f is strictly convex on (a,b).

(d) Prove Theorem 4.7.7.

5. (This problem offers an alternative proof of Theorem 4.6.9.) Let a < b
and n € N. Denote

[a, 0] == {(21,...,n) €RY 1z €a,b], i=1,..,n}.

(a) Show that [a,b]¥ is a regular convex Schur domain.

(b) Let f € Cla,b] be a convex function. Let F : [a,b]" — R be
defined by F((x1,...,z,)") =Y i, f(z;). Show that F satisfies the
condition (4.7.1) on [a, b]¢ . Hence Theorem 4.6.9 holds for any x,y €
[a, b]™ such that x < y. (¢) Assume that any convex f € Cl[a,b] can be
uniformly approximated by as sequence of convex fr € Cl[a,b],k =
1,... Show that Theorem 4.6.9 holds for x,y € [a, b]™ such that x < y.
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6. Let D C V be convex set and assume that f : D — R be a convex
function. Show that for any & > 3

k k k
f(Zuj) < a; f(uy), forany u,,...,u; € D, @, > o0,....,a; > 0, Zaj =1.
Jj=1 Jj=1 Jj=1

7. Let 'V be a finite dimensional space and C C V a nonempty convex
set. Let x € C. Show

a. The subspace U := span (C — x) does not depend on x € C.

b. C'— x has a nonempty convex interior in U and the definition of
ri C does not depend on x € C.

8. Prove Proposition 4.7.8.

9. Prove Proposition 4.7.9.
10. Use Theorem 4.4.8 to show the equality case in Corollary 4.7.11
11. For p € [1,00) let

n
Xlpw = O wilziP)?, x = (21,.20)T €R?, w = (wy, .., w,) " €RE.
1=1

(a) Show that || - ||, w : R* — R is a homogeneous convex function.
Furthermore this function is strictly convex if and only if p > 1 and
w; > 0 for i =1,...,n. (Hint: First prove the case w = (1,...,1).)

(b) For ¢ > 1 show that | - [|2 ,, : R" — R is a convex function.
Furthermore this function is strictly convex if and only if w; > 0 for
i=1,...,n. (Hint: Use the fact that f(z) = 27 is strictly convex on
[0,00).)

(c) Show that for ¢ > 0 the function || - |7, : R} \ — R is strong
Schur’s order preserving if and only if w; > ... > w, > 0. Further-
more this function is strictly strong Schur’s order preserving if and
only if wy > ... > w, > 0.

(d) Let V be an n-dimensional IPS over F = R, C. Show that for
q>1, wy > ... >w, >0 the spectral function T" — [[AN(T)[|%, is a
convex function on S(V), (the positive self-adjoint operators on V.)
If in addition w, > 0 and max(p,q) > 1 then the above function is

strictly convex on S(V)4.

12. Use the differentiability properties of convex function to show that
Theorems 4.7.14 and 4.7.15 holds under the lesser assumption h €
(D).
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. Show that on Hp  the function logdet A is a strictly concave func-
tion, i.e. det (aA+(1 a)B) > (det A)¥(det B)!~®. (Hint: Observe
that —logz is a strictly convex function on (0, 00).)

4.8 Inequalities for traces

Let V be a finite dimensional IPS over F = R,C. Let T : V — V be a
linear operator. Then tr7T is the trace of the representation matrix A of
with respect to any orthonormal basis of V. See Problem 1.

Theorem 4.8.1 Let V be an n-dimensional IPS over F = R,C. As-
sume that S,T € S(V). Then tr ST is bounded below and above by

(4.8.1) Z/\ M—ip1(T) < tr ST < zn:/\i(S)/\i(T).

i=1

Equality for the upper bound holds if and only if ST =TS and there exists
an orthonormal basis X,,...,x, € V such that

(482) SXi = Ai(S)Xi, TXi = )\1(11))(17 1= 1,...,Nn.

Equality for the lower bound holds if and only if ST =TS and there exists
an orthonormal basis X,,...,x, € V such that

(483) SXZ‘ = )\i(S)Xi, TXZ' = An_“_l(T)Xi, 1= 1,...,Mn.
Proof. Let y,,...,y, be an orthonormal basis of V such that

Ty7,:>\t( )y“ izlv"'vna
)\1(T):. ( >>)‘11+1( )— .:)\Z‘2(T)>...>
/\ik_1+1(T) = =N\ (T) = )\n(T), 1< <...<1p=n.

Ifk=1 < i1 = n it follows that T'= A1 I and the theorem is trivial in
this case. Assume that & > 1. Then

tr ST = Z)\ WSy, yi) =

n—1 [ n

> T) = X (TN O Sy, y1) + AT _(Syi,yi) =

i=1 =1 =1

e
|
—

i

Z(Aij (T) = A, (1) Z<SYZ7 vi) + A (T) tr S.

j=1 =1
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Theorem 4.4.8 yields that >°,°  (Sy,,yi) < Y2, Mi(S). Substitute these
inequalities for j = 1,...,k — 1 in the above identity to deduce the upper
bound in (4.8.1). Clearly the condition (4.8.2) implies that tr ST is equal to
the upper bound in (4.8.1). Assume now that tr ST is equal to the upper
bound in (4.8.1). Then >/ (Sy;,y1) = Y2, M(S) for j = 1,..,k — 1.
Theorem 4.4.8 yields that span (y.,...,y;;) is spanned by some i; eigenvec-
tors of S corresponding to the first i; eigenvalues of S for j =1,...,k — 1.
Let x,,...,x;, be an orthonormal basis of span (y,,...,y;,) consisting of
the eigenvectors of S corresponding to the eigenvalues of A;(S5), ..., Ay, (:9).
Since any 0 # x € span (y,,...,¥s,) is an eigenvector of T correspond-
ing to the eigenvalue \;, (T') it follows that (4.8.2) holds for ¢ = 1,...,4;.
Consider span (y,, ...,y:,). The above arguments imply that this subspace
contains iy eigenvectors of S and T corresponding to the first i eigenvalues
of S and T. Hence U,, the orthogonal complement of span (x,,...,x;,)
in span (y,,...,¥:, ), spanned by X;, 4,,...,X;,, which are is — 4; orthonor-
mal eigenvectors of S corresponding to the eigenvalues A;, 1 (5), ..., A, (S).
Since any nonzero vector in U, is an eigenvector of T' corresponding to the
eigenvalue A;, (T') we deduce that (4.8.2) holds for ¢ = 1, ...,45. Continuing
in the same manner we obtain (4.8.2).

To prove the equality case in the lower bound consider the equality in
the upper bound for tr S(—T). O

Corollary 4.8.2 Let V be an n-dimensional IPS over F = R,C. As-
sume that S,T € S(V). Then
(4.8.4) D Ni(S) = Xi(T)? < (S —T)2.
i=1
Equality holds if and only if ST = TS and V has an orthonormal basis
Xy, .oy X Satisfying (4.8.2).

Proof. Note
D A(S) = A(T))? = tr S +trT? =2 ) M(S)N(T).
i=1 i=1

d

Corollary 4.8.3 Let S,T € H,,. Then the inequalities (4.8.1) and
(4.8.4) hold. Equalities in the upper bounds hold if and only if there exists
U € U, such that S = Udiag \(S)U*, T = Udiag\(T)U*. Fquality in
the lower bound of (4.8.1) if and only if there exists V € U, such that
S =Vdiag\(S)V*, T =V diag \(-T)V*.
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Problems
1. Let V be a n-dimensional IPS over F = R, C.

(a) Assume that T': V — V be a linear transformation. Show that
for any o.n. basis x,, ..., X,

tr’l = Z<TX1',X¢>-

i=1
Furthermore, if F = C then tr7T is the sum of the n eigenvalues
of T

(b) Let S,T € S(V). Show that tr ST = trT'S € R.

4.9 Singular Value Decomposition

Let U, V, be finite dimensional IPS over F = R, C, with the inner products
(,)u, (-, -)v respectively. Let uy,...,u,, and vy, ..., v, be bases in U and
V respectively. Let T : V — U be a linear operator. In these bases T is
represented by a matrix A € F™*™ as given by (1.10.2). Let 7% : U* =
U—- V*=V. Then T"T : V — V and TT* : U — U are selfadjoint
operators. As

<T*TVaV>V = <TV7TV>V >0, <TT*'L17 u>U = <T*U7T*U>U >0

it follows that T*T > 0,TT* > 0. Let

(4.9.1) T*Tc;, = \i(T*T)c;, {ciycp)v = O, Gk =1,...,1m,
A(T*T) > ... > A\(T*T) > 0,
(492) TT*d] = )\j(TT*)d]7 <dj7dl>U = 5]'1; ],l =1,....,m,

M (TT*) > ... > A (TT*) > 0,

Proposition 4.9.1 Let U, V, be finite dimensional IPS over F =R, C.
Let T : V — U. Then rank T = rank T* = rank T*T = rank TT* = r.
Furthermore the selfadjoint nonnegative definite operators T*T and TT™*
have exactly r positive eigenvalues, and

(4.9.3) N(T*T) = \(TT*) >0, i=1,..rank T.

Moreover fori € [1,r] Tc; and T*d; are eigenvectors of TT* and T*T cor-
responding to the eigenvalue \i(TT*) = X\i(T*T') respectively. Furthermore
if ¢4,...,C,. satisfy (4.9.1) then d; = Hgizlll’l = 1,...,r satisfy (4.9.2) for
i=1,...,r. Similar result holds for d,,...,d,.
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Proof. Clearly Tx =0 < (I'x,Tx) =0 <= T*Tx = 0. Hence
rank T*T = rank T = rank T* = rank TT* =r.

Thus T*T and T'T* have exactly r positive eigenvalues. Let i € [1,7]. Then
T*Tc; # 0. Hence T'c; # 0. (4.9.1) yields that TT*(T'c;) = \(T*T)(Tc;).
Similarly T*T(T*d;) = X\i(TT*)(T*d;) # o. Hence (4.9.3) holds. Assume
that c,,...,c, satisfy (4.9.1). Let di,...,d, be defined as above. By the
definition ||d;|| = 1,4 =1,...,7. Let 1 <4 < j <r. Then

0= (ci,¢j) = M(T*T){ci, c;) = (T*Tc;, ¢;) = (Te;, Tej) = (di, dj) = o.

Hence al, ...,d, is an orthonormal system. O
Let

0:(T) =/ N(T*T) fori =1,...r, o;(T)=0fori>r,
(4.9.4)
o(p)(T) := (01(T), ..., 05(T)) " €RE, peN.

Then 0;(T) = 0;,(T*),i = 1,...,min(m,n) are called the singular values of
T and T* respectively. Note that the singular values are arranged in a
decreasing order. The positive singular values are called principal singular
values of T and T™ respectively. Note that

||T‘Cz||2 = <TC¢,TC¢> = <T*TCZ',CZ‘> = )\z(T*T) = O'f =
||TCZ|| = 0y, 1= 1,...,Nn,
[Td;||* = (T*d;, T"d;) = (TT*d;,d;) = \i(TT") = 05 =

||de|| =0y, ] =1,...,m.

Let c,,...c, be an orthonormal basis of V satisfying (4.9.1). Choose an
orthonormal basis d,...,d,, as follows. Set d; := j;ci,i =1,...,7. Then
complete the orthonormal set {d,,...,d,} to an orthonormal basis of U.
Since span (d,, ...,d,) is spanned by all eigenvectors of TT* corresponding
to nonzero eigenvalues of TT* it follows that ker T* = span (d,4,, ...,d).
Hence (4.9.2) holds. In these orthonormal bases of U and V the operators

T and T™ represented quite simply:

Tc; =0;(T)d;, i =1,...,n, whered; = o fori>m,
(4.9.5)

T*d; =0;(T)cj, j =1,..,m, wherec; =oforj>n..
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Let
(4.9.6) = (s”);nj’ll, si; = 0fori # j, s;; = o, fori =1,...,min(m.n).

In the case m # n we call X a diagonal matrix with the diagonal o1, ..., Omin(m,n)-
Then in the bases [d,,...,d,,] and [c,, ...,c,] T and T™* represented by the
matrices ¥ and X7 respectively.

Lemma 4.9.2 Let [u,,...,uy], [V, ..., V] be orthonormal bases in the
vector spaces U,V over F = R, C respectively. ThenT and T* are presented
by the matrices A € F™*™ and A* € F"*™ respectively. Let U € U(m)
and V€ U(n) be the unitary matrices representing the change of base
[dy,....dm] to [uy,...,un] and [cq, ...,cy] to [Vy, ..., vy] respectively. (IfF =
R then U and V are orthogonal matrices.) Then

(4.9.7) A=UXV* e F*" U eU(m), VeU(n).

Proof. By the definition Tv; = 337" aju;. Let U = (ugp)%—y,V =
(Vjq)} g=1- Then

n n m n m m
TCq = E ’quTVj = E qu E aijui = E ’qu E aij E Uipdp.
Jj=1 Jj=1 =1 j=1 p=1

=1

Use the first equality of (4.9.5) to deduce that U*AV = X. O

Definition 4.9.3 (4.9.7) is called the singular value decomposition (SVD)
of A.

Proposition 4.9.4 LetF =R, C and denote by Ry pn 1 (F) C F™*" the
set of all matrices of rank k € [1, min(m,n)] at most. Then A € Ry, i (F)
if and only if A can be expressed as a sum of at most k matrices of rank
1. Furthermore Ry n ik (F) is a variety in F™*" given by the polynomial
conditions: Each (k+ 1) x (k+ 1) minor of A is equal to zero.

For the proof see Problem 2

Definition 4.9.5 Let A € C™*" and assume that A has the SVD given
by (4.9.7), where U = [u,,...,uy],V = [vy,...,V,]. Denote by Ay :=
Zle owvy € C™*™ for k = 1,...,rank A. For k > rank A we define
Ak =A (: Arank A)'

Note that for 1 < k < rank A, the matrix Ay is uniquely defined if and
only if o, > ogy1. (See Problem 1.)
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Theorem 4.9.6 For F = R,C and A = (a;;) € F™*" the following
conditions hold:

(4.9.8) I|A]|F = Vir A*A = Vtr AA* =
(4.9.9) All = max [14x]l. = o (4).
(4.9.10)
min = ||A = Bll2 =||A— Ak|| = ox+1(A),k=1,...,rank A — 1.
BER 1, n,k (F)

0i(A) > 0i((i,j,)pei g=1) = Tit(m-m")+(n—n")(A),
(4.9.11)
m €[l,m], n €[l,n], 1 <i; < ... <ip <m, 1<j; < ... < jpr <.

Proof. The proof of (4.9.8) is left a Problem 7. We now show the
equality in (4.9.9). View A as an operator A : C* — C™. From the
definition of ||A||2 it follows

9 x*A*Ax . 9
= ———— =M(A"A) =01(A
I|A]l2 ogféﬁn m— A ( ) =o01(4)7,
which proves (4.9.9).

We now prove (4.9.10). In the SVD decomposition of A (4.9.7) assume
that U = (u,,...,u,,) and V = (v,,...,v,). Then (4.9.7) is equivalent to
the following representation of A:

(4.9.12)

* m n * * L.
A= E oWV, Uy, .0 € R vy v € R wfuy = ViV =045, 4, =1, ...,
i=1
k L
where r = rank A. Let B =) | 0;u;V] € Ry k- Then in view of (4.9.9)

T
|A=Blla =1 oiu;vi||. = ks
k+1

Let B € Ry k- To show (4.9.10) it is enough to show that ||A — B||2 >
Ok+1- Let
W:={xeR": Bx=o}.
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Then codim W > k. Furthermore

[A-BIE > max (A-BXIF = max | xAAX 2 Mo (47°4) = o,
where the last inequality follows from the min-max characterization of
Akr1(A*A).

Let C = (aijq)zgil. Then C*C is an a principal submatrix of A*A of
dimension n’. The interlacing inequalities between the eigenvalues of A*A
and C*C yields (4.9.11) for m' = m. Let D = (aiqu);zﬁ;. Then DD* is a
principle submatrix of C'C*. Use the interlacing properties of the eigenval-

ues of CC* and DD* to deduce (4.9.11). O

We now restate the above results for linear operators.

Definition 4.9.7 Let U,V be finite dimensional vector spaces over F =
R,C. For k € Zy denote Ly(V,U) := {T € L(V,U) : rank T < k}.
Assume furthermore that U,V are IPS. Let T € L(V,U) and assume
that the orthonormal bases of [d,,...,duy],[c1,...,cn] of U,V respectively
satisfy (4.9.5). Define Ty := 0 and Ty, := T for an integer k > rank T.
Let k € [1,rank T — 1] N N. Define Ty, € L(V,U) by the equality Tp(v) =
SF i(T) (v, ¢c;)d; for any v € V.

Tt is straightforward to show that Ty € Li(V,U) and T} is unique if
and only if o (T) > ox+1(T). See Problem 8. Theorem 4.9.6 yields:

Corollary 4.9.8 Let U and V be finite dimensional IPS over F = R, C.
Let T : V — U be a linear operator. Then

(4.9.13) IT||p := Vtr T*T = Vtr TT* =
(4.9.14) [IT|l2:= max ||T%]|, =0.,(T).
XEV,[|x|[,=1
4.9.15 i T — = T), k=1,..,rank T —1.
( ) oetin T = Qll2 = o11(T) ran
Problems

1. Let U,V be finite dimensional inner product spaces. Assume that
T € L(U,V). Show that for any complex number ¢ € C o;(tT) =
|t|o:(T) for all 4.
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2. Prove Proposition 4.9.4. (Use SVD to prove the nontrivial part of the
Proposition.)

3. Let A € C™*™ and assume that U € U(m),V € V(m). Show that
0;(UAV) = 0;(A) for all i.
4. Let A € GL(n,C). Show that o1(A7!) = 0,,(A) L.
5. Let U,V be IPS inner product space of dimensions m and n respec-
tively. Assume that
U=U,9U,dimU, =m,,dim U, =m,,
V=V, 8V, dimV, =n,,dim V, =n,.
Assume that T € L(V, U). Suppose furthermore that TV, C U,, TV, C
U,. Let T; € L(V;,U;) be the restriction of T to V; for i = 1,2.

Then rank T = rank T + rank Ty and {o1(T),...,00ank T(T)} =
{Ul(Tl)w'-aUranle(Tl)}U{Ul(TQ);-~~a0—rankT2(T2)}'

6. Let the assumptions of the Definition 4.9.5 hold. Show that for 1 <
k <rank A Aj is uniquely defined if and only if o > of11.

7. Prove the equalities in (4.9.8).

8. Let the assumptions of Definition 4.9.7 hold. Show that for k£ €
[1,rank T —1]NN rank T = k and T}, is unique if and only if o (T') >
O'k_t,_l(T).

9. Let V be an n-dimensional IPS. Assume that T' € L(V) is a normal
operator. Let A\ (T),..., A, (T) be the eigenvalues of T' arranged in
the order [A(T)| > ... > |An(T)|. Show that o;(T) = |X\(T)| for

i=1,...,n.

4.10 Characterizations of singular values

Theorem 4.10.1 Let F =R, C and assume that A € F™*™. Define

(4.10.1) H(A) = L? ‘(ﬂ € Hopyn(F).

Then

Ai(H(A)) = 0i(A), Angny1-i(H(A)) = —0i(A), i =1,...,rank A,
(4.10.2)
Nj(H(A)) =0, j=rank A+1,..,n+m—rank A.
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View A as an operator A : ™ — F™. Choose orthonormal bases [d,, ...,d], [y, ..., Cp]
in F™ F™ respectively satisfying (4.9.5). Then

& G)-walt] [2 (4] wm 4]
(4.1043% 1, ..., rank A,

ker H(A) = span ((d;,,,0)",...,(d},,0)", (0,¢yp,)*, ..., (0,cy,)*), 7 = rank A.

Proof. It is straightforward to show the equalities (4.10.3). Since all
the eigenvectors appearing in (4.10.3) are linearly independent we deduce
(4.10.2). O

Corollary 4.10.2 Let F = R,C and assume that A € F™*". Let A=
Ala, 8] € FP*1 be a submatriz of A, formed by the set of rows and columns
a € Qpm, B € Qqn respectively. Then

(4.10.4) oi(A) < oi(A) fori=1,....

Forl € [1,rank A]NN the equalities 0,(A) = 0;(A),i =1,...,1 hold if and
only if there exists two orthonormal systems of I right and left singular vec-
torscy,...,c; € F*, d,,...,d; € F" satisfying (4.10.3) fori=1,...,1 such
that the nonzero coordinates vectors ¢,,...,c; and d,,...,d; are located at
the indices 3, o respectively.

See Problem 1.

Corollary 4.10.3 Let V,U be IPS over F = R,C. Assume that W
is a subspace of V. Let T € L(V,U) and denote by T € L(W,U) the

restriction of T' to W. Then oy(T) < 0y(T) for any i € N. Furthermore

0,(T) =0,(T) fori=1,...,1 <rank T if and only if U contains a subspace
spanned by the first | right singular vectors of T'.

See Problem 2.
Define by R} \ :=RU NRY. Then D C RY  is called a strong Schur
set if for any x,y € R?  ,x X'y we have the implicationy € D = x € D.

Theorem 4.10.4 Let p € N and D C ]Rp\ NRE be a regular convex
strong Schur domain. Fiz m,n € N and let 0, (D) := {A € F™*" .
op)(A) € D}, Let h : D — R be a convex and strongly Schur’s order
preserving on D. Let f : 0(,) :— R be given as hoo,). Then f is a convex
function.

See Problem 3.



200 CHAPTER 4. INNER PRODUCT SPACES

Corollary 4.10.5 Let F = R,C, m,n,p € N, ¢ € [1,00) and w; >
wy > ... > w, > 0. Then the following function

/4
FoE™N SR, f(A) = (Y wioi(A)7)e, Ae X
=1

is a convex function.

See Problem 4
We now translate Theorem 4.10.1 to the operator setting.

Lemma 4.10.6 Let U,V be finite dimensional IPS spaces with the in-
ner products (-, -yu, (-, )v respectively. Define W :=V @ U be the induced
IPS with

<(Y7X)a (V> u)>W = <y7 V>V + <Xa u>U'
Let T : V — U be a linear operator, and T* : U — 'V be the adjoint of T.
Define the operator

(4.10.5) T:W—>W, T(y,x) = (T"x,Ty).

Then T is self-adjoint operator and 1?2 =T*T ® T'T™. Hence the spectrum
of T is symmetric with respect to the origin and T has exactly 2rank T
nonzero eigenvalues. More precisely, if dim U = m,dim V = n then:

(4.10.6\(T) = =Aman_it1(T) = 0i(T), fori=1,...,rank T,
)\j(T) =0, forj=rank T+1,...,n+m —rank T.
Let{d,,...,dmin(m,n} € Fr(min(m,n), U),{c.,. .., Cmin(m,n)} € Fr(min(m,n), V)

be the set of vectors satisfying (4.9.5). Define
(4.10.7)
1 1

z; 1= ﬁ(ci;di)azm+n—i+1 = E(Cu —d;),i = 1,...,min(m,n).

Then {21, Zmin, - - - s Zmin(m,n)» Emtn—min(m,n)+1; € Fr(2min(m,n), W). Fur-
thermore Tz; = 0;(T)2;, TZm+n—it1 = —0i(T)Zman—it: fori=1,... min(m,n).
See Problem 5.
Theorem 4.10.7 Let U,V be m and n-dimensional IPS over C re-

spectively. Let T : V. — U be a linear operator. Then for each k €
[1, min(m,n)|NZ

k

> R(Tgi fi)u =

i=1

k
4.10.8 o (T) = max
( ); @ {f1 {&:

----- fr }€Fr(k,U),{g1,....81 }EFr (K, V)

k
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Furthermore Z _,0i(T) = Ele R(Tg;, f;)u for some two k-orthonormal
frames Fy = {f1,...., £k}, G = {81, .-, 8k} if and only span ((g1,f1), ..., (8K, fk))
is spanned by k eigenvectors of T' corresponding to the first k eigenvalues

of T

Proof. Assume that {fi,....,fy} € Fr(k,U),{g,,...,8} € Fr(k, V).
Let w; := ﬁ(gi,fi),i =1,...,k. Then {w,,...,wi} € Fr(k,W). A
straightforward calculation shows Zle(fwi,wz)w = ZiZI R(Tg;i, f)u
The maximal characterization of Zf 1 Ai(T), (Theorem 4.4.8), and (4.10.6)
yield the inequality Zle oi(T) > Z L R(Tg;, £;)u for k € [min(m,n)NZ.
Let ¢y s Cmingm,n)» das - -+ Amin(m,n) satlbfy (4.9.5). Then Lemma 4.10.6
yields that Y2¥ | 03(T) = Zle R(Tc;,d;)y for k € [min(m,n) N Z. This
proves the first equality of (4.10.8). The second equality of (4.10.8) is
straightforward. (See Problem 6).)

Assume now that Z _,0(T) = El L R(Tg;, f;)u for some two k-
orthonormal frames Fy, = {f1,....,fi},Gr = {g1,...,8k}. Define w,,..., wy
as above. The above arguments yield that Zf;l (Tw;, wi)w = Zf (D).
Theorem 4.4.8 yields that span ((g1,f1), .- -, (8, fk)) is spanned by k eigen-
vectors of T corresponding to the first k eigenvalues of T. Vice versa,
assume that {f1,...,fx} € Fr(k,U),{g,,...,gx} € Fr(k, V) and
span ((g1,f1), ..., (g, fk)) is spanned by k eigenvectors of T corresponding
to the first k eigenvalues of T. Define {w,,...,w;} € Fr(W) as above.
Then span (w,, ..., wy) contains k linearly independent eigenvectors cor-

responding to the the first k eigenvalues of T. Theorem 4.4.8 and Lemma
4.10.6 yield that o;(T) = Y5 (Twi, wi)w = S0, R(Tg;, f)u. O

Theorem 4.10.8 U,V be m and n dimensional IPS spaces. Assume
that Let S, T : V — U be linear operators. Then

min(m,n)
(4.10.9) Rtr(ST) < > 0i(S)au(T).

i=1

Equality holds if and only if there exists two orthonormal set {d,, ..., dmin(m’n)} S
Fr(min(m, n), U),{ci, ..., Cmin(m,n)} € Fr(min(m,n), V), such that

(4.10.10)

SCi = O’l(S)dz,Tcl = O'Z(T)dz, S*dl = O'i(S)Cz,T*dl = O'i(T)Ci,Z‘ =1,..., min(m,n).

Proof. Let A, B € C"*™. Then
tr B*A = tr AB*. Hence 2R tr AB* = tr H(A)H (B). Therefore 2R tr S*T =
tr ST. Use Theorem 4.8.1 for S, and Lemma 4.10.6 to deduce (4.10.9).
Equality in (4.10.9) if and only if tr ST = S>7" X (S)\i(T).
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Clearly, the assumptions that {d,, ..., dmin(m,n)} € Fr(min(m,n), U),
{c1, .- Cmin(m,n) } € Fr(min(m,n), V), and the equalities (4.10.10) imply
equality in (4.10.9).

Assume equality in (4.10.9). Theorem 4.8.1 and the definitions of ST
yields the existence {d., ..., dmin(m,n)} € Fr(min(m,n), U), {c.,..., Cminm,n)} €
Fr(min(m,n), V), such that (4.10.10) hold. O

Theorem 4.10.9 Let U and V be finite dimensional IPS over F =
R,C. Let T : V — U be a linear operator. Then

4.10.11 i T— -
( ) oetin I|IT - Ql|r

Furthermore ||T — Ql|lr = Zir;gl;Tl a2(T) for some Q € Ly(V,U),k <
rank T, if and only there Q = Ty, where Ty, is defined in Definition 4.9.7.

Proof. Use Theorem 4.10.8 to deduce that for any @ € L(V,U) one
has

IT - Ql|% =tr T*T — 2Rtr Q*T + tr Q*Q >

rank T k k
> o0 =23 ai(D)a(Q)+ ) _oi(@) =
k - 7‘_1rank T 7lr;rllk T
D (0T =@+ Y i (T) = Y XD
i=1 i=k+1 i=k+1

Clearly ||T — Tx||% = Zzir}f_g 02(T). Hence (4.10.11) holds. Vice versa if

Q € Ly(V,U) and ||T — Q||% = Zfirtg o?(T) then the equality case in
Theorem 4.10.8 yields that @ = Tj. O

Corollary 4.10.10 Let F =R, C and A € F™*™. Then

(4.10.12) - min _ ||[A - B||lr = k=1,..rank A —1.

ERm,n.k(F)

Furthermore ||A — B||r = Zzir;ﬂk_s_? 02(A) for some B € Ry i(F), k <
rank A, if and only there B = Ay, where Ay is defined in Definition 4.9.5.



4.10. CHARACTERIZATIONS OF SINGULAR VALUES 203

Theorem 4.10.11 Let F =R, C and A € F™*"™. Then

J k+j
410.13 min oi(A— B) = o5(A),
(410.13) sy DA B) = 3
j=1,..,min(m,n) —k, k=1,...,min(m,n) — 1.

Proof. Clearly, for B = Aj we have the equality 25:1 0;(A—B) =
Zfi,gﬂ 0i(A). Let B € Ryyni(F). Let X € Gr(k,C") be an subspace
which contains the columns of B. Let W = {(07,x")T € F"*" x € X}.
Observe that for any z € W+ one has the equality z*H((A — B))z =

z*H(A)z. Combine Theorems 4.4.9 and 4.10.1 to deduce Zle o,(B—A) >
S i(A). 0

Theorem 4.10.12 Let V be an n-dimensional IPS over C. Let T :
V — V be a linear operator. Assume the n eigenvalues of T Xy (T), ..., An(T)
are arranged the order |\ (T)| > ... > | A (T)|. Let A(T) := (M (D)], - .., | M (T)]),
o(T) = (01(T),...,0n(T)). Then Ae(T) X o(T). That is

k

k
(4.10.14) DTN oi(T), i=1,...,n.

=1

Furthermore, Zle |Xi(T)] = Zle o;(T) for some k € [1,n]|NZ if and only
if the following conditions are satisfied. There exists an orthonormal basis
Xy,...,Xn of V such that:

1. Tx; = N(T)xi, T*x; = \i(T)x; fori=1,... k.

2. Denote by S : U — U the restriction of T' to the invariant subspace
U =span (Xgt1,---,Xn). Then ||S||2 < [Ae(T)].

Proof. Use Theorem 4.2.12 to choose an orthonormal basis g, ..., g,
of V, such that T is represented by an upper diagonal matrix A = [a;;] €
C™*™ such that a;; = N(T),i = 1,...,n. Let ¢ € C,|e;| = 1 such that
EN(T) = |X\(T)| for i = 1,...,n. Let S € L(V) be presented in the basis
g,...,8n by a diagonal matrix diag(ey, ..., €k, 0,...,0). Clearly, 0;(S) =1
fori=1,...,kand 0;(S) =0fori = k+1,...,n. Furthermore, Rtr S*C =
Zle [A;(T)|. Hence Theorem 4.10.8 yields (4.10.14).

Assume now that Zle I\(T)| = Zle 0;(T). Hence equality sign holds
in (4.10.9). Hence there exists two orthonormal bases {c,,...,cn},{d;,...,dn}
in V such that (4.10.10) holds. It easily follows that {c,,..., ¢}, {d,,...,ds}



204 CHAPTER 4. INNER PRODUCT SPACES

are orthonormal bases of W := span (g,,...,8;). Hence W is an in-
variant subspace of T and T*. Hence A = A; @ Ao, i.e. A is a block
diagonal matrix. Thus A4; = (aij)f’jzl € CHF Ay = (aij)ij—ki1 €

C=k)x(n=k) represent the restriction of T' to W, U := W, denoted by
T; and Ty respectively. Hence o;(Ty) = 0;(T) for i = 1,..., k. Note that
the restriction of S to W, denoted by Sy is given by the diagonal matrix
Dy := diag(ey,...,ex) € U(k). (4.10.10) yield that S;'Tic; = 04(T)c; for
i =1,....kie o1(T),...,01(T) are the eigenvalues of S;'T;. Clearly
S’flTl is presented in the basis [g,,. .., gk] by the matrix DflAl, which is

a diagonal matrix with |A1(T)]|,...,|Ax(T)| on the main diagonal. That is
STy has eigenvalues [A(T)], ..., | (T)|. Therefore o;(T) = |\;(T)| for
i=1,...,k. Theorem 4.9.6 yields that
k k k k
trAT AL =Y ag? =Y of(A1) =Y oF(T1) =D [N
ij=1 i=1 i=1 i=1

As M (T),..., \(T) are the diagonal elements of Ay is follows from the
above equality that A; is a diagonal matrix. Hence we can choose x; = g;
for ¢ = 1,...,n to obtain the part I of the equality case.

Let Tx = Ax where ||x|| = 1 and p(T) = |A|. Recall ||T||2 = o1(T),
where o1(T)? = M\ (T*T) is the maximal eigenvalue of the self-adjoint
operator T*T. The maximum characterization of A\(T*T) yields that
A2 = (Tx, Tx) = (T*Tx,x) <\, (T*T) = ||T||2. Hence p(T) < ||T|2-

Assume now that p(T) = ||T||2. p(T) = 0 then ||T|]2 = 0 = T =0,
and theorem holds trivially n this case. Assume that p(7) > 0. Hence
the eigenvector x, := x is also the eigenvector of T*T corresponding to
M(T*T) = |M?. Hence |A\?x = T*Tx = T*(A\x), which implies that
T*x = Ax. Let U = span (x)* be the orthogonal complement of span (x).
Since T'span (x) = span (x) it follows that 7*U C U. Similarly, since
T*span (x) = span (x) TU C U. Thus V = span (x) @ U and span (x), U
are invariant subspaces of T and T*. Hence span (x), U are invariant sub-
spaces of T*T and TT*. Let T1 be the restriction of 7" to U. Then 7777 is
the restriction of T*T'. Therefore ||T1||2 = A\ (T1 * T1) > M (T*T) = ||T|3.
This establishes the second part of theorem, labeled (a) and (b).

The above result imply that the conditions (a) and (b) of the theorem
yield the equality p(T') = ||T|2. O

Corollary 4.10.13 Let U be an n-dimensional IPS over C. Let T :
U — U be a linear operator. Denote by |N(T)| = (|A\1(T)|, ..., [Mn(T)])T the
absolute eigenvalues of T, (counting with their multiplicities), arranged in
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a decreasing order. Then |\(T)| = (01(T), ...,on(T))T if and only if T is a
normal operator.

Problems

1. Let the assumptions of Corollary 4.10.2 hold.

(a)
(b)

Since rank A < rank A show that the inequalities (4.10.4) reduce

to 0i(A) = 0;(A) = 0 for i > rank A.

Since H(A) is a submatrix of H(A) use the Cauchy interlacing
principle to deduce the inequalities (4.10.4) fori = 1,...,rank A.
Furthermore, if p’ := m — #a,q' = n — # then the Cauchy in-
terlacing principle gives the complementary inequalities o;(A) >
Oitp+q (A) for any i € N.

Assume that 0;(A) = 0;(A4) for i = 1,...,] <rank A. Compare
the maximal characterization of the sum of the first k eigenvalues

of H(A) and H(A) given by Theorem 4.4.8 for k = 1,...,1 to
deduce the last part of Corollary (4.10.2).

2. Prove Corollary 4.10.3 by choosing any orthonormal basis in U, an
orthonormal basis in V whose first dim W elements span W, and
using Problem 1.

3. Combine Theorems 4.7.15 and 4.10.1 to deduce Theorem 4.10.4.

4. (a)
(b)

Prove Corollary 4.10.5

Recall the definition of a norm on a vector space over F = R, C
7.4.1. Show that the function f defined in Corollary 4.10.5 is a
norm. For p = min(m,n) and wy = ... = w, = 1 this norm is
called the ¢ — Schatten norm.

5. Prove Lemma 4.10.6.

6. Under the assumptions of Theorem 4.10.7 show.

(a)

> R(Tgi fi)u =
=1

k
: > T fi)ul-

i=1

max
{f1,....fr }€Fr(k,U),{g:1,....8% }€Fr(k,V)

max
{f1,....fx }€Fr(k,U),{g1,....8k }€Fr(k,V



206 CHAPTER 4. INNER PRODUCT SPACES

k k
w;0; T) = max 'lUZ?R T iafi .
; (T) {fl,.4.,fk}EFr<k,U>,{g1,...,gk}EFr(k,V); (Tei fiju

7. Under the assumptions of Theorem 4.10.7 is it true that that for & > 1

k k
W(T) = ma Tt ||v.
;0( ) {fl,.u,fk}eﬁr(w)z” v

i=1
I doubt it.

8. Let U,V be finite dimensional IPS. Assume that P,7 € L(U,V).
Show that Rtr(P*T) > — S0 5 (8)(T). Equality holds if

i=1
and only if S = —P and T satisfy the conditions of Theorem 4.10.8.

4.11 Moore-Penrose generalized inverse

Let A € C™*™. Then (4.9.12) is called the reduced SVD of A. It can be
written as

A=U,% V' r=rank A, ¥, :=diag(o1(A),...,0:(A)) € S;(R),
(4.11.1)
U, = [u17~ . ~aur] € merv‘/r = [V17 s 7V7’] € (CnXTvU:Ur = Vr*vr =1I,.
Recall that
AA*I.IZ' = 0'7;(14)2111', A*AVZ = Ui(A)QVZ',
1 1

MA u;,u; = O_i(A)Avi,zzl,...,r.

v; =

Then
(4.11.2) Al =V, 2 U e cvim

is the Moore-Penrose generalized inverse of A. If A € R™*™ then we assume
that U € R™*" and V € R"*", i.e. U,V are real values matrices over the
real numbers R.

Theorem 4.11.1 Let A € C™*"™ matriz. Then the Moore-Penrose
generalized inverse At € C"*™ satisfies the following properties.

1. rank A = rank AT,
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2. ATAAT = A, AATA = A, A*AAT = ATAA* = A*.

3. ATA and AAT are Hermitian nonnegative definite idempotent matri-
ces, i.e. (ATA)?2 = ATA and (AA")? = AAT, having the same rank as
A.

4. The least square solution of Ax = b, i.e. the solution of the system
A*Ax = A*b, has a solutiony = A'b. This solution has the minimal
norm ||y||, for all possible solutions of A*Ax = A*b.

5. Ifrank A = n then At = (A*A)~'A*. In particular, if A € C"*" is
invertible then At = A=1,

To prove the above theorem we need the following proposition.

Proposition 4.11.2 Let E € C*™ G € C™*". Then
rank EG < min(rank E,rank G). Ifl = m and E is invertible then rank EG =
rank G. If m = n and G is invertible then rank EG = rank E.

Proof. Let e,,...,e,, € Cl,g,,...,g, € C™ be the columns of
E and G respectively. Then rank E = dim span (e,,...,e;). Observe
that EG = [Eg,,...,FEg,] € C*". Clearly Eg; is a linear combina-
tion of the columns of E. Hence Eg; € span (e,,...,e;). Therefore
span (Eg,,...,Eg,) C span (e,,...,e;), which implies that rank EG <
rank E. Note that (EG)T = GTET. Hence
rank EG = rank (EG)T < rank GT = rank G. Thus
rank EG < min(rank E,rank G). Suppose E is invertible. Then rank EG <
rank G = rank E7!1(EG) < rank EG. Hence rank EG = rank G. Similarly
rank EG = rank E if G is invertible. O

Proof of Theorem 4.11.1.

1. Proposition 4.11.2 yields that rank AT = rank V,X-1U* < rank ©71U* <
rank ¥-! = r = rank A. Since X, = V*A'U, Proposition 4.11.2
yields that rank At > rank E;l =r. Hence rank A = rank Af.

2. AAT = (U2, V)V, 571U = U, S, 51U = U, U*. Hence

AATA = (UUNU, 2, V) =U, BV = A.

Hence A*AAT = (V,.X,U})(U,U¥) = A*. Similarly ATA = V,V* and
ATAAT = AT ATAA* = A~
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3. Since AA" = U,U; we deduce that (AA")* = (U, U)* = (U})*U} =

AAT ie. AATis Hermitian. Next (AAT)? = (U,U})? = (U.U)(UU})
(U, U}) = AAT, i.e. AA! is idempotent. Hence AA' is nonnegative
definite. As AA' = U,I.U¥, the arguments of part 1 yield that
rank AAT = r. Similar arguments apply to ATA =V, V*.

Since A*AAT = A* it follows that A*A(A'b) = A*b, i.e. y = Afb is
a least square solution. It is left to show that if A*Ax = A*b then
||x|| > ||ATb|| and equality holds if and only if x = ATb.

We now consider the system A*Ax = A*b. To analyze this system
we use the full form of SVD given in (4.9.7). It is equivalent to
(VETUS)(UXV*)x = VXTU*b. Multiplying by V* we obtain the
system ST%(V*x) = XT(U*b). Let z = (z,,...,2,)T := V*x,

c = (c,...,c,,)T := U*b. Note that z*z = x*VVx = x*x, i.e.

llz|]] = ||x||. After these substitutions the least square system in
21,..., 2, variables is given in the form o;(A)%z; = o;(A)c; for i =
1,...,n. Since g;(A) = 0 for ¢ > r we obtain that z; = ﬁci
for ¢ = 1,...,r while z,.41,..., 2, are free variables. Thus ||z||> =
> ics 507 T 2izrgs |7i]*. Hence the least square solution with the
minimal length ||z|| is the solution with z; = 0 for i = r +1,...,n.

This solution corresponds the x = Afb.

Since rank A*A = rank A = n it follows that A*A is an invertible
matrix. Hence the least square solution is unique and is given by
x = (A*A)"*A*b. Thus for each b one has (A*A)~'A*b = Afb,
hence AT = (A*A)~1A*.

If Ais an n x n matrix and is invertible it follows that (A*A)~1A* =
AN AT A = AL O

Problems

1. P € C™"is called a projection if P2 = P. Show that P is a projection

if and only if the following two conditions are satisfied:

e FEach eigenvalue of P is either 0 or 1.

e P is a diagonable matrix.

2. P € R™"™" ig called an orthogonal projection if P is a projection and

a symmetric matrix. Let V C R”™ be the subspace spanned by the
columns of P. Show that for any a € R",b € V ||]a—b|| > ||]a — Pa]]
and equality holds if and only if b = Pa. That is, Pa is the orthogonal
projection of a on the column space of P.
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3. Let A € R™*™ and assume that the SVD of A is given by (4.9.7),
where U € O(m,R),V € O(n,R).

(a) What is the SVD of AT?
(b) Show that (A7) = (ANT.
(c) Suppose that B € R™*™, Is it true that (BA)T = ATBT? Justify!

4.12 Approximation by low rank matrices

We now restate Theorem 4.10.8 in matrix terms. That is we view A, B €
C™*™ as linear operators A, B : C* — C", where C™,C" are IPS equipped
with the standard inner product.

Theorem 4.12.1 Let A, B € C™*", and assume that 01(A) > 02(A) >
. > 0,01(B) > 02(B) > ... > 0, where 0;(A) = 0 and ¢;(B) = 0 for
i >rank A and j > rank B respectively. Then

(4.12.1) —Zal oi( <§RtrAB*<ZoZ oi(B).

i=1

Equality in the right-hand side holds if and only if C*,C™ have two or-
thonormal bases [c,,...,cy),[dy,...,dm] such that (4.10.10) is satisfied
for T = A and S = B. Equality for the left-hand side holds if and only
if C*,C™ have two orthonormal bases [c,,...,cy],[d:,...,dy] such that
(4.10.10) is satisfied for T = A and S = —

Theorem 4.10.9 yields:

Corollary 4.12.2 For A € C™*" Let Ay be defined as in Definition
4.9.5. Then minger,, , ) [|A =Bl = [|[A=Ax|]> = 3270 1 0i(4)%. Ay
is the unique solution to this minimal problem if and only if 1 < k < rank A
and o (A) > op+1(A).

We now give a generalization of Corollary 4.10.9. Let A € C™*™ and
assume that A = UaX 4V} be the SVD of A given in (4.9.7). Let Uy =
[u, u, ...uy],Va =[v, v, ...v,] be the representations of U,V in terms
of their m,n columns respectively. Then

rank A rank A
(4.12.2) PA’left = E llill;!K S (mem7 PA,right = E ViV;( S Cnxn)

i=1 =1

are the orthogonal projections on the range of A and A*, respectively.
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Theorem 4.12.3 Let A € C"™*" C € C™*P R € C?*" be given. Then
X = CT(PC71eftAPR7right)kRT is a solution to the minimal problem

(4.12.3) min  [|A— CXR||r,
XeR(p,q,k)

having the minimal || X ||p. This solution is unique if and only if either k >
rank Pc ies APR right 071 < k < rank Pc 1ot APR right and o, (Po iets APR right) >
k1 (Po,1eft APR right ) -

Proof. Assume that C' = UcXc V3, R = UrXgrVy are the SVD de-
composition of C, R, respectively. Recall that the Frobenius norm is in-
variant under the multiplication from the left and the right by the corre-
sponding unitary matrices. Hence ||A — BXC||p = ||A — ©c XX g||, where
A= UéAVR,X = VAXUpg. Clearly, X and X have the same rank and
the same Frobenius norm. Thus it is enough to consider the minimal prob-
lem ming gz, 0 1) ||A — ¢ XYg||r. Let s = rank C,t = rank R. Clearly
if C or R is a zero matrix, then X = 0,4 is the solution to the minimal
problem (4.12.3). In this case either Pc efs Or Prright are zero matrices,
and the theorem holds trivially in this case.

It is left to consider the case 1 < s,1 < t. Define C; := diag(c1(C),...,0s(C)) €
C**%, Ry := diag(o1(R),...,0¢(R)) € C***. Partition A and X to 2 x 2
block matrices A = [A;;]?,_; and X = [X;;]?,_,, where A;;, X1y € C*.

(For certain values of s and ¢, we may have to partition A or X to less than
2 x 2 block matrices.) Observe next that Z := Yo X¥p = [Zij]zz,j:p where
Z11 = C1X11 Ry and all other blocks Z;; are zero matrices. Hence

1A=Z|[% = [[An—Zullp+ D AllE > [An—(Awkllz+ D (14417
2<it <4 2<itji<d

Thus X = [Xijﬁ,jzlv where X1; = Cfl(Au)kal and X;; = 0 for all
(i,) # (1,1) is a solution ming ., , 1) ||A—XcXYg||r with the minimal
Frobenius form. This solution is unique if and only if the solution Z;; =
(A11) is the unique solution to miny, , er (s,¢) [|A11—Z11|| . This happens
if either k£ > rank Ayq or 1 < k < rank Ay; and o (A1) > ogr1(A11). A
straightforward calculation shows that X = ETC(ch’leftfngR,right)kEk.
This shows that X = CT(PC)leftAPR,right)kRT is a solution of (4.12.3)
with the minimal Frobenius norm. This solution is unique if and only
if either & > rank PC,leftAPR,right or 1 < k < rank PC,leftAPR,right and
0k (Pciett APR right) > 0k41(Po lett APR right )- o
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Corollary 4.12.4 Let the assumptions of Theorem 4.12.3 hold. Then
X = CTAR? is the unique solution to the minimal problem miny ccpxq | A—
CXR||p with the minimal Frobenius norm.

Theorem 4.12.5 Leta,,...,a, € C" and k € [1,m — 1] NN be given.
Let A = [a,...a,] € C™*"™. Denote by Ly € Gr(k,C™) a k-dimensional
subspace spanned by the first k left singular vectors of A. Then

n n
(4.12.4) min Y " min [ja; — b;[[2 =) min |la; — by[|2.
LeGr(k,Cm) = b;c€L = b;ELy

Proof. Let L € Gr(k,C™)and b,,...,b, € L. Then B:=[b,...b,] €
R(m,n, k). Vice versa, given B € R(m,n, k) then the column space of B
is contained in some L € Gr(k,C™). Hence Y ., ||a; — b;||2 = ||A — BJ|2.
Corollary 4.12.2 implies that the minimum stated in the left-hand side of
(4.12.4) is achieved by the n columns of Ag. Clearly, the column space of
A is equal to Ly. (Note that Ly is not unique. See Problem 3.) O

Problems

1. Let A € Sy(R) and assume the A = QTAQ, where Q € O(n,R) and
A = diag(a,. .., a,) is a diagonal matrix, where |aq| > ... > |a,| >
0.
(a) Find the SVD of A.
(b) Show that o1(A4) = max(A\1(A4), |A\(A)]), where A\ (4) > ... >
An(A) are the n eigenvalues of A arranged in a decreasing order.

2. Let k,m,n be a positive integers such that k¥ < min(m,n). Show
that the function f: R™*™ : [0,00) given by f(A) = Zle o;(A) is a
convex function on R™*",

3. Show that the minimal subspace for the problem (4.12.4) is unique if
and only if o1,(A) > or+1(A).

4. Prove Corollary 4.12.4.

4.13 C(CU R-approximations

Let A = (ai);2, € C™*™, where m,n are big, e.g. m,n > 105. Then
the low rank approximation of A given by its SVD has prohibitively high
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computational complexity and storage requirements. In this section we
discuss a low rank approximation of A given by of the form CUR, where
C € R™*P R € R?*™ are obtained from A by reading p, ¢ columns and rows
of A, respectively. If one chooses U as the best least squares approximation
given by Corollary 4.12.4 then U = CtAR'. Again, for very large m,n this
U has too high computational complexity. In this section we give different
ways to compute U of a relatively low computational complexity.
Let

I={1<ai<...<aa<m}C(m), J={1<p<...<fp<n}C(n)

be two nonempty sets of cardinality ¢, p respectively. Using the indices in
I, J, we consider the submatrices

AIJ = (aakﬁz)Z:}Z:l € qupa
(4131) R = A1<n> — (aakj)‘]i:?=1 c (Cq><7l7

C = Apmys = (aip,); L, € C™P.

Thus, C = A,y and R = Aj,y are composed of the columns in J and
the rows I of A, respectively. The read entries of A are in the index set

(4.13.2) S = (m) x (M\(((M)\I) x ((n)\J)),  #8 =mp+qn - pq.

We look for a matrix F' = CUR € C™*", with U € CP*1 still to be
determined. We determine U,y as a solution to the least square problem
of minimizing »; ;e lai; — (CUR);;|?, ie.,

4.13.3 [ i i — (CUR);|%.
( ) pt argUg(lclngq(”Z);SmJ ( )J|

It is straightforward to see that the above least squares is the least squares
solution of the following overdetermined system

(4.13.4)TU = A, T = (t(i,j)(k,l)) S (C(mp—"_qn_pQ)qu, L) (k) = Gikaly,
U = (u@p) € CP, A = (agy) € C™PHP, (i) €S, (k,1) € (p) x ().
Here U, A is viewed as a vector whose coordinates are the entries of U and

the entries of A which are either in C' or R. Note that T is a corresponding
submatrix of A ® A.

Theorem 4.13.1 Let A € C™*™, and let I C (m), J C (n) have car-
dinality q and p, respectively. Let C' = Apy; € C™*P and R = Appy €
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CP*™ be as in (4.15.1) and suppose that Ary is invertible. Then the overde-
termined system (4.13.4) has a unique solution U = AI_JI, i.e., the rows in
I and the columns in J of the matrix C’AI_}R are equal to the corresponding
rows and columns of A, respectively.

Proof. Forany I C (m), J C (n), with #I = q, #J = p, and U € C™*"
we have the identity

(4.13.5) (ApmysUArmy) 15 = ArsU Az

Hence the part of the system (4.13.4) corresponding to (CUR)r; = Ary
reduces to the equation

(4.13.6) ArUAr = Apy

If A;; is a square matrix and invertible, then the unique solution to this
matrix equation is U = AI_J1 Furthermore

(Apmy s A77 Aty 1my = Ars AT Aty = Artays
(Aumy s AT A1y imys = Aimy s AT ALy = Apny -

This results extends to the general nonsquare case.

Theorem 4.13.2 Let A € C™*", and let I C (m), J C (n) have
cardinality q and p, respectively. Let C' = Ay y € C™*P and R = Appy €
CP*™ be asin (4.13.1). ThenU = A}J is the minimal solution (in Frobenius
norm) of (4.13.3).

Proof. Consider the SVD decomposition of Ay
Ay =WIV*, W e C9%, V € CP*P, © = diag(oy,...,0,,0,...,0) € R?,

where W,V are unitary matrices and o1,...,0, are the positive singular
values of Ar;. In view of Theorem 4.13.1 it is enough to assume that
max(p,q) > r. W.lo.g. we may assume that I = (q), J = (p). Let

W, = < w qu(m—q) > e Ccmxm
O(m—q)xq Im—q
O(R—p)xp Ihp

Replace A by A; = W1 AV)*. It is easy to see that it is enough to prove
the theorem for A;. For simplicity of the notation we assume that A; = A.
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That is, we assume that A7y = %, @0(q—p)x (p—r), Where ¥, = diag(oy,...,0;)
and r = rank Arj. For U € CP*? denote by U, € RP*? the matrix ob-
tained from U by replacing the last p — r rows and ¢ — r columns by rows
and columns of zeroes, respectively. Note that then CUR = CU,R and
U Nlr < ||[U||lF, and equality holds if and only if U = U,. Hence, the
minimal Frobenius norm least squares solution U of is given by U = U,.
Using the fact that the rows r+1,...,qg and columns 7+ 1,...,p of CUR
are zero it follows that the minimum in (4.13.3) is reduced to the minimum
on & = (m) x {ryU(r) x (n). Then, by Theorem 4.13.1 the solution to the
minimal Frobenius norm least square problem is given by %1. O

For a matrix A define the entrywise mazimal norm

(4137) ||A||oo,e =  max |aij|7 A= (aij) e Ccmxn,
i€(m),j€(n)

Theorem 4.13.3 Let A € C™*" p € [1,rank A] N N. Define

4.13.8 = det A > 0.
( ) Hp Ic<m>,JCI%}3?;£I:#J:p| ¢ IJ|

Suppose that
(4.13.9) |det Ary| > dpap, 6 € (0,1],1 C (m),J C (n), #I =#J = p.
Then for C, R defined by (4.13.1) we have

p+1

(4.13.10) |A — CA;}R||ooe < opi1(A).

Proof. We now estimate |a;; — (CA;;R);;| from above. In the case
p = rank A, ie. o,41(A) = 0, we deduce from Problem 1 that a;; —
(CA;;R)ij = 0. Assume 0,41(A) > 0. By Theorem 4.13.1 a;;—(C A} R)ij =
0 if either i € I or j € J. It is left to consider the case i € (m)\I,7 € (n)\J.
Let K =TU{i},L=JU{j}. Let B= Agy. If rank B = p then Problem
1 yields that B = BKJA;}B[K. Hence a;; — (CA;}R)U = (0. Assume that
det B # 0. We claim that

det B
det A[J-

(4.13.11) aij — (CAp R)y; = £

It is enough to consider the case where I = J = (p),i=j=p+ 1K =L =
(p +1). In view of Theorem 4.13.1 B — BKJAI_}BJL = diag(0,...,0,?),
where t is equal to the left-hand side of (4.13.11). Multiply this ma-
trix equality from the left by B~1 = (bst’,l)fjjil. Note that the last
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row of B~'Bgr is zero. Hence we deduce that bip+1)(p+1),—1t = 1, i.e
t= b@il)(p+1)771. Use the identity B~! = (det B)~!adj B to deduce the
equality (4.13.11).

We now estimate o1(B~!) from above. Note that each entry of B~ =
(det B)~'adj B is bounded above by |det B|~!1,. Hence oy (B~1) < &b

|det B] *
Recall that o1 (B~ = 0,,41(B)~!. Thus

|det B| |det B| (p+ 1)opt1(B)
< 1 B < .
[y — (p+ )UP+1( ) = ‘det A[J‘ — 5

Since B is a submatrix of A we deduce 0p41(B) < opy1(4). O

Problems

1. Let A € C™*" rank A = r. Assume that I C (m),J C (n),#I =
#J = r. Assume that det A;; # 0. Show that A = CA;}R.

4.14 Some special maximal spectral problems

Let S € V. Then the convex hull of S, denoted by conv S, is the minimal
convex set containing S. Thus II,, := conv{e,,...,e,} C R", wheree,,...,e,
is the standard basis in R™, is the set of probability vectors in R"™.

Assume that C C V is convex. A point e € C is called an extremal
point if for any x,y € C such that e € [x,y] the equality x =y = e holds.
For a convex set C' denote by ext C' the set of the extremal points of C. It
is known that ext convS C S [Roc70] or see Problem 1.

Definition 4.14.1 Let S C V. For each j € N let

j
conv;_1S={ze€V:z= Z}%‘Xi, for all p = (p., ...,pj)T €lIl;, x,,...,%x; € S}.

i=1

Let C be a convex set in V. Assume that ext C # 0. Then Fj_1(C) =
convj_1(ext C) is called j — 1 dimensional face of C' for any j € N.

Suppose that S is a finite set of cardinality N € N. Then convS =
convn_195, see Problem 1, and conv S is called a finitely generated convex
set. Note that Fy(S) = S. The following result is well known [Roc70]. (See
Problem 1 for finitely generated convex sets.)
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Theorem 4.14.2 Let V be a vector space over real of finite dimension.
Let C C 'V be a nonempty compact convex set. Then convext C' = C. Let
d := dim C. Then Fq(ext C) = C. More general, for any S C V let
d = dim convS. Then F4(S) = conv S.

Throughout this book we assume that V is finite dimensional, unless stated
otherwise. In many case we shall identify V with R?. Assume that the
C C V is a nonempty compact convex set of dimension d. Then the
following facts are known. If d = 2 then ext C is a closed set. For d > 3
there exist C' such that ext C' is not closed.

The following result is well known (see Problem 3):

Proposition 4.14.3 Let S C V and assume that f : convS — R is a
convez function. Then
sup f(x) = sup f(y).
xEconv S yEeS

If in addition S is compact and f is continuous on convS then one can
replace sup by max.

See Problem 4 for a generalization of this proposition.

Corollary 4.14.4 Let V be a finite dimensional IPS over F = R,C.
Let S C S(V). Let f :convS — R be a convex function. Then
sup f(A) =sup f(B).
Ag€conv S BeS

The aim of this section to give a generalization of this result to certain
spectral nonconvex functions f.

Definition 4.14.5 For x = (2,,...,2,) ,y = (yh...,y@)—r e R" let
x<y <= x;<vy;, i=1,...n. Let D CR" and f: D — R. f is called
a nondecreasing function on D if for any x,y € D one has the implication

x<y=[f(x)<fy)

Theorem 4.14.6 Let V be an n-dimensional IPS over R. Let p €
[L,n] "N and D C R be a conver Schur set. Let D, be the projec-
tion of D on the first p coordinates. Let h : D, — R and assume that
[ A7H(D) — R be the spectral function given by A — h(A)(A)), where
Ap)(A) = (AL(A), ..., \p(A))T. Let S € A7H(D). Assume that h is nonde-
creasing on Dy. Then

(4.14.1) sup f(A) = sup f(B),

A€conv S BECOHV(Z,;d)_lS

and this result is sharp.
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Proof. Since dim convS < dim S(V) = (”;Ll) Theorem 4.14.2 implies
that it is enough to prove the theorem in the case S = T := {A4, ..., Ax},
where N < (";1) + 1. Observe next that since D is a convex Schur set and
S c A71(D) it follows that convS C A~1(D) (Problem 6).

Let A € convT. Assume that x,,...,x, are p-orthonormal eigenvectors
of A corresponding to the eigenvalues A1 (A), ..., A\,(A4). For any B € S(V)
let B(x,,...,%p) := ((Bxi;%;))7 j—, € Sp(R). We view S,(R) as a real vec-
tor space of dimension (p-51>_ Let T := {A1 (X1, s Xp), ooy AN (X1y ooy Xp) } C
S,(R). It i straightforward to show that for any B € convT one has
B(x,,...,x,) € convT'. Let T the restriction of convT’ to the line in
Sp(R)

{X = (inj) S SP(R) DT = AZ(A)(S”, for i +7> 2}.

Clearly A(x,,...,x,) € T. Hence T = [C(Xy1, .y Xp), D(X4, ..., Xp)] for some
C,D € convT. It is straightforward to show that C, D € CONY (p41y_y T.
See Problem 1. Hence max ¢ z11 = max((Cx,,X,), (Dx,,x,)). Without
loss of generality we may assume that the above maximum is achieved
for the matrix C. Hence C(x,,...,X,) is a diagonal matrix such that
M(C(xy, . xp) > A (A) and A (C(x4,...,Xp))) = Ni(A) for i = 2,...,p.
Let U = span (x4, ..., Xp). Since X, ...,X, are orthonormal it follows that
Ai(Q(C,U)) = N(C(x4,...,xp)) for ¢ = 1,...,p. Corollary 4.4.7 yields
that A\,)(C) > Apy(A). Since h is increasing on D we get h(A,)(C)) >
h(A(p)(A)). See Problem 7 which shows that (4.14.4) is sharp. O

Theorem 4.14.7 Let 'V be an n-dimensional IPS over C. Let p €
[1,n] NN and D C R be a conver Schur set. Let D, be the projec-
tion of D on the first p coordinates. Let h : D, — R and assume that
[+ A1 (D) — R be the spectral function given by A — h(A)(A)), where
Ap)(A) = (A1(A4), ..., \p(A))T. Let S C A71(D). Assume that h is nonde-
creasing on D,. Then

(4.14.2) sup f(A) = sup  f(B),

A€conv S BGconvp271$

and this result is sharp.

See Problems 8 for the proof of the theorem.
It is possible to improve Theorems 4.14.6 and 4.14.7 in special interesting
cases for p > 1.
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Definition 4.14.8 Let 'V be an n-dimensional IPS over F = R,C and
p € [1,n]NZ. Let A€ S(V). Then p-upper multiplicity of \,(A), denoted
by upmul(A, p), is a natural number in [1,p| such that

)\p—upmul(A,p)(A) > )\p—upmul(A,p)-‘rl(A) =..= )\p(A), where )\o(A) = 0.
For any C C S(V) let upmul(C, p) := maxaec upmul(A, p).
See Problem 14 for sets satisfying upmul(C, p) < k for any k € N.

Theorem 4.14.9 Let 'V be an n-dimensional IPS over R. Let p €
[1,n] NN and denote u(p) := upmul(conv S, p). Then

(4.14.3) sup  Ap(A) = sup Ap(B).

A€conv S Beconv ,(p)(2p—pu(p)+1) _1S
2

Proof. For u(p) = p (4.14.4) follows from Theorem 4.14.6. Thus, it
is enough to consider the case p > 1 and pu(p) < p. As in the proof of
Theorem 4.14.6 we may assume that S = {Aq, ..., AN} where N < (") +1.
Let M := {B € convS : A,(B) = maxacconvs A\p(A)}. Since A,(A4)
is a continuous function on S(V) and convS$ is a compact set it follows

that M is a nonempty compact set of convS. Let v := wP)Cp—pp)+l)
1. Assume to the contrary that the theorem does not hold, i.e. M N
conv,S = . Let M’ := {p = (ps,...,pn)" € Py : D, A € M}
Then M’ is a nonempty compact set of Py and any p € M’ at least
v + 2 positive coordinates. Introduce the following complete order on Py .
Let x = (z4,..,2n)",y = (Y1, yn)’ € RN, As in Definition 4.6.1
let X = (Z1,..,2x5) " ,¥ = (Y1, 9n) € RN be the rearrangements of
the coordinates of the vectors x and y in the nonincreasing order. Then
X K y if either x =y or X;, = y; fort = 0,....m —1 and X, < ¥
for some m € [1,n] NN. (We assume that x, = y, = o0.) Since M’
is compact there exists a maximal element p = (p,,...,pn) € M, ie.
gqe M =q<p. Let ZT:={i € (N): p; >0} Then #7 > v + 2. Let
B = Zfil piA; € convS be the corresponding matrix with the maximal
Ap on convS. Assume that x,,...,x, € V be an orthonormal basis of
V, consisting of the eigenvectors of B corresponding to the eigenvalues
A1(B), ..., A (B) respectively. Let m := upmul(B, p) < u(p). Consider the

m(2p—m+1)
2

following systems of equations in #Z unknowns ¢; € R,i € Z:

¢ =0, forie (N)\Z, Zqi =0,

€L
Zqi(Aixj,xk> =0,j=1,..,k—1, k=p,..,p—m-+1,
€L
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Zqi(Aixj,xj> = Zqi<Aixp,xp) j=p—1,.,p—m+1if m> 1.
ieT ieT

Since #I > v +2 = w +1> mm’%m“) it follows that there
exists 0 # q = (qy,...,qn) ' € RY whose coordinates satisfy the above equa-
tions. Let B(t) :== B+tC, C := Ef\il ¢;A;,t € R. Then there exists a > 0
such that for ¢t € [—a,a] p(t) := p +tq € Py = B(t) € convS. As in the
proof of Theorem 4.14.6 consider the matrix B(¢)(X4,...,x,) € Sp(R). Since
B(0)(X4, ..., Xp) = B(X4, ..., X;) is the diagonal matrix diag(A1 (B), ..., Ap(B)
the conditions on the coordinates of q imply that B(t)(xy,...,Xxp) is of
the form (diag(A(B), ..., Ap—m (B)) +tC1) @ (\p + tb)I,, for a correspond-
ing C1 € Sp_(R). Since Ap_p(B) > Ap(B) it follows that there exists
a’ € (0,a] such that

Apom (B s, ooy %)) = Ay (diag( Ay (B)s ooy Ay (B)) + £C,) >
Ap(B) + |th], Ap(B(t)) = A\p(B) +tb, for |t| < d.

Hence A\, (B(t)) > A\p(B) +tb for |t| < a’. As B(t) € convS for |t| < a’ and
Ap(B) > Ap(B(t)) for |t| < o' it follows that b = 0 and A,(B(t)) = A\,(B)
for |t| < a’. Hence p +tq € M’ for |t| < a'. Since q # o, it is impossible
to have the inequalities p — a’q < p and p + a’q < p. This contradiction
proves the theorem. |

It is possible to show that the above theorem is sharp in the case u(p) =
1 Problem 13 (d2). Similarly one can show, see Problem 10.

Theorem 4.14.10 Let 'V be an n-dimensional IPS over C. Let p €
[1,n] NN and denote u(p) := upmul(conv S, p). Then

(4.14.4) sup A (A) = sup Ap(B).

Aecconv S Beconv,(p)(2p—pu(p))—15

Problems

1. Let S C R™ be a nonempty finite set. Show
a. Let S = {x,,...,xy}. Then convS = convy_1(S).
b. Any finitely generated convex set is compact.
c. S C ext convS.

d. Let fi1,..., fmm : R® — R be linear functions and ay,...,a,, € R™.
Denote by A the affine space {x € R" : fi(x) = a;, i = 1,...,m}.
Assume that C' := conv SNA # (). Then C is a finitely generate convex



220

CHAPTER 4. INNER PRODUCT SPACES

set such that ext C' C conv,, S. (Hint: Describe C' by m+1 equations
with #S variables as in part a. Use the fact that any homogenous
system in m + 1 equations and [ > m + 1 variables has a nontrivial
solution.)

e. Prove Theorem 4.14.2 for a finitely generated convex set C' and a
finite S.

Let C be a convex set of dimension d with a nonempty ext C. Let
C’ = convext C. Show

(a) ext C' = ext C.

(b) Let d’ = dim C’. Then d’ < d and the equality holds if and only
if C=C".

(c) F;(C) C Fj4+1(C) and equality holds if and only if j > d’.

Prove Proposition 2.

Let C C V be a convex set. A function f : C — R is called concave if
—f is a convex function on C'. Assume the assumptions of Proposition
4.14.3. Assume in addition f(C) C [0,00] and g : C — (0,00) is
concave. Then

fx _ o fy)

xEconv S g(X) B yeS g(y) ’

If in addition S is compact and f,g are continuous on conv S then
one can replace sup by max.

a. Let x,y € R”. Show the implication x <y = x <y.

b. Let D C RU and assume that f : D — R is strong Schur’s order
preserving. Show that f is nondecreasing on D.

c. Let i € [2,n)NN and f be the following function on R": (z1, ..., x,) "
x;. Show that f is nondecreasing on R™ but not Schur’s order pre-
serving on RT .

Let D C R{ be a convex Schur set. Let V be an n-dimensional IPS

over F = R,C. Let S C S(V) be a finite set such that S C A=1(D).
Show that conv S C A~1(D).

a. Let A € H,, and assume that tr A = 1. Show that A,(A4) < =+ and

equality holds if and only if A = %In.

1
n

b. Let By = (Jenuntfuncnyy e § (R)for 1 <k <1<pbe
the symmetric matrices which have at most two nonzero equal entries



4.14. SOME SPECIAL MAXIMAL SPECTRAL PROBLEMS 221

at the locations (k,!) and (I.k) which sum to 1. Let @1, ...,Q(p;l) €
S, (R) be defined as follows:

Q1 :=FEn+ Ei2, Q2:=En — Eia+ Ers,...,Qp == E1 — B + Eas, ...

Q2p—3 = FE11 — Eyp_1) + Eap, .., Q(g) = En — Ep_2p+ Ep—1)ps
Q(g)+1 = E11 — E(p—l)p7 Q(g)_H = Eii; fori = 2, ey P

Let S= {Ql, . Q(p+1)} Show that %Ip € convS = COHV(p+1)7IS and
2 2
%Ip o4 conv(pgl)_QS.

c. Let S C S,(R) be defined as in b. Show that tr A = 1 for each
A € conv S. Hence
MA) = A0y =L A\ (B)
max =M\(=1,) =~ max .
A€conv S P P p P p Beconv(p;rl)728 P
d. Assume that n > p and let R; := Q; ® 0 € S,,(R), where Q; is
defined in b, for i = 1, ..., (p‘gl). Let S ={R4, ...,R(p+1)}. Show that
2

1 1
Agt}gxiffs)\p(A) N /\p(f)Ip 80) = p - 36con%1(2§1)7zs>\p(B)'

8. a. Prove Theorem 4.14.7 repeating the arguments of Theorem 4.14.6.
(Hint: Note that the condition (Bx;,x;) = o for two distinct or-
thonormal vectors x;,x; € V is equivalent to two real conditions,
while the condition (Bx;,x;) = A\;(A) is one real conditions for B €
S(V).)

b. Modify the example in Problem 7 to show that Theorem 4.14.7 is
sharp.
9. Let C = A+ +/—-1B € M,,(C),A,B € M,,(R).

a. Show C' € H,, if and only if A is symmetric and B is antisymmetric:
BT = —B.

b. Assume that C' € H,, and let Ce Mz, (R) be defined as in Problem
6. Show that C' € Szn(R) and )\gi_l(C) = /\21(0) = )\Z(C) for i =
1,...,n.

c. Use the results of b to obtain a weaker version Theorem 4.14.7
directly from Theorem 4.14.6.

10. Prove Theorem 4.14.10.

)
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11. Let F be a field and k € Z;. A = (a;5) € Mu(F) is called a 2k + 1-
diagonal matrix if a;; = 0 if [i—j| > k. (1-diagonal are diagonal and 3-
diagonal are called tridiagonal.) Then the entries aj(x41), .-+ G(n—k)n
are called the k-upper diagonal.

a. Assume that A € M, (F), n > k and A is 2k + 1-diagonal. Suppose
furthermore that k-upper diagonal of A does not have zero elements.
Show that rank A > n — k.

b. Suppose in addition to a. A € H,,. Then upmul(4, p) < k for any
p € (n).

12. Let V be an n-dimensional IPS over F =R, C. Let S C S(V) and p €
(n). Define the weak p-upper multiplicity denoted by wupmul(conv S, p)
as follows. It is the smallest positive integer m < p such that for
any N = (";1) + 1 operators Aq,..., Ay € S there exists a sequence

Aj,k € S(V),j € (N),k € N, such that limg_ Ach = Aj,j € (N)

and upmul(conv{A g, ..., Anx},p) < m for k € N.

a. Show that wupmul(conv S, p) < upmul(conv S, p).

b. Show that in Theorems 4.14.9 and 4.14.10 one can replace upmul(conv S, p)
by wupmul(conv S, p).

13. a. Show that for any set S C D(n,R) and p € (n) wupmul(conv S, p) =
1. (Hint: Use Problem 11.)

b. Let D; = diag(di1, ..., din),% = 1,...,n. Let S :={Dy,...,Dy}. Show
that for p € [2,n]NZ

max A,(D)= max \,(D)= ! > max _A,(D)=0.

Deconv S Déeconvy,_18S p Deéeconvy,_28S
c. Show that the variation of Theorem 4.14.9 as in Problem 12b for
wupmul(conv S, p) = 1 is sharp.

d. Let A € S,,(R) be a tridiagonal matrix with nonzero elements on
the first upper diagonal as in 11b. Let ¢ € R and define D;(t) =
D; + tA, where D; is defined as in b, for ¢« = 1,...,n. Let S(t) =
{D1(t),..., Dn(t)}. Show

d1. For ¢ # 0 upmul(conv S(t),p) =1 for p € [2,n] N Z.
d2. There exists € > 0 such that for any |t| <e

Ap(A) = Ay (B) > A (C).
Aegizxsu) p(4) Becoglv?flsm »(B) cecogi?fzsm »(C)

Hence Theorem 4.14.9 is sharp in the case upmul(conv S, p) = 1.
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14. a. Let S C Hy, be a set of 2k+1-diagonal matrices. Assume that either
each k-upper diagonal of any A € S consists of positive elements,
or each k-upper diagonal of any A is fixed and consists of nonzero
elements. Show that upmul(conv S, p) < k.

b. Let S C Hy, be a set of 2k 4+ 1-diagonal matrices. Show that
wupmul(conv S,p) < k + 1.

4.15 Multiplicity index of a subspace of S(V)

Definition 4.15.1 Let V be a finite dimensional IPS over F = R, C.
Let U be a nontrivial subspace of S(V). Then the multiplicity index of U
is defined

mulind U := {maxp € N: 3JA € U\{o} such that \,(4) = ... = \,(4)}.

Clearly for any nontrivial U mulind U € [1,dim V]. Also mulind U =
dim V <= [ € V. The aim of this section to prove the following theorem.

Theorem 4.15.2 Let 'V be an IPS over F = R,C of dimension n > 3.
Forr € [2,n — 1] let s(r) = w if F =R and s(r) = (r —
1)(2n—r+2) if F =C. Let U be a subspace of S(V). Then mulind U > r
if dim U > k(r) and this result is sharp.

Proof. Assume first that F = R. Assume dim U > k(r). Suppose to
the contrary that index U = p < r. Let A € U such that A\ (4) = ... =
Ap(A) > Apyi1(A). Assume that

Axi = Xi(A)x, x, €V, (xi,x5) =05, 1,/ =1,...,n.

By representing S(V) is S, (R) with respect to the orthonormal basis x,, ..., x,
we may assume that U is a subspace of S,,(R) and A = diag(\1(A4), ..., A\n(A)).

4.16 Analytic functions of hermitian matri-
ces

Denote by H,, the set of all n x n hermitian matrices. For A € H,, denote
by spec A C R the spectrum of A. A(z) := Ay + 241, 40,41 € H,, is
called a hermitian pencil. It is known that it is possible to rename the
eigenvalues of A(z) as a1(2),...,an(2) such that each «;(z) is analytic in
some neighborhood N of the real axis R. Furthermore the eigenprojection
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P;(z) on each «;(z) is analytic in z in /. (Note that if «;(z) has multiplicity
my; for all but a finite number of points on R, then P;(z) has rank m; on N.)
Furthermore, the corresponding eigenvectors x, (z), . .., x,(2) can be chosen
to be analytic in z € N, such that for x,(¢),...,x,(t) are orthonormal for
t € R. See [Kat80, 11.6.1-11.6.2].

Let ¢t € R be fixed. An eigenvalue a(z) := a;(z) is called regular at ¢ if
the multiplicity of a(z) is fixed for |z — t| < r for some r = r(t) > 0. So

(oo}
(4.16.1) az) = Zaj(z —t), a; €ER,jEZ,.
j=0
Furthermore, given a normalized eigenvector A(t)x, = aoXo,X5Xo = 1,

there exists an analytic eigenvector x(z) corresponding to a(z) satisfying
the conditions:

(4.16.2) x(z) = Z(z —t)x;, x; €C",jeZy,
j=o

A(2)x(z) = a(2)x(z), x(s)*'x(s) =1 for s € R.

Let S,, denote the space of all n x n real symmetric matrices. Suppose that
Ag, A1 € S,,. Then A(z) is called a symmetric pencil. In that case the
projections induced by A(s),s € R on each a;(s) must be a real orthogonal
projection. Hence in the expansion (4.16.2) each x; can be chosen to be a
real vector.

One can find the formulas for a;,x;,j € Zy in terms of Ap, Ay, in
particular for a1, ag, in [Kat80, I11.2.4]. In this note we give slightly different
formulas for aq, as, as.

Let B € H,,. Denote by Bt € H,, the Moore-Penrose inverse of B. That
is B is uniquely characterized by the condition that BB = BBT is the
projection on the subspace spanned by all eigenvectors of B corresponding
to the nonzero eigenvalues of B.

Theorem 4.16.1 Let Ag, Ay € H,,, A(z) = A, + zA,. Lett e R, A=
Ao + tA;1 and assume that the eigenvalue ay € spec A is simple for the
pencil A(z) at z = t. Suppose that AX, = aoXe, X5Xo = 1. Let (4.16.1-
4.16.2) be the Taylor expansion of the eigenvalue o(z) € spec A(z) and
a local Taylor expanison of the corresponding eigenvector x(z) satisfying
a(t) = ag, x(t) =x,. Then
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a1 = x5 A X0,
X, = (ag] — A)TA,x,,
(4.16.3) ag = x5A,x, = x5 A, (a0l — A)TA, %,
X, = (aod — Ap)T(A; —a D)x, — (éxfxl)xo

ag =x5((A; —a, D)(aol — A)T)QAIXO,

Proof. Without loss of generality we assume that ¢ = 0, hence
A = Ap. Next we consider first the case where Ay, A; are real sym-
metric. Furthermore, by replacing Ag, A; with QT AoQ, QT A;Q, where
@ € R™ " is an orthogonal matrix we may assume that A, is a diagonal
matrix diag(di,...,d,), where di = ag and d; # ag for ¢ > 1. More-
over, we can assume that x, = (1,0,...,0) . Note that (agl — Ap)' =
diag(0, (ap — d1)~ %, ..., (ap — dn)~1). (We are not going to use explicitly
these assumptions, but the reader can see more transparently our argu-
ments using these assumptions.)
Recall that we may assume that x(s) € R™. The orthogonality condition
x(s)Tx(s) = 1 yields that

k
(4.16.4) > x/x, ;=0 keN.
7=0
The equality A(2)x(z) = a(2)x(z) yields

k
(4.16.5) Aoxp + Ay Xp_y = Zajxk_j, keN.

j=o

Since a(s) is real for a real s we deduce that a; € R. Consider the
equality (4.16.5) for k = 1. Multiply it by x! and use the equality x| A, =
aoX, to deduce the well known equality a; = x/ A,x,, which is the first
equality of (4.16.3). The equality (4.16.5) for k = 1 is equivalent to (agl —
Ap)x, = A,X, — a,X,. Hence x, is of the form

(4.16.6) x, = (ao] — A)T(A,xo — a,%0) + b, %0 = (ao] — A)TA,x, + by X,

T

o X, implies that b; = 0. Hence

for some b;. The orthogonality condition x
the second equality of (4.16.3) holds.

Multiply the equality (4.16.5) for k = 2 by x! and use x| 4, = aox/ ,x) x, =

0 to obtain ay = XIA1X1. This establishes the third equality of (4.16.3).
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Rewrite the equality (4.16.5) for k = 2 as (ag/—Ag)x. = A, X, —a, X, —a2X,.
Hence

(4.16.7) X, = (a0l — Ao)T(A, — a,I)x, + boX,.

Multiply the above equality by x! to deduce that x! x, = b,. (4.16.4) for
k =2 yields by = —%xjxl. This establishes the fourth equality of (4.16.3).
Multiply the equality (4.16.5) for k = 3 by x/! to deduce

T T T
as =X, AyXs — 41X, Xo = X, (A — ay )X,

Observe next that from the first equality in (4.16.3) x1'(A, — a,I)x, = o.
This establishes the last equality of (4.16.3).

We now show that the same formulas hold when Ag, A; are hermitian.
Observe that if we have a local Taylor expansion of x(z) then we can re-
place x(z) by e?(*)x(z), where ¢(z) = 372, ¢;(z — )7 is locally analytic at
z =t and each ¢, is purely imaginary. Now we repeat the proof of (4.16.3).
The first formula of (4.16.3) holds as in the symmetric case. The equality
(4.16.6) also holds. We now can only deduce the equality by = 0. Now
choose ¢ such that by = 0. Hence the second equality of (4.16.3) holds.
Now deduce the third equality of (4.16.3). Next we deduce (4.16.7) and the
equality Rby = 0. Now use the corresponding choice of ¢o to obtain that
by = 0. Hence the fourth equality of (4.16.3) holds. Now deduce the last
equality of (4.16.3). 0

Note that for the real symmetric case the formulas of x,, %, in (4.16.3)
are global formulas.

Theorem 4.16.2 Let Ay € H,,,n > 2. Assume that ag is a simple
eigenvalue of Ag, with the corresponding eigenvector AXo = 0oXo, XpXo = 1.
Suppose furthermore that |\ — ag] > r > 0 for any other eigenvalue A
of Ag. Let Ay € H,, A, # o, and denote by ||A1]| the lo norm of Ay,
i.e. the mazimal absolute value of the eigenvalues of Ay. Let a(z) be the
eigenvalue of A(z) = Ao + zA1, which is analytic in the neighborhood of R
and satisfying the condition a(0) = ag. Let ay,as will be given by (4.16.3),

where A = Ag. Fix 0 <c < m. Then

A 7)1 5 for all s € [—c,].

—(a a1s a252 = (r _ 9 A4.1N2
(4.16.8) |a(s) — (a0 +a1s + )|<(r—2c||A1H)

Proof. Let A\1(s) > ... > A, (s) be the eigenvalues of A(s),s € R. Note
that A1(0),...,A,(0) are the eigenvalues of Ag. Assume that A;(0) = a;.
Let p(s) = min(A;—1(s)—X;i(s), Ai(s)—Ai+1(s)), where Ag(s) = 00, A\p1(s) =
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—o0o. Thus r < p(0). Let 81 > ... > (3, be the eigenvalues of A;. Then
[|A1|] = max(|51],|6n]). Apply Lidskii’s theorem to C' = A(s) — Ap [Kat80,
III.Thm 6.10] to deduce that

[Ai(8) = A O) < [sl [[Au]l, G =1,...,n.

Hence

p(0)  p(0)

(4.16.9) p(s) > r(0) —2|s|||A1]| > 0 for s € (— ,
1 201" 2[1 44|

).

In particular, \;(s) is a simple eigenvalue of A(s) in the above interval.
Assume that s is in the interval given in (4.16.9). It is straightforward to
show that

1
(0) = 2[s| [| A

(4.16.10) (a(s)I — A(s))1]] = p(ls) <-

(One can assume that A(s) is a diagonal matrix.)
Use the Taylor theorem with remainder to obtain the equality

1
(4.16.11)  a(s) — (ao + sa1 + s%as) = 604(3) (t)s® for some t, |t| < |s|.

Use Theorem 4.16.1 to deduce that

1 " 2
5000 = x:(1)" (A = af(OD) ()T = A#)T)* Auxi (1),
where x;(s) is an eigenvector of A(s) of length one corresponding to «;(s).
As o/(t) = x;(t)*A,x;(t) we deduce that |of(t)] < ||A1]|. Hence ||4; —
o (t)I|] < 2||Aq||. Therefore

1 4] Aq|?
59901 < I = alOn(esr - A < 2]
Use the inequality (4.16.10) and the inequality r < p(0) to deduce the
theorem. O

4.17 Eigenvalues of sum of hermitian matri-
ces

Put here
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e Lidskii’s theorem which is equivalent to A(4) — A(B) < AM(A — B).
e Weyl’s inequality.
e Kato’s inequality [Kat80, IL.5.Thm 6.11] If f : R — R is convex then

S FONA) = A(B) £ 3 F(A = B).

In particular use f(z) = |z|P,p > 1.



Chapter 5

Elements of Multilinear
Algebra

5.1 Tensor product of two free modules

Let D be a domain. Recall that N is called a free finite dimensional module
if N has a finite basis e,, ..., e,, i.e. dim N =n. Then N’ := Hom (N, D)
is a free n-dimensional module. Furthermore we can identify Hom (N’, D)
with N. (See Problem 1.)

Definition 5.1.1 Let M, N be two free finite dimensional modules over
an integral domain D. Then the tensor product M ® N is identified with
Hom (N',M). Moreover, for each m € M;n € N we identify m @ n €
M ®p N with the linear transformation m®@mn : N’ — M given by f —
f(n)m for any f € N'.

Proposition 5.1.2 Let M,N be free modules over a domain D with

bases [dy, ..., dp], [€1,...,ey] respectively. Then M ®p N is a free module
with the basis d; ® ej,1=1,...,m,j = 1,...,n. In particular
(5.1.1) dim M ® N = dim M dim N.

(See Problem 3.) For an abstract definition of M ®p N for any two
D-modules see Problem 16.

Intuitively, one views M ® N as a linear span of all elements of the form
m ® n, where m € M, n € N satisfying the following natural properties:

e am®n) = (am)®n=m® (an) for all a € D.

229
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e (aym, +a,m,) ®n = a,(m, ®n) + a,(m, ® n) for all ay,as € D.

(Linearity in the first variable.)

e m®(a,n, +a,n,) =a,(MmAn,) + a,(u®n,) for all a;,as € D.

(Linearity in the second variable.)

The element m ®n is called decomposable tensor, or decomposable element
(vector), or rank one tensor.

Proposition 5.1.3 Let M,N be free modules over a domain D with
bases
[dy,...,dw], [e1,...,en] respectively. Then any T € M ®p N is given by

i=m,j=n
(512) T = Z aijdi ® ey, A= [aij] € Dmxn,
i=j=1
Let[u,,...,un],[Vi,..., Vy] be another bases of M, N respectively. Assume
that 7 = Z:ljil bi]’ui K Vvj and let B = [bz]] € D™*", Then B = PAQT}
where P and Q are the transition matrices from the bases [d,, ... ,d,;,] to
[Uy,...up] and [e,,...,e,] to [Vi,...,v,].

(d,,....,dm] =[uy,...un]P, [e1,...,ex] = [Vi,...,Vs]Q.)
See Problem 6.

Definition 5.1.4 Let M, N be free finite dimensional modules over a
domain D. Let 7 € M ®p N be given by (5.1.2). The rank of T, denoted by
rank 7, is the rank of the representation matrix A, i.e. rank 7 = rank A.
The tensor rank of T, denoted by Rank 7, is the minimal k such that T =
Zleml ®n; for somem; € M,n; € N,l=1,... k.

rank 7 is independent of the choice of bases in M and N. (Problem 7.)
Since M ®p N has a basis consisting of decomposable tensors it follows that

(5.1.3) Rank 7 < min(dim M, dim N) for any 7 € M ®p N.
See Problem 8.

Proposition 5.1.5 Let M, N be free finite dimensional modules over
a domain . Let 1 € M ®p N. Then rank 7 < Rank 7. If D is a Bezout
domain then rank 7 = Rank 7

Proof. Assume that M, N have bases as in Proposition 5.1.3. Sup-
pose that (5.1.2) holds. Let 7 = Zle m; ® n;. Clearly, each m; ® n; =

m,n .. . . o . MmXn 3o .
Zi}jZI a;;d; ® ej, where A; := [a%l]m:l eDh is rank one matrix.
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Then A = Zle A;. Tt is straightforward to show that rank A < k. This
shows that rank 7 < Rank 7.
Assume that D is BD. Let P € GL(m,D) such that PA = [b;;] € D™*"
is a Hermite normal form of A. In particular, the first r := rank A
rows of B are nonzero rows, and all other rows of B are zero rows. Let
[Uy,..., 4] :=[d,,...,d;,]P~* be a basis in M. Proposition 5.1.3 yields
that 7 = Z:’Zil biju; ® ej. Define n; = Z?:;L bijej,l = 1,...,7. Then
7=, w®n;. Hence r > Rank 7, which implies that rank 7 = Rank 7.
O

Proposition 5.1.6 Let M;, N, be free finite dimensional modules over
D. Let T; : M; — N; be homomorphisms. Then there erists a unique
homomorphism on T : M, @ M, — N, ® N, such that T(m, ® m,) =
(Th'm,) ® (Tom,) for all m, € M,,m, € M,. This homomorphism is
denoted by Ty ® T5.

Suppose furthermore that W, W, are free finite dimensional D-modules,
and P; : N, — W, i = 1,2 are homomorphisms. Then (P @ P)(T1 1) =
(PlTl) ® (PQTQ)

See Problem 9.

Since each homomorphism T; : M; — N;,i = 1,2 is represented by a
matrix, one can reduce the definition of T} ® T5 to the notion of tensor
product of two matrices Ay € D™ *™1 A, € D™2*™2, This tensor product
is called the Kronecker product.

Definition 5.1.7 Let A = [a;]]52, € D™, B = [bj]inl, € D>
Then A® B € D™P*™ 45 the following block matrix:

anB a2 B v a1nB

ang a22B agnB
(5.1.4) AR B :=

am1B Gm, 2B veo QAmnB

In the rest of the section we discuss the symmetric and skew symmetric
tensor products of M ® M.

Definition 5.1.8 Let M be a free finite dimensional module over D.
Denote M®? := M @ M. The submodule Sym*M C M®2, called a 2-
symmetric power of M, is spanned by tensors of the form sym?(m,n) :=
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m®@n+n®m for allm,n € M. sym?(m,n) = sym?(n, m) is called a 2-
symmetric product of m and n, or simply a symmetric product Any vector
7 € Sym*M is a called a 2-symmetric tensor, or simply a symmetric tensor.
The subspace /\2 M C M®2, called 2-exterior power of M, is spanned by
all tensors of the form mAn :=m®n—n®m, for allm,n € M. mAn =
—n A m is called the wedge product of m and n. Any vector T € /\2 M is
a called a 2-skew symmetric tensor, or simply a skew symmetric tensor.

Since M®? can be identified with D™*™ it follows that Sym?(M) and
/\2 M can be identified with the submodules of symmetric and skew sym-
metric matrices respectively. See Problem 12. Observe next that 2m®n =
sym?(m,n) + m A n. Assume that 2 is a unit in D. Then M®? =
Sym?(M)@® A*> M. Hence any tensor 7 € M®? can be decomposed uniquely
to a sum 7 = 75+7, where 7, 7, € M®? are symmetric and skew symmetric
tensors respectively. (See Problem 12.)

Proposition 5.1.9 Let M, N be a finite dimensional module over D.
Let T : Hom (M,N). Then

T®T:Sym’M — Sym®’N, TQT: /\MH /\N.
See Problem 13.

Definition 5.1.10 Let M, N be finite dimensional modules over D. Let
T : Hom (M,N). Then T AT € Hom (A>M, A\’ N) is defined as the
restriction of T @ T to \* M.

Proposition 5.1.11 Let M, N be a finite dimensional module over D.
Let T : Hom (M,N). Then

1. Assume that [d,,...,dy].

2. Assume that S : Hom (L,M). Show that ST ANST = (SAS)(T AT).

Problems

1. Let N be a free module with a basis [e,,...,e,]. Show

e N’ := Hom (N,D) is a free module with a basis [f,...,f,],
where f;(e;) = 0;;,4,j =1,...,n.
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e Show that (N’)’ can be identified with N as follows. To each
n € N associate the following functional n : N’ — D defined by
n(f) = f(n) for each f € N’. Show that n is a linear functional
on N’ and any 7 € (N') is equal to a unique n.

2. . Let F be a field and V and n-dimensional subspace of V. Then
V' :=Hom (V,F) is called the dual space of V. Show

(a) (V') can be identified with V. T.e. for each v € V let v :
V' — T be the linear functional given by v(f) = f(v). Then any
i € (V') is of the form v for some v e V

(b) For X CV, F C V'denoteby X1t :={feV': f(x) =0, Vx €
X)L Fti:={veV: f(v) =0, Vf € F}. Then X+ F! are
subspaces of V',V respectively satisfying

(X+)+ =span (X), dim X* =n — dim span (X),
(F)* =span (F), dimF* =n— dim span (F).

(¢) Let U,,..., Uy be k-subspaces of either V or V'. Then

1 1U ZU ZU =M= 1

(d) For each bases {v,,v,,..., vy}, {fi,..., £} in V, V' respectively
there exists unique dual bases {g,,82,...,8n}, {Us,...,u,} in
V',V respectively such that g;(v;) = f;(u;) = d;5, ¢,j =1,...,n.

(e) Let U C V, W C V' two m-dimensional subspaces. TFAE

i. Unw+t = {0}
i. UL NW = {o}.
iii. There exists bases {u,,...,un}, {fi,...,f,} in U W re-
spectively such that f;(u;) = 0;5,%4,j =1,...,m

3. Show Proposition 5.1.2.

4. Let U be the space of all polynomials in variable x of degree less than
m: p(z) = Z;igl a;x" with coefficients in F. Let V be the space of
all polynomials in variable y of degree less than n: ¢(y) = Z;L 01 b; xJ
with coefficients in F. Then U ® V is identified with the vector
space of all polynomials in two variables x,y of the form f(z,y) =
ZZZ;LSI ~!¢ijxiyd with the coefficients in F. The decomposable ele-
ments are p(z)q(y),p € U,q € V. (The tensor products of this kind
are basic tools for solving PDE (partial differential equations), using
separation of variables, i.e. Fourier series.)
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5. Let M =D" N = D". Show

e M®N can be identified with the space of m x n matrices D™*",
More precisely each A € D™*"™ is viewed as a homomorphism
A : D" — D™, where D™ is identified with M’.

e The decomposable tensor m ® n is identified with mn”. (Note

mn7 is indeed rank one matrix.)

6. Prove Proposition 5.1.3.

7. Show that rank 7 defined in Definition 5.1.4 is independent of choices
of bases in M and N.

8. Let the assumptions of Proposition 5.1.3 holds. Show that the equal-

ities .
Y
i=1 7

n m

bije) = > (O bijdi)®e;
1 Jj=

1 i=1

yield (5.1.3).
9. Prove Proposition 5.1.6.

10. Let the assumptions of Proposition 5.1.2 hold. Arrange the basis
of M ®p N is the lexicographical order: d, ® e,,...,d, ® e,,d, ®
e,....d;®e,,...,d, ®e,,...,d, ®e, We denote this basis by
dy,....dn]®[e,,... e,

Let M;, N; be free modules with the bases [d, 1, ..., dm, 1], [€1,15-- -, €n,,i]
for I =1,2. Let T} : M; — N; be a homomorphism represented by
A; € D™>*™ in the above bases for [ = 1,2. Show that 77 ® T»
is represented by the matrices A; ® As with respect to the bases
dyy-esdm, 1 ]®€11,-- - €n, 1] and [dy o, ..., di, 2]®[€1,2, .-+ €0, 2]

11. Let A € D™*™ B € DP*4. Show
e If m =n and A is an upper triangular than A® B is block upper
triangular.

e If m =n,p=¢qand A and B are upper triangular then A ® B
is upper triangular.

e If A and B are diagonal matrices then A® B is a diagonal matrix.
In particular I, ® I, = Inyp.
e Let C € D!*™ D € D"™*P. Then (C®D)(AxB) = (CA)®(DB).

A € GL(m,D),B € GL(p,D) then A ® B € GL(mp,D) and
(A B)"'=A"1'® B~ L
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12.

13.

14.

15.

16.
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e rank A®B = rank A rank B. (Use the fact that over the quotient
field F of D, A and B are equivalent to diagonal matrices.)

e Let m =n,p = ¢q. Show that det A ® B = det A det B.

Let M be a free module with a basis [d,, ..., d,,]. Identify M®? with
D™*™_ Show that Sym®M is identified with Sy, (D) € D™*™ the
module of m xm symmetric matrices: AT = A, and /\2 M is identified
with AS(m, D), the module of m x m skew symmetric matrices: AT =
—A.
Assume that 2 is a unit in D. Show the decomposition 7 € M®?
as sum of symmetric and skew symmetric tensor is equivalent to the
following fact: Any matrix A € D™X™ is of the form A = 271(A4 +
AT) + 271 (A — AT), which is the unique decomposition to a sum of
symmetric and skew symmetric matrices.
e Prove Proposition 5.1.9.
e Show that (Sym>M,Sym?N) and (A\°M, A\*>N) are the only
invariant pairs of submodules of T®2 for all choices of T €
Hom (M, N).

Let M be a module over the domain ID. Let X € M be a subset
of M. Then span X is the set of all finite linear combinations of the
elements from X.

e Show that span X is a submodule of M.
e span X is called the submodule generated by X.

Let X be a nonempty set. For a given domain I denote by Mp(X)
the free D-module generated by X. That is Mp(X) has a set of
elements e(x),x € X with the following properties:

e For each finite nonempty subset ¥ C X, the set of vectors
e(y),y € Y are linearly independent.

e Mp(X) is generated by {e(z),z € X}.

Let M, N be two modules over an integral domain D. Let P be the
free module generated by M x N := {(m,n) : m € M,n € N}. (See
Problem 15.) Let Q C P generated by the elements of the form

e((am,+bm,, cn,+dn,))—ace((m,,n,))—ade((m,,n,))—bce((m,,n,)—bde(m,, n,)),

for all a,b,¢,d € D and m,,m, € M,n,,n, € N Then M ®p N :=
P/Q is called the tensor product of M and N over D.

Show that if M, N are two free finite dimensional modules then the
above definition of M ®p N is isomorphic to Definition 5.1.1.
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5.2 Tensor product of several free modules

Definition 5.2.1 Let M; be free finite dimensional modules over a do-
main D fori=1,....,k, where k > 2. Then M := @5 M; =M, @ M, ®
... ® My is the tensor product space of M, ..., My is defined as follows.
For k =2 M, ® M,, is defined in Definition 5.1.1. For k > 3 ®f:1Mi 18
defined recursively as (®f:11Mi) ® Mg.

Note that from now on we suppress in our notation the dependence on
D. When we need to emphasize D we use the notation M, ®p ... ®p M.
M is spanned by the decomposable tensors

®f:1mi =m, Om,®...0mg, m; €M;i=1,...,k
called also rank one tensors. One have the basic identity:

am, ®m,®...0mg) =(am,)®m, ®...Q my =
m,®(@m,)®..0mg=...=m, @m, ®...R® (amyg).

Furthermore, the above decomposable tensor is multilinear in each variable.
Clearly

(5.2.1)  @¥  mj,;, ji=1,...,m;i=1,...,k is a basis of @ M;

if m, ;,...,m,,, ; is a basis of M; for i =1,...,k.
Hence
k
(5.2.2) dim @, M; = H dim M;.
=1
Thus
mM1,Ma,..., M
(523) o = Z Aj1jo... 5k ®§:1 mj, ;, for any o € ®f:1Mz
J1=Jeo="=Jr=1
Denote

(5.2.4)  Dmrxexme.— @k DM for ke Nand m; € Nyi=1,...,k.

My X.oo XME 3 3 . R . M, Mg . .
A e Dm is given as A = [ay, | 200k, where a5, €
D,j;=1,....,ms,i =1,..., k. Ais called a k — tensor. So 1-tensor is a

vector and 2-tensor is a matrix.

In particular ®%_,M; is isomorphic to D™ **™  Furthermore, af-
ter choosing a basis of ®¥_;M; of the form (5.2.1) we correspond to each
7 € ®F M, of the form (5.2.3) the tensor A = [a;, ;]"o"_ €

Ji=..=jr=1
]D)ml X Xmp
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Proposition 5.2.2 Let M;,N;,i = 1,...,k be free finite dimensional
modules over D. Let T; : M; — Ny, i = 1,...,k be homomorphisms. Then
there exists a unique homomorphism on T : ®@%_ M; — ®@k_ N; such that
T(®F_ m;) = @F (Tim;) for all m; € M;,i = 1,...,k. This homomor-
phism is denoted by ®§:1TZ—,

Suppose furthermore that Wi, i = 1,...,k are free finite dimensional
D-modules, and P; : N; — W;,i =1,...,k are homomorphisms. Then
(®§:1H)(®§:1Ti) = ®f:1(Pz‘Tz‘)-

See Problem 2.

Since each homomorphism T; : M; — N;,i = 1,...,k is represented by
a matrix, one can reduce the definition of ®%_;T; to the notion of tensor
product of £ matrices.

Definition 5.2.3 Let A; = [alj7i]l7f;7;"1" € Dmixni ¢ =1,...,k. Then
the Kronecker product A := ®F_| A; € D™a--meXni-nk g the matriz with
the entries

fbrlizzl,...,nu,.p ::1,..,ni,i:: 1w'~7k-

where the indices (I1,...,lk),l; =1,...,m;,i =1,...,k, and the indices
(J1y--5Jk), Ji = 1, ..yng i = 1,... k are arranged in the lexicographical
order.

It is straightforward to show that the above tensor product of matrices
can be recursively defined by the Kronecker product of two matrices as de-
fined in Definition 5.1.7. See Problem 3. The tensor products of £ matrices
have similar properties as in the case k = 2. See Problem 4.

We now consider the k-symmetric and k-exterior products of a free finite
dimensional module M. In view of the previous section we may assume that
k > 3. Denote by Sj the permutation group of k elements of {1,...,k},
i.e. S is the group of injections o : {1,...,k} — {1,...,k}. Recall that
sgn(o) € {1,—1} is the sign of the permutation. That is sgn(c) = 1is o is
an even permutation, and sgn(o) = —1 is ¢ is an odd permutation.

Definition 5.2.4 Let M be a free finite dimensional module over D and
2 < k € M. Denote M®* .= @F_ M;, where M; = M fori=1,... k. The
submodule Sym*M C M®* | called a k-symmetric power of M, is spanned
by tensors of the form

(5.2.5) sym®(m,,...,my) := Z ®f:1m(,(i),
€Sk
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for all m; € M,i = 1,..., k. sym*(m,,...,my) is called a k-symmetric
product of m,, ..., my, or simply a symmetric product. Any tensor T €
Sym*M is a called a k-symmetric tensor, or simply a symmetric tensor.
The subspace /\]C M C M®F called k-exterior power of M, is spanned by
all tensors of the form

(5.2.6) AP m;=m, A...Amy = Z sgn(o) ®F_, m,
€Sy
forallm; € M,i = 1,...,k. Ak m, is called k- wedge product of m,, ..., my,.

Any vector T € /\kM is a called a k-skew symmetric tensor, or simply a
skew symmetric tensor.

Proposition 5.2.5 Let M, N be free finite dimensional module over D.
Let T : Hom (M,N). For k € N let T®* : M®* — N®* pe T®...®T.
—_————

k
Then
k k

T : Sym*M — Sym*N, T¢*: AM — /AN.
See Problem 5.

Definition 5.2.6 Let M, N be free finite dimensional modules over D.
Let T : Hom (M,N). Then AFT € Hom (A" M, A" N) is defined as the
restriction of T®* to \* M.

Proposition 5.2.7 Let M,N be free finite dimensional modules over
D. Let T : Hom (M,N). Then

1. Let [dy,...,dp],[€1,...,e,] be bases in M,IN respectively. Assume
that T' is represented by the matriz A = [a;;] € D™ in these bases.
Then AFT represented in the bases

Ngdj, 1<, <. <je<m, Al,e,, 1< <... <l <n

by the matriz A\*A € ]D(Z)X(ZL), where the entry ((I1, ..., k), (Ji, - -+ Jr))
of AF A is the the k x k minor based of A on the (ly,...,l) rows and

(J1,---,Jk) columns of A.

2. LetL be a free finite dimensional module and assume that S : Hom (L, M).
Then AN¥(TS) = (AFT)(ARS).

See Problem 5.
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Remark 5.2.8 In the classical matriz books as [Gan59] and [MaM64]
the matriz A A is called the kth compound matriz or kth adjugate of A.

Proposition 5.2.9 Let M,,...,M;,M := @ M, be free finite di-
mensional modules over D with bases given in (5.2.1). Let[n, ;,..., Ny, ;| =
m, ;,...,my, T, ", T; = [t;:] € GL(m;,D) be another basis of M; for
i=1,...,m;. Let « € M be given by (5.2.3). Then

mi,...,mMp

(5.2.Na = Z biy..1y, ®f=y My, where
li=--=lp=1

my,...,Mk

k
iy, = Z (Htliji,i)ajl...jk forli=1,....mi;i=1,... k.

Jryeegi=1 i=1
That is if A = [a;, ;. |,B:=[bi, 1, then B= (®f:1Ti)A.

Definition 5.2.10 Let M,, ..., My be free finite dimensional modules
over a domain . Let 7 € ®f=1MZ-. The tensor rank of T, denoted by

Rank 7, is the minimal R such that T = Ef;l ®i—":1ml7i for some m;; €
M,l=1,...,Ri=1,...,k.

We shall see that for £ > 3 it is hard to determine the tensor rank a
general k-tensor even in the case D = C.

Let M be a D-module, and let M’ = Hom(M, D) the dual module of
M. For m € M, g € M’ we denote (m, g) := g(m). Let

m,,....mycM, g, ...,gr<cM.
It is straightforward to show

(5.2.8)Ymy AL Amy, g A AgL) = kN g AL Agr) =
<m17g1> <m1agk>
k!det : . :
(my,g,) ... (my,gk)
See Problem 8b.
Assume that M is an m-dimensional free module over D, with the basis

d,,...,d,,. Recall that M’ is an m-dimensional free module with the dual
basis f,,... T,

(529) <dl,fj> = fj(dz) = 61’]’; Z,] =1,...,M.
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Let M,,..., My, M := ®_ M; be free ﬁnite dimensional modules over
D with bases given in (5.2.1). Let f, ;,...,f,, ; be the dual basis of M for
i1=1,...,k. Then M’ is isomorphic to ®k 1M, where we assume that

(5.2.10)
k

(®Fm;, @ g;) = H(mi,gi% m; € M, g, e M, i=1,...,k

=1

In particular, M’ has the dual basis ®*_,f;, ;,ji = 1,...,m;,i=1,...,k.

Assume that d,,...,d,, is a basis of M and f,,...,f,, is the dual basis
of M. Note that A" M is a submodule of (A" M)'. See Problem 8c. Note
that if Q C D then A" M’ = (A" M)’

Let N be a module over D of dimension n, as defined in Problem 1.6.1.
Assume that M C N is a submodule of dimension m < n. For any k € N
we view A"M as a submodule of A*"N. A°M := 1, A" M is a one
dimensional module, while for k£ > m it is agreed that /\]C M is a trivial
subspace consisting of zero vector. (See Problem 10.)

Let O C N be another submodule of N. Then (A’ M) A(A?O) is a
submodule of AP"(M + O) of A*"¥ N, spanned by (m, A...m,) A (0, A

..ANo0gy), where m,,...,m, € U,0,,...,0, € O for p,g > 1. If p=0or
q = 0 then (A" M) A(A? O) is equal to A? O or A” M respectively.
In in the next sections we need the following lemma

Lemma 5.2.11 Let V be an n-dimensional vector space over F. As-
sume that 0 < p1,p2, 1 < q1,q2,k :=p1+q = p2+ q2 < n. Suppose that
U,,U,, W, , W, are subspaces of V such that dim U; = p;,dim W; > ¢;
fori=1,2 and U, "W, =U,N'W, ={0}. Then

(5.2.11) (AT ANAW) (AT ANAW,) # {0}

if and only if the following condition holds. There exists a subspace V, C'V
of dimension k at such that

(5.2.12) U, cv,,U,cV,,V,C(U,+W,), V, C(U,+W,).

Proof. Assume first that (5.2.11) holds. Note that

P1 G k P2 q2 k
(AUIAAW) € AU+ W), (AU AAW.) € AU +W

Let V, := (U, + W,) N (U, + W,). Problem 10a yields that

p1 qa j 25 k
(5.2.13) (AT AAW)N(AU2) A( /\W c AV
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The assumption (5.2.11) implies that dim V, > k. We now show that U, C
V,. Assume to the contrary that dim U, NV, =i < p,. Choose a basis
Vi,...,Vpsuchthat in Vsuchthat v,,...,v, and v,,..., v, Vp 41,...,V,
is a basis of U, and V, respectively. Observe that the span of vectors
Vi LAV AV LY for p1 <i; < ... <14 < n contain the subspace
(AP U,) A(A” W,). On the other hand the subspace A\* V. is has a basis
formed by the exterior products of k vectorsout of v,,..., vy, vp 11,..., V.
Hence ( (AU, )A (A® W, ) )n A"V, = {0}, which contradicts
(5.2.11-5.2.13). So U, C V,. Similarly U, C V,.

Next we claim that dim (U, 4+ U,) < k. Assume to the contrary that
dim (U, + U,) =5 > k. Let u,,...,u, is a basis of V, such that

Uy, ..., Up, and Uy, ..., Up, 4p.—j,Up, 41,--.,U;

are bases of U, and U, respectively. Then (A" U, )A (A" W, ) is
spanned by (";1”1) linearly independent vectors u;, A...u;, , where 1 <47 <
. <ip<mnand{l,...,p1} C {i1,...,ix}. Similarly, (A”? U, )A (A" W,)
is spanned by (";f 2) linearly independent vectors u;, A ...uj,, where
1 S]l < ... <jk < n and {1,...,])1 —‘y—pg—j,pl—i-l,...,j} C {il,...,ik}.
Since j > k it follows that these two subset of vectors of the full set of the
basis of A"V do not have any common vector, which contradicts (5.2.11).
So dim (U, +U,) < k. Choose V, any k dimensional subspace of V, which
contains U, + U,.

Vice versa, suppose that V, is a k-dimensional subspace of V satisfying
(5.2.12). So /\k V, is a one dimensional subspace which is contained in
(A" U; )N (A" W, ) for i = 1,2. Hence (5.2.11) holds.

O

Problems

1. Let M, ..., My be free finite dimensional modules over D. Show that
for any o € Sp ®F_, M, (; is isomorphic to @, M.

2. Prove Proposition 5.2.2.
3. Show

o Let A € D™ and B € DP*4. Then the definitions of A ® B
given by Definitions 5.1.7 and 5.2.3 coincide.
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e Let the assumptions of Definition 5.2.3 hold. Assume that k& >
3. Then the recursive definition of ®%_; A; = (®f:_11Ai) ® Ap
coincides with the definition of ®¥_; 4; given in Definition 5.2.3.

4. Let A; e DX j=1,... k> 3. Show

k
o @ (a;id) = (ITizq @) R Ai.
o (@, A)T =wf,A].
e If m; = n; and A; is an upper triangular for ¢ = 1,...,k then
®f:1Ai is upper triangular.
o If Ay,..., Ay are diagonal matrices then ®§:1Ai is a diagonal
matrix. In particular ®f=1[mi =Imy..my-
o Let Bi S Dlixmi,i = 1, ey k. Then (®f:131)(®f:1141) = ®f:1(BzAz)
o A; € GL(m;,D),i = 1,...,k then ®%_,A; € GL(m, ...my,D)
and (®1_;4;) 7" = ®F, A7
e rank ®< A= Hi;l rank A;.
k H?:l my
e For m; = ni,i = 1, ey k, det ®§:1 Az = Hizl(det Al) i
5. Prove Proposition 5.2.7.

6. (a) Let A € D™*" B € D"*P. Show that AKAB = AFA AF B for
any k € [1, min(m,n,p)] NN.

(b) Let A € D™*". Then A*A is upper triangular, lower triangu-
lar, diagonal if A is upper triangular, lower triangular, diagonal
respectively.

ky _
(C) NI, = I(Z)

(d) Tf A € GL(n, D) then AFA € GL((), D) and (AFA) =1 = AbA—L.

7. Let IF be an algebraically closed field. Recall that over an algebraically
closed A € F™*" is similar to an upper triangular matrix.

(a) Let A; € F™i*"i for ¢ = 1,...,k. Show that there exists T; €
GL(n;,F) such that (®F_,T;)(®F_, A;)(®F_,T;)~! is an un upper
triangular matrix. Furthermore, let A1 ;,..., A, ; be the eigen-
values of A;, counted with their multiplicities. Then Hle N i
for j; = 1,...,n;,i = 1,...,k are the eigenvalues of ®% | A;
counted with their multiplicities.
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(b) Let A € F™*" and assume that Aj,..., A, are the eigenvalues
of A counted with their multiplicities. Show that Hle Aj, for
1 <j1 <...<jr <n are all the eigenvalues of AFA counted
with their multiplicites.

8. Let M be a finitely generated module over D.

(a) Let m,,...,my € M. Show that for any o € S mg(,) A ... A
m,(x) = sgn(o)m, A...Amyg. In particular, if m; = >, a;m;
then m, A... Amy = 0.

(b) Prove the equality (5.2.8).

(¢) Assume that d,,...,d,, is a basis of M and f,,...,f,, is a dual
basis of M’. Show that %fl NN 1<id, <...<ip<m
can be viewed as a basis for (A" M)’ for k € [1,m].

9. Let M be an m-dimensional module over D as defined in Problem
1.6.1. Show

° /\m M is a 1-dimensional module over D.

° /\k V is a zero module over D for £ > m.

10. (a) Let V be an finite dimensional vector space over F and assume
that U, W are subspaces of V. Show that A"U N A*"W =

A(UNW).
Hint: Choose a basis v,,...,v, in V satisfying the following
property. vi,...,Vy and Vi, ..., Vi, Vipyq, ... Viuqp— are bases

for U and W respectively. Recall that v;, A...Av;,1 <14, <
... <1t < nform a basis in /\k V. Observe next that bases of U
and W are of the form of exterior, (wedge), product of k vectors
from vy,...,Vy and Vi, ..., Vi, Vg, - - . Vingp—i Tespectively.

(b) Assume that V is a an n-dimensional module of D,. Suppose
furthermore that U, W are finitely generated submodules of V.
Show that A" UNAFW = AF(Unw).

11. Let V be an n-dimensional vector space over F and UC V,W Cc V'
be m-dimensional subspaces. Show

(a) Let {u,,...,un},{fi,...,f,} be bases of U, W respectively.
Then vanishing of the determinant det [(u;, f;)] is indepen-
dent of the choice of bases in U, W.

(b) Let F be a field of infinite characteristic. TFAE

m
1,]J=1
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i. dim Ut N'W > o.
ii. dim UNW+ > o.
ii. A”TTUC (AT W)L
iv. AW c (ANTTTU)L
v. For any bases {u,,...,uy},{fi,...,fn} of U ‘W respec-
tively (u, A... Ay, B AL AEL) =o.

Hint: If dim UtNW = o use Problem 2(e). If dim U*NW > o
choose at least one vector of a basis in W to be in UL N'W and
use (5.2.8).

5.3 Sparse bases of subspaces

Definition 5.3.1 1. For0 # x € F" denote span (x)* := span (x)\{0}.

2. The support of x = (x,,...,1,)" € F" is defined as supp (x) = {i €
{1,...,n}: z; #o}.

3. For a nonzero subspace U C F", a nonzero vector x € U is called
elementary if for every 0 £y € U the condition supp (y) C supp (x)
implies supp (y) = supp (x). span (x)* is called an elementary class,
in U, if x € U is elementary.

4. Denote by E(U) the union of all elementary classes in U.

5. A basis in {u,,...,uy,} in U is called sparse if u,,...,uy, are ele-
mentary.

Proposition 5.3.2 Let U be a a subspace of F™ of dimension m €
[1,n]. Then

1. x € U is elementary if and only if for each 0 #y € U the condition
supp (x) C supp (x) implies that y € span (x)*.

2. £(U) consists of a finite number of elementary classes.
3. span (£(U)) = U.

4. For each subset I of {1,...,n} of cardinality m —1 there exists an el-
ementary x € U such that supp (x)¢ := {1,...,n}\supp (x) contains
1.

See Problem 1 for proof.

Definition 5.3.3 Let F be a field of 0 characteristic.
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1. A = (a;j) € F**" is called generic if all the entries of A are alge-
braically independent over Q, i.e. there is no nontrivial polynomial p
in kn variable with integer coefficients such that p(aqy,...,ag,) = 0.

2. A is called nondegenerate if all min(k,n) minors of A are nonzero.

3. An 1 < m-dimensional subspace U C F" is called nondegenerate if
for J C {1,...,n} of cardinality n — m + 1 there exists a unique
elementary set span x* such that J = supp (x).

Lemma 5.3.4 Let A ¢ F**" 1 <k < n be of rank k. TFAE:
1. A is nondegenerate.

2. The row space of A, (viewed as a column space of A"), is nondegen-
erate.

3. The null space of A is nondegenerate.

Proof. Consider first the column space of AT denoted by U C F".
Recall that any vector in U is of the form x = A"y for some y € F¥. Let
I C{1,...,n} be aset of cardinality k — 1. Let B = (A")[I,:] € FF=1xF be
submatrix of AT with the rows indexed by the set I. The condition that
supp (x) C I€ is equivalent to the condition By = 0. Since rank B <k — 1
there exists 0 # x € U such that supp (x) C I¢. Let d be defined as in
Problem 3.

Assume that rank B < k — 1. Then d = 0, see Problem 3(b). Further-
more, it is straightforward to show that for each each j € I¢ there exists a
nonzero x € U such that supp (x) C (I U {j})°. So det A[;,IU{j}] =0
and A is not degenerate.

Suppose that rank B = k — 1, i.e. d # 0. Then any nonzero x €
U, supp (x) C I¢is in span (ATd)*. Let j € I°. Expand det A[:, T U {j}
by the column j to deduce that and (ATd); = ddet A[;,T U {5}]. Thus
supp (x) = I° if and only det A[:;;,T U {j}] # 0 for each j € I°. These
arguments show the equivalence of I and 2.

The equivalence of 1 and & are shown in a similar way and are discussed
in Problem 4.

O

Definition 5.3.5 Let J = {J1,...,Ji} be t subsets of (n) each of car-
dinality m — 1. Then J satisfies the m-intersection property provided that

(5.3.1) #Niep J; <m —#P for all) # P C (t).
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It is known that given a set J of ¢ satisfying the above assumptions,
one can check effectively, i.e. in polynomial time, if J satisfies the m-
intersection property. See Problems 5 - 7.

The aim of this section to prove the following theorem.

Theorem 5.3.6 Let F be a field of 0 characteristic and assume that
A € FF*" s generic over Q.

1. LetZT ={I,...,Is} denote the collection of s < k subsets of (n) each
of cardinality n —k+ 1. Then the elementary vectors x(I,), ..., x(Is)
in the row space of A with supports I, ..., I are linearly independent
if and only if T' := {If,... IS}, consisting of the complements of the
supports, have k intersection property.

2. Let J ={Jy,...,Ji} denote the collection of t < n —k subsets of (n)
each of cardinality k+1. Then the elementary vectorsy(J,),...,y(J¢)
in the null space of A with supports Jy, ..., J; are linearly independent
if and only if J' == {Jg, ..., J7}, consisting of the complements of the
supports, have n — k intersection property.

The proof of this theorem needs a number of auxiliary results.

Lemma 5.3.7 Let A € F*¥*" be nondegenerate.

1. LetT ={I4,...,Is} denote the collection of s < k subsets of (n) each
of cardinality n —k+ 1. Then the elementary vectors x(1,), ..., x(Is)
in the row space of A with supports I, ..., I are linearly independent
if and only if the k x s submatriz of N*~1 A determined by its columns
indexed by I{, ..., IS has rank s.

2. Let by,...,b,_ € R™ be a basis in the null space of A and denote
by BT € F**("=k) the matriz whose columns are by,... by_j. Let
J ={J1,...,Ji} denote the collection of t < n—k subsets of (n) each
of cardinality k + 1. Then the elementary vectors y(J,),...,y(J¢) in
the null space of A with supports Jy,...,Jy are linearly independent
if and only if the (n — k — 1) x t matriz A" %1 B determined by its
columns indexed by Ji, ..., J7 has rank t.

See Problems 8-9 for the proof of the lemma.
Corollary 5.3.8 et A € F**" be nondegenerate.

1. Let T ={I1,...,Ix} denote the collection of k subsets of (n) each of
cardinality n — k+ 1. Then the elementary vectors x(I,),...,x(Is) in
the row space of A with supports I, ..., Is not linearly independent if



5.3. SPARSE BASES OF SUBSPACES 247

and only if the determinant of the full row k x k submatriz of N*~1X
determined by its columns indezed by If,. .., I} is identically zero for
any X € Fkxn

2. Letb,,...,b,_x € R™ be a basis in the null space of A and denote by
BT e Fn*(n=k) the matriz whose columns are b,,...,b,_. Let T =
{J1,...,Ji} denote the collection of t < n — k subsets of (n) each of
cardinality k + 1. Then the elementary vectors y(J,),...,y(Ja—k) in

the null space of A with supports J, ..., Jo_k are linearly independent
if and only if the determinant of the full row (n—k—1)x(n—k—1) sub-
matriz A"~F=YY determined by its columns indexed by Ji,. .., JE

is identically zero for any Y € F(r—k)xn,
(One may use Problem 10 to show part 2 of the above Corollary.)

Definition 5.3.9 Let V be an n-dimensional vector space over F. Let
U,,...,U; CV bet subspaces of dimension m — 1.. Then {U,,..., U}
satisfies the dimension m-intersection property provided that

(5.3.2) dim Njep U; <m — #P for all O # P C (t).
Theorem 5.3.6 follows from the following theorem.

Theorem 5.3.10 Let V be an n-dimensional vector space over a field
F of 0 characteristic and n > 2. Let 2 < m € (n) and assume that
U,,...,U, € Grp—, (V). Let Wy (U,,...,U,,) C Grp,(V) be the va-
riety of all subspaces X € Gry,, (V) such that the one dimensional sub-
space Y = N"(AN" ' X) € @™V is orthogonal on the subspace
W= (A" TUDAA™ UD A AN Uy) € @m0V of di-
mension one at most. Then W,,(U,,...,U,,) is a strict subvariety of
Gr (V) if and only if U,,..., U, satisfy the dimension m-intersection
property.

Proof. Since each U; is m—1 dimensional we assume that /\m*1 U, =

span (w;) for some w; € A" U; fori =1,...,m. Then W = span (w, A
...AWy,). Choose a basis x,,...,X,, in X. Let y; be the wedge product of
m — 1 vectors from {X,,...,xpu}\{x;} fori=1,...,m. Theny,,...,ym

are linearly independent and Y = span (y, A...Ayy). The condition that
Y L W, ie. YXNW is a nontrivial subspace, is equivalent to the condition

(5.3.3) (Vi Ao e AYms Wa AL Awp) = mldet ((yi, wy))i%—, = o.
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See Problem 5.2.11. Since F has 0 characteristic, the condition (5.3.3) is
equivalent to the vanishing of the determinant in the above formula. We
will use the formula (5.2.8) for each (y;, w;).

Assume first that U,, ..., U, do not satisfy the dimension intersection
property. By interchanging the order of U,,...,U,, if necessary, we may
assume that there exists 2 < p < m such that Z := ﬂ§:1UJ— has dimension
m —p—+ 1 at least. Let Z, C Z be a subspace of dimension m — p + 1.
Then dm X NZ: >m—(m—p+1) =p—1. Let FC XNZL bea
subspace of dimension p — 1. Assume that x,,...,X,, is a basis of X such
that x,,...,X,_, is a basis of F. So X; C F for i =p,...,m. Hence

X;NU} 2 X,NZ* 2 XiNZy DFNZy # {0} fori=p,...,m, j=1,...,p.

Thus (y;,w;) = o for i = p,...,m, j = 1,...,p. See Problem 5.2.11.
Hence any p x p submatrix [(y;, w;)]7_,, with the set of columns (p),
must have a a zero row. Expand det [(y;, w;)]7",_, by the columns (p) to
deduce that this determinant is zero. Hence W,,,(U,, ..., Uy,) = Grp,, (V).

We now show by induction on m that if U,,..., U, € Gr,,—, (V') sat-
isfy the dimension m-intersection property then there exists X € Gr,, (V)
such that dim Y+ N'W = o, for each n = m,m + 1,.... Assume that
m = 2. As dim (U, NU,) = o we deduce that dim (U, + U,) = 2. Let
U, = span (u;),? = 1,2. Then {u,,u,} is a basis in Z = span (u,, u,).
Hence Z' is a subspace of V of dimension n — 2. Thus there exists a
subspace X € Gry(V) such that dim X NZ+ = o. Note that A" ' X =
X,/\m*1 U; = U;,i = 1,2. Let x,,x, be a basis in X. The negation of
the condition (5.3.3) is equivalent to (X, A X,,u, A u,) # 0. Use Problems
5.1.2(e) and 5.2.11 to deduce this negation.

Assume the induction hypothesis that for 2 <1 < n and any [ dimen-

sional subspaces le, = ,le C V' satisfying the I-dimensional intersection
property there exists X € Gr;(V) such that dim YXNW = 0. Let m = [+1
and assume that U,,..., U, satisfy the m-dimensional intersection prop-

erty. Let P := {P C (m—1): dim N;epU; = m—#P}. Note that {i} € P
for each i € (m—1). The m-intersection property yields that U,,N(N;epU;)
is a strict subspace of N;epU; for each P € P. lLe. NiepU; & U, for
each P € P. Equivalently (N;epU;)t 2 Uk. Problem 12(d) yields that
UTJ;L\ Upep (ﬁiepUi)J‘ # 0. Let x,, € U,J;L\ Upep (ﬂiepUi)J‘. Define
U, :== U;Nn{xn}*t,i=1,...,1. Forie () we have that {i} € P, hence
Xm & Ui, Thus U, € Gr;—1(V),i = 1,...,l. We claim that ﬂl,...,ﬁl
satisfy the [-dimensional intersection property.

Assume to the contrary that the [-dimensional intersection property is
violated. By renaming the indices in (I) we may assume that there is 2 <



5.3. SPARSE BASES OF SUBSPACES 249

k € (I) such that dim NM;e k) U;,>l—k=m—k—1. Since U; C U;,i € )
we deduce that dim M) U; > m—k—1. The assumption that U,,..., Uy,
satisfy the m-dimensional intersection property yields dim N;e ) U; = m—
k,ie. (k) € P. Since xp, & (MieryUi)t we deduce that dim (N;ey Us) N
{xm}L =dim Nigr) fL» = m — k — 1, contradicting our assumption. Hence
ﬂl, L0 satisfy the l[-dimensional intersection property.

Let vy,...,Vs_1,X;m be a basis in V. Let f,,...,f, be the dual basis
in V’. (See Problem 5.1.2(d).) Note that U; C span (f,,...,f,_,). Let
V, = span (v,,...,v,_,). Then we can identify span (f,,...,f,_,) with
V’.. The induction hypothesis yields the existence of X € Gr;(V,) such that
dim YL N'W = 0. Assume that X is the columns space of the matrix X =
[2;;] € F**!. The existence of the above X is equivalent to the statement
that the polynomial pg; g, (z11,-..,2n1), defined in as in the Problem 15,
is not identically zero. Recall that U,, € span (f,,...,f,_,). Problem 13
yields the existence of a nontrivial polynomial py(z11,..., T, ) such that
X € Gr;(V,), equal to the column space of X = [z;;] € F**!, satisfies the
condition dim X N Ul =0 < pu(Tis,---,Tn) # 0. As PULPY, .0,
is a nonzero polynomial we deduce the existence of X € Gr(V,) such that
dim X NU: =0 and X ¢ W,,,(Uy,...,U)).

Assume that x,,...,X,,_, is a basis of X. Let X := span (X, ...,Xm)-
We claim that X ¢ W,,(U,,...,U,,). Let X; be the m — 1 dimen-
sional subspace spanned by {x,,...,x,}\{x;} for i = 1,...,m. Then

A" "X, = span (yi),i = 1,...,m and A" ' X = span (y.,...,ym)-
Let A™ ' U; = span (w;),i = 1,...,m. Note that x,, € X; N UL for
i=1,...,m—1. Problem 13 yields that (y;,w,,) =ofori=1,...,m—1.
Hence det [(y:, wj)]7—, = (Ym, Wm)det [(y;, w;)]";_,. Since X, = X we
obtain that dim X, N U} = 0. Hence (y,,, w,,) # 0. It is left to show
that det [(y;, w;)]i",_} # o. Let X; C X; be the subspace of dimension
Il —1=m —2spanned by {x,,...,Xm—,}\{x;} fori=1,...,m — 1. Note
that X; C X. So /\l_1 X, = span (¥i) and we can assume that y; = §; Axp,
for i = 1,...,m — 1. Recall that U; = {xn}t NU;. As dim U, =
dim U; — 1 we deduce that there exists u; € U; such that (x,,,u;) = 1
fori=1,...,m—1. So U; = U; @ span (u;). Let A\'"" U; = span (%;).
We can assume that w; = w; Au; for i = 1,...,m — 1. Problem 14
yields that (y; A xpm, W; Auj) = I(y;,W;) for i, = 1,...,m — 1. Hence
det [(y:, w;)|7" ), = ™~ det [(9:, W;)]]"—%. Since X & Wy, (Uy,...,T))

we deduce that det [(7;,W;)]7"_} # 0, ie. X € Wy (Us, ..., Up). O

Lemma 5.3.11 Let Jq,...,J; bet <m < n subsets of (n) each of car-
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dinality m — 1. Assume that Jy, ..., J; satisfy the m-intersection property.
Then there exists m — t subsets Jii1,...,Jm of (n) of cardinality m such
that the sets Jy,...,Jn satisfy the m-intersection property.

Proof. It suffices to show that there is a subset Ji11 C (n) of
cardinality m — 1 such that Ji,..., ;41 that satisfies the m-intersection
property. If ¢ = 1 then choose Jo # Ji. Assume that ¢ > 2. Let
P ={PC(t):#Niep J; =m — #P}. Note that {i} € P for i € (¢).

Let P,Q € P and assume that P N Q # (). We claim that PUQ € P.
Let X := Niepds, Y = NjcqJj. Then #X = m — #P,#Y = m — #Q.
Furthermore #(X NY) = #X + #Y — #(X UY). Observe next X U
Y C NgepngJr. Hence the m-intersection property of Jp,...,J; yields
#(XUY) <m—#(PNQ). Combine the m-intersection property with all
the above facts to deduce

m—#(PUQ) = #Nicpug i =#(XNY)=m —#P+m —#Q - #(XUY) >
m—#P+m—#Q - (m—#(PNQ)) =m—#(PUQ).

It follows that there exists a partition {Py,..., P} of (t) into [ sets that
equality in (5.3.1) holds for each P;, and each P C (t) satisfying equality
in (5.3.1) is a subset of some P;.

As # Niep, Ji =m —#P, > m—t > 1, we let x € Njep,J;. Choose
Jir1 be any subset of cardinality m — 1 such that Jiy1 N (Niep, J;) =
(Niep, Ji)\{z}. Since #Ji11 = m — 1 it follows that J;;1 contains exactly
#P; elements not in N;ep, J;-

We now show that Ji, ..., Jy41 satisfy the m-intersection property. Let
QC({t)and P:=QU{t+1}. f Q&P then #Njcp J; <m —#Q —1=
m — #P. Assume that Q € P. To show (5.3.1) we need to show that
Nic@Ji & Je+1. Suppose first that @ C P;. Then z € NjegJ; and © & Jii1.
Assume that Q C Pj,j > 1. So P, NQ =0 and P, UQ ¢ P. Hence

q = #((Nier, Ji) N (NjeqJi)) = # Nkerug Jk < m — (F#P1 + #Q) — 1.

Thus #((NjeqJi)\(Nicp, Ji)) = m — #Q — q > #P, + 1. We showed above
that #(J,\(Niep, J5)) = #P1. Therefore NicgJi & Jit1- O

Proof of Theorem 5.3.6.
1. Suppose first that J; := I, ..., Js := IS do not satisfy the intersection k
intersection property. Let P C (s) for which ¢ := #(NijepJ;) > k—#P+1.
Note that #P > 2. We can assume that P = (p) for some 2 < p < s.
We claim that y; := A¥"*A[;, J;],i = 1,...,p are linearly dependent. Let
J = NP_,J;. By renaming the indices if necessary we may assume that
J = (g). Suppose first that the columns ¢ =1, ..., q are linearly dependent.
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Hence any k—1 columns in J; are linearly dependent for ¢ = 1,...,p. Thus
yi=0fori=1,...,pand y,,...,y, are linearly dependent.

Assume now that the columns in ¢ = 1, ..., q are linearly independent.
Let C € F**k be an invertible matrix. Then A¥~1C is also invertible. Thus
Yi,---,¥p are linearly dependent if and only if (A*~10)y,,..., (A*7*CQ)y,
are linearly dependent. Thus we may replace A by A; := CA. Choose C

such that 4; = { Iy X

Oq I } where O € F(k~9%4 ig the zero matrix and

F e Fk—a)x(n—q)

Consider a k — 1 minor A;[{i}¢ K] for some K C (n) of cardinality
k — 1 containing set J. Expanding this minor by the first ¢ columns
we deduce that it is equal to zero, unless, unless ¢ = ¢+ 1,..., k. Let
J! = J\J,i = 1,...,p. Observe next that the submatrix of A*~14;
based on the rows {¢ + 1}°,...,{k}° and columns Ji,...,J, is equal to
the matrix AR~ F[; {J],..., J7}]. Hence rank A*"1Ay[;, {J1,...,Jp}] =
rank AK"971F[; {J],...,J0}]. Since ¢ > k —p+1 it follows that F' has at
most k — (k—p-+1) = p— 1 rows, which implies that A¥~¢1F has at most
p—1rows. Hence rank A*"971F[; {J},...,J}] <rank AK"97'F <p—1.
Lemma 5.3.7 implies that x(I,),...,x(I,) are linearly dependent, which
yield that x(I,),...,x(Is) are linearly dependent.

Assume now that J; = If,...,Js = IS satisfy the intersection k
intersection property. By Lemma 5.3.11 we can extend these s sets to
k subsets Ji,...,J; C (n) of cardinality ¥ — 1 which satisfy the inter-
section k intersection property. Let V := F" and identify V' := F",
where (v,f) = fTv. Let {f,,...,f,} be the standard basis in F". Let
Let U, = &jey;span (f;),j = 1,...,k. Then U,,..., Uy have the k-
dimensional intersection property. (See Problem 16). Theorem 5.3.10 yields
that there exists a subspace X € Grg(V) such that X ¢ Wy (U,,...,Uy).
Assume that X is the column space of BT € F"**  Assume that the
columns of BT are b,,...,b;. As in the proof of Theorem 5.3.10 let
Yi = NjefiyPj, Wi = Njes,£5,1 = 1,..., k. Note that y; is i-th col-
umn of AF=1BT. Furthermore (y;, w;) = A*"*B[{i}¢, J;]. The choice of
B is equivalent to the condition det [(yi,wj>]i-f j=, # 0. This is equivalent
to the condition that the minor of k x k submatrix of A*¥~!B based on
the columns Ji,...,Ji is not equal to zero. Since A is generic, the cor-
responding minor of A¥~1A # 0. (Otherwise the entries of A will satisfy
some nontrivial polynomial equations with integer coefficients.) Hence the
k columns of A*~TA corresponding to Ji,...,Jj are linearly independent.
In particular the s columns of A*~1A corresponding to Ji,...,Js are lin-
early independent. Lemma 5.3.7 implies that x(I,),...,x(Is) are linearly
independent.
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2. For a generic A let B € F(»=k)*" gych that the columns of BT span
the null space of A. So ABT = 0 and rank B = n — k. According to
Problem 4(e) B is generic. Note that for any J C (n) of cardinality k + 1
x(J,B) =y(J,A).

Assume that J7, ..., J; do not satisfy the the n—Fk intersection property.
The above arguments and I imply that y(J,, A),...,y(J:, A) are linearly
dependent.

Suppose now that Jf, ..., Jf satisfy the the n — k intersection property.
Extend this set to the set Ji, ..., JJ,_, each set of cardinality k + 1, such
that Jf, ..., JS_, satisfy the n —k intersection property. Let B € F(n—k)xn
be generic. I implies the n — k vectors x(J;, B), ..., x(Jp_k, B) in the row
space of B are linearly independent. Let A € F¥*™ such that the columns
of AT span the null space of B. So rank A =k and BAT = 0. According
to Problem 4(e) A is generic. Hence it follows that x(J;, B) = y(J;, A),i =
1,...,n — k are linearly independent vectors. Problems 3- 4 yield that we
can express the coordinate of each vector elementary vector in the null
space of A in terms of corresponding k£ x k minors of A. Form the matrix
C=ly(J.,,A) ... y(Ju_p, A)] € F**(=k)Since rank C = n — k it follows
that some (n — k) minor of C' is different form zero. Hence for any generic
A the corresponding minor of C is different from zero. I.e. the vectors
v(Jyi,A),...,y(Jn—k, A) are always linearly independent for a generic A.
In particular, the vectors y(J,,A),...,y(J;, A) are linearly independent.

O

Problems

1. Prove Proposition 5.3.2.
2. Let A € F**" be generic. Show

(a) All entries of A are nonzero.
(b) A is nondegenerate.

3. Let D be a domain and B € D(k_l)”, where £k > 1. Let B; €
Dk=1x(-1) be the matrix obtained by deleting the column i for
i=1,...,k. Denote d = (d,,—ds,...,(—1)*"*dy)". Show

(a) d =0 if and only if rank B < k — 1.
(b) Bd=0.
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(c)

Assume that x € ker B. If rank B =k — 1 then x = bd for some
b in the division field of D.

4. Let A € FF*n 1 < k < n. Assume that 1 < rank A =1<k. Show

(a)
(b)

(c)

For any I C {1,...,n} of cardinality n — [ — 1 there exist 0 #
x € nul A such that supp (x) C I°.

Let I C {1,...,n} be of cardinality n — k — 1 and denote B :=
Al 1¢) € R¥*(*+1) Then dim {x € nul A: supp (x) C I°} =1
if and only if rank B = k.

Let I C {1,...,n} be of cardinality n — k — 1 and denote B :=
A[:,1¢] € RF*(+1) | Then there exists an elementary vector x €
nul A with supp (x) = I¢ if and only if for each j € I¢ det A[:
AN\ #0.

The conditions 7 and 3 of Lemma 5.3.4 are equivalent.

Let rank A =1 < k. The nul A is nondegenerate if all minors of
A of order [ are nonzero.

5. Let J be defined in Definition 5.3.5. Show

(a)

(b)

The condition (5.3.1) is equivalent to
#(UjepJf) >n—m+ #P for all ) £ P C (¢).

Assume that J satisfies (5.3.1). Let J;11 be a subset of (n)
of cardinality m — 1. Then J’' := J U {Ji41} satisfies the m-
intersection property if and only if

#Uiep (JE N Jpy1) > #P for all ) # P C (¢).

In particular, if J’ satisfies m-intersection property then each
J¢ N Jipq is nonempty for ¢ = 1,...,¢t. Hint: Observe that
Jfi1 U (UiepJ§) decomposes to union of two disjoint sets J¢,
and Uiep(JiC N Jt+1).

6. Let S4,...,5; be t nonempty subsets of a finite nonempty set S of
cardinality t at least. Si,...,S; is said to have a set of distinct rep-
resentatives if there exists a subset {s1,...,s:} C S of cardinality ¢
such that s; € S; for i = 1,...,t. Show that if S,...,S; has a set of
distinct representatives then

# Uiep S; > #P for all ] # P C <t>

Hall’s Theorem states that the above conditions are necessary and
sufficient for existence of a set of distinct representatives [Hal35].
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7. Let the assumptions of Problem 6 hold. Let G be a bipartite graph
on a set of vertices V = (t) US and the set of edges F C (t) x S as
follows. (i,s) € (t) x S if and only if s € S;. Show that Sq,...,S; has
a set of distinct representatives if and only if G has a match M C E,
i.e. no two distinct edges in M have a common vertex, of cardinality

t.

Remark: There exist effective algorithms in bipartite graphs G =
(ViUVWs, E), E C V] x V5 to find a match of size min(#Vy, #Va).

8. Let A € FF*™ be nondegenerate. Show

(a) Let I C (n) be of cardinality n — k4 1. Then there exists x(I) =

(1, .

., Zn) in the row space of A, with supp (x(I)) = I, whose

nonzero coordinates are given by z; = (—1)Pit1det A[:, I°U{j}]
for any j € I, where p; is the number of integers in ¢ less than

j-

Let I and x(I) be defined as in (a). Show that there exists a
unique z(I) = (z,,...,2x) € F¥ such that x(I) = z(I)A. Use
the fact that (zA); = o for any j € I° and Cramer’s rule to show
that z; = (—1)'det A[{i}¢,I¢] fori=1,...,k.

Let Il, ..

be defined as above. Then

i.

ii.

iii.

iv.

x(1,),...,x(I) are linearly independent if and only if z(1, ), . ..

are linearly independent.
Let D = diag(—1,1,—1,...) € F¥**_ Then the matrix

., Is C (n) be sets of cardinality n—k+1. Let x(I,),z(I,),...,x(Is),z(I)

D[z(I,)" z(L,) ... z(I,)] € F¥*$ is the submatrix AK=LA[;, {I¢, ..., I¢}].

Hence z(1,),...,z(I;) are linearly independent if and only
if the submatrix A¥=1A[;, {If, ..., I¢}] has rank s.

The submatrix AF~LA[; {If, ..., I¢}] has rank s if and only
if not all the determinants det A*~YA[{i;}¢, ..., {is}°}, {{If,
for 1 <iy <ig <...<is <k are equal to zero.
x(1,),...,x(I}) is a basis in the row space of A if and only
if the determinant of the full row submatrix of AF~1A cor-
responding to the columns determined by If,...,I7 is not
equal to zero.

9. Let A € F**" be nondegenerate. Let b, ..., b,_; € R" be a basis in
the null space of A and denote by BT € F**("=%) the matrix whose
columns are b,,...,b,_;. Show

(a) Let J C (n) be of cardinality k£ + 1. Then there exists y(J)

(Yay .- -

,Yn) " in the column space of BT, with supp (y(J)) = J,

TG
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whose nonzero coordinates are given by y; = (—1)PiTldet B:
,JeU{j}] for any j € J, where p; is the number of integers in
J€ less than j.

(b) Let J and y(J) be defined as in (a). Show that there exists
a unique u(J) = (uy,...,up—x)' € F*7* such that y(J) =
BTu(J). Use the fact that (BTu); = o for any j € J¢ and
Cramer’s rule to show that u; = (—1)det B[{i}¢, J¢] for i =

1,..
(c) Let Jy,..

Ln—k.

be defined as above. Then

i.

ii.

iii.

iv.

yv(J1),...,y¥(J¢) are linearly independent if and only if u(J,), ..., u(Jy)
are linearly independent.

Let D = diag(—1,1,—1,...) € F*=kX7=% Then the matrix

Dlu(J,) u(J,) ... u(Jy)] € F=Rxt s the submatrix A" *~1B[;, {Jf, ..

Hence u(J,),...,u(J) are linearly independent if and only
if the submatrix A"~*~1B[; {Jf, ..., Jf}] has rank t.
The submatrix A"~*=1B[; {Jf,...,Jf}] has rank ¢ if and

only if not all the determinants det A»~*~1B[{i1}, ..., {it}}, {{J5, ...

for 1 <iy <ig < ...< iy <n—k are equal to zero.
v(Jy),...,x(Jn—k) is a basis in the null space of A if and
only if the determinant of the full row submatrix of A"~ *~1B
corresponding to the columns determined by Jy,...,J5_,
is not equal to zero.

10. Let C € F**("=k) he a matrix of rank n — k. Show that there exists
A € FF*n of rank k such that AC = 0.

11.

12.

Let F be a field of 0 characteristic. Let p(z1,...,7,) € Flz1,. .., 2,].
Show that p(z1,...,z,) = 0 for all x = (z,,...,7,)" € F" if and
only if p is the zero polynomial. Hint: Use induction.

Let F be a field of 0 characteristic. Assume that V. = F". Identify
V' with F". So foru € V,f € V' (u,f) = fTv. Show

(a) U C V is a subspace of dimension of n — 1 if and only if there
exists a nontrivial linear polynomial I(x) = a,2, + ... + apZy,
such that U is the zero set of I(x), i.e. U= Z(I).

(b) Let U,,..., Uy be k subspaces of V of dimension n — 1. Show
that there exists a nontrivial polynomial p = Hle l; € Flay, ..., x),

where each [; is a nonzero linear polynomial, such that U;—;U;
is Z(p).

., Ji C (n) be sets of cardinality k+1. Let y(J,),u(J1),...,y(Jr),u(Jy)

e

i
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13.

14.
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(c) Show that if U,, ..., Uy are k strict subspaces of V then U¥_, U;
is a strict subset of V. Hint: One can assume that dim U; =
n—1,i=1,...,k and the use Problem 11.

(d) Let U,U,,..., Uy be subspaces of V. Assume that U C U¥_ U;.
Show that there exists a subspace U; which contains U. Hint:
Observe U = UF_ (U, N U).

Let the assumptions of Problem 12 hold. Let X = [z;;],U = [u;;] €
F?*! View the matrices A'X, AlU as column vectors in F(D). Let
pu (211, 2n) = det (XTU) = (ALX)T AL U. View py as a poly-

nomial in nl variables with coefficients in F. Show

(a) pu a homogeneous multilinear polynomial of degree .
(b) pu is a trivial polynomial if and only if rank U < 1.

(c) Let X € Gr;(V), U € Gr;(V’) and assume that the column space
of X = [zi;] = [X1,.-,x], U = [u] = [u,,...,w] € F*™! are
X, U respectively. Then

1

pu(i1,. .., zn) = det [u;rxi}i,j:u

In particular, dim X N U+ =0 <= py(z,1,...,2n) # oO.

Let F be a field of 0 characteristic. Assume that V is an n-dimensional
vector space with n > 2. Let X C V,U C V'’ be m > 2 dimensional
subspaces. Assume that X ¢ UL, Let x,, € X\UL. Let U =
{Xm}* NU. Let X be any m — 1 dimensional subspace of X which
does not contain x,,,. Show

(a) dim U =m —1,X = X @ span (x,,).

(b) There exists u,, € U such that (Xx,,,u,,) = 1. Furthermore
U = U @ span (u,,).

(¢) Let {x4,..,Xm—1},{s,...,Wpn_,} be bases of X,Y respec-
tively. Then

(X3 Av e Ay, Wy AU AL AW ) = MK AL AXp— 1, Uy AU AL AWy ),y

where u,, is defined in (b). Hint: Use (5.2.8) and expand the
determinant by the last row.

(d) Assume that A™ ' X = span (y), A" ' U = span (w). Then
(Y A X, WA U,) = m(y, w).

(X A AX WA AW = Upy (24, -

.,.’Enl).
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15. Let the assumptions of Theorem 5.3.10 hold. View V and V' as F”.
So foru € V,f € V! (u,f) = f'v. Let X € Gr,,,(V) be the column
space of X = [z;;] € F™*™. Show that there exists a homogeneous
polynomial pu, .. u,, (11,...,Tnm) of degree m(m — 1) such that
X € W, (U,,...,Uy,,) if and only if pu, .. u, (11,..-,Znm) = 0.
Hint: Choose a basis of X to be the columns of X. Then use the
first paragraph of Proof of Theorem 5.3.10 and Problem 13.

16. Let F be a field and V an n-dimensional subspace over F. Let
Vi,...,vp beabasisof V. For @ # K C (n) let Ux = ®;cxspan (v;).
Let ¢ < m and assume that Ki,..., K; C (n) be sets of cardinality
m — 1 for any 2 < m € (n). Show that Uk ,..., Uk, satisfy the
m~dimensional intersection property if and only if Ky, ..., K; satisfy
the m-intersection property.

17. Let V be an n-dimensional vector space over F of characteristic 0.
Show

(a) Let 2 <m < n. If U,,...,U,, are m — 1 dimensional vector

spaces satisfying the m-dimensional intersection property then
- -7

dim >, A" U =m.

(b) Form = 3,n = 4 there exist U,, U,, U, which do not satisfy the
3-dimensional intersection property such that dim E?Zl AU, =
3. Hint: Choose a basis in V and assume that each Uj; is
spanned by by some two vectors in the basis.

(¢) Show that for2 <t <m =nU,,..., U satisfy the n-intersection
property if and only if dim S/_, A" ' U; =t

5.4 Tensor products of inner product spaces

Let F = R, C and assume that V; is a n;-dimensional vector space with the
inner product (-,-); fori = 1,...,k. Then Y := ®*_ 'V, has a unique inner
product (-, -) satisfying the property

k
(541) <®f:1xi,®f:1yj> = H<Xi7yi>ia for all X, ¥i € Vi7 1= 1,.. .7]€.

=1

(See Problem 1.) We will assume that Y has the above canonical inner
product, unless stated otherwise.

Proposition 5.4.1 Let U;,V; be a finite dimensional IPS over F :=
R,C with the inner product {-,-)u,, (-, )v, for i = 1,...,k respectively.
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Let X := ®@F_ U;,Y := ®@F_V, be IPS with the canonical inner products
(,)x, (-, )y respectively. Then the following claims hold.
1. Assume that T; € L(V;,U;) fori=1,...,k. Then ®F_,T; € L(Y,X)
and (8_,T)* = &, T7 € L(X,Y).
2. Assume that T; € L(V;) is normal fori = 1,.... k. Then ®F_|T; €
L(Y) is normal. Moreover, @¥_,T; is hermitian or unitary, if each
T; is hermitian or unitary respectively.

3. Assume that T; € L(V;,U;) for i = 1,...,k. Let o1(T;) > ... >
Orank T; (T3) > 0,0;(T;) = 0,5 > rank T} be the singular values of Tj;.
Letc,i,...,Cp, s and d, ;,...,dy, ; be orthonormal bases of V; and
U, consisting of right and left singular vectors of T; as described in

(4.9.5):
T%Cji,izo—j,;(ﬂ)dji,iy jiil,..., iil,...,k.
Then

( i= 1T) 1= 1ch»Z:<H0-J1 ) d]zﬂ? ]2_1 i:]-v"‘vk'

In particular

(5.42) || @5, Tl = 01(&1, T)) HHTII—Hm

UH k_ rank T Q= 1T H Orank T

We consider a fixed IPS vector space V of dimension n and its exte-
rior products /\kV for k = 1,...,n. Since /\kV is a subspace of Y :=
®i?:1Vi,V1 =...=V, =V, it follows that /\k V has a canonical inner
product induced by (-, -)y. See Problem 3a.

Proposition 5.4.2 Let V, U be IPS of dimension n and m respectively.
Assume that T € L(V,U). Suppose that c,,...,c, and d,,...,d,, be or-
thonormal bases of V and U composed of the right and left singular eigen-
vectors of T respectively, as given in (4.9.5). Let k € NN [1,min(m,n)].
Then the orthonormal bases
1 k

ci, N...\¢cj, E/\V, 1<, <...<i <n,

V!

1
dj, A...Adj, e AU 1<jy <. <jp<m,

V!



5.4. TENSOR PRODUCTS OF INNER PRODUCT SPACES 259

are the right and the left singular vectors of AFT € L(A" V, A* U), with
the corresponding singular values Hle 0;,(T) and Hle 0;,(T) respectively.
In particular

k
NTe, A Aeg = || AFTIIdy A Ady, ([ AT =0, (AFT) = [ (D),
l=1

k
k
N Tcrank T—k+1 VAN Crank T — H Orank T7k+l(T)drank T—k+1 VAR drank T

l=1

are the biggest and the smallest positive singular value of NPT for k <
rank T.

Corollary 5.4.3 Suppose that 'V is an IPS of dimension n. Assume
that T € Sy (V). Let M(T) > ... > A\(T) > 0 be the eigenvalues of
T with the corresponding orthonormal eigenbasis c,,...,c, of V. Then
AFT € S (A" V). Let k € NN [1,n]. Then the orthonormal base ﬁcil A
NG, 150 < Lo < < noof /\kV is an eigensystem of A*T, with
with the corresponding eigenvalues Hle Xi,(T). In particular

k
NTe, A Aeg = || AFTlles Ao Aek, ([ AT = X (AFT) = [T A(T).
=1

k
k
N Tcrank T—k+1 Ao A Crank T = H )\rank T—k+l(T)drank T—k+1 VANV drank T

=1
are the biggest and the smallest positive eigenvalue of ANFT for k < rank T.
See Problem 4.

Theorem 5.4.4 Let U, V, W be finite dimensional IPS. Assume that
PeL(U,W),TeL(V,U). Then

k k
(5.4.3) [[o:(PT) <[[o:(P)oi(T), k=1,...

i=1

For k < min(rank P,rank T) equality in (5.4.3) holds if and only if the
following condition is satisfied. There ezists a k-dimensional subspace Vy,
of V which spanned by the first k-orthonormal right singular vectors of T,
such that TV, is a k-dimensional subspace of U which is spanned the first
k-orthonormal right singular vectors of P.
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Proof. Suppose first that & = 1. Then ||PT|| = ||PTv||, where
v € V,||v|| = 1 is the right singular vector of PT. Clearly, ||PTv|| =
[|P(Tv)|| < ||P|] ITv]l < ||P|| ||T]|, which implies the inequality (5.4.3)
for k = 1. Assume that ||P|| ||T|| > 0. For the equality ||PT|| = ||P|| ||T]|
we must have that T'v is the right singular vector corresponding to P and
v the the right singular vector corresponding to 7'. This shows the equality
case in the theorem for k = 1.

Assume that & > 1. If the right-hand side of (5.4.3) is zero then
rank PT < min(rank P,rank Q) < k and o4 (PT) = 0. Hence (5.4.3) triv-
ially holds. Assume that k& < min(rank P,rank Q). Then the right-hand
side of (5.4.3) is positive. Clearly min(rank P,rank T) < min(dim U, dim V,dim W).
Observe that AT € L(A" V, A" U), AkP € L(A* U, A" W). Hence (5.4.3)
for k = 1 applied to A* PT = AFPAFT yields o1 (AFPT) < o1 (A*P)oy (AFT).
Use Proposition 5.4.2 to deduce (5.4.3). In order to have o (A*PT) =
o1(A¥P)oy (AFT) the operator A*T has a right first singular vector x €
/\k V, such that 0 # AFTx is a right singular vector of A*¥P corresponding
to o1 (AFP). It is left to show to show that x can be chosen as ¢, A...A cg,
where c,,...,c, are the right singular vectors of T corresponding to the
first k-singular values of T'.

Suppose that

O’l(T) =...= Ull(T) > Ull-l-l(T) =...= Ulg(T) >...>0= O’j(T) for j > lp.
(5.4.4)

Assume first that k = [; for some i < p. Then o1 (AFT) > go(A*T) and

c, A...Acy is the right singular vector of A*T' corresponding to oy (A*T).

Then o1 (AKP A* T) = 01 (A*P)oy (AFT) if and only if (A¥T)c, A... Acy =

Tc, A...ATcy is the right singular vector of A* P corresponding to oy (AF P).
Assume that

o1(P)=...=0m,(P) > 0om41(P) = ... =0m,(p) > ... > 0=0,(P) for j > my,.

Suppose that k = m;_1 +r, where 1 <7 < mj; —m;_;. (We assume here
that mo = 0.) Let U, be the subspace spanned by the m;_; right singular
vectors of P corresponding to the first m;_; singular values of P and W,
be the subspace spanned by m; — m;_; right singular vectors of P corre-
sponding the 0., , y1(P),...,0m,;(P). Then any right singular vector of
AFP corresponding to o1 (A P) is in the subspace ( A" U,) A (A" W,).
Let Vi = span (c,,...,¢k). So ¢, A...Ac is a nonzero vector in /\’C Vi
and (A*T)c, A...Acy is a nonzero vector in A¥ W, where W, := TV}, and

U, = {0}. The equality in (5.4.3) yields that ( AT Ul) A ( /\TWI) N
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(/\0 U2> A (/\’“Wz) # {0}. Lemma 5.2.11 yields that U, € TV} and
TV, CU, + W,. So TV}, is spanned by the first k£ right singular vectors
of P.

Assume now that k = [;_1 + 5,1 < s < l; — l;_1. Then the subspace
spanned by all right singular vectors of AFT corresponding to o (A*T) is
equal to

(/\li’1 U2) A (/\S Wz), where U, and W, are the subspaces spanned

the right singular vectors of T corresponding to the first [,_; and the
next l; — l;_; singular values of T' respectively. Let U, := T'U;, W, =

TW,. The equality in (5.4.3) yields that (/\mﬂ'-l U1> A (/\TWI) N
(/\li‘l UZ) A (/\S W2) contains a right singular vector of A*P corre-

sponding to o1 (A*¥P). Lemma 5.2.11 yields that there exists a k dimensional
subspace V' such that V! D U, + U, and V), C (U, + W, )N (U, +W,).
Hence there exists a k-dimensional subspace V of U; + W, containing
U, such that V! =TV} contains U, and is contained in U, + W ,. Hence
TV is spanned by the first k£ right singular vectors of P.

Assume now that Hﬁzl 0i(P)o;(T) > 0. Then 0 < 0;(P),0 < o4(T)
fori=1,...,1. Assume that for k = 1,...,1 equality holds in (5.4.3). We
prove the existence of orthonormal sets c,,...,c;, d,,...,d; of right sin-
gular vectors of T" and P respectively such that ﬁck =dyg,k=1,...,1
by induction on . For [ = 1 the result is trivial. Assume that the result
holds for I = m and let I = m + 1. The equality in (5.4.3) for k =m + 1
yields the existence of m + 1 dimensional subspace X C U such that X is
spanned by the first m + 1 right singular vectors of T and TX is spanned

by the first m + 1 right singular vectors of P. O

Theorem 5.4.5 Let the assumptions of Theorem 5.4.4 hold. Then
equalities in (5.4.3) hold for k = 1,...,1 < min(rank P,rank T) if and

only if there exits first | orthonormal right singular vectors c,,...,c; of
T, such that ﬁTc17 ceey ﬁTcl are first | orthonormal right singular

vectors of P.

Proof. We prove the theorem by induction on [. For [ = 1 the
theorem follows from Theorem 5.4.4. Suppose that the theorem holds for
I =j. Let I = j+ 1. Since we assumed that equality holds in (5.4.3)
for £ =1 Theorem 5.4.4 yields that there exists an subspace [-dimensional
subspace V; of V which is spanned by the first [ right singular vectors
of T, and TV, is spanned by the first [ right singular vectors of P. Let
T € L(V,,TV,), P € L(TV;, PTV,) be the restrictions of T and P to the
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subspaces V;, TV, respectively. Clearly

(5.4.5) 0i(T) = 05(T) > 0, 0;(P) = 04(P) >0, fori=1,...,1.

The equahtles in (5.4.3) for k = 1,...,limply that o;(PT) = 0:(P)o;(T)
fori=1,...,0. Let Q := PT € L(VZ,PTVZ) Clearly Q is the restric-
tion of @ := PT to V;. Corollary 4.10.3 yields that 0;(Q) < 0;(Q) for
i = 1,.... Since det Q = det P det T" we deduce that Hi:l ai(Q) =

Hi’:1 oi(P) Hf.:l os(T). The above arguments show that Hi:l 0:(Q) =
Hizl 0:(Q) > 0. Corollary 4.10.3 yields that ¢;(Q) = 04(Q). Hence we
have equalities Hf L0i(PQ) = Hf L0i(P)oi(T) for i = 1,...,1. The
induction hypothesis ylelds that there exist ﬁrst -1 orthonormal right

singular vectors of T Cy,...,C_,, such that (T) Tcl, .. (T) Tcl , are

first [ orthonormal right singular vectors of p. Complete c,,...,c;_, to an
orthonormal basis Ciyeees € of V;. Then c; is a rlght Smgular vector of T
corresponding oy(7). Slnce Tcl is orthogonal to Tc17 .. Tcl 1, which are
right singular vectors of P it follows that - (T) —L_T¢isa rlght singular vector

of P corresponding to o;(T). Use (5.4.5) and the fact that 7" and P are the
corresponding restrictions of 1" and P respectively to deduce the theorem.
O

In what follows we need to consider the half closed infinite interval
[—00, 00). We assume that

—o<a,a—00=—-00+a=—00—00=—00 for any a € [—00,00).

Denote by [—00,00)0 C [~00,00)" the set of x = (,,...,2,) Where 21 >
.2 Ty > —00.

We now extend the notions of majorizatrions, Schur set, Schur order
preserving function to subsets of [—00,00)0 . Let x = (2,,...,7n),y =
(Yas---sYn) € [-00,00)¥ . Then x <y, ie. x is weakly majorized by vy,
if the inequalities Zle x; < Zle y; hold for i = 1,...,n. x <y, ie x
majorized by y, if x <y and Y ., x; = >, y;. Aset D C [—o0, o0)¥ is
called Schur set if for any y € D and any x <y x € D.

Let I C [—00,00) be interval, which may be open, closed or half closed.
Denote by I, the interior of I. f : I — R is called continuous if f|Ip and
continuous. If a € [—00,00) is an end point of I then f is continuous from
the at a from the left or right respectively. Suppose that —oo € I. Then
f I — Ris called convex on I if f is continuous on I and a nondecreasing
convex function on Iy. (See Problem 6.) f is called strictly convex on I if f
continuous on I and strictly convex on Iy. If —oo € [ then f is continuous
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on I, and is an increasing strictly convex function on Iy. Note that the
function e® is a strictly convex function on [—o0, 00).

Let D C [—00,00)™. Then f : D — R is continuous, if for any x € D
and any sequence of points x; € D,k € N the equality limg_,o f(x) =
f(x) holds if limg_,oo X = x. D is convex if for any x,y € D the point
tx+ (1 —t)y € D for any t € (0,1). For a convex D, f : D — R is
convex if f is continuous and f(tx+ (1 —t)y) < tf(x)+ (1 —t)f(y) for any
t € (0,1). For a Schur set D C [—00,00)™ f: D — Ris called if Schur order
preserving, strict Schur order preserving, strong Schur order preserving,
strict strong Schur order preserving if f is a continuous function satisfying
the properties described in the beginning of §4.7. It is straightforward to
generalize the results on Schur order preserving functions established in
§4.7 using Problem 7.

Let the assumptions of Theorem 5.4.4 hold. For any k € N let
(5.4.6)

o,(T) = (01(T),...,01(T)) € R’fh\, log oy := (log a1 (T), ... ,logo(T)) € [~o0, 00)k.

Theorem 5.4.4 yields

logo(PT) < logoi(P) + logo(T) for any k € [1, max(rank P, rank T)]
(30'9); (PT) < log o (P) 4 log ok (T) for k > max(rank P, rank T),
logo(PT) <logok(P) +logoy(T) if k = rank P = rank T = rank PT.

See Problem 8.

Theorem 5.4.6 Let U, V, W) be IPS. Assume that T € L(V,U), P €
L(U,W) andl € N.

1. Assume that D C [—o0, oo)l\ be a strong Schur set containing log o (PT),log o (P)+
logoy(T). Let h : D — R be a strong Schur order preserving func-
tion. Then h(logo(PT)) < h(logo(PT) + logo;(PT)). Suppose
furthermore that h is a strict strong Schur order preserving. Then
equality holds in the above inequality if and only if equality holds in
(5.4.3) fork=1,...,1L

2. Assume thatlog o (PT) < log o1 (P)+logo(T), and D C [—o0, oo)l\
be a Schur set containing log o(PT),logo(P) + logo(T). Let h :
D — R be a Schur order preserving function. Then h(logo(PT)) <
h(log o (PT) + logo;(PT)). Suppose furthermore that h is a strict
Schur order preserving. Then equality holds in the above inequality if
and only if equality holds in (5.4.3) fork=1,...,1—1.

See Problem 9.
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Corollary 5.4.7 Let U, V, W) be IPS. Assume that T € L(V,U), P €
L(U, W) and | € N. Assume that log o;(PT) < log o ;(P) +logo(T), and
I C [—00,00) is an interval set containing log o1 (P)+log o1 (T),logo;(PT).
Let h : I — R be a convex function. Then

l l
(5.4.8) > h(logai(PT)) <Y h(logoy(P)) + h(log o4(T)).

1=1 i=1

Corollary 5.4.8 Let U, V, W) be IPS. Assume that T € L(V,U), P €
L(U,W) and !l € N. Then for any t > 0

l
(5.4.9) Za, (PT)t > Z

equality holds if and only if one has equality sign in (5.4.3) fork=1,...,1.

Proof. Observe that the function h : [—oo,oo)l\ — R given by

h((z1,...,2)) = 22:1 e®i is a strictly strongly Schur order preserving for
any t > 0. O

The following theorem improves the results of Theorem 4.10.12.

Theorem 5.4.9 Let V be an n-dimensional IPS vector space over C
and assume that T € L(V). Let \(T),..., A (T) € C be the eigenvalues
of T counted with their multiplicities and arranged in order |\ (T) > ... >

A (T)]. Let X (T) := (JM (D), - - -5 [ A (D)) and Ao 5 (T) := (M (D)1, - - ., |Ae(T)])
fork=1,....n. Then
(5.4.10)
l l n n
[T H T) forl=1,. —1, and []IX(D)] =[] o:(T)
i=1 i=1 i=1 i=1
Forl=1,... k <n equalities hold in the above inequalities if and only if

the conditions 1 and 2 of Theorem 4.10.12 hold.
In particularlog X 1 (T) < log ok (T) fork =1,...,n—1 andlog A, (T) <
logo(T).

Proof. By Theorem 4.10.12 |A\{(A'T)| < o1(A!T). Use Problem 7
and Proposition 5.4.2 to deduce the inequalities in (5.4.10). The equality
T, X (T)] = T2, 04(T) is equivalent to the identity |det T|2 = det TT*.

Suppose that for I = 1,...,k < n equalities hold in (5.4.10). Then
[Ai(T)| = 04(T) for i = 1,..., k. Hence equality holds in (4.10.14). The-
orem 4.10.12 implies that conditions 1,2 hold. Vice versa, assume that
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the conditions 1,2 of Theorem 4.10.12 hold. Then from the proof of The-
orem 4.10.12 it follows that |\;(T)| = o4(T) for i« = 1,...,k. Hence for
l=1,...,k equalities hold in (5.4.10). |

Corollary 5.4.10 Let V be an n dimensional IPS. Assume that T €
L(V).

1. Assume that k € [1,n—1]NN and D C [—oo, oo)k\ be a strong Schur
set containing logo(T). Let h : D — R be a strong Schur order
preserving function. Then h(log A(T)) < h(logor(T)). Suppose
furthermore that h is a strict strong Schur order preserving. Then
equality holds in the above inequality if and only if equality holds in
(5.4.10) for 1 =1,... k.

2. Let I C [—00,00) be an interval containing log o1(T),log ok (T),log | A (T)].
Assume that f : I — R is a convex nondecreasing function. Then
Zle flog |\ (T)]) < Zle fQoglo:(T)]). If f is a strictly convex
increasing function on I then equality holds if and only if equality
holds in (5.4.10) for 1l =1,...,k. In particular for any t > 0

k

k
(5.4.11) St < Zai(T)t.

i=1
Equality holds if and only if equality holds in (5.4.10) forl =1,... k.

3. Assume that D C [—00,00)%_is a Schur set containing log o, (T). Let
h: D — R be a Schur order preserving function. Then h(log Ay (T)) <
h(logo,(T)). Suppose furthermore that h is a strict Schur order pre-
serving. Then equality holds in the above inequality if and only if
equality holds T is a normal operator.

Problems

1. Let V; be an n;-dimensional vector space with the inner product (-, -);
fori=1,... k.

(a) Let e, 4,...,€p,,; be an orthonormal basis of V; with respect
(-, for i = 1,... k. Let (-,-) be the inner product in Y :=
®k_ 'V, such that ®f:1eji7i where j; = 1,...,n;,0 =1,...,k is
an orthonormal basis of Y. Show that (5.4.1) holds.
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(b) Prove that there exists a unique inner product on Y satisfying
(5.4.1).

2. Prove Proposition 5.4.1.
3. Let V be an n-dimensional IPS with an orthonormal basis e, ..., e,.
Let Y :=®F V; V, =...=V, =V be an IPS with the canonical

inner product (-,-)y. Show

(a) Let k € NN [1,n). Then the subspace A"V of Y has an or-
thonormal basis

e, N Ne,1 <0 <ip <...<1ip<n.

Vi

(b) Let k € N. Then the subspace Sym*V of Y has an orthonomal

basis a(iy, ..., i )sym*(e;,,...,e;, ), 1 <i, < ... < i <n. The
coefficient «(iy,...,i) is given as follows. Assume that i; =
.= ill < il1+1 = ... = il1+l2 < ... < il1+»--+lr—1+1 = ... =

Uy +...+1,, where Iy +.. .+, = k. Then a(iy,...,i) = ﬁ

4. (a) Prove Proposition 5.4.2.
(b) Prove Corollary 5.4.3.

5. Let U,V be IPS of dimensions n and m respectively. Let T € L(V, U)
and assume that we chose orthonormal base [c,,...,c,],[d,,. .., dy]
of V, U respectively satisfying (4.9.5). Suppose furthermore that

0'1(T) =...= O'll(T) > 0'[1+1(T) =... 20'52(T) >0 >
(5.4.12)
o, 1(T)=...=0,(T)>0,1<1l; <...<l,=rank T.

Let
(5.4.13) V,:=span (¢;,_,41,---,€C)y E=1,...,D, lo:=0.

(a) Let k = I; for some i € [1,p]. Show that o1 (AFT) > ao(AFT).
Furthermore the vector ¢, A ... A ¢ is a unique right singular
vector, (up to a multiplication by scalar), of AFT' corresponding
to o1 (AFT). Equivalently, the one dimensional subspace spanned
by the the right singular vectors of A*T is given by /\k EBz»:lVZ-.
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6.

10.

11.

(b) Assume that I; —l;_1 > 2 and [;_; < k <; for some 1 < i < p.
Show that

(5.4.14) oy (N'T)=...= o) () > oty o

7).
The subspace spanned by all right singular vectors of A*T' cor-
responding to o1 (AFT) is given by the subspace:

li_1 k—li—,
(A @ZiVOAC A Vo).

Let I :=[—00,a),a € R and assume that f: I — R is continuous. f
is called convex on I if f(tb+ (1 —t)c) < tf(b) + (1 —t)f(c) for any
b,ce I and t € (0,1). We assume that ¢t(—oo0) = —oo for any ¢ > 0.
Show that if f is convex on [ if and only f is a convex nondecreasing
bounded below function on I,.

D C [~00,00)¥ such that D' := D NR" is nonempty. Assume that
f: D — R is continuous. Show

(a) D is a Schur set if and only if D’ is a Schur set.

(b) f is Schur order preserving if and only if f|D’ is Schur order
preserving.

(c) f is strict Schur order preserving if and only if f|D’ is string
Schur order preserving.

(d) f is strong Schur order preserving if and only if f|D’ is strong
Schur order preserving.

(e) f is strict strong Schur order preserving if and only if f|D’ is
strict strong Schur order preserving.

Let the assumptions of Theorem 5.4.4 hold. Assume that rank P =
rank T = rank PT. Let & = rank P. Show that the arguments of the
proof of Theorem 5.4.5 implies that Hle o;(PT) = Hle o;(P)oi(T).
Hence log o (PT) < log o, (P) +log ok (T).

Prove Theorem 5.4.6 using the results of Section 4.7.

Show that under the assumptions of Theorem 4.10.8 one has the in-
equality 3!, 04(S*T)" < 31, 03(S)toy(T)" for any | € Nand ¢ > 0.

(a) Let the assumptions of Theorem 5.4.9 hold. Show that (5.4.10)
imply that A\;(T") = 0 for ¢ > rank T.
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(b) Let V be a finite dimensional vector field over the algebraically
closed field F. Let T € L(V). Show that the number of nonzero
eigenvalues, counted with their multiplicities, does not exceed
rank T. (Hint: Use the Jordan canonical form of T'.)

5.5 Tensor products of exponents

Proposition 5.5.1 (The Lie-Trotter formula.) Leta > 0, A(t) : (—a,a) —

Cn*" | assume that

A
(5.5.1) im A0 _ g
t—0 ¢

Then for any s € R

(5.5.2) lim (1 + At)i =eP

Proof. The assumption (5.5.1) yields that B(t) := +A(t),t # 0, B(0) :=
B is continuous at t = 0. Hence, there exists 6 > 0 such that for [¢| < ¢
[|B(t)|l2 = 01(B(t)) < c. Without loss of generality we can assume that
¢§ < 3. Hence, for |t| < § all the eigenvalues of A(t) are in the disk |z| < 1.
Consider the analytic function log(l + z) in the unit disk |z] < 1 with
log1 = 0. The results of §3.1 that for |t| <

Slog(I + A(t) i i 13() R S iU
Recall that

71 stt 1
||Z Ay L AT

=2

i \S\It\"’lllB(t)llé < Isl(=ltle — log(1 — Jt|e)

i 2]

i=2
Hence

lim (7 + A(t))? = exp(lim ©log(I + A(1)) = e*”.

Proposition 5.5.2 Let V; is a n;-dimensional vector space for i =
.k overF=R,C. Let Y := ®f:1Vz-. Assume that A; € L(V;),i =
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1,.... Then
@F_edit = e t ¢ T (@k V), where
(5.5.3)
k
(A A =D T, ® ... @Iy, ® Ap, ® In,,, ®...® I, € L(®F,V)),
i=1
foranyt €F.

See Problem 1.

Definition 5.5.3 Let V be a n-dimensional vector space over F. As-
sume that A € L(V). Denote by Axx the restriction of (A,..., A)g to
————

A

Corollary 5.5.4 Let the assumptions of Definition 5.5.3 hold for F =
R,C. Then A*eAt = et for any t € F.

Definition 5.5.5 A subspace U C H,, is called a commuting subspace
if any two matrices A, B € U commute.

Recall that if A, B € H,, then each eigenvalue of e4e® are positive. (See
Problem 4.)

Theorem 5.5.6 Let U,V C H,, be two computing subspaces. Then the
functions
(554) fr:UxV >R, fu(A B): Zlog)\ ck=1,...,n,
are conver functions on U x V. (The eigenvalues of eAe® are arranged in
a decreasing order.)

Proof. Since e”e? has positive eigenvalues for all pairs A, B € H,,
it follows that each fi is a continuous function on U x V. Hence it is
enough to show that

(5.5.5)
(5 (A1t o), 5 (Bi+B2) < S(flAn, B+iudz, Ba)), k=1,.,m,

N =

for any A1, Ay € U, B,, B, € V. (See Problem 5.)
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We first consider the case k = 1. Since A1 Ay = A A1, B1By = B> By it
follows that
ez (Ar1A2) o3 (Bi+B2) 3420341538105 B2

= e2

Observe next that

e_%A2 (e%AQB%Ale%Ble§B2) %AZ = e%Ale%B e%BQe%AQ =
1 1
fl(i(Al + AQ), 5(31 + Bg)) = A1(62A1€231€232€2A2)
Hence
(5.5.6) Al(e%Ale%Ble%Bze%@) < ol(eéAle%Ble%Bze%Al’) <
gl(e%Ale%Bl)o—l(e%Bze%A2) = Al(e%AleéBle%BleéAl)%)\l(e%AQe%B2e%B26%A2)% =
)\1(e%Ale%Ale%Ble%Bl)%)\1(e%A26%A26%BQe%B2)% = /\1(6’41631)%)\1@%632)%.

This proves the convexity of f;.

We now show the convexity of fi. Use Problem 6 to deduce that we may
assume that U = UD,(R)U*,V = VD, (R)V* for some U,V € U(n). Let
U, Vi, C H(@ be two commuting subspaces defined in Problem 6(d). The
above result imply that g : Uy x V, — R given by g(C, D) = log(e®eP) is
convex. Hence

(9((A1) ars (B1) ax)+9((A1) ax, (Bi)ar))-

N =

(5 (A1) e+ (A2) ), 5 (Br) et (B) ) <

The definitions of (A,..., A)g and A« yield the equality §(Ax + Bax) =
——

k
(3(A+ B))x. Use Problem 3 to deduce that the convexity of g implies the
convexity of f. a

Theorem 5.5.7 Let A, B € H,, k € [1,n]NN. Assume that f,(tA,tB),t €
R is defined as in (5.5.4). Then the function M increases on (0,00).
In particular

k k
(5.5.7) Y N(A+B) <) loghi(e?e?), k=1,...,n,

i=1 i=1
(5.5.8) treAtB < tr(efe®)..

Equality in (5.5.8) holds if and only if AB = BA.
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Proof. Theorem 5.5.6 yields that gx(t) := fr(tA,tB) is convex on
R. (Assume U = span (A),V = span (B)). Note that g;(0) = 0. Prob-

(t)

lem 8 implies that ng nondecreasing on (0,00). Problem 9 implies that

limy~ o ng(t) = Zle Ai(A 4+ B). Hence (5.5.7) holds. Use Problem 7 to
deduce that in (5.5.7) equality holds for £ = n. Hence (5.5.7) is equivalent
to

(5.5.9) A(A+ B) < log A(ee?).

Apply the convex function e” to this relation to deduce (5.5.8).

We now show that equality holds in (5.5.8) if and only if AB = BA.
Clearly if AB = BA then eAteBt = e(AtB)t hence we have equality in
(5.5.8).

It is left to show the claim that equality in (5.5.8) implies that A and
B commutes. We prove this claim by induction on n. For n = 1 this
claim trivially holds. Assume that this claim holds for n = m — 1. Let
n = m. Since e is strictly convex it follows that equality in (5.5.8) yields
the equality

AB = BA hence we have equality in (5.5.8) A(A + B) = log A(e?e?)
in particular A(A + B) = log \;(e?e?). Hence ng(t) is a constant function
on (0,1], i.e. ¢g1(t) = Kt for t € [0,1]. Use the inequalities (5.5.6) for
k=1A = At,Ay = A,B; = Bt,Bs = B,t € (0,1) to conclude that we
must have equalities in all inequalities in (5.5.6). In particular we first must

have the equalities A\ (e“e?) = oy (ee?). Similarly we conclude that

k

=1

Theorem 4.10.12 yields that e?e” is a normal matrix.

Assume first that all the eigenvalues of eAe? are equal. Hence e
cl = etef = ePet = AB = BA. Assume now that e?e? has I-distinct
eigenvalues 41 > ... > v > 0. Let W; be the eigenspace of e“e®? corre-
sponding to ;. Clearly e®W; is the eigenspace of eBe? corresponding ;.
Hence e®W; = W; = BW,; C W;. Similarly e W; = W; = AW, C W,.
Since e“ef|w, = vilw, it follows that AB|w, = BA|w, fori =1,...,k.
Hence e?e? = eBe = AB = BA. O

AgB _

Let

1
5.5.10 C(t) := floge%AteBte%At eH,, teR\{o}.
t

k
H/\i(eAeB) = Hai(eAeB), i=1,...,n= \N(eteP) =gi(e?eP), i=1,...
i=1



272 CHAPTER 5. ELEMENTS OF MULTILINEAR ALGEBRA

tC(t) is the unique hermitian logarithm of a positive definite hermitian

1 i C . .
matrix e24teBtex4t which is similar to eA*eP*. Proposition 5.5.1 yields

(5.5.11) lim C(t) = C(0) = A+ B.

(See Problem 11.) In what follows we give a complementary formula to
(5.5.11).

Theorem 5.5.8 Let A, B € H,, and assume that C(t) is be the her-

mitian matriz defined as (5.5.10). Then Zle Xi(C(t)) are nondecreasing
functions on [0,00) for k=1,...,n satisfying

(5.5.12) A(C(t) < A(A) + A(B).
Moreover there exists C' € H,, such that

(5.5.13) lim C(t) = C,

t—o0o

and C commutes with A. Furthermore there exist two permutations ¢,
on {1,...,n} such that

(5.5.14) )\l(C) = /\¢(z) (A) + )‘111(1)(3)’ 1=1,...,n.

Proof. Assume that ¢ > 0 and let \;(t) = e"(C®) § =1 ... n be
the eigenvalues of G(t) := e24teBle3Al Clearly

Ai(t) = [lesMePle )y < [[eM[3]|e7|[5 = e DAL,

By considering A*G(t) we deduce

k
H)\i(t)§et2§=1’\i(’4)+’\i(3), k=1,...,n, t>0.
i=1

Note that for k£ = n equality holds. (See Problem 7.) Hence (5.5.12) holds.

Let gr(t) be defined as in the proof of Theorem 5.5.7. Clearly gkt(t) =

Zle Ai(C(t)). Since ng(t) is nondecreasing we deduce that Zle Ai(C(1)

is nondecreasing on [0, c0). Furthermore (5.5.12) shows that 9 is hounded.

t
gkt(t) exists for each k£ = 1,...,n, which is equivalent to

Hence lim;_,

(5.5.15) tlim M(C@)=wi, i=1,...,n.
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Let
(5.AL6GFE ... =wp, > Wnygl = ... =Wy > ... > Wy 41 = ...Wn,,
ng=0<n <...<n, =n.
Let wg := w1 + L,wp41 = wp, — 1. Hence for ¢ > T the open inter-
val (£i=bfei @iteinly contains exactly n; — n;_q eigenvalues of C(t) for

i = 1,...,7. In what follows we assume that ¢ > T. Let P;(t) € H,
be the orthogonal projection on the eigenspace of C(t) corresponding to
the eigenvalues A,, _,+1(C(¢t)),..., A\n,(C(t)) for i = 1,...,r. Observe that
P;(t) is the orthogonal projection on the eigenspace of G(t) the eigenspace
corresponding to the eigenvalues A,, | +1(t),..., Ap, () fori =1,...,r. The
equality (5.5.13) is equivalent to

(5.5.17) tlim P(t)y=P;, i=1,...,r

The claim that CA = AC is equivalent to the claim that AP, = P;A for
1=1,...,7r

We first show these claims for ¢ = 1. Assume that the eigenvalues of A
and B are of the form

MA)=...=;A) =1 > ;1A =...=,(d) =2 > ... >
A,_1(A)=...= )\ZP(A) = a,,,

M(B)=...= A\, (B) = 51>/\m1+1(B):...:/\ L,(B)=02>..
mq 1+1( ) —)‘mq( ):ﬁib
(55.18) lp=0<h <...<l,=m, m0—0<m1<...<mq=n.

Note that if either p = 1 or ¢ = 1, i.e. either A or B is of the form al,
then the theorem trivially holds. Assume that p,q > 1. Let @Q;, R; be the
orthogonal projections on the eigenspaces of A and B corresponding to the
eigenvalues a; and ; respectively, fori =1,...,p,j =1,...,¢. So

p q b,p,q
=Y ebeiqi B =3 Ry, Gy = Y eblnteatiig) riQ;,.
= i=1

i1 =ip=j=1

Observe next that
rank Q;R; = rank (Q;R;)* = rank R;Q; = rank (Q;R;)(QiR;)* = rank QiRJ?Qi =
QhRJQZz = (QMRJ)(R]QU) 7é 0= Qh RJQM # Oa Qi2RjQi2 3& 07
K:={(7)e{l,....p} x{1,...,¢}, Q:R; # 0},

pP.q

=Q QI R) =D QiRi= Y. QiR

4,j=1 (i,5)EK
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(See Problem 14.) Let

(55191 = (nax_a + B, Ki:=A{(,j) € K,i + 8 =7},

n} = rank QiR;Q;, v = max o+ 5.
' (ij)ze,cl ! L e\ !

From the above equalities we deduce that Ky # (). Assume that (4, 5), (¢, 7') €
K1 are distinct pairs. From the maximality of «; and the definition of K
it follows that i # ', j # j'. Hence Q;R;Q;(Q:R;:Qi) = 0. Furthermore
vy is well defined and 7f < ;. Let

Di(t):= Y e mmiQRQ; +
(4,4)ER\K1
Z e%(ail+(Xi2+2ﬁj_271)tQileQi2'

(i1,5),(i2,5) EX ir F#iz
(5.5.20)
D= Z QiR;jQ;, D(t) = D+ Dy(t).

(i,7)€EK
Then nf = rank D. (See Problem 15b). We claim that
(5.5.21) wi =71, N1 =mn.

From the above equalities and definitions we deduce G(t) = e"**D(t).
Hence ) () = e7A;(D(t)). As each term e2 (@i +aia +26,-27)t appearing in
D (t) is bounded above by e=2(1=1)t we deduce Dy (t) = e2 (=71 Dy(t)
and < ||Dz2(t)|]2 < K. Hence lim;_,o, D(t) = D. Since rank D = nf we
deduce that we have 0.5X;(D) < A\;(D(t)) < 2X\(D) for i = 1,...,n}. If
n} < n then from Theorem 4.4.6 we obtain that

N(D()) = A (D+ D1 (t)) < Xi(D)+ A (D1(t)) = M (D (t) < ezt

fori=mn1+1,...,n. Hence
, 1 ,
wi:’YDZ:la"'?nIl? wz§§(7+71)712n,1+117n»

which shows (5.5.21). Furthermore lim;_,, Pi(t) = P;, where P; is the
projection on DC”. Since Q;Q; = 6;;Q; it follows that QD = DQ,; for
i/ =1,...,p. Hence AD = DA = AP, = PiA. Furthermore P,C" is a
direct sum of the orthogonal subspaces Q;P;Q;C", (i,5) € K1, which are
the eigen-subspaces of A corresponding to \;(A) for (¢,7) € K.
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We now define partially the permutations ¢,1. Assume that i =
{(t1,51);---,(t6,J0)}. Then wy = v = a;, + G;, for k = 1,...,0. Let
eo = 0 and ey = ex_1 +rank Q; R;, Q;, for k =1,...,0. Note that e, = nj.
Define
(5.5.22)
O(s) = liy—1+s—ex—1, Y(s) =my,_1+s—ep_1, for s=ep_1+1,...,ex, k=1,...,0.

Then wy = ws = Aps)(A) + Ay(s)(B) for s =1,...,n;.

Next we consider the matrix

Gy = /\n1+1G(t) _ /\n1+1e%AteBt6%At _ G%A/\”‘1+1 teB/\"lJrlte%A/\"lJrlt.
So A (Ga(t)) = Hgfl Ai(t) and more generally all the eigenvalues of G(t)
are for the form

ni+1
H )‘jl(t)"‘)‘jn1+1(t)7 1 S]l <j2 <... <jn1+1 <n.
=1

Since we already showed that lim;_ . M =w; fori=1,...n we
deduce that
ni+1 1
. 1 n N
Jim (T A (0 g () F = B0 e
i=1

Hence all the eigenvalues of Gy(t)* converge to the above values for all
choices of 1 < j1 < j2 < ... < Jn,+1 < n. The limit of the maximal
eigenvalue of Gg(t)% is equal to e¥1 T T@n1TWi for § = ny +1,...,ng, which
is of multiplicity ny — ni. Let P 1(t) be the projection on the eigenspace
of G4(t) spanned by the first ny — ny eigenvalues of Ga(t). Our results for
G(t) yield that limy_.o P21(t) = P»1, where Py ;1 is the projection on a
direct sum of eigen-subspaces of A,ny+1. Let W, (t) = P, (t)C™ + P,(t)C"
be a subspace of dimension ny spanned by the eigenvectors of G(t) corre-
sponding to A1(t),..., A, (). Then Py;(t) A"+ C" is the the subspace
of the form (A" Py (t)C"™) A(P2(t)C™). Since lim; .o, P;(t)C" = P,C™ and
limt_,oo P271(t) /\”1“((3" = P271 /\n1+1(cn we deduce that llmt_>oo PQ(t)(Cn =
W, for some subspace of dimension no — ny which is orthogonal to P, C".
Let P, be the orthogonal projection on W,. Hence lim;_,o, P2(t) = Ps.
(See for details Problem 12.)

We now show that that there exists two permutations ¢, 1 on {1,...,n}
satisfying (5.5.22) such that w; = agu) + By for i = ng +1,...,no.
Furthermore AP, = P, A. To do that we need to apply carefully our results
for wy,...,wn,. The logarithm of the first no—n; limit eigenvalues of Gg(t)%
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must be of the form A, (Apni+1)) + Ap(Bani+1). The values of indices a and
b can be identified as follows. Recall that the indices ¢(i),s = 1,...,ny in
wi = Ag(i)(A) + Ay(iy(B) can be determined from the projection P;, where
P, is viewed as the sum of the projections on the orthogonal eigen-subspaces
QiR;C", (i,7) € K1. Recall that Py A" C™ is of the from A" (P,C") A
(P,C™). Since P,C" is orthogonal to P,C"™ and A™ (P,C") A (PoC™) is an
invariant subspace of A,n,+1 it follows that P»C™ is an invariant subspace
of A. It is spanned by eigenvectors of A, which are orthogonal to P, C"
spanned by the eigenvectors corresponding Ay(;y(A),7 = 1,...,n1. Hence
the eigenvalues of the eigenvectors spanning P>C" are of the form A\ (A)
for k € Iy, where Zo C {1,...,n}\{#(1),...,¢(n1)} is a set of cardinality
ny — ny. Hence PoQ; = Q;P>,i=1,...,p, which implies that P,A = AP;.

Note that As((Axni+1)) = 2521 M) (A) + Ak(A) for k € Zp. Since
Gy (t) = ezAteBlexdt is similar to the matrix Hy(t) := ezBleAtesAl we
can apply the same arguments of Ha(t) :== A™T1H;(t). We conclude that
that there exists a set Jo C {1,...,n}\{¢(1),...,%(n1)} is a set of car-
dinality ny — ny such that A\y((Banit1)) = D202 Ay (B) + A (B) for
k' € Jo. Hence the logarithm of the limit value of the largest eigenvalue
of Gg(t)% which is equal to w1 + ... + wp, + wWn,+1 is given by ne — ny
the sum of the pairs Ag(Apni+1)) + Ap(Bpani+1). The pairing (a,b) in-
duces the pairing (k, k') in Zo x J3. Choose any permutation ¢ such that
d(1),...,6(n1) defined as above and {¢(n; + 1),...d(n2)} = Zo. We de-
duce the existence of a permutation v, where 1(1),...,%(n1) be defined as
above, {¥(ny +1),...,%(n2)} = Jo, and (¢(i),4 (7)) is the pairing (k, k)
for i = ny +1,...,n2. This shows that w; = Ag;)(A) + Ay (B) for

i =mn1+1,...,ny. By considering the matrices A" T1G(t) for i = 2,...,r
we deduce the theorem. O
Problems

1. Prove Proposition 5.5.2. (Hint: Show that the left-hand side of
(5.5.3) is one parameter group in ¢ with the generator (A41,..., Ax)g.)

2. Let the assumptions of Proposition 5.5.2 hold. Assume that
AA;) = (M (A), ..., A, (4;)) fori =1,..., k. Show that the ny ...ny

i

eigenvalues of (Ai,...,Ax)g are of the form 2?21 Ai; (A), where
ji = 1,...,ni,i: ].,k

(Hint: Recall that the eigenvalues of ®%_, e4¢* are of the form Hle i (At )y



5.5. TENSOR PRODUCTS OF EXPONENTS 277

3. Let the assumptions of Definition 5.5.3 hold for F = C. Assume
that A(A) = (A1,...,Ay). Show that the (}) eigenvalues of A are
Aip FoooF N, forall 1 <ip < ... <ip<n.

4. Let A, B € C™*™,
(a) Show that e?e? is similar ez4eBez4,
(b) Show that if A, B € H,, then the eigenvalues all the eigenvalues
of eAeP are real and positive.

5. Let g € C[a,b]. Show that the following are equivalent

(a) g(3(z1 4 x2)) < 5(g(x1) + g(a2)) for all 1,z € [a,b].
t

(b) g(tll’l +t21‘2)) < 1g(l‘1)+t29($2) for all t1,%5 € [0, 1],t1 +to =1
and z1,x2 € [a,b)].

Hint: Fix x1,22 € [a,b]. First show that (a)=(b) for any ¢1,t2 €
[0, 1] which have finite binary expansions. Use the continuity to de-
duce that (a)=(b).

6. (a) Let D,(R) C H, be the subspace of diagonal matrices. Show
that D, (R) is a maximal commuting subspace.

(b) Let U C H,, be a commuting subspace. Show that there exists
a unitary matrix U € U(n) such that U is a subspace of of a
maximal commuting subspace UD,,(R)U*.

(¢) Show that a commuting subspace U C H,, is maximal if and
only if U contains A with n distinct eigenvalues.

(d) Let U C H, be a commuting subspace. Show that for each
k € [1,n] NN the subspace Uy := span (A,x : A € U) is a
commuting subspace of H(k)

7. Let A,B € H,, and assume that f,(A, B) is defined as in (5.5.4).
Show that f, (A, B) = tr(A+ B). Hence f, (A, B) is convex on H,, x

H,.
Remark. We suspect that f : H, x H,, — R defined as (5.5.4) is
not a convex function for k =1,...,n — 1.

8. Let g : [0,00) — R be a continuous convex function. Show that
if g(0) = 0 the the function @ nondecreasing on (0,00). (Hint:
Observe that g(z) < $9(y) + (1 — 7)g(0) for any 0 <z <y.)

9. Let A,B € C"*™,
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(a) Show limy_.o 1 (e*eP* —T) = A+ B.

(b) View (eAteBt)t as (I+ (eAteBt —1))7. Show limy_o(eAteBt) T =

eAtB,
(c) Show that if A, B € H,, then limy« o 1 log A;(e'eB") = X;(A+B)
fori=1,...,n.

10. Let A, B € H,,.

(a) Assume that there exists a vector of length x, such that Ax, =
Ai(A)x,, Bx, = A\j(B)x,. Then

(A + B)Xl = ()\z(A) + )\j(.B))X17 eAeBx1 = e/\i(A)"‘/\j(B)Xl.

The convexity of A1(-) on H,, implies that \{(A+ B) = A\ (A) +
A1(B). The inequalities

e>\1(A)+/\1(B) < /\1(€AeB) < ol(eAeB) < Ul(eA)O'l(eB) — e/\1(A)+/\1(B)

imply that we have equalities in the above inequalities. This
show the equality holds for £ = 1 in (5.5.7) if A and B have a
common eigenvector corresponding to the first eigenvalue of A
and B.

11. Let C(¢) be defined by (5.5.10).

(a) Show that C(—t) = C(t) for any t # 0.
(b) Show the equality (5.5.11).

12. Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-, ). Let

(6.5.23)  S(U):={ueU, (u,u) =1}, U isasubspace of V

be the unit sphere in U. (S({0}) = (.) For two subspaces of U, W C
V the distance dist(U,V) is defined to be the Hausdorff distance
between the unit spheres in U, W:
dist(U, V) := max( max min |jlu—v]||, max min ||v—ul|),
uesS(U) ves(V) veS(V) ues(U)
(5.5.24)
dist({0}, {0}) = o, dist({0}, W) = dist(W, {0}) = 1 if dim W > 1.

(a) Let dim U,dim V > 1. Show that dist(U,V) < 2. Equality
holds if either UN (V)< or UL NV are nontrivial subspaces. In
particular dist(U, V) = 2 if dim U # dim V.
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(b) Show that dist is a metric on UZ,_, Gr,, (V).

(¢) Show that Gr,,(V) is a compact connected space with respect to
the metric dist(:,) for m =0,1...,n. (Le. for each sequence of
m-dimensional subspaces U;, 7 € N one can choose a subsequence
5,7 € N such that U;,,j € N converges in the metric dist to
U € Gr,, (V). Hint: Choose an orthonormal basis in each Uj.)

(d) Show that U?_, Gr,,(V) is a compact space in the metric dist.

(e) Let U,U; € Grpp(V),s € Ny1 < m < n. Let PP, € S(V)
be the orthogonal projection on U, U; respectively. Show that
lim;_, o, dist(U;, U) = o if and only if lim; ., P; = P.
(f) Let U; € Grp,(V), W, € Gry(V),1 <m,n and U; L W, for i €
N. Assume that lim;_ dist(U;, U) = o and dist((A™ U;) AW, X) =
o for some subspaces U € Gr,,(V),X € Gr; (A" V). Show
that there exists W € Gr(V) orthogonal to U such that lim;_, o, dist(W;, W) =
0.

13. Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-, -). Let m € [1,n—1]NN and assume that U, W €
Gr,, (V). Choose orthonormal bases {u,,..., wy},{w,,...,w,,} in
U, W respectively. Show

(a) det ((u;, w;))7—, =det ((wj,u;));"

1,]J=1 7,,_7:1.

(b) Let x,,...,X. another orthonormal basisin U, i.e. a; = Z;cn:l Qi U, T =
1,...,m where Q = (qx;) € F™*™ is orthogonal for F = R and
unitary for F = C. Then det ((x;, w;));";=, = det Qdet ({uy, w;));’;_, .

(c) [U, W] := |det ((w;, w;)){";_,| is independent of the choices of
orthonormal bases in U, W. Furthermore [U, W] = [W,U].

(d) Fix an orthonormal basis in {w,,...,w;,} in W. Then there
exists an orthonormal basis {u,,...,u,,} in U such that the

matrix ((u;, w;))i"%_, is upper triangular. Hint: Let W; =

span (Wiq,,...,wy,) fori=1,...,m—1. Consider span (w,)N

U which has dimension m — 1 at least. Let U, be an m — 1

dimensional subspace of span (w,)* NU. Let u, € S(U)NUL.

Use U,,V, to define an m — 2 dimensional subspace U, C U,

and u, € S(U,)NUZ as above. Continue in this manner to find

an orthonormal basis {u,, ..., un}.
(e) [U,W] < 1. ([U,W] is called the cosine of the angle between
U, W)

(f) [U,V] =0 <= UtNV #£{0} «— UNV, +£{0}. Hint:
Use (d) and induction.
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14. Let V be an n-dimensional inner product space over F = R,C,

15.

with the inner product (-,-). Let I,m € [1,n] NN and assume that
U € Gr(V),W € Gr,(V). Let P,Q € S(V) be the orthogonal
projections on U, W respectively. Show

(a) U+ W=UnNWaUnN(UNW)tawn(UnW)-.

(b) rank PQ = rank QP = rank PQP = rank QPQ.

(c) rank PQ = dim W —dim WNU", rank QP = dim U —dim UnN

W+,
Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-,-). Assume that V = @l_ U, = @7, W, be two
decompositions of V to nontirivial orthogonal subspaces:
dmU; =1[; —l;_,, i=1,...,p, dlmWJ =Mm; — Mj—q, j=1,...,q,
O=lo<h<...<lp=n, 0=mpg<my <...<my=n.

Let Q;,R; € S(V) be the orthogonal projections on U;, W, re-
spectively for ¢ = 1,...,p,7 = 1,...,q. Let n;; = rank Q;R;,i =
1,....,p,j=1,...,q.
Denote K := {(i,j) € {1,...,p} x {1,...,q} : QiR; # 0}. For
ie{l,....p},j€{1,...,q} let
Ji={j e {l.nah, (L) €KY, T :={i' € {1,....p}, (I",j) € K}.
Show

(a) Qi =2 jeg Qi i=1,...,p.
(b) Let (i1,41),--.,(is,Js) € K and assume that i, # @, Jo # Jo-

Then
rank Z Qi Rj, = rank (Z QiaRja)(Z Qi Rj)" =
a=1 a=1 a=1
rank Z Qi R, Qi, = Z rank Qi, R;, Qi, = Z rank Qi R, .
a=1 a=1 a=1

(c) rank P; < ) i 7 ny5, where strict inequality may hold

(d) U; = Zjeji U;;, where U;; := P,W,,dim U;; = n;; for i =
1,....p, j=1,...,q.

() Qj =2 ier, PiQj, 1=1,....¢

(f) rank Q; < Zite ny5, where strict inequality may hold.

(g) W, = Ziezj W, where W,; = Q,;U;,dim W;; = n;; for j =
1,...,q,t=1,...,p.
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Nonnegative matrices

6.1 Graphs

6.1.1 Undirected graphs

An wundirected graph is denoted by G = (V,E). It consists of wertices
v € V, and edges which are unordered set of pairs (u,v), where u,v € V|
and u # v, which are called edges of G. The set of edges in G is denoted
by E. Let n = #V be the cardinality of V, i.e. V has n vertices. Then
it is useful to identify V' with (n) = {1,...,n}. For example, the graph
G =((4),{(1,2),(1,4),(2,3),(2,4),(3,4)}) has 4 vertices and 5 edges.

In what follows we assume that G = (V, E) unless stated otherwise. A
graph H = (W, F) is called a subgraph of G = (V, E) if W is a subset
of V and any edge in F is an edge in F. Given a subset W of V' then
EW) ={(u,v) € E,u,v € W} is the set of edges in G induced by W. The
graph G(W) := (W, E(W)) is call the subgraph induced by W. Given a
subset F' of E, then V(F) is the set of vertices which consist of all vertices
participating in the edges in F. The graph G(F) = (V(F), F) is called the
subgraph induced by F'.

The degree of v, denoted by deg v is the number of edges that has v as
its vertex. Since each edge has two different vertices

(6.1.1) > degv = 24E,
veV

where #FE is the number of edges in F. v € V is called an isolated vertex
if deg v = 0. Note that V(FE) is the set of nonisolated vertices in G, and
G(E) = (V(E), E) the subgraph of G obtained by deleting isolated vertices
in G.

281
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The complete graph on n vertices is the graph with all possible edges. It
is denoted by K,, = ({n),&,), where &, = {(1,2),...,(1,n),(2,3),...,(n—
1,n)}. For example, K3 is called a triangle. Note that for any graph on n
vertices G = ((n), E) is a a subgraph of K, obtained by erasing some of
edges in K,,, but not the vertices! I.e. E C &,.

G = (V,E) is called biparite if V is a union of two disjoint sets of
vertices V1 U V5 so that each edge in E connects some vertex in V7 to some
vertex in Fo. Thus F C Vi x Vo = {(v,w),v € Vi,w € Va}. So any
bipartite graph D = (V4 U V5, E) is a subgraph of the complete bipartite
graph Ky, v, := (V1 UV, Vi x V). For positive integers I, m the complete
bipartite graph on I, m vertices is denoted by Kj ., := ((I) U {(m), (I) x (m)).
Note that K ,, has [ + m vertices and Im edges.

6.1.2 Directed graphs

A directed graph is denoted by D = (V, E). V is the set of vertices and E is
the set of directed edges in G. So E is a subset of VxV = {(v,w),v,w € V.
Thus (v,w) € E is a directed edge from v to W. For example, the graph
D = ((4),{(1,2),(2,1),(2,3),(2,4),(3,3),(3,4),(4,1)}) has 4 vertices and
7 (directed) edges.

The directed edge (v,v) € E is called a loop, or selfloop.

deg ;v :=#{(w,v) € E}, deg . :v=#{(v,w)€ E},

the number of edges to v and out of v in D. deg ,,,,deg ,,; are called the
in or out degrees. Clearly we have the analog of (6.1.1)

(6.1.2) Z deg ,,v = Z deg ,,.,v = #E,

veV veV

A subgraph H = (W, F) of D = (V,E) is defined, and the induced sub-
graphs D(W) = (W, E(W)),D(F) = (V(F), F) are defined as in §6.1.1.
v € V is called isolated if deg ;, (v) = deg ,,;(v) = 0.

6.1.3 Multi graphs

A multigraph is graph where multiple edges, in particular and multiple
loops are allowed. So undirected multigraph G = (V, E) has undirected
edges, which may be multiple, and may have multiple loops. A directed
multigraph D = (V, E) may have multiple edges.

Each directed multigraph D = (V, E) induces an undirected multigraph
G(D) = (V, E'), where each directed edge (u,v) € E is viewed as undirected
edge (u,v) € E'. (Each loop (u,u) € E will appear twice in E’.) Vice
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versa, an undirected multigraph G = (V| E’) induces a directed multigraph
D(G) = (V, E), where each undirected edge (u,v) is (u,v) and (v, ), when
u # v. The loop (u,u) appears p times in D(QG) if it appears p times in G.

Most of the following notions are the same for directed or undirected
graphs or multigraphs, unless stated otherwise. We state them for directed
multigraphs D = (V, E).

Definition 6.1.1

1.

10.

A walk in D = (V, E) a given by vov1 ... v,, where (v;—1,v;) € E for
i=1,...,p. One views it as a walk that starts at vy and ends at vp,.
The length of the walk p, is the number of edges in the walk.

A path is a walk where v; # v fori # j.
A closed walk is walk where v, = vy.

A cycle is a closed walk where v; # v; for 0 < i < j <p. A loop
(v,v) € E is considered a cycle of length 1. Note that a closed walk
vwv, where v # w, is considered as a cycle of length 2 in a digraph,
but not a cycle in undirected multigraph!

D is called a diforest if D does not have cycles. (An undirected multi-
graph with no cycles is called forest.)

Let D = (V, E) be a diforest. Then the height of v € V', denoted by
height(v) is the length of the longest path ending at v.

Two vertices v,w € V,v # w are called strongly connected if there
exist two walks in D, the first starts at v and ends in w, and the second
starts in w and ends in v. For undirected multigraphs G = (V, E) the
corresponding notion is u,v are connected.

A multidigraph D = ({n), F) is called strongly connected if either
n=1and (1,1) € E, orn > 1 and any two vertices in D are strongly
connected.

A multigraph G = (V, E) is called connected if eithern =1, orn > 1
and any two vertices in G are connected. (Note that a simple graph on
one vertex G = ((1),0) is considered connected. The induced directed
graph D(G) = G is not strongly connected.)

Assume that a multidigraph D = (V, E) is strongly connected. Then
D is called primitive if there exists k > 1 such that for any two
vertices u,v € V there exists a walk of length k which connects u and
v. For a primitive multidigraph D, the minimal such k is called the
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11.

12.

13.

1.

15.

16.
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index of primitivity, and denoted by indprim(D). A strongly connected
multidigraph which is not primitive is called imprimitive.

For W C V, the multidirected subgraph D(W) = (W, E(W) is called
a strongly connected component of D if D(W) is strongly connected,
and for any W G U C V the induced subgraph D(U) = (U, E(U)) is
not strongly connected.

For W C V, the undirected subgraph G(W) = (W, E(W), of undi-
rected multigraph G = (V, E), is called a connected component of G
if G(W) is connected, and for any W g U CV the induced subgraph
GU) = (U,E(U)) is not connected.

An undirected forest G = (V, E) is called a tree if it is connected.

A diforest D = (V,E) is called a ditree if the induced undirected
multigraph G(D) is a tree.

Let D = (V,E) be a multidigraph. The reduced (simple) digraph
D, = (V,,E,) is defined as follows. Let D(V;),i = 1,...,k be all
strongly connected components of D. Let Vo = V\(UX_,V; be all ver-
tices in D which do not belong to any of strongly connected compo-
nents of D. (It is possible that either Vi is an empty set or k =0, i.e
D does not have connected components, and the two conditions are
mutually exclusive.) Then V, = (Uyevy {v}) UF_, {Vi}, i.e. V, is the
set of all vertices in V' which do mot belong to any connected compo-
nent and the new k vertices named {Vi},...,{Vi}. A vertex v’ €V,
is viewed as either a set consisting of one vertex v € Vi or the set V;
for somei=1,..., k. Then E, does not contain loops. Furthermore
(s,t) € E,, if there exists an edge from (u,v) € E, where u and v are
in the set of vertices represented by s and t in V, respectively.

Two multidigraphs Dy = (V1, E1), Da = (Va, E3) are called isomor-
phic if there exists a bijection ¢ : Vi — Vo which induces a bijection
¢ : Ey — E5. That is if (u1,v1) € Ey is a diedge of multiplicity k
in Ey then (¢(u1), ¢(v1)) € Es is a diedge of multiplicity k and vice
versa.

Proposition 6.1.2 Let G = (V, E) be a multigraph. Then G is a dis-
joint union of its connected components. That is, there is a unique de-
composition of V' to UE_, Vi, up to relabeling of Vi, ..., Vi, such that the
following conditions hold:

1.

Vi,..., Vi are nonempty and mutually disjoint.
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2. Fach G(V;) = (V;, E(V;)) is a connected component of G.
3. E=UrF V.

Proof. We introduce the following relation ~ on V. First, we assume
that v ~ v for each v € V. Second, for v,w € V,v # w we say that v ~ w if
v is connected to w. It is straightforward to show that ~ is an equivalence

relation. Let Vi,..., Vi be the equivalence classes in V. That is v,w € V;
if and only if v and w are connected. The rest of the proposition follows
straightforward. O

Proposition 6.1.3 Let D = (E,V) be a multidigraph. Then the re-
duced digraph D, is a diforest.

See Problem 6.1.5.4 for proof.

Proposition 6.1.4 Let D = (V, E) be a multidigraph. Then D is di-
forest if and only if it is isomorphic to a digraph D1 = ((n), E1) such that
if (i,7) € Ey then i < j.

Proof. Clearly, the graph in D; can not have a cycle. So if D is iso-
morphic to Dy then D is a diforest. Assume now that D = (V,E) is a
diforest. Let V; be all vertices in V' having height ¢ for ¢ = 0,...,k > 0,
where k is the maximal height of all vertices in D. Observe that from the
definition of height it follows that if (u,v) € D, where u € V;,w € V; then
1 < j. Rename the vertices of V such that V; = {n; +1,...,n;41} where
0=ng <ng <...<ngy1 =n:=#V. Then one obtains the isomorphic
graph D; = ((n), E1, such that if (i,5) € E; then i < j. O

Theorem 6.1.5 Let D = (V, E) be as strongly connected multidigraph.
Let € be the g.c.d, (the greatest common divisor), of lengths of all cycles in
D. Then exactly one of the following conditions hold.

1. £ =1. Then D is primitive. Let s be the length of the shortest cycle
in D. Then indprim(D) < #V + s(#V —2).

2. ¢ > 1. Then D is imprimitive. Furthermore, it is possible to divide
V to ¢ disjoint nonempty subsets Vi,...,V; such E C Ulevi X Vig1,
where Voyq := V.

Define D; = (V;, E;) to be the following digraph. (v,w) € E; if there
s a path or cycle of length ¢ from v to w in D, fori=1,...,1. Then
each D; is strongly connected and irreducible.
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The proof of this theorem will be given later using the Perron-Frobenius
theorem. (Obviously, one can give a pure graph theoretical proof of this
theorem.) If D is a strongly connected imprimitive multidigraph, then £ > 1
given in (2) is called the index of imprimitivity of D.

6.1.4 Matrices and graphs

For a set S denote by S™*™ the set of all m x n matrices A = [a;;];27_,
where each entry a;; is in S. Then AT € 8™ the transposed matrix
of A. Denote by F any field, and by R, C the field of real and complex
numbers respectively. By S,(S) € 8**® denote the set of all symmetric
matrices A = [a;5], a;; = a;; with entries in S. Assume that 0 € S. Then
by Sin,0(S) C Su(S) the subset of all symmetric matrices with entries in S
and zero diagonal. Denote by P,, C {0,1}"*" the group of permutation
matrices. l.e. each P € P, has one 1 in each row and column, and all
other n? — n entries are zero. Denote by 1 = (1,...,1)" € R™ the vector
of length n whose all coordinates are 1. For A = [a;;] € C"*" we denote
by tr A := >""" | a;; the trace of A. For any ¢t € R, we let signt = 0 if
t =0 and signt = |tT| if t #0. For A,B € R™*" we denote B — A >
0,B—A>0,B—A>0if B— A is a nonnegative matrix, a nonnegative
nonzero matrix, and a positive matrix respectively.

Let D = (V,E) be a digraph. Assume that #V = n and label the
vertices of V' as 1,...,n. So we have a bijection ¢1 : V' — (n). This bijection
induces an isomorphic graph D; = ((n), F1). With D; we associate the
following matrix A(Dy) = [ayl}';—, € Z°". So a;; is the number of
directed edges from the vertex ¢ t the vertex j. (If a;; = 0 then there no
diedges from ¢ to j.) When no confusion arises we let A(D) := A(D), and
we call A(D) a representation matriz of D. Note that a different bijection
$2 2 V — (n) gives rise to a different A(Dy), where A(Dg) = PT A(D;)P
for some permutation matrix P € P,. See Problem 7.

If D is a simple digraph then A(D) € {0,1}"*". If G is a multigraph,
then A(G) = A(D) where D is is the induced digraph by G. Hence A(G) €
Sn(Z4). If G is a graph then A(G) € S, 0({0,1}).

Proposition 6.1.6 Let D = (V, E) be a multidigraph on n vertices. Let
A(D) be a representation matriz of D. For an integer k > 1 let A(D)* =

(k)] € 21", Then az(-f) is the number of walks of length k from the vertex

[a’ij
i to the vertex j. In particular, 1T Al and tr A are the total number of
walks and the total number of closed walks of length k in D.

Proof. For k = 1 the proposition is obvious. Assume that &k > 1.



6.1. GRAPHS 287

Recall that

k
(6.1.3) al(»j) = Z Qiiy Qigip - - - Qigy_nj-

il,...,ik,1€<’ﬂ,>

The summand a;;, @4, - .- @i, _,; gives the number of walks of the form
igl1ts . . .ig—1%k, where i9g = ,i; = j. Indeed if one of the terms in this
product is zero, i.e. the is no diedge (ip, ip+1) then the product is zero. Oth-
erwise each positive integer a; ;,,, counts the number of diedges (ip, ip41)-
Hence i, 4,4, - - - @4y, j is the number of walks of the form ig1%2 .. . ix—1%.
The total number of walks from ¢ = ig to j = i; of length k is the sum
given by (6.1.3). To find out the total number of walks in D of length & is

S al™ =17 A1. The total number of closed walks in D of length k is

i=j=1 %5
Sy af) =t A(D)R. O

With a multibipartite graph G = (V1UVa, E), where #V; = m, #V2 = n,
we associate a representation matrix B(G) = [bj;];27_, as follows. Let
Y1 2 Vi — {(m),¢1 : Vo — (m) be bijections. This bijection induces an
isomorphic graph Dy = ((m) U (n), E1). Then b;; is the number of edges
connecting i € (m) to j € (n) in D;.

A nonnegative matrix A = [a;;]7_;—; € R}*" induces the following
digraph D(A) = ((n), E). The diedge (4,7) is in E if and only if a;; > 0.
Note that of A(D(A)) = [sign a;] € {0,1}**". We have the following
definitions.

Definition 6.1.7

1. A = [a;5] € R™"™ is combinatorially symmetric if sign a;; = sign aj;
fori,j=1,... n.

2. A e RY™ is irreducible, if D(A) is strongly connected.

3. A e RV is primitive if AF s a positive matriz for some integer
k>1.

4. Assume that A € R*"™ is primitive. Then the smallest positive inte-
ger k such that A* > 0 is called the index of primitivity of A, and is
denoted by indprim(A).

5. A e RY™ is imprimitive if A is irreducible but not primitive.

Proposition 6.1.8 Let D = ((n), E) be a multidigraph. Then D is
strongly connected if and only if (I + A(D))"~! > 0. in particular, a
nonnegative matriz A € R'*™ is irreducible if and only if (I + A)"~! > 0.
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Proof. Apply the Newton binomial theorem for (1+¢)"~! to the matrix
(I+AD)"!

(I+A(D)"! = 2 (” ) 1) A(DY?.

Recall that all the binomial coefficients (";1) are positive forp =0,...,n—

1. Assume first that (I + A(D))"~! > 0. That is for any i, € (n) the
(i,4) entry of (I + A(D))"~! is positive. Hence the (i, ) entry of A(D)P is
positive for some p = p(i,5). Let i # j. Since A(D)? = I, we deduce that
p(i,7) > 0. Use Proposition 6.1.6 to deduce that there is a walk of length
p from the vertex ¢ to the vertex j.

Suppose that D is strongly connected. Then for each i # j we must
have a path of length p € [1,n — 1] which connects 7 and j, see Problem
1. Hence all off-diagonal entries of (I + A(D))"~! are positive. Clearly,
(I + A(D))"= > I. Hence (I + A(D))"~* > 0.

Let A € R*™. Then the (i, j) entry of (I4+A)"~! is positive if and only
if the (4, j) entry of (I + A(D(A)))"~ ! is positive. Hence A is irreducible if
and only if (I + A)"~! > 0. O

6.1.5 Problems

1. Assume v;...v, is a walk in D = (V, E). Show that it is possible
to subdivide this walk to walks v,, ,+1...vn,,2 = 1,...,q, where
ng =0 <n; <...<ng=p, and each walk is either a cycle, or a
maximal path.

Erase all cycles in v; ... v, and apply the above statement to the new
walk. Conclude that a walk can be “decomposed” to a union of cycles
and at most one path. item Let D be a digraph. Assume that there
exists a walk from v to w. Show that

e if v £ w then there exists a path from u to v of length #V — 1
at most;
e if v = w there exists a cycle which which contains v, of lenght

#V at most.

2. Let G = (V, E) be a multigraph. Show that the following are equiva-
lent.

e (G is bipartite;

e all cycles in G have even length;
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e (G is imprimitive.

. Let D = (V, E) be a directed multigraph. Assume that the reduced

graph D, of D has two vertices. List all all possible D, up to the
isomorphism, and describe the structure of all possible corresponding
D.

. Prove Proposition 6.1.3.

. Let A(D) € Z1™" be the representation matrix of the multidigraph

D = ((n), E). Show that A(D)+ A(D)" is the representation matrix
of the undirected multigraph G(D) = ({n), E’) induced by D.

. Let G = ((n), E’) be an undirected multigraph, with the representa-

tion matrix A(G) € Sy(Z4). Show that A(G) is the representation
matrix of the induced directed multigraph D(G). In particular, if G
is (simple) graph, then D(G) is a (simple) graph with no loops.

. Let D = (V,E),Dy = (V4, E1) be two multidigraphs with the same

number of vertices. Show that D and D; are isomorphic if and only
if A(Dy) = PTA(D)P for some permutation matrix.

. Let G = (V4 U Vs, E) be a bipartite multigraph. Assume that #V; =

m,#V, = n and B(G) € Z"*" is a representation matrix of G.
Show that a full representation matrix of G is of the form A(G) =
Omxm  B(Q)
B(G)T Opxn

6.2 Perron-Frobenius theorem

The aim of this section to prove the Perron-Frobenius theorem.

Theorem 6.2.1 Let A € Rixn be an irreducible matriz. Then

1.

2.

3.

The spectral radius of A, p(A), is a positive eigenvalue of A.
p(A) is an algebraically simple eigenvalue of A.

To p(A) corresponds a positive eigenvector 0 < u € R", i.e. Au =
p(A)u.

All other eigenvalues of A of A satisfy the inequality |\| < p(A) if and
only if A is primitive, i.e. A¥ >0 for some integer k > 1.
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5. Assume that A is tmprimitive, i.e. not primitive. If n = 1 then
A = 0yx1. Assume that n > 1. Then there exists exactly h —1 > 1
distinct eigenvalues A1, ..., \p—1 different from p(A) and satisfying
|Ai| = p(A). Furthermore, the following conditions hold.

(a)
(b)

(d)

Ai s an algebraically simple eigenvalue of A fori=1,...,h—1.
The complex numbers ﬁ,i =1,...,h—1 and 1 are all h roots

of unity, i.e. \; = p(A)ehFi fori=1,...,h—1. Furthermore,
if Az; = \iz;,2; # 0 then |z;| = u > o, the Perron-Frobenius
etgenvector u given in 3.

Let ¢ be any h-root of 1, i.e. (" = 1. Then the matriz CA is
similar to A. Hence, if X is an eigenvalue of A then (X is an
eigenvalue of A having the same algebraic and geometric multi-
plicity as A.

There exists a permutation matriz P € P,, such that PTAP = B
has a block h-circulant form

0 Bis 0 0 ... 0
0 0 Bss 0 ... 0
B:
0 0 0 0 : 0
| Bi 0 0 0 : 0
Biiy1) € R"X™H1 i =1,... h, Bpp+1) = Ba1, npsr = n1,m1 +

Furthermore, the diagonal blocks of B" are all irreducible prim-
itive matrices, i.e.
(6.2.1)

C; = Bz(H—l) c. B(h—l)hBhl ce B(i—l)i € RTXW’ 1=1,...,h,

are irreducible and primitive.

Our proof follows closely the proof of H. Wielandt [Wie50]. For a non-
negative matrix A = [a,;;] € R*" define

(6.2.2)

r(x) := min (Ax

i T
‘ , where x = (2,,...,z,) >0.
1,T;>0 xX;

It is straightforward to show, e.g. Problem 1, that

(6.2.3)

r(x) = max{s > 0, sx < Ax}.

Bh-1yn

.+ np =n.
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Theorem 6.2.2 (Wielandt’s characterization) Let A = [a;;] € R}*"

be irreducible. Then
Ax),
(6.2.4) maxr(x) = max min A = p(A) > o.
x>0 x=(Zy,..0sTp) 20 Ti>0 Ty

The mazimum in the above characterization is achieved exactly for allx > 0
of the form x = au, where a > 0 and u = (uy,...,u,)’ > 0 is the
unique positive probability vector, i.e. Y . u; = 1, satisfying Au = p(A)u.
Moreover, p(A) is a geometrically simple eigenvalue.

Proof. Let r(A4) := supy>or(x). So r(4) > r(1) = min; >, a;;.
Since an irreducible A can not have a zero row, e.g. Problem 2, it follows
that 7(A4) > r(1) > o.

Denote by
n
(6.2.5) O o= {(z1,. )" 20,z =1},
i=1
the convex set of probability vectors in R”}. Note that II, is a compact
set in R?}, i.e. from any sequence x;,j = 1,..., we can find a subsequence
X;j,»X;,, ... which converges to x € II,,.

Clearly, for any x > 0 and a > 0 we have r(ax) = r(x). Hence

(6.2.6) r(A) = supr(x) = sup r(x).
x>0 x€ll,

Since A is irreducible, (I + A)"~! > 0. Hence for any x € II,, y = (I +
A)""*x > 0. (See Problem 3a.) As r(y) is a continuous function on
(I + A)"~ I, it follows that r(y) achieves its maximum on (I + A)" 11,

r1(A) = max =r(v), for some v in (I + A)" " *II,.
ye([+A)n71Hn

r(A) is defined as the supremum of r(x) on the set of all x > 0 it follows
that 7(A) > r1(A). We now show the reversed inequality r(A) < r1(A4)
which is equivalent to r(x) < r,(A) for any x > 0.

One has the basic inequality

(6.2.7)  r(x) <r((I+A)" 'x),x > 0, with equality iff Ax = r(x)x,

see Problem 3d. For x € II,, we have r(x) < r((I+ A)" *x) <r,(4). In
view of (6.2.6) we have r(A) < r1(A). Hence r(A4) = r1(A).

Suppose that r(x) = r(A),x > 0. Then the definition of r(A) (6.2.6)
and (6.2.7) yields that r(x) = r((I + A)"~*x). The equality case in (6.2.7)
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yields that Ax = r(A)x. Hence (1 + r(4))"'x = (I + A)"'x > 0,
which yields that x is a positive eigenvector corresponding to the eigenvalue
r(A). So x = au,a > o for the corresponding probability eigenvector
u=(u,...,u,) ", Au=r(A)u.

Suppose that 7(z) = r(A) for some vector z = (2,,...,2,)" > 0. So
z > o0 and Az = r(A)z. Let b = min; 2. We claim that z = bu. Otherwise
w =2z — bu > 0, w has at least one coordinate equal to zero, and Aw =
r(A)w . So r(w) = r(A). This is impossible since we showed above that
w > 0! Hence z = bu. Assume now that y € R™ is an eigenvector of A
corresponding to r(A). So Ay = r(A)y. There exists a big positive number
¢ such that z = y+cu > 0. Clearly Az = r(A)z. Hence r(z) = r(A) and we
showed above that z = bu. So y = (b — ¢)u. Hence r(A) is a geometrically
simple eigenvalue of A.

We now show that r(A) = p(A). Let A # r(A) be another eigenvalue of
A, which may be complex valued. Then

(/\Z)i = \z; = (Az)i = Zaiij, 1=1,...,M,
Jj=1

where 0 # z = (2,,...,2,)| € C" is the corresponding eigenvector of
A. Take the absolute values in the above equality, and use the triangle

inequality, and the fact that A is nonnegative matrix to obtain

I zi] < aglzl i=1,... 0.
j=1

Let |z| := (|z1],. .-, ]2a])T = 0. Then the above inequality is equivalent to

|Al |z| < Alz|. Use (6.2.3) to deduce that |A| < r(|z|). Since r(|z]) < r(A4)

we deduce that |A\| < r(A). Hence p(A) = r(A), which yields (6.2.4). O

Lemma 6.2.3 Let A € R*" be an irreducible matriz. Then p(A) is
an algebraically simple eigenvalue.

Proof. (For all the notions and results used here see §7?.) Theorem
6.2.2 implies that p(A) is geometrically simple, i.e. nul (p(A)l — A) = 1.
Hence rank (p(A)I — A) = n — 1. Hence adj (p(A)l — A) = tuv', where
Au = p(A)u, ATv = p(A)v,u,v > 0 and 0 # t € R. Note that uv' is a

positive matrix, hence truv’ =v'u > o. Since

(det (A — A))'(A = p(4)) = tradj (o(A) - A) = t(v" ) # o,

we deduce that p(A) is a simple root of the characteristic polynomial of A.
O
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As usual, denote by S! := {z € C,|z| = 1} the unit circle in the complex
plane

Lemma 6.2.4 Let A € R™" be irreducible, C' € C"*™. Assume that
|C| < A. Then p(C) < p(A). Equality holds, i.e. there exists A € spec C,
such that X\ = (p(A) for some ¢ € S, if and only if there exists a complex
diagonal matriz D € C™*™ whose diagonal entries are equal to 1, such that
C =(DAD™'. The matriz D is unique up to a multiplication by t € S*.

Proof. Assume that A = [a;;],C = [ci;]. Let z = (21,...,2,)" # 0 be
an eigenvector of C' corresponding to an eigenvalue A, i.e. Az = Cz. The
arguments of the proof of Theorem 6.2.2 yield that |A| |z| < |C| |z|. Hence
I\ |z| < |A] |z|, which implies that |\ < r(|z]) < r(A4) = p(A).

Suppose that p(C) = p(A). So there exists A € spec C, such that |A\| =
p(A). So XA = (p(A) for some ¢ € St. Furthermore, for the corresponding
eigenvector z we have the equalities

Al |z = |C2| = |C] |2| = Alz| = r(A)[z].

Theorem 6.2.2 yields that |z| is a positive vector. Let z; = d;|z;|, |d;] = 1
for i = 1,...,n. The equality |Cz| = |C| |z| = A|z| combined with the
triangle inequality and |C| < A, yields first that |C| = A. Furthermore for
each fixed ¢ the nonzero complex numbers ¢;121,..., ¢nz, have the same
argument, i.e. ¢;; = Ciaijdj for j =1,...,n and some complex number (j,
where |(;| = 1. Recall that A\z; = (Cz);. Hence (; = (d; for i = 1,...,n.
Thus C = (DAD™!, where D = diag(dy,...,d,). It is straightforward to
see that D is unique up tD for any ¢ € S'.

Suppose now that for D = diag(dy,...,d,), where |di| =...=|d,| =1
and |¢| = 1 we have that C = (DAD~!. Then A(C) = (A(A), see Fact
(?2.2?). So p(C) = p(A). Furthermore ¢;; = (d;ci;d;,i,5 = 1,...,n. So
|IC| = A. O

Lemma 6.2.5 Let (y,...,(, € S' be h distinct complex numbers which
form a multiplicative semi-group, i.e. for any integers i,j € [1,h] (;(; €
{C1y.--,Cn}. Then the set {C1,...,Cn} is the set, (the group), of all h roots

amiy=T |
ofl: e n Ji=1,... h.

Proof. Let ¢ € 7 := {(1,...¢n}. Consider the sequence (%,i = 1,....
Since ¢**! = ((¢* fori =1,..., and 7 is a semigroup, it follows that each (’
isin 7. Since 7 is a finite set, we must have two positive integers such that
(¥ = (¢! for k < 1. Assume that k and [ are the smallest possible positive
integers. So (P =1, wherep =1—k > 1, and 7, := {¢, (3, ..., (P71, (P =1}
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are all p roots of 1. ( is called a p-primitive root of 1. I.e. ( = e~ »

where p; is an positive integer less than p. Furthermore p; and p are
coprime, which is denoted by (p1,p) = 1. Note that ¢* € T for any integer
i.

Next we choose ¢ € 7, such that ( is a primitive p-root of 1 of the
maximal possible order. We claim that p = h, which is equivalent to the
equality 7 = 7,. Assume to the contrary that 7, C 7. Let n € 7\7,. The
previous arguments show that n = is a ¢-primitive root of 1. So 7, C 7,
and 7; C 7,. So ¢ can not divide p. Also the maximality of p yields that
q < p. Let (p,q) = r be the g.c.d., the greatest common divisor of p and q.
So 1 < r < gq. Recall that Euclid algorithm, which is applied to the division
of p by ¢ with a residue, yields that there exists two integers ¢, j such that

ip+jg =r. Let [ := 22 > p be the least common multiplier of p and q.

o /=T 2 /=T
Observe that (' =e~ ¢ €7, =e ¢« €74 So

27 (ip+iq) V=1 2m/—1

E=() (Y =e T  =e T €T,
As ¢ is an [-primitive root of 1, we obtain a contradiction to the maximality
of p. So p=~h and 7 is the set of all h-roots of unity. |

Lemma 6.2.6 Let A € R}" be irreducible, and assume that for a
positive integer h > 2, A has h — 1 distinct eigenvalues A1, ..., \p_1, which
are distinct from p(A), such that |A\1| = ... = |Ap—1| = p(A). Then the
conditions (5a-5c) of Theorem 6.2.1 hold. Moreover, PT AP = B, where B
is of the form given in (5d) and P is a permutation matric.

Proof. Assume that (; := pg\;") €Sl fori=1,...,.h—1and ¢, =
1. Apply Lemma 6.2.4 to C = A and A = (;p(A) to deduce that A =
CiDiADi_l where D; is a diagonal matrix such that |[D| =1 fori=1,..., h.
Hence, if A is an eigenvalue of A then ;A is an eigenvalue of A, with an
algebraic and geometrical multiplicity as A. In particular, since p(A) is an
algebraically simple eigenvalue of A, \; = (;p(A) is an algebraically simple
of Afori=1,...,h— 1. This establish (5a).

Let T = {¢1,...,C(n}- Note that
(6.2.8)

A= GDiAD; = GDy(¢(D;AD; ) Dt = (GiG)(DiDj) A(DiDy) .

So (i¢jp(A) is an eigenvalue of A. Hence (;(; € 7, i.e. T is a semigroup.
Lemma 6.2.5 yields that {(i,...,(,} are all h roots of 1. Note that if
Az; = N\z;,z; # 0, then z; = tD;u for some 0 # t € C, where u > 0 is
the Perron-Frobenius vector given in Theorem 6.2.1. This establish (5b) of
Theorem 6.2.1.



6.2. PERRON-FROBENIUS THEOREM 295

2wy/—1
h

Let ¢ = e € 7. Then A = (DAD™!, where D is a diagonal
matrix D = (dy,...,d,),|D| = I. Since D can be replaced by d; D, we can
assume that d; = 1. (6.2.8) yields that A = ("D"AD~" = TAI~!. Lemma
6.2.4 yields that D" = diag(d®,...,d") = tI. Since d; = 1 it follows that
D" = I. So all the diagonal entries of D are h-roots of unity. Let P € P,
be a permutation matrix such that the diagonal matrix £ = PT DP is of
the following block diagonal form

2mk; VT
E=1,0u1,®. . Qu_1ly,p=¢ r ,i=1...,1-1,1<k <ky<.

Note that [ < h and equality holds if and only if k; = 4. Let pug = 1.

Let B = PTAP. Partition B to a block matrix [By;]'_;_, where B;; €
R}™™ for i,j = 1,...,1. Then the equality A = (DAD™! yields B =
(EBE~!. The structure of B and E implies the equalities

By =cE=p,, =1L

Hji—1
Since all the entries of B;; are nonnegative we obtain that B;; = 0 if
¢ ﬁ # 1. Hence B;; = 0 for ¢ = 1,...,1 Since B is irreducible it follows
that not all B;1,..., B; are zero matrices for each i = 1,...,[. First start
with ¢ = 1. Since g = 1 and j; > 1 it follows that u; # ¢ for j > 1. So
Bij; =0for j =3,...,l. Hence Bip # 0, which implies that p; = ¢, i.e.
k1 = 1. Now let 4 = 2 and consider j = 1,...,l. As k; € [k1 +1,h — 1]
for ¢ > 1, it follows that Bsy; = 0 for j # 3. Hence Ba3 # 0 which yields
that ko = 2. Applying these arguments for i = 3,...,l — 1 we deduce that
Bij =0 for j #i+1, Biy1) # 0,k; =i for i = 1,...,01 — 1. It is left to
consider 7 = [. Note that

G ¢H

G = ¢=U=Y which is different from 1 for j € [2,1].
fj—1

Hence Bj; = 0 for j > 1. Since B is irreducible, By; # 0. So ¢! = 1. Since
I < h we deduce that [ = h. Hence B has the block form given in (5d). O

Proposition 6.2.7 Let A € R}*" be irreducible. Suppose that 0 <
w € R% is an eigenvector of A, i.e. Aw = Aw. Then A = p(A) and w > 0.

Proof. Let v > 0 be the Perron-Frobenius vector of AT, i.e. ATv =
p(A)v. Then

viAw = v (Ow) = p(A)v w = (p(A) = A\)v'w = o.

o< ki1 <h-1.
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If p(A) # X we deduce that v'w = o, which is impossible, since v > 0 and
w > 0. Hence A = p(A4). Then w is the Perron-Frobenius eigenvector and
w > 0. O

Lemma 6.2.8 Let A € R} be irreducible. Then A is primitive if and
only if each eigenvalue X of A different from p(A) satisfies the inequality
Al < p(A). Le. condition (4) of Theorem 6.2.2 holds.

Proof. By considering B = ﬁA, it is enough to consider the case
p(A) = 1. Assume first that if A # 1 is an eigenvalue of A then |A| < 1.
Theorem 6.2.2 implies Au = u, A'w = w for some u,w > 0. Sow 'u > o.
Let v := (w'u)"*w. Then ATv = v and v'u = 1. Fact ?? yields that
limp_00 A¥ = uv’ > 0. So there exists integer kg > 1, such that A¥ > 0
for k > kg, i.e. A is primitive.

Assume now A is has exactly h > 1 distinct eigenvalues A satisfying
|A| = 1. Lemma 6.2.6 implies that there exists a permutation matrix P
such that B = PT AP is of the form (5d) of Theorem 6.2.1. Note that B"
is a block diagonal matrix. Hence B/ = (B")7 is a block diagonal matrix
for j =1,...,.... Hence, B" is never a positive matrix, so A" is never a
positive matrix. In view of Problem 4, A is not primitive. O

Lemma 6.2.9 Let B € R™" be an irreducible, imprimitive matriz,
having h > 1 distinct eigenvalues A satisfying |\ = p(B). Suppose fur-
thermore that B has the form (5d) of Theorem 6.2.1. Then B" is a block
diagonal matriz, where each diagonal block is an irreducible primitive ma-
triz whose spectral radius is p(B)". In particular, the last claim of (5d) of
Theorem 6.2.1 holds.

Proof. Let D(B) = ({(n), E) be the digraph associated with B. Let
po =0,p1 = po+ni,...,pn = pr—1+nn =n. Denote V; = {p;_1+1,...,p;}
for i = 1,...,h, and let Vj4q := V5. So (n) = U'_,V;. The form of B
implies that £ C UR_,V; x V;;41. Thus, any walk that connects vertices
j, k € V; must be divisible by h. Observe next that B" = diag(C4,...,C4),

where Cy = [cﬁ)];’;k:l, o, Cp = [cy,:)];ik:l are defined in (6.2.1). Let
D(C;) = (V;, E;) be the digraph associated with C; for i = 1,...,h. Then
there exists a path of length h from j to k in V; if and only if cﬁ) > 0.
Since B is irreducible, D(B) is strongly connected. Hence, each D(C;) is
strongly connected. Thus, each C; is irreducible.
Recall that Bu = p(B)u for the Perron-Frobenius vectoru’ = (u/,...,u}) >

0", u; € RY,i = 1,...,h. Thus, B"u = p(B)"u, which implies that
Ciw; = p(B)"u;,i = 1,...,h. Since u; > 0 Proposition 6.2.7 yields that



6.2. PERRON-FROBENIUS THEOREM 297

p(C;) = p(B)",i = 1,...,h. Recall that the eigenvalues of B" are the h

power of the eigenvalues of B, i.e. A(B) = (A}, ..., \"), where A\(B") =
(M,...,An). Furthermore, B has h simple eigenvalues p(B)emF,i =

1,...,h with |A| = p(B), and all other eigenvalues satisfy |A| < p(B).
Hence B" has one eigenvalues p(B)" of an algebraic multiplicity A and all
other eigenvalues p satisfy |u| < p(B)".

Since B" = diag(C4, ..., Ch), we deduce that A(B") = (A(Cy),. .., A(Ch)).
As C; is irreducible and p(C;) = p(B)", we deduce that all other eigenval-
ues p of C; satisfy |u| < p(C;). Lemma 6.2.8 yields that C; is primitive. O

Problems
1. Prove equality (6.2.3).

2. Show that if A € RZ’FX” is irreducible then can not have a zero row or
column.

3. Assume that A € R’j_xn is irreducible. Show

(a) For each x € II,, the vector (I + A)"~'x is positive.

(b) The set (I + A)"7 ', = {y = (I + A" 'x,x € II,,} is a
compact set of positive vectors.

(c) Show that r(y) is a continuous function on (I + A)"'1I,,.

(d) Show (6.2.7). Hint: use that (A+1)"~!(Ax—7(x)x) is a positive

vector, unless Ax = r(x)x.

4. Assume that A € R}*" is irreducible. Show the following are equiv-
alent

(a) A is primitive.
(b) There exists a positive integer kg such that for any integer k > kg
AR > 0.
5. Let D = ((h),E) be thecyclel =2 — ... - h—1—h— 1.

(a) Show that representation matrix A(D) is a permutation matrix,
which has the form of B given in (5d) of Theorem 6.2.1, where
each nonzero block is 1 x 1 matrix [1]. A(D) is called a circulant
matrix.

(b) Find all the eigenvalues and the corresponding eigenvectors of
A(D).
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6. Let the assumptions of Lemma 6.2.9. Assume the notation of the
proof of Lemma 6.2.9.

(a) Show that the length of any closed walk in D(B) is divisible by
h.

(b) Show that a length of any walk from a vertex in V; to a vertex
V;, such that 1 <14 < j < h, minus j — ¢ is divisible by h.

(¢) What can you say on a length of any walk from a vertex in V;
to a vertex Vj, such that 1 <j <i < h?

(d) Show that each C; is irreducible.

7. Let D = (V, E) be a digraph and assume that V is a disjoint union
of h nonempty sets Vi,...,Vs. Denote Vi1 := V4. Assume that
E C UM V; x Viy1. Let D; = (V;, E;) be the following digraph. The
diedge (v, w) € E;, if there is a path of length h in D from v to w in
D.

(a) Show that D is strongly connected if and only if D; is strongly
connected for i =1,..., h.

(b) Assume that D is strongly connected. Let 1 <14 < j < h. Then
D; is primitive if and only if D; is primitive.

8. Let B € R*™ be a block matrix of the form given in (5d) of Theorem
6.2.1.

(a) Show that B" is a block diagonal matrix diag(Cy, ..., C}), where
C; is given (6.2.1).
(b) Show that B is irreducible if and only if C; is irreducible for
i=1,...,h
(c) Assume that B is irreducible.
i. Let 1 <¢ < j < h. Then Cj is primitive if and only if Cj is
primitive.
ii. B has h distinct eigenvalues on the circle |z| = p(B) if and
only if some C; is primitive.

9. Assume the assumptions of Lemma 6.2.6. Let Au = p(A)u,u =
(Uy,...,up) " > 0. Assume that 7 is an h-root of unity, and suppose
that Az = nz,z = (2,,...,2n), such that |z| = u. Assume that
z; = u; for a given ¢ € (n). (This is always possible by considering
‘Z‘z.) Show z; = "Wy, for a suitable integer k(j), for j = 1,...,n.
Furthermore, given an integer k then there exists j € (n) such that
Zj = nk'LLj.




6.2. PERRON-FROBENIUS THEOREM 299

Hint: Use the proof of Lemma 6.2.6.

10. Let B € R}*™ be an irreducible block matrix of the form given in
(5d) of Theorem 6.2.1. Let Cy,...,C} be defined in (6.2.1). Suppose
that B has more than A distinct eigenvalues on the circle |z| = p(B).
Then TFAE

(a) B has gh eigenvalues the circle |z| = p(B), for some ¢ > 1.

(b) Each C; has ¢ > 1 distinct eigenvalues on |z| = p(C;) = p(B)".

(c) Some C; has ¢ > 1 distinct eigenvalues on |z| = p(C;) = p(B)".

(d) Let D(B) = ((n),E) and V; = {pj—1+1,...,p;}fori=1,... h
be defined as in the proof of Lemma 6.2.9. Then each V; is a
disjoint union of ¢ nonempty sets Wi, Wiyp,..., Wiy g1y for
i =1,...,h, such that £ C U?ile X Wjt1, where Wy i=
Wi. Let H; = (W;, F;), F; C W; x W, be the following digraph.
The diedge (v, w) is in F}, if and only if there is a path of length
ghin D(B) from v to w in W;. Then each digraph H; is strongly
connected and primitive.

Hint: Use the structure of the eigenvalues A of B on the circle
|A| = p(B), and the corresponding eigenvector z to A given in (5b) of
Theorem 6.2.1.

11. For A€ R " and 0 < x = (2,,...,2,) " € R% let R(x) = max;e () %
Assume that A is irreducible. Show that infxso R(x) = p(A). Le.
; (Ax);
6.2.9 — =p(A).
(6:2 SRR AR

Furthermore, R(x) = p(A) if and only if Ax = p(A4)x.
Hint: Mimic the proof of Theorem 6.2.2.

12. Let n > 1 and D = ((n), E) be a strongly connected digraph. Show

(a) If D has exactly one cycle, it must be a Hamiltonian cycle, i.e.
the length of of this cycle is n. Then D is not primitive.

(b) Suppose that D has exactly two directed cycles. Then the short-
est cycle has length n — 1 if and only if it is possible to rename
the vertices so that the shortest cycle is of the form 1 — 2 —

. — n—1 — 1 and the second cycle is a Hamiltonian cycle
1—-2— ... 5n—1—n — 1. In this case D is primitive.
Moreover A(D)F > 0 if and only if k > n? — 2n + 2.

(¢) Assume that D is primitive. Show that the shortest cycle of D

has at most length n — 1.
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6.3 Index of primitivity

Theorem 6.3.1 Let A € R}*" be a primitive matriz. Let s > 1 be
the length of the shortest cycle in the digraph D(A) = ((n),E). Then
As(=2+n 5 0. In particular AM=1’+1 > 0.

Proof. For n = 1 we have that s = 1 and the theorem is trivial. Assume
that n > 1. Note that since A is primitive s <mn — 1. (See Problem 12c.)

Suppose first that s = 1. So D(A) contains a loop. Relabel the vertices
of D(A) to assume that (1,1) € E. I.e. we can assume that A = [a;;]
and a1; > 0. Recall that from 1 to j > 1 there exists a path of length
1 <1(j) < n—1. By looping at 1 first n — 1 — [(j) times we deduce the
existence of a walk of length n — 1 from 1 to j > 1. Clearly, there exists a
walk of length n—1 from1to1: 1 - 1 — ... — 1. Similarly, for each j > 1
there exists a walk of length n — 1 from j to 1. Hence, the first row and
the column of A"~ is positive. Thus, A2("~1 = A?=14"~1 is a positive
matrix.

Assume now that s > 2. Relabel the vertices of D(A) such that one has
the cycle on vertices ¢ := {1,2,...,s}: 1 — ... — s — 1. Then the first
s diagonal entries of A® are positive. Since A was primitive, Lemma 6.2.8
implies that A* is primitive. Our previous arguments show that (A%)"~!
has the first s rows and columns positive. Let

Iy Fhia

ATL*S —
{ For Fy

] e R1X57F12,F2T1 € Rj-X(nis),FQQ € RSTFS)X(“*S).

Clearly, F11 > ([ai;]i_;j—1)"°. Since D(A) contains a cycle of length s on

(s) it follows that each row and column of Fy; is not zero. Clearly,
(6.3.1) As(n=2)+n _ g(n—s) gs(n-1)

Hence the first s rows of A%("=2)+" are positive. We claim that each row of
F51 is nonzero. Indeed, take the shortest walk from j € U := (s+1,...,n)
to the set of vertices V := {1,...,s}. This shortest walk is a path which
can contain at most n — s vertices in U, before it ends in ¢ € V. Hence the
length of this path is m(j) < n —s. After that continue take a walk on the
cycle ¢ of length n — s —m(j), to deduce that there is a walk of length n — s
from j to V. Hence the j — s row of Fb; is nonzero. Use (6.3.1) and the

fact that the first s rows of (A%)"~! positive to deduce that A5("=2)+" >,
|

Proof of Theorem 6.1.5. Problem 6.1.5.1 yields that the length L
of any closed walk in D is a sum of lengthes of a number of cycles in D.
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Hence ¢ divides L. Assume that D is primitive, i.e. A¥ > 0 for any k > k.
Hence for each k > kg there exists a closed walk in D of length k. Therefore
{=1.

Suppose now that D = (V, E) is imprimitive, i.e. A(D) is imprimitive.
(5d) of Theorem 6.2.1 yields that there V' decomposes to a nonempty dis-
joint sets Vi,..., Vs, where h > 1. Moreover £ C U?:lVi X Vi1, where
Vi+1 = V1. So any closed walk must be divisible by A > 1. In particular,
the length of each cycle is divisible by h. Thus ¢ > h > 1. Hence D is
primitive if and only if ¢ = 1. Suppose that D is primite. Theorem 6.3.1
yields that A(D)*"=2)*" > 0, where s is the length of the shortest cycle.
This proves part 1 of Theorem 6.1.5.

Assume now that D is imprimitive. So A(D) has h > 1 distinct eigen-
values of modulus p(A(D)). Relabel the vertices of D so that A(D) is of
the form B given in (5d) of Theorem 6.2.1. As we pointed out, each cycle
in D is divisible by h. It is left to show that the £ = h. Let D; = (V;, E;)
be defined as in the proof of Lemma 6.2.9. It is straightforward to see that
each cycle in D; corresponds of length L to a cycle in D of length hL.
Since C; is primitive, it follows from the first part of the proof, that the
g.c.d of lengths of all cycles in C; is 1. Hence, the g.c.d. of lengths of the
corresponding cycles in D is h. O

6.4 Reducible matrices

Theorem 6.4.1 Let A € R*™. Then p(A), the spectral radius of A,
is an eigenvalue of A. There exists a probability vector x € II,, such that
Ax = p(A)x.

Proof. Let J,, € {1}™*" be a matrix whose entries are 1. For € > 0 let
A(e) = A+¢eJ,. Then A(e) > 0. Hence,

(6.4.1)  p(A(e)) € spec (A(e)) and A(e)x(e), 0 < x(¢g) € I, for € > o.

Since the coefficients of the characteristic polynomial of A(e) are polynomial
in €, it follows that the eigenvalues of A(e) are continuous function of .
Hence

lim spec (A(e)) = spec A, lim p(A(e)) = p(A).

Combine that with (6.4.1) to deduce that p(A) € spec A. Choose ¢ =
%,k‘ = 1,...,. Since II,, is a compact set, there exists a subsequence
1 < ky < ka2 <...such that lim;_...X(ex; = x € II,. The second equality
of (6.4.1) yields that Ax = p(A)x. O
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It is easy to have examples where p(A) = 0 for some A € R, and p(A)
is not a geometrically simple eigenvalue. (L.e. the Jordan canonical form
of A contains a Jordan block of order greater than one with the eigenvalue

p(A).)
Proposition 6.4.2 Let A € R*".

1. Assume that C € R*™ and A > C. Then p(A) > p(C). If either A
or C are irreducible then p(A) = p(C) if and only if A= C.

2. Assume that B € R["™™ 1 < m < n is a principle submatriz of
A, obtained by deleting n — m rows and columns of A from a subset
J C (n) of cardinality n — m. Then p(B) < p(A). If A is irreducible
then p(B) < p(A).

Proof. 1. Suppose first that A is irreducible. Then Lemma 6.2.4 yields
that p(A) > p(C). Equality holds if and only if A = C. Suppose next that
C is irreducible. Then A is irreducible. Hence p(A) > p(C), and equality
holds if and only if C = A.

Assume now that A is reducible. Let A(e),C(e) be defined as in the
proof of Theorem 6.4.1. For & > 0 the above arguments show that p(A(e)) >
p(C(g)). Letting € \, 0 we deduce that p(A) > p(C).

2. By considering a matrix A; = PAPT for a corresponding P € P,

we may assume that A; = An - Ar , where B = Aj;. Clearly,
Ay Ag
p(A1) = p(A), and Ay irreducible if and only if A irreducible. Let C =
B Ormx (n—m) } Then A; > C. 2. yields that p(A) =
O(nfm)xm O(nfm)x(nfm)

p(A1) > p(C). Suppose that Ay is irreducible. Since C is reducible,
Ay # C. Hence p(C) < p(A1) = p(A). O

Lemma 6.4.3 Let A € R}*". Assume that t > p(A). Then (tI —
A)~Y > 0. Furthermore, (tI — A)~1 > 0 if and only if A is irreducible.

Proof. Since t > p(A) it follows that det (tI — A) # 0. (Actually,
det (tI — A) > 0. See Problem 1.) So (tI — A)~! exists and (tI — A)~! =

1(I—1A4)~1. Since p(3A) < 1 we deduce the Neumann ezpansion [NeuT77),

which holds for bounded operators in Banach spaces,

=1
(6.4.2) (tI—A)~ =" tﬁA’a for |t| > p(A).
k=0

Since A¥ > 0 we deduce that (t]—A)~! > 0. Let A% = [agf)]. The the (i, j)
(k)

entry of (tI — A)~! is positive, if and only if a;;” > 0 for some k = k(i, ).
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This shows that (tI — A)~! > 0 if and only if A is primitive. O

Theorem 6.4.4 Let A € R*™ be a nonnegative matriz. Then there
exists a permutation matriz P € P, such that B = PAPT is of the following
block upper triangular form.

(6.4.3) B=
[ Bii Bz ... Bu Bigsn Biyo) -+ Bigap ]
O B22 ce. BQt B2(t+1) Bl(t+2) .. B2(t+f)
0 O oo Btt Bt(tJrl) Bt(t+2) PN Bt(tJrf) ,
O 0 o O B(t+1)(t+l) 0 .. O
Lo 0 0 0 0 0 Butfots)

BijeRnixnjv iajzla"'at+f7 n1+~~~+nt+f:n7 t207 fZl

FEach By; is irreducible, and the submatriz B’ := [Bij}Zij:t+1 is block diag-
onal. Ift =0 then B is a block diagonal. Ift > 1 then for eachi=1,...,t
not all the matrices B;(ii1y,-- -, Biiyf) are zero matrices.

Proof. Let D, = (W, F) be the reduced graph of D(A) = ((n), E).
Then D, is a diforest. Let £ > 1 be the length of the longest path in the
digraph D,.. For a given vertex w € W let £(w) be the length of the longest
path in D, from w. So {(w) € [0,4]. For j € {0,...,¢} denote by W; the
set of of all vertices in W such that ¢(w) = j. Since D, is diforest, it follows
that Wy, ..., Wy is a decomposition of W to nonempty set. Note if there
is a diedge in D, from W; to W; then i > j. Also we have always at least
one diedge from W; to W;_y fori=4¢,...,1,if £ > 0.

Assume that #W; = miq—; for j =0,...,¢. Let My =0 and M; =
> _ym; for j = 1,...,0. Then we name the vertices of W; as {M,_; +
L...,My_j+miqe_j} for j =0,...,0. Let f:= #Wy = myq1 and t :=
#(U?zle) = Z§=1 m;. Note that f > 1 and ¢ = 0 if and only if £ =
0. Hence the representation matrix A(D,) is strictly upper triangular.
Furthermore the last f rows of A(D,.) are zero rows.

Recall that each vertex in W corresponds to a maximal strongly con-
nected component of D(A). That is, to each ¢ € W = (¢t + f) one has
a nonempty subset V; C (n), which correspond to the maximal connected
component of D(A). Let n; := #V; for ¢ = 1,...;t+ f. Let Nyp =0
and N; = 22:1 ni;,t = 1,...,t +s. Rename vertices of D(A) to satisfy
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Vi={N;—1+1,...,N;_1 + n;}. Then PAPT is of the form (6.4.3). Fur-
thermore, the digraph induced by B;; is a strongly connected component
of D(A). Hence By; is irreducible. Note B;; = 0, for j > ¢ if and only if
there is no biedge from the vertex i to the vertex j in D,.. Recall that for
i < t, the vertex i represents a vertex in Wp, for some k > 1. Hence, for
i < ¢ there exists j > i such that B;; # 0. a

Theorem 6.4.5 Let A € R} ". Then there exists a positive eigenvec-
tor x > o0 such that Ax = p(A)x if and only if the following conditions hold.
Let B be the Frobenius normal form of A given in Theorem 6.4.4. Then

1. P(B(t+1)(t+1)) == p(B(t+f)(t+f)>;
2. p(Bii) < p(Bis1)t41)) fori=1,...,t.

Proof. Clearly, A has a positive eigenvector corresponding to p(A), if
and only if B has a positive eigenvector corresponding to p(B) = p(A4).
Thus we may assume that A = B. Suppose first that Bx = p(B)x for
x > 0. Let x" = (u]—,...,u;_f), where 0 < w; € R™ fori=1,...,t+
f. Since B’ = [Bij]fifztﬂ is a block diagonal matrix we deduce that
Biu; = p(B)u; for i = t+1,...,t+ f. Proposition 6.2.7 yields the equality
p(B) = p(Bt41)(t+1)) = - - = p(B4s)t+f)). Hence 1 holds. Furthermore,

t+f
(644) B“uz + Z Bijllj = p(.B)l.lfL7 1= 1,... ,t.
Jj=ti+1

Since for each i € [1,¢] there exists an integer j(i) € [i + 1,¢ + f] such that
B;; > 0 we deduce that B;;u; < p(B)u, for each ¢ € [1,t]. Use Problem 11
to deduce that p(By;) < p(B) = p(B(t+1)¢t+1)) for i € [1,1].

Assume now that 1 and 2 holds. Let r = p(Byiiyit1)) = ... =
p(B+fyt+p))- Then Byu; = rug,u; > 0 for i =t +1,...,t+ f. Also,
since p(B) = max;e ¢4 f) p(Bii), we deduce that p(B) = r.

Consider the equality (6.4.4) for ¢ = t. Rewrite it as

Vi = Z Btjllj = (T’I — Btt)ul-.
Jj=t+1

Since some B;; > 0 it follows that v; > 0. As r > p(By) and By is
irreducible, Lemma 6.4.3 implies that (rI — By)~' > 0. Hence u; :=
(rI — By)~*vy > 0. Thus we showed that there exists u; > o so that equal-
ity (6.4.4) holds for ¢ = t. Suppose we already showed that there exists
Uy, ...,ux > 0 such that (6.4.4) holds for ¢ = ¢,¢t — 1,...,k. Consider the
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equality (6.4.4) for i = k — 1. Viewing this equality as a system of equa-
tions in ug_,, the above arguments show the existence of unique solution
u;_, >0. Let x" = (u] ...,utTJrf). Then Bx = rx. O

10

Corollary 6.4.6 Let A € R™ and assume that Ax = p(A)x, ATy =
p(A)y, where x,y > 0. Then the Frobenius normal form of A, given by
(6.4.3) is block diagonal.

Theorem 6.4.7 Let A € R*". Assume that Ax = x for some x > o.
B= [Bij]file be the Frobenius normal form of A given by (6.4.3). Denote
Bk = [Bif)]ﬁile for k=1,2,.... Then the block matriz form of B* is of
the form (6.4.3). Furthermore, the following conditions hold.

1. limy—oo BYY =0 fori,j=1,...,t.

2. AF k= 1,2,..., converge to a limit if and only if the matrices By
are primitive fori=t+1,...,t+ f.

3. Assume that By; are primitive and Bju; = w;, Biv; = v;,u;,v; >
0,v,u, =1 fori =t+1,...;t+ f. Then limy_ . B*¥ = F =
[Eij]file > 0, where E has the block matriz form (6.4.3). Further-
more

(a) E is a nonnegative projection, i.e E* = E.
(b) Eiy =uv, fori=t+1,...,t+f, and E;; =0 fori,j =1,...,t.

(c) Foreachi € (t) and a given row r in matrices Eisq1y, - - -, Byt f),
there exists j > t, j = j(r), such that E;; has a positive element
m row j.

Proof. Since B is a block upper triangular, it follows that B* is block
upper triangular. Since B;; = 0 for j > ¢ > ¢ if follows that Bi(f) = 0 for

j > >t. (One can prove it by induction on k.) Let B := [Bijli—j=y- Since
B is block upper triangular it follows that B* = [Bf]’-c)]f:jzl. Furthermore,

p(B) = max;e ) p(Bii). As B has a positive eigenvector, we deduce from

Theorem 6.4.5 p(Bi;) < p(B(t41)¢+1)) = 1 for i € (t). Hence p(B) < 1.
Therefore limy_, o B = 0. This implies 1.

Clearly, A*. k = 1,2,... converges if and only if the sequence B* k =
1,2,... converges. Assume that the second sequence converges. As Bff ) =
BE for k=t+1,...,t+ f, we deduce that the sequences BE, k=1,2,...,

converge for i = [t + 1,¢ + f]. Since By; is irreducible and p(B;;) = 1 for
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i € [t+1,t+ f], the convergence of BX k= 1,2,... implies that the only
eigenvalue of B;; on unit circle is 1. (Recall that the eigenvalues of BE are
the k-powers of the eigenvalues of B;;.) So each By; is primitive.

Assume now that each B;; is primitive. Hence, the algebraic multiplicity
of the eigenvalue of 1 of B is f. We claim that the geometric multiplicity of
lisalso f. Let uy,,...,usr be defined asin 3. For any a¢41,...,a¢4¢ >0
we have that B;;(a;u;) = a;u; fori =t+1,...,t+ f. From the proof of The-
orem 6.4.5 it follows that B has a positive eigenvector x, Bx = x, such that
x = (x),.., % a0, ap gy p),x; € R =1,...,t. Hence
the subspace of eigenvectors of B corresponding to the eigenvalue 1 has
dimension f at least f. Since the algebraic multiplicity of 1 is f it follows
that the geometric multiplicity of 1 is f. As all other eigenvalues A of B
satisfy |A| < 1 Fact ?? yields that limy_.o, B*¥ = E. This implies 2.

Since B* has the same block upper triangular form as B it follows that
E = [E'”Eile has the block triangular form. So E;; = 0 for j > i > ¢. Fur-
thermore, 1 implies that E;; = 0 for 4, j € (¢). Let u;, v, i =t+1,...,t+ f
be defined as in 3. The proof of Lemma 6.2.8 yields that limj_, ., BE =
Vill;r = E;; for i > t. Since B% = B*B* we deduce that E? = E. 3¢ will
be proved later. |

Theorem 6.4.8 Let F € RT*™ be a projection, i.e. F> = F. Then P
is permutationally similar to a nonnegative projection G, i.e. G = PFPT
for some P € P,,, of exactly one of the following forms.

1. G=0pmxm-

2. G=F, where n =m and E has a block upper triangular form given
in conditions 3a-3c¢ of Theorem 6.4.7. That is, one of the following
conditions hold.

(a) E =T, where T = diag(u,v/,...,uv,"), where 0 < u;,v; €
Rfi,v;rui =1,1=1,...,t.
0 R . . .
(b) E = L where T is of the form given in (2a), and each k-
row of R is of the form (r1v, ..., Teevy ), where (Tg1, ..., The) =
o',
E H
3. G= 0 0
1 <n <m. So each column of H either a zero column, or a nonzero
nonnegative eigenvector of E corresponding to the eigenvalue 1.

, where E € R ™" is of the form described in 2, where
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Proof. Recall that spec F C {0,1} and F is similar to a diagonal matrix.
Suppose that spec F = {0}. Then F' = 0 and the condition 1 holds. Assume
now that 1 € spec F. So there exists x > 0 such that F’x = x. Since
F(F1) = (F1) it follows that x = F'1 is an eigenvector of F' corresponding
to 1 with the maximal number of nonzero coordinates. Suppose first that
X has no zero coordinates, i.e. F' does not have zero rows. Let B be the
Frobenius normal form of F as in Theorem 6.4.7. As B? = B we deduce
that £ = B. So 2 holds.

Assume finally that F' has exactly m — n zero rows. So there exists
Q € P, such that QF1 = (y',0]_, 7. Thus QFQ" = [ 51 gfl }
where F2 = I} and F1y = y,y > 0. Use 2 for Fy to deduce 3. O

Theorem 6.4.9 Let A =R} ". Then

(6.4.5) p(A) = lim sup(tr A™) "

m—00

(Here tr B is the trace of a square matriz B, i.e. the sum of its diagonal
entries. )

Proof. Clearly, for any B € C™", |trB| = |>." ; \i(B)|. Hence
|tr B| < np(B). Therefore, tr A™ = |tr A™| < np(A™) = np(A)™. Thus,
(tr A™)m < nwp(A). Therefore, limsup,, . (tr A™)w < p(A). It is left

to show the opposite inequality.
Assume first that A is an irreducible and primitive. Let Au = p(A)u, ATv =

p(A)v,0 < u,v,v'u = 1. Theorem 6.4.7 yields that lim,, .. WA’” =

uv . Hence

tr A™ > p(A)m%tr uv' = p(i) = mlimoo(tr A™)m = p(A).
Assume that A is an irreducible and imprimitive. If A 1 x 1 zero ma-
trix, then (6.4.5) trivially holds. Assume that n > 1. Without loss of
generality we can assume that A is of the form given in Theorem 6.2.1
part 5d. Then A" = diag(By,...,By), where each B; is primitive and
p(B;) = p(A)", see Lemma 6.2.9. So tr Ahk = 2?21 tr Bf. Since each B;
is primitive and irreducible, we deduce from the previous arguments that
limy, o0 (tr AP%) 2% = p(A). Hence (6.4.5) holds in this case too.

Assume now that A is not irreducible. Without loss of generality we can
assume that A is in the Frobenius form (6.4.3). Then there exists i € (t+ f)
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such that p(A) = p(B;;). Clearly

t+f
(tr A™) = Zter # (tr B} )7}7/ = limsup(trAm)# > lim sup(tr B}')

m—00 m—00

3=

"= p(A).

d

Problems

1. Let A € R™*™. Show that for ¢t > p(A) det (tI — A) >0

6.5 Stochastic matrices and Markov Chains

Definition 6.5.1 A matriz S is a called a stochastic matrixz if S €
R*™, for some integer n > 1, and S1 = 1. Denote by S, C R*" the set
of n x n stochastic matrices. A matrix A is called doubly stochastic if A
and AT is a stochastic matriz. Denote by §,, C S, the set of n x n doubly
stochastic matrices.

Note that A € R™ ™ is a stochastic matrix, if and only if each row of A is
a probability vector. Furthermore the S,, and €2,, are compact semigroups
with respect to the product of matrices, see Problem 1. The following
lemma is straightforward, see Problem 2.

Lemma 6.5.2 Let A € R*". Then A = DSD™! for some S € S,
and a diagonal matriz D € R*™ with positive diagonal entries if and only
if Ax = x for some positive x € R™.

Definition 6.5.3 Let S € S,, be irreducible. We will assume the nor-
malization that the eigenvector of S and ST corresponding to the eigenvalue
1 are of the form 1 = (1,) € R} and m € II,,, respectively, unless stated
otherwise. S is called aperiodic if it is primitive, and periodic if it is im-
primaitive.

Theorem 6.5.4 Let A € S,,. Denote by B = [B; ]H_'{ 1 the Frobenius
normal form of A given by (6.4.3). Then B, B(i41)(t41), - Be+f)t+f)
are stochastic. Furthermore the conditions 1-3b of Theorem 6.4.7 hold.
The limit matriz E is stochastic. In the condition 3 we can assume that
w,=1,,v; €Il,, fori=t+1,...,t+ f.

Finally the condition 3c of Theorem 6.4.7 is replaced by the following
stronger condition. For each i € (t) the sum of the entries of a Trow r in
matrices Eigq1),. .-, Eiuqp) 18 1, for any given row r.
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Proof. Since A is stochastic, in view of Problem 1b, B is stochastic.
Since B is block upper triangular and B’ = [Bij}fif:tﬂ is block diago-
nal, it follows that Bj; is stochastic for ¢ = ¢ +1,...,t + f. Since B* is
stochastic, Problem 1c implies that £ = [E”]file is stochastic. Since
E= [Eij]i—j=1 = 0 we deduce that the last part of the theorem. O

Proof of condition 3c of Theorem 6.4.7. In view of Lemma 6.5.2 B
is diagonally similar to a stochastic matrix,. Hence 3c follows from the last
part of Theorem 6.5.4. O

We now recall the classical connection between the stochastic matrices
and Markov chains. To each probability vector m = (7y,...,7,)" € II,, we
associated a random variable X, which takes values in the set (n), such that
P(X =4)=m fori=1,...,n. Then 7 = w(X) is called the distribution
of X.

Assume that we are given a sequence of random variables Xg, X7, ...
each taking values in the set (n). Let sff) be the conditional probability of
X =7 given that X;_1 = ¢

(6.5.1) s =P(Xp = j[Xpo1=1), @j=1,...,n, k=1,..

Clearly, S = [SE—?)]?:jzl, k=1,2,...1s a stochastic matrix for k =1,....

Definition 6.5.5 Let Xg, X1,..., be a sequence of random variables
taking values in (n). Then

1. Xo,X1,... is called a homogeneous Markov chain if

P(X% = ji|Xk-1 = jr-1,---,Xo = jo) = P(X1 = jx|Xo = Jk—1) fork=1,2,....
2. Xo,X1,... 1s called a nonhomogeneous Markov chain if

P(Xk = ji|Xk-1 = jr-1,-- -, Xo = jo) = P(X = jg| Xp—1 = Ji—1) fork=1,2,....

(Note that a homogeneous Markov chain is a special case of nonho-
mogeneous Markov chain.)

3. A nonhomogeneous Markov chain is said to have a limiting distribu-
tion if the limit woo (o) 1= limg— oo™y exists. If ws does not depend
on Ty then s is called the stationary distribution of the Markov
chain.

The following lemma is straightforward, see Problem ?7.



310 CHAPTER 6. NONNEGATIVE MATRICES

Lemma 6.5.6 Let Xg, X1, ... be a sequence of random variables taking
values in (n). Let wy, := w(Xy) be the distribution of Xy fork=0,1,.... If
Xo, X1, ..., s a nonhomogeneous Markov chain then ﬁ; =g S1...S for
k=1,..., where Sy are defined by (6.5.1). In particular, if Xo, X1,..., is
a homogeneous Markov process, i.e. S, =S, k=1,2,..., then 71';r =mg S*
fork=1,.....

Theorem 6.5.7 Let Xy, X1,..., be a homogeneous Markov chain on

(n), given by a stochastic matriz S = [s;;] € S,,. Let D(S) and D,(S) be
the digraph and the reduced digraph corresponding to S. Label the vertices
of the reduced graph D,(S) by {1,...,t+f}. Let Vi,...,Viys be the decom-
position of (n) to the strongly connected components of the digraph D(S).
Assume that B = PSP, P € P, is given by the form (6.4.8). The ver-
tices, (states), in UL_,V; are called the transient vertices, (states). (Note
that if t = 0 then no transient vertices exist.) The vertices, (states), in
UEI{HVi are called the final vertices, (states). Vii1,..., Vit are called the
final strongly connected components. Furthermore the following conditions
hold.

1. For each i € US_,Vj limy o P(X), = i) = 0.

2. Xo,X1,..., have a limiting distribution if and only if each stochastic
matriz corresponding to V; is aperiodic fori =t+1,...,t+ f. Le.
the irreducible matrices By; are primitive fori=t+1,...,t+ f.

3. Xo,X1,... have a stationary distribution if and only if f = 1. Le.
there exists only one final strongly connected component.

Proof. . Without loss of generality we may assume that S = B. Let
71';— = (WIk, ce Tr;'—+f7k) for k =0,1,.... From the proof of Theorem 6.4.7
we deduce that

i
k )
7"7Tk = Zﬂj,ij(i), fori=1,...,t.
i=1

In view of part 1 of Theorem 6.4.7 we deduce that limy_,oo m; ; = 0 for
i=1,...,t. This proves part 1.

Suppose that o = (71,0, ..., is supported only on V;; for some i € (f).
That is w0 = 0 if j € Vi44. Then each m}, is supported on V; ;. Further-
more, 7\'tT+l-’k = 7rtT+i,OBé€t+i)(t+i)' Assume that B(;44)(;44) is imprimitive.
Choose 40 to have one nonzero coordinate to be 1 and all other coor-
dinates to be zero. Assuming that B(;y;)4) has the form given in 5d of
Theorem 6.2.1, we see that there no is limit distribution. Hence, to have the
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limit distribution for each ¢ we must assume that B;4)(¢44) is primitive
fori=1,...,f.

Assume that B(;14)(;44) is primitive for ¢ = 1,..., f. Then Theorem
6.5.4 implies that ﬂ'; = mwoE, where E = limj_ o B* is the stochastic
projection. As we pointed out before if we assume that g is supported
only on Vi, then the limit probability is also supported on V;i;. Hence,
to have a stationary distribution we must have that f = 1.

Assume that f = 1. Then limy_.oo Bf; = 14,7/, ,. Observe that the
limit probability is 7] E = (g E)E. Since ] E is supported only on V;
it follows that wj E2 = (0",...,0", /), which is independent of my. O

t
The proof of the above theorem yields the well known result.

Corollary 6.5.8 Let Xy, X1,..., be a homogeneous Markov chain on
(n), given by an aperiodic stochastic matric S = [s;;] € S,. Assume that
STw = x for a unique 0 < m € II,. Then this Markov process has a
stationary distribution equal to 7.

A stronger result is proven in [Fri06].

Theorem 6.5.9 Let Xy, X1,..., be a nonhomogeneous Markov chain
on (n), given by the sequence of stochastic matrices S1,S2, ..., defined in
(6.5.1). Assume that limg_,o Sy = S, where S is a stochastic matriz,.
Suppose furthermore that the corresponding homogeneous Markov chain to
S has a stationary distribution w. Then the given nonhomogeneous Markov
process has a stationary distribution equal to .

We close this section with Google’s Page Ranking. Let n be the current
number of Web pages. (Currently around a few billions.) Then S = [s;;] €
S,, is defined as follows. Let A(i) C (n) be the set of all pages accessible
from the Web page i. Assume first that ¢ is a dangling Web page, i.e.
A(i) = 0. Then s;; = L for j =1,...,n. Assume now that n; = #A(i) > 1.
Then s;; = -- if j € A(i) and otherwise s;; = 0. Let 0 < w € II,,,t € (0,1).
Then the Goé)gle positive stochastic matrix is given by

(6.5.2) G=tS+(1-t)lw'.

It is rumored that ¢ ~ 0.85. Then the stationary distribution corresponding
to G is given by G'@w = 7 € II,,. The coordinates of @ = (m1,...,m,)"
constitute Google’s popularity score of each Web page. ILe. if m; > 7; then
Web page ¢ is more popular than Web page ;.

A reasonable choice of w would be the stationary distribution of yes-
terday Google stochastic matrix. To find the stationary distribution 7 one
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can iterate several times the equality
(6.5.3) w =m, G, k=1,...,N.

Then 7ry would be a good approximation of 7r. One can choose wy = w.

Problems
1. Show

(a) If Sl, Sy € §,, then 5155 € S,,.
(b) PS,=8,P =S, for any P € P,.
(c) Sy is a compact set in R} ™™,
(d) If 51,55 € Q, then 5155 € Q,,.
(e) PQ, =Q,P=Q, for any P € P,.
(f) Q, is a compact set in R7*".
(g) P, is a group of doubly stochastic matrices of cardinality n!.
2. Prove Lemma 6.5.2.

3. Let A,B € C*"*", and assume that A and B are similar. IL.e. A =
TBT~! for some invertible 7. Then the sequence A* k = 1,2,...,
converges if and only if B¥,k = 1,2, ..., converges.

4. Prove Lemma 6.5.6.

6.6 Friedland-Karlin results

Definition 6.6.1 Let B = [b;]7;_; € R"*". B is called a Z-matriz
if bi; < 0 for each i # j. B is called an M-matriz if B = vl — A where
AeRY™ and r > p(A). Forr = p(A) B is called a singular M-matriz.

The following result is straightforward, see Problem 1.

Lemma 6.6.2 Let B = [b;;] € R™™" be a Z-matriz. Let C = [¢;5] €
RY*™ be defined as follows. c¢;j = —b;; for each i # j and c;i = 1o — by
fori=1,...,n, where ro = max;c(ny. Then B = rol — C. Furthermore,
B =1l — A for some A € RI"™ if and only if r =ro+t,A=tI+C for
somet > 0.

Theorem 6.6.3 Let B € R"*"™ be a Z — matrixz. Then TFAE.
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1. Bis an M-matriz.
2. All principal minors of B are nonnegative.

3. The sum of all k x k principal minors of B are nonnegative for k =
1,...,n.

4. For each t > 0 there exists 0 < x € R, which may depend on t, such
that Bx > —tx.

Proof. 1 = 2. We first show that det B > 0. Let A (A),..., A, (A4)
be the eigenvalues of A. Assume that A;(A) is real. Then r — X\;(4) >
p(A) — Xi(A) > 0. Assume that A\;(A) is complex. Since A is a real valued
matrix, A;(A) is also an eigenvalue of A. Hence (r — \;(4))(r — A;(A)) =
|r—=Xi(A)[? > 0. Since det B =[]}, (r—X;(A)), we deduce that det B > 0.
Let B’ be a principal submatrix of B. Then B’ = rI' — A’, where A’ is a
corresponding principal submatrix of A and I’ is the identity matrix of the
corresponding order. Part 2 of Proposition 6.4.2 implies that p(A4) > p(A’).
So B’ is an M-matrix, Hence det B’ > 0.

2 = 3. Trivial.

3= 1. Let det (t] + B) =t"+ > i, Bxt" *. Then S is the sum of all
principal minors of B of order k. Hence (B > 0 for k = 1,...,n. Therefore
0 < det (tI + B) = det ((t + r)I — A). Recall that det (p(A)I — A) = 0.
Thus t +r > p(A) for any ¢t > 0. So r > p(A), i.e. B is an M-matrix.

1 = 4. Let t > 0. Use the Neumann expansion (6.4.2) to deduce
that (t + B)™! > H%I. So for any y > 0 x := (¢t + B)"'y > 0. So
y=(tI+B)x>0.

4 = 1. By considering PBP"T = rI — PAPT we may assume that
A= [Aij]Hf is in the Frobenius normal form (6.4.3). Let Bx > —tx.

i=j=1

Partition xT = (x],... ,x;';f). Hence (t+7)x; > Ai;ix;. Problem 11 yields
that ¢t +r > p(A;;) fori =1,...,t+ f. Hence t +r > p(A). Since t > 0
was arbitrary we deduce that r > p(A). O

Corollary 6.6.4 Let B be a Z-matrixz. Assume that there exist x > 0
such that Bx > 0. Then B is an M-matriz.

Lemma 6.6.5 Let B = [fi|i_;_, be real symmetric matriz with the
eigenvalues A1 (B) > ... > A\, (B). Assume that A\, (B) is a simple eigen-
value, i.e. A\p—1(B) > A\ (B). Suppose that Bx = A\, (B)x, where x €
R" x"x = 1. Let U C R" be a subspace which does not contain x. Then

(6.6.1) min y' By > A\.(B).
yeU,yTy=1
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Proof. Recall the minimum characterization of A, (B)

. T
(6.6.2) ZER?}LZZIZ Bz = \,(B).
See for example http://www.math.uic.edu/~friedlan/math310lec.pdf page
114. Equality holds if and only if Bz = \,(B)z, where z'z = 1. Since
An(B) is simple it follows that z = +x. Since U does not contain x,
hence it does not contain —x, we deduce that the minimum in (6.6.1) is
achieved for some y* # +x. Hence this minimum is greater than A, (B). O

Corollary 6.6.6 Let B € R™*™ be an M-singular symmetric matriz of
the form B = p(C)I — C, where C is a nonnegative irreducible symmetric
matriv. Let U = {y € R", 1Ty = 0}. Then )\, (B) = 0 is a simple
eigenvalue, and (6.6.1) hold.

As usual, we let ||z| := vz*z for any z € C" be the Euclidean norm of z.

Theorem 6.6.7 Let D C R™ be a bounded domain. (D is open and
connected, OD, the boundary of D, is a compact set, so DU ID is a com-
pact set in R™.) Let f € D — R be C}(D). i.e. the function and is
derivatives up the second order are continuous. Suppose that f|OD = oo,

i.e. for each sequence x; € D,i = 1,..., such that lim; .., x; = x € 9D,
lim; o f(%;) = 00. Assume furthermore, that for each critical point € €,
i.e. V(&) = (%(E),...,aij’; (€))7 = 0, the eigenvalues of the Hessian
H(¢) = [8;?;9];]- (5)]?:j:1 are positive. Then f has a unique critical point

& € D, which is a global minimum, i.e f(x) > f(&€) for any x € D\{£}.

Proof. Consider the negative gradient flow

dx(t
(6.6.3) % = Vi), x(t)=x, € D.
Clearly, the fixed points of this flow are the critical points of f. Observe

next that if x, is not a critical point then f(x(t)) decreases, as W =

—||Vf(x(t))||*. Since f|0D = oo, we deduce that all accumulations points
of the flow x(t),¢ € [to,00) are in D, and are critical points of f. Consider
the flow (6.6.3) in the neighborhood of a critical point £ € D. Let x =
v+ &,%x, =Yyo + & The for x, close to &€ the flow (6.6.3) is of the form

dy (t
YO _ (e + Brly)). vt = e
For a given ¢ > the exists € = €(4) > 0 such that for ||ly|| < e, [|Ex(y)| <

§|lyll. Let @ > 0 be the smallest positive eigenvalue of H(£). Soz' H(€)z >
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al/z||* for any z € R™. Choose ¢ > 0 so that [|[Er(y|| < <[ly| for |ly|| <e.
Thus

AyOIF _ oty s < il
g = 2v(@®) H(Qy() +y(#) Er(y))l < —alyl* if [y(t)] <e.
This shows that if ||y(¢,)|| < € then for ¢t > ¢y ||y (¢)|| decreases. Moreover
dl t)|?
w < —afort >ty = [ly(®]* < llyslPe ) for ¢ > t,,.

This shows that lim; .. y(t) = 0. Let 8 > a be the maximal eigen-
value of H(&). Similar estimates show that if ||y,| < & then |y(¢)]|* >
vl e—(2B+a)(t—to)

These results, combined with the continuous dependence of the flow
(6.6.3) on the initial conditions x,, imply the following facts. Any flow
(6.6.3) which starts at a noncritical point x, must terminate at t = oo
at some critical point &€, which may depend on x,. For a critical point &,
denote by the set A(€) all points x, for which the flow (6.6.3) terminates
at finite or infinite time at €. (The termination at finite time can happen
only if x, = &.) Then A(€) is an open connected set of D.

We claim that A(§) = D. If not, there exists a point x, € 0A(&) N D.
Since A(&) is open, x, € A(£). As we showed above x, € A(¢’) for some
another critical point & # €. Clearly A(&) NA(E') = 0. As A(¢) is open
there exists an open neighborhood of x,, in D which belongs to A(¢'). Hence
X, can not be a boundary point of A(&), which contradicts our assumption.
Hence A(€) = D, and £ is a unique critical point of f in D. Hence £ is the
unique minimal point of f. O

Theorem 6.6.8 Let A = [a;;]i_;—; € RY™ be an irreducible matriz.

Suppose furthermore that a;; > 0 fori=1,...,n. Let w = (w,,...,w,)" >
0. Define the following function
n
Ax);
(6.6.4) fzfA7W=Zwilog(xi)z, x=(xy,...,2,) > 0.

=1

Let D be the interior of I1,,, the compact set of probability vectors in R™.
(D can be viewed as an open connected bounded set in R, see the proof.)
Then f satisfies the assumptions of Theorem 6.6.7. Let 0 < € € II,, be the
unique critical point of f in D. Then f(x) > f(€) for any x > 0. Equality
holds if and only if x = t€ for some t > 0.

Proof. Observe that any probability vector p = (p,,...,p,)' can be
written as p = -1 +y where y € R*", 1Ty = o and y > —=1. Since
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any y € R", 1Ty = o is of the form y = u,(—1,1,0...,0)" + ... +
Up_1(—1,0,...,0,1) " we deduce that we can view II,, as an compact con-
nected set in R”~!, and its interior D, i.e. 0 < p € II,,, is an open connected
bounded set in R*~!.

We now claim that f|0Il,, = co. Let 0 < pp = (pl’k,...,pn’k)—r €
I,k =1,..., converge to p = (p,,...,pn) € OIl,. Let O # Z(p) C (n)
be the set of vanishing coordinates of p. Observe first that @ >aq; >0
for i+ = 1,...,n. Since A is irreducible, it follows that there exists | €
Z(p),j € (n)\Z(p) such that a;; > 0. Hence

A .
lim ( pk)l > lim Q15P5k _
k—oo  Dik k—oo  prk

Thus (Apy)
. . Pk )i
> e 2L i = 00.
kli)rgo flpx) > kll_)r[olo log Pk + z;é;log a;; = 00
Observe next that f(x) is a homogeneous function of degree 0 on x > 0,
ie. f(tx) = f(x) for all ¢ > 0. Hence % = 0. Thus

(6.6.5) x'Vf(x)=o

for all x > 0. Let & € D be a critical point of f|D. Then y'Vf(§) = o for
each y € R", 1Ty = 0. Combine this fact with (6.6.5) for x = £ to deduce
that £ is a a critical point of f in R’'. So V f(€) = 0. Differentiate (6.6.5)
with respect to x;,4 = 1,...,n and evaluate these expressions at x = &.
Since £ is a critical point we deduce that H(£)€ = 0. We claim that H (&)
is a symmetric singular M-matrix. Indeed

(6.6.6) 88 ;J (x) ot Z

Hence for [ # j

2 n
3 Z a” U;ll
Bazlax] —

So H(x) is a Z-matrix for any x > 0. Since H(£)& = 0 Corollary 6.6.4 yields
that H(&) is a symmetric singular M-matrix. So H(&) = p(C)I — C,C =
[Cijw:j:y We claim that C' is an irreducible matrix. Indeed assume that
ajr > 0. Then

82f ) (ljj ajl

Cjl = Clj = _8:5[8;1;]- 2 W; (Ag)? > 0.
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Since A is irreducible C' is irreducible. Hence 0 = A\, (H(£))is a simple
eigenvalue of H(&). The restriction of the quadratic form corresponding to
the Hessian of f|II,, at &, corresponds to y ' H(&)y where 17y = 0. Corol-
lary 6.6.5 implies that there exists a > 0 such that y " H(&)y > ally||* for
all 1Ty = o. Hence the Hessian of f|D at the critical point 0 < & € IT,,
has positive eigenvalues. Theorem 6.6.7 yields that there exists a unique
critical point & € D of f|D such that f(p) > f(&) for any p € D\{&}. Since
f(x) is a homogeneous function of degree 0 we deduce that f(x) > f(&) for
any x > 0. Equality holds if and only if x = t£ for some ¢t > 0. a

Theorem 6.6.9 Let A € Rixn and assume that
Au=p(A)u,ATv = p(A)v,0 < p(A),0 <u= (uy,...,u) ,v=_(01,...,0,)

Then

(Ax)i

'L

)" >0,

(6.6.7) Zulvllog > log p(A) for any x = (z4,..., %y

i=1
n

(6p6BY) > p(A) H d"" for any diagonal D = diag(dy,...,d,) > 0.

i=1

Equality holds for x = tu and D = sI, where t > 0,s > 0, respectively.
Assume that A is irreducible and all the diagonal entries of A are positive.
Then equality holds in (6.6.7) and (6.6.7) if and only if x = tu, D = sI for
some t > 0,s > 0 respectively.

Proof. Assume that A = [aij};‘:jzl € R*™ be irreducible and a; > 0
fori=1,...,n. Let w = (u,v,,...,u,v,) . Define f(x) as in (6.6.4). We
claim that u is a critical point of f. Indeed, (6.6.6) yields

1
gjj( u) = uvj z:uzvZ W vj—l—M(ATv)j:o,j:L...,n.
Similarly, tu is a critical point of f for any ¢ > 0. In particular, £ = tu € I,
is a critical point of f in D. Theorem 6.6.8 implies that f(x) > f(u) =
log p(A) and equality holds if and only if x = tu for some ¢ > 0.

Let D be a diagonal matrix with positive diagonal entries. Then DA
is irreducible, and DAx = p(DA)x for some X = (x,,...,2,)" > 0. Note
that since f(u) < f(x) we deduce

log p(A) < Z U V; log =logp(DA) — Z u;v; log d;.
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The above inequality yields (6.6.8). Suppose that equality holds in (6.6.8).
Then x = tu, which yields that D = sI for some s > 0. Suppose that
D > 0 and D has at least one zero diagonal element. Then the right-
hand side of (6.6.8)is zero. Clearly p(DA) > 0. Since d;a;; is a principle
submatrix of DA, Lemma 6.4.2 yields that p(DA) > max;c ) d;a;;. Hence
p(DA) =0 if and only if D = 0. These arguments prove the theorem when
A is irreducible with positive diagonal entries.

Let us now consider the general case. For ¢ > 0 let A(g) := A +cuv'.
Then A(g) > 0 and A(e)u = (p(A) + €)u, A(e) v = (p(A) + €)v. Hence
inequalities (6.6.7) and (6.6.8) hold for A(e) and fixed > 0,D > o. Let
e\, 0 to deduce (6.6.7) and (6.6.8). For x = tu, D = sI, where t > 0,5 >0
one has equality. O

Corollary 6.6.10 Let the assumptions of Theorem 6.6.9 hold. Then

n
(Ax); T
6.6.9 Vi > p(A = (..., Ty 0.
( ) ;uv - > p(A) for any x = (x Tp)' >
If A is irreducible and has positive diagonal entries then equality holds if
and only if x = tu for some t > 0.

Proof. Use the arithmetic-geometric inequality Y ., pic; > [[,_, ¢
for any p = (p,...,pn) € II,, and any ¢ = (c,,...,c,) > 0. O

Definition 6.6.11 Let x = (2,,...,2,) .y = (Y1,..-,¥n)" € C".
Denote by D(x) = diag(x) the diagonal matriz diag(x1,...,z,), by e* =
(e¥1,...,e") T, byx~* = (i, e :%)T for x > 0, and by xoy the vector
($1y17 cee 7xnyn)T

For a square diagonal matrix D = diag(ds,...,d,) € C™*™ denote by
x(D) the vector (dy,...,dy)".

Theorem 6.6.12 Let 0 < u = (uy,...,u,) ,v = (v;,...,v,)". Let
0 <w=uov. Assume that A = [a;]}_;_, € R*" is irreducible. Then
there exists two diagonal matrices Dy, Dy € RY*™, with positive diagonal
entries, such that DiADou = u, (D, AD,)"v = v if one of the following
conditions hold. Under any of this conditions D1, Do are unique up to the
transformation t—1 Dy, tDy for some t > 0.

1. All diagonal entries of A are positive.
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2. Let N C (n) be a nonempty set of all j € (n) such that aj; = 0.
Assume that all off-diagonal entries of A are positive and the following
inequalities hold.

(6.6.10) Z w; > w; forall j € N.

i€(n)\{s}
(For n = 2 and N' = (2) the above inequalities are not satisfied by
any w.)

Proof. We first observe that it is enough to consider the case where
u =1, i.e. B := D{ADs, is a stochastic matrix. See Problem 2. In this
case w = V.

1. Assume that all diagonal entries of A are positive. Let f = fa w be
defined as in (6.6.4). The proof of Theorem 6.6.8 yields that f has a unique
critical 0 < £ in II,,. (6.6.6) implies that

This is equivalent to the equality (D(A&)~*AD(§))"w = w. A straightfor-
ward calculation show that D(A€)~'AD(¢)1 = 1. Hence Dy = D(A&)~t, Dy =
D(8).

Suppose that D1, D, are diagonal matrices with positive diagonal entries
so that D1 ADy1 =1 and (D1 AD>)"w = w. Let u = D,1. The equality
D1 AD>1 = 1 implies that D; = D(Au)~*. The equality (D;ADy)"w =w
is equivalent to (D(A(u))"*AD(u))"w = w. Hence u is a critical point of
f. Therefore u = t€. So Dy = tD(¢) and D =t~ 1D(A¢)~ L.

2. As in the proof of Theorem 6.6.8, we show that f = fw 4 is blows
up to oo as p approaches 9IL,. Let 0 < pg = (Pyks---Pnk) € Ik =
1,..., converge to p = (py,...,pn) € OI,. Let O # Z(p) C (n) be
the set of vanishing coordinates of p(. Si)nce all off-diagonal entries of A

APk)i

are positive, it follows that limg_ o ot =00 for each ¢ € Z(p). To

show that limg_.o f(Px) = oo it is enough to consider the case where
limg_ o0 % = 0 for some m ¢ Z(p). In view of the proof of Theo-
rem 6.6.8 we deduce that m € N. Furthermore, #Z(p) = n — 1. Hence
limg oo Pm,x = 1. Assume for simplicity of notation that m = 1, i.e.

Z(p) ={2,3,...,n}. Let s = max;>op; k. S0 limg .00 5 = 0. Let @ > 0

> api,k

be the value of the minimal off-diagonal entry of A. Then % > =

for ¢ > 2. Also (Apk)y > %% Thus
P1,k D1,k

f(pr) > w, log el +Z w; log ap

n
1,k P1k
£ (3w logat(—w,+> " w;) log L2E
P2 . (O wy)logat+(—w,+» w;)log ”

=1 i>2
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(6.6.10) for j = 1 implies that limg_, f(px) = co.
Let 0 < & € II, be a critical point of f. We claim that H(§) =

p(C)I — C, and 0 < C is irreducible. Indeed, for j #1 ¢j; = > 1 w; ?Xg)é

Since n > 3 choose @ # 7,1 to deduce that c¢;; > 0. So C has positive off-
diagonal entries, hence irreducible. Hence 0 < & € II,, is a unique critical
point in II,,. The arguments for 1 yield the existence of Dj, Do, which are
unique up to scaling. O

Problems
1. Prove Lemma 6.6.2.

2. Let B € R™" and assume that Bu = u,B"v, where 0 < u =
(Uyy -y upn) ;v = (vs,...,v,)". Then C := D(u)"*BD(u) satisfies
the following C1 = 1,C"w = w, where w = uov.

3. Let A € R*" is called fully indecomposable if there exists P € P,
such that P A is irreducible and have positive diagonal elements. Show
that that if A is fully indecomposable, then there exists diagonal
matrices Dy, Dy, with positive diagonal entries such that Dy AD, is
doubly stochastic. Dy, D5 are unique up to a scalar factor t 1Dy, tD,.

6.7 Convexity and log-convexity
Definition 6.7.1

1. For any two points x,y € R™ denote by (x,y) and [x,y], the open and
the closed interval spanned by x,y respectively. Le. the set of points
of the form tx + (1 — t)y, where t € (0,1) and [0, 1], respectively.

2. Set D C R" is called convex if for any x,y € D the open interval
(x,¥) is in D. (Note that a convex set is connected).

3. For x <y € R"™ we denote [x,y] := {z € R", x <z <y}. Clearly,
[x,¥] is a convex set.

4. Let D C R™ be a convexr set. Assume that f : D — R. f is called
convez if
(6.7.1)
flix+(1—ty)) <tf(x)+ (1 —1)f(y) forallt € (0,1),x,y € D.
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f s called log-convez if f(D) >0 and
(6.7.2)
fltx+ (1 —ty)) < (fx) () for all t € (0,1), %,y €D.

f is called strictly convex or strictly log-convex if strict inequality holds
in (6.7.1) and (6.7.2), respectively.

Note that if f is a positive function on D then f is log-convex if and only if
log f is convex on D. See Problem 1. The following results are well known,
e.g. [Roc70].

Fact 6.7.2

I. H=x4+U:={y € R",y = x4+ u,u € U}, is a conver set if U
is a convex set. If U is a subspace, then H is called a hyperplane of
dimension k, where k is the dimension of k. 0-dimensional hyperplane
1S a point.

2. For a given convex set D € R™ let U = span {y—x; for all y,x € D}.
Then for any x € D, the hyperplane x + U is the minimal hyperplane
containing D. The dimension of D is defined as the dimension of of
U, denoted as dim D = dim U. The interior of D, denoted by [ D, is
the set of the interior points of D — x, for a fixed x € D, viewed as
a set in the dim D dimensional subspace U. Then the closure of D is
equal to the closure of [ D, denoted as cloD =clo [ D.

3. Let D C R™ be a convez set, and f : D — R a convex function. Then
[ | D — Ris a continuous function. Furthermore, at eachx € [ D,
f has a supporting hyperplane. That is there exists p = p(x) € R”
such that

(6.7.3) fy) = fx)+p' (y —x) for any y € D.

Assume furthermore that dim D = n. Then the following conditions
are equivalent.

(a) f is differentiable at x € [D. Le. the gradient of f, Vf, at x
ezists and the following equality holds.

6.7.4)  |f(y) = (fx) + V() (y =x)] = oy —x])-
(b) f has a unique supporting hyperplane at x.

The set of points Diff(f) C [(D), where f is differentiable, is a dense
set in D of the full Lebesque measure, i.e. D\Diff(f) has zero Lebesgue
measure. Furthermore, V f is continuous on Diff(f).
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4. Let D C R™ be a convex set, and f : D — R a function. Assume
that f € C*([ D), i.e. f and its first and second partial derivatives
are continuous in fD. Then f : fD — R is convex iff and only the

Hessian matriz H(x) = [85‘232‘ (x)]7=;=, has nonnegative eigenvalues
10T

for each x € fD. If the Hessian H(x) has positive eigenvalues for
each x € [ D, then f is strictly convex on [ D.

5. Let D C R"™ be a convex set.

(a) If f,g are convex on D then max(f,g), where max(f,g)(z) :=
max(f(x),g(z)), is convex. Furthermore, af + bg is convex for
any a,b > 0.

(b) Let f; : D — R fori=1,2,.... Denote by f := limsup, f; the
function given by f(x) := limsup, f(x) for each x € D. Assume
that f : D — R, i.e. the sequence f;(x),i =1,..., is bounded for
each x. If each f; is convex on D then f is convex on D.

Theorem 6.7.3 LetD € R™ be a convex set. Assume that a;; : D — R
are log-convex functions fori,j =1,...,n. Let A(x) = [a;;(x)]{_;—, be the
induced nonnegative matriz function on D. Then p(A(x)) is a log-convex
function on D. Assume furthermore that each a;j(x) € C¥([ D), for some
k > 1. (All partial derivatives of a;;(x) of order less or equal to k are
continuous in [ D.) Suppose furthermore that A(x,) is irreducible. Then

0 < p(A(x)) € C([ D).

Proof. In view of Fact 6.7.2.5a each entry of the matrix A(x)™ is log-
convex. Hence tr A(x)™ is log-convex, which implies that (tr A(x)™)w is
log-convex. Theorem 6.4.9 combined with Fact 6.7.2.5b yields that p(A(x))
is log-convex.

Assume that A(x,) is irreducible for some x, € [(D). Since each a;;(x)
is continuous in [ D, Problem 1 yields that the digraph D(A(x)) is a con-
stant digraph on [ D. Since D(A(x,)) is strongly connected, it follows that
D(A(x))) is strongly connected for each x € [ D. Hence A(x) is irreducible
for x € [ D and p(A(x)) > o is a simple root of its characteristic polynomial

forx € [ D. The implicit function theorem implies that p(A(x)) € C¥([ D).
O

Theorem 6.7.4 Let A € R™". Define A(x) = D(eX)A for any x €
R™. Then p(A(x)) is a log-convex function. Suppose furthermore that A
is irreducible. Then log p(A(x)) is a smooth conver function on R™, i.e.
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log p(A(x)) € C*(R"). Let
A)u(x) = p(A(x))u(x), Ax) v(x) = p(Ax))v(2),
0 < u(x),v(x), with the normalization w(x) =: u(x) o v(x) € II,,.

Then
1

(6.7.5 Viog p(A(x)) = ————=Vp(A(x)) = w(x).

) ( G VPAG) = W
That is, the inequality (6.6.8) corresponds to the standard inequality
(6.7.6) log p(A(y)) = log p(A(0)) + Vlog p(A(0)) "y,

for smooth convex functions.

Proof. Clearly, the function f;(x) = e is a smooth log-convex function
for x = (z,,...,2,)" € R™. Since A > 0 it follows that each entry of A(x)
is a log-convex function. Theorem 6.7.3 yields that p(A(x)) is log-convex.

Assume in addition that A = A(0) is irreducible. Theorem 6.7.3 yields
that log p(A(x)) is a smooth convex function on R™. Hence log p(A(x)) has
a unique supporting hyperplane at each x. For x = o this supporting hy-
perplane is given by the right-hand side of (6.7.6). Consider the inequality
(6.6.8). By letting D = D(e¥) and taking the logarithm of this inequal-
ity we obtain that log p(A4) +w(0) Ty is also a supporting hyperplane for
log p(A(x)) at x = 0. Hence Vlog p(A(0)) = w(0). Similar arguments for
any x proves the equality (6.7.5). O

Problems

1. Let D C R™ be a convex set.

(a) Show that if f is a continuous log-convex on D, then either f
identically zero function or positive at each x € D.

(b) Assume that f is positive on D, i.e. f(x) > o for each x € D.
Then f is log-convex on D if and only if log f is convex on D.

(c) Assume that f is log-convex on D. Then f is continuous on [ D.

2. Let f : D — R be a log-convex function. show that f is a convex
function.

3. Let D C R™ be a convex set.

(a) If f,g are log-convex on D then max(f,g) is log-convex. Fur-
thermore, f%¢® and af + bg are log-convex for any a,b > 0.

(b) Let f; : D — Ri=1,2,... be log-convex. Assume that f :=
limsup, f; : D — R. Then f is log-convex on D.
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6.8 Min-max characterizations of p(A)

Theorem 6.8.1 Let ¥ : R — R be a differentiable convex nondecreas-
ing function. Let A € R ", and assume that p(A) > 0. Then

sup Zpl <log Z)i)z

p=(p1,....pn) T €I, X—(xl, ,xn)>0

(6.8.1) U(log p(A)).

Suppose that ¥’ (logp(A)) > 0 and A has a positive eigenvector u which
corresponds to p(A). If

(6.8.2) _ (mlmmnMsz <log ) ) = U(log p(A))

then the vector v.=pou~" is a nonnegative eigenvector of AT correspond-

ing to p(A). In particular, if A is irreducible, then p satisfying (6.8.2) is
unique.

Proof. Let p(A) be the left-hand side of (6.8.1). We first show that
u(A) < U(log p(A)). Suppose first that there exists u > 0 such that Au =
p(A)u. Then

st >ozpz (106222 <3 v (10g ) — wog )

i=1 ¢

for any p € II,,. Hence p(A) < ¥U(logp(A)).

Let J, € R™*"™ be the matrix whose all entries are equal to 1. For € > 0
let A(e) :== A+eJ,. As A(e) is positive, it has a positive Perron-Frobenius
eigenvector. Hence u(A(e)) < ¥(log p(A(e))). Since ¥ is nondecreasing and
A(e) > A, it follows that u(A) < u(A(e)) < ¥(logp(A(e))). Let e \, 0,
and use the continuity of ¥(t) to deduce p(A4) < ¥(log p(A)).

Assume now that A € R}*" is irreducible. Let u,v > 0 be the the
right and the left Perron-Frobenius eigenvectors of A, such that p* =
(p%,...,p5)T :==uov € I,. Suppose first that ¥(¢t) = t. Theorem 6.6.9
yields the equality

n

min pr log @ = log p(A).

x:($17...,In)T>O =1 1

Hence we deduce that pu(A) > logp(A). Combine that with the previous
inequality p(A) <logp(A) to deduce (6.8.1) in this case.
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Suppose next that ¥ is a convex differentiable nondecreasing function
on R. Let s := ¥'(log p(A)). So s > 0, and

U(t) > ¥(logp(A)) + (t —log p(A))s, for any t € R.

Thus

Zp@ (log Z))>xvaogp(A»—logp<A>>s+sZpuog(Ax

Use the equality (6.8.1) for ®(¢) = ¢ to deduce that p(A) > ¥(log p(A)).
Combine that with the inequality u(A) < ¥(logp(A)) to deduce (6.8.1) for
any irreducible A.

Suppose next that A € R*™ is reducible and p(A) > 0. By applying
a permutational similarity to A, if necessary, we may assume that A =
laij] and B = [a;;]i2;_; € R™*™,1 < m < n is an irreducible submatrix
of A with p(B) = p(A). Clearly, for any x > 0, (A(z1,...,2,)" )i >
(B(z1,...,2m) " )i fori=1,...,m. Since ¥ is nondecreasing we obtain the
following set of inequalities

p(A) > sup  inf Zqz <log )i)z

qT e, 0<x€eR™

sup  inf qu <log yz)i):\D(logp(B)).

TEH O<y€eR

Use the equality p(A) = p(B) and the inequality p(A) < ¥(logp(A)) to
deduce the theorem.
Assume now that

p(A) >0, ¥ (logp(A)) >0, Au=p(A)u, u >0,
and equality (6.8.2) holds. So the infimum is achieved at x = u. Since
X = u is a critical point we deduce that ATpou™ = p(A)pou=*. If Ais

irreducible then p is unique.
O

Corollary 6.8.2 Let A € R*". Then

(6.8.3) sup inf Di
P=(px,espn) T €M, X= (T, z")>ozz:; T
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Suppose that p(A) > 0 and A has a positive eigenvector u which corresponds
to p(A4). If

x:(:xl -----

(6.8.4) infmn)>oz i (A’_‘)i = p(A)

then the vector v.=pou~" is a nonnegative eigenvector of AT correspond-

ing to p(A). In particular, if A is irreducible, then p satisfying (6.8.3) is
UNLQUE.

Proof. If p(A) > 0 the corollary follows from Theorem 6.8.1 by letting

U(t) = e'. For p(A) = 0 apply the corollary to A; = A + I to deduce the
corollary in this case. O

Theorem 6.8.3 Let D, 1 denote the convex set of all n xn nonnegative
diagonal matrices. Assume that A € R*™. Then
(6.8.5) p(A+tD1+ (1 —t)D3) <tp(A+ D1)+ (1 —t)p(A+ D3)

fort € (0,1) and D1, Dz € D,, 4. If A is irreducible then equality holds if
and only if D1 — Do = al.

Proof. Let ¢(p) = infxzo 1, pi 2% for p € I, Since (AL =

ZT;

d; + (’2’:)1' for D = diag(dy,...,d,) we deduce that

n

’(/}(Dap) = 1nf sz (A+D szd +¢

=1

Thus (D, p) is an affine function, hence convex on D,, ;. Therefore, p(A+
D) = suppepy, ¥(D, p) is a convex function on D, 4. Hence (6.8.5) holds
for any ¢t € (0,1) and Dy, D3 € Dy, 4.

Suppose that A is irreducible and equality holds in (6.8.5). Since p(A+
bI + D) = b+ p(A + D) for any b > 0, we may assume without loss
of generality that all the diagonal elements of A are positive. Let Ay =
A+tDy+ (1 —t)Ds. Since Ag has a positive diagonal and is irreducible we
deduce that Agu = ru, Al v = rv where r > 0,u,v > 0,w :=vou € II,.
Corollary 6.8.2 yields that

p(Ao) = (D1 + (1 =)Dy, w) = tp(Dy, w) + (1 = £)3(D2, W).
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Hence, equality in (6.8.5) implies that

n

p(A+D1) = (D1, w) = p(Ao) + (1 =) Y _(dvi — doyi),

=1

p(A+ D2) = (Do, w) = p(Ao) + 1Y (doy —di i),

D1 = diag(dm, ey dn,l)a D2 = diag(dLg, e 7dn72).

Furthermore, the infima on x > 0 in the ¥(D;,w) and ¥(Dy,w) are
achieved for x = u. Corollary 6.8.2 that u is the Perron-Frobenius eigen-
vector of A+ D; and A+ Dsy. Hence D1 — Do = al. Clearly, if D1 — Dy = al
then equality holds in (6.8.5). O

Theorem 6.8.4 Let A € R*™ be an inverse of an M-matriz. Then
(6.5.6) p((tDy + (1 - )D3)A) < tp(DyA) + (1 — 1)p(DaA),

fort € (0,1), D1,Dy € Dy, . If A >0 and Dy, Dy have positive diagonal
entries then equality holds if and only if D1 = aDs.

Proof. Let A= B~!, where B=rI —C,C € R}*" and p(C) < r. Use
Neumann expansion to deduce that A = 3" r~0*YU B Hence, A > 0 if
and only if C is irreducible. Assume first that A is positive. Denote by D;, |
the set diagonal matrices with positive diagonal, i.e. the interior of D, ;.
Clearly, DA > 0 for D € D;, ,. Thus, p(DA) > 0 is a simple eigenvalue
of det (Al — DA). Hence p(DA) is an analytic function on Dj, | . Denote
by Vp(DA) € R™ the gradient of p(DA) as a function on D,, 4. Since
p(DA) € C*(Dg_, it follows that convexity of p(DA) on Dy, , is equivalent
to the following inequality.

(65.7)  p(D(d)A) > p(D(dy)A) + Vp(D(d,)4)(d — d,), d,d, > 0.
See Problem 1. We now show (6.8.7). Let
DoAu = p(Do)uvaDoA = p(D0A>VT7 u,v>o,vouécll,, D, = D(d,).

Theorem 6.7.4 implies that Vp(DgA) = p(DyA)vouod,*. Hence, (6.8.7)
is equivalent to

p(D(d)A) > p(DyA)(vou) (dod;?).

Let D(d)Aw = p(D(d)A)w,w > 0. Then the above inequality follows
from the inequality

(6.8.8) p(DoA)™t > (vou) (wo (DyAw) ™).
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This inequality follows from the inf sup characterization of p(DgA)~t. See
Problem 2. The equality case in (6.8.7) follows from the similar arguments
for the equality case in (6.8.6). Since p(DA) is a continuous function on
D,, 4+, the convexity of p(DA) on Dy, | yields the convexity of p(DA) on
Dn7+.

Consider now the case where A~! = rI — B, B € R}*",r > p(B), and
B is reducible. Then there exists b > 0 such that for p(B 4+ b1'1) < 7.
For ¢ € (0,b) let A(e) := (r] — (B+¢117))~*. Then the inequality (6.8.7)
holds if A is replaced by A(e). Let € \, 0 to deduce (6.8.7). O

Problems

1. (a) Let f € C%(a,b). Show that f”(z) > 0 for = € (a,b) if and only
if f(z) > f(xo) + f'(xo)(x — o) for each z,zg € (a,d).

(b) Let D C R™ be an open convex set. Assume that f € C%(D).
Let H(f)(x) = [azzafmj](x) € S(n,R) for x, € D. Show that
H(f)(x) >0forallx € Dif and only if f(x) > f(x0)+Vf(x,) " (x
Zo) for all x,x, € D. (Hint: Restrict f to an interval (u,v) C D
and use part (a) of the problem.)

(a) Let F € RY™™ be an inverse of an M-matrix. Show

1 inf - T
— = in sup Di .
p( ) P=(P1,..spn) T €M, X=(T1,...,Tn)>0 i=1 Z(FX)Z

Hint: Use Corollary 6.8.2.
(b) Let 0 < F € R}*™ be an inverse of an M-matrix. Assume that

Fu=p(F)u,F'v=p(F)v,u,v>0,voucII,.

Show
1 2 Z;
_— = sup Vil 5—-
p( ) x:(a:,,...,wn)>0; (FX)Z
Furthermore, ﬁ = 2?21 Uzuz(;—x) for x > o if and only if
Fx = p(F)x.

(c) Show (6.8.8). Hint: Use Corollary 6.6.4 to show that A~'Dy*!
is an M-matrix.
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3. Let P = [0;(j+1)] € Pn be a cyclic permutation matrix. Show that
p(D(d)P) = ([I}_, d;)= for any d € R".

4. Show that (6.8.7) does not hold for all A € R}*".

5. Let A € R*™ be an inverse of an M-matrix. Show that the convexity
of p(D(e*)A) on R™ is implied by the convexity of p(DA) on D, .
Hint: Use the generalized arithmetic-geometric inequality.

6.9 Application to cellular communication

6.9.1 Introduction

Power control is used in cellular and ad-hoc networks to provide a high
signal-to-noise ratio (SNR) for a reliable connection. A higher SNR also
allows a wireless system that uses link adaptation to transmit at a higher
data rate, thus leading to a greater spectral efficiency. Transmission rate
adaptation by power control is an active research area in communication
networks that can be used for both interference management and utility
maximization [Sri03].

The motivation of the problems studied in this section comes from max-
imizing sum rate, (data throughput), in wireless communications. Due to
the broadcast nature of radio transmission, data rates in a wireless network
are affected by interference. This is particularly true in Code Division Mul-
tiple Access (CDMA) systems, where users transmit at the same time over
the same frequency bands and their spreading codes are not perfectly or-
thogonal. Transmit power control is often used to control signal interference
to maximize the total transmission rates of all users.

6.9.2 Statement of problems

Consider a wireless network, e.g., cellular network, with L logical trans-
mitter/receiver pairs. Transmit powers are denoted as py,...,pr. Let
p = (ps,...,pr)" > 0 be the power transmission vector. In many situ-
ation we will assume that p < p := (py,...,p) ", where p; is the maximal
transmit power of the user [. In the cellular uplink case, all logical re-
ceivers may reside in the same physical receiver, i.e., the base station. Let
G= [gij]ﬁjzl > 0p,x 1, representing the channel gain, where g;; is the chan-
nel gain from the jth transmitter to the ith receiver, and n; is the noise
power for the [th receiver be given. The Signal-to-Interference Ratio (SIR)
for the Ith receiver is denoted by +; = ~;(p). The map p — (p) is given
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by
(6.9.1)

qgupi T

—L — R = (%(p),..., )

7(p) o ¥ Y(P) = ((p) vL(P))

That is, the power p; is amplified by the factor g;;, and diminished by other
users and the noise, inversely proportional to > 21 93D5 +
Define

0, ifi=j
(6.9.2) = [fij]iL,j:17 where fi; = { %’ if i #j
and
(693) g:(gll7"'7gLL)T7 n:(n17"’7nL)T7
s=(s1,...,s1) = M2 i)T.
Y g11 822 gLL
Then
(6.9.4) ¥(p)=po(Fp+s) "
Let
(6.9.5)
L
Dy () := Zwi log(1 +7;), where w = (w, ..., w,)" € II,,~ € ]Rf_.
i=1

The function @y (y(p)) is the sum rate of the interference-limited channel.

We can study the following optimal problems in the power vector p. The
first problem is concerned with finding the optimal power that maximizes
the minimal SIR for all users:

6.9.6 max min y;(p
( ) p€E[0,p] i€(L) (P)

Then second, more interesting problem, is the sum rate maximization
problem in interference-limited channels

(6.9.7) max Py (v(p)).
p€[0,p]

The exact solution to this problem is known to be NP-complete [Luo08].
Note that for a fixed p1,...,pi—1,pi41,...,pr each v;(p),j # [ is a de-
creasing function of p;, while v;(p) is an increasing function of {. Thus, if
w; = 0 we can assume that in the maximal problem (6.9.7) we can choose
pr = 0. Hence, it is enough to study the maximal problem (6.9.7) in the
case w > 0.
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6.9.3 Relaxations of optimal problems

In this subsection, we study several relaxed versions of (6.9.6) and (6.9.7).
We will assume first that we do not have the restriction p < p. Let v(p,n)
be given by (6.9.1). Note that since n > o we obtain

1
~(tp,n) = vy(p, ;n) = v(tp,n) > v(p,n) for ¢t > 1.

Thus, to increase the values of the optimal problems in (6.9.6) and (6.9.7),
we let ¢ — oo, which is equivalent to the assumption in this subsection that
n=_0.

Theorem 6.9.1 Let F € RiXL,L > 2 be a matriz with positive off-
diagonal entries. Let Fu = p(F)u for a unique 0 < u € II;,. Then

1
(6.9.8) max min b = ,

0<pElly le(L) 2521 fip;  PF)

which is achieved only for p = u. In particular, The value of the optimal
problem given in (6.9.6) is less than ﬁ.

Proof. Clearly, the left-hand side of 6.9.8 is equal to (ming<p max;e(z,)
Since F is irreducible, our theorem follows from Problem 11.

Clearly v(p,n) < ~v(p,0). Hence, for p > 0 min;e(zy v(p,n) < minge(z) v(p, 0).
Since p € [0,p] C Ri we deduce that the value of the optimal problem given
in (6.9.6) is less than —'~. O

p(F)

We now consider the relaxation problem of (6.9.7). We approximate

log(1 + ) by logz for « > 0. Clearly, log(1 4+ ) > logz. Let

L
(6.9.9) Uy(y) = Zwi logv;, ~v=(7,-.. L)
j=1

Theorem 6.9.2 Let F' = [f;j] € RiXL have positive off-diagonal ele-
ments and zero diagonal entries. Assume that L > 3, w = (w,,.. ., wr) ' >
0, and suppose that w satisfies the inequalities (6.6.10) for each j € (L),
where n = L. Let D1 = diag(dm, e 7dL71), D2 = diag(dLg, ey dL72)
be two diagonal matrices, with positive diagonal entries, such that B =
D1FDy,B1 =1,B"w = w.(As given by Theorem 6.6.12.) Then

L

(6.9.10) max Uy(p) = ij logd;, dj.
j=1

Equality holds if and only if p =tD;*1 for some t > 0.
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Proof. Let p = D,x. Then

L L

\IIW(DQX) = Z wy log dj71dj,2 — Z Wy

j=1 j=1

(Bx);

Use Theorem 6.6.9 to deduce that the above expression is not more than
the right-hand side of (6.9.10). For x = 1 equality holds. From the proof of
the second part of Theorem 6.6.12 it follows that this minimum is achieved
only for x = t1, which is equivalent to p = tD 1. O

6.9.4 Preliminary results

Claim 6.9.3 Let p > 0 be a nonnegative vector. Assume that v(p) is
defined by (6.9.1). Then p(diag(y(p))F) < 1, where F is defined by (6.9.2).

Hence, for v =~(p),

(6.9.11) p = P(v) := (I — diag(y)F) " diag(y)v.
Vice versa, if v is in the set

(6.9.12) I':={y >0, p(diag(y)F) < 1},

then the vector p defined by (6.9.11) is nonnegative. Furthermore, v(P(p)) =
~. That is, ~ : Ri —-T,and P:T — Rfi are inverse mappings.

Proof. Observe that (6.9.1) is equivalent to the equality
(6.9.13) p = diag(v)Fp + diag(v)v.

Assume first that p is a positive vector, i.e., p > 0. Hence, v(p) > O.
Since all off-diagonal entries of F are positive it follows that the matrix
diag(y)F is irreducible. As v > 0, we deduce that max;c1 (diag(p% <
1. The minmax characterization of Wielandt of p(diag(v)F), [?] implies
p(diag(v)F) < 1. Hence, v(p) € T'. Assume now that p > 0. Note that
pi >0 < ~(p) >0. Sop=0 <= 5(p) = o. Clearly, p(y(0)F) =
plorxr) = 0 < 1. Assume now that p > 0. Let A= {i: p; > o}. Denote
~(p)(A) the vector composed of positive entries of 4(p). Let F(A) be the
principal submatrix of F with rows and columns in A. It is straightforward
to see that p(diag(y(p))F') = p(diag(y(p)(A)F(A)). The arguments above

imply that

p(diag(y(p))F') = p(diag(v(p)(A)F(A)) < 1.
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Assume now that v € I'. Then

o0

(6.9.14) (I - diag(y)F)~" = (diag(v)F)* > 0Lz
k=0

Hence, P(v) > 0. The definition of P(y) implies that v(P(vy)) = ~. O

Claim 6.9.4 The set T C R{; is monotonic with respect to the order
>. Thatis if vy € T and~v > B > 0 then 3 € I'. Furthermore, the function
P(~) is monotone on T'.

(6.9.15) P(y)>P(B)ifyeT and~vy >3 >0.
Equality holds if and only if v = 3.

Proof. Clearly, if v > 3 > 0 then diag(~)F > diag(8)F which implies
p(diag(y)F) > p(diag(8)F). Hence, I' is monotonic. Use the Neumann
expansion (6.9.14) to deduce the monotonicity of P. The equality case is
straightforward. O

Note that 4(p) is not monotonic in p. Indeed, if one increases only
the ith coordinate of p, then one increases the ith coordinate of «(p) and
decreases all other coordinates of v(p).

As usual, let ; = (8;,,...,0;) ", i = 1,..., L be the standard basis in
R, In what follows, we need the following result.

Theorem 6.9.5 Letl € [1, L] be an integer and a > 0. Denote [0, a); x
RiA the set of all p = (p.,...,pr)" € Ri satisfying p; < a. Then the
image of the set [0, a]; x Ri_l by the map v (6.9.1), is given by

(6.9.16) p(diag(~)(F + évelT)) <1,0<H.

Furthermore, p = (py,...,pL) € Ri satisfies the condition p; = a if and
only if v = v(p) satisfies

1
(6.9.17) p(diag(y)(F + aveT)) =1.

Proof. Suppose that ~ satisfies (6.9.16). We claim that v € T". Suppose
first that v > 0. Then diag(y)(F + t1ve] ) < diag(y)(F + t,ve]") for any
t; < t2. Lemma 6.2.4 yields

(Godisg () F) < p(diag(y)(F +tive, ) < p(diag(y)(F + tave] ) <
p(diag(y)(F + ével—r)) <iforo<it, <t,< 2.



334 CHAPTER 6. NONNEGATIVE MATRICES

Thus v € T'. Combine the above argument with the arguments of the proof
of Claim 6.9.3 to deduce that v € T" for v > 0.

We now show that P(v); < a. The continuity of P implies that it is
enough to consider the case v > 0. Combine the Perron-Frobenius theorem
with (6.9.18) to deduce

(6.9.19) 0 < det (I — diag(y)(F +tve])) for t € [0,a™").

We now expand the right-hand side of the above inequality. Let B = xy | €
RELXL be a rank one matrix. Then B has L — 1 zero eigenvalues and one
eigenvalue equal to y'x. Hence, ] — xy ' has L — 1 eigenvalues equal to
1 and one eigenvalue is (1 —y x) Therefore, det (I —xy ') =1 —y'x.
Since v € T we get that (I — diag(+)F) is invertible. Thus, for any ¢t € R

det (I — diag(y)(F +tve})) =
(6.9.20) det (I — diag(v)F)det (I —t((I — diag(y)F)~! diag(v)v)e;)
det (I — diag(y)F)(1 — te; (I — diag(y)F)~* diag(y)v).

Combine (6.9.19) with the above identity to deduce
(6.9.21) 1> te] (I — diag(y)F) * diag(y)v = tP(y); for t € [o,a™").

Letting t /" a~!, we deduce that P(v); < a. Hence, the set of v defined by
(6.9.16) is a subset of ¥([0, a]; x Ri_l).

Let p € [o0,qa]; X Rffl and denote v = v(p). We show that ~ satisfies
(6.9.16). Claim 6.9.3 implies that p(diag(y)F) < 1. Since p = P(%)
and p; < a we deduce (6.9.21). Use (6.9.20) to deduce (6.9.19). As
p(diag(v)F) < 1, the inequality (6.9.19) implies that p(diag(y)F+tv'e;) <
1 for t € (0,a™ ). Hence, (6.9.16) holds.

It is left to show the condition (6.9.17) holds if and only if P(y); = a.
Assume that p = (p,,...,pr)" € RE, p; = a and let v = v(p). We claim
that equality holds in (6.9.16). Assume to the contrary that p(diag( )(F +
Lve[)) < 1. Then, there exists 3 > v such that p(diag(8)(F++1ve;)) < 1.
Since P is monotonic P(83); > p; = a. On the other hand, since 3 satisfies
(6.9.16), we deduce that P(8); < a. This contradiction yields (6.9.17).
Similarly, if v > 0 and (6.9.17) then P(vy); = a. O

Corollary 6.9.6 Let p = (p1,...,p1) > 0 be a given positive vector.
Then v([0, D)), the image of the set [0, D] by the map v (6.9.1), is given by

1
(6.9.22) p <diag( ) <F+ —ve, )> <1, forl=1,...,L, and v € R..
| &)
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In particular, any v € Rﬁ satisfying the conditions (6.9.22) satisfies the
inequalities

(6.9.23) v <A =G, )", where 5 = %, i=1,...,L.
l

Proof. Theorem 6.9.5 yields that ([0, p]) is given by (6.9.22). (6.9.4)
yields
b b

Yz _
=+t <8<l frpelo,p
Y(p) (Foy o) S o S P [0, p]

Note that equality holds for p = p;e;. O

6.9.5 Reformulation of optimal problems

Theorem 6.9.7 The maximum problem (6.9.7) is equivalent to the
maximum problem.

mazimize Yy, w;log(1+ ;)
(6.9.24) subject to  p(diag(y)(F + (1/p;)ve] ) <1 V1€ (L),
variables: ~y;, V.

~* is a maximal solution of the above problem if and only if P(v*) is a

maximal solution p* of the problem (6.9.7). In particular, any maximal
solution v* satisfies the equality (6.9.22) for some integerl € [1, L].

We now give the following simple necessary conditions for a maximal
solution p* of (6.9.7). We first need the following result, which is obtained
by straightforward differentiation.

Lemma 6.9.8 Denote by

.
w1 wr, _
vq)W = IR =wo (l+ E
) (1+’Yl 1+7L> (1+7)
the gradient of ®y. Let v(p) be defined as in (6.9.1). Then H(p) =
[g;ﬂiL:j:U the Hessian matriz of v(p), is given by
J

H(p) = diag((F'p +v) ") (— diag(v(p)) F + I).

In particular,
Vp@w(v(p)) = H(p) " VOyu (7(p)).
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Corollary 6.9.9 Let p* = (p*,...,p%)" be a maximal solution to the
problem (6.9.7). Divide the set (L) = {1,...,L} to the following three
disjoint sets Smax, Sin, S0

Smax = {1 S <L>; PT = ﬁi}, Sin = {1 S <L>7 pf S (Oapi)}7 SO = {1 S <L>7 pf = O}
Then the following conditions hold.

(H(p*) " VO (v(p*)))i = 0 for i € Smax;
(6.9.25) (H(p*) " V& (v(p*)))i = 0 for i € Sin,
(H(p*) "Vow(v(p*))): < 0 forie Sy

Proof. Assume that p; = p;. Then %@w(v(p))(p*) > 0. Assume
that 0 < pf < p;. Then %@w('y(p))(p*) = 0. Assume that pf = 0. Then

35 2w (7(P)) (") < 0. O

We now show that the maximum problem (6.9.24) can be restated as
the maximum problem of convex function on a closed unbounded domain.
For v = (v1,..-,72)" > 0 let 4 = log~, i.e. v = €7. Recall that for a
nonnegative irreducible matrix B € REY*" log p(e*B) is a convex function,
Theorem 6.7.4. Furthermore, log(1+¢') is a strict convex function in ¢ € R.
Hence, the maximum problem (6.9.24) is equivalent to the problem

maximize }; w; log(1 + en)
(6.9.26)  subject to log p(diag(e¥)(F + (1/p1)ve] )) <0 V1e (L),
variables: & = (31,...,7,.)" € RE.

The unboundedness of the convex set in (6.9.26) is due to the identity
0=e".

Theorem 6.9.10 Let w > 0 be a probability vector. Consider the maz-
imum problem (6.9.7). Then any point 0 < p* < p satisfying the conditions
(6.9.25) is a local mazimum.

Proof. Since w > 0, ®y,(e7) is a strict convex function in 4 € RE.
Hence, the maximum of (6.9.26) is achieved exactly on the extreme points
of the closed unbounded set specified in (6.9.26). (It may happen that some
coordinate of the extreme point are —o0c.) Translating this observation to
the maximal problem (6.9.7), we deduce the theorem. O

We now give simple lower and upper bounds on the value of (6.9.7).
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Lemma 6.9.11 Consider the mazimal problem (6.9.7). Let By = (F +
(1/pi)ve; ) forl=1,...,L. Denote R = maxye(r) p(B). Let ¥ be defined
by (6.9.23). Then

Pw((1/R)1) < max Py (y(p) < Pw(Y)-
p€[0,p]

Proof. By Corollary 6.9.6, v(p) < 7 for p € [0,p]. Hence, the upper
bounds holds. Clearly, for v = (1/R)1, we have that p(diag(v)B;) < 1
for [ € (L). Then, from Theorem 6.9.7, @y ((1/R)1) yields the lower
bound. Equality is achieved in the lower bound when p* = tx(B;), where
i = argmaxe () p(Bi), for some ¢ > 0. O

We now show that the substitution 0 < p = e9, ie. p = e?,]l =
1,..., L, can be used to find an efficient algorithm to solve the optimal
problem (6.9.6). As in §6.9.3 we can consider the inverse of the maxmin
problem of (6.9.6). It is equivalent to the problem
(6.9.27)

L

min = max sje” & ediTa q= (logp,,...,logpr)".
ngg(q)a g(q) lE(L}§ l +jz::1fl] ) q ( g D1, ) gpL)

Note that s;e” % + Zle fije¥~% is a convex function. Fact 6.7.2.5a im-
plies that g(q) is a convex function. We have quite a good software and
mathematical theory to find fast the minimum of a convex function in a
convex set as q < q, i.e. [NoW99].

6.9.6 Algorithms for sum rate maximization

In this section, we outline three algorithms for finding and estimating the
maximal sum rates. As above we assume that w > 0. Theorem 6.9.10
gives rise to the following algorithm, which is the gradient algorithm in the
variable p in the compact polyhedron [0, p].

Algorithm 6.9.12

1. Choose p, € [0, D]:
(a) FEither at random;
(b) or po =P

2. Giwvenpr = (prks---»PLk) € [0,p] fork >0, computea = (a,,...,ar,

Vo®w(v(Pr)). If a satisfies the conditions (6.9.25) for p* = py, then
P is the output. Otherwise let b = (b,,...,br)" be defined as fol-
lows.
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(a) b =0 if pir, =0 and a; < 0;
(b) b; =0 ifpi,k =p; and a; > 0;
(¢) bi=a; if 0 < p; < pi.

Then Pr+. = Pk + txb, where ty, > 0 satisfies the conditions pr4+, €
[0,p] and Ow (v(pPk + tibr)) increases on the interval [0,ty].

The problem with the gradient method, and its variations as a conjugate
gradient method is that it is hard to choose the optimal value of ¢j in each
step, e.g. [Avr03]. We now use the reformulation of the maximal problem
given by (6.9.26). Since w > 0, the function ®y(e7) is strictly convex.
Thus, the maximum is achieved only on the boundary of the convex set

(6.9.28) DUF}) = {3 € BY, log p(ding(e7)(F + (1/p)ve] ) <0, V1}.

If one wants to use numerical methods and software for finding the
maximum value of convex functions on bounded closed convex sets , e.g.,
[NoW99], then one needs to consider the maximization problem (6.9.26)
with additional constraints:

(6.9.29) D({F}.K) = (¥ € DUF}), 7> —K1}.

for a suitable K > 1. Note that the above closed set is compact and convex.
The following lemma gives the description of the set D({F}, K).

Lemma 6.9.13 Let p > 0 be given and let R be defined as in Lemma
6.9.11. Assume that K >1logR. Let p = P(e *1) = (51— F)~*v. Then

D({F}, K) € logv([p, p))-

Proof. From the definition of K, we have that eX > R. Hence,
ple™®B)) < 1forl =1,...,L. Thus —K1 € D({F}). Let v = e 1.
Assume that 4 € D({F}, K). Then 4 > —K1. Hence, v = ¥ > ~. Since
p(diag(y)F) < 1, Claim 6.9.4 yields that p = P(y) > P(y) = p, where
P is defined by (6.9.11). The inequality P(vy) < p follows from Corollary

6.9.6. 3

Thus, we can apply the numerical methods to find the maximum of the
strictly convex function @ (e¥) on the closed bounded set D({F}, K), e.g.
[NoW99]. In particular, we can use the gradient method. It takes the given
boundary point 4, to another boundary point of 4, ,, € D({F}, K), in
the direction induced by the gradient of @, (e7). However, the complicated
boundary of D({F'}, K) will make any algorithm expensive.

Furthermore, even though the constraint set in (6.9.24) can be trans-
formed into a strict convex set, it is in general difficult to determine precisely
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the spectral radius of a given matrix [Var63]. To make the problem simpler
and to enable fast algorithms, we approximate the convex set D({F'}, K) by
a bigger polyhedral convex sets as follows. Choose a finite number of points
¢1s---,¢ on the boundary of D({F'}), which preferably lie in D({F'}, K).
Let

Hi(€),...,Hn(€),& € RL be the N supporting hyperplanes of D({F}.
(Note that we can have more than one supporting hyperplane at ¢;, and
at most L supporting hyperplanes.) So each & € D({F}, K) satisfies the
inequality H;(§) <O0for j =1,...,N. Let 4 be defined by (6.9.23). Define
(6.9.30)

D(Cys s Ca, K) ={€ R, —K1 <€ <log7, Hj(¢) <oforj=1,...,N}.

Hence, D({q,...,¢, K) is a polytope which contains D({F'}, K'). Thus

(6.9.31) max Dy (e7) >
YED(Cy 58, K)
(6.9.32) max Dy (7).
YeD({F},K)

Since ®, () is strictly convex, the maximum in (6.9.31) is achieved only

at the extreme points of D(¢y,...,{ s, K). The maximal solution can be
found using a variant of a simplex algorithm [?]. More precisely, one starts
at some extreme point of & € D((y, ..., K). Replace the strictly convex

function @y (e7) by its first order Taylor expansion Ve at €. Then we find
another extreme point n of D({y,..., (s, K), such that We(n) > ¥e(§) =
@ (€%). Then we replace @y (e7) by its first order Taylor expansion ¥, at
7 and continue the algorithm. Our second proposed algorithm for finding
an optimal 4* that maximizes (6.9.31) is given as follows.

Algorithm 6.9.14
1. Choose an arbitrarily extreme point & € D(q,---,C s K).

2. Let e, (£) = By (ebr) + (wo (1 4 ef) 1 o ef) (€ — £&,). Solve
the linear program maxg We (&) subject to & € D(y, ..., Cyr, K) us-
ing the simplex algorithm in [?] by finding an extreme point &, of
D(Cys- -+ €y K), such that g, (€41) > We, (€),) = Pw(ese).

3. Compute py, = P(ef++). If py € [0, D], compute a = (a,,...,ar)
Vo®w(v(Pr)). If a satisfies the conditions (6.9.25) for p* = py, then
Py is the output. Otherwise, go to Step 2 using Ve, (§).

T_

Asin §6.9.3, it would be useful to consider the following related maximal
problem:

6.9.33 max w'A.
( ) :YED(<17'“7<MaK) ’Y
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This problem given by (6.9.33) is a standard linear program, which can
be solved in polynomial time by the classical ellipsoid algorithm [?]. Our
third proposed algorithm for finding an optimal 4* that maximizes (6.9.33)
is given as follows. Then p* = P(e7").

Algorithm 6.9.15

1. Solve the linear program maxy w ' subject to 5 € D(¢q,. .., ¢ K)
using the ellipsoid algorithm in [?].

2. Compute p = P(eY). If p € [0,D], then p is the output. Otherwise,
project p onto [0, p].

We note that 4 € D({4, ...,y K) in Algorithm 6.9.15 can be replaced
by the set of supporting hyperplane D(F,K) = {¥ € p(diag(e7)F) <
1, 4 > =K1} or, if L > 3 and w satisfies the conditions (6.6.10),
D(F,K) = {7 € p(diag(eV)F) < 1, 4 > —K1} based on the relaxed
maximal problems in Section 4. Then Theorem 6.9.2 quantify the closed-
form solution 4 computed by Algorithm 6.9.15.

We conclude this section by showing how to compute the supporting hy-
perplanes H;,j = 1,..., N, which define D({,..., ¢, K). To do that, we
give a characterization of supporting hyperlanes of D({F'}) at a boundary
point ¢ € OD({F}).

Theorem 6.9.16 Let p = (p1,...pr)" > 0 be given. Consider the
convex set (6.9.28). Let ¢ be a boundary point of OD({F}). Then { =
logv(p), where 0 < p = (py,...,pr)" < p. The set B:={l € (L), p =
P} is nonempty. For each By = (F+(1/p;)ve])) let Hi(¢) be the supporting
hyperplane of diag(e*)B; at €, defined as in Theorem 6.7.4. Then H; <0,
for 1l € B, are the supporting hyperplanes of D({F}) at ¢.

Proof. Let p = P(ef). Theorem 6.9.5 implies the set B is nonempty.
Furthermore, p(e¢B;) = 1 if and only if p; = p;. Hence, ( lies exactly at
the intersection of the hypersurfaces log p(e¢ B;) = 0,1 € B. Theorem 6.7.4
implies that the supporting hyperplanes of D({F}) at ¢ are H;(¢) < 0 for
leB. O

We now show how to choose the boundary points ¢y, ...,¢{, € 0D({F})
and to compute the supporting hyperplanes of D({F}) at each (;. Let
p = P(e7®1) = (ps,...,pr)" be defined as in Lemma 6.9.13. Choose

M; > 2 equidistant points in each interval [Bi’ Di)-

Jip, + (M; — ji)p
(6.9.34)  pj,, 07

iforji:L...,Mi, andi=1,...,L.
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Let
P = {pjl ..... jL = (pjl,lv"'aij,L)Tﬂ min(p, —Pj,a5---5 DL —PjL,L) = O}~
That is, pj,,...;, € P if and only p;, .., £ P. Then

{Cise- s €t =log¥(P).

The supporting hyperplanes of D({F}) at each ¢, are given by Theorem
6.9.16.
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Chapter 7

Convexity

7.1 Convex sets

In this chapter all vector spaces are finite dimensional.

Definition 7.1.1 Let V be a finite dimensional vector space over F =
R, C.

1. Forx,y € V denote

x,y]:={z: z=ax+ (1 —a)yforalla < [o,1]},
(x,y):={z: z=oax+(1—a)yforalac(o,1)}.

[x,¥], (X,¥) are called closed and open intervals respectively, with the
end point X,y .

2. For a nonempty S C V denote convS = Uxyes[X,y], called the
convex hull of S. (conv() =10.)

3. A set C C 'V is called convex if for each x,y € V [x,y] C C. (0 is
convet. )

4. Assume that C C 'V is a convex set and let x € C. Denote by C—x the
set{z: z=y—x,y € C}. Let U = span 3 (C —x), i.e. the set of all
linear combinations of elements of C' — x with real coefficients. Then
U is a finite dimensional real space. The dimension of C, denoted by
dim C, is the dimension of the vector space U. (dim @) = —1.) C —x
has interior as a subset of U, which is called the relative interior and
denoted by ri (C — x). Then the relative interior of C is defined as
ri C equal tori (C — x) + x.

343
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5. A point x in a convex set C' is called an extreme point if there are no
two points y,z € C\{x} such that x € [y,z]. Denote by E(C) the set
of the extreme points of the convex set C.

6. Let C be a convex set and E(C) the set of its extreme points. Fork dis-
tinct extreme points X, , . ..,xy, € E(C) the convex set conv{x,, ..., Xy}
is called the k-face of C if the following property holds. Let x,y €
C and assume that (x,y) N conv{xX,,...,xx} # 0. Then [x,y] C
conv{x,,...,Xg}.

7. Let C be a convex set in a finite dimensional vector space V. For
f € V" and x € V denote

HO(fv X) = {y € Vv §Rf(y) = %f(x)}v
H+ (f’ X) = {y € Vv %f(Y) §Rf(X)}v

>
H_(f,x) :={y €V, Rf(y) < Rf(x)}.

Ho(f,x) is called the (real) hyperplane, Hy (f,x),H_(f,x) are called
the upper and the lower half spaces respectively, or simply the half
spaces.

It is straightforward to show that dim C, ri C' do not depend on the
choice of x € C. Furthermore ri C' is convex. See Problem 3 or [Roc70].

Assume that V is a complex finite dimensional subspace, of dimension
n. Then V can be viewed as a real vector space Vg of dimension 2n. A
convex set C' C V is a convex set Cr C Vg. However, as we see later,
sometimes it is natural to consider convex sets as subsets of complex vector
space V, rather then subsets of V.

Clearly, Ho(f,x),H;(f,x),H_(f,x) are convex sets. Note also that
H_(f,x) = Hy (—f,x).

Definition 7.1.2 An intersection of a finite number of half spaces
N Hy (£, x;) is called a polyhedron. A nonempty compact polyhedron is
called polytope.

Clearly, a polyhedron is a closed convex set. Given a polyhedron C,
it is a natural problem to find if this polyhedron is empty or not empty.
The complexity of finding out if this polyhedron is empty or not depends
polynomially on: the dimension of V, and the complexity of all the half
spaces in the characterizing C. This is not a trivial fact, which is obtained
using an ellipsoid method. See [Kha79, Kar84, Lov86].

It is well known that any polytope has a finite number of extreme points,
and is equal to the convex hull of its extreme points [Roc70, p’12]. The
following result is a generalization of this fact [Roc70, Part IV,§17-18].
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Theorem 7.1.3 Let C' be a compact conver set in a finite dimensional
vector space V of dimension d. Then £ = E(C) is nonempty set and
C = conv €. Furthermore for each x € C' there exists at most d+ 1 extreme
points Xy, ..., Xy € £,k < d+ 1, such that x € conv{x,,...,Xx}.

In general it is a difficult problem to find explicitly all the extreme
points of the given compact convex set, or even of a given polyhedron. The
following example is a classic in matrix theory.

Theorem 7.1.4 Let H,, 11 C C**" be the convex set of nonnegative
definite hermitian matrices with trace 1. Then

(7.1.1) EM,,41) = {xx", x € C",x"x = 1},
EM,+1NS(n,R)) ={xx", x e R",x"x=1}.

Each matriz in H, 1 or Hy 41 N S(n,R) is a convex combination of at
most n extreme points.

Proof. Let A = xx*,x € C",x*x = 1. Clearly A € H,, 1. Suppose
that A = aB + (1 — a)C for some B,C € H,, 41 and a € (0,1). Hence
A = aB = 0. Since y*Ay > ay*By > o it follows that y*By = o for
y*x = 0. Hence By = 0 for y*x = 0. Thus B is a rank one nonnegative
definite matrix of the form ¢xx* where t > 0. Since tr B = 1 we deduce
that t =1 and B = A. Similarly C = A. Hence A is an extremal point.

Let F € H, +,1. Then the spectral decomposition of F' yields that
F = Z?:l Aix;X;, where xix; = 05,1, = 1,...,n. Furthermore, since F’
is nonnegative definite of trace 1, \1,..., \,, the eigenvalues of F', are non-
negative and sum to 1. So F € conv{x,x¥,...,x,x%}. Similar arguments
apply to nonnegative real symmetric matrices of rank 1. O

Definition 7.1.5 Let C1,Cy C V, where V is a finite dimensional
vector space over F. C1,C5 are called hyperplane separated if there exists
f e V* and x € V such that C1 C Hy(f,x),C, € H_(f,x). Ho(f,x) is
called the separating (real) hyperplane. Ho(f,x) is said to separate C7 and
Cy properly if Ho(f,x) separates C1 and Cy and Hy(f,x) does contain Cy
and Cs.

The following result is well known [Roc70, Theorems 11.3].

Theorem 7.1.6 Let Cy,Cs be nonempty convez sets in a finite dimen-
sional vector space V. Then there exists a hyperplane separating Ci and
Cy properly if and only ri C1 Nri Cy = ().
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Corollary 7.1.7 Let C; be a compact convez set in a finite dimensional
vector space V over F = R,C. Assume that Cy contains more than one
point. Let x be a an extreme point of C. Then there exists a hyperplane
which supports properly C1 at x. ILe., there exists 0 # f € V*, such that
Rf(x) <Rf(y) for each'y € C. Furthermore, there exists y € C such that

Rf(x) <Rf(y)-

Proof. Let Cy = {x}. So C3 is a convex set. Problem 4 yields that
ri C1 N1i Cy = 0. Use Theorem 7.1.4 to deduce the Corollary. O

Definition 7.1.8 A point x of a convex set C in a finite dimensional
vector space V is called exposed, if there there exist a linear functional
f € V* such that Rf(x) > Rf(y) for any y € C\{x}.

Clearly, an exposed point of C is an extreme point, (Problem 5). There
exist compact convex sets with extreme points which are not exposed. See
Problem 6. In what follows we need Straszewiz [Str35].

Theorem 7.1.9 . Let C be a closed convex set. Then the set of exposed
points of C is a dense subset of extreme points of C. Thus every extreme
point is the limit of some sequence of exposed points.

Corollary 7.1.10 Let C be a closed convex set. Let x € C be an iso-
lated extreme point. (Le. there is a neighborhood of x, where x is the only
extreme point of C.) Then X is an exposed point.

Problems

1. Show

(a) For any nonempty subset S of a finite dimensional vector space
V over F, conv S is a convex set.

(b) Furthermore, if S is compact, then conv S is compact and £(C) C
C.

2. Let C be a convex set in a finite dimensional subspace, with the set
of extreme points £(C). Let By C £(C) and C; = conv F;y. Show
that S(Cl) = El.
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. Let V be a finite dimensional space and C' C 'V a nonempty convex

set. Let x € C. Show
a. The subspace U := span (C — x) does not depend on x € C.

b. C' —x has a nonempty convex interior in U

. Let C be a convex set in a finite dimensional vector space V. Assume

that C contains at least two distinct points. Show
(a) Show that dim C' > 1.
(b) Show that ri C N &(C) = 0.

Let x € C be an exposed point. Show that x is an extreme point of

C.

Consider the convex set C € R?, which is a union of the three convex
sets:

Cy = {(X7Y)T7 |X| <1 |Y| < 1}? Co = {(X’ Y)T7 (X - 1)2 +y2 < 1}’
Cs={(xy) x+1)?+y* <1}

Show that C has exactly 4 extreme points (£1,41)" which are not
exposed points.

7.2 Doubly stochastic matrices

Definition 7.2.1 A € R*" is called doubly stochastic matriz if the

sum of each row and column of A is equal to 1. Denote by 0, C R*™ the
set of doubly stochastic matrices. Denote by %Jn the n xn doubly stochastic
matriz whose all entries are equal to %, i.e. J, € Rixn is the matriz whose
each entry is 1.

Definition 7.2.2 P € R} " is called a permutation matriz if each row

and column of P a contains exactly one nonzero element which is equal to
1. Denote by Py, the set of n x n permutation matrices.

Lemma 7.2.3 The following properties hold.

1. A e R is double stochastic if and only if A1 = AT1 =1, where

1=(1,...,1)7 €R".

2. O = {1}.

3. AABeQ,=tA+ (1 —-t)B €, for each t € [0,1].
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4. A, BeQ, = AB € Q,.
5. P, CQ,.

6. Pp is a group with respect to the multiplication of matrices, with I,
the identity and P~ = PT.

7. AeQ, BEQ, > ADBE Qin.
See Problem 1.

Theorem 7.2.4 The set §2, is a polytope of dimension (n—1)?, whose
extreme points is the set of permutation matrices P,,.

Proof. Clearly, €2, is a nonempty compact convex set in R"*™. Q,, is
a polytope since it is intersection of 4n + n? half spaces

(7.2.1) Zn:zkj > l,i—$kj > —l,ixjk > 172": —zjk = —1,
k=1 k=1 k=1 k=1

z; 20, i=1,...,n, j=1,...,n,

where X = [z;]7;_;.
Let Qp0 = Q — {%Jn}, ie. 0 is the set of all matrices of the form
A— %Jn, where A € Q,,. Denote

(7.2.2) X, ={XecR™™ X1=X"1=0}.

Clearly X, is a subspace of R"*™, which contains €, . Let @ € R™*"
be an orthogonal matrix whose first column is the Vectorﬁl. We claim

that X € &, if and only if QT XQ = [0] ® Y for some Y € R(»~1x(n=1),
Indeed, observe that Z = [0] @ Y if and only if Ze, = Z e, = 0, where
e, = (1,0,...,0)7 € R™. Clearly, Qe, = ﬁL hence QTXQ = [0] @Y
if and only if X1 = XT1 = 0. So &, = Q([0] @ R®»=Dx(=1)QT hence
dim &,, = dim R(*=Dx(=1) — (5, — 1)2,

Let

(7.2.3) B(0,7) = {X e R™" tr X' X <r?}

be the closed ball of radius r in Frobenius, i.e. Euclidean norm, in R"*™
centered in the origin. We claim that B(0,1) N X, C Q0. Indeed, let
X = [zy]i-;—1 € B(0,2) N X,. Then |z;;| < L and X1 = X1 = 0.

LetA:X+%Jn. So X >0and A1 = AT1 =1 and A € Q,,. Hence
dim Q,, = (n — 1)%
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We next observer that any permutation matrix P = [p;;] € P, is an
extreme point of Q,. Indeed, assume that P = tA 4+ (1 — ¢)B for some
A= [aij],B = [bU] S Qn and t € (0, 1) Hence, Qi = bU =0if Dij = 0. So
A and B have at most one nonzero element in each row i. As A, B € Q,
it follows that a;; = b;; = pi; if p;; = 1. Thus A= B = P and P is an
extremal point.

It is left to show that £(2,) = P,,. This is equivalent to the statement
that A € R*™ is doubly stochastic if and only

(7.2.4) A= Z apP for some ap >0, P € P,, Z ap = 1.
PcP, PeP,

We now show by induction on n that any A € Q,, is of the form (7.2.4). For
n = 1 the result trivially holds. Assume that the result holds for n = m —1
and assume that n = m. Let A = (a;;) € Q,. Denote by [(A) be the
number of nonzero entries of A. Since each row sum of A is 1 it follows
that [(A) > n. Suppose first [(A) < 2n — 1. Then there exists a row 4 of
A which has exactly one nonzero element, which must be 1. Hence there
exists 4,j € (n) such that a;; = 1. Then all other elements of A on the
row ¢ and column j are zero. Denote by A;; € R(f*l)x(nfl) the matrix
obtained from A by deleting the row and column j. Clearly A;; € €,_;.
Use the induction hypothesis on A;; to deduce (7.2.4), where ap = 0 if the
entry (¢,7) of P is not 1.

We now show by induction on [(A) > 2n — 1 that A is of the form
(7.2.4). Suppose that any A € Q, such that {(A) <1 —1,] > 2n is of
the form (7.2.4). Assume that I(A) = [. Let S C (n) x (n) be the set
of all indices (4,j) € (n) x (n) where a;; > 0. Note #S = I(4) > 2n.
Consider the following system of equations in n? variables, which are the
entries X = (z;5); ;2 € R™*™

n n
E Ti5 = E :cjl-:O, Z:].,,TL
Jj=1 Jj=1

Since the sum of all rows of X is equal to the sum of all columns of X
we deduce that the above system has at most 2n — 1 linear independent
equations. Assume furthermore the conditions x;; = 0 for (¢, j) ¢ S. Since
we have at least 2n variables it follows that there exist X # 0,,x,, satisfying
the above conditions. Note that X has zero entry in the places where A
has zero entry. Furthermore, X has at least one positive and one negative
entry. Therefore the exists b,c > 0 such that A — bX, A + ¢X € Q, and
I(A-bX),l(A+cX) <l SoA—bX,A+ cX are of the form (7.2.4). As

A= (A-bX)+ ﬁ(AqLcX) we deduce that A is of the form (7.2.4). O
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Definition 7.2.5 Let
RY = {x = (2., ...,xn)T ER™: =z, >x,>...>ap}

For x = (z,,..,2,)T € R let X = (Z1,...,2,)] € RY  be the unique
rearrangement of the coordinates of x in a decreasing order. That is there
exists a permutation w on {1,...,n} such that Ty = T, i =1,...,n.

Let x = (24, ...,)T,y = Y1,y yn)? € R™. Then x is weakly ma-
jorized by y (y weakly majorizes x), which is denoted by x <y, if

k k
(7.2.5) dm<d g, k=1,..n
i=1 i=1
x is majorized by y (y majorizes x), which is denoted by x <y, if x <y
and 327 i =300 Yi
Theorem 7.2.6 . Fory € R" let
(7.2.6) M(y) ={xeR", x <y}

Then M(y) is a polyhedron whose extreme points are Py for all P € P,
In particular, x <y if and only if there exists A € Q,, such that x = Ay.

Proof. Observe first that x = (z,,...,2,)" <y = (Y1,...,yn) ' is
equivalent to the following conditions

(7.2.7) En:z = iyi =1,
=1 i=1

k k
(7.2.8) Z(Px)i < Zgi, k=1,...,n—1, for each P € P,.
i=1 =1

Clearly, M(y) is a closed convex set. Also x; <y fori=1,...,n. Hence
n n
T =Y+ Z (yj — ;) =2 —(n =i +Zyj-
=1 =1

Thus M(y) is a compact convex set containing Qy for all @ € P,. Hence
M(y) is a polytope.
Clearly

(7.2.9) PM(Qy) = M(y) for each P,Q € P,
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Assume that x is an extremal point of M(x). Then the above equality
implies that Px is also an extreme point of M(x) for each P € P,. Let
Px =Xx,Qy =y for some P,Q € P,. We claim that X = y. Without loss
of generality we consider the case that x = X,y = y. We prove this claim
by induction on n. For n = 1 this claim is trivial. Assume that this claim
holds for any m < n — 1.

Let m = n. Assume to the contrary that x # y. Suppose first that for
some 1 < k <n — 1 we have the equality Zle x; = Zle yi. Let

Xl = ('/Ely' "7xk7)Tayl = (ylv'-'ayk)T E Rka
X2 = ($k+17~-~>$n)T7Y2 = (yk+17"'7yn)T € Rn_k'

Then x; < y,,X, < ¥,. Use the induction hypothesis that x; = y;,7 = 1, 2.
Hence x = y contrary to our assumption.

It is left to consider the case where strict inequalities hold in (7.2.5) for
k=1,...,n—1. In particular y; > y, and y1 > z1,2, > Yn. Assume
first that z; .= @p. Then x = > . 4Py and X can not be an
extremal point in M(y) contrary to our assumption. Hence, there exists
and integer k € [1,n — 1] such that 1 = ... =z} > x;11. For t € R define

x(t) = (x,(t),...,z,(t)) T, where

k
xi(t)=wz;+tfori=1,...,k, ri(t):xi—iktfori:k:—&—l,...,n.

It is straightforward to see that there exists € > 0 such that for each
t € e, —¢] x(t) € RU N M(y). As x = 1x(¢) + ix(—¢) we deduce that x
is not an extremal point, contrary to our assumption. Hence E(M(y)) =
Upep, Py.

Let x € M(y). Then

(7.2.10) x= Y ap(Py)=(>_ apP)y,

PP, PcP,
where ap > 0, P € P, Z ap = 1.
PcP,

Hence x = Ay for a corresponding A € €,,. Vice versa, any A € ,, is a
convex combination of the permutation matrices. Therefore Ax € M(y)
for any doubly stochastic matrix. O

Problems

1. Prove Lemma 7.2.3.
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2. Let x,y € R". Show that x <y <— -y < —x.

3. Let m,n € N. Denote by Q, ,, C R"*™ the set of stochastic matrices,
i.e. each row is a probability vector, such each column has sum “*.

Assume that m # n. Show

(a) Qy, p is a polytope.
(b) dim Q. = (m —1)(n —1).

(c) Each extreme point of €2,, ,, at most m+n—1 nonzero elements.

4. Let x = (2,,...,2,) € R™. Recall that one needs O(nlogn) swaps
to obtain the coordinates of X. Deduce that for a given x,y € R"
one needs O(nlogn) swaps and 2n? additions of entries of x and y to
determine if x is or is not in the set M(y).

7.3 Convex functions

Definition 7.3.1 Let C be a convez set in a finite dimensional subspace
V over F =R, C. A function ¢ : C — R is called convex if for any x,y € C
and t € [0, 1]

(7.3.1) p(tx+ (1 = 1)y) < tp(x) + (1 = t)(y).

¢ 1is called strictly convex on C if for any x,y € C,x #y and t € (0,1)
strict inequality holds in (7.8.1). A function i : C' — R is called concave or
strictly concave if the function —i is convex or strictly convex respectively.

We remark that in [Roc70] a convex function on ¢ on a convex set is
allowed to have the values +00. To avoid the complications, we restrict our
attention to convex function with finite values. The following result is well
known [Roc70, Theorem 10.1]

Theorem 7.3.2 Let C be a convex set in a finite dimensional subspace
V over F =R, C. Assume that ¢ : C' — R is convex. The ¢ : riC' — R is
continuous.

For any set T € V we let C1T be the closure of T in the standard topology
in V (which is identified with the standard topology of R4m =V,

Proposition 7.3.3 Let C C V be convexr. Then CIC is convex. As-
sume that 1i C' is an open set in V and f € C°(C1C). Then f is convex in
C1C if and only if f is convex in C.

See Problem 3.
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Theorem 7.3.4 Let C' be a compact conver set in a finite dimensional
subspace V over F =R, C. Assume that ¢ : C — R is continuous. Then

(7.3.2) max ¢(x) = e o(y).

Assume in addition that ¢ is strictly convex. If ¢ achieves its mazimum at
X*, then xX* is an extreme point of ¢.

Proof. Assume that maxyxec ¢(x) = ¢(x*). Suppose first that x* is
an extreme point of C. Then (7.3.2) trivially holds. Assume now that x*
is not an extreme point of C. Theorem 7.1.3 yields that x* = >""" a;x;,
where a; € (0,1),x; € £(C),i = 1,...,m and m > 2. The convexity of ¢
and 7.3.8 yield that

d(x*) < ia@(xﬂ < max (xi) = ¢(x;) for some j € (m).

Since ¢ achieves its maximum at x* we deduce that ¢(x*) = ¢(x;). Hence
(7.3.2) holds.

Suppose now that ¢ is strictly convex. Then Problem 1b implies that
strict inequality holds in the above inequality. Hence ¢(x*) < ¢(x;), which
contradicts the maximality x*. O

Theorem 7.3.5 Let x = (z1,....2,) , ¥y = (Y1, ., yn) | € R™ and as-
sume that x <y. Let ¢ : [Jn,71] — R be a convex function. Then

(7.3.3) Do) <Y oy

i=1 i=1
If ¢ is strictly convex on [yn,y1] and Px # 'y for all P € P, then strict

inequality holds in the above inequality.

Proof. Define ¢ : M(y) — R by the equality ) ((z1,...,2,)) = Y1y ¢(xi).
Since for any (x1,...,7,)" € M(y) x; € [Un,71] it follows that 1 is
well defined on M(y). Clearly for each P € P, we have the equality
Y(Py) =¥(y). (7.2.10) and the convexity of ¢ yield

$(w:i) = ¢( Y ap(Py)) < D> apd((Py)i).
PeP, PeP,

Sum on i =1,...,n to deduce that

P(x) < D app(Py) = > api(y) = ().

PeP, PeP,
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If ¢ is strictly convex and x ¢ £(M(y)) then the above inequalities are
StI‘iCt. O

The following result is well known. (See Problems 2-3)

Theorem 7.3.6 Let C C V be a convexr set. Assume that ri C is an
open set in V and ¢ € C?(C). Then ¢ is convex if and only if the sym-
metric matriz H(¢) := (B‘Zij )f’j:l is nonnegative definite for each 'y € C.
Furthermore, if H(¢) is positive definite for each'y € C then ¢ is strictly
CONVEL.

Let ¢ : C — R be a convex function. Then ¢ has the following continuity
and differentiability properties: In the one dimensional case where C' =
(a,b) C R ¢ is continuous on C' and ¢ has a derivative ¢'(z) at all but a
countable set of points. ¢’(x) is an nondecreasing function (where defined).
In particular ¢ has left and right derivatives at each x, which is given as
the left and the right limits of ¢’(x) (where defined).

In the general case C C V, ¢ is continuous function in ri C, has a
differential D¢ in a dense set Cy of ri C, the complement of C; in ri C has
a zero measure, and D¢ is continuous in Cy. Furthermore at each x € ri C'
¢ has a subdifferential f € Hom(V,R) such that

(7.3.4) d(y) > o(x)+ f(y —x) forally € C.

See for example [Roc70].

Definition 7.3.7 Let C' C 'V be a convex set. Then f: C — R is called
an affine function if for each x,y € C f(tx+(1—t)y) =tf(x)+(1—1)f(y)
for each t € [0, 1]

Clearly an affine function f on a convex set the functions f and —f are
convex. Theorem 7.3.4 yield.

Corollary 7.3.8 Let C C 'V be a compact convexr set. Assume that
f:C — R be an affine function. Then

max f(x) = S fly),  min f(x) = yglgi&,) f(y).

Let C C V be a polytope. Then finding the maximum or the minimum of
of an affine function on C is called the linear programming. It is known that
the complexity of the linear programming is polynomial in the dimension
of V, and the complexity of all the half spaces in the characterizing C' and
f [Kha79, Kar84].



7.3. CONVEX FUNCTIONS 355

We now give a simple example. Let A = [a;;] € R"*". Denote by S,
the group of permutations 7 : (n) — (n). Consider the maximal problem
to maximize the sum of a generalized diagonal of A:

(7.3.5) = maxZam(,)

TESH i—1

Since #S, = n!, a brute force algorithm to try all the permutation will need
n! = (Z)" computations times. (We ignore the complexity of computing
the sum > | a;r(;).) However, u(A) can be computed polynomially in n.
Define an affine f : Q, — R by f(X) = tr AX, for any doubly stochastic
X. It is straightforward to show that

(7.3.6) w(A) = nax tr AX.

Since ,, is a polytope given by at most 4n + n? inequalities, and the com-
plexity of f is n? times the complexity of entries, we see that the complexity
of computing the maximum of f(X) is polynomial in n.

Definition 7.3.9 Let V,,V, be finite dimensional vector spaces. As-
sume that C1 C V,,C, C V, are convex sets. A functions ¢ : C1 xCs — R
is called concave-conver if the functions ¢(-,y) : C; —» R, ¢(x,7) : C, — R
are concave for each 'y € C, and convex for each x € C, respectively.

The following result is known as minimax theorem [Roc70, Cor. 37.6.2].

Theorem 7.3.10 Let C; be a compact convex set in a finite dimen-
sional vector space V; for = 1,2. Assume that ¢ : C; x Cy — R be a
continuous concave-convex function. Then

(7.3.7) Jnin max P(x,y) = max min B(x,y) = d(x*,y%)

for some x* € C,,y* € C,.
The point (x*,y*) is called a saddle point. More general types of the min-
imax theorems are can be found in [Roc70].
Problems

1. Let C' C V be a convex set and assume that ¢ : C' — R is convex.
Let x4,...,%,;, € C,m > 3. Show
(a) Let aq,...,am € [0,1] and assume that >_.*, a; = 1. Then

m

(7.3.8) 0 aiwi) <> aip(a;)
=1
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(b) Assume in addition that ¢ is strictly convex, x; # x; for i # j
and ay,...,am, > 0. Then strict inequality holds in (7.3.8).

(a) Let f € Cl(a,b). Show that f is convex on (a,b) if and only if
f'(z) is nondecreasing on (a,b). Show that if f/(z) is increasing on
(a,b) then f is strictly convex on (a,b).

(b) Let f € Cla,b] N C'(a,b). Show that f is convex in [a,b] if and
only if f is convex in (a,b). Show that if f’(z) is increasing on (a,b)
then f is strictly convex on [a, b].

(c) Let f € C?(a,b). Show that f is convex on (a,b) if and only if f”
is a nonnegative function on (a,b). Show that if f”(x) > 0 for each
x € (a,b) then f is strictly convex on (a,b).

(d) Prove Theorem 7.3.6.
Prove Proposition 7.3.3.

Let C; C V; be a compact set in a finite dimensional vector space for
i =1,2. Let ¢ : C; x C3 — R be a continuous function. Show the
inequality

3. i > i .
(7.3.9) Inin max ¢(x,y) > max min ¢(x,y)

7.4 Norms over vector spaces

In this Chapter we assume that F = R, C unless stated otherwise.

Definition 7.4.1 Let 'V be a vector space over F. A continuous func-
tion || - || : V — [o,00) is called a norm if the following conditions are
satisfied:

1. Positivity: ||v|| = o if and only if v =0.

2. Homogeneity: ||av|| = |a| ||v]| for each a € F and v € V.

3. Subadditivity: ||u+ v|| < ||lu|| + ||v]| for allu,v € V.

A continuous function || - | : V — [o,00) which satisfies the conditions 2
and 3 is called a seminorm. The sets

BHH = {V eV, HVH < 1}7 Bﬁ” = {V eV, ||VH < 1}7
Sjy={veVv, vl =1}
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are called the (closed) unit ball, the open unit ball and the unit sphere of
the norm respectively. For a € V and r > 0 we let

Bijar)={xeV: |[x—al|<r}, Bjar)={xeV: |x—a<r}

be the closed and the open ball of radius r centered at a respectively. If the
norm || - || is fized, we use the notation

B(a,r) = By (a,r), B°(a,r)= Bﬁ.”(a, T).

See Problem 2 for the properties of unit balls. The standard norms on
F™ are the I, norms:

1

(741) H(:Ch..,, THp Z|$1|P 57 pe []_700)7
T
-0l = s

See Problem 8.

Definition 7.4.2 Let 'V be a finite dimensional vector space over F.
Denote by V* the set of all linear functionals f : V. — F. Assume that || - ||
is a norm on V. The conjugate norm || - || : V* — F is defined as

If]I* = max [f(x)], for feV*.

x€By |
For a norm || - || on F™ the conjugate norm || - || on F™ is given by
(7.4.2) |x||* = max |y'x| for x € F".
yEB|
A norm || - || on 'V is called strictly convez if for any two distinct points

X,y € S| and t € (0,1) the inequality ||tx + (1 —t)y|| < 1 holds. A norm
||| on F™ is called C*, for k € N, if the sphere S| is a C* manifold. || ||
is called smooth if it is C* for each k € N.

Forx = (z,,...,m,)" € C" let abs x = (|z,|,...,|zn])T. A norm | - ||
on F™ is called absolute if |x|| = ||abs x|| for each x € F™*. A norm || - |||
on F™ is called a transform absolute if there exists an absolute norm || - ||
on F" and P € GL(n,F) such that |||x||| = | Px|| for each x € F™.

A norm || - || on F™ is called symmetric if the function |[(x1,...,2,)" ||
is a symmetric function in x1,...,x,. (Le. for each permutation m :
(n) and each x = (xy,...,2,)" E F" equality |[(2x(1),-- s Tr(n)
l(z1,...,2,) || holds.

)"
: fn) -
)=
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Theorem 7.4.3 Let || - || be a norm on F™. Then the following are
equivalent.

1. || - || is an absolute norm.
2. || - |I* is an absolute norm.

3. There exists a compact set L C F"™ not contained in the hyperplane
H; ={(y1,---,yn)" €F", y; =0} fori=1,...,n, such that ||x|| =
maxye (abs y) Tabs x for each x € F™.

4. |x]| < ||z|| if abs x < abs z.

Proof. 1=-2. Assume that x,y € F". Then there exists z € F",abs z =
abs y such that |z" x| = (abs y) Tabs x. Since || - || is absolute |z|| = ||y||-
Clearly |y x| < (abs y) Tabs x. The characterization (7.4.2) yields that

(7.4.3) ||x||* = max (absy)"abs x.
YEB

Clearly ||x|| = ||abs x]|.

2=3. The equality (|| - [|*)* = || - ||, see Problem 3, and the equality
(7.4.3) implies 3 with L = B.-. Clearly By.- contains a vector whose all
coordinates are different from zero.

3=/. Assume that abs x < abs z. Then (abs y) "abs x < (abs y) Tabs z
for any y € F”. In view of the characterization of the absolute norm given
in & we deduce 4.

4=-1. Assume that abs x = abs y. Since abs x < abs y we deduce that
[Ix|| < |lyll. Similarly ||x|| > |ly||. Hence I holds. O

Definition 7.4.4 A set L C F" is called symmetric if for each y =

(Y1y---,yn) | in L the vector (Yr(1)s - - - 7y,r(n))—r is in L, for each permuta-
tion 7 : (n) — (n).

Corollary 7.4.5 Let || - || be a norm on F™. Then the following are
equivalent.

1. || - || is an absolute symmetric norm.

2. |- |I* is an absolute symmetric norm.

8. There exists a compact symmetric set L C F"™, not contained in the
hyperplane H; = {(y1,...,yn)" € F*, y; =0} fori=1,...,n, such
that ||x|| = maxycy (abs y)abs x for each x € F".
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See Problem 6.

Proposition 7.4.6 Assume that || - || is a symmetric absolute norm on
R2. Then
(7.4.4) Ix[12 < ="l < [Ixlloc %[l for any x € R?.

Proof. The lower bound follows from the Problem 9. We claim that
for any two points on x,y satisfying the condition ||x|| = [|y|| = 1 the
following inequality holds

(7.4.5) ([l = Iy ) (oo = 1y lloc) < o

Since ||-|| is symmetric and absolute it is enough to prove the above inequal-
ity in the case that x = (z,,2.) ", 2, > 2, > 0,y = (y1,%2) ", ¥1 > ¥= > 0.
View By as a convex balanced set in R2, which is symmetric with re-
spect to the line z; = z2. The symmetricity of || - || implies that all
the points (21,22)" € By, satisfy the inequality z; + 22 < 2¢, where
[(c,;e)T|| = 1,¢ > 0. Let C,D be the intersection of By, C|.| the with
octant K = {(z1,22)" € R% 23 > z5 > 0} respectively. Observe that
the line z1 + 22 = 2c¢ may intersect D at an interval. However the line
21 + z = 2t will intersect D at a unique point (21(t), 22(t)) " for ¢ € [b, ¢),
where |[(2b,0)| = 1,b > 0. Furthermore z;(t), —22(t) are decreasing in
(b,c). Hence, if 1 + 22 > y1 + yo it follows that y; > z1. Similarly,
Z1 + x2 < Y1 + y2 it follows that y; < 1. This proves (7.4.5).

To show the right-hand side of (7.4.4) we may assume that ||x|| = 1. So
[x[|* = |y "x| for some y € .. Hence ||x|| [x[|* = |y "x]|. Clearly

|yTX‘ < min(||x|4 [y [loos [[%/loc 1y []2)-

Suppose that [|y]; < [|x|l.- Then the right-hand side of (7.4.4) follows.
Assume that |y|; > ||x||;. Then Then (7.4.5) yields that ||yllcc < [|X]|co
and the right-hand side of (7.4.4) follows. O

A norm ||-|| : F™*™ — R, is called a matriz norm. A standard example
of matrix norm is the Frobenius norm of A = [a;;] € F™*™:

(7.4.6) JAlLr =

m,n
> aigl?

i=j=1
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Recall that [|A]|r = (3°1%, 0i(A)?)z, where 0;(A),i =1,..., are the singu-
lar values of A. More generally, for each ¢ € [1, 0]

m

(7.4.7) 1Allg,s == (D o:(A)%)

i=1

Q=

is a norm on F™*™ which is called the ¢-Schatten norm of A. Furthermore,
for any integer p € [1,m] and wy > ... > w, > 0, the function f(A) given
in Corollary 4.10.5 is a norm on F™*". See Problem 4.10.4. We denote

I lloo,s = o1(-) as the || - ||2 operator norm:
(7.4.8) |All2,2 := 01(A) for A € C™*".
See §7.7.
Definition 7.4.7 A norm || - || on C™*™ is called a unitary invariant

if \UAV|| = ||A]| for any A € C™*" and unitary U € U(m),V € V(n).
Clearly, any p-Schatten norm on C™*" is unitary invariant.

Theorem 7.4.8 For positive integers m,n let | = min(m,n). For A €
Cm™>n et o(A) := (01(A),...,00(A)". Then | - | is a unitary invariant
norm on C™*™ if and only if there exists an absolute symmetric norm |||-|||
on C! such that ||A| = |||lo(A)||| for any A € C™*",

Proof. Let D(m,n) C C™*™ be the subspace of diagonal matrices.
Clearly, D(m,n) is isomorphic to C'. Each D € D(m,n) is of the form

diag(x),x = (x,,...,2;) ", where z1,...,7; are the diagonal entries of D.
Assume that ||| is a norm on C™*™. Then the restriction of ||- || to D(m,n)
induces a norm ||| - ||| on C! given by [||x||| := || diag(x)||. Assume now that

|| -] is a unitary invariant norm. For a given x € C!, there exists a diagonal
unitary matrix such that U diag(x) = diag(abs x). Hence

/]| = || diag()]] = U diag(x)]| = || diag(abs x)|| = [|jabs x]|.
Let w : (I) — (I) be a permutation. Denote x, := (xﬁ(l),...,a:,r(l))—r.
Clearly there exists two permutation matrices P € U(m),Q € U(n) such
that diag(x,) = U diag(x)V. Hence |||x.||| = |||Ix]|l, and ||| - ||| is absolute
symmetric. Clearly, there exists unitary U, V such that A = U diag(o(A4))V.
Hence [[A] = [[lo(A)]-

Assume now that ||| - ||| is an absolute symmetric norm on C!. Set
Al = |lle(A)]|| for any A. Clearly || - || : C™*™ — Ry is a continuous
function, which satisfies the properties 1-2 of Definition 7.4.1. it is left to
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show that || - || satisfies the triangle inequality. Since ||| - ||| is an absolute
symmetric and o1(A) > ... > 0;(A) > 0, Corollary 7.4.5 yields that

(7.4.9) |A] = max (absy) e (A)

Y=(Ya,--y1) TEL YL > >y |

for a corresponding a compact symmetric set L C C", not contained in
the hyperplane H; = {(y1,...,yn)’ € F*, y; =0} fori = 1,...,n. Use
Problem 4.10.6b to deduce from (7.4.9) that |4+ B < || 4| + || B]|. O

Definition 7.4.9 A norm on ||-|| on F**™ is called a spectral dominant
norm if || Al is not less than p(A), the spectral radius of A, for every A €

IF'!LXTL

Since o1(A) > p(A), see (4.10.14) for k = 1, we deduce that any g¢-
Schatten norm is spectral dominant.

Problems

1. Let V be a finite dimensional vector space over F. Show that a
seminorm || - || : V — Ry is a convex function.

2. Let V be a finite dimensional vector space over F. X C V is called
balanced if tX = X for every ¢t € F such that |t| = 1. Identify V with
Fdim V' Then the topology on V is the topology induced by open sets
in F”. Assume that || - || is a norm on V. Show

(a) By.| is convex and compact.
(b) By is balanced.

(c) 0is an interior point of By..

3. Let V be a finite dimensional vector space over F. Let X C V be a
compact convex set balanced set such 0 is its interior point. For each
x € V\{0} let f(x) = min{r >0: +x € X}. Set f(0) = 0. Show
that f is a norm on V whose unit ball is X.

4. Let V be a finite dimensional vector space over F with a norm || - ||.
Show

(a) [If[* = maxyes,., [f(x)] for any f € V*.

(b) Show that for any x € V and f € V* the inequality |f(x)] <
[E]] [
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(c) Identify (V*)* with V| i.e. any linear functional on A : V* — F
is of the form A(f) = f(x) for some x € V. Then (||x||*)* = ||x]|

(d) Let L C V* be a compact set which contains a basis of V*.
Define ||x||;, = maxsey, [f(x)|. Then ||x|| is a norm on V.

(e) Show that ||-|| = |||l for a corresponding compact set L C V*.
Give a simple choice of L.

Let V be a finite dimensional vector space over F, dim V > 1, with
a norm || - ||. Show

(@) EBy) Sy
(b) g(BH‘H) = S”.” if and only if for any x £y € SH'” (x,y) C Bﬁ'”'
(c) For each x € S there exists f € S)- such that 1 = f(x) >
If(y)| for any y € By..
(d) Each f € S~ is a proper supporting hyperplane of By at some
point x € S”'H'
Prove Corollary 7.4.5.

Let V be a finite dimensional vector space over F. Assume that
Il 1l1,] - |2 are two norms on V. Show

(a) [|x]l. < |x||2 for all x € V if and only if By, 2 By,

(b) Show that there exists C' > ¢ > 0 such that c||x|, < [|x|. <
C|x||, for all x € V.

For any p € [1, o0] define the conjugate p* = ¢ € [1, o0] to satisfy the
equality % + % = 1. Show

(a) Holder’s inequality: |y*x| < (absy)Tabs x < [|x||,||y],+ for any
x,y € C"\{0} and p € [1,00]. (For p = 2 this inequality is
called the Cauchy-Schwarz inequality.) Furthermore, equalities
hold in all inequalities if and only if y = ax for some a € C\{0}.
(Prove Holder’s inequality for x,y € R".)

) |Ix]|p is @ norm on C™ for p € [1, c0].
(¢) |Ix||p is strictly convex if and only if p € (1, 0).
(d) For p € (I,OO) g(BH'Hp) = SH'Hp'
) Characterize £(By.|,) for p=1,00 for F = R, C.
)

For each x € C" the function ||x||, is a nonincreasing function
for p € [1,00].
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10.

11.

12.

13.

14.

Show that for any norm || - || on F™ the inequality
112 < min(fjx[[*{[x][, [[x[[*[|x]]) for any x € F".

In particular, if || - || is absolute then ||x||2 < ||x||*|Ix||. (Hint: use

the equality |x||2 = xx.)

Let L C F™ satisfy the assumptions of condition 8 of Theorem 7.4.3.
Let v(x) = maxye(abs y) Tabs x for each x € F*. Show that v(x)
is an absolute norm on F™.

Let || || be an absolute norm on R™. Show that it extends in a unique
way to an absolute norm on C™.

Let V be a finite dimensional vector space over F = R, C.

(a) Assume that || - || is a seminorm on V. Let W := {x € V,||x| =
0}. Show that W is a subspace of V, and for each x € V the
function || - || is a constant function on x + W.

(b) Let W be defined as above. Let U be the quotient space V/W.
So v € V is viewed as any y € v+ 'V for a corresponding v e V
Define the function ||| - ||| : V. — Ry by |||¥]]| = |ly||. Show that
Il - ]| is a norm on V.

(c) Let U,, U, are finite dimensional vector spaces over F. Assume

that ||| - ||| : U, — Ry is a norm. Let V = U, & U,. Define
|lu, @ u,|| = |||u,|| for each u; € Uy, i = 1,2. Show that | - || is
a seminorm on V. Furthermore, the subspace 0 @& U, is the set
where || - || vanishes.

Show that for any A € C™*" |[Allz2 = 0(A) = max||,—, [|Ax||..
(Hint: Observe that ||Ax||2 = x*(A*A)x.)

For F = R, C, identify (F™*")* with F™*™ by letting ¢4 : C™*" — F
be tr(AT X) for any A € F™*". Show that for any p € [1,00] the
conjugate of the p-Schatten norm || - ||, 5 is the g-Schatten norm on
F™*" where % + % =1.

7.5 Numerical ranges and radii

Let S~ ! := {x € C", x*x = 1} be the unit sphere of the ¢, norm on C".

Definition 7.5.1 A map ¢ from S*~1 to 2C" | the set of all subsets of
C™, is called a v-map, if the following conditions hold.
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1. For each x € S*~1 the set ¢(x) is a nonempty compact set.
2. The set Uyegzm—10(X) s compact.

3. Let xj € S Ly, € o(xi) for k € N. Assume that limg_ o0 X = X
and limy_.oo yr =y. (Note that x € S>*71.) Then y € ¢(x).

4.y 'x=1 for each x € S> 1 and y € ¢(x).
Assume that ¢ from S*~1 to 2" is v-map. Then for A € C**"

(7.5.1) W¢(A) = Uxes2n-1 Uyeg(x) {yTAX},
7.5.2 re(A) = max T Ax
(7.52) s(A) o ly Ax|

are called the ¢-numerical range and the ¢-numerical radius respectively.

It is straightforward to show that r is a seminorm on C**", see Problem
1.

Lemma 7.5.2 Let ¢ : S* ' — 2% be a v-map. Then spec (A), the
spectrum of A, is contained in the ¢-numerical range of A. In particular
74(A) > p(A).

Proof. Let A € C™*" and and assume that A is an eigenvalue of A.
Then there exists an eigenvector x € S?"~! such that Ax = Ax. Choose
y € ¢(x). Then y " Ax = Ay "x = A. Hence A € wy(A). Thus 74(A) > |\

O

Lemma 7.5.3 Let || - || : C"*"™ — R, be a seminorm, which is spectral
dominant, i.e. ||A]| > p(A) for any A € C**™. Then | - || is a norm on
Cnxn'

Proof. Assume to the contrary that || - || is not a norm. Hence there
exists 0 # A € C™*™ such that ||A|| = 0. Since 0 = [|A4| > p(A) we
deduce that A is a nonzero nilpotent matrix. Hence, T AT = EszlJi,
where each J; a nilpotent Jordan block and T' € GL(n,C). Since A # 0
we may assume that J; € C'*!, has an upper diagonal equal to 1, all other
entries equal to 0 and [ > 2. Let B = @leBi where each B; has the same
dimensions as J;. Assume that B; are zero matrices for i > 1, if k > 1. Let
By = [b;jq1] € C™!, where by 1 = 1 and all other entries of By equal to 0. It
is straightforward to show that the matrix &F_, (J; +tB;) has two nonzero
eigenvalues /¢ for t > 0. Let C := T(®*_, B;)T~!. Then p(A+tB) = \/t
for ¢ > 0. Hence for ¢ > 0 we obtain the inequalities

p(A+B) = VI < |A+1tB| < ||A] + [tB] = t|B]| = | B] >

<
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The above inequality cannot hold for an arbitrary small positive ¢. This
contradiction implies the lemma. O

Use the above Lemmas and Problem 1 to deduce.

Theorem 7.5.4 Let ¢ : S*=1 — 2" be a v-map. Then r4(-) is a
spectral dominant norm on C™*™,

We now consider a few examples of v-maps.

Example 7.5.5 The function ¢5 : S?~1 — 2C" given by ¢o(x) := {X}
is a v-map. The corresponding numerical range and numerical radius of
A € C™*™ are given by

wo(A) ={z =x"Ax, for allx € C" satisfying x*x =1} C C,
o *
ro(A) == echax |x* Ax]|.
It is called the classical numerical range and numerical radius of A, or
simply the numerical range and numerical radius of A.

More general

Example 7.5.6 For p € (1,00) the function ¢, : S*~ 1 — 2% given
by dp((1, - 20)T) = (Xl P(2aP 25, . foalP250)T} s @ v-map.
The corresponding numerical range and numerical radius of A € C"*" are
denoted by wy(A) and r,(A) respectively.

The most general example related to a norm on C” is as follows.

Example 7.5.7 Let || - || be a norm on C". For each x € S*~1 let
@)1 (x) be the set of all'y € C" with the dual norm ||y|* = m satisfying
y'x =1. Then ®|.| s a v-map. (See Problem 6.) The corresponding nu-
merical range w.|(A) and the numerical radius r|.|(A) is called the Bauer
numerical range and the Bauer numerical radius respectively of A € C"*".

Definition 7.5.8 A norm || - || on C™*™ is called stable if there exists
K > 0 such that ||A™| < K||A||™ for all A € C™*™.

Clearly, || - || is stable if and only if the unit ball By, € C"*™ is power
bounded, see Definition 3.4.5.

Theorem 7.5.9 Let ¢ : S**~1 — 2C" be a v-map. Setc = maxyeu(n) r¢(U)-
Then
c

2| =1

(7.5.3) (2] — A)7 |2 < for all |z| > 1, ry(A) < 1.

In particular, a ¢-numerical radius is a stable norm.
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Proof. Fix x € $?"~1 We first note that |ly|l. < ¢ for each y € ¢(x).
Let z = -y € S?=1 Then there exists U € U(n) such that Ux =

z. Hence ||y|. = y'Ux < ry(U) < c. Assume next that 74(A) < 1.
Hence p(A) < rg(A) < 1. So (2f — A)~! is defined for |z| > 1. Let
vi= (2l —A)7'x,v, = V- Then fory € ¢(v,) we have

ly x|

v = \yT(zl —Ayv,| =z —yTAvl\ > |z| — 1.

On the other hand

ly x| < llyllalxlla = llyll- <.

Combine the above inequalities to deduce ||(zI — A)x|[, < = for all
|x||- = 1. Use Problem 7.4.13 to deduce (7.5.3). Theorem 3.4.9 yields that
the unit ball corresponding to the norm 74(-) is a power bounded set, i.e.

the norm ry(-) is stable. O

Theorem 7.5.10 Let || - || be a norm on C™*™. Then || - || is stable if
and only if it is spectral dominant.

Proof. Assume first that || - || is stable. So By is a power bounded
set. Theorem 3.3.2 yields that each A € By satisfies p(4) < 1. So if
A # 0 we get that p(H}THA) <1, ie. p(A) < | A| for any A # 0. Clearly
p(0) = ||0]] = 0. Hence a stable norm is spectral dominant.

Assume now that || - || is a spectral dominant norm on C™**™. Recall that
By is a convex compact balanced set, and 0 is an interior point. Define a
new set

A={BeC”™" B=(1—-a)A+zI,aco,1], z€C,|z| <a, AcBy}.

It is straightforward to show that A is a convex compact balanced set. Note
that by choosing ¢ = 1 we deduce that I € A. Furthermore, by choosing
a = 0 we deduce that B|.; € A. So 0 is an interior point of .A. Problem 7.4.3
yields that there exists a norm || - ||| on C"*™ such that By).;; = A. Since
Sy € Byjppy it follows ||| A]|| < [|A[| for each A € C"*™. We claim that [||-|||
is spectral dominant. Assume that |||B]|| = 1. So B = (1 —a)A + zI for

some a € [0,1], z € C, |z| < aand A € By,. Since |- || is spectral dominant
it follows that p(A) < ||A|| < 1. Note that spec (B) = (1 — a)spec (A) + z.
Hence p(B) < (1 —a)p(A) +|2| < (1 —a) +a = 1. So ||| - ||| is spectral

dominant. Since |||I][||] <1 and |||I||]| > p(I) = 1 we deduce that |||I]|| = 1.
Hence, for any z € C, |z| < 1 we have |||zI]|| < 1.
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For x € S2"~1 Jet
Cx)={ueC” u=Bx, |||B||| <1}

Clearly C(x) is a convex set in C™. Since for each |||B||| < 1 we have that
p(B) < 1 it follows that x ¢ C(x). The hyperplane separation theorem
Theorem 7.1.6 implies the existence of y € C" such that

(7.5.4) R(y 'x) > R(y ' Bx) for all ||| B||| < 1.

Substitute in the above inequality B = 21, |z| < 1 we deduce that R(y 'x) >
R(zy "x). By choosing an appropriate argument of z we deduce R(y 'x) >
|z||ly "x|. Hence R(y "x) > |y " x|. In view of the strict inequality in (7.5.4)
we deduce that y 'x is real and positive. Thus we can renormalize y so

that y 'x. Let ¢(x) be the set of all w € C™ such that
w'x=1, max |w'Bx|=1.
[Bl1<1

Clearly, y € ¢(x). It is straightforward to show that ¢ : =1 — 2C" is a
v-map.

As w' Bx = tr B(xw ) we deduce that |||[xw"|||* = 1, where ||| -|||* is
the dual norm of ||| - ||| on C™**™:
(7.5.5) IC|I = max |trBC|= max [trBC]|.
BeByj ) BES)

Let R(1,n,n) C C**™ be the variety of all matrices of rank one at most.
Clearly, R(1,n,n) is a closed set consisting of all matrices of rank one and
Opnxn. Hence R(1,n,n) N |||+ is a compact set consisting of all xXw !,
where x € S?*~! and w € ¢(x). Since (||| [||*)* = ||| - ||| it follows that
re(B) = max lw' Bx| = max [tr B(xw )| <
x€S520—1 wep(x) x€S52—1 wep(x)

max | BC| = ||BI| < 1B].
CESjj*

Hence By € By € B,,(). Theorem 7.5.9 yields that re(+) is a stable

norm. Hence || - || and ||| - ||| are stable norms. O

Use Theorem 7.5.10 and Problem 3 to deduce.

Corollary 7.5.11 Let A C C"*" be a compact, convex, balanced set,
whose interior contains 0. Then A is stable if and only p(A) <1 for each
Ae A

Definition 7.5.12 Let F be field. A subspace 0 #= U C F"*™ is called
stable if there exists an integer k € [1,n] such that the dimension of the
subspace Ux C F™ is k for any 0 # x € F". U is called mazimally stable
if k=n.
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The following result is a generalization of Theorem 7.5.10.

Theorem 7.5.13 Let A C C"*"™ be a compact conver balanced set, (see
Problem 7.4.2 for the definition of a convex balanced set), which contains
the identity matriz. Assume that L := span A is a stable subspace. Then
A is a stable set if and only if p(A) <1 for each A € A.

Proof. Clearly, if A is stable, then each A € A is power bounded,
hence p(A) < 1. Assume now that A is a compact convex balanced set
containing identity such that £ is a stable subspace. Let x € S?"~! and
consider the subspace £x of dimension k. Since A is a compact convex
balanced set it follows that Ax is a compact convex balanced set in £ since
span Ax = Lx it follows that ri Ax. Hence Ax is a unit ball of the norm
I - ||x on the subspace £x. Since I € A it follows that £ € Ax. We claim
that ||x||x = 1. Assume to the contrary ||x|lx < 1. Then (1 +¢)x € Ax
for some € > 0. So there exists A € A such that Ax = (1 + ¢)x. Hence
p(A) > (1 + ¢) contrary to our assumptions.

Identify (£x)* with £x. So a linear functional f : £Lx — C is given by
f(y) = z'y for some z € Lx. Let | - |% be the conjugate norm on £x.
Denote by B(x) C £x the unit ball of the norm || - ||%. Since ||x||% = 1 it
follows that there exists z(x) € £x such that z(x) 'x = 1 and ||z(x)||% = 1.
We claim that Uycgen—1B(x) is a compact set in C".

Indeed, since £x has a fixed dimension k for each for each x € C" we
can view L£x of the form U(x)W for some fixed subspace W C C™ of di-
mension k and a unitary matrix U(x). (U(x) maps an orthonormal basis
of W to an orthonormal basis of £x.) Hence the set C(x) := U*(x)Ax is
a compact convex balanced set in W, with 0 an interior point. Since A is
compact, it follows that C(x) varies continuously on x € S?» 1. Therefore
the set D(x) := U*B(x) C W varies continuously with x € S?"~!. Hence
Uxegza-1D(x) is a compact set in W, which yields that Uyecgza-1B(x) is
a compact set in C". In particular, there exists a constant K such that
|z(x)|l- < K. We now claim that A satisfies the condition 3.4.13 of Theo-
rem 3.4.9. Indeed, for x € S?"1=1 A € A we have that Ax € A(x), hence
[|Ax||x < 1. Hence for |A| > 1 we have

|z(x) TN = A)xll. A —z(x) " Ax|

I —A)x|, >
I = A)x]|. > e K =
A = [2(0) T Ax| _ [N = |2(x) T Ax| _
K - K B
Al [AxIx[lz(0)[lx o A =1 [Al -1
A = IAxlZGOll o A =1 A=1,

K K K
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Thus for each |A| > 1 and 0 # x € C™ we have the inequality ||[(A—A)x]|, >
|>“Tﬂ||x\|2 Choose x = (A — A)~'y to deduce the inequality
|OL- Ayl . K
Iyl — [A[=1
So a1 (M — A)~1) < £ Hence A satisfies the condition 3.4.13 of Theo-

P
rem 3.4.9 with the norm o4 (). Theorem 3.4.9 yields that A is stable. O

Problem 7 shows that in Theorem 7.5.13 the assumption that £ is a stable
subspace can not be dropped. In Chapter ? [Fri84] we show the following
result.

Theorem 7.5.14 Letn > 2,d € [2n—1,n?] be integers. Then a generic
subspace L of C"*™ of dimension d is mazimally stable.

Problems

1. Let ¢ : S?»~! — 2€" be a v-map. Show that r4 : C"*" — Ry is a
seminorm.

2. Let ¢ : S2~1 — 2C" be a v-map. Show that r4(I,) = 1.

3. Show that for any p € (1, 00) the map ¢, given in Example 7.5.6 is a
v-map.

4. Show

(a) For any unitary U € C™*™ and A € C"*" wy(U*AU) = wo(A)
and ro(U*AU) = ra(A).
(b) For a normal A € C"*™ the numerical range wo(A) is a convex

hull of the eigenvalues of A. In particular r(A) = p(A) for a
normal A.

(¢) wa(A) is a convex set for any A € C"*™. (Observe that it is
enough to prove this claim only for n = 2.)

5. Let A = J4(0) € C** be a nilpotent Jordan block of order 4.
Show that ro(A) < 1,r2(A%) = 3,r2(A%) = 3. Hence the inequal-
ity ro(A3) < ro(A)re(A2) does not hold in general.

6. Show that the map ¢, : §2n=1 _, 9C" given in Example 7.5.7 is a
v-map.
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7. Let ||| be the norm on C™*™ given by ||[a;;]i ;1 || := max; je(1,n) |aij]-
Denote by U,, C C™*™ the subspace of upper triangular matrices. For
n > 2 show.

(a) U, is not a stable subspace of C™*".
(b)

(c) p(A) <1 for each A €U, NBy..
(d) U, N By is not a stable set.

U, N By is a compact, convex, balanced set.

7.6 Superstable norms

Definition 7.6.1 A norm ||-|| on C**" is called superstable if || A*|| <
|A|[F for k=2,..., and each A € C"*".

Clearly, any operator norm on C"*" is a superstable norm, see §7.7.

Theorem 7.6.2 The standard numerical radius r2(A) = maxXyecn x|, =1 [X AX|
is a superstable norm.

To prove the theorem we need the following lemma.

Lemma 7.6.3 Assume that A € C"*" p(A) < 1 and x € S™~L. Let

z; = 5= and assume that I, —zjA € GL(n,C) forj=1,...,m. Then

* AM 1 G 2 *
(7.6.1) 1— x*A™x = EZ %5113 (2 — 255 Ay;),

1 .
where x;j = ( H (1 — 2 A))x, yj=||X_HX_7j=1,-~-7m~
ke(m)\{s} T

Proof. Observe the following two polynomial identities in z variable

1—zm:ﬁ(1—zkz Z H (1 — 2zk2).
k=1 "= kem\ s}

Replace the variable z by A obtain the identities

m

1 m
(762) I,—A™= H(I — 5 A), I, = — Z (I, — z,A).

k=1 J=1ke(m)\{5}

Multiply the second identity from the right by x to get the identity x =
=3 j=1 Xj- Multiply the first identity by x from the right respectively to
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obtain x — A™x = ([[,—, (I, — z,A))x. Since I, — zzA for k =1,...,m
commute, we deduce that for each k, x — A™x = (I, — 2 A)x). Hence

1-x"A"x =x"(x— A"x) = inj(x— A"x) =
m e

fo I, — A anjn — zjyi Ay;).

Proof of Theorem 7.6.2. From the the proof of Lemma 7.6.3 it
follows that (7.6.1) holds for any A € C"*" and some y,,..., ¥, € S?" 71,
since for x; = o in (7.6.1) we can choose any y; € S* 1. Suppose that
that ro(A) = 1. Let ¢ € C,|(] = 1. Apply the equality (7.6.1) to (A and
x € S7~1 to deduce

Mmook AMe, 1 S 2 *
1-("x"A XfEZHUjHQ(l*ZjCWjAWj)
j=1

for corresponding w,,...,w,, € S2"~1. Choose ¢ such that ("x*A™x
|x* A™x|. Since 12(2,CA) = r2(A4) = 1, it follows that (1 — z;(wj Aw;)
0. Hence, the above displayed equality yields 1 — |[x*A™x| > o, i.e 1
|x*A™x|. Since x € S?"~1 is arbitrary, it follows that 72(4A™) < 1 i
ro(A) = 1. Hence ro(-) is a superstable norm.

IA IV

0 =

Definition 7.6.4 For an integer n > 2 and p € [1,00] let Kp,, > 1 be
the smallest constant satisfying rp(A™) < Kp nrp(A)™ for all A € C"*™.

Theorem 7.6.2 is equivalent to the equality K>, = 1. Problem 1b shows
that K1, = Koo = 1. It is an open problem if sup,, ey maxpeoo[1,00) Kpn <
00.

Theorem 7.6.5 Let || - || be a norm on C™*™ which is invariant under
the similarity by unitary matrices, i.e. |[UAUY|| = || A|| for each A € C"*"
and U € U(n). Then || - || is spectral dominant if and only if || Al > r2(A)
for any A € C"*™.

To prove the theorem we bring the following two lemmas which are of
independent interest.
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Lemma 7.6.6 Let || - || be a norm on C™"*™. Assume that || - || is in-
variant under the similarity by U € GL(n,C), i.e. ||A|| = |[UAUY| for
each A € C"*™. Then U is similar to diagonal matriz A:

(7.6.3) A =diagMs.o s h)s (M| = .= Al > 0.

Proof. Let A\, u € C be two distinct eigenvalues of U. So there are two
corresponding nonzero vectors x,y € C" such that Ux = \x, Uy = py.
For A = xy" we deduce that UAU ' = 2A4. Since ||A| = [UAU~!| > 0
it follows that |A| = |u|. Hence all the eigenvalues of U have the same
modulus.

it is left to show that U is diagonable. Assume to the contrary that
U is not diagonable. Then there exists an invertible matrix 7" and upper
triangular matrix V = [vij]?:jzl such that v1; = v9g = A # 0,v12 = 1, and
V =TVT~'. Choose A= TBT™', where B = [bj;]{_;_,, where byy = 5.
Since ||[U¥ AU || = || A|| for k =€ N it follows that the sequence of matrices
UkAU=* k € N is bounded. A straightforward calculation shows that the
(1,2) entry of T=Y(U* AU*)T is k2. Hence the sequence UFAU % k € N
is not bounded, contrary to our previous claim. The above contradiction
establishes lemma. a

Lemma 7.6.7 Let A = diag(A1, ..., An) € C"*" and assume that |A\1| =
o= || >0 and A\; # A; fori # j. Suppose that || - || is @ norm on C™*"
which is invariant under the similarity by A. Then

(7.6.4) || diag(A)[| < [|A]-

Proof. A-similarity invariance implies

m+1

1 = _ 1 = _
| ZA’“AA Ml < 72 [A*AATF| = || A]).
k=0 m+ 1 k=0

For A = [aij] e C™*™ let

Am = [aij,m] = m]_-|_ 1 ZAkAAika
k=0

A:YL+1
v
. — for ¢ # j.

where ;i m = @i, Qijm = aiim
Aj

Hence limy, o A = diag(A). Since || A < [|A|| we deduce the inequal-
ity (7.6.4). O
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Proof of Theorem 7.6.5. Assume first that ||A|| > 72(A) for each
A € C"*". Clearly, || - | is spectral dominant. Assume now that || - ||
is invariant under similarity by any unitary matrix U, and || - || is spectral
dominant. Since || -|| is invariant under the similarity by a diagonal matrix
A =diag(A1, ..., An), where [\| = ... = |\,| and \; # A, for i # j, Lemma
7.6.7 yields (7.6.4). Let A = [a;;]. Since diag(A) = diag(ai1, ..., an,) and
I - || is spectral dominant we obtain that

1€

[A]l = || diag(A)[| = p(diag(A)) = max |aiil.

Let V € U(n). Then the first column of V is x € S?*~!. Furthermore,
the (1,1) entry of V*AV is x*Ax. Since || - || is invariant under unitary
similarity we obtain ||A|| = |[V*AV|| > |x*Ax]|. As for any x € S?"~! there
exists a unitary V' with the first column x we deduce that || A|| > r2(A). O

Problems

1. (a) Describe the v-maps ¢j.||,, @|. . -

(b) Show that for for p = 1,00 r,(A) is equal to the operator norm
of ||A|lp, for A € C"*" viewed as a linear operator A : C" —
C". (See §7.7). Hence K; , = Ko, = 1, where K,,,, is given
Definition 7.6.4.

(c) Show that for each p € (1,00) and integer n > 2 there exists

A € C™" such that r,(A) < ||A],, where ||A]|, the operator
norm of A.

7.7 Operator norms

Let V,, V; be two finite dimensional vector spaces over F = R, C. Assume
that || - ||a, || - ||ls are norms on V,, Vy, respectively. Let T : V, — V}, be a
linear transformation. Then

ITxlo

7.7.1 et |
( ) 1T 0#xeV, [|X||a

is called the operator norm of T. Clearly

(7.7.2) IThoy = mas [T, = max T,



374 CHAPTER 7. CONVEXITY

See Problem 1. Let V. be a third finite dimensional vector space over F
with a norm || - ||.. Assume that @ : V, — V. is a linear transformation.
The we have the well known inequality

(7.7.3) 1QT e < NQlb.elITla.p-
See Problem 2.

Assume now that V, =V =Voand |-l =1 s =1 llc =11 We
then denote ||T|| := ||T||ap and ||Q| := ||Qllp,c- Let Id : V — V be the

identity operator. Hence
(7.7.4) [Id[ =1, NQTI <QIITI, [T™| <[T|™ form=2,....

Assume that V, = F* V, = F". Then T : F* — F™ is represented by a
matrix A € F”*". Thus ||A||4, is the operator norm of A. For m = n and
I“lle =11l = || - || we denote by ||A|| the operator norm. Assume that
s,t € [1,00]. Then for A € F™*™ we denote by ||Al|s+ the operator norm of
A, where F™", F™ are equipped with the norms £, ¢; respectively. Note that
|All2,2 = 01(A), see Problem 7.4.13. For m = n and s = ¢t = p we denote
by ||A||, the ¢, operator norm of A.

Lemma 7.7.1 Let A = [a;;] € F™ and || - |la; || - [lo be norms on
C™, C™ respectively. If || - |p is an absolute norm then
(7.7.5)  [Allap < a1z, arn) Tl @y amn) T2 Tl
If || - |la s an absolute norm then
(7.7.6) [ Allap < (@11, - ama) oy - 1(@zn, - @mn) Tllo) "1

In both inequalities, equality holds for matrices of rank one.

Proof. Let x € F™. Then

n
(Ax); =Y aiz; = [(Ax)i| < (@i, ain) TG 1% 0y i=1,...,m =
Jj=1
|Ax| < [[x[la(ll (@11, -, aln)—r”::a o amas aamn)THZ)T'
Assume that || - ||, is an absolute norm. Then
1Ay < lixllall(l(@ass -y @an) Ty - (@ amn) TlE) T o

which yields (7.7.5). Suppose that A is rank one matrix. So 4 = uv',

where 0 # u € F™,0 # v € F". There exists 0 # x € F” such that
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vx = ||[v|#|x|la- For this x we have that |Ax| = ||v||*|x|la|u]. Hence

Loxle = |iv|zlullp. Thus [|Allagy > [[v]l[ull- On the other hand the
right-hand of (7.7.5) is ||v||%||ul|p. This shows that (7.7.5) is sharp for rank
one matrices.

Assume now that || - || is an absolute norm. Theorem 7.4.3 claims that
|- ||% is an absolute norm. Apply (7.7.5) to || A7 ||y« o= and use Problem le
to deduce the inequality (7.7.6). Assume that A is rank one matrix. Then
AT is a rank one matrix and equality holds in (7.7.6). O

Theorem 7.7.2 Let m,n > 2 be integers. Assume that s,t € [1,00] and
suppose F™ F™ are endowed with Hélder with norms |- ||s, || - ||¢ respectively.
Let s* be defined by the equality + + L =1. Then for A = @il T
the following hold.

' m n ed1 n m 1
(7.7.7) Al < min((Y O Jaig1*)#)H, OO0 Jay ) 7)),
i=1 j=1 j=1 i=1

(7.7.8) Al < D lassl,
i=j=1

(7.7.9) |A]l11 = 1?%’%2 i,
=

(7.7.10) |1 4lloo,00 = 12-?%,21 s,
=

(7.7.11) IAlheo =, dax | laisl

Proof. Since || - ||s, || - ||¢ are absolute norm the inequalities (7.7.5) and

(7.7.6) hold. As || -||¥ = || - ||s» we deduce (7.7.7). For s = oo we have
s* =1, and for t =1 (7.7.7) yields (7.7.8).

Assume that s = ¢t = 1. So s* = oco. The second part of the in-
equality (7.7.7) yields the inequality ||A]11 < maxi<j<n Y oreq |aij]. Let
ej = (8j1,...,0;,)". Clearly, |lej|l, = 1 and ||Ae;||, = 31", |ai;|. Hence
HA||171 Z ZZZI |aij|. So ||AH171 Z maxi<;<n er;l |aij|, which yields (779)
Since [|Al|oo,00 = |[AT]|1,1, see Problem le, we deduce (7.7.10) from (7.7.9).

Let s = 1,t = oco. Then (7.7.7) yields the inequality
[All100 < maxicicmi<j<n|aij| = lai;, | Clearly, [|Aej, |l = lai,j, |-
Hence ||A]]1,00 > |@iy 4, |, which proves (7.7.11). O
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Theorem 7.7.3 Let'V be a finite dimensional vector space over C with
an norm || - ||. Let || - | be the induced operator norm Hom (V,V). Then
for A € Hom (V,V) the inequality p(A) < ||A| holds.

Proof. Assume that A € spec A. Then there exists 0 # x € V such
that Ax = Ax. So [|A|| > IAxl — 5. O

[E3

Problems
1. Show

(a) The equality (7.7.2).
(b) For each t > 0 there exists a vector y € Vg, |ly|ls = t such that

Tyl
1Tlas = Ty

(C) HTHa,b = maXfESH.HI*),XGS”.H |f(TX)|

(d) Denote by ||[T*||p+,q+ the operator norm of T* : V; — V¥
with respect to the norms || - ||, || - ||X respectively. Show that
1T \[osax = 1T llap-

(€) [[AT[[p,ax = [[Alla,p for A € F™>",

2. Show the inequality (7.7.3).

3. Let T : V — V be a linear transformation on a finite dimensional
vector space V over C with a norm || - ||. Show that p(T) < ||T|.

4. Let A € C™". Then A = Q (A + N)Q, where A is a diagonal
matrix, N strictly upper triangular and A+ N is the Jordan canonical
form of A. Show

(a) Aissimilar to A+tN forany 0 # t € C,ie. A= Q;  (A+tN)Q;.
Show that @Q; = QD; for an appropriate diagonal matrix D;.

(b) Let € > 0 be given. Show that one can choose a norm || - ||; on
C™ of the form |x||; := ||Q¢x]|. for |t]-small enough such that
|All: < p(A)+e. Hint: Note that ||A+tN |2 < ||Al2+][¢]|| N2 =
p(A) +t[Nll2.)

(c¢) If N =0 then ||A|| = p(A) where ||x|| = |@x]..

(d) Suppose that each eigenvalue A of modulus p(A) is geometrically
simple. Then there exists |¢t| small enough such that ||Al; =

p(A).
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5. Let A € C"*™. Then there exists a norm on || - || on C™ such that
p(A) = ||A] if and only if A each eigenvalue A of modulus p(A)
is geometrically simple. Hint: Note that if p(4) = 1 and there
is an eigenvalue A, |A| = 1 which is not geometrically simple, then
A™ m € N is not a bounded sequence.

6. Assume that ||---||a, || - |l» are two absolute norm on C™ and C™.
Assume that Q;C™*™ Qo € C"*™ are two diagonal matrices such
that the absolute value of each diagonal entry is 1. Show that for any

AeC™ |Q1AQz2]lap = ||Allab-
7. Show

(a) Show thatif A € R™" or —A € R™" then ||Al|oo1 = 37", |asj]-

i=j=1
(b) Let x = (z1,..,Zn), Y = (Y1,---,yn)| € R™. We say that y
has a weak sign pattern as x if y; = 0 for x; = 0 and y;x; > 0 for
x; #0. Let A € R™*™. Assume that there exists x € R™ such
that each row r; of A either r; or —r; has a weak sign pattern
as x. Then [|Aljoo,1 = D700 [ai;).
_ a11 a2
(c) Let A = . Assume that a1, a12,a21,—as > 0.
a1 Q22
Show that ||A||oo,l < a1 + ay2 + az; — asg.

(d) Generalize the results of Problem 7c to A € C™*™.

7.8 'Tensor products of convex sets

Definition 7.8.1 Denote V;be a finite dimensional vector space over
F=R,C fori=1,...,m. Let V = ®;—, V;. Assume that X; C V; for
i=1,...,m. Denote

O X =L 1x;, forallx;, € X;, i=1,...,m}.

We call ©* 1 X; set tensor product of X1, ..., Xy, or simply tensor product
Ole, v ,Xm.

Lemma 7.8.2 Let C; be a compact convex set in a finite dimensional
vector space V; fori=1,...,m. Then conv®]2,C; is a compact convez set
in QM ,V,;, whose extreme points are contained in O, E(C;). In particular,
if C1 and Cy are polytopes then conv C; ® Cs is a polytope.

Proof. Since C; is compact for ¢« = 1,...,m, it is straightforward to
show that C':= ®]2,C; is a compact set in V = ®[* V,. Hence conv C is
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compact. Let dim V; = d;. Since C; is compact, Theorem 7.1.3 implies that
each x; € C; is of the form x; = E]ji_ll a;j,yij;, where a;;, > 0,y,;, € E(C;)

for ji=1,...,di + 1, andzgjll i = 1. Hence

®211Xi = Z (H Qij, )(®z 1ylj7)
Ji=..=jm=1 i=1
Note that [];", a;;, > 0 and Zdlﬂ’;"m"jl [, a;j, = 1. Hence C' C
conv O, E(C;), which implies conv C' C conv @, E(C;) C conv C.
Assume that C', Cs are polytopes. Then conv C; ® () is nonempty, com-
pact and convex whose set of extreme points is finite. Hence conv C; ® Co
is a polytope. O

See Problem 1 for en example where £(Cy ® C3) is strictly contained in
E(C1) ® £(C3). The next two examples give two important cases where
E(C1®Cy) =E(C1) ®E(Cy). In these two examples we view CP*? g C™*"
is viewed as a subspace of CP™*9" where the tensor product of two matrices
A ® B is the Kronecker tensor product.

Proposition 7.8.3 Let m,n > 2 be integers. Then Q,, © 2y C Qi
and E(conv Qy, © Q) = Py © Py

Proof. Let A = [a;;] € Q,,, B = [bpg] € Q,,. The the entries of A® B =
[c(ip)Gigy] € R where ¢(; p)(j,q) = @ijbpq- Clearly

Z C(i,p)(4,q) = Z aijbpg = bpg, Z Cli,p)(4,q) = Z ijbpg = bpq,
j=1 j=1 i=1 i=1

Z Cli,p)(4,q) = Z aijbpg = aij, Z C(i,p)(4,q) = Z ijbpg = aij
q=1 p=1 p=1

q=1

Hence A ® B € Qpn, where we identify the set (m) x (n) with (mn).
Since €,,, is convex it follows that conv(),, ® Q,, C Q... Recall that
E(Qmn) = Pmn. Clearly P,, © P, C Ppn. Problem 7.1.2 yields that
E(conv Q,, © Q) = Pry © P O

Proposition 7.8.4 Let m,n > 2 be integers. Then H,, 41 © Hy 1 C
Hmn,+,1; and 5(COHV Hm7+,1 ® Hn,—i—,l) = S(Hm7+71) ® g(Hn7+,1).

Proof. Let A € H,,,, B € H,, be nonnegative definite hermitian matri-
ces. Then A ® B is nonnegative definite. Since tr A ® B = (tr A)(tr B) it
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follows that Hy, + 1 ©H,, 41 C Hyppp41. Hence E(convH,, 41 ©H, 11) C
5(H7n,+,1) © E(Hn,-i-,l)-

Recall that E(H,, 4.1),EHp 1), E(Hin,+1) are hermitian rank one
matrix of trace 1 of corresponding orders. Since A® B is a rank one matrix
if A and B is a rank one matrix it follows that E(H,, +.1) © EHy+1) C
E(Hmn7+71. Hence 5(COHV Hy+10 Hn7+,1) = g(Hmﬁ_’l) O] E(Hn7+71). a

Problem 7.8.5 Let C; be a compact convez set in a finite dimensional
space V; for i = 1,2. Suppose that C; = Naer,H(fa,Xa), were F; is the
set of all supporting hyperplanes of C; which characterize C;, for i =1,2.
(Fi may not be finite or countable.) The problem is to characterize the set
of all supporting hyperplanes of conv C; ® Cs.

FEquivalently, suppose we know how to decide if x; belongs or does not
belong to C; for i = 1,2. How do we determine if x belongs or does not
belong conv Cy © Cy?

It seems that the complexity of characterization conv C7; ® Cy can be much
more complex then the complexity of C; and C3. We will explain this
remark in the two examples discussed in Propositions 7.8.3 and 7.8.4.

Consider first Hy, 41, © Hy 41. So any element in H,, y1 © Hy 11
is of the form A ® B, where A and B are nonnegative definite hermitian
matrices of trace one. The matrix A ® B is called a pure state in quantum
mechanics. A matrix C € conv Hy, 11, ©® Hy, 41 is called a separable state.
So conv Hy, 1, © Hy, 41 is the convex set of separable states. The set
Hypn,41,1\ conv Hy, 11, © Hy, 4+ 1 the set of entangled states. See for example
[BeZ06]. The following result is due to L. Gurvits [Gur03]

Theorem 7.8.6 For general positive integers m,n and A € Hp,p 41
the problem of decision if A is separable, i.e. A € conv Hp, 11, ® Hy, 41, is
NP-Hard.

On the other hand, given a hermitian matrix A € H,,, it well known that one
can determine in polynomial time if A belongs or does not belong to Hy, 4 1.
See Problem 3. We will discuss the similar situation for conv(),, ® €, in
the §7.11.

Definition 7.8.7 Let V; be a finite dimensional vector space over F =

R,C with a norm || - ||; fori =1,...,k. Let V := ®F_ 'V, with the norm
| -1l. Then ||- | is called a cross norm if

k
(7.8.1) | @k xill = ] lIxilli
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for all rank one tensors.
Identify @F_, V¥ with V*, where (@F_£;)(®F_ x;) = H?:l f;(x;). Then
| -1 s called a normal cross norm if the norm || - ||* on V* is a cross norm

with respect to the norms || - || on V5 fori=1,... k.

See [Sch50] for properties of the cross norms. We discuss the following
known results needed in the sequel.

Theorem 7.8.8 Let V; be a finite dimensional vector space over F =
R,C with a norm || - ||; fori = 1,...,k. Let V := ®@%_ V,;. Then there

exists a norm || - || on V satisfying (7.8.7) Furthermore, there exist unique
norms || - |lmax; || * [lmin satisfying the following properties. First, || « ||max
and || - ||min are normal cross norms. Moreover ||z]|min < ||Z||max for all
z € V. Any cross norm || - || on V satisfies the inequality ||z|| < ||Z||max for

all z € V. Third, assume that || - || on V satisfies the equality

k
(7.8.2) | @k £ills = [T 16l for allfi € Vii=1,... k.
i=1
Le. || - ||z is a cross norm with respect to the norms || - || on V} for

i=1,...,k. Then ||z||min < ||z||o for all z € V. More precisely,
(7.8.3)
Bjj-lpae = cONV By, © ... @By By, = conv By ©... OBy

min

Proof. For simplicity of the exposition we let k& = 2. Define the set
B := conv B, ©®By.,. Clearly, B is a compact convex balanced that 0 is
in its interior. Hence there exists a norm [ - [|max such that B = By.,...-
We claim that |X @ ¥||max = |X|l1]|¥]]2. Clearly, to show that it is enough
to assume that [x||, = [[y||. = 1. Since x ® y € By|,... we deduce that
X ®¥|lmax < 1. Problem 7.4.5¢c yields that there exists f € S+, g € S5
such that

1=f(x) = [f(x))], vxi € By, 1=2g(y) 2 [f(y2)l, Yy € By,
Hence
(7.8.4) l=(fog)(xey) > |(f®@g)(z)| for all z € By ...

Hence x®y € OB |us = S|flmaes -6 X @Y ||max = 1. Therefore the norm
I - lmax satisfies (7.8.1). Let || - || be another norm on V satisfying (7.8.1).
Hence B, ©B)., C By, which yields B)..... = conv B, B, C B -
Therefore, ||z]] < ||Z||max-

We next observe that that || - ||. on V* satisfies the equality

=15
T max

(7.8.5) If @ gl = €] ]1g: for all £ € Vi, € V.
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Recall that ||f ® gll. = maxgep,, [(f ® g)(z)[. Use the (7.8.4) to deduce
(7.8.5). Hence ||Z||max is a normal cross norm.
Let || - ||» be the norm given by the unit ball conv By @By ; on V*.

Hence the above results show that || - ||, is a normal cross norm. Recall
that for any norm || - || on V* satisfying (7.8.5) we showed the inequality
[h]|; <[], for any h € V*. Define ||-[[min := |- [[5- Hence [|z]lmin < ||za-

The previous arguments show that || - ||min satisfies the equality (7.8.1).
Hence [|2]|min < ||2||max for all z € V. Also ||Z||min i @ normal cross norm.
O

Proposition 7.8.9 Let k > 1 be an integer. Assume that V,,...,Vy
are inner product spaces over F = R,C. Let V = ®§:1V1‘ with the inner

product induced by the inner products on V,,..., V. Assume that || -
1y -5l lles || - ]| are the induced norms by the corresponding inner products
on Vi,...,.Vi, V. Then || - | is a normal cross norm. If dim V; > 1 for
t=1,...,k then | - || is different from || - |lmaz and || - || min-

See Problem 7.

Theorem 7.8.10 Let U,V be finite dimensional vector spaces over
F =R, C with norms || - ||, ||| - ||| respectively. Identify W =V @ U* with
Hom (U, V), via isomorphism 6 : W — Hom (U, V), where (v ® f)(u) =
f(u)v for any f € U*. Then the minimal cross norm on || « |lmin on W
is the operator norm on Hom (U, V), where the norms on U* and V are
I - 1I* and ||| - ||| respectively. Identify W* with V* @ U ~ Hom (U*, V*).
Then the maximal cross norm ||« ||max on W is the conjugate to the operator

norm on Hom (U*, V*), which is identified with W*.
Proof. Let T € Hom (U, V). Then

T|| = max [||T(u)]|| = max g(T(u))].
1T = max Tl = max | )|

Let 0=1 : Hom (U, V) — V®U* be the isomorphism given in the theorem.
Then g(T(u)) = (g®@u)(0~*(T)). Let || - ||p be the norm given by the unit
ball conv By ©Bj.y on V* @ U ~ W*, as in the proof of Theorem 7.8.8.
Then

YT} = max =|(g®@u)(0 (1))
0 T = g ma = @ w7 (D)
Use the proof of Theorem 7.8.8 to deduce that ||T|| = ||¢(T)||min-
Similar arguments show that the conjugate norm to the operator norm
of Hom (U*, V*), identified with V* ® U ~ W* gives the norm || - || max on
Ww. O
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Use the above theorem and Problem 7.4.14 to deduce.

Corollary 7.8.11 Let U,V be finite dimensional inner product spaces
over F = R, C, with the corresponding induced norms. Identify W =V &
U* with Hom (U, V) as in Theorem 7.8.10. Then ||T||min = o1(T) and

dim V,
[T lmax = 32327~ oa(T).

More generally, given finite dimensional vectors spaces U;, V; over F =
R,C for i = 1,...,k we identify the tensor spaces ®*_, Hom (U;, U;) with
Hom (®F_,U;, ®%_ V;) using isomorphism

®*_ Hom (U;,V;) — Hom (®k U;, ®F_ V) satisfying
(7.8.6) U@ T (@ w) = @, (Tiw)
where T; € Hom (U;, V;),u; € Uy, i =1,..., k.

Theorem 7.8.12 Let U;,V; are finite dimensional vector spaces over

F = R,C with the norms || - |, ||| - ||l; respectively for i = 1,... k. Let
N;(-) be the operator on Hom (U;,V;) for i = 1,...,k. Let | - ||lmax De
the mazimal cross norms on U := ®@F_ U, and ||| - ||| be any cross norm

on V := ®%_V,. Then the operator norm N(-) on Hom (U, V), identified
with @F_ Hom (U;, V), is a cross norm with respect to the norms N;(+),i =
1,...,k.

Proof. Since B ... = ®%_ By, we deduce that for any T € Hom(U, V)
one has

NT) = max_[[[T(@w)]-
wi€By.; i€ (k)
Let T = ®¥_,T;. Since ||| - ||| is a cross norm on V we deduce
N(T) = max ®§, T;(w)l|| = max T ()| N, (
(T) uieBMmaMHl SYHCHI et Hlll )i = H

d

Problems

1. Let V,,V, be one dimensional subspaces with bases v,, v, respec-
tively. Let Cy = [—e,,2e,],C, = [—€,,3¢,]. Show that C; © Cy =
[—3(e; ® e,),6e; ® e,]. Hence £(Cy © C2) is contained strictly in
E(C1)®E(Cy). Lemma 7.8.2 yields that conv Cy ©Cqy = conv P,,, OP,,.
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2. Index the entries of C' € 2y, a8 C(; p),(j,q)- Show

(a) Assume that C € conv (), ® Q,. Then the entries of C' satisfy

ZC(%P Zc (i.p)G.q) for each i,j € (m), p,q € (n),
i=1 j=1

Zc(im)(],q Z Ci,p)(j,q) for each i,j € (m) p,q € (n).

p=1 q=1

S

(b) For m = n = 2 the standard conditions for 4 x 4 doubly stochas-
tic matrices, and the conditions in part 2a characterize the set
conv {2y ® Q.

(c) For m = n > 4 the standard conditions for n? x n? doubly
stochastic matrices, and the conditions in part 2a gives a set
which contains strictly conv Q,©,. Hint: Consult with [Fri08].

3. Show

(a) AeH, 1 ifand onlyiftrA=1and A >0.

(b) Ac H,, 4+ =det A>0.

(c) Assume that A = [a;;];;_; € H, and det A > 0. Then A > 0 if
and only det [a;;]j_;_; >0 forp=1,...,n — 1.

(d) Assume that A = [a;;]7;—, € Hy and det A=0. Find 0 #x €
C" such that Ax = 0. Let x,, = x and complete x,, to an

orthonormal basis x,,...,x,. Let A,_1 = [x]Ax;]| " ;.- Then

A,_1 € H,_1. Furthermore, A > 0 if and only if 4,,_1 > 0.

- HXH

4. Let 7 : C™*™ be the transpose map: 7(A) = AT. Show

(a) 7(A) is similar to A for any A € C"*™,

(b) 7 leaves invariant the following subsets of C™*":

R™*",Su(R), Sn(C), O(n, R), O(n, C),
U(?’l, R)v N(nv R)v N(n7 C)) an Hn,—i—a Hn,+,1~

5. On C™*™m" yiewed as C"*™ @ C™*"™ we define the partial transpose

Tpar as follows. Let C' = [c(;p) (j.g))icjmpeg=1] € C™™ @ C™™.
Them 7par(C) = [Eip). () limjmprg=1]: Where &), (i) = C(ia).(ip)
for i, j € (m),p,q € (n). Equivalently, Ty, is uniquely determined by
the condition Tpa (A ® B) = A® BT for any A € C™*", B € C"*".

Show
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(a) Tpar leaves the following subsets of C™"*™m™

and all the set of the form X ® Y, where X C C™*™ and
Y C C"*™ are given in Problem 4b. In particular the convex set
of separable states convH,, 1 © Hy 11 is invariant under the
partial transpose.

(b) Show that for m =2 and n = 2,3 C € H,,, is a separable state,
ie. CeconvH,, + 1 ©H, 11, if and only C, 74 (C) € Hpppp 1.
(This is the Horodecki-Peres condition [Hor96, Per96].)

6. Let the assumptions of Theorem 7.8.8 hold. Show

(a) Each z € V can be decomposed, usually in many ways, as a sum
of rank one tensors

N
k . .
zZ = E Qe X, Xjs € Vi, i=1,...,k, j=1,...,N,
i=1
k . . ..
where N = [[;_,dim V;. Then ||z|max is the minimum of

Z;VZI Hle |lx;:|l; over all the above decompositions of z.

(v) k
i =, max (@ 8@

7. Prove Proposiiton 7.8.9. Hint: To prove the first part of the problem
choose orthonormal bases in V,,..., V. To prove the second part
observe that || - || is smooth, while ||  |lmin, || - |[max are not smooth if
dimV;>1fori=1,...,k>1.

7.9 Variation of tensor powers and spectra

Definition 7.9.1 Let V,,V, be finite dimensional vector spaces over
F = R,C with norms || - ||1,| - |2 respectively. Let pu : V, — V, be a
nonlinear map. The map p has a Fréchet derivative at x € U, or simply
differentiable at x, if there exists a linear transformation Ty € Hom (U, V)
such that
p(x+u) = p(x) + Tru + o(u)[ul,

where |Jo(u)||. — o uniformly as ||ul|, — o. Denote Du(x) := Tx. p is
differentiable, if it has the Fréchet derivative at each x € V,, and Du(x) is
continuous on V,. (Note that by choosing fized bases in V,, V, each Du(x)
is represented by a matriz A(x) = [a;;(x)] € F™*", wheren =dim V,,m =
dim V,. Then a;;(x) is continuous on V, for each i € (m),j € (n).)

invariant: Spn(R), Hyn,
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Since all norms on a finite dimensional vector space are equivalent, it is
straightforward to show that the notion of Fréchet derivative depend only
on the standard topologies in V,, V,. See Problem 1. For properties of the
Fréchet derivative consult with [Die69].

Proposition 7.9.2 Let V,,V, be finite dimensional vector spaces over
F = R,C with norms || - |1, - |2 respectively. Assume that p : V, —
V., is differentiable. Then for any x,y € V, the following equality and
inequalities holds.

(7.9.1) pu(y) — p(x) = / Du((x = t)x +ty)(y — x)dt,

(7.9.2) [|u(y) = p(x)[]2 < lly — x| / [Du((x = t)x + ty)||,2dt
o
< lly = x|l max [[Du((x —t)x +ty)|.2
tefo,1]

(7.9.1) and (7.9.2) are called here the mean value theorem and the mean
value inequalities respectively.

Proof. Let x,u € V, be fixed. Clearly, the function p(x + tu) is a
differentiable function from R to V,, where

du(x + tu)

dt
Letting u = y — x and integrating the above inequality for ¢ € [0, 1] we get
(7.9.1). Replacing the integration in (7.9.1) by the limiting summation and
using the triangle inequality we obtain

(7.9.3) = Du(x + tu)u.

[u(y) = ()2 < /1 Du((r = t)x +ty)(y —x)[ldt <

1
/0 IDA((L = )% + 3]s all (v — )l ud <
Iy = ], ma [Da((3 = Ox+ 1)

a

Theorem 7.9.3 Let V be a finite dimensional vector space. Let k € N.
Denote VB := V®...® V. Consider the map 6y : V — V& where
————

k
0p(x) =x®...®x. Then

(7.9.4) ’

Dé(x) (1) =u®X®...0X+XQURX®...®X+...+X® ... ® XQu.
N——— N———— N———
k—1 k—2 k—1
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Let || - || be a norm on V and assume that || - || is a cross norm on V& :
k

(7.9.5) %, @ %2 @ ... @ xlle = [ [ Ixill forx.,...,xx € V.

Denote by Ni(T) := ||T|[.1,1-1. the operator norm of T € Hom (V, V&),

Then

(7.9.6) Ni(Dé(x)) = kx|~

Proof. Fix x,u € V. For t € R expand the vector d;(x + tu) in powers
of t. Then

Op(x+tu) =0(x)+t(uRX®...X+XQURX®...X+
———— ————
k—1 k—2
..+ xX®...@x®u)+ higher order terms in ¢.
—————
k-1

Hence (7.9.4) holds. Apply the triangle inequality to (7.9.4) and use the as-
sumption that ||| is a cross norms to deduce the inequality ||Ddg(x)(u)||x <
E||x|[*=*|lul|. Hence Ny(Ddr(x)) < k|x||*=*. Clearly, equality holds if
x = 0. Suppose that x # 0. Then ||Ddy(x)(x)||x = k|x|*. Hence

N (Ddx(x)) > k||x||*~*, which establishes (7.9.6). O

Theorem 7.9.4 Let U be a finite dimensional vector space over F =
R, C. For an integer k > 1 consider the map 6y : Hom (U, U) — Hom (U, U)®*
~ Hom (U®*, U®x) given by 6,x(T) =T ®...QT. Let Wy, C U®k be a
S ——

k

subspace which is invariant for each 6y(T),T € Hom (U, U). Denote by
ok : Hom (U, U) — Hom (W, W},) the restriction map 6,(T)[Wy. As-
sume that || - || is a norm on U. Let | - || be the mazimal cross norm
U Let |||, Il - l&, |l - [||x be the induced operator norms on Hom (U, U),
Hom (U, U)® Hom (Wy, W},) respectively. Let Ni(-), Ny (-) be the opera-
tor norm on Hom (Hom (U, U),Hom (U, U)®*),

Hom (Hom (U, U),Hom (Wg, Wy,)) respectively. Then

(7.9.7) Ni(DSx(T)) = k|||, Ni(Dox)(T)) < k||T|**
for any T € Hom (V,V).

Proof. Theorem 7.8.12 yields that the operator norm ||-||x on Hom (U®* U®*),
identified with Hom (U, U)®*_ is a cross norm with respect to the operator
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norm on Hom (U, U). Theorem 7.9.3 yields the equality in (7.9.7). Ob-
serve next that Dy (T) is Dx(T)|[Wy. Hence Ny (Ddy(T)) < N(Dép(T)),
which implies the inequality in (7.9.7). O
A simple example of Wy, is the subspace /\k U. See Problem 3.

Theorem 7.9.5 Let U be an n-dimensional vector space over F = R, C,

with a norm ||-||. Denote by ||| the induced operator norm on Hom (V, V).
Then for A, B € Hom (U, U)
(7.9.8)

A" —1B]"

det A —det B| < ||A— Bl | < n||A = Bl|[max(|[A], | BI)]" .

IA[ = 11Bll
Here “Z:Zﬂ = na™ ! for any a € C. The first inequality is sharp for
A =al,,B =bl, for a,b > 0. The constant n in the second inequality is
sharp.

Proof. In U®" consider the one dimensional invariant subspace W, :=
A" U for each 6, (T),T € Hom (U, U). See Problem 3. Let e, ..., e, be a
basis in U. Then e, Ae, A ... A e, is a basis vector in /\" U. Furthermore

0n(T)(e, Nes AN...Ney) = (det T)e, Nes A... Ney.

See Proposition 5.2.7. Note that 6, (T) := 6, (T)| A" U is the above opera-
tor. Observe next that any @ € Hom (A" U, A" U), is of the from

Qle, Nes A...Ney) =te, Nes A... ANep.

Hence the operator norm of @ is |t|. We now apply Theorem 7.9.4 to this
case. The inequality in (7.9.7) yields

N,.(Dd,(T)) < n||T|" .

Next we apply Proposition 7.9.2, where V, := Hom (U,U) and V, =
Hom (A" U, \" U) equipped with the operator norms, and u(T) = 6, (7).
So [|u(A) — u(B)||2 = |det A—det B|. The inequality (7.9.2) combined with
the inequality in (7.9.7) yield

1
|det A —det B| < n|A— B / (1 —t)A+tB|" tdt <
0
1
n||A— B /O (X =t)|| Al +¢|BI) " dt =

A" = IB"

| n—1 e )
A - B = [lA= Bl _ A" Bl" =
TAT= 1B 2

nl|A — Bl|[max(]| A, | BID"~".
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This shows (7.9.8). Recall that ||zI|| = |z| for any z € F. Hence, for
A=al,B =0l and a,b > 0 equality holds in the first inequality of (7.9.8).
To show that the constant n can not be improved let A = (1+2)I,B =1,
where > 0. Then (7.9.8) is equivalent to the inequality (1 + z)" —1 <
nz(l + z)"~1. Since lim,~ o % = n the constant n can not be im-

proved. O

Definition 7.9.6 Let X,, be the group of permutations o : (n) — (n).
Let S={\1,...; 2}, T ={u1,...,pn} be two multisets in C containing n
elements each. Let

dist(S, T) = max min |A; — wil,
jE(n)i€(n)

hdist(S, T) = max(dist(S, T), dist(T, S)),

dist(S, T) = mi A = fhoi |-

pdist(S,T) = min max |\ — o)

Note: dist(S, T) is the distance from S to T, viewed as sets; hdist(S, T) is
the Hausdorff distance between S and T, viewed as sets; pdist(S, T) is called
permutational distance between two multisets of cardinality n. Clearly

hdist(S, T) = hdist(T,S), pdist(S,T) = pdist(T, S),
(7.9.9)
dist(S, T) < hdist(S, T) < pdist(S, T).

See Problem 4.

Theorem 7.9.7 Let U be an n-dimensional vector space of C with the
norm || - ||. Let || - || be the induced operator norm on Hom (U,U). For
A,B € Hom (U, U) let S(A),S(B) be the eigenvalue multisets of A, B of
cardinality n respectively. Then

n—1

(7910)  pdist(S(A),5(B)) < 4e%n||A — B max(||A[ [|B)] 7
To prove the theorem we need the following lemma.
Lemma 7.9.8 Let the assumptions of Theorem 7.9.7 holds. Define

(7.9.11) h(A, B) := tren[aui] dist(S((1 — t)A +tB), S(B)).

Then

(7.9.12) pdist(S(A), S(B)) < (2n — 1)h(A, B).
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Proof. Let S(A) = {A\(A),...,\n(A)},S(B) = {\M(B) An(B)}.
Let D(z,r) := {w € C,|w — z| < r}. Denote Ky = UL D()\; ( ), ( ,B)).
Then Kg is a closed compact set, which decomposes as union of a k € (n)
connected components. Let A(t) = (1—t)A+tB. Since dist(S(A(t)),S(B)) <
h(A,B) we deduce that Kp contains S(A(t)) for each t € [0,1]. As S(A(t))
various continuously for ¢ € [0, 1], each connected component of K contains
a fixed number of the eigenvalues of S(A(t)) counting with their multiplic-
ities. Since A(1) = B, each connected component of Kp contains a fixed
number of the eigenvalues of A and B counting with their multiplicities.
Rename the eigenvalues of B such that indices of the eigenvalues of A and
B are the same in each component of Kg.

Let C = UY_D(z,h(A,B)) be such a connected component, where
Z1,...,%p are p distinct eigenvalues of B. C contains exactly ¢ > p eigen-
values of A and B respectively. We claim that if A € S(A) N C then
max;epy [A — 2| < (2p — 1)h(A, B). Consider a simple graph G = (V, E),
where V' = (p) and (7,j) € E if and only if |z; — z;| < 2h(A, B). Since C
is connected it follows that G is connected hence the maximal distance be-
tween two distinct point in G is p — 1. So |z — z;| < 2(p — 1)h(4, B).
Since |A — z;| < h(A4, B) for some ¢ € (p), it follows that | — z;| <
(2p — 1)h(A,B) < (2n — 1)h(A, B). Therefore for this particular renam-
ing of the eigenvalues of B we have the inequality |X\;(4) — \;(B)| <
(2n—1)h(A,B),i=1,...,n. O

Problem 5 shows that the inequality (7.9.12) is sharp.

Proof of Theorem 7.9.7. First observe that

n

dist(S(A), S(B))™ < max | | [ (Ai(A) = A(B))| =

i€(n) -
=1
max det (\(A)T ~ B) — det ((A)] = 4)] <
1€(n
max |det (zI — B) —det (21 — A)|.
2€C,|z|<p(A)

We now apply (7.9.8) to deduce that for |z] < p(A) < ||A|| we have

|det (2I — B) — det (21 — A)| < n||A — Bl|[max(||2I — Al ||z — B|)]"~*
< n||A = Bl|[max(|z] + [|All, (|2 + [B))"~" <
nl|A = Bl[[max(2|| Al [|A]| + [|B]))"~".

Thus

(7.9.13)  dist(S(A),S(B)) < nv | A — B = [max(2||Al|, [|A]| + |BI)}*=
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We apply the above inequality to A(t) for each t € [0,1]. Clearly, for
te€[0,1]

[A@ < (1= )[All + ]| Bl| < max([[A]l, | Bl) =
max (2[[A@)|, [[A@)[| + [ B]) < 2max(||Al, [|B]])-
Also ||A(t) — B||= (1 —1t)||A — B|| < ||A — B||. Hence we deduce

n—

(7.9.14) h(A, B) < nw||A = BI|= [2max(|A]l, | Bl)] .

Use (7.9.12) to obtain

n—

A — B||= [2max(|A], |B[)] =

(7.9.15) pdist(S(A),S(B)) < (2n — 1)n~

Use the inequality

(7.9.16) (2n — 1)2(%)% < 4n(g)% < 4ne? forn € N,
to deduce (7.9.10). (See Problem 6.) O

The inequality (7.9.10) can be improved by fact 2 using the following the-
orem [EJRS83]. ( See Problem 7.)

Theorem 7.9.9 Let U be an n-dimensional vector space of C. For
A,B € Hom (U, U) let S(A),S(B) be the eigenvalue multisets of A, B of
cardinality n respectively. Then

n+1
2

(7.9.17)  pdist(S(A),S(B)) < (2|——] — 1) max(h(A, B),h(B, A)).

The above constant are sharp.

Problems
1. Let p: V, — V, be a nonlinear map. Show

a ssume that p has a Fréchet derivative at x with respect to
A h h Fréchet derivati ith
given two norms || - [|1,,]| - ||[2. Then u has a Fréchet derivative
at x with respect to any two norms | - |4, , || - ||b-

(b) Suppose that p has a Fréchet derivative at x. Then p is contin-
uous at x with respect to the standard topologies on V,, V..
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¢) Assume that p has a Fréchet derivative at each point of a com-
A that u h Fréchet derivati t h point of
pact set O C V,. Then p: O — V, is uniformly continuous.

2. Let U,,..., Ui, V,,..., Vi be finite dimensional inner product vec-
tor space overs F = R,C. Assume that U := @} U,V = @F |V,
have the induced inner product. Identify Hom (U, V) with

Hle Hom (U;, V;). Show

(a) The operator norm on Hom (U,V), with respect to Hilbert
norms, is a normal cross norm with respect to the operator
norms on Hom (U;,V;), the Hilbert norms, for ¢ = 1,... k.
Hint: Express the operator norm on Hom (U;, V;) and its con-
jugate norm in terms of singular values of T; € Hom (U;, V;) for
i=1,...,k.

(b) AssumethatU, =V, =... =
Hom (U, U). Then N (6x(T))
erator norm on Hom (U,,U,).

Uk = Vk Let (5k : HOm (U17U1) -
= k||T||*~1, where || - || is the op-

3. Let U be a vector space over F = R,C of dimension n > 1. Let
k € [2,n] be an integer. Show

(a) W}, := A" U is an invariant subspace for each d;(T) given in
Theorem 7.9.4.

(b) Assume that U is an inner product space. Let T € Hom (U, U),
and denote by ||T|| = 01(T) > ... > ox(T) > ... the singular
values of T'. Then

k
N&(Dy(T)) = Z o1(T)...0i 1(T)oi1(T) ... ox(T).

In particular, Nj(Dog(T)) < koy (T)*' = k| T||*~! = N (D6 (T)).
Equality holds if and only if 01(T) = ... = 0% (T). Hint: Con-
sult with [BhFS1].

4. Prove (7.9.9).

5. Let A = diag(0,2,4,...,2n — 2), B = (2n — 1)I,, € R**". Show that
in this case equality holds in (7.9.12)

6. Using the fact that minycg ) —tlogt = % deduce the last part of
(7.9.16).

7. Show
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(a) Let n =2k + 1 and

A = diag(0,...,0,2,4,...,2k),
——
k+1
B = diag(1,3,...,2k — 1,2k +1,...,2k + 1).

k+1

Then equality holds in (7.9.17).
(b) Let n = 2k and

A = diag(0,...,0,2,4, ...,2k),
——
k
B =diag(1,3,...,2k — 1,2k +1,...,2k + 1).

k

Then equality holds in (7.9.17).

(¢) max(h(A, B),h(B,A)) is bounded above by the right-hand side
of (7.9.14).
(d) Deduce from (7.9.17) and the previous part of the problem the
improved version of (7.9.10).
(7.9.18)
pdist(S(A),S(B)) < 2e2n[A — B = fmax(|All, [BI)} =

7.10 Variation of permanents

Definition 7.10.1 For A = [a;;] € D™*" the permanent of A, denoted

as perm A
perm A = Z H Ao (i)

oe¥, i=1

where ¥, is the group of permutations o : (n) — (n).

The determinant and the permanent share some common properties as
mulitlinear functions on D™*™, as Laplace expansions. However, from the
computational point of view the determinants are easy to compute while
permanents are hard to compute over all fields, except the fields of char-
acteristic 2. (Over the field of characteristic 2 perm A = det A.) For
A € Z1*" the permanent of A has a fundamental importance in combina-
torics, and usually is hard to evaluate [Val79]. The main aim of this section
is to generalize the inequality (7.9.8) to the permanents of matrices. The
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analog of (7.9.8) holds for the norms ¢,,p € [1,00] [BhE90]. However, it
was also shown in [BhE90] that the analog of fails for some operator norm
on C™*".

Theorem 7.10.2 Let || - || be a norm on C", and denote by || - || the
induced operator norm on C". Let A, B € C"*". Then
(7.10.1) |[perm A — perm B| <
1A= BIAlA" = [IBI") , 4" = B[ ([[A[]" — |1B[|")
2(1Al = 11BII) 2| A = 11B*])

To prove this theorem we need two lemmas. The first lemma gives the
following formula for the standard numerical radius of a square matrix
with complex entries.

Lemma 7.10.3 Let A € C"*™. Then

(7.10.2) ra(4) = max p(%

).

In particular ro(A) < L(| Al + [|A*||) for any operator norm on C™.

Proof. Let z € S',B = zA. Assume that x is an eigenvector of (B +
B*) of length one corresponding to the eigenvalue A\. Then

Al = IR(x"(zA)x)] < [x*(zA)x| = [x"Ax| < ry(A).

Hence the right-hand side of (7.10.2) is not bigger its left-hand side. On
the other hand there exists x € C",x*x = 1 and z € C, |z| = 1 such that
ro(A) = |x*Ax| = x*(2A)x. For this value of z we have that

A+ ZzZA A+ zZA
ra(4) < A (5 ;Z EE ;Z )-
Clearly,
2A+zA zA+zZA Al +|A
o : V< | ! IIS” ||2|| II.
Hence r5(A) < L(||A[| + | A*]). .

For A € C™"*", view the matrix ®" A as a linear operator on ®"C",
which is identified with C*". wo(®"A),ro(®"A) are the numerical range
and the numerical radius of ®" A corresponding to the inner product (-, )
on ®"C" induced by the standard inner product y*x on C".



394 CHAPTER 7. CONVEXITY

Lemma 7.10.4 Let A € C"*™. Then perm A € wy(®"A).

Proof. Assume that e; = (8tai,,...,0n) ,i € {(an) is a standard basis
in C". Then ®}_,e;;, where i; € (n),j =1,...,n, is the standard basis in
Q"C™. A straightforward calculation shows that

1
(7.10.3) (®"Ax,x) =perm A, x = — Z Qi €q(i), (X,X) = 1,
m oEX,

where ¥, is the set of permutations o : (n) — (n). (See Problem 1.) Hence
perm A € wy(®"A). O

Proof of Theorem 7.10.2. Since x given in (7.10.3) does not depend

on A we deduce perm A —perm B € wy(®"A—®"B). Let |||-]|| the maximal
cross norm on @"C" induced by the norm || - || on C™. Denote by ||| - ||| the
operator norm on ||| - ||| on ®C"™*™, induced by the norm ||| - ||| on ®"C™.

Use the definition of r2(®"A — ®"B) and Lemma 7.10.3 to deduce
(7.10.4) |[perm A — perm B| < r3(®"A — @"B <

1 n n n o Ax n p*

FUlle™ A - Bl + ]| @" A" — @"B||)).

Theorem 7.8.12 implies that the operator norm ||| - ||| on ®*C"™*", induced
by the norm ||| - ||| on ®™C™, is a cross norm with respect to the operator
norm || - || on C"*™. Observe next

n—1
®"A-@"B=) (&'B)®(A-B)@" " A.
=0

(Here ®° A means that this term does not appear at all.) Use the triangular

inequality and the fact that the operator norm ||| - ||| is a cross norm we
deduce
n—1 )
l[e" A—e"Bl[| <Y |I(®B)©(A-B)e" ' Al|| <
=0
n—1-—1
: —1i _ A= BI(AIM = 11BI™)
IBI*IlA = BIl A" = :
2 Al = 5]
Apply the above inequality to (7.10.4) to deduce the theorem. a

Problems
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1. Prove (7.10.3).
2. Let the assumptions of Theorem 7.10.2 hold. Show that

A" — 1B
7.10.5 perm A —perm B| < |A - B||—++——=1—

in the following cases.
(a) A= A* B = B*.
(b) The norm || - || on C™ is || - ||2.

3. Show that (7.10.5) holds for the norms || - |1, || - ||cc using the following
steps.

(a) For A = [a;;] € C" denote |A| := [|a;;|] € RI™. Show

n n
perm A] < perm [A] < T Jayi

i=1j=1

(b) Let A = [a,,...,a,],B = [by,...,b,] € C"*", where a;,b; are
the ¢ — th columns of A, B respectively, for i =1,...,n. Let

CO = [al - b13a27"'7an]7 C(’I'L—l = [bla"-abn—lyan - bn]a

Ci=1[b,,...,b;,a;4, —bjt1,8i40,...,8,], fori=1,...,n— 2.

Then

n
perm A — perm B = Zperm Ci—1 =
i=1

n
|[perm A — perm B| < Zperm |Ci—1].
i=1

(c) Recall that ||Ally = || [A] || = max;cy) [|ai]|.. Then
I Cica I < lla; = bill I BIL AT < [|A= BILIBI A

for i =1,...,n. Hence, (7.10.5) holds for | - ||; norm.

(d) Use the equalities perm AT = perm A, ||[Al = |AT|; deduce
that (7.10.5) holds for || - ||so norm.
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7.11 The complexity of conv (2, ® 2,

In this section we show that there a linear programming problem on §2,, ,, :=
conv 2, ® ,,,, whose solution gives an answer to the subgraph isomor-
phism problem, that will be stated precisely below. The subgraph isomor-
phism problem belongs to the class of N P-complete problems [GaJ79]. This
shows, in our opinion, that the number of half spaces characterizing €, ,,
is probably not polynomial in max(m,n), which is analogous to Theorem
7.8.6.

By graph G in this section we mean an undirected simple graph on the
set of vertices V and the set of edges F. Here E is a subset of unordered
pairs P(V) : {(u,v),u # v € V'}, where (u,v) and (v,u) are identified. We
will denote by G = (V, E) the graph to emphasize the set of vertices and
edges of GG. The degree of v € V', denoted by deg v is the number of edges
that re connected to v, i.e. #{u, (v,u) € E|. Clearly, ) _, degv = 2#FE.
A vertex v € V is called isolated if deg v = 0. Denote by Vig, the set of
isolated vertices in V. A subgraph of G; = (V1, E1) of G is given by the
condition V; C V, E; C ENP(V).

Definition 7.11.1 Let G = (V,E),G' = (V',E’) be two undirected
simple graphs. Then G and G’ are called isomorphic if the following con-
dition hold. There is a bijection ¢ : V\{Viso} — V'\{Vii,} such that
(u,v) € E if and only if (¢p(u),p(v)) € E'. G’ is called isomorphic to a
subgraph of G if there exists a subgraph G1 of G such that G’ is isomorphic
to Gl.

We note that our definition of isomorphisms of two graphs are slightly dif-
ferent from the standard definition of graph isomorphism. Since the set of
isolated vertices in graph are easily identified, i.e. (#V)? steps, from the
complexity point of view our definition is equivalent to the standard defi-
nition of graph and subgraph isomorphisms. We recall that the subgraphs
isomorphism problem, which asks asking if G’ is isomorphic to a subgraph
of G, is an N P-complete problem [GaJ79].

We now relate the SGIP to certain linear programming problems on
Qpn. We first recall the notion adjacency matrix of G. Assume that
#V = m and label the vertices in V as 1,...,m, i.e. we let #V = (m).
Then the incidence matrix A(G) = [ai;]72,;—; € {0,1}™*™ is a symmetric
matrix with zero diagonal such that a;; = 1 if and only the edge (3, )
is in F. Note that a different labeling of the elements of V' gives rise
to the adjacency matrix A’ = PA(G)P' for some permutation matrix
P € P,,. Thus the graph G gives rise to the conjugacy class of matrices
A(G) = {PA(G)PT, P € P,,}. The following result is straightforward, see
Problem 1.
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Lemma 7.11.2 LetG = (V, E),G' = (V', E') are two undirected graphs.
Assume that #V = #V'. Then G and G’ are isomorphic if and only if
A(G) = A(G).

We next introduce the notion of the vertex-edge incidence matrix B(G) €
{0,1}#V>*#E - Assume that G = (V, E) and let m = #V,n#E. Label the
vertices of V and E by (m) and (n) respectively. Then B(G) = [b;;|;27_; €
{0,1}™*™ such that b;; = 1 if and only the edge j contain the vertex i. A
different labeling of V' and E gives rise to the vertex-edge incidence matrix
B’ = PB(A)Q for some P € P,,,Q € P,. Thus the graph G gives rise to
the equivalence class of matrices B(G) = {PB(G)Q, P € P,,Q € Py }.

Lemma 7.11.3 Let G = (V, E),G' = (V', E') are two undirected graphs.
Assume that #V = #V' #E = #E'. Then G and G’ are isomorphic if
and only if B(G) = B(G").

We now restate the SGIP in terms of bilinear programming on €, x €.
It is enough to consider the following case.

Lemma 7.11.4 Let G' = (V/,E'),G = (V,E) and assume m' :=
#V' <mi=#V,n' = #E <n:=#E. Let B(G') € {0,1}"*" B(G) €
{0,1}™*™ be the vertez-edges incidence matrices of G' and G. Denote by
C(G") € {0,1}™*™ the matriz obtained from B(G') by adding additional

m—m' and n —n' zero rows and columns respectively. Then

(7.11.1) tr(C(G")QB(A)T P) < 2n'.

max
PEPm,QEP,
Equality holds if and only if G' is isomorphic to a subgraph of G.

Proof. Let By = [b;;1]["5", := PTB(A)Q" € B(G). Note that B;

i=j=1
has exactly the same number of ones as B(G), namely 2n, since each edge
is connected is connected to two vertices. Similarly C(G") = [ei]i27,

has exactly the same number of ones as B(G'), namely 2n’. Hence the
(C(G"), By) = tr(C(G1)B{) < 2n’. Assume that tr(C(G;)By ) = 2n’. So
we can delete 2(n — n’) ones in B; to obtain C(G’). Note that deleting
2(n—n') from By, means to delete n —n' edges from the graph G. Indeed,
assume c;; = b;;1 = 1. So the vertex ¢ is connected to the edge j. Hence
there exists another vertex i’ # i such that ¢;;; = 1. As tr(C(G")B{) = 2n’
we deduce that by; 1 = 1. Hence, if we rename the vertices and the edges
of G corresponding to By we deduce that G’, represented by the matrix
B(G"), is a subgraph of G. O

We now show how to translate the maximum in (7.11.1) to linear pro-
gramming problem on 2, ,. As in §2.8 for F' € R"*™ let F' € R"™
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be a vector composed of the columns of F, i.e. first we have the coor-
dinates of the first column, then the coordinates of the second column,
and the last n coordinates are the coordinates of the last column. Hence
XFY = (YT ® X)F, where YT ® X is the Kronecker tensor product.

Lemma 7.11.5 Let C, B € R™*™. Then

11.2 t B'P) = N ZB.
(7.112) peAl p 1(CQBP) = max (C)

Proof. Since Q7 = Q and £(Q,,,) = P, we deduce

max  tr(CQB'P)= max tr(CYB'X).
PeEPm,QEPn X€Q,YeQ,

Observe next that
tr(CYBTX) =tr(CT(X'BY ") = () (Y 9 X)B.

As Q,, = conv Q,, © Q,,, we deduce (7.11.2). O

In summary we showed that if we can solve exactly the linear pro-
gramming problem (7.11.2), using Lemma 7.11.4 we can determine if G’
is isomorphic to a subgraph of G. Since the SGIP is NP-complete, we
believe that this implies that for general m,n the number of half spaces
characterizing €,, ,,, can not be polynomial.

Problems
1. Prove Lemma 7.11.2.

2. Prove Lemma 7.11.3.

7.12 Vivanti-Pringsheim theorem and appli-
cations
We start with the following basic result on the power series in one complex

variable, which is usually called the Cauchy-Hadamard formula on power
series [Rem98, §4.1].
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Theorem 7.12.1 Let

(7.12.1) f(z)=> aiz", a;€Cii=0,1,..., andz € C,
=0

be power series. Define

(7.12.2) R=R(f) = !

—_— ﬁ e [0’ OO].
lim sup,; |a;|7

(R-is called the radius of convergence of the series.) Then

1. For R = 0 the series converge only for z = 0.

2. For R = oo the series converge absolutely and uniformly for each
z € C, and f(z) is an entire function, i.e. analytic on C.

3. For R € (0,00) the series converge absolutely and uniformly to an
analytic function for each z,|z| < R, and diverge for each |z| > R.
Furthermore, there exist (,|C| = R, such that f(z) can not be ex-
tended to an analytic function in any neighborhood of ¢. (C is called
a singular point of f.)

Consider the Taylor series for the function complex valued i
1 o~
= Z 2.
=0
Then R = 1, the function L is analytic in C\{1}, and has a singular

point at z = 1. Vivanti-Pringsheim theorem is an extension of this example
[Viv93, Prig4].

Theorem 7.12.2 Let the power series f(z) = Y o iz’ have positive
finite radius of convergence R, and suppose that the sequence a;,1 = 0,1,...,
is eventually nonnegative. (Le. all but finitely many of its coefficients are
real and nonnegative.) Then ¢ := R is a singular point of f.

See [Rem98, §8.1] for a proof. In what follows we need a stronger version
of this theorem for rational functions, e.g. [Fri78b, Thm 2]. Assume that
f(2) is a rational function with 0 as a point of analyticity. So f has power
series (7.12.1). Assume that f is not polynomial, i.e. R(f) € (0,00). Then
f has the following form.

N pi

(7.12.3) f&=P@)+) Y, (1_bjw

i=1 j=1

Pe (C[Z]a)\hbpi,i € C\{O},)\Z 7é A for i # i.
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Note that
1

7.12.4 R = —
(712.0 (=i

Definition 7.12.3 Let f(z) be a rational function of the form (7.12.5).
Let p := max|y,|=g(s)-1 pi- Denote

_ bp;i
fprm = Z 7(1 — )\Zz)p

i\ =R(f)~" and pi=p

fprin 18 called the principle part of f, i.e. f — forin does not have poles of
order p on |z| = R(f).

Theorem 7.12.4 Let f(z) be a rational function of the form (7.12.3).
Assume that the sequence of coefficients in the power expansion (7.12.1) is
eventually nonnegative. Then

1. The set {\1,..., AN} is symmetric with respect to R. That is, for
each i € (N) there exists i' € (N) such that \; = \yr. Furthermore
pi =Dir, and bj; = by forj=1,...p; andi=1,...,N.

2. After renaming the indices in (N) we have: A\ = ﬁ, [Ail = A1 for
i=2,...,M, and |\;| > A\ fori> M. (Here M € [1,N].).

3. Let p := p1. There exists an integer L € [1, M| such that p; = p for
i€ [2,L], and p; < p fori> L.

4. bp1 > 0 and there exists m € [1,L] such that |by;| = bp1 for i =
1,....,m and |by;| < by forie[m+1,L]|.

5. Let ( = e After renaming the indices 2,...,m, \j = ("1 for
i=2,...,m. Furthermore there exists an integer | € [1,m] such that
bpi =0V, fori=2,...,m.

6. forin(C2) = C_lfprin(z)-

Proof. We outline the major steps in the proof of this theorem. For all
details see the proof of [Fri78b, Thm 2]. By considering g(z) = f(z) + P;
for some polynomial P;, we may assume that the MacLaurin coefficients
of g are real and nonnegative. AS gprin = fprin, Without loss of generality
we may assume that the MacLaurin coefficients of f real and nonnegative.

Hence f(z) = f(z) for each z where f is defined. This shows part 1.
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Part 2 follows from Theorem 7.12.2. For simplicity of the exposition
assume that R(f) = 1. Recall that for each singular point \;* = \; of f
on the circle |z| = 1 we have the equality

(7.12.5) bp, i = h/ni(l — )P (T,

In particular b,, 1 = lim, ~ (1 — r)P* f(r) > 0. Since by, 1 # 0 we obtain
that b,,,1 > 0. Let p := p;. Since all the MacLaurin coefficients of f are
nonnegative we have the inequality |f(z)| < f(|z|) for all |z|] < 1. Hence
lim supr/l(lfr)p\f(j\irﬂ < b, 1. This inequality and (7.12.5) implies parts
3- 4.

For m = 1 parts 5- 6 are trivial. Assume that m > 1. Let b,; =
Nibp1, M| = 1 for i = 2,...,m. In view of the part 1 for each integer
i € [2,m] there exists integer i’ € [2,m] such that \; = Ay, 7 = 7.
Consider the function

9(2) = 2f(2) = nif (Niz) — i f (Niz) = Z 201 — R(miX!))a; 2.

j=0

So the MacLaurin coefficients of g are nonnegative. Clearly R(g) > 1, and
if g has a pole at 1, its order is at most p — 1. This implies the equality

2fprin(z) - nifprin()\iz) - ﬁifprin(j\iz) =0.

Therefore the set {\1,..., A} form a multiplicative group of order m.
Hence, it is a group of of all m-roots of unity. So we can rename the indices
2,...,msuch that \; = 0~V fori =1,...,m. Similarly, n; = 1,72,...,7m
form a multiplicative group, which must be a subgroup of m roots of 1. Fur-
thermore n; — \; is a group homomorphism. This shows part 5. Part 5
straightforward implies part 6. O

Definition 7.12.5 Let S = {A1,...,A\n} C C be a finite multiset. ILe.
a point z € S appears exactly m(z) > 1 times in S. Denote

1. r(S) := maxyes |7].
2. For any t > 0 denote by S(t) the multiset SN {z € C, |z| = t}.

3. For an integer k € N denote by si(S) :== > i, AF the k — th moment
of S. Let so(S) = n.

4. Forz = (z,,...,z2n)" € CYN denote by oy (z) = D i<y < ip <N Fia e Fins
fork=1,..., N the elementary symmetric polynomials in zy1,...,zN.
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5. Denote z(S) = (Ai,..., )" € C". Then ox(S) := o(2(S)) for
k=1,...,n are called the elementary symmetric polynomials of S.

S is called a Frobenius multiset if the following conditions hold.

w2l

1. S=S.
2. r(S) €8S.
3. m(z) =1 for each z € S(x(9)).
2my/ =T

4. Assume that #S(r(S)) =m. Then {(S=S for{=e¢" m

A simple example of Frobenius multiset is the set of eigenvalues, counted
with their mulitplicities, of a square nonnegative irreducible matrix.

Theorem 7.12.6 Let S C C be a multiset. Assume that the moments

sk(S),k € N are eventually nonnegative. Then the following conditions
hold.

1. r(S) € S.
2. Denote p:=m(r(S)). Assume that A € S(x(S)). Then m(\) < pu.

3. Assume that r(S) > 0 and suppose that \y = r(S), A2, ..., Am are all
the distinct elements of S satisfying the conditions |\;| = r(S), m(\;) =
w fori=1,....,m. Then 7?—5),2 =1,...,m are the m distinct roots
of 1.

J. Let ¢ = ™5 . Then ¢S(x(S)) = S(x(9)).

5. If r(S) > 0,u = 1 and none of the other elements of S are positive,
then S is a Frobenius multiset.

Proof. For a finite multiset S C C define

(7.12.6) fs(z) =) - _1 == > si(S)z~.
k=0

A€S

Apply Theorem 7.12.4 to deduce the parts 1-4.

Assume that r(S) is the only positive element of S and p=1. If m =1
then S is a Frobenius set. Suppose the m > 1. Consider the function
9(2) = 2fs(2) — fs(Cz) — fs(Cz). We claim that g is the zero function. Sup-
pose to the contrary that g # 0. In view of 4 we deduce R(f) < R(g) < occ.
Since the MacLaurin coefficients of g are eventually nonnegative, Theorem
7.12.4 yields that g must have a singular point £ > 0 whose residue at £ is
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positive. Since p(A) is the only positive eigenvalue of A, all other positive
residues of g, coming from 2 fg are not located on positive numbers. Hence
the residues of g at its poles located on the positive axes are negative in-
tegers. The above contradiction shows that g = 0, i.e. S is a Frobenius
multiset. O

Let A € C"*™ and assume that S(A) is the eigenvalue multiset of A. Then

oo

(7.12.7) foay(z) = tr(I — zA)™h = "(tr AY)2".
=0

Corollary 7.12.7 Let A € C™"*™. Denote by S be the multiset con-
sisting of all eigenvalues of A, counted with multiplicities. Assume that
the traces of AF k € N are eventually nonnegative. Then the following
conditions hold.

1. p(A) is an eigenvalue of A.

2. Assume that the algebraic multiplicity of p(A) is . Let X be an eigen-
value of A of multiplicity m(\) satisfying |\| = p(A). Then m(\) < p.

3. Assume that p(A) > 0 and suppose that Ay = p(A), Az, ..., Ay are all
the distinct eigenvalues of A satisfying the conditions |\;| = p(A), m(\;) =
w fori=1,...,m. Then %,i =1,...,m are the m distinct roots
of 1.
2/ —1

4. Let(=e Y= Then ¢S(p(A)) =S.

5. If p(A) > 0 is an algebraically simple eigenvalue of A, and none of
the other eigenvalues of A are positive, then S is a Frobenius multiset.

Definition 7.12.8 A € R™*" is called eventually nonnegative if A¥ > 0
for all integers k > N.

Lemma 7.12.9 Let B € R" ™. Then there exists a positive integer M
with the following property. Assume that L > M is a prime. Suppose that
BT is similar to a nonnegative matriz. Then the eigenvalue multiset of B
is a union of Frobenius multisets.

Proof. Associate with the eigenvalues of B the following set T C S!.
For 0 # X\ € spec B we let |—3\\‘ € T. For A # k € spec B satisfying the

conditions |A] = |k| > 0 we assume that %,; € T. Let Ty C T be the
set of all roots of 1 that are in T. Recall that n € S! is called a primitive
k-root of 1, if n* = 1, and n*¥ # 1 for all integers k' € [1,k). k is called
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the primitivity index of . Let L > k be a prime. Then n” is a k-primitive
root of 1. Furthermore, the map n +— n’ is an isomorphism of the group of
of all k — th roots of 1, which commutes with conjugation 7 +— 7. Clearly,
if n € S, and 7 is not a root of unity then n” is not root of unity. Define
M € N to be the maximum over all primitivity indices of n € T;. If
T, = () then M = 1. Let L > M be a prime. Assume that B’ is similar
to C € Ran_ Apply Theorem 6.4.4 and the Perron-Frobenius theorem to
each irreducible diagonal block of of the matrix in (6.4.3), to deduce that
the eigenvalue multiset of S(C) is UE-J;{Fj and each F; a Frobenius multiset.

Clearly, spec B = spec B and spec B = spec C. Observe next that
the condition that L is a prime satisfying L > M implies that the map
z +— 2zl induces a 1 — 1 and onto map ¢ : spec B — spec C. Moreover,
¢~ 1(r) > 0 if and only of » > 0. Hence ¢ can be extended to a 1 — 1 and
onto map ¢ : S(B) — S(C). Furthermore, ¢~!(F;) is a Frobenius set, where
the number of distinct points F;(r(F;)) is equal to the number of points in
¢~ H(F;)(x(¢~(F;)). Hence S(B) = U;i{qb_l(Fj) is a decomposition of S(B)
to a union of Frobenius multisets. a

Corollary 7.12.10 Assume that a matriz B € R™*"™ s similar to an
eventually nonnegative matriz. Then the eigenvalue multiset S(B) of B is
a union of Frobenius multisets.

Theorem 7.12.11 Assume that the eigenvalue multiset S(B) of B €
R™ ™ 4s a union of Frobenius multisets. Then there an eventually nonneg-
ative A € R™*™ such that S(A) = S(B).

Proof. It is enough to show that for a given Frobenius multiset F there
exists an eventually A € R"*" such that S(A) = F. The claim is trivial
it F = {0}. Assume that r(F) > 0. Without loss of generality we can
assume that r(F) = 1. Suppose first that F N S! = {1}. To each real
point A € F of multiplicity m()) we associate m(\) the diagonal matrix
G(A) = M) € RmMA*mN) | For nonreal points A € F of multiplicity m(\)
2R(A) AP }

we associate the block diagonal matrix H()\) = I,(\) ® { 1 0

Note that H(A) = H(A). Let

C = [1] ®rernr\ {1} G(A) Baer,sa>0 H(N),
C=Co+C1, Co=[]D0n-1)x(n-1)
C1 = [0] @ (Dacrrr\{13G(A) Dacr,aas0 H(A)).
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Clearly,

S(C) = F, CoCy = C,Co =0, C™ = C,
C™ =Cm + O™, p(Cy) <1, lim O =0.

Let X € GL(n,R) be a matrix such X1 = X "1 = e,. Define
1
Ag:=X"1CoX ==-11"7, A, =X1'C,X, A=A4A,+A, =XX.
n

So S(A) = S(C) =F. Also

A" = A7+ AT, AQY = Ap, lim AT = lim A™ = A,.
m—0oQ m— 00
So A is eventually positive.

Assume now that F is a Frobenius set with 7(F) = 1 such that F n'S!
consist of exactly m > 1 roots of unity. Let ( = e, Recall that

(F=F. Let F = F; UF, where 0 ¢ F; and F counsists of m(0) copies of 0.
(m(0) =0 < Fo=0. If Fy # () then the zero matrix of order m(0) has
Fy as its eigenvalue multiset. Thus it is enough to show that there exists an
eventually nonnegative matrix B whose eigenvalue multiset is F;. Clearly,
F; is a Frobenius set satisfying 7(F;) = 1 and F N S! consist of exactly
m > 1 roots of unity. Assume that all the elements of F;, counted with
their mulitplicity are the coordinates of the vector z = (z,,...,zn)" € CV.
Let

be the the elementary symmetric polynomials in z1,...,2x. Hence the
multiset F; consists of the roots of P(z) := 2V + Ziv:l(—l)kak(z)zlv_k.
Since F; = F; it follows that each ok (z) is real. As (Fy = F; we deduce that
N = mN' and o, = 0 if m does not divide k. Let Fo be the root multiset
Qz) == 2N+ Efg\il(—l)mkakm(z)z]\'l_k. Clearly, Fy = Fy Since 1 € F;
it follows that 1 € Fy. Furthermore, F1 = ¢~ !(F3), where ¢(z) : C — C
is the map z — 2™. That is, if 2 € Fo has multiplicity m(z) then ¢~1(2)
consists of m points, each of multiplicity m(z) such that these m-points
are all the solutions of w™ = z. Hence Fo N'S! = {1}. Therefore Fy is a
Frobenius set.

According to the previous case there exists an eventually nonnegative
matrix A € RV XN such that Fs is its eigenvalue multiset. Let P € P,
be a permutation matrix corresponding to the cyclic permutation on (m)
i—i+1,fori=1,...,m, where m+1 = 1. Consider the matrix B = PQA.
Then B is eventually nonnegative, and the eigenvalue multiset of B is F;

O
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7.13 Inverse eigenvalue problem for nonneg-
ative matrices

The following problem is called the inverse eigenvalue problem for nonneg-
ative matrices, abbreviated an IEPFNM:

Problem 7.13.1 LetS C C be a multiset consisting of n points, (count-
ing with their multiplicities.) Find necessary and sufficient conditions such
that there exists a nonnegative A € R™*™ whose eigenvalue multiset is S.

Proposition 7.13.2 Let A € R*". Then the eigenvalue multiset S
satisfies the following conditions.

1. S is a union of Frobenius multisets.

2. All the moments of s(S) > 0.

3. sp(S) > sf;l(,szl for each k,l € N.

Proof. 1 Follows from Theorem 6.4.4 and the Perron-Frobenius theorem
applied to each irreducible diagonal block of of the matrix in (6.4.3). Since
A¥ > 0 it follows that tr A* > 0. Hence 2 holds. Since A* > 0 it is enough
to show the inequality in 3 for k = 1. Decompose A = [a;;] as D + Ao,
where D = diag(ai1,- - .,an,) and Ag:= A—D > 0. So A — D! > A} > 0.
Hence tr A > tr D! = Zl al.. Holder inequality for p = [ yield that

=1 "
i—1

S i < (X0, al)in T, which yields 3. O

The following result gives simple sufficient conditions for a mulitset S to be
the eigenvalue multiset of a nonnegative matrix.

Proposition 7.13.3 Let S C C be a multiset containing n elements,
counting with multiplicities. Assume that the elementary symmetric poly-
nomials corresponding to S satisfy (—1)¥"1op(S) > 0 for k = 1,...,n.
Then there exists A € R} ™ such that S is the eigenvalue multiset of A.

Proof. Note that the companion matrix to the polynomial P(z) =
2"+ 3" (—1)'0y(S)z" ! is a nonnegative matrix. O

Recall the MacLaurin inequalities [HPL52, p’ 52].

Proposition 7.13.4 Let w = (w,,...,w,_,)' € RY™*. Then the se-

1
quence (‘(f,i(,vf))) * nonincreasing for k =1,...,n — 1.
k
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Proposition 7.13.5 Let S be a multiset of real numbers, which con-
tains exactly one positive number. Assume that the sum of all elements in
S is nonnegative. Then S satisfies the conditions of Proposition 7.13.3. In
particular, there exists A € R*™ such that S is the eigenvalue multiset of

A.

Proof. Without loss of generality we may assume that
S={1,—-wiy,...,wp—1} wherew; >0fori=1,...,n—1land 1 > Z?:_ll w;.

Denote z = (1, —w,,...,—w,_,) and w = (w,,...,w,_,) . Clearly,
01(z) > 0,(—1)" 'o,(2) = 05—, (W) > 0. Observe next that

ops1(z) = (1) (op(w) — opya (W) for k=1,...,n — 2.

Thus to prove that (—1)*oj41(z) > 0 it is enough to show that that the
sequence 0;(w),i = 1,...,n — 1 is nonincreasing.

Observe that o1(w) < 1. We now use Use Proposiiton 7.13.5. First
observe that

oeWhk oW o 1 ko1 1
) =m0 = o
Next
op(W) k8 n—1)
Uk(w)—O'k.;.l(W)ZO'k(W)_ [(n;l } <k+1> -
or(w) (n—1 or(W)\ 4 (n—1
(") [< b >_((";1)) <’€+1>]2

op(w)(n—1 1 (n-1
G [( k >_n—1 pa1)) 20
k
Hence S satisfies the conditions of Proposition 7.13.3. The last part of

Proposition 7.13.3 yields that there exists A € R}™" such that S is the
eigenvalue multiset of A. O

Example 7.13.6 Let S = {/2,v/—1,—/—1}. Then S is a Frobenius
set. Furthermore, s2(S) = 0 and all other moments of S are positive. Hence
the condition 8 of Proposition 7.13.2 does mot hold for k = 1,1 = 2. In
particular, there is an eventually nonnengative matriz A € Rixz)’, which
can not be nonnegative, whose eigenvalue multiset is S.

Theorem 7.13.7 Let S = {1, A2, A3} be a multiset satisfying the fol-
lowing properties.
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1. r(S) € 8S.
2. S=8.
3. 51(S) > 0.
4. (51(8)) < 3s2(8).
Then there exist A € R3*® such that S is the eigenvalue multiset of A.

Proof. Suppose first that S C R. It is straightforward to show that S
is a union of Frobenius multisets. In that case the theorem can be shown
straightforward. See Problem 2. It is left to discuss the following renormal-
ized case S = {r, e\/_il‘g,e_‘/jg}7 where » > 1,6 € (0,7). The condition
s1(S) > 0 yields that

(7.13.1) 2cosf +1r > 0.
The condition (s1(S))? < 3s2(S) boils down to
(r— 2cos(g +0))(r — 2005(% —0))>0.

For r > 1,0 € (0,7) we have r —2cos(§ +6) > 0. Hence the condition 4 is
equivalent to

(7.13.2) r— 2COS(% —-0)>0.
V2 V3 -1
Let U be the orthogonal matrix § | v2 0 2 |andJ=141]. So
V2 -3 -1
r 0 0
UTJU = diag(3,0,0). Sisthe eigenvaluesetof B= | 0 cosf sind
0 —sinf cosf
Then A := UBU T is the following matrix
L1111 9 —cosf)  cos(§ +0) cos(5 —0)
3 1 1 1| -] cos(§5—0) —cos  cos(5+0)
111 cos(§ +60) cos(3 —0)  —cost
The above inequalities show that A > 0. O

A weaker version of the solution of Problem 7.13.1 was given in [BoH91].

Theorem 7.13.8 Let T C C\{0} be Frobenius mulitiset satisfying the
following conditions.
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1. T((T)) = (7)),
2. s;(T) >0 for k e N.
3. If 53,(T) > 0 then s, (T) > 0 for all l € N.

Then there exist a square nonnegative primitive matrix A, whose eigenval-
ues multiset is a union of T and mgy > 0 copies of 0.

We prove the above theorem under the stronger assumption
(7.13.3) sk(T) > 0 for k > 2,
following the arguments of [Lafl10].

Lemma 7.13.9 Let A,, € C"*™ be the following lower Hessenberg ma-
triz

52 st 2 0 0
S3 S9 S1 3 0 . . . 0
83
(7134) A, =
Sn—1 Sn—2 . . . S S1 N — 1
L Sn Sn—1 . . . 83 82 S1 i

Let S = {A1,..., An} C C be the unique multiset such that si = si(S)
fork=1,... ,n. Let oq,...,0, be the n-elementary symmetric polynomials
corresponding to S. Then the characteristic polynomial of A, is given by

(7.13.5) det (zI, — A,) = 2"+ i(—l)ii! (7) 0;.

i=1

Proof. Recall the Newton identities.
k—1
s1 =01, sp=(—1)"tkop+ Z(—l)’_laisk,i fork=2,...,n.
i=1

Let p(z) be the polynomial given by the right-hand side of (7.13.5). Denote
by C(p(z)) € C**™ the companion matrix corresponding to p(z). Let Q =
[¢ij] € C"*"™ be the following lower triangular matrix.

(-1)"oi

qijzw, i=1,...,4,i=1,...,n, where g := 1.
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Use the Newton identities to verify the equality A4,Q = C(p(z))Q. Hence
A,, is similar to C(p(z)), and the characteristic polynomial of 4,, is given
by (7.13.5). 0

Proof of Theorem 7.13.8 under the assumption 7.13.3. Let T =

{A\1,...,An} be a multiset in C. Denote by o1, ...,0, the elementary sym-

metric polynomials corresponding to T. Let p(z) = 2™ + >, (—1)'0;z" "

be the normalized polynomial whose zero set is T. For m € N denote

Sm = TU{0,...,0}. Let 0;,, be the i — th elementary symmetric poly-
——

nomial Corresptl)rlllding to Sy for ¢ = 1,...,n +m. Then o0;,, = o; for
i=1,...,nand o, ,, =0for i =n+1,...,n+m. The s(T) = sx(Sm) for
all k € N. Denote by A,;,, € CFmX(+m) the matrix (7.13.4), where
s = sk(T) for k =1,...,n+ m. Observe that

%

et (2lupm — ——Augm) = (" + S ([ (1= L ))(-1)igzen )2,

+ i=1 j=1 n+m
Let
n 7 j—l . ) o
7.13.6 m(2) = 2" + 1-— —1)'o;2"
136 gl =+ 300 - 0

Denote by Tp, = {A,m,---sAn,m} the multiset formed the n zeros of py,.
Since limy,— oo Pm(2) = p(2) we deduce that lim,, o pdist(Ty, T) = 0.
That is, we can rename Aq pm, . . ., Ap,m, M € N such that limy,, oo Aim = A
for i = 1,...,n. Let By, € Cmt)x(m+n) he the matrix defined by
(7.13.4), where sg, k = 1,...,m+n are the moments corresponding to Ty,.
Then det (21,41 — ﬁBner) = 2™p(z). Thus, if the first n+m moments
corresponding to Ty, are nonnegative, it follows that that the multiset Sy,
is realized as an eigenvalue set of a nonnegative matrix.

We now show that the above condition holds for m > N, if T satisfies
the assumption 1 of Theorem 7.13.8 and (7.13.3). It is enough to consider
the case where T = {A; = 1, Aa,..., Ay}, where 1 > |Ag| > ... > |A,]|. Let
€ 1= #. First we choose M big enough such that after renaming the
elements of the multiset of T}, we have that |\, ,, — Xj| <efori=1,...,n
and m > M. Note that since T, = T,, it follows that A,m € R and
M,m > 1 —¢ for m > M. Furthermore, |\; | <1—3¢fori=2,...,n.
Hence
1—3€

si(Tm) > (1 =€) (1 = (n— 1) ")

1—¢£
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Thus for k > k(e) = m and m > N we have that s;(T},) >
0. Clearly s1(T},) = s1(T) and limy, 00 8k (Thn) = sk(T) for k = 2,..., [k(e)].
Since si(T") > 0 for n > 1 we deduce the positivity of all s;(T},) for all

k>1iftm>N > M. O

It is straightforward to generalize this result to a general Frobenius
multiset. See [Fri09].

Theorem 7.13.10 Let T C C\{0} be a Frobenius mulitiset satisfying
the following conditions.

2

1. T(x(T)) = {x(T), Cx(T),..., ™ 12(T)} for ¢ = e where m > 1

18 an integer.
2. sx(T) >0 for k € N.
3. If si(T) > 0 then sk (T) > 0 for alll € N.

Then there exist a square nonnegative irreducible matrix A, whose eigen-
values multiset is a union of T and mg > 0 copies of 0.

Proof. Observe first that s;(T) = 0 if m fk. Let ¢ : C — C be the
map z +— 2z™. Since (T = T it follows that for z € T with multiplicity
m(z) we obtain the multiplicity 2™ in ¢(T) is mm(z). Hence ¢(T) is
a union of m copies of a Frobenius set Ty, where r(T;) = r(T)™ and
Ty(r(T1)) = {r(T1)}. Moreover Sk, (T) = ms,(T1). Hence T; satisfies
the assumptions of Theorem 7.13.8. Thus there exists a primitive matrix
B € R}™™ whose nonzero eigenvalue multiset is T;. Let A = [A;]72,_; be
the following nonnegative matrix of order mn.

Oan I’I’L 0n><n Oan ce Oan
O’VIXTL OTL><7L I’IL OTIXTL ce OTLXH
(7.13.7) A=
O’I’LX’I’L O’I’LXTl OnX’ﬂ O’I’LX’I’L s I’I’L
B O’I’L><7l 0n><n OTIXTL ce OTLXn

Then A is irreducible and the nonzero part of eigenvalue multiset if T. (See
Problems 4 and 5.)

Problems
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1. Definition 7.13.11 Let S C C be a finite multiset. S is called a semi

Frobenius multiset if either S has m elements all equal to 0, or the
following conditions hold.

(a) 7(S) >0,S=S, r(S) €S.
(b) m(z) < p:=m(r(S)) for each z € S such that |z| = r(S).

(c) Assume that S contains exactly m distinct points satisfying |z| =
2 /=T

r(S),m(z) = p. Then {S=S for{=e" m .
S is called an almost a Frobenius multiset if the the number points in S,
counted with their mulitplicites, satisfying z € S, |z| = r(S), m(z) < p
is strictly less than mu.

Let fg by (7.12.6). Show

(a) S={1,1,2,2}, with |z] = 1,z # %1 is a semi Frobenius multiset,
and fs has nonnegative moments.

(b) Let S = U!_,S;, where each S; is almost a Frobenius multiset.
Then fg has eventually nonnegative MacLaurin coeffients.

(c) Assume that the MacLaurin coefficients fs are eventually non-
negative. Then r(S) € S. Suppose furthermore that 0 < a <
r(S) is the second largest positive number contained in S. Then
SN{zeC, a<|zl <r(S)} is a semi Frobenius set.

(d) Assume that the MacLaurin coefficients fs are eventually non-
negative. Suppose that S contains only one positive number of
mulitplicity one. Then S is semi Frobenius.

(e) Assume that the MacLaurin coefficients fg are eventually non-
negative. Suppose that S contains only two positive number
of mulitplicity one each: r(S) > «a > 0. Decompose S to
S1 U So, where S; is a maximal semi Frobenius set containing
{z€C, a<lz| <r(S)} If a €S; then S; = . Suppose that
a € Sy. Then S3:=S:N{z € C, |z| = a} is a set, i.e. m(z) =1
for each z € S3. Assume for simplicity of the exposition that
a = 1. Let m’ € [1,1) be the greatest divisor of m > 1, entering
in the definition of the Frobenius multiset Sq, such that all m/
roots of 1 are in S3. Let m” := % > 1. Then there exists r € N
coprime with m” such that one of the following conditions hold.

i. If m" is even then S3 = S4, where S, consists of all m/r
roots of 1.
ii. If m” is odd then either S3 = S or S3 = S4 U S5, where

’ "_ 2k—1 j 1
S5 = UM, Lo2nv/=T((a+ 55+ 5 ) ar)
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Hint: Use the function g in the proof of Theorem 7.12.6, or/and
consult with [Fri78b, Thm 4] and its proof.

Let S = {A1,...,A\n} C R be a union of Frobenius multiset. Assume

furthermore that Z?:l A; > 0. Show that if n < 4 then there exists a
nonnegative n X n matrix whose eigenvalue multiset if S. Hint: For
n = 3 use Proposition 7.13.5. For n = 4 and the case where S contains
exactly two negative numbers consult with the proof of [LoL78, Thm.
3.

Show that for n > 4 the multiset S := {/2,v/2,v/~1, —v/—1,0,...,0}
satisfies all the conditions of Proposition 7.13.2. However there is no
A e RY*™ with the eigenvalue set S.

. Let B € R*"™ be a primitive matrix. Show that the matrix A €

RI™X™™ defined (7.13.7) is irreducible for any integer m > 1.

Let B € C™*™. Assume that T is the eigenvalue multiset of B Assume
that A € C™*™" is defined by (7.13.7). Let S be the eigenvalue
multiset of A. Show that w € S if and only if w™ € T. Furthermore
the multiplicity of 0 # w € S equals to the multiplicity of w™ in T.
The mulitplicity of 0 € S is m times the multiplicity of 0 € T.

7.14 Cones

Let V be a vector space over C. Then V is a vector space over R, which
we denote by Vg, or simply V when no ambiguity arises. See Problem 1.

Definition 7.14.1 Let V be a finite dimensional vector space over F =
R,C. A set K C 'V is called a cone if

1.

2.

K+KcCK,ie x+y €K for each x,y € K.

RyK CK, i.e. ax € K for each a € [0,00) and x € K

Assume that K C 'V is a cone. (Note that K is convex set.) Then

1.

3.

ri K,dim K, is the relative interior and the dimension of K, viewed
as a convex set.

K* ;= {f € V*, Rf(x) > o for allx € V} is called the conjugate
cone, (in V*).

K is called pointed if KNK = {0}.
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K is called generating if K—K =V, i.e. anyz € V can be represented
as x —y for some x,y € K.

K is called proper if K is closed, pointed and generating.

For x,y € V we denote: x >X y ifx—y e K; x >Kyifx >Ky
andx #y; x>y ifx—yeriK.

For x € V we call: x nonnegative relative to K if x >¥ 0; x is
semipositive relative to K if x >% 0; x is positive relative to K if
x € ri K. When there is no ambiguity about the cone K we drop the
term relative to K.

Ky € K is called a subcone of K if Ky is a cone in V. F C K s
called a face of K, if F is a subcone of K, andy € F if y € K and
there exists x € F such that x >¥ y. dim F, the dimension of F, is
called the dimension of F. F = {0},F = K are called trivial faces,
(dim {0} =0). x > 0 is called an extreme ray if Ryx is a face in K,
(of dimension 1). For a set X C K, the face F(X) generated by X, is
the intersections of all faces of K containing X.

Let T € Hom (V,V). Then: T >¥ 0, and T is called nonnegative
with respect to K, if TK € K; T >¥ 0, and T is called semipositive
with respect to K, if T >%X 0 and T # 0; T >¥ 0, and T is called
positive with respect to K, if T(K\{0}) C riK. T >¥ 0 is called
primitive with respect to K, if F is a face of K satisfying TF C F,
i.e. F is T invariant, then F is a trivial face of K. T is called
eventually positive with respect to K if T* >¥ 0 for all integers | >
L(> 1). When there is no ambiguity about the cone K we drop the
term relative to K. Denote by Hom (V, V)X the set of all T >¥ 0.
For T,S € Hom (V,V) we denote: T >X § <« T -8 >K 0,
T>KS = T-8>K0,T>KS <« T-85>K0.

As pointed out in Problem 3, without loss of generality we can discuss only
the cones in real vector spaces. Also, in most of the applications the cones
of interest lie in the real vector spaces. Since most of the results we state
hold for cones over complex vector spaces, we state our results for cones in
real or complex vector spaces, and give a proof only for the real case, when
possible.

Lemma 7.14.2 Let V be a finite dimensional vector space over F =
R,C. Let K be a cone in V. Then V =K — K, i.e. K is generating, if and
only if the interior of K is nonempty, i.e. dim K = dim g'V.
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Proof. It is enough to assume that V is an n dimensional vector space
over R. Let k£ = dim K. Then span K is a £ dimensional vector space in V.
Assume that K—K = V. Since K—K C span K we deduce that dim K = n.
Hence K must have an interior.

Assume now that K has an interior. Hence it interior must contain

n linearly independent vectors X,,...,x, which form a basis in V. So
Sorax; € K for any ai,...,a, > 0. Since any z € V is of the form
>y zixg s of the form Y7 oo ziwi =Y. _o(—2:)%; we deduce that K-K =
V. B O

Theorem 7.14.3 Let K C 'V be a proper cone over F = R,C, where
dim V € [1,00). Then the following conditions holds.

1. There exists f € K* which is strictly positive, i.e. Rf(x) > o if
X ZK 0.

2. FEvery x > 0 is a nonnegative linear combination of at most dim rU
extreme rays of K.

3. The conjugate cone K* C V* is proper.

Proof. It is enough to assume that V is a vector space over R. Observe
that for any u >¥ 0 the set I(u) := {x € V, u >¥ x >¥ —u} is a compact
set. Clearly, I(u) is closed. It is left to show that that I(u) is bounded.
Fix anorm || - || on V. Assume to the contrary that there exists a sequence
0 # x,, € C such that lim,, o [|Xm|| = co. Let y,, = me’m € N.

Since ||y || = 1,m € N it follows that there exists a subsequence my, k € N
such that limg oo Ym, =¥, |ly|l = 1. Since y,, € (=17 u) it follows that

Xm

y € 1(0). Soy € KN—K = {0} which is impossible. I&enie I(u) is compact.

Choose u € ri K. We claim that u is an isolated extreme point of I(u).
Since u € ri K it follows that there exist » > 0 so that u + x € K for each
|x|| < r. Suppose that there exist v,w € I(u) such that tv+ (1 —t)w =u
for some t € (0,1). So v=u—v,,w =u — v, for some v,,w, >X 0. The
equality u = (1 — t)v + tw yields 0 = (1 — t)v, +tw, > (1 —t)v, > 0.
Hence v, = 0. (See Problem 2). Similarly, w, = 0. Hence u is an extreme
point.

We now show that for any x € U such that x >¥ 0, ||x|| < r the point
u — x is not an extreme point of I(u). Indeed, u — 2x,u — 2x € I(u) and
u—x = f(u— 2x)+ (u— 1)x. Since u is an isolated extreme point,
Corollary 7.1.10 yields that u is exposed. Hence there exists f € U* such
that f(u) > f(u — x) for any x >¥ 0 satisfying ||x|| < r. So f(x) > o for
any x > 0 satisfying ||x|| < r. Hence f(y) = Mf(my) > o for any

r

y >¥ 0. This proves the part 1 of the theorem.
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Let C = {x >¥ 0, f(x) = 1}. Since K is closed, it follows that C
is a convex closed set. We claim that C is compact, i.e. bounded. Fix
a norm || - || on U. Assume to the contrary that there exists a sequence
X € C such that lim,,— o ||Xm|| = co. Let y,,, = Hx T Xmy M € N. Since
lym|l = 1,m € N it follows that there exists a subsequence my, k € N such
that limg oo Ym, = ¥,||¥] = 1. Since K is closed it follows that y >¥ 0.
Note that

f(y) = khjrgo f(ym,) = lim Oom,) _ lim —— =o

koo Xk koo [, ||

This contradicts the assumption that f is strictly positive on K. Thus C is
a convex compact set. We next observe that dim C = n — 1. First observe
that £f(C — x) = o for any x € C. Hence dim C < n — 1. Observe next
that if f(z) = o and ||z|| < r then u+z € C. Hence dim C = n — 1. Let
w >K 0. Define w, = ﬁw € C. Caratheodory theorem claims that w,
is a convex combination of at most n extreme points of C. This proves the
part 2 of the theorem.

Let R := {max|x||, x € C}. Let g € U*,|g|* < %. Then for x € C
lg(x)| < 1. Hence (f +g)(x) > 1 —|g(x)| > 0. Thus f +g € K*. Sof is
an interior point of K*. Clearly K* is a closed and a pointed cone. Hence
part 3 of the theorem hold. O

Theorem 7.14.4 Let V be a vector space over F =R, C. Assume that
K C V be a proper cone. Assume that T € Hom (V,V)X. Let S(T) C
C be the eigenvalue multiset of T, (i.e. the root set of the polynomial
det (2I —T).) Then
1. p(T) € S(T).
2. Let A € S(T)(p(T)). Then index (A\,T)) < k :=index (p(T),T).
3. There exists x >¥ 0 such that Tx = p(T)x, and x € (p(T)I —
T)F—V.
4. If T >¥ 0 then p(T) > 0,k = 1,S(T)(p(T)) = {p(T)} and p(A) is
a simple root of the characteristic polynomial of T. (This statement

can hold only if F =R.)

Assume in addition that p(T') = 1. Let P € Hom (V,V) be the spectral
projection, associated with T, on the generalized eigenspace corresponding
to1l. Then

7.14.1 lim — TZ— (T —1)*1p >Ko.
(

m—00 mk
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Assume finally that F = R, X # 1,|A\| = 1 is an eigenvalue of T of index
k. Let P()\) € Hom (V,V) be the spectral projection, associated with T, on
the generalized eigenspace corresponding to X. View P(\) = Py + /—1Ps,
where Py, P, € Hom (V,V). Then

(7.14.2) [f((T=AD**P(N)y)| < £f((T—1)*"*Py) for any y € K,f € K*.

Proof. Suppose first that p(T) = 0, i.e. T is nilpotent. Then parts 1-2
are trivial. Choose y >¥ 0. Then there exists an integer j € [0,k — 1] so
that 79y >¥ 0 and 77f'y = 0. Then x := T’y is an eigenvector of A
which lies in K. Since Ax = 0 it follows that A can not be positive.

From now on we assume that p(7") > 0, and without loss of generality
we assume that p(T) = 1. In particular, dim V > 1. Choose a basis
b,,...,b, in V. Assume first that F = R. Then T represented in the basis
b,,...,b, by A = [a;;] € R™*™. Consider the matrix B(z) = (I —24)"! =
[bij]ij—1C(2)"*". Using the Jordan canonical form of A we deduce that all
the singular points of all b;;(z) are of the form p := § where X is a nonzero
eigenvalue of A. Furthermore, if 0 £ A\ € spec (A), and A has index [ = [()).
Then for each i, 7, b;;(2) may have a pole at p of order [ at most, and there
is at least one entry b;;(z), where i = i()),j = j(X), such that b;;(z) has
a pole of order [ exactly. In particular, for each x,y € R™ the rational
function y " B(z)x may have a pole of order [ at most p. Furthermore,
there exists x,y € R", x = x()\),y = y(\) such that y " B(z)x has a pole
at p of order I. (See Problem 7.)

Let K € R” denote the induced cone by K C V. Then K is a proper
cone. Denote by

K*:={y e R",y 'x > o for all x € K*}.

Theorem 7.14.3 implies that K*is a proper cone. Observe next that AK C
K. Clearly, we have the following MacLaurin expansion

N 1
7.14.3 B(z)= (I —zA)"t =Y A" for|z| < ——,
1143)  BE)=(-20)7 =3 < oo
(7.14.4) y B(2)x = Z(yTAix)zi, for || < ﬁ
=0 P

Note that y " B(z)x is a rational function. Denote by r(x,y) € (0, 00] the
convergence radius of y' B(z)x. So r(x,y) = oo if and only if y ' B(2)x
is polynomial. Assume first that x € K,y € K*. Then the MacLaurin
coefficients of y ' B(z)x are nonnegative. Hence we can apply the Vivanti-
Pringsheim theorem 7.12.2, i.e. r(x,y) is a singular point of y ' B(z)x.
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Hence ﬁ € spec (A) if r(x,y) < oo. Suppose now that x,y € R™. Since

K and K* _are generating it follows x = x4 —x_, y = y+ —y_ for some
xi,x- €K, yy,y- € K*. So

y' B(z)x =y B(z)xy + y B(z)x_ —yIB(2)xy -y B(z)x_.

Hence
(7.14.5)

T(X7Y) > T(X+?X—7Y+aY—) = min(T(X-HY-i—)’T(X—7Y—)7T(X+7Y—)7T(X—5y+))'

Let A € spec (A),|A] = p(A), and assume that [ = index (A\). Choose
x,y such that p = % is a pole of y' B(2)x of order I. Hence we must
have equality in (7.14.5). More presicely, there exists x, € {xy,x_},y, €
{y+,y_} such that r(x,y) = r(x,,y,) and y| B(z)x, has a pole of at
u of order {. Vivanti-Pringsheim theorem yields that r(x,,y,) is pole of
order k' > [ of y[ B(2)x,. Hence p(A) € spec (A) and index (p(A)) >
k' > 1 = index (). This proves parts 1-2. Choose A = p(A) that satisfies
the above assumptions. Hence B(z)x, must have at least one coordinate
with a pole at p(A)~! of order & = index (p(A)). Problem 7 yields that
lim; 1 B(tp(A)~'x, = u # 0 such that Au = p(A)u, and u € (p(A)I —
A)F1R™. Use the fact that for z = tp(A)~1,¢ € (0,1) we have the equality
(7.14.3). So (1—t)*B(tp(A)~1)x, € K for each t € (0,1). Since K is closed
we deduce that u € K. This proves part 3.

The equality (7.14.1) follows from the Tauberian theorem 8 and it ap-
plication to the series (7.14.3).

Assume now that A >K 0. Observe first that the eigenvector x >K
0, Ax = x satisfies x >¥ 0, i.e. x €11 K. Next we claim that the dimension
of the eigenspace {y, (A — I)y = 0} is 1. Assume to the contrary that
Ay =y and x,y are linearly independent. Since 6.7.limparexpbza(sy) =
Ax(s,) > 0 we obtain a contradiction. Hence x is a geometrically simple
eigenvalue.

Nest we claim that k£ = index (1) = 1. Assume to the contrary that k >
1. Recall that x € (A—I)*"*R". Sox = (A—1I)y. Hence x = (A—1I)(y +
tx). Choose ¢ > 0 big enough so that z =y + tx = t(+y + x) >¥ 0. Since
x >¥ 0 it follows that there exists s > 0 such that (A—1I)z—rz = x—rz >K

0. That is Az >K (1 +7)z. Hence A"z > (1 +7)"z = (;54)"z >K z.

Since p(1+-A) = 15 < 1t follows that 0 = lim,, o (13- 4)"z >K 28 >K
0, which is impossible. Hence index (1) = 1.
We now show that if A € spec (A) and |[A| = 1 then A = 1. Let J :=

{y € K, |ly|l> = 1}. Since K is closed it follows that J is compact set. Since
A >¥ 0 it follows that AJ € ri K. Hence there exists s € (0,1) such that
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Ay —sz >R 0 foranyy € J,z € R", ||y||. = 1. In particular, Ay — sy >¥ 0
for each y € J. That is (A — sI)J € ri K. Hence (A — sI) >X 0. Note
that (A —sI)x = (1 — s)x >¥ 0. So p(A — sI) = 1 — s. Each eigenvalue
of A— sl is A — s, where A\ € spec (A). Apply part 1 of the theorem to
deduce that |A — s| <1 —s. Since for any ¢ € S\{1} we must have that
| —s| > |¢| —s =1-s, we obtain that S(A)(1) = {1}, which concludes
the proof of part 4 for F = R.

Assume next that p(T') = p(4) = 1, and k = index (1). (7.14.11) of
Problem 9 yields the equality in (7.14.1). Since any sum in the left-hand
side of (7.14.1) is nonnegative with respect to the cone K it follows that
(A—I)F1P >K 0. Let \; = 1 s0 s; = k, see notation of Problem 7. Recall
that (A — I)*~1P in the basis b,,...,b, is represented by the component
Zi(k-1) # 0. Hence (A — I)F=1pP >K 0.

Assume finally that A € spec (T),|A\| = 1, A # 1l,index (A) = k. Let
P(X) be the spectral projection on the eigenvalue A\. Then (7.14.11) yields

| m—1 B B
7.14.6 im ST X = MY - AR LP(),
k
m—oo M,
r=0

Let y € K,f € K. Since f(T"y) > o and |\| = 1 we obtain |[f(\"T"y)| =
f(T"y). The triangle inequality

m—1

k—k Z (A\"T"y m]LL > £(17y)
r=0

T7=0

Let m — oo and use the equalities (7.14.6) and (7.14.1) to deduce (7.14.2).

We now point out why our results hold for a vector space V over C.
Let T € Hom (V,V) and assume that b,,..., b, is a basis V. Then Vg
has a basis b,,...,b,,v/=1b,,...,v/—1b,. Clearly T induces an operator
T € Hom (Vg, Vg). Let A € C™*"™ represents T in the basis b,,...,by,.
Observe that A = B+ +/—1C, where B, C' € R"*". Then T is presented by

the matrix A = g _g ] in the basis b,,...,b,,v—1b,,...,v/—1b,.
See Problem 10.
Problems

1. Let V be a vector space of dimension n over C, with a basis z,, ..., z,.

Show.
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(a) V is a vector space over R of dimension 2n, with a basis

Zy,\—1Zy, ..., Zn,\/—12Z,. We denote this real vector space by
VR and its dimension dim gV.

(b) Let the assumptions of 1a hold. Then V* can be identified with
(Vgr)* as follows. Each f € V* gives rise to f € (Vgr)* by the
formula f(z) = Rf(z). In particular, if f,, ... f, form a basis in
V* then f'l, V=1t ... ,fn, v —1f, is a basis in (Vg)*.

2. Let K be a cone. Show that K is pointed if and only the two inequal-
ities x >K y,y >K x imply that x =y.

3. Let the assumptions of Problem 1 hold. Assume that K C V is a
cone. Denote by Kg the induced cone in Vi. Show

a) K is closed if and only if Kg is closed.

(a)

(b) K is pointed if and only if K is pointed.

(¢) K is generating if and only if Kg is generating.
)

(d) K is pointed if and only if K is pointed.

4. Let U be a real vector space. Denote by U¢ as in Proposition 4.1.2.
Assume that K € U is a cone. Let K¢ := {(x,y), x,y € K}. Show

(a) K¢ is a cone in Ug.
(b) K is closed if and only if K¢ is closed.
(c¢) K is pointed if and only if K¢ is pointed.
(d) K is generating if and only if K¢ is generating.
(e) K is proper if and only if K¢ is proper.
5. Let the assumptions of Problem 4 hold. Assume that A € Hom (U, U)K,
Define A : Ug — Uc by A(x,y) = (Ax, Ay). Show
(a) A € Hom (Ug, Ug)Xe,
(b) det (21 — A) = det (21 — A).
(¢) A is not positive with respect to Kc.
6. Let V be a vector space over F = R, C. Assume that K C V and
A € Hom (V, V)X, Then A* € Hom (V*, V*)K",

7. Let A € C™*™. Assume that S(A) = {A1,...,An} is the eigenvalue
multiset of A. Consider the matrix

B(z) = (I —zA)"' = [bij]?:jzl € C(z)™*™. Show
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(a) Let Zi,..., Zjs,—0),4 = 1,...,£ be all the matrix components
of A asin §3.1. Then

i. Zjo is the spectral projection of A on \;. (See §3.4.) Fur-
thermore

(714.7) (A= NI " Zig = Zy(s,—1y fori=1,... L.

(Use (3.1.6).) So Z;(5,—1)C" is a subspace of eigenvectors of
A corresponding to all Jordan blocks of A of order s; and
eigenvalue \;.

4 S,;—l
(7.14.8) (I = zA) 7 =) Y 17)\zﬂ+1
i=1 J:O
(7.14.9)lim(1 — ) (1 — L a) 1 = L 7
o t% A T s TilsD:

(Hint: To show the first equality use (3.4.1) by letting A = 1
and divide (3.4.1) by z.)

(b) All the singular points of all b;;(2) are of the form p := } where
A is a nonzero eigenvalue of A. Furthermore, if 0 # X € spec (A),
and A has index { = [()\). Then for each ¢,j b;;(2) may have a
pole at u of order [ at most, and there is at least one entry b;;(z),
where i = i(A),j = j(A), such that b;;(z) has a pole of order !
exactly. Furthermore Suppose furthermore, that for x € C", at
least one of the entries of B(z)x has a pole of order [ at y. Then
lim; 1 (1—t)!B(tu)x =y # 0, Ay = Ay and y € (\[—A)!~*C".

(c) Let € = (8ix,---,0in) i € (n). For each 0 # X € spec (A) of
index [ = I(X) there exists e;,e;, i = i()\),j = j(A) such that
e/ B(z)e; has a pole at 1 of order [ exactly.

8. Let k,l € N and consider the rational function

10 = = 2 ()
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Hint: Use the Riemann sums for the integral fol 2F~1dx to show

L m_l(—1)i (fl) pt=0.

i
i=0
Under the following assumptions
i. |u]=1,p#1 and I = k. Hint: Recall the identity

(1) B oS

z:O =

Show that

;-.

m—

()

ii. |g| =1 and I < k. Hint: Sum the absolute values of the
corresponding terms and use part 8a.
i. |u| < 1. Hint: Use the Cauchy-Hadamard formula to show
that 27" GOl < .

9. Let the assumptions of Problem 7 hold.

1 dk—l
(k’—l) d k— 18m+k 1

(a) For m > max(s1,...,sp)
(7.14.10)
m—1 L s;—1 m—1—j
1
o=y (VT )
r=0 i=1 j=0 r=0

(Use the first m terms of MacLaurin expansion of both sides of
(7.14.8).)

(b) Assume furthermore that p(4) = 1 and k is the maximal index of
all eigenvalues )\; satisfying [\;| = 1. Assume that A = A\, |A\| =
1, and k = index (A1) = s1. Let P(\) = Zjp be the spectral
projection on A and Zy(s,_1) = (A—A)*"1P(A;). Then (7.14.10)
and Problem 8 implies.

(7.14.11) lim —- Z ATAT = M A = ADELP().

m—00 mk
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10. Let V be a vector space over C with a basis b,,...,b,. Then Vg
has a basis b,,...,b,,v/=1b,,...,v/=1b,. Let T € Hom (V,V).
Show Clearly T induces an operator T € Hom (Vg, Vg). Let A €
C™*™ represents T in the basis b,,...,b,. Observe that A = B +
V—=1C, where B,C € R™". Then T is presented by the matrix

A= { g _g } in the basis b,,...,b,,v/—1b,,...,\/—1b,
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