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Preface

Linear algebra and matrix theory are closely related subjects that are used
extensively in pure and applied mathematics, bioinformatics, computer sci-
ence, economy, engineering, physics and social sciences. Some results in
these subjects are quite simple and some are very advanced and technical.
This book reflects a very personal selection of the topics in matrix theory
that the author was actively working on in the past 40 years. Some of the
topics are very classical and available in a number of books. Other topics
that are not that available in the books that are currently on the market.
The author lectured several times certain parts of this book in graduate
courses in University of Illinois at Chicago, Technion, and TU-Berlin.

The book consists of seven chapters which are somewhat independent.
Chapter 1 discusses the fundamental notions of Linear Algebra over general
and special integral domains. Chapter 2 deals with well known canonical
form: Jordan canonical form, Kronecker canonical form, and their appli-
cations. Chapter 3 discusses functions of matrices and analytic similarity
with respect to one complex variable. Chapter 4 devoted to linear operators
over finite dimensional inner product spaces. Chapter 5 is a short chapter
on elements of multilinear algebra. Chapter 6 deals with nonnegative ma-
trices. Chapter 7 discusses various topics as norms, complexity problem of
the convex hull of a tensor product of certain two convex sets, variation
of tensor power and spectra, inverse eigenvalue problems for nonnegative
matrices, and cones.

This book started as an MRC report “Spectral theory of matrices”,
1980, University of Madison, Wisconsin. I continued to work on this book
in Hebrew University, Jerusalem, University of Illinois at Chicago, Technion
and Technical University of Berlin during my Sabbaticals in 2000 and 2007-
8 respectively.

I thank Eleanor Smith for reading parts of this book and for her useful
remarks.

Chicago, January 1, 2015.
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Chapter 1

Domains, Modules and
Matrices

1.1 Rings, Domains and Fields

Definition 1.1.1 A non empty set R is called a ring if R has two binary
operations, called addition and multiplication and denoted by a + b and ab
respectively, such that for all a,b,c € R the following holds:

(1.11)a+beR;

(1.12)a+b=b+a (the commutative law);
(1.13)(a+b) +c=a+ (b+c¢) (the associative law);
(1.1.4)30€ Rsuchthata+0=0+a=a, VacR;
(1.1.5)Va € R, 3—a € R such that a+ (—a) = 0;
(1.1.6) ab € R;

(1.1.7)

(1.1.8)

a(bc) = (ab)c (the associative law);
a(b+c)=ab+ac, (b+c)a=ba+ ca, (the distributive laws).

R has an identity element 1 if al = 1la for all a € R. R is called
commutative if

(1.1.9) ab="ba, foralla,beR.

Note that the properties (1.1.2) — (1.1.8) imply that a0 = 0a = 0. If a and
b are two nonzero elements such that

(1.1.10) ab =0
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then a and b are called zero divisors.

Definition 1.1.2 D is called an integral domain if D is a commutative
ring without zero divisors which contains an identity element 1.

The classical example of an integral domain is the ring of integers Z. In
this book we shall use the following example of an integral domain.

Example 1.1.3 Let Q@ C C" be a nonempty set. Then H(QY) denotes
the ring of functions f(z1,...,2n) such that for each ¢ € Q there exists an
open neighborhood O(f,() of ¢ on which [ is analytic. If Q is open we
assume that f is defined only on Q. If Q consists of one point ¢ then H¢
stands for H({C}).

Recall that 2 C C™ is called connected, if in the relative topology on €,
induced by the standard topology on C", the only subsets of  which are
both open in © and closed in © are § and . Note that the zero element is
the zero function of H(f2) and the identity element is the constant function
which is equal to 1. The properties of analytic functions imply that H(Q)
is an integral domain if and only if € is a connected set. In this book we
shall assume that € is connected unless otherwise stated. See [Rud74] and
[GuR65] for properties of analytic functions in one and several complex
variables.

Definition 1.1.4 A nonempty Q@ C C" is called a domain if Q is an
open connected set.

For a,b € D, a divides b, (or a is a divisor of b), denoted by alb, if b = ab;
for some by € D. An element a is called invertible, (unit, unimodular),
if all. a,b € D are associates, denoted by a = b, if a|b and bla. Let
{{b}} = {a € D: a =b}. The associates of a and units are called improper
divisors of a. For an invertible a denote by a~! the unique element such
that

(1.1.11) ac ' =a"ta=1.
f € H(Q) is invertible if and only if f does not vanish at any point of .

Definition 1.1.5 A field F is an integral domain D such that any non
zero element is invertible. A field F has charactersitic 0 if for any nonzero
integer n and a nonzero element f € F nf # 0.

The familiar examples of fields are the set of rational numbers Q, the
set of real numbers R, and the set of complex numbers C. Note that
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the charactersitic of Q,R,C is 0. Given an integral domain D there is a
standard way to construct the field F of its quotients. F is formed by the
set of equivalence classes of all quotients §,b # 0 such that

:ad—i-bc’ ac _ac bod £ 0,

C
i bd bd  bd’

a

1.1.12 -

(1112) .

Definition 1.1.6 For Q C C",( € C" let M(Q), M denote the quo-
tient fields of H(QY), He respectively.

Definition 1.1.7 Let D[z, ...,x,] be the ring of all polynomials in n
variables with coefficients in D:

(1.1.13) p(x1,...,zpn) = Z aqx™, for some m € N,

la|<m

n
where a = (a1, ...,a) €EZY, o = Zai, =gtz
i=1

Sometimes we denote D[x1, ...,xy,] and p(z1,...,2,) by D[x] and p(x) re-
spectively.

The degree of p(x1,...,2,) # 0 (denoted deg p) is the largest natural
number d such that there exists a, # 0 with |a| = d. (deg0 = —c0.) A
polynomial p is called homogeneous if a, = 0 for all |a| < deg p. It is a
standard fact that D[z, ..., z,] is an integral domain. (See Problems 2-3
below.) As usual F(z1,...,z,) denotes the quotient field of Flzq, ..., z,].

Problems

1. Let Cla, b] be the set of real valued continuous functions on the inter-
val [a, b],a < b. Show that C[a, b] is a commutative ring with identity
and zero divisors.

2. Let D be an integral domain. Prove that D[z] is an integral domain.

3. Prove that D[z, ..., x,] is an integral domain. (Use the previous prob-
lem and the identity D[x1, ..., 2] = D[z1, ..., Tn—1][zn].)

4. Let p(z1,...,x,) € D[x1,...,2,]. Show that p = Zigdegppi, where
each p; is either a zero polynomial or a homogeneous polynomial of
degree i for ¢ > 0. If p is not a constant polynomial then m = deg p >
1 and p,, # 0. The polynomial p,, is called the principal part of p
and is denoted by p,. (If p is a constant polynomial then p, = p.)
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5. Let p,q € D[z, ..., x,]. Show (pq)r = DrGx-

6. Let F be a field with two elements at least which does not have char-
acteristic 0. Show that there exists a unique prime integer p > 2 such
that pf = 0 for each f € F. p is called the charactersitic of F.

1.2 Bezout Domains

Let a1,...,a, € D. Assume first that not all of aq,...,a, are equal to
zero. An element d € D is a greatest common divisor (g.c.d) of ay,...,a,
if dla; for i = 1,...,n, and for any d’' such that d’|a;,i = 1,...,n, d'|d.
Denote by (ay,...,a,) any g.c.d. of ai,...,a,. Then {{(a1,...,a,)}} is
the equivalence class of all g.c.d. of a1,...,a,. Foray =--- =a, =0, we
define 0 to be the g.c.d. of ay,...,a,, i.e. (a1,...,a,) = 0. The elements
aiy,...,a, are called coprime if {{(a1,...,an)}} = {{1}}.

Definition 1.2.1 D s called a greatest common divisor domain, or
simply GCD domain and denoted by Dq, if any two elements in D have
a g.c.d..

A simple example of D¢ is Z. See Problem 5 below for a non GCD
domain.

Definition 1.2.2 Let D be a commutative ring. A subset I C D is
called an ideal if for any a,b € I and p,q € D the element pa + qb belongs
to I.

In Z any nontrivial ideal is the set of all numbers divisible by an integer
k # 0. In H(Q), the set of functions which vanishes on a prescribed set
UcCQ,ie.

(1.2.1) IU):={feHQ): f()=0, foral¢eU},

is an ideal. An ideal I is called prime if ab € I implies that either a or b is
in I. I C Z is a prime ideal if and only if I is the set of integers divisible
by some prime number p. An ideal [ is called mazimal if the only ideals
which contain I are I and D. I is called finitely generated if there exists k

elements (generators) p1,...,pr € I such that any i € I is of the form
(122) 7= aipy 4+ -4 arPk
for some ay,...,a; € D. For example, in D[z, y] the set of all polynomials

p(x,y) such that
(1.2.3) p(0,0) =0,
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is an ideal generated by x and y. An ideal is called a principal ideal if it is
generated by one element p.

Definition 1.2.3 D is called a Bezout domain, or simply BD and de-
noted by Dp, if any two elements a,b € D have g.c.d. (a,b) such that

(1.2.4) (a,b) = pa + qb,

for some p,q € D.

It is easy to show by induction that for aq,...,a, € Dg
n
(1.2.5) (a1,...,ap) = Zpiai, for some pyq,...,p, € Dp.
i=1

Lemma 1.2.4 An integral domain is a Bezout domain if and only if
any finitely generated ideal is principal.

Proof. Assume that an ideal of Dp is generated by aq,...,a,. Then
(1.2.5) implies that (aq,...,a,) € I. Clearly (aq,...,a,) is a generator of
I. Assume now that any finitely generated ideal of D is principal. For given
a,b € D let I be the ideal generated by a and b. Let d be a generator of I.
So

(1.2.6) d = pa + gb.

Since d generates I d divides a and b. (1.2.6) implies that if d’ divides a
and b then d’|d. Hence d = (a,b) and D is Dg. O

Let I C D[z,y] be the ideal given by (1.2.3). Clearly (z,y) = 1. As
1 & I, I is not principal. As x,y generate I we obtain that D[z, y] is not
Dg. In particular Flzq,...,z,] is not Dp for n > 2. The same argument
shows that H(2) is not Dp for Q@ C C™ and n > 2. It is a standard fact that
F[x] is a Bezout domain [Lan67]. (See §1.3.) For a connected set Q@ C C
H(Q?) is Dp. This result is implied by the following interpolation theorem
[Rud74, Thms 15.11, 15.15]:

Theorem 1.2.5 Let Q) C C be an open set, A C 2 be a countable set
with no accumulation point in Q2. Assume that for each ¢ € A, m(¢) and
Wo,¢s - -+ Win(¢),¢ are a nonnegative integer and m(¢) + 1 complex numbers,
respectively. Then there exists f € H(Q2) such that

f(”)(g) =nlw,e, n=0,...,m(¢), forall{e A.

Furthermore, if all w,, ¢ = 0 then there exists g € H(Q) such that all zeros
of g are in A and g has a zero of order m(¢) + 1 at each ¢ € A.
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Theorem 1.2.6 Let @ C C be a domain. Then for a,b € H(Q) there
exists p € H(Q) such that (a,b) = pa + b.

Proof. If a = 0 or b = 0 then (a,b) = la+ 1b. Assume that ab # 0. Let
A be the set of common zeros of a(z) and b(z). For each ¢ € A let m(¢)+1
be the minimum multiplicity of the zero z = ¢ of a(z) and b(z). Theorem
1.2.5 implies the existence of f € H() which has its zeros at A, such that
at each ¢ € A f(z) has a zero of order m(¢) + 1. Hence

a=af, b=>bf, a,be H(Q).

Thus & and b do not have common zeros. If A is empty then a = a, b=1b.
Let A be the set of zeros of d. Assume that for each ¢ € A, @ has a
zero of multiplicity n(¢) + 1. Since b(¢) # 0 for any ¢ € A, Theorem 1.2.5
implies the existence of a function g € H(Q2) which satisfies the interpolation
conditions:

dk ) dk . R
_— glz —_ = — — = PP A
de( )|27C de b(z)|27§7 k 07 ,’I’L(C), C c
Then .
ed —b
p=—— (a,b)=fe?!=pa+b
a

and the theorem follows. O

Corollary 1.2.7 Let Q C C be a connected set. Then H(Q) is a Bezout
domain.

Problems

1. Let a,b,c € Dp. Assume that (a,b) = 1, (a,¢) = 1. Show that
(a,bc) = 1.

2. Let I be a prime ideal in D. Show that /I (the set of all cosets of
the form I + a) is an integral domain.

3. Let I be an ideal in D. For p € D denote by I(p) the set:
I(p):={aeD: a=bp+gq, forallbeD, qe I}.

Show that I(p) is an ideal. Prove that I is a maximal ideal if and
only if for any p € I, I(p) = D.

4. Show that an ideal I is maximal if and only if D/T is a field.
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5. Let Z[v-3]={a €C, a=p+qv/-3, p,q € Z}. Show

(a) Z[/—3], viewed as a subset of C, is a domain with respect to
the addition and multiplication in C.

(b) Let z =a+ bv/—3 € Z[V—3]. Then
2| =1 <= z=%1, |2|=2 <= z=2+20rz=+1++v-3.

|z| > /7 for all other values of z # 0. In particular if |z| = 2
then z is a prime.

(c) Let
a=4=22=(1+v/-3)(1-v=3), b= (1+v-3)-2 = —(1-v/-3)%

Then any d that divides a and b divides one of the following
primes dy ;=14 +v—3, dy =1—+v—3, da :=2.
(d) Z[v/-3] is not GCD domain.

1.3 Dy,Dp and D domains

p € D is irreducible (prime) if it is not a unit and every divisor of p is
improper. A positive integer p € Z is irreducible if and only if p is prime.
A linear polynomial in D[z, ...,x,] is irreducible.

Lemma 1.3.1 Let Q C C be a connected set. Then all irreducible ele-

ments of H(Q) (up to multiplication by invertible elements) are of the form
z — C for each ¢ € Q.

Proof. Let f € H(Q) be noninvertible. Then there exists { € € such
that f(¢) = 0. Hence z — (| f(z). Therefore the only irreducible elements

are z — (. Clearly z:g is analytic in Q if and only if n = (. O

For ¢ € C, H; has one irreducible element, namely z — ¢.

Definition 1.3.2 D is a unique factorization domain, or simply UFD
and denoted by Dy, if any nonzero, noninvertible element a can be factored
as a product of irreducible elements

(1.3.1) a=p1--Dr,
and these are uniquely determined up to order and invertible factors.

Z and H¢, ¢ € C are Dy. Flzq,...,z,] is Dy [Lan67].



8 CHAPTER 1. DOMAINS, MODULES AND MATRICES

Lemma 1.3.3 Let Q C C be a domain. Then H(QY) is not a unique
factorization domain.

Proof. Theorem 1.2.6 yields the existence of a nonzero function a(z) €
H(Q) which has a countably infinite number of zeros Q (which do not
accumulate in €2). Use Lemma 1.3.1 to deduce that a can not be a product
of a finite number of irreducible elements. O.

A straightforward consequence of this lemma is that for any domain
Qc C", H(Q) is not Dyy. See Problem 2 below.

Definition 1.3.4 D is principal ideal domain, or simply PID and de-
noted by Dp, if every ideal of D is principal.
Z and F[z] are Dp. It is known that any Dp is Dy ([Lan67] or [vdW59]).
Thus H(Q2) is not Dp for any open connected set Q C C™.

Definition 1.3.5 D is a Fuclidean domain, or simply ED and denoted
by Dg, if there exists a function d : D\{0} — Z such that:

(1.3.2) foralla,b e D, ab#0 d(a) < d(ab);

for any a,b € D, ab # 0, there exists t,r € D such that
(1.3.3) a = tb+r, where either = 0 or d(r) < d(b).

We define d(0) = —o0.

Standard examples of Euclidean domains are Z and F[z], see Problem
1 below.

Lemma 1.3.6 Any ideal {0} # I C Dg is principal.
Proof. Let min,cp (o) d(z) = d(a). Then [ is generated by a. O

Lemma 1.3.7 Let Q C C be a compact connected set. Then H(S) is
Dg. Here d(a) is the number of zeros of a nonzero function a € H(Q)
counted with their multiplicities.

Proof. Let a be a nonzero analytic functions on a domain O D €). Since
each zero of a is an isolated zero of finite multiplicity, the assumption that €2
is compact yields that a has a finite number of zeros in 2. Hence d(a) < cc.
Let p, be a nonzero polynomial of degree d(a) such that ag := p% does not
vanish on Q. By definition, d(a) = d(p,) = deg p. Let a,b € H(Q), ab # 0.
Since C[z] is Dg we deduce that

pa(2) = t(2)pp(z) +7(2), r=0o0rd(r)<d(p).
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Hence
4
= C;)Lb +agr, aor=0ord(aor) =d(r) < d(py) = d(b).
0
O

The Weierstrass preparation theorem [GuR65] can be used to prove the
following extension of the above lemma to several complex variables:

Lemma 1.3.8 Let Q C C™ be a compact connected set. Then H(Q) is

Dy.

Let aj,az € Dg\{0}. Assume that d(a;) > d(az). The Fuclidean
algorithm consists of a sequence ay, . .., ar+1 which is defined recursively as
follows:

(134) a; =t;a;41 + ajr2, a;42 =0o0r d(CLH_Q) < d(ai_H).

Since d(a) > 0 the Euclidean algorithm terminates a1 # 0,...,a; # 0 and
ap+1 = 0. Hence

(1.3.5) (a1, a2) = ag.

See Problem 3 below.

Problems
1. Show that the following domains are Euclidean.

(a) Z, where d(a) = |a| for any a € Z.
(b) F[z], where d(p(x)) = degp(z) for each nonzero polynomial
p(z) € Flz].

2. Let @ C C™ be a domain. Construct a nonzero function f depending
on one variable in 2, which has an infinite number of zeros in €.
Prove that f can not be decomposed to a finite product of irreducible
elements. Hence H () is not Dy .

3. Consider the equation (1.3.3) for » # 0. Show that (a,b) = (a,r).
Using this result prove (1.3.5).

1.4 Factorizations in D[x]

Let F be the field of quotients of . Assume that p(z) € D[z]. Suppose
that

p(z) = p1(x)p2(x), for some pi(x),pa(x) € Flx].



10 CHAPTER 1. DOMAINS, MODULES AND MATRICES

We discuss the problem of determining when p;(x), p2(z) € D[z]. One has
to take into account that for any q(x) € F[z],

(1.4.1) q(x) = @, for some p(z) € D[z], and some a € D.

Definition 1.4.1 Let
(1.4.2) p(x) = apz™ + -+ - + a, € D[z].

p(z) is called normalized if ag = 1. Let D be a GCD domain and denote
c(p) = (ag, ..., am). p(x) is called primitive if c(p) = 1.

The following result follows from Problem 2 below.

Lemma 1.4.2 Let F be the quotient field of Dg. Then for any q(z) €
Flx] there exists a decomposition (1.4.1) where (¢(p),a) = 1. The polyno-
mial p(x) is uniquely determined up to an invertible factor in Dg. Further-
more,

(1.4.3) q(z) = gr(;zc)7 r(z) € Dglx], a,b € Dg,

where (a,b) = 1 and r(x) is primitive.

Lemma 1.4.3 (Gauss’s lemma) Let p(z), q(x) € Dy[z] be primitive.
Then p(x)q(x) is primitive.

The proof of Gauss’s lemma follows from the following proposition.

Proposition 1.4.4 Let p,q € Dglx]. Assume that 7 € D is a prime
element which divides c(pq). Then w divides either c(p) or c(q).

Proof. Clearly, it is enough to assume that p,q # 0. We prove the
Proposition by induction on k = deg p+deg ¢q. For k = 0 p(x) = ag, ¢(z) =
bop. Hence c¢(pq) = agbg. Since 7|apby we deduce that 7 divides either
ap = ¢(p) or by = ¢(q).

Assume that the proposition holds for k£ < [ and assume that &k =1+ 1.
Let p = Y 1" jaia’,q = >0 bjz’, where anb, # 0 and I +1 = m + n.
So 7|amby,. Without loss of generality we may assume that nontrivial case
m|am and m > 0. Let r(x) = ZZEI a;xt. Since 7|c(pq) it is straightforward
that me(rq). As deg r 4+ deg ¢ < I we deduce that 7|c(r)c(q). If m|c(q) the
proposition follows. If 7|c(r) then 7|c(p) and the proposition follows in this
case too. (
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Corollary 1.4.5 Let p(z) € Dylz] be primitive. Assume that p(x) is
irreducible in Flx], where F is the quotient field of Dy. Then p(x) is irre-
ducible in Dy [z].

Theorem 1.4.6 Let F be the quotient field of Dy. Then any p(z) €
Dy [z] has unique decomposition (up to invertible elements in Dy ):

(1.4.4) p(x) =aq (z)--qs(x), qi,-.,q9s € Dy[z], a € Dy,

where q1(x), ...,qs(x) are primitive and irreducible in Flz], and a has de-
composition (1.3.1). Hence Dy|x] is a UFD.

See [Lan67] and Problems 3-5 below.

Normalization 1.4.7 Let F be a field and assume that p(x) € Flz] is
a nonconstant normalized polynomial in F[x]. Let (1.4.4) be a decomposi-
tion to irreducible factors. Normalize the decomposition (1.4.4) by letting
q1(z), ..., gs(x) be normalized irreducible polynomials in Flz]. (Then a =1.)

Lemmas 1.4.3 and 1.4.5 yield (see Problem 5 below):

Theorem 1.4.8 Let p(x) be a normalized nonconstant polynomials in
Dy[z]. Let (1.4.4) be a normalized decomposition in Fx], where F is the
quotient field of Dy. Then q1(x),...,qs(x) are irreducible polynomials in
]DU[:L’]

Theorem 1.4.9 Let Q C C™ be a connected set. Assume that p(z) is a
normalized nonconstant polynomial in H(Q)[x]. Let (1.4.4) be a normalized
decomposition in M|z], where M is the field of meromorphic functions in
Q. Then each q;(x) is an irreducible polynomial in H(2)[x].

Proof. By the definition of H({2) we may assume that p(z) € H(Qo)[z], g;(z) €
M(Qo)[z], 5 =1,..., s for some domain Qy D Q. Let

(07

T’(Z) Z,tf'r
Br(2) ,

t
(1.4.5) q(z,2) = 2" + Z
r=1

x€C, z€Q, a(2),5:(2) € H ), r=1,...,t.

Then ¢(z, z) is analytic on Qo\I', where T" is an analytic variety given by

t

F={ze: Hﬁr(z)zO}.

r=1

Let x1(%), ..., z+(%) be the roots of ¢(z,z) = 0, which is well defined as an
unordered set of functions {x1(2),...,2:(2)} on Q\I'. Suppose that each
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2k (z) is bounded on some neighborhood O of a point ¢ € T. Then each

218 , which is the j symmetric function of {z1(z2), ..., z¢(2)}, is bounded on
) o (2)

O. The Riemann extension theorem [GrH78] implies that 5. is analytic
in O. If each 2 (z) is bounded in the neighborhood of each ¢ € T" it follows

that g:gg €H(Q), k=1,....t

The assumption that p(z, z) is a normalized polynomial in H () yields
that all the roots of p(x,z) = 0 are bounded on any compact set S C .
The above arguments show that each g;(z, z) in the decomposition (1.4.4)

of p(z, z) is an irreducible polynomial in H(Q)[z]. O

Problems
1. ay,...,a; € D\{0} are said to have a least common multiple, denoted
by lem(ayq, ..., ax) and abbreviated as lem, if the following conditions

hold. Assume that b € D is divisible by each a;,7 = 1,...,k. Then
lem(ay,...,ar)b. (Note that the lem is defined up to an invertible
element.) Let D be a GCD domain. Show

(2) lem(ar, az) = (2%

(b) For k > 2 lem(ay,...,ax) lom (a0 1 )0k

= Tom(ar,ar—1),ar)

2. Let F be the quotient field of Dg. Assume that 0 # ¢(z) € F[z].
Write q(z) = > c; Z—imi where a;,b; € De\{0} for each ¢ € I, and
I={0<i; <...<i} is a finite subset of Zy. Let a; = (af’ibi),bg =

b for 5 € I. Then (1.4.1) holds, where a = lem(a;,, ..., aj, )

(ai,b;) > P
and p(z) = > ., b(;,axl Show that (¢(p),a) = 1. Furthermore, if

q(z) = @) for some r(z) € Dglz], c € Dg then ¢ = ea,r(x) = ep(x)

C

for some e € Dg\{0}.

3. Let p(z) be given by (1.4.2) and put
q(x) = box™ 4 -+ bp, r(x) =px)q(x) = Cox™ " + -+ Crgn-

Assume that p(x),q(x) € Dy[z]. Let 7 be an irreducible element in
Dy such that

mlai, i =0,..,a, 7bj, j=0,....,0, 7|catpt2-

Then either m|aq41 or 7|bgy1.
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4. Prove that if p(z), ¢(x) € Dy[z] then c(pq) = c(p)c(q).

Deduce from the above equality Lemma 1.4.3. Also, show that if p(z)
and ¢(z) are normalized polynomials then p(x)q(z) is primitive.

5. Prove Theorem 1.4.8.

6. Using the equality D[z1, ..., zp—1][2n] = D[z, ..., ], prove that Dy [z, ...

is a UFD. Deduce that F[z1, ..., 2] is a UFD.

1.5 Elementary Divisor Domains

Definition 1.5.1 D¢ is an elementary divisor domain, or simply EDD
and denoted by Dgp, if for any three elements a,b,c € D there exists
p,q,x,y €D such that

(1.5.1) (a,b,¢) = (px)a + (py)b + (qy)c.

By letting ¢ = 0 we obtain that (a,b) is a linear combination of a and b.
Hence an elementary divisor domain is a Bezout domain.

Theorem 1.5.2 Let D be a principal ideal domain. Then D is an ele-
mentary divisor domain.

Proof. Without loss of generality we may assume that abe # 0, (a,b,c) =
1. Let (a,c) = d. Since D is Dy ([Lan67]), we decompose a = a’a”’, where in
the prime decomposition (1.3.1) of a, a’ contains all the irreducible factors

of a, which appear in the decomposition of d into irreducible factors. Thus

(1.5.2) a=dd’, (d,d")=1, (d,c) = (a,c), (d",c) =1,

and if @, f are not coprime then ¢, f are not coprime.
Hence there exist ¢ and « such that
(1.5.3) b—1=—gc+ad".

Let d' = (a,b+ gc). The above equality implies that (d’,a”) = 1. Suppose
that d’ is not coprime with a’. Then there exists a noninvertible f such that
f divides d’ and a’. According to (1.5.2) (f,¢) = f’ and f’ is not invertible.
Thus f’|b which implies that f’ divides a, ¢ and b, which is contradictory to
our assumption that (a,b,¢) = 1. So (d’,a’) = 1 which implies (d’',a) = 1.
Therefore there exists z,y € D such that za + y(b + gc¢) = 1. This shows
(151) withp=1. O

Theorem 1.5.3 Let Q C C be a connected set. Then H(Y) is an ele-
mentary divisor domain.
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Proof. Given a,b,c € H(Q2) we may assume that a,b,c € H(y) for
some domain g D Q. Theorem 1.2.6 yields

(1.5.4) (a,b,¢c) = (a, (b,c)) =a+y(b,c)=a+y(b+qc).

O
Problems

1. D is called adequate if for any 0 # a,c € D (1.5.2) holds. Use the
proof of Theorem 1.5.2 to show that any adequate Dp is Dgp.

2. Prove that for any connected set 2 C C, H(Q2) is an adequate domain
([Held3]).

1.6 Modules

Definition 1.6.1 M is an abelian group if it has a binary operation,
denoted by +, which satisfies the conditions (1.1.1 — 1.1.5).

Definition 1.6.2 Let R be a ring with identity. An abelian group M
is called a (left) R-module if for each r € R, v € M the product rv is an
element of M such that the following properties hold:

r(vi +vo) =rvy+rve, (ri+r)v=rv+rywv,
(1.6.1)

(rs)v =r(sv), 1lv=vwv.
N C M is called a submodule if N is an R-module.

Assume that R does not have zero divisors. (Le. if r,s € R and rs =0
then either r =0 or s =0.) Then M does not have zero divisors if

(1.6.2) rv =0 if and only if v.=0 for any r # o.

Assume that D is an integral domain. Then M is a called a D-module if in
addition to being a module, M does not have zero divisors.

Let F be a field. Then an F-module is called a vector space V over F.
A submodule of V is called a subspace.

A standard example of an R-module is

(1.6.3) R™:={v=(vi,...,vm) : vi€R,i=1,...,m},
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where

u+v=(u -1-1117--~7Um'i‘Um)T

)

(1.6.4)
.

ra = (ruy,..., ) , rE€R.
Note that if R does not have zero divisors then R" is an R-module with no
zero divisors.
One of the standard examples of submodules in D" is as follows: Con-
sider the linear homogeneous system

n

(165) Zaijszo, Qij, T ebD,i=1,....m,5=1,...,n.
j=1

Then the set of solutions x = (z1,...,2,)" is a submodule of D".

Definition 1.6.3 A D-module M is finitely generated if there exist n-
elements (generators) vi,...,v, € M such that any v € M 1is of the form

n

(1.6.6) v=> avi, aeD, i=1,..n
i=1
If each v can be expressed uniquely in the above form then vi,...,v, is

called a basis in M, and M is said to have a finite basis. We denote a basis
in M by [vi,...,V,]

Note that D™ has a standard basis v; = (0;1,...,0in) ,i=1,...,n.

We now bring a short proof to the well known fact that a finitely gener-
ated vector space has a finite basis. We start with the following well known
result.

Lemma 1.6.4 Let D be an integral domain. Assume that n > m > 0
are integers. Consider the submodule N C D" given by (1.6.5). Then N
contains a nonzero element.

Proof. We first prove this result where D is a field F. We prove this
result by induction on n. For n = 2 we have m = 1 and the lemma follows
immediately. Suppose that lemma holds for n = N. Assume that n = N+1.
If a1 = ... = @mn = 0, let z,, = 0 and use the induction hypothesis. If
am; 7 0 then z; = % Z#j Gm;%;. Substitute x; by this expression in the
first m — 1 equations in (1.6.5) and use induction to deduce the lemma.
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Consider now the case D is an integral domain. Let F be its field of quo-

tients. By previous arguments there exist a solution x = (x,,...,2,)' €
F™ \ {0}. Hence there exists a € D\ {0} such that ax € D". So ax €
N\ {0}. O

Definition 1.6.5 Let D be an integral domain and M be a D-module.
Assume that v,,...,v, € M.

1. a1v, + ... 4+ a, vy, is called a linear combination of vy, ..., vy.
2. Vi,...,Vy, are called linearly independent if the equality
S aivi = 0 implies that a = ... = a, = 0.
3. Vy,...,vy are called linearly dependent if there exist ai,...,a, € D

not all 0 such that Y ;- a;v; =0

Theorem 1.6.6 Let V # {0} be a vector space over F. Then the
following are equivalent.

1. 'V has a basis [vy,...,Vy].

2. Any n + 1 elements in V are linearly dependent and any n linearly
independent elements in'V form a basis in V. (n is called the dimen-
sion of V and denoted as dim V.)

3. 'V is finitely generated.

Proof. 1. = 2. Let u,,...,upq, € V. Sou; = Y. b;v; for j =
1,...,n+ 1. Clearly

n+1 n n4+1

Z Til; = Z(Z bij:L‘j)Vi.

=1 j=1

Lemma 1.6.4 yields that the system Z?:ll bijx; = 0for i =1,...,n has
a nontrivial solution. Hence u,,...,u,, are linearly dependent. Assume
now that u,,...,u, € V linearly independent. Let u € V. Sou,,...,u,,u
are linearly dependent. Hence zyu, + ... + z,u, + au = 0 for some
(x1,...,%n,a)T #0. As u,,...,u, are linearly independent a # 0. So u =
Sy Suppose u =y " zw. Sou—u=0=>" (y;—z)u;. As
u,,...,u, are linearly independent it follows that y; = z; for i = 1,... n.
Hence u,,...,u, is a basis of V.

Clearly, 2. = 1. and 1. = 8. We now show 8. = 1. Assume that
u,,...,Uu,, generate V. Suppose first that u,,...,u,, are linearly inde-
pendent. Then the above arguments show that u,,...,u,, is a basis in V.
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Assume next that u,,...,u,, are linearly dependent. Hence u; is a linear
combination of u,,...,u;—y,W;q4,..., 4, for some i. In particular, these
m — 1 vectors generate V. Continuing in this manner we find a subset of n
vectors out of u,,...,u,, which generate V and are linearly independent.
These n vectors form a basis in V. O

A finitely generated vector space is called finite dimensional.

Lemma 1.6.7 Let D be an integral domain and assume that M is a
D-module. Let F be the quotient field of D. Let V be the set of all elements
of the form (a,v) where a € F\ {0} and v € M. Define a relation on V:
(a,v) ~ (b,w) if there exists c € D\ {0} such ca,cb € D and (ca)v = (cb)w.
Then

1. ~ is an equivalence relation.
2. Let V:=V/ ~. Define ¢ : M — V such that ¢(v) = (1,v). Then

(a) One can define uniquely the addition on 'V and multiplication
from the left by r € R such that

p(r(u+v)) =r(o(u) +¢(v)), &((r+s)pu)=(r+s)p(u).
(b) V is a vector space over F.
(c) If M is finitely generated then V is finitely generated.

We leave the proof of this lemma as an exercise.

Corollary 1.6.8 Any two finite bases of a D module contain the same
number of elements dim V, where V is defined in Lemma 1.6.7.

In §1.13 we show that the above module has a basis if D is a Bezout
domain.

Notation 1.6.9 Fora setS denote by S™*" the set of all mxn matrices
A = [ay];Zi27", where each a;; € S. In what follows assume that A €
SmXn qs above.

1. The vectors r; := (i1, ..., Q) and ¢j := (G, .. .,amj)T are called
the i-th row and the j-th columns of A respectively.

2. Denote by AT € S™™ the matriz B = [byg]y"0_, where byg = agy for
p=1,....,n,g=1,...,m.

3. A is called upper triangular or lower triangular if a;; = 0 for i > j
or j > 1 respectively.
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4. A is called diagonal if a;; =0 fori # j.
Definition 1.6.10 Let R be a ring with identity. Then:

1. Assume that m,n,p € N. Then for A = [aij]?;?:1 c R™XN gnd

B = [bji|j2—, € RMP define AB = [ei][27_, by the formula:

n
Cik = E aijbje, 1=1,....m, k=1,...,p.
Jj=1

2. Define I, := [6;5]] ;=4 € R™*".

3. A € R™ ™ is called invertible, or unimodular, if there exists B € R™*™
such that AB = BA =1,.

Lemma 1.6.11 Let R be a ring with identity. Then
1. R™™ js a ring with identity I,,.

2. R™*™ 4s an R-left and R-right module. (That isTA and Ar are defined
for each A € R™*™ and r € R, and the corresponding distribution

properties apply.)
3. R™XM s a left R™*™-module and a right R™*™-module.

4. Forn > 2 R™™ has zero divisors even if R is a field.

5. Assume in addition that R is commutative. Then R"*" is an algebra:

r(AB) = (rA)B = A(rB).
The proof of the lemma is left to the reader.

Definition 1.6.12 Let M be a module over . Assume that M; is
a submodule of M for i = 1,...,k. Then M is called a direct sum of
M,,..., My, and denoted as M = @F_ M,, if every element m € M can

. . k
be expressed in unique way as a sum m =y . m;, where m; € M; for
i=1,...,k.

Definition 1.6.13 The ring of quaternions H is a four dimensional
vector space over R with the basis 1,1,j,k, i.e. vectors of the form

(1.6.7) q=a+bi+cj+dk, a,bcdeR,
where

(1.68) i2=j2=k>=—1, ij=—ji=k, jk=—kj =i, ki=—ik =j.
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It is known that H is a noncommutative division algebra over R. See
Problem 7 below.

Problems

1. Prove Lemma 1.6.7.

2. Let M be a finitely generated module over D. Let F be the quotient
field of D. Show

(a) Assume that M is generated by a,,...,a,. Let N = {x =
(T1y. . xm) " €D™, 3" x;a; = 0}. Then N is a D-module.

(b) Let U C F™ be the subspace generated by all vectors in N. (Any
vector in U is a finite linear combination of vectors in N.)

i. Show that any vector u € U is of the form %b, where b € N.

ii. Assume that dim U =[. Pick a basis [u,,...,w] in U and
complete this basis to a basis in F™. So
[Uy,..., 0, W,y,..., W] is a basis in F™. Let

W = span (w,,...,w,,—;). Let V be the quotient space
F™/U. Show that any vector in V is of the form of a coset
w + U for a unique vector w € W.

(c) Define ¢ : M — V as follows. Let a € M and write a =
> aia. Set ¢(a) = (ay,...,am,)" + U. Then
i. ¢ is well defined, i.e. does not depend on a particular rep-
resentation of a as a linear combination of a,, ..., a,,.
ii. ¢(a)=¢(b) <= a=h.
iii. ¢(aa+ bb) = ap(a) + bp(b) for any a,b € D and a,b € M.
iv. For any v € V there exists a € D and a € M such that
o(a) =av.
(d) Let Y be a finite dimensional vector space over F with the fol-
lowing properties.

i. There is an injection ¢ : M — Y, i.e. ¢ is one to one, such
that ¢(am + bn) = ad(m) + bo(n) for any a,b € D and
m,n € M.

ii. For any y € Y there exists a € D and m € M such that
¢(m) = ay.
Show that dim Y = dim V, where V is defined in part b.
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3. Let M be a D-module with a finite basis. Let N be a submodule of
M. Show that if D is Dp then N has a finite basis.

4. Let M be a D-module with a finite basis. Assume that N is a finitely
generated submodule of M. Show that if D is Dp then N has a finite
basis.

5. Prove Lemma 1.6.11.

6. Let M be a module over . Assume that M; is a submodule of M
fori=1,...,k. Then N := M, 4+ ...+ My, is the set of all elements
m € M of the form m, + ...+ my, where m; € M; fori=1,... k.
Show

(a) N is a submodule of M.

(b) Nf_;M; is a submodule of M

(c) Assume that M,,..., My, are finitely generated. Then N is
finitely generated and dim N < Zle dim M;.

(d) Assume that M,,..., M}, have bases and N = @¥_ M;. Then
N has a basis and dim N = Zf:l dim M.

7. Show

(a) The ring of quaternions H can be viewed as C?, where each
q € H of the form (1.6.7) can be written as q = z + wj, where
z=a+bi,w = c+di € C. Furthermore, for any z € C, jz = zj.

(b) H is a ring with the identity 1 = 1 + 0i + 0j + Ok.

(¢) (rq)s = q(rs) for any q,s € H and r € R. Hence H is an algebra
over R.

(d) Denote |q| = Va2 + b2 +c2 +d?, q=a—bi — cj — dk for any q
of the form (1.6.7). Then qq = qq = |q|>. Hence |q|~2q is the
right and the left inverse of q # o.

1.7 Determinants

Definition 1.7.1
1. For a positive integer n denote [n] := {1,...,n}.

2. For k € [n] denote by [n]i the set of all subsets of [n] of cardinality k.
Each o € [n] is represented by o := (a1, ..., ), where aq, ..., ag
are integers satisfying 1 < a1 < ... < ax < n. Denote ||a|1 =

k
Zj:l Q-
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8.

Let A = lai;];27_,S™ . Assume that a = (a1, ..., ax) € [my, B =
(Bir-.-,B) € [nli. Denote by Alar,B] = [aa, 5], € S*¥ and
by A, B) € S=X(=D the matriz obtained from A by deleting
a, ..., Tows and By, ..., 0 columns respectively.

Let 3, the group of bijections (permutations) o : [n] — [n].
id € Xy, is the identity element, i.e., id(i) =1 for all i € [n).

An element T € %, is called a transposition if there exists i,j €
[n],i # j such that (i) = j,7(j) = ¢ and 7(k) = k for k € [n]\ {3,j}.

Let D be a integral domain and let F be its field of quotients. For
n > 2 define sign : ¥, — {—1,1} C D as follows: Let x1,...,z, €
F(z1,...,2n). Then

H1gi<j§n(xa(j) = Xo(i))

H1§i<j§n(xj - Xi)

sign o =

Forn =1 let sign id = 1.

o is called even or odd if either sign o = 1 orsign o = —1 respectively.

The following lemma is well known and its proof is left as Problem 1:

Lemma 1.7.2
1. Fach o € ¥, is a product of transpositions
(1.7.1) O =T10T20 0 Tp.
2. signid = 1.
3. sign 7 = —1 for each transposition.
4. The map sign is a homomorphism: sign o o w = (sign o)(sign w) for

5.

all o,w € Xy,

Assume that (1.7.1) holds. Then sign o = (—1)™.

Definition 1.7.3 Let D be an integral domain. Let A = [a;;|l_._; €

ann

J
Then the determinant of A, denoted as det A, is defined as follows:

(1.7.2) det A = Z SigN 0 a15(1)824(2) * * * Ano(n)-

ogeEX,
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Theorem 1.7.4 LetD be an integral domain. Assume that A = [a;;], B =

[bij]

1.

SRS

10.

€ D"*™. Then the folowing conditions hold:

det A is a multilinear function on the rows or columns of A.
det I,, = 1.
det AT = det A.

. The determinant of lower triangular or upper triangular matriz A is

a product of its diagonal entries.

. Let B be obtained from A by permuting two rows or columns of A.

Then det B = —det A.

. If A has two equal rows or columns then det A = 0.

. (Laplace row and column expansion for determinants) For i,j € [n]

denote by A(i, j) € D=DX(=1) the matriz obtained from A by delet-
ing its i-th row and j-th column. Then

(1.7.3) det A= a;(~1)"*/det A(i, j) =
j=1

> aji(—1)"det A(j, 4),
j=1

fori € [n].
(Laplace mulitple row or column expansion.) Fiz k € [n — 1] and
a=(ay,...,ar) € [n]r Then
(L7.4) det A= > (~1)lelitIPhdet A, 6] det A(r, B) =
BE[n]k
det A = Z (=D)lleliFlBl:qet A[B, o] det A(B, @)
BE[n]k

det AB = (det A)(det B).

(Cauchy-Binet identity.) Let n > 2 and m € [n]. Assume that F €
D™ G e D™ Then

(1.7.5) det FG = Y det F[[m],a] det Gla, [m]].

a€nlm,
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Proof. 1. Immediate.
2. Follows from sign id = 1.
3. Note that if o(i) = j then i = 071(j). Hence

det A = Z sign o H A1 (j)j-

oEL, j€[n]

Let w := o~ ! and recall that sign w = sign 0. This proves the equality
det AT = det A.

4. Assume that A is upper triangular. Note that Hie[n] aig(iy = 0 if
o(i) < i for some i € [n]. Hence [[;c, tio(iy = 0 if o # id. Therefore
det A = ay1 - Gnp- Similar result hold for lower triangular matrices.

5. Let B obtained from A by permuting two columns. Hence there
exists a transposition 7 € 3, such that b;; = a;-(;). Thus

det B = Z sign o H biga) = Z sign o H Aj(gor)(i)
]

oeX, i€[n oeX, i€[n]

Let w = 0 o7. Recall that sign w = sign o sign7 = —sign o. Hence
det B = —det A. Use 3. to deduce this equality if B is obtained from A by
permuting two rows.

6. Assume that A has to identical rows. Suppose first that —1 #
1. Permute the two identical rows to deduce that det A = —det A. So
2det A = 0, hence det A = 0. Suppose now that —1 = 1. So sign o =
1 for each ¢ € ¥,. To show that det A = 0 we may assume without
loss of generality that the first and the second row of A are the same:
aij = ag; = b; for j € [n]. In the formula for det A consisting of n!
terms we have exactly 2 identical terms of the form (b;b;)x, (b;b;)x. Hence
(bibj)z + (bjb;)r = 2b;bjx = 0. Therefore det A = 0. The same results
follows if A has two identical columns.

8. We first show the validity of the first identity of (1.7.4). It is clear that
the right-hand side of (1.7.4) contains exactly n! terms appearing in det A.
It is left to show that the product a14(1) -+ @po(n) appears in the right-hand
side of (1.7.4) with the sign sign o. Assume first that 3 = a. Then in the
right-hand side of (1.7.4) we have the expression det A, ] det A(ex, ).
Consider in ¥, the subgroup %, (a) of all permutations on [n] which leave
invariant a. This subgroup is isomorphic to the direct product of ¥ x ¥, .
So each element of this product is o = (i, v). It is straightforward to show
that sign o = sign u sign v. Hence the expression det Ao, o] det A(a, )
contains k!(n—k)! terms with the right signs. For a general 3 we interchange
the column 3; with the column «; for i = 1,...,k. Now use the previous

case to deduce that the correct sign of the product det Alax, 3] det A(ax, B)
is (—1)llelli+1Blh
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7. follows from 8.

9. Let a,,...a, and b, ...b, be the columns of the matrix A and
B respectively. So A = [a,...a,] and B = [b,...b,]. It is straight-
forward to show that BA = [Ba,...Ba,]. Let x = (z,,...,2,) €
D™ Then Bx = z,b, + ... 4+ z,b,. Use the multilinearity of det BA
in columns to deduce that det BA is a sum of n™ terms of the form:
(aill ST ainn)det [bi, bi2 “e bin]. Recall that det [bil biz .o bzn] = o if
ip = 1iq for some p # g. Hence det BA is a sum of n! terms of the
form (a;,1...a;,,)det [b;, b, ...b; ], where {i1,...,i,} = [n]. There ex-
ists a unique o € X, such that o(j) = i; for j = 1,...,n. Note that
det [b;, b;_ ...b;, ] = sign o det B. Hence

det BA = Z det B( Z sign UHag(i)i) = det Bdet AT = det B det A.
oEX, gEX,

10. is proved similarly to 9.. O

Definition 1.7.5 Let A = [a;;] € D"*". Then the adjoint of A, some-
times called the adjugate of A, is defined as adj A := [by] € D"**, where
bij = (_1)Z+]A(.jai) fO’I’ 1,7 € [n]

Lemma 1.7.6 Let D be an integral domain. Assume that A € D™*".
Then

1.
(1.7.6) Aadj A =(adj A)A = (det A)L,.

2. A is invertible if and only if det A is an invertible element in D.
Furthermore, if A is invertible then A™! = ﬁadj A.

Proof. 1. Let adj A = [byj]; je)- The equality >0 aijbji = 37, bijaz =
det A follows from the Laplace expansion. The equality 2?21 aijbji =
Z?Zl bijaji = 0 for i # k follows from the observation that these sums are
row or column expansion of the determinants of corresponding matrices
having two identical rows or columns.

2. Suppose that I,, = AB. Then 1 = det AB = (det A)(det B). Hence
det A is invertible. Vice versa assume that det A is invertible. Then (1.7.6)
implies that A~! = —L—adj A. Suppose that AB = I,,. Multiply from the

det A
left by ﬁadj A to deduce that B = ﬁadj A. O

Problems
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1. Prove Lemma 1.7.2.

2. Let m > n be positive integers and assume that D is an integral
domain. Assume that F' € D™*" G € D"*™. Show that det AB = 0.

1.8 Algebraically closed fields

Definition 1.8.1 A field F is algebraically closed if any polynomial
p(z) € Flx] of the form (1.4.2) splits into linear factors in F[x]:

m

(1.8.1) pe)=ao [[(x=&), &EF, i=1,...m, ag#0.

i=1

The classical example of an algebraically closed field is the field of complex
numbers C. The field of real numbers R is not algebraically closed.

Definition 1.8.2 Let K D F be fields. Then K is called an extension
field of F. K is called a finite extension of F if K is a finite dimensional
vector space over F. The dimension of the vector space K over F is called
the degree of K over F and is denoted by [K : F].

Thus C is a finite extension of R of degree 2. It is known ([Lan67], see
Problems 1 - 2 below) that:

Theorem 1.8.3 Let p(x) € Flx]. Then there exists a finite extension
K of F such that p(x) splits into linear factors in K|x].

The classical Weierstrass preparation theorem in two complex variables
is an explicit example of the above theorem. We state the Weierstrass
preparation theorem in a form needed later [GuR65].

Theorem 1.8.4 Let Hy be the ring of analytic functions in one variable
in the neighborhood of the origin 0 € C. Let p(\) € Hy[\] be a normalized
polynomial of degree n

(1.8.2) P 2) = A"+ a;(2)A" T, ay(z) € Ho, j=1,...n.
j=1
Then there exists a positive integer s|n! such that

(1.8.3) pOw') =[N = Aj(w)), Aj(w) € Hg, j=1,...,n.

Jj=1



26 CHAPTER 1. DOMAINS, MODULES AND MATRICES

In this particular case the extension field K of F = Mg is the set of multi-
1

valued functions in z, which are analytic in z5 in the neighborhood of the

origin. Thus K = M (w), where

(1.8.4) w® = z.

The degree of K over F is s.

Problems

1. Let F be a field and assume that p(z) = 29 +ag2? 1 +...+a; € Flz],
where d > 1. On the vector space F¢ define a product as follows. Let
b(x) = Zle bzt e(x) = ijl c;z't. Then (by,...,bq)(c1,...,cq) =
(r1,...,7q4), where r(z) = Zle r;z°~1 is the remainder of b(x)c(z) af-
ter dividing by p(z). Le. b(z)c(z) = g(z)p(x)+r(x) where deg r(x) <
d. Let Py be F¢ with the above product.

Show

(a) Py is a commutative ring with identity e, = (1,0,...,0).
(b) F is isomorphic to span (e, ), where f — fe,.
(c) Let €, = (014y.-.,04:),8 =2,...,d. Then
el =e,,i=0,...,d—1, p(e,)=o.
(d) Pg4 is a domain if and only if p(z) is an irreducible polynomial

over F[z].

(e) Pgis a field if and only if p(z) is an irreducible polynomial over
(f) Assume that p(z) € F[z] is irreducible. Then K := Py is an
extension field of F with [K : F] = d. Furthermore p(z) viewed
as p(z) € K[z] decomposes to p(z) = (z —e,)q(x), where g(z) =

il 4 2?21 giz"1 € K[z].
2. Let F be a field and p(x) € Flz]. Show that there exists a finite
extension field K such that p(z) splits in K. Furthermore [K : F] <

(deg p)!
1.9 The resultant and the discriminant

Let D be an integral domain. Suppose that

(1.9.1) p(x) = apx™ + -+ + am, q(x) =boz™ + -+ + b, € D[x].
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Assume furthermore that m,n > 1 and agby # 0. Let F be the quotient
field of D and assume that K is a finite extension of F such that p(x) and
q(zx) split to linear factors in K. That is

p(l‘>:a0H(‘/B_£’L)7 £i€K7i:1a"'7m7 a07é0'

i=1

(1.9.2)

Q(f):bon(f—ﬁj)a nj €K, j=1,...,n, by #0.
j=1

Then the resultant R(p, q) of p, ¢ and the discriminant D(p) of p are defined
as follows:

m,n

R(p.q) = agby" ] (& —ny)

i,j=1
(1.9.3)
D(p)=ag™ Y T[] (&-€)*

1<i<j<m

It is a classical result that R(p,q) € Dlaog,-..,am,bo,...,by] and D(p) €
Dlag, . .., an], (see [vdW59]). More precisely, we have the following.

Theorem 1.9.1 Let

a=(ag,...,ay) €D b= (by,...,b,) €D,

Then R(p,q) = det C(a,b), where

[ag a1 as .. Gm 0 0 ... 0 ]
0 ap a1 oo Qm—1 am 0 ... 0
. 0 0 0 - ag a as ... Qm
Clb) =1 4 b . by by by O ... 0
0 by b1 veo bp—o bp_1 by, 0o ...
. 0 0 O bo b1 by b |

is an (m+n) x (m+n) matriz.
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Proof. Let F be the quotient field of D, and assume that p, ¢ € D[z]
split in a finite extension field K of F. Let c(z) = S0 c;a™ 1=, d(z) =
Z;-n;ol djz™ I € Flz]. Then c(z)p(x)+d(z)g(z) = S it gamtn—1-L,

Denote by

f = (coso esCnonydoy e ydm—1),8 = (Goy--+rGmin—) € D™ A
straightforward calculation shows that fC(a,b) = g.

Assume that det C'(a,b) # o. Let f = (0,...,0,1)C(a,b)"*. Hence
there exist ¢(x), d(x) € F[z] of the above form such that c¢(z)p(x)+d(x)q(z) =
1. Thus p(z), ¢(z) do not have common zeros in K.

We now show that if agby # 0 then R(p,q) = det C(a,b). Divide the
first n rows of C(a, b) by ag and the last m rows of C'(a, b) by b, to deduce
that it is enough to show the equality R(p,q) = det C(a,b) in the case
ap = bg = 1. Then p(z) = [~ (x—w;), q(x) = [[}_, (x—v;) € K[z]. Recall
that (—1)’a; and (—1)7b; are the i — th and j — th elementary symmetric
polynomials in uq,...,u,, and vy, ..., v,, respectively:

(1.9.4)  a; = (-1)! o ww, i=1,..,m,

1<l <...<l;<m

by = (=1)’ Z vy ey, J=1,000m.

l§l1<...<lj§n

Then C(a,b) is a matrix with polynomial entries in u = (ty, ..., Up), Vv =
(U1, ...,v,). Hence s(u,v) := det C(a,b) is a polynomial in m+n variables,
the coordinates of u and v respectively.

Assume that u; = v; for some i € [1,m],j € [1,n]. Then p(z) and ¢(z)
have a common factor x — u; = x — v;. The above arguments shows that
s(u,v) = o. Hence s(u,v) is divisible by t(u,v) = [[;Z];_, (u; — v;). So
s(u,v) = h(u,v)t(u,v), for some polynomial h(u,v).

Consider s(u,v),t(u,v),h(u,v) as polynomials in v with coefficients
in D[u]. Then deg ,t(u,v) = nm and the term of the highest degree is
(=1)mmp™ ... v, Observe next that the contribution of the variables v in
det C(a,b) comes from it last m rows. The term of the maximal degree in
each such row is n which comes only from b,, = (—1)"v; ...v,. Hence the
coefficient of the product b)) comes from the minor of C'(a,b) based on the
first n rows and columns. Clearly, this minor is equal to af = 1. So h(u,v)
is only polynomial in u, i.e. its does not depend on the coordinates of v.
Furthermore h(u) = 1, i.e. h(u, V) is a constant polynomial whose value is
1.

O

If F is a field of characteristic 0 then

(1.9.5) D(p) = +ag" R(p,p).
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Note that if a;,b; are given the weight ¢ for ¢ = 0,..., then R(p,q) and
D(p) are polynomials with total degrees mn and m(m — 1) respectively.
See Problem 4 below.

Problems

1. Let D be an integral domain and assume that p(z)
(x 4+ 1)™. Show

I
8

(a) R(p,q) =1.
(b) Let a = (1,0,...,0) € D™ b = ((7),(}),---, (1)) € D,
Let C(a,b) be deﬁned as in Theorem 1.9.1. hen det C(a,b) =
1.
2. Let u = (ug,...,um),v = (v1,...,0,). Assume that each a; €
D[u],b; € D[v], is a multilinear polynomial for i = 0,...,m,j =
0,...,n, where the degree of a;,b; with respect to any variable is

at most 1. Let C(a,b) be defined as in Theorem 1.9.1. Show that
det C(a,b) is a polynomial of degree at most n and m with respect
to u; and v; respectively, for any i =1,...,mand j =1,...,n.

3. Let the assumptions of Theorem 1.9.1 hold. Show

(a) If ag = by then det C(a,b) = 0.

(b) Assume that p(z) is not the zero polynomial and ag = 0, by # 0.
Then det C'(a, b) = 0 if and only if p(z) and ¢(z) have a common
root in an extension field K of F, where p(z) and ¢(z) split.

4. Let C(a,b) be defined as in Theorem 1.9.1. View det C(a,b) as a
polynomial F'(a,b). Assume that the weight w(a;) = i, w(b;) = j.
Then the weight of a monomial in the variables a, b is the sum of the
weights of each variable times the number of times in appears in this
monomial. Show

(a) Each nontrivial monomial in F'(a,b) is of weight mn.

(b) Assume as in the proof of Theorem 1.9.1 that ag = bp = 1 and a;
and b; are the i—th and j—th elementary symmetric polynomials
in u and v respectively. Then each nontrivial monomial in u,v
appearing in F'(a(u),b(v)) is of total degree mn.
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1.10 The ring Flzy,...,z,)

Definition 1.10.1 Let U,V be two subsets of W. Then U \'V denotes
the set of all points of U which are not in V.. (U\'V may be empty).

In 1.2 we pointed out that F[zy,...,x,] is not Dp for n > 2. It is known
(see [Lan67]) that Flxy,...,z,] is Noetherian:

Definition 1.10.2 D is Noetherian, denoted by Dy, if any ideal of D
is finitely generated.

In what follows we assume that F is algebraically closed. Let p1,...,px €
Flx1,...,2,]. Denote by U(ps,...,pr) the common set of zeros of py, . .., p:

(1.10.1) U(py,...,pk) = {x = (21,...,2)" : pi(x)=0,5=1,...,k}.

U(p1,-..,pr) may be an empty set. A set of the form U(py,...,px) is called
an algebraic variety (in F"). It is known (see [Lan67]) that any nonempty
variety in F™ splits as

(1.10.2) U=U,V,

where each V; is an irreducible algebraic variety, which is not contained in
any other V;. Over C each irreducible variety V' C C™ is a closed connected
set. Furthermore, there exists a strict subvariety W C V (of singular points
of V') such that V\W is a connected analytic manifold of complex dimension
d in C™. dim V := d is called the dimension of V. If d = 0 then V consists
of one point. For any set U C F™ let I(U) be the ideal of polynomials
vanishing on U:
(1.10.3) IU)={peFlxy,...,zn]: px)=0,VxeU}
Theorem 1.10.3 (Hilbert Nullstellensatz) Let F be an algebraically
closed field. Let I C Flxy,...,x,] be the ideal generated by p,...,pk.

Assume that g € F[zy,...,2,]. Then ¢’ € I for some positive integer j if
and only if g € I(U(p1,...,pk))-

Corollary 1.10.4 Let py,...,p; € Flz1,...,z,], where F is an alge-
braically closed field. Then p1,...,pr generate Flay, ..., x,] if and only if

U(p17"'7pk) = @

1.11 Matrices and homomorphisms

Definition 1.11.1 Let M, N be D-modules. Let T : N — M. T is a
homomorphism if

(1.11.1) T(au+bv) =aTu+bTv, forallu,veN, a,beD.
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Let

Range T = {ueM: u=Tv, veN}
Ker T = {veN: Tv=0},

be the range and the kernel of T. Denote by Hom(IN,M) the set of all
homomorphisms of N to M.

N’ := Hom(N, D) is called the dual module of N. For a vector space V
over F the vector space V' is called the dual vector space of V.

T € Hom(N,M) is an isomorphism if there exists @ € Hom(M, N)
such that QT and TQ are the identity maps on M and N respectively. M
and N are isomorphic if there exists an isomorphism T € Hom(IN, M).

Hom(N, M) is a D-module with
(aS+bT)v=aSv+blv, a,beD, ST € Hom(N,M), v € N.

Assume that M and N have finite bases. Let [uy, ..., uy] and [vy,...,v,]
be bases in M and N respectively. Then there exists a natural isomor-
phism between Hom(N, M) and D™*". For each T € Hom(N,M) let
A = [a;;] € D™*" be defined as follows:

m
(1.11.2) Tv; =Y aju;, j=1,...,n.
=1

Conversely, for each A = [a;;] € D™*" there exists a unique 7' € Hom(IN, M)
which satisfies (1.11.2). The matrix A is called the representation matrix
of T in the bases [uy,...,u,] and [vi,...,vy].

Definition 1.11.2 LetD be an integral domain and A = [aij]icim),jem] €
]:D)m/xn .

1. Assume that o = (oq,...,01) € [m]g, 8= (B1,...,8k) € [n]kx. Then
det Ala, B] is called an («, B) minor, k-minor, or simply a minor of
A.

2. The rank of A, denoted by rank A, is the maximal size of a nonvan-
ishing minor of A. (The rank of the zero matriz is 0.)

3. The nullity of A, denoted by nul A, is n — rank A.

Any A € D™*™ can be viewed as T € Hom (D™, D™), where Tx := Ax, x =
(1,...,2,)". We will sometime denote 7' by A. If D is Dp then Range A
has a finite basis of dimension rank A (see Problem 1 below).
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We now study the relations between the representation matrices of a
fixed T' € Hom(IN, M) with respect to different bases in M and N.

Notation 1.11.3 Denote by GL(n,D) the group of invertible matrices
in D™,

Lemma 1.11.4 Let M be a D-module with a finite basis [y, ..., Q).
Then [uy,...,Wy] s a basis in M if and only if the matriz Q = [qri] €
D™*™ given by the equalities

(1.11.3) W= gy, i=1,...,m,
k=1

18 an invertible matriz.

Proof. Suppose first that [ug,...,u,,] is a basis in M. Then
(1.11.4) =Y mpw, k=1...m
1=1

Let R = [ry]f*. Insert (1.11.4) to (1.11.3) and use the assumption that
[uy,...,uy] is a basis to obtain that RQ = I. Hence det R det Q = 1.
Lemma 1.7.6 yields that Q € GL(m, D). Assume now that @ is invertible.
Let R = Q'. Hence (1.11.4) holds. It is straightforward to deduce that
[Q1, ..., 0] is a basis in M. O

Definition 1.11.5 Let A, B € D™*". Then A and B are right equiv-
alent, left equivalent and equivalent if the following conditions hold respec-
tively:

(1.11.5) B = AP for some P € GL(n,D) (A ~, B),
(1.11.6) B= QA for some Q € GL(m,D) (A ~; B),
(1.11.7)B = QAP for some P € GL(n,D), Q € GL(m,D) (A~ B).

Clearly, all the above relations are equivalence relations.

Theorem 1.11.6 Let M and N be D-modules with finite bases having
m and n elements respectively. Then A, B € D"™*™ represent some T €
Hom (N, M) in certain bases as follows:

(1) A ~; B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.11.8)  [ug,...,up)], [Vi,...,vy] and [Q1,...,0n] [V1,..., V5]
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(r) A ~, B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.11.9)  [uy,...,up), [Vi,...,Vvp] and [ui,...,um], [V1,..., V4]

(e) A~ B if and only if A and B represent T in the corresponding bases
of U and V respectively

(1.11.10)  [ug,..., W], [V1,.-.,Vy] and [Qp,..., 0], [Vi,...,Vp]

Sketch of a proof. Let A be the representation matrix of 7" in the bases

[ui,...,up] and [vi,...,v,] given in (1.11.2). Assume that the relation
between the bases [uy,...,u,,] and [Qy,..., Q] is given by (1.11.3). Then
m m
TVj = Zaijui = Z qkiaijﬁk, j = 1, R I8
i=1 i=k=1
Hence the representation matrix B in bases [Q1, ..., U,;,] and [vy,...,v,] is
given by (1.11.6).
Change the basis [v,,...,v,] to [V1,...,V,] according to

V= Zpljvl, j=1,...,n, P =p;] € GL(n,D).
=1

Then a similar computation shows that 7" is represented in the bases [uy, ..., u,,]
and [V1,...,V,] by AP. Combine the above results to deduce that the rep-
resentation matrix B of T in bases [y, ..., Uy] and [Vy,...,V,] is given by
(1.11.7). O

Problems

1. Let A € D*". View A a as linear transformation from A : D%, — D}
to show that Range A is a module with basis of dimension rank A.
(Hint: Use Problem 1.6.4.)

2. For A, B € D™*" show:

(a) If A ~; B then Ker A = Ker B and Range A and Range B are
isomorphic.

(b) A ~, B then Range A = Range B and Ker A and Ker B are
isomorphic.
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1.12 Hermite normal form

We start this section with two motivating problems.

Problem 1.12.1 Given A, B € D™*" when are they
(1) left equivalent;
(r) right equivalent;
(e) equivalent?

Problem 1.12.2 For a given A € D™*™ characterize the equivalence
classes corresponding to the relations of left equivalence, right equivalence
and equivalence as defined in Problem 1.12.1.

For D¢ the equivalence relation has the following natural invariants:
Lemma 1.12.3 For A € DZ™" let
wla, A) := g.c.d. ({det Ale, 0],

0 e
(1.12.1) v(B,A) :=g.cd. ({det A[p, ], ¢ €
0k(A) :=g.c.d. ({det A[p, 0], ¢ €

n}k})v (OAS [m]ka
ml}), B € [nk,
[m]k, 0 € [nlk}),

(0k(A) is called the k-th determinant invariant of A.) Then

pla, A) = pla, B) foralla € [m], if A~, B,
(1.12.2) v(B,A)=v(B,B) forallge[n], if A~ B,
5k(A) = 5k(B) if A~ B,

fork=1,...,min(m,n). (Recall that for a,b € D, a = b if a = be for some
invertible ¢ € D.)

Proof. Suppose that B = AP for some P € GL(n,D). Then the
Cauchy-Binet formula (1.7.5) yields:

(1.12.3) det Bla,v] = Z det A, 8]det P[O,~].
He[n]k

Hence (o, A) divides p(a, B). As A = BP~! we get u(a, B)|u(a, A).
Thus p(a, A) = p(a, B). The other equalities in (1.12.2) are established in
a similar way. |

Clearly

(1.12.4) A~y B < AT ~,. BT, A,BeD™",
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Hence it is enough to consider the left equivalence relation. We characterize
the left equivalence classes for Bezout domains Dg. To do that we need
some notation.

Recall that P € D™*™ is called a permutation matrix if P is a matrix
having in each row and each column exactly one nonzero element which is
equal to the identity element 1. A permutation matrix is invertible since
p-l=pT,

Definition 1.12.4 Let P, C GL(n,D) be the group of n X n permuta-
tion matrices.

Definition 1.12.5 An invertible matriz U € GL(n,D) is called simple
if there exists P,Q € P,, such that

Vo0
(1.12.5) U_P[O In_2] ,
where
(1.12.6) V= B‘ ?] € GL(2,D), (ad — By is invertible).

U is called elementary if U is of the form (1.12.5) and

(1.12.7) V= [g g] € GL(2,D), and a, ¢ are invertible.

Definition 1.12.6 Let A € D™*™. The following row (column) opera-
tions are called elementary:
(a) interchanging any two rows (columns) of A;
(b) multiplying row (column) i by an invertible element a;
(¢) adding b times row (column) i to row (column) j (i # 7).

The following row (column) operation is called simple:
(d) replacing row (column) i by a times row (column) i plus b times row
(column) j, and row (column) j by c times row (column) i plus d times row
(column) j,
where © # j and ad — be is invertible in D.

Tt is straightforward to see that the elementary row (column) operations
can be carried out by multiplication of A by a suitable elementary matrix
from left (right), and the simple row (column) operations are carried out
by multiplication of A by a simple matrix U from left (right).
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Theorem 1.12.7 Let Dp be a Bezout domain. Let A € DF*"™. Assume
that rank A =r. Then there exists B = [b;;] € D}3™™ which is equivalent to
A and satisfies the following conditions:

(1.12.8) the ¢ — th row of B is nonzero if and only if i < r.
Let by, be the first nonzero entry in i-th row for i =1,...,r. Then
(1.12.9) 1<ni<ng <---<n.<n.

The numbers ni,...,n, are uniquely determined and the elements b;y,, © =
1,...,7, which are called pivots, are also uniquely determined, up to invert-
ible factors, by the conditions

y((nl,...,ni),A):blm---bm“ izl,...,T,
(1.12.10)
vie,A)=0, a€[n; —1];, i=1,...,r

For1 < j < i<, adding to the row j a multiple of the row i does not
change the above form of B. Assume that B = [b;;],C = [c;;] € D™*™ are
left equivalent to A and satisfy the above conditions. If bjn, = cjn,, J =
1,....4,i = 1,...,r then B = C. The invertible matriz Q which satisfies
B = QA can be given by a finite product of simple matrices.

Proof. Clearly, it is enough to consider the case A # 0, i.e. > 1. Our
proof is by induction on n and m. For n = m = 1 the theorem is obvious.
Let n = 1 and assume that for a given m > 1 there exists a matrix @,
which is a finite product of simple matrices, such that the entries (¢, 1) of @
are zero for i = 2,...,m if m > 2. Let A; = [a;1] € ]D)SBmH)Xl and denote
by A the submatrix [a;1]7%,. Set

_ 1@ 0
Ql"{o 1}

Then the (i,1) entries of Ay = [ag)] = (14, are equal to zero for i =
2,...,m. Interchange the second and the last row of As to obtain As.

Clearly Az = [az(-:f)] = Q2 A, for some permutation matrix Q2. Let Ay =

(aﬁ), aggi))—r. As Dp is a Bezout domain there exist «, 3 € Dp such that

(1.12.11) aaf} + Bafy = (a7, af}) = d.
As (a, 8) = 1 there exists 7, € D such that

(1.12.12) abd — By =1.
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Let V be a 2 x 2 invertible matrix given by (1.12.6). Then
d
nmva 1]

Lemma 1.12.3 implies v((1), As) = v((1), A4) = d. Hence d’ = pd for some
p € Dg. Thus

ﬂ — WA, W= [fp 0] € GL(2,Dp).

0 1
bt w0 vV 0
“=lv wlllooal)
Then the last m rows of Ag = [al(?)] = @3A3 are zero rows. So aﬁ) =

v((1), Ag) = v((1), A1) and the theorem is proved in this case.
Assume now that we proved the theorem for all A; € D}*" where

n<p Letn=p+1and A € ]D)mx(erl). Let A; = [ai;]i2F i—1- The
induction hypothesis implies the existence of @Q; € GL(m,Dp), which is

a finite product of simple matrices, such that B} = [b(l)]”lf 1= Q1A
satisfies the assumptions of our theorem. Let nf,...,n. be the integers
defined by A;. Let By = [bgj)];i’?:l = QA I b =0 for i > s then n; =
ni, i=1,...,s and By is in the right form. Suppose now that bgi) = 0 for

some s < i < m. Let By = [b(l)]Z” si1 € ngfs)ﬂ. We proved above that

wm

there exists Q2 € GL(m — s,Dp) such that Q2Bs = (c,0,...,0)T, ¢ # 0.
Then
I 0
Bs=|"° B
3 |:O Q2:| 1

is in the right form with

s=r—1,ni=n},...,0_1=n._1, N, =n.
We now show (1.12.10). First if o € [n; — 1]; then any matrix B[S, al, § €
[m]; has at least one zero row. Hence det B[S, a] = 0. Therefore v(a, B) =
0. Lemma 1.12.3 yields that v(a, A) = 0. Let @ = (n1,...,n;). Then
B[B,a] has at least one zero row unless § is equal to v = (1,2,...,1).
Therefore

v(a, A) = v(a, B) = det Bly,a] = bip, -+ bin, # 0.

This establishes (1.12.10).
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It is obvious that b1y, . .., by, are determined up to invertible elements.
For 1 < j < i < r we can perform the following elementary row operation
on B: add to row j a multiple of row ¢. The new matrix C will satisfy the
assumption of the theorem. It is left to show that if B = [b;;],C = [¢;5] €
DE*™ are left equivalent to A, have the same form given by the theorem
and satisfying

(1.12.13) bjin, = Cjnyy J=1,...,0,0=1,...,m,
then B = C. See Problem 1 below. O

A matrix B € D'}*" is said to be in a Hermite normal form, abbreviated
as HNF, if it satisfies conditions (1.12.8-1.12.9).

Normalization 1.12.8 Let B = [b;;] € D3™" be in a Hermite normal
form. If b;y, is invertible we set b;,, =1 and bj,, =0 fori < j.

Theorem 1.12.9 Let U be an invertible matrix over a Bezout domain.
Then U is a finite product of simple matrices.

Proof. Since det U is invertible, Theorem 1.12.7 yields that b;; is in-
vertible. Normalization 1.12.8 implies that the Hermite normal form of U is
I. Hence the inverse of U is a finite product of simple matrices. Therefore
U itself is a finite product of simple matrices. O

Normalization 1.12.10 For Euclidean domains assume
(1.12.14) either bj,, =0 or d(bjn,) < d(bin,) for j <i.

For Z we assume that byp, > 1 and 0 < by, < by, for j <i. For Flx] we
assume that b;y, is a normalized polynomial.

Corollary 1.12.11 Let Dy = Z,F[z]. Under Normalization 1.12.10
any A € D'E*" has a unique Hermite normal form.

It is a well known fact that over Euclidean domains Hermite normal form
can be achieved by performing elementary row operations.

Theorem 1.12.12 Let A € D')2*". Then there exists Q € GL(m,Dg)
such that B = QA, where B is in a Hermite normal form satisfying Nor-
malization 1.12.10 and Q is a product of finite elementary matrices.
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Proof. From the proof of Theorem 1.12.7 it follows that it is enough to
show that any A € GL(2,Dg) is a finite product of elementary invertible
matrices in GL(2,Dg). As I is the Hermite normal form of any 2 x 2
invertible matrix, it suffices to show that any A € ]]])2EX2 can be brought to
its Hermite form by a finite number of elementary row operations. Let

a; b;
A= " 1, A = PA,
Lli—&-l bi+1:| !

where P is a permutation matrix such that d(a;) > d(az). Suppose first
that ag # 0. Compute a;4+2 by (1.3.4). Then

0 111 —t .
A7,+1—|:1 O:| |:0 1:|AZ, 2—17

As the Euclidean algorithm terminates after a finite number of steps we
obtain that agy; = 0. Then Ay is the Hermite normal form of A. If
bp+1 = 0 we are done. If byi1 # 0 subtract from the first row of Ay a
corresponding multiple of the second row of A to obtain the matrix

B =% b d(bry1) > d(b})
— 0 bk-‘,—l 5 k+1 k/

Multiply each row of B’ by an invertible element if necessary to obtain
the Hermite normal form of B according to Normalization 1.12.10. We ob-
tained B by a finite number of elementary row operations. If a; = ay =0
perform the Euclid algorithm on the second column of A. O

Corollary 1.12.13 Let U € GL(n,Dg). Then U is a finite product of
elementary invertible matrices.

Corollary 1.12.14 Let F be a field. Then A € F™*™ can be brought to
its unique reduced row echelon form given by Theorem 1.12.7 with

bin, =1, bjn, =0, j=1,...;i—1,i=1,...,r

by a finite number of elementary row operations.

Problems

1. Show
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(a) Let A,B € D™*™ be two upper triangular matrices with the
same nonzero diagonal entries. Assume that QA = B for some
Q € D™*™_ Then @ is un upper triangular matrix with 1 on the
main diagonal. (Hint: First prove this claim for the quotient
field F of D.)

(b) Let @ € D"™*™ be an upper triangular matrix with 1 on the
main diagonal. Show that Q@ = Rs...R,, = Ty, ...T> where
R; — I, Q; — I, may have nonzero entries only in the places
(j,i)forj=1,...;i—1landi=2,...,m.

(c) Let A,B € D™*". Assume that A ~; B, and A and B are in
HNF and have the same pivots. Then B can be obtained from
A, by adding multiples of the row b;,, to therows j =1,...,i—1

fori=2,...,r.
(d) Let B = [b;],C = [ci;] € D™*™. Assume that B,C are in
Hermite normal form with the same r numbers 1 < n; < --- <

n, < n.Suppose furthermore (1.12.13) holds and B = QC for
some @ € D"*™. Then

*
Q= [0 J = B=C.
(Here * denotes a matrix of the corresponding size.)

(e) Let M be a Dp-module, N = D% and T' € Hom (IN,M). Let
Range (T) be the range of T'in M. Then the module Range (T)

has a basis Tuy, ..., Tug such that
i
(1.12.15) W= cvy, i #0, i=1,...k
j=1
where v,,..., Vv, is a permutation of the standard basis
(1.12.16) e = (0ir,-. s 0i)%, i=1,...,n.

. Let A € ]D)’gxn and assume that B is its Hermite normal form. As-
sume that n; < j < n;41. Prove that

I/(Oé, A) = b1n1 e b(i—l)ni,lbija fOI' o = (’fll, Ce ,Tli_l,j).

. Definition 1.12.15 Let F be a field and V a vector space over F
of dimension n. A flag F, on V is a strictly increasing sequence of
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subspaces

O0=F,CcF,Cc---CF,=V,
(1.12.17)

dmF;, =4, i=1,...,n=dim V.
Show

(a) Let L be a subspace of V of dimension ¢. Then
(1.12.18) dim LNF,_, < dim LNF; < dim LOF;_, +1, i = 1,...,7.

(b) Let Gr(¢, V) be the space of all ¢-dimensional subspaces of V.
Let J ={1<j; <---<je¢<n} be asubset of [n]. Then

Q°(JF,) ={LeGr((,V): dimLNF; =i, i=1,...,0},
(1.12.19)
Q(J,F,) == {LeCr(,V): dimLNF, >i i=1,...,0},

are called the open and the closed Schubert cells in Gr(¢, V) respec-
tively. Show that a given L € Gr(¢, V) belongs to the smallest open
Schubert cell Q9%, where J = J(L,F,) given by the condition

(1.1220) dimLNF; =i, dmLNF,_,=i—1, i=1,...,L

(c) Let V. =F" and assume that e,, .., e, is the standard basis of F".
Let

(1.12.21) F;, =span (ep,€p—1,---,€p—it1), (=1,...,M

be the reversed standard flag in F”. Let A € F™*". Assume that
¢ =rank A > 1. Let L € Gr(¢,F™) be the vector space spanned by
the columns of AT. Let N = {1 <nj < --- <ny < n} be the integers
given by the row echelon form of A. Then J(L,F,) = N.

1.13 Systems of linear equations over Bezout
domains

Consider a system of m linear equations in n unknowns:

n
E aijazj:bi, z:l,...,m,
j=1

(1.13.1)
aij,bi ebD,i=1,....m,j=1,...,n.
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In matrix notation (1.13.1) is equivalent to

(1.13.2) Ax=b, AecD™" xecD", becD™
Let
(1.13.3) A=[A,b] e DX+,

The matrix A is called the coefficient matrix and the matrix A is called the
augmented coefficient matrix. If D is a field, the classical Kronecker-Capelli
theorem states [Gan59] that (1.13.1) is solvable if and only if

(1.13.4) rank A = rank A.

Let F be the quotient field of D. If (1.13.1) is solvable over D it is also solv-
able over F. Therefore (1.13.4) is a necessary condition for the solvability
of (1.13.1) over D. Clearly, even in the case m = n = 1 this condition is
not sufficient. In this section we give necessary and sufficient conditions on
A for the solvability of (1.13.1) over a Bezout domain. First we need the
following lemma:

Lemma 1.13.1 Let 0 # A € D3*". Then there exist P € II,,,, U €
GL(n,Dpg) such that

C= [Cij] = PAU,
(1.13.5) cii 70, i=1,...,rank A|
cij =0 if either j > 4 or j > rank A.

Proof. Consider the matrix A"T. By interchanging the columns of A7,
i.e. multiplying AT from the right by some permutation matrix P, we
can assume that the Hermite normal form of AT P satisfies n; =4, i =
1,...,rank A. O

Theorem 1.13.2 Let D be a Bezout domain. Then the system (1.13.1)
is solvable if and only if

(1.13.6) r=rank A =rank A, §,(A) =6, (A).

Proof. Assume first the existence of x € D™ which satisfies (1.13.2).
Hence (1.13.4) holds, i.e. the first part of (1.13.6) holds. As any minor
rx 1 of Ais a minor of A we deduce that 6,(A)[6,(A). (1.13.2) implies that
b is a linear combination of the columns of A. Consider any r X r minor of
A which contains the n + 1-st column b. Since b is a linear combination of
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columns of A it follows that 6,(A) divides this minor. Hence 8,(A)|5,(A),
which establishes the second part of (1.13.6). (Actually we showed that if
(1.13.1) is solvable over D¢ then (1.13.6) holds.)

Assume now that (1.13.6) holds. Let

VA=B=[B,bl e D™ ") V e GL(m,D)

be Hermite’s normal form of A. Hence B is Hermite’s normal form of A.
Furthermore

VA=DB, rankB =rank A =rank A =rankB =r,

6.(B) = 6,(A) = 6,.(A) = 6,.(B).
Hence n, in Hermite’s normal form of A is at most n. Note that the last
m — r equations of Bx = b are the trivial equations 0 = 0. That is, it is
enough to show the solvability of the system (1.13.2) under the assumptions

(1.13.6) with » = m. By changing the order of equations in (1.13.1) and
introducing a new set of variables

(1.13.7) y=U""'x, U e GL(n,D),
we may assume that the system (1.13.2) is
(1.13.8) Cy=d, C=PAU, d=(d,,...,dn)T = Pb,

where C' is given as in Lemma 1.13.5 with r = m. Let C =l0,d]. Ttis
straightforward to see that A ~ C, A ~ C. Hence

rank C = rank A = rank A = rank C = m, 0m(C) =dm(A) = 5m(A) = Jm(C).

Thus it is enough to show that the system (1.13.8) is solvable. In view of
the form of C' the solvability of the system (1.13.8) over D is equivalent the
solvability of the system

(1.13.9) Cy=d, C=[ell; , €D™ ™ 5=y, sym)

i=j=1

Note that 8,,(C) = 6,,(C) = det C. Cramer’s rule for the above system in
the quotient field F of D yields

- det 01
det C’

Yi i=1,...,m.

Here C; is obtained by replacing column @ of C by d. Clearly det C;
is an m X m minor of C up to the factor £1. Hence it is divisible by

Im(C) = 6,,(C) = det (C). Therefore y; €D, i =1,...,m. O
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Theorem 1.13.3 Let A € D}*". Then Range A and Ker A are mod-
ules in DY and D having finite bases with rank A and nul A elements
respectively. Moreover, the basis of Ker A can be completed to a basis of

DY,

Proof. As in the proof of Theorem 1.13.2 we may assume that rank A =
m and A = C, where C' is given by (1.13.5) with » = m. Let e,,...,e, be
the standard basis of D%. Then Ce,,...,Ce,, is a basis in Range C' and
€mtii1,---,€n is a basis for Ker A. O

Let A € DZ*". Expand any ¢ X ¢ minor of A by any ¢ — p rows, where
1 < p < q. We then deduce

1.13.10 0,(A)]|04(A) forany 1 < p < g < min(m,n).
P q
Definition 1.13.4 For A € DZ*" let

3;(A)
dj-1(4)’
ij(A) =0 forrank A < j < min(m,n),

ij(A) =

j=1,...,rank A, (§p(A) =1),

be the invariant factors of A. i;(A) is called a trivial factor if i;(A) is
invertible in Dg.

Suppose that (1.13.1) is solvable over Dp. Using the fact that b is
a linear combination of the columns of A and Theorem 1.13.2 we get an
equivalent version of Theorem 1.13.2. (See Problem 2.)

Corollary 1.13.5 Let A € D5*", b € D%. Then the system (1.13.1)
is solvable over Dy if and only if

(1.13.11) r=rank A =rank A, L (A) =i (A), k=1,...,r

Problems

1. Let A € D&*". Assume that 7 = rank A. Show

(a)
(1.13.12)
0;(A) = wji1(A)---i;(A), where w; is invertible in D¢ for j =1,...,n.

(b) i1(A)|i;(A) for j =2,...,r. (Hint: Expand any minor of order
j by any row.)
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(C) Let2 < k,2k—1 < 7 <r. Then Zl(A) . ik<A)|ij_k+1 (A) . 7,](14)
2. Give a complete proof of Corollary 1.13.5.

3. Let A € D3”*". Assume that all the pivots in HNF of AT are invert-
ible elements. Show
(a) Any basis of Range A can be completed to a basis in D.
(b) 41(A) =... = trank a(4) = 1.
4. Assume that D = D, M is a D-module with a basis, M,, M, are
finitely generated modules of M. Show
(a) M, N M, has a basis which can be completed to bases in M,
and M,.
(b) M; =M, N M, @ N; for i = 1,2, where each N; has a basis.

M; +M; = (M; NM3) & N; @ Nos.

In particular, dim (M, +M,) = dim M, +dim M, —dim (M, N
M.,).

1.14 Smith normal form

A matrix D = [d;;] € D™*" is called a diagonal matrix if d;; = 0 for
all i # j. The entries di1,...,dg, £ = min(m,n) are called the diagonal
entries of D. D is denoted by D = diag(di,...,dy) = diag(ds,...,d;).

Theorem 1.14.1 Let 0 # A € D™*". Assume that D is an elementary
divisor domain. Then A is equivalent to a diagonal matrix

(1.14.1) B = diag(i1(4),...,ir(A),0,...,0), r=rank A.
Furthermore
(1.14.2) ij—1(A)|i;(A), forj=2,... rank A.

Proof. Recall that an elementary divisor domain is a Bezout domain.
For n = 1 the Hermite normal form of A is a diagonal matrix with 41 (A) =
01(A). Next we consider the case m = n = 2. Let

a b

A1WA{0 c], W € GL(2,D),
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be the Hermite normal form of A. As D = Dgp there exists p,q,z,y € D
such that

(pz)a+ (py)b + (qy)c = (a,b,c) = 61 (A).
Clearly (p,q) = (x,y) = 1. Hence there exist p, g, Z,§ such that
PP —qq=2xT —yy=1.

Let

<
Il
Q3
|
—_ 1
d
Il
| ——
< 8
SN
| I

Thus

G =VAU = {51(14) 912} .
g21 922

Since 01(G) = 61(A) we deduce that d1(A) divides g12 and go1. Apply
appropriate elementary row and column operations to deduce that A is
equivalent to a diagonal matrix C' = diag(i1(A), dz2). As 02(C) = i1(A)dy =
d2(A) we see that C' is equivalent to the matrix of the form (1.14.1), where
we can assume that do = i2(A). Since i1(A)|d2 we have that iq(A)[i2(A).
We now prove the theorem in the case m > 3, n = 2 by induction starting
from m = 2. Let A = [a;;] € D™*2 and denote by A = [a”]:i;ilz Use the
induction hypothesis to assume that A is in the form (1.14.1). Interchange
the second row of A with the last one to obtain A; € D™*2. Apply simple
row and column operations on the first two rows and columns of A; to

obtain Ay = [al(?)] € D™*2 where a(lzl) = 41(A). Use the elementary row
and column operations to obtain Aj of the form
i1(A) 0

(1.14.3) @:[0 A

:| , A4 e D(mfl)xl.

Recall that i1(A) divides all the entries of A4. Hence Ay = i1(A)By and
11(A4) = i1(A)i1(B4). Use simple row operations on the rows 2,...,m of
Ajs to bring B4 to a diagonal form. Thus A is equivalent to the diagonal
matrix

C = diag(i1(A),i1(A)i1(By)) = diag(i1(A),i1(A4)) € D™*2. Recall that
21(14) = 61 (A) = 61(0), (52(14) = (52(0) = Zl(A)Zl(A4) = Zl(A)Zl(A)Zl(B4>

Thus i1(A)|i1(Ag) so i1(A) = i1(C) and i2(A) = i1 (As). Hence C is equiv-
alent to B of the form (1.14.1) and i1(A)|i2(4).
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By considering AT we deduce that we proved the theorem in the case
min(m,n) < 2. We now prove the remaining cases by a double induc-
tion on m > 3 and n > 3. Assume that the theorem holds for all ma-
trices in D"=DX" for n = 2,3,... Assume that m > 3 and is fixed,
and theorem holds for any £ € D™*("1 for n > 3. Let A = [a;;] €
Dmxn A = [aij]?l’?:_ll. Use the induction hypothesis to assume that A =
diag(dy,...,d;), Il = min(m,n — 1). Here dy|d;, i = 2,...,l. Interchange
the second and the last column of A to obtain A; = [agjl»)} € D™*™. Perform
simple row operations on the rows of A; and simple column operations on
(2)} E ]D)mXTL

the the first n — 1 columns of A; to obtain the matrix As = [aij

such that Ay = [ag)]?;’;:ll = diag(al?,. .. 7al(?)) is the Smith normal form
of Ay = [ag)];i’;:ll. The definition of Ay yields that i1(A4) = aﬁ). Use
elementary row operations to obtain an equivalent matrix to As:

_ |4 0 (m—1)x(n—1)
Az = |: 0 A4:| , A4 eD .

As i1(A) = 61(A) = 61(A3) it follows that i1 (A) divides all the entries of
Ay, So Ay = i1(A)By. Hence i(As) = 1(A)i;(Bs) Use simple row and
column operations on the last m — 1 rows and the last n — 1 columns of Ag
to bring B4 to Smith normal form using the induction hypothesis:

i1(A) 0

A~ A5 = [ 0 i1(A)diag(i1(Ba),...,i(Ba))|

By induction hypothesis
ij(Ba)|tj41(Ba), j=1,...,rank A—1, i§(By) =0, j>rank A —1.
A similar claim holds for A4. Hence
0k(A) =0k (As) = 41(A)i1(Ag) - ik—1(As), k=2,...,rank A.

Thus
1j(As) =441(A), j=1,...,rankA—1

and Ajs is equivalent to B given by (1.14.1). Furthermore, we showed
(1.14.2). O

The matrix (1.14.1) is called the Smith normal form of A.

Corollary 1.14.2 Let A,B € D;". Then A and B are equivalent if
and only if A and B have the same rank and the same invariant factors.
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Over an elementary divisor domain, the system (1.13.2) is equivalent to
a simple system
’Lk(A)yk = Ck, k= 1,...,rank A,
(1.14.4)
O=cp, k=rankA+1,...,m,

(1.14.5) y=P 'x, c=0Qb.

Here P and @ are the invertible matrices appearing in (1.11.7) and B is of
the form (1.14.1). For the system (1.14.4) Theorems 1.13.2 and 1.13.3 are
straightforward. Clearly

Theorem 1.14.3 Let A € DRS". Assume that all of the invariant
factors of A are invertible elements in Dgp. Then the basis of Range A
can be completed to a basis of D' ,.

In what follows we adopt the following;:

Normalization 1.14.4 Let A € Flx]™*". Then the invariant polyno-
mials (the invariant factors) of A are assumed to be normalized polynomials.

Notation 1.14.5 Let A; € D™*"i fori =1,... k. Then @ A, =
diag(Ay, ..., Ag) denotes the block diagonal matriz B = [By;]¥,_, € D™*™,
where B;j € D% fori,j=1,...,k m= Ele mi, n = Z?Zl n;, such
that Bii = Al and Bij =0 fO’f’i 7& j

Problems

1. Let A = [g 2] € D%*2. Show that A is equivalent to diag((p, ¢), (;’%) ).

2. Let A € DZ*", B € D&’ Suppose that either is(A)|i;(B) or

it(B)|is(A) for s =1,...,rank A = o, t = 1,...,rank B = 5. Show
that the set of the invariant factors A®B is {i1(4), ..., ia(A),i1(B),...,ig(B)}.

3. Let M C N be Dgp modules with finite bases. Prove that there
exists a basis uq,...,u, in N such that i;uy,...,i-u, is a basis in
M, where i1,...,i, € Dgp and 4;(i;4; for j=1,...,r— 1.

4. Let M be a D-module and N,, N, € M be submodules. N, and N,
are called equivalent if there exists an isomorphism T € Hom (M, M)
(T~! € Hom (M, M)) such that TIN; = Ny. Suppose that M, N, Ny
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have bases [uy,...,wy], [vi,...,Vv,] and [wy,...,w,] respectively.
Let

m m
Vj = E aijui, Wj = E bijui, J = 17. Lo, n,
i=1 i=1

(1.14.6)

A=ayliZiny, B =[bylilj,.

Show that N, and N, are equivalent if and only if A ~ B.

5. Let N C M be D modules with bases. Assume that N has the division
property: if ax € N for 0 # a € D and x € M then x € N. Show that
if D is an elementary divisor domain and N has the division property
then any basis in N can be completed to a basis in M.

6. Let D be an elementary divisor domain. Assume that N C D™ is a
submodule with basis of dimension k € [1,m]. Let N’ C D™ be the
following set: n € N’ if there exists 0 # a € D such that an € N,
Show that N’ is a submodule of D™ that has the division property.
Furthermore, N’ has a basis of dimension k& which can be obtained
from a basis of N as follows. Let wy,...,w; be a basis of N. Let
W € D"™*F be the matrix whose columns are w,, ..., w;. Assume
that D = diag(nq,...,ny) is the Smith normal form of W. So W =
UDV,U € GL(m,D),V € GL(k,D). Let uy,...,u; be the first k
columns of U. Then uy,...,u is a basis of N’.

1.15 Local analytic functions in one variable

In this section we consider applications of the Smith normal form to a sys-
tem of linear equations over Hy, the ring of local analytic functions in one
variable at the origin. In 1.3 we showed that the only noninvertible irre-
ducible element in Hy is 2. Let A € Hy"*". Then A = A(z) = [a;;(2)];27_,
and A(z) has the MacLaurin expansion

(1.15.1) A(z) =) Agz", A eC™ k=0,
k=0

which converges in some disk |z| < R(A). Here R(A) is a positive number
which depends on A. That is, each entry a;;(z) has convergent MacLaurin
series for |z| < R(A).
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Notations and Definitions 1.15.1 Let A € H**". The local invari-
ant polynomials (the invariant factors) of A are normalized to be
(1.15.2)
in(A) =2+ 0 < (A) < 1p(A) < ... <1 (A), 7 =rank A,

The number 1.(A) is called the index of A and is denoted by n = n(A). For
a nonnegative integer p denote the number of local invariant polynomials of
A whose degree is equal to p by Kk, = kp(A).

We start with the following perturbation result.

Lemma 1.15.2 Let A, B € H{**". Let
(1.15.3) C(z) = A(z) + 2" B(2),

where k is a nonnegative integer. Then A and C have the same local in-
variant polynomials up to degree k. Moreover, if k is equal to the index of
A, and A and C have the same ranks then A is equivalent to C.

Proof. Since Hy is a Euclidean domain we may already assume that A
is in Smith normal form

(1.15.4) A = diag(z**,...,2'",0,...,0).

Let s = Zl?:o kj(A). Assume first that s > ¢ € N. Consider any any ¢ x t
submatrix D(z) of C'(z) = [c;j(z)]. View det D(z) as a sum of ¢! products.
As k +1 > 4 it follows each such product is divisible by z*TF¢ .  Let
D(z) = [cij(2)lji—j=1- Then the product of the diagonal entries is of the
form 21 F (1 + 20(2)). All other ¢! — 1 products appearing in det D(z)
are divisible by z¢1t-tt-2+2(k+1)  Hence

(1.15.5) 5:(C) = 21T = §5,(A), t=1,...,s,
which implies that
(1.15.6) w(C)=u(4), t=1,...,s.

As s = Z?:o k;j(A) it follows that

Write A = C — 2*T1 B and deduce from the above arguments that

(1.15.7) ki (C) = K;(A), j=0,... k.
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Hence A and C have the same local invariant polynomials up to degree k.
Suppose that rank A = rank C. Then (1.15.6) implies that A and C have
the same local invariant polynomials. Hence A ~ B. O

Consider a system of linear equations over Hy
(1.15.8) A(z)u=b(z), A(z) e H™", b(z) € HY,
where we look for a solution u(z) € Hy. Theorem 1.13.2 claims that the
above system is solvable if and only if rank A = rank A = r and the g.c.d.
of all 7 x r minors of A and A are equal. In the area of analytic functions it

is common to try to solve (1.15.8) by the method of power series. Assume
that A(z) has the expansion (1.15.1) and b(z) has the expansion

(1.15.9) b(z) =Y bpz¥, by eC™ k=0,...
k=0
Then one looks for a formal solution
(1.15.10) u(z) =Y w2, weC” k=0,...,
k=0

which satisfies

k
(1.15.11) > Ap_ju; =Dy,
j=0
for k = 0,... . A vector u(z) is called a formal solution of (1.15.8) if

(1.15.11) holds for any k € Z,. A vector u(z) is called an analytic solution
if u(z) is a formal solution and the series (1.15.10) converges in some neigh-
borhood of the origin, i.e. u(z) € H?. We now give the exact conditions
for which (1.15.11) is solvable for k =0,...,q.

Theorem 1.15.3 Consider the system (1.15.11) for k =0,...,q € Z.
Then this system is solvable if and only if A(z) and A(z) have the same
local invariant polynomials up to degree q:

(1.15.12) ki (A) = ki(A), j=0,....q.

Assume that the system (1.15.8) is solvable over Hy. Let ¢ = n(A) and
suppose that uy,...,u, satisfies (1.15.11) for k = 0,...,q. Then there
exists u(z) € Hy satisfying (1.15.8) and u(0) = uy.
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Let ¢ € Zy and W, C C" be the subspace of all vectors wq such that

Wo, ..., Wq 15 a solution to the homogenous system
k
(1.15.13) > Ap_jw;=0, k=0,....q.
j=0
Then
q
(1.15.14) dim W, =n - > k;(A)
§=0

In particular, for n =n(A) and any wo € W, there exists w(z) € Hf such
that

(1.15.15) A(z)w(z) =0, w(0) = wy.
Proof. Let
u, = (uk’l,...,ukm)—r, k=0,...,q.

We first establish the theorem when A(z) is in Smith normal form (1.15.4).
In that case the system (1.15.11) reduces to

Uk—i,,s = bk,s if ts < k>
(1.15.16)
0=1by, if either ;s > k or s > rank A.

The above equations are solvable for £k =0, ..., q if and only if z** divides
bs(2) for all 1y < g, and for 15 > ¢, 2971 divides bs(z). If s < q then subtract
from the last column of A the s-column times bT(z)

the matrix

. So A is equivalent to

Ay (2) = diag(z", ..., 2") @ 29T Ay(2),

q
l= Z Kj (A)7 A € H(()m—l)x(n+1—l).
3=0
According to Problem 2 below, the local invariant polynomials of A;(z)
whose degrees do not exceed ¢ are z'1,...,z". So A(z) and A;(z) have the

same local invariant polynomials up to degree g. Assume now that A and
A have the same local invariant polynomial up to degree q. Hence

stk :(5k(A>:5k<A)7 k=1,...,1,
ZL1+¢-'+LL+q+1|5l+1(A).
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The first set of the equalities implies that z*<|bs(z), s = 1,...,1. The last
equality yields that for s > [, 29%1|b,(z). Hence (1.15.11) is solvable for
k=0,...,qif and only if A and A have the same local invariant polynomials
up to the degree q.

Assume next that (1.15.8) is solvable. Since A(z) is of the form (1.15.4)
the general solution of (1.15.8) in that case is

[y
uj(z) = ;(j), j=1,...,rank A,

where u;(z) is an arbitrary function in Hy, j=rank A+1,...,n.
Hence
u;(0) =b;;, j=1,...,rank A,
(1.15.17)
where u;(0) is an arbitrary complex number, j=rank A+1,...,n.
Clearly (1.15.16) implies that ug s = us(0) for k& = 5. The solvability of
(1.15.8) implies that bs(z) = 0 for s > rank A. So ug,s is not determined
by (1.15.16) for s > rank A. This proves the existence of u(z) satisfying
(1.15.8) such that u(0) = ug. Consider the homogeneous system (1.15.13)
for k=0,...,q. Then wy s = 0 for i; < and otherwise ug s is a free variable.
Hence (1.15.14) holds. Let ¢ = n = n(A). Then the system (1.15.13)
implies that the coordinates of wq satisfy the conditions (1.15.17). Hence
the system (1.15.15) is solvable.
Assume now that A(z) € H'*" is an arbitrary matrix. Theorem 1.14.1
implies the existence of P(z) € GL(n,Hy), Q(2) € GL(m,Hp) such that
Q(2)A(2)P(z) = B(z) = diag(z**,...,27,0,...,0),0 <3 < ... <y, 7 =rank A.

It is straightforward to show that P(z) € GL(n,Hp) if and only if P(2) €
H{*™ and P(0) is invertible. To this end let

P(z) =Y P2¥, PeC™ k=0,..., detPy#0,
k=0

Qz) = ZQk2k7 QrLeC¥™ k=0,..., detQo#0.
k=0

Introduce a new set of variables v(z) and vg, vy, ... such that

u(z) = P(2)v(z),

k
uk:ZPk,jvj, ]{7:0,...
7=0
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Since det Py # 0 v(z) = P(z)"u(z) and we can express each v}, in terms
of ug,...,ug for k =0,1, .., we have that (1.15.8) and (1.15.11) are respec-
tively equivalent to

k
E Byp_jv;=c, k=o0,...,q
Jj=0

As B~ Aand B=QA(P& 1) ~ A, we deduce the theorem. O

Problems

1. The system (1.15.8) is called solvable in the punctured disc if the
system

(11518) A(Zo)ll(Z()) = b(Zo),

is solvable for any point 0 < |z9| < R as a linear system over C for
some R > 0, i.e.

(1.15.19) rank A(zg) = rank A(z), forall 0 < |zo| < R.

Show that (1.15.8) is solvable in the punctured disk if and only if
(1.15.8) is solvable over M, the quotient field of Hy.

2. The system (1.15.8) is called pointwise solvable if (1.15.18) is solvable
for all zp in some open disk |z9| < R. Show that (1.15.8) is pointwise
solvable if and only if (1.15.8) is solvable over M, and

(1.15.20) rank A(0) = rank A(0).

3. Let A(z) € H{"*". A(z) is called generic if, whenever the system
(1.15.8) is pointwise solvable, it is also analytically solvable, i.e. solv-
able over Hy. Prove that A(z) is generic if and only if n(4) < 1.

4. Let 2 C C be a domain and consider the system
(1.15.21) A(z)u=Db(z), A(z) € HQ)™*", b(z) € H(Q)™.

Show that the above system is solvable over H(Q?) if and only if for
each ¢ € Q this system is solvable in He. (Hint: As H(Q) is Dgp it
suffices to analyze the case where A(z) is in Smith normal form.)
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5. Let A(z) and b(z) satisfy the assumptions of Problem 4. A(z) is called
generic if whenever (1.15.21) is pointwise solvable it is solvable over
H(€?). Show that A(z) is generic if and only the invariant functions
(factors) of A(z) have only simple zeros. (¢ is a simple zero of f €

H(Q) if £(¢) = 0 and f'(¢) # 0.)

6. Let A(z) € H(Q)™*", where 2 is a domain in C. Prove that the
invariant factors of A(z) are invertible in H(f2) if and only if

(1.15.22) rank A(¢) =rank A, forall ¢ € Q.

7. Let A(z) € H(Q)™*™, where Q is a domain in C. Assume that
(1.15.22) holds. View A(z) € Hom (H(Q)",H(Q)™). Show that
Range A(z) has a basis which can be completed to a basis in H(2)™.
(Hint: Use Theorem 1.15.5.)

1.16 The local-global domains in C?

Let p be a positive integer and assume that @ C C? is a domain. Consider
the system of m nonhomogeneous equations in n unknowns:

(1.16.1) A(z)u=b(z), A(z) € H(2)™", b(z) € H(2)™.

In this section we are concerned with the problem of the existence of a
solution u(z) € H(£2)™ to the above system. Clearly a necessary condition
for the solvability is the local condition:

Condition 1.16.1 Let Q C CP be a domain. Then for each ¢ € Q) the
system A(z)u = b(z) has a solution u¢(z) € H".

Definition 1.16.2 A domain Q@ C CP is called a local-global domain,
if any system of the form (1.16.1), satisfying the condition 1.16.1, has a
solution u(z) € H(2)™.

Problem 1.15.4 implies that any domain 2 C C is a local-global domain.
In this section we assume that p > 1. Problem 1 below shows that not every
domain in CP is a local-global domain. We give a sufficient condition on
domain 2 to be a local-global domain.

Definition 1.16.3 A domain Q C CP is called a domain of holomor-
phy, if there exists f € H(Q2) such that for any larger domain Q; C CP,
strictly containing S0, there is no fi1 € H(Q1) which coincides with f on Q.
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The following theorem is a very special case of Hartog’s theorem [GuR65].

Theorem 1.16.4 Let Q C CP p > 1 be a domain. Assume that € Q)
and f € HO\{C}). Then f € H(Q).

Thus Q\{¢} is not a domain of holomorphy. A simple example of a
domain of holomorphy is:

Example 1.16.5 Let @ C CP be an open convexr set. Then Q is a
domain of holomorphy. [GuR65]

(Recall that 2 C CP is convex if for any two points £, ¢ € € the point
(1 —t)¢+t¢isin Q for each t € (0,1).) The main result of this section is:

Theorem 1.16.6 Let (2 C CP,p > 1 be a domain of holomorphy. Then
Q is a local-global domain.

The proof needs basic knowledge of sheaves and is given below for the
reader who has been exposed to the basic concepts in this field. See for
example [GuR65]. We discuss only very special types of sheaves which are
needed for the proof of Theorem 1.16.6.

Definition 1.16.7 Let Q C CP be an open set. Then

1. F(R), called the sheaf of rings of holomorphic functions on 0, is the
union all H(U), where U ranges over all open subsets of Q). Then
for each ¢ € Q the local ring He is viewed as a subset of F(2) and
is called the stalk of F(2) over (. A function f € H(U) is called a
section of F(2) on U.

2. For an integer n > 1, F,(Q), called an F())—sheaf of modules, is the
union all H(U)", where U ranges over all open subsets of Q. Then
for each ¢ € € the local module Hp is viewed as a subset of Fn(Q)
and is called the stalk of F,,(2) over (. (Note HY is an He module.)
A wvector u € H(U)™ is called a section of Fp(Q) on U. (If U =
then H(U)™ consists of the zero element 0.)

3. F C Fn(Q) is called a subsheaf if the following conditions holds.

(a) FNH™(U) contains the trivial section 0 for each open set U C Q.

(b) Assume thatu e HU)"NF,ve HV)"NF and W CUNV is
an open nonempty set.

i. For any f,g € H(W) the vector fu+ gv € F N H(W)".
(This property is called the Restriction property.)
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ii. Ifu=v on W then the section w € H*(UUV), which coin-
cides withu, v on U,V respectively, belongs to FNH"(UUV).
(This property is called the Extension property.)

4. Assume that F C F,(Q) is a subsheaf. Then

(a) Fe:=F NH is called the stalk of F over ¢ € Q.

(b) Let U be an open subset of Q. Then F(U) := FNF,(U) is called
the restriction of the subsheaf F to U. The sectionsu,, ..., u; €
FNOH(U)"™ are said to generate F on U, if for any ( € U F¢ is
generated by u,,...,uy over He. F is called finitely generated
over U if such u,,...,u, € F(U) emists.

(c) F is called finitely generated if it is finitely generated over 2. F
is called of finite type if for each ¢ € Q there exists an open set
Us C Q, containing ¢, such that F is finitely generated over Ug.
(Le. each F¢ is finitely generated.)

(d) F is called a coherent sheaf if the following two conditions hold.
First F is of finite type. Second, for each open set U C Q and
for any ¢ > 1 sections u,,...,u, € FNH(2)" let G C F,(U) be
a subsheaf generated by the condition Y ¢_, f;u; = o. That is, G
is a union of all (f1,...,f,)" € H(V)4 satisfying the condition
Zg’:l fin; =0 for all open V. C U. Then G is of finite type.

The following result is a straight consequence of Oka’s coherence theo-
rem [GuR65].

Theorem 1.16.8 Let Q C CF be an open set. Then
o The sheaf Fp, () is coherent.

o Let A € H(Q)™*™ be given. Let F C F(Q) be the subsheaf consisting
of all uw € H(U)™ satisfying Au = o for all open sets U C Q. Then F
is coherent.

Note that F,,(Q) is generated by n constant sections u; := (J;1, ..., 0in) "
H(2)*,i = 1,...,n. The following theorem is a special case of Cartan’s
Theorem A.

Theorem 1.16.9 Let 2 C CP be a domain of holomorphy. Let F C
Fn(Q) be a subsheaf defined in Definition 1.16.7. If F is coherent then F
is finitely generated.
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Corollary 1.16.10 Let Q C CP be a domain of holomorphy and A €
H(Q)™*™. Then there exist uy,...u; € H(Q)™, such that for any ¢ € €,
every solution of the system Au = 0 over Hf is of the form Zi:l fiu; for
some fi,..., fi € He.

We now introduce the notion of sheaf cohomology of F C F,, ().

Definition 1.16.11 Let Q C CP be an open set. LetU :={U; CQ, i €
T} be an open cover of Q. (Le. each U; is open, and U;ezU; = Q.) For
each integer p > 0 and p + 1 tuples of indices (i, ...,i,) € IPT! denote
Uio.“ip = mg):OUij'

Assume that F C Fp,(Q) is a subsheaf. A p-cochain ¢ is a map carrying
each p+1-tuples of indices (ig, . . . ,ip) to a section FOH"(Uy,..s,) satisfying
the following properties.

1. C(io, ve ,ip) =0 Zf Uiou.ip = @

2. ¢(m(io), ..., m(ip)) = sgn(m)c(io, . . ., ip) for any permutationw : {0,...,p} —
{0,...,p}. (Note that c(io,...,ip) is the trivial section if i; = iy for
j# k)

The zero cochain is the cochain which assigns a zero section to any
(20 ...1p). Two cochains c,d are added and subtracted by the identity (c +
d)(io .. .ip) = c(io,...,1p) £d(io,...,ip). Denote by CP(QY, F,U) the group
of p+ 1 cochains.

The p — th coboundary operator §, : CP(Q, F,U) — CPTYHQ, F,U) is
defined as follows:

p+1

(6p0) (0, - - vips1) = D _(=1)clio, .- ijyips1),

§=0

where %j 1s a deleted index. Then p — th cohomology group is given by
1. HY(Q, F,U) := Ker &.

2. Forp>1HP(Q,F,U) := Ker 6,/Range d,_1. (See Problem 2 below.)

Lemma 1.16.12 Let the assumptions of Definition 1.16.11 hold. Let
c € COQ, F,U). Then c € HY(Q, F,U) if and only if ¢ represents a global
section u € F NH(£2)™.

Proof. Let ¢ € CO(Q, F,U). Assume that ¢ € H(Q, F,U). Let
Uy, Uy be two open sets in U. Then c(ig)—c(i1) is the zero section on UpNUj.
Thus for each ¢ € Uy NU; ¢(ig)(¢) = c(i1)(€). Let u(z) := c(ip)(z) € C™.
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It follows that u € H(Q)™. The extension property of subsheaf F yields
that u € F N H"(Q). Vice versa, assume that u € F N H"*(Q). Define
c(io) = u|Up. Then ¢ € H(Q, F,U). O

We identify HY(Q, F,U) with the set of global sections F NH(Q)". The
cohomology groups HP(Q, F,U),p > 1 depend on the open cover U of 2. By
refining the covers of §2 one can define the cohomology groups HP (Q, F),p >
0. See Problem 3 below. Cartan’s Theorem B claims [GuR65]:

Theorem 1.16.13 Let Q C CP be domain of holomorphy. Assume that
the sheaf F given in Definition 1.16.7 is coherent. Then HP (S, F) is trivial
for anyp > 1.

Proof of Theorem 1.16.6. Consider the system (1.16.1). Let F be
the coherent sheaf defined in Theorem 1.16.8. Assume that the system
(1.16.1) is locally solvable over . Let ¢ € Q. Then there exists an open set
Uc C Q such that there exists ue € H*(U,) satisfying (1.16.1) over H(U¢).
Let U := {U;,¢ € 2} be an open cover of . Define ¢ € C'(Q2, F,U) by
¢(¢,n) = u¢c — u,. Note that

(510)({, n, 0) = C(nv 9) - C(Ca 0) + C(Ca 77) = 0.

Hence ¢ € Ker é;. Since F is coherent Cartan’s Theorem B yields that
HY(Q, F) is trivial. Hence H'(Q, F,U) is trivial. (See Problem 3c be-
low.) Thus, there exists an element d € CO(§, F,U) such that dod = c.
Thus for each (,n € Q such that Us N U, there exist sections d(¢) €
FnH"(U;),d(n) € FNH"(U,) such that d(n) —d(¢) = u¢ —u, on U:NU,,.
Hence d(n) + u,, = d(¢) + u¢ on U. NU,. Since Ad¢ =0 € H(U¢)™ it fol-
lows that A(d¢ +u¢) =b e HU)™. Asd(n)+u, =d(¢)+uc on UsNT,
it follows that all these section can be patched to the vector v € H(£2)"
which is a global solution of (1.16.1). O

Problems

1. Consider a system of one equation over CP,p > 1
P
-
Zziui =1, u=(ug,...,up) , z2=_(21,...,2p)
i=1

Let  := CP\{0}.
(a) Show that Condition 1.16.1 holds for .
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(b) Show that the system is not solvable at z = 0. (Hence it does
not have a solution u(z) € Hj.)

(c¢) Show that the system does not have a solution u(z) € H(£2)?.
(Hint: Prove by contradiction using Hartog’s theorem.)

2. Let the assumptions of Definition 1.16.11 hold. Show for any p > 0.

(a) 0pt10p =0.
(b) Range d, C Ker dp41.

3. Let U = {U;,i € I},V = {V},j € J} be two open covers of an open
set 2 C CP. V is called a refinement of U, denoted V < U, if each
Vj; is contained in some U;. For each V; we fix an arbitrary U; with
Vj C Ui, and write it as U;(;) @ V; C Uy(j)- Let F be a subsheaf as in
Definition 1.16.11. Show

(a) Define ¢ : CP(Q,F,U) — CP(Q,F,V) as follows. For ¢ €
CP(Q, F,U) let (¢(c))(Jo,---,Jp) € CP(Q,F,V) be the restric-
tion of the section c(i(jo), .. .,i(jp)) to Vj,..j,- Then ¢ is a ho-
momorphism.

(b) ¢ induces aﬁomomorphismé : HP(Q, F,U) — HP(Q, F, V). Fur-
thermore, ¢ depends only on the covers U, V. (Le., the choice of
i(j) is irrelevant.)

(¢) By refining the covers one obtains the p — th cohomology group
HP(Q, F) with the following property. The homomorphism o de-
scribed in 3b induces an injective homomorphism ¢ : HP(Q, F,U) —
HP (2, F) for p > 1. (Recall that H°(Q, F,U) = FNH*(Q).) In
particular, HP(Q, F) is trivial, i.e. HP(Q2,F) = {0}, if and only
if each HP(Q, F,U) is trivial.

1.17 Historical remarks

Most of the material in Sections 1.1-1.11 is standard. See [Lan58], [Lan67]
and [vdW59] for the algebraic concepts. Consult [GuR65] and [Rud74] for
the concepts and results concerning the analytic functions. See [Kap49] for
the properties of elementary divisor domains. It is not known if there exists
a Bezout domain which is not an elementary divisor domain. Theorem 1.5.3
for = Cis due to [Hel40]. For §1.11 see [CuR62] or [McD33]. Most of §1.12
is well known, e.g. [McD33]. §1.13 seems to be new since the underlying
ring is assumed to be only a Bezout domain. Theorems 1.13.2 and 1.13.3
are well known for an elementary divisor domain, since A is equivalent to a
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diagonal matrix. It would be interesting to generalize Theorem 1.13.2 for
D = Flz,...,zp] for p > 2. The fact that the Smith normal form can be
achieved for Dgp is due to Helmer [Hel43]. More can be found in [Kap49].

Most of the results of §1.15 are from [Fri80b]. I assume that Theorem
1.16.6 is known to the experts.
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Chapter 2

Canonical Forms for
Similarity

2.1 Strict equivalence of pencils
Definition 2.1.1 A matriz A(z) € D[z]™*"™ is a pencil if
(2.1.1) A(z) = Ag + 2Ay, Ao, Ay e Dpmxr,

A pencil A(x) is regular if m = n and det A(z) # 0. Otherwise A(x) is a
singular pencil. Two pencils A(z), B(xz) € D[z]™*"™ are strictly equivalent

if
(2.1.2)
A(x)RB(z) <= B(z) = QA(x)P, P € GL(n,D), Q € GL(m,D).

The classical works of Weierstrass [Wei67] and Kronecker [Kro90] clas-
sify the equivalence classes of pencils under the strict equivalence relation
in the case D is a field F. We give a short account of their main results.

First note that the strict equivalence of A(z), B(x) implies the equiva-
lence of A(x), B(x) over the domain D[z]. Furthermore let

(2.1.3) B(z) = By + zB;.
Then the condition (2.1.2) is equivalent to
(214) By = QA()P, By = QA1P, P e GL(H,D), Q S GL(m,D)

Thus we can interchange Ag with A1 and By with By without affecting the
strict equivalence relation. Hence it is natural to consider a homogeneous
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pencil
(2.1.5) Az, 1) = z0Ao + 21 41.

Assume that D is Dy. Then Dy [zg, 1] is also Dy (Problem 1.4.6.) In par-
ticular Dy [zg, 21] is Dg. Let dx(xo, 1), ix(zo, 1) be the invariant deter-
minants and factors of A(zg,x;) respectively for k = 1,...,rank A(xq,x1).

Lemma 2.1.2 Let A(zg,21) be a homogeneous pencil over Dy [z, x1].
Then its invariant determinants and the invariant polynomials
0r(zo, 1), ix(xo,x1), k = 1,...,rank A(xg,x1) are homogeneous polyno-
mials. Moreover, if 6x(x) and i(x) are the invariant determinants and
factors of the pencil A(x) for k=1,... ,rank A(x), then

(2.1.6) Or(xz) = 0k(1, ), ir(x) =ix(l,z), k=1,... rank A(x).

Proof. Clearly any k x k minor of A(xzg,z1) is either zero or a
homogeneous polynomial of degree k. In view of Problem 1 we deduce that
the g.c.d. of all nonvanishing k x k& minors is a homogeneous polynomial

5k($07331)- As ik(xo,l‘l) = %

a homogeneous polynomial. Consider the pencil A(z) = A(1,z). So d(x) -
the g.c.d. of k x k minors of A(x) is obviously divisible by dx(1,z). On the
other hand we have the following relation between the minors of A(zg, 1)
and A(x)

Problem 1 implies that i (zg,x1) is

(2.1.7) det A(zo, 1), 8] = kdet A(i—;)[a,ﬂ], a, B € [nlx.

This shows that z(*0 (%) (px = deg dx(x)) divides any k x k minor of

0

A(zo,x1). So 20 (£1)|0k (20, 21). This proves the first part of (2.1.6). So

zo
(2.1.8) S (o, 1) = 20 (xg’“&c(%)% pr, = deg 6 (z), ¢r > 0.
The equality i )
. k(Lo, L1
ik (To,71) = Be 1 (o)
implies
(2.1.9) in(zo, 21) = 2P (@F iR (L)), op = deg in(@), ¥r > 0.

T
O

0k (o, 1) and ix(xg,x1) are called the invariant homogeneous deter-
minants and the invariant homogeneous polynomials (factors) respectively.
The classical result due to Weierstrass [Wei67] states:
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Theorem 2.1.3 Let A(z) € Flx]™*"™ be a regular pencil. Then a pencil
B(zx) € Flz]™*™ is strictly equivalent to A(x) if and only if A(x) and B(x)
have the same invariant homogeneous polynomials.

Proof. The necessary part of the theorem holds for any A(x), B(x)
which are strictly equivalent. Suppose now that A(z) and B(x) have the
same invariant homogeneous polynomials. According to (1.4.4) the pencils
A(x) and B(x) have the same invariant polynomials. So A(z) ~ B(x) over
F[x]. Therefore

(2.1.10) W(z)B(x) = A(x)U(z), U(x), W(z) € GL(n,F[z]).
Assume first that A; and B; are nonsingular. Then (see Problem 2) it is
possible to divide W (z) by A(z) from the right and to divide U(z) by B(z)
from the left
(2.1.11) W(z) = A(z)Wyi(x) + R, U(zx)=U(z)B(x)+ P,
where P and R are constant matrices. So

A(z)(Wr(z) — Uy (2))B(z) = A(xz)P — RB(x).

Since A, By € GL(n,F) we must have that Wi (z) = Ui(z), otherwise
the left-hand side of the above equality would be of degree 2 at least (see
Definition 2.1.5), while the right-hand side of this equality is at most 1. So

(2.1.12) Wi(z) = Ui(z), RB(x)= A(x)P.
It is left to show that P and @ are nonsingular. Let V(z) = W(z)™! €

GL(n,F[z]). Then I = W(z)V(x). Let V(z) = B(x)Vi(x) + S. Use the
second identity of (2.1.12) to obtain

I = (A(x)Wi(z) + R)V(z) = A(z)W1(2)V (z) + RV (2) =
A(zx)W;(z)V (z) + RB(z)Vi(z) + RS =

A(z)Wi(2)V (z) + A(2) PVi(z) + RS =

A(z) (W (2)V (x) + PVi(z)) + RS.

Since 4; € GL(n,F) the above equality implies
Wi (z)V(xz)+ PVi(z) =0, RS=1.

Hence R is invertible. Similar arguments show that P is invertible. Thus
A(z)2B(x) if det Ay, det By # 0.
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Consider now the general case. Introduce new variables g, y1:
Yo = axg + bxry, y1 = cxg +dry, ad—cb#D0.

Then

A(yo, 1) = oAy + 1147, B(yo,y1) = yoBy + 1By
Clearly A(yo,y1) and B(yo, y1) have the same invariant homogeneous poly-
nomials. Also A(yo,y1)~B(yo,v1) <= A(xo,21)~B(20,21). Since
A(zo,z1) and B(xg,x1) are regular pencils it is possible to choose a,b, ¢, d
such that A} and B} are nonsingular. This shows that A(yo,y1)~B(yo, y1)-
Hence A(x)XB(z). O

Using the proof of Theorem 2.1.3 and Problem 2 we obtain:

Theorem 2.1.4 Let A(x),B(x) € D[z]|"*™. Assume that A1,B; €
GL(n,D). Then A(x)XB(z) <= A(x) ~ B(z).

For singular pencils the invariant homogeneous polynomials alone do
not determine the class of strictly equivalent pencils. We now introduce
the notion of column and row indices for A(xz) € Flz]™*™. Consider the
system (1.15.15). The set of all solutions w(z) is an Flz]-module M with
a a finite basis wy(x),...,ws(x). (Theorem 1.13.3.) To specify a choice of
a basis we need the following definition.

Definition 2.1.5 Let A € D[zy,...,x]™*". So
Az, ... z1) = Z Agz®, Ay € DX,
|| <d
a=(ag,...,q EZﬁ, la] = Za“ =l .t
(2.1.13)

Then the degree of A(x1,...,x,) # 0 (deg A) is d if there exists A, # 0
with |a| = d. Let deg 0 = 0.

Definition 2.1.6 Let A € F[z]™*™ and consider the module M C Flx]"
of all solutions of (1.15.15). Choose a basis wi(x),...,wg(x), s = n —
rank A in M such that wi(z) € M has the lowest degree among all w(x) €

M which are linearly independent over F(x) of wi,...,wi_1(z) for k =
1,...,s. Then the column indices 0 < a; < as < ... < ay of A(x) are
given as

(2.1.14) ap =deg wi(z), k=1,... s
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The row indices 0 < 1 < By < ... < B, t = m —rank A, of A(z) are the
column indices of A(x)".

It can be shown [Gan59] that the column (row) indices are independent
of a particular allowed choice of a basis wi(x),...,wg(x). We state the
Kronecker result [Kro90]. (See [Gan59] for a proof.)

Theorem 2.1.7 The pencils A(x), B(x) € F[z]™*"™ are strictly equiva-
lent if and only if they have the same invariant homogeneous polynomials
and the same row and column indices.

For a canonical form of a singular pencil under the strict equivalence see
Problems 8- 12.

Problems

1. Using the fact that Dylxy,...,z,] is Dy and the equality (1.14.5)
show that if a € Dy[z1,...,z,] is a homogeneous polynomial then in
the decomposition (1.3.1) each p; is a homogeneous polynomial.

2. Let

(2.1.15) W(zx) = zq: Wi, Ulz) = zp: Uk € D[z]™>".
k=0 k=0

Assume that A(z) = Ap + ©4; such that 4p € D"*™ and A; €
GL(n,DD). Show that if p,q > 1 then

W(z) = A(z) A (Wea®™ )+ W (z), U(z) = (Upa? ") AT A(x)+U (2),
where
deg W(x) <gq, deg f](w) < p.

Prove the equalities (2.1.11) where R and P are constant matrices.
Suppose that A; = I. Show that R and P in (2.1.11) can be given as

q

(2.1.16) R=> (—Ay)Wx, P:iUk(—AO)’“.
k=0 k=0

3. Let A(z) € Dy[z]™*™ be a regular pencil such that det A; # 0. Prove
that in (2.1.8) and (2.1.9) ¢ = ¥ =0 for k = 1,...,n. (Use equality
(1.13.12) for A(z) and A(xo,1).)
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Consider the following two pencils

24x 14z 343z 242 142 14«2
Alz)= 342 24z 5+4+2z|,Blx)=|l4+z 24z 2+«
3+x 24x 542 142 1+ 1+=z

over R[z]. Show that A(z) and B(z) are equivalent but not strictly
equivalent.

Let
P
Ax) = ZAkxk € Fla]™*".
k=0
Put
q
Az, 1) = Z Apal 2k g = deg A(x).
k=0
Prove that ik (2o, 1) is a homogeneous polynomial for k = 1, ..., rank A(x).

Show that i1 (1, z),...,ik(1,z) are the invariant factors of A(x).

Let A(z), B(x) € Flz]™*™. A(x) and B(z) are called strictly equiva-
lent (A(z)XB(x)) if

B(z) = PA(z)Q, P € GL(m,F), Q € GL(n,F).

Show that if A(x)XB(zx) then A(xg,2;) and B(xg,z;) have the same
invariant factors.

Let A(x), B(x) € F[z]™*". Show that A(z)*B(z) <= A(z) *B(z)".

(a) Let L, (z) € Flz]™* "+ be matrix with 1 on the main diagonal
and x on the diagonal above it, and all other entries 0:

1 =z 0 ... 0

01 =z ... 0
Ly (z) = :

0 0 1 =z

Show that rank L,, = m and oy = m.

(b) Let 1 <y <...<as, 1 <B <...< 0B be integers. Assume
that B(z) = By + xB; € F[z]'*! is a regular pencil. Show that
A(z) = B(z) @, La, @5, L;j has the column and the row
indices 1 < a3 <...<ag, 1 <f; <...< S, respectively.
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9. Show if a pencil A(z) is a direct sum of pencils of the below form,
where one of the summands of the form 9a-9b appears, it is a singular
pencil.

(c) B(x) = By + xB; € F[z]"*! is a regular pencil.

10. Show that a singular pencil A(z) is strictly similar to the singular
pencil given in Problem 9, if and only if there are no column and row
indices equal to 0.

11. Assume that A(x) € Flx]™*" is a singular pencil.

(a) Show that A(z) has exactly k column indices equal to 0, if and
only if it is strict equivalent to [0,,xx A1(z)], A1 (x) € Fa]™>m=F),
where either Aj(z) is regular or singular. If A;(x) is singular
then the row indices of A;(z) are the row indices of A(x), and
the column indices of A;(x) are the nonzero column indices of
of A(x).

(b) By considering A(z) " state and prove similar result for the row

indices of A(z).

12. Use Problems 8-11 to find a canonical from for a singular pencil A(z)
under the strict equivalence.

2.2 Similarity of matrices

Definition 2.2.1 Let A, B € D"™*™. Then A and B are similar (A =
B) if

(2.2.1) B =QAQ !,
for some Q € GL(m,D).

Clearly, the similarity relation is an equivalence relation. So D™*™ is di-
vided into equivalences classes which are called the similarity classes. For
a D module M we let Hom (M) := Hom (M,M). It is a standard fact
that each similarity class corresponds to all possible representations of
some T' € Hom (M), where M is a D-module having a basis of m ele-
ments. Indeed, let [uy,...,u,,] be a basis in M. Then T is represented by
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A = [a;;] € D™*™ where
(222) TIIj = Zaiju,;, ] =1,...,M.

Let [Qy,..., Q] be another basis in M. Assume that @ € GL(m,D) is
given by (1.11.3). According to (2.2.2) and the arguments of §1.11, the
representation of T' in the basis [Qy,..., Q] is given by the matrix B of
the form (2.2.1).

The similarity notion of matrices is closely related to strict equivalence
of certain regular pencils.

Lemma 2.2.2 Let A,B € D™*™. Associate with these matrices the
following regular pencils

(2.2.3) Alx)=—-A+2zI, B(z)=-B+zl.

Then A and B are similar if and only if the pencils A(x) and B(x) are
strictly equivalent.

Proof. Assume first that A = B. Then (2.2.1) implies (2.1.2) where
P = Q' Suppose now that A(z)~B(z). So B = QAP, I = QP. That is
P=Q 'and A~ B. O

Clearly A(2)~XB(x) = A(x) ~ B(xz).

Corollary 2.2.3 Let A, B € D}*™. Assume that A and B are similar.
Then the corresponding pencils A(x), B(x) given by (2.2.3) have the same
invariant polynomials.

In the case Dy = F the above condition is also a sufficient condition in view
of Lemma 2.2.2 and Corollary 2.1.4

Theorem 2.2.4 Let A, B € F"™*™. Then A and B are similar if and
only if the pencils A(z) and B(z) given by (2.2.3) have the same invariant
polynomaals.

It can be shown (see Problem 1) that even over Euclidean domains the
condition that A(x) and B(x) have the same invariant polynomials does
not imply in general that A =~ B.

Problems
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1. Let

|10 11 2%
acf) oot Jeme

Show that A(z) and B(x) given by (2.2.3) have the same invariant
polynomials over Z[z]. Show that A and B are not similar over Z.

2. Let A(z) € Dy[z]™*"™ be given by (2.2.3). Let i1(x),...,i,(z) be the
invariant polynomial of A(z). Using the equality (1.13.12) show that
each ix(z) can be assumed to be normalized polynomial and

n
(2.2.4) Z deg ix(x) = n.
k=1
3. Let A € F»*™, Show that A~ AT.

2.3 The companion matrix

Theorem 2.2.4 shows that if A € F*™ then the invariant polynomials deter-
mine the similarity class of A. We now show that any set of normalized poly-
nomials i1 (z),...,i,(z) € Dyla], such that i;(z)|ij41(x), j=1,...,n—1
and which satisfy (2.2.4), are invariant polynomials of I — A for some
A e D", To do so we introduce the notion of a companion matrix.

Definition 2.3.1 Let p(x) € D[z] be a normalized polynomial
p(z) =2 +az™ .+ ap,.

Then C(p) = [ci;]7" € D™*™ is the companion matriz of p(z) if

Cij:(S(iJrl)jy t=1,....m—1,7=1,...,m,
(2.3.1) Cmj = —Qm—j+1, J=1,...,m,
0 1 0 0 0
0 0 1 0 0
Clo) =1 : : : U :
0 0 0 0 1
—Qy —AQm—-1 —Amp—2 ... —Q2 —ai1

Lemma 2.3.2 Let p(z) € Dylz] be a normalized polynomial of degree
m. Consider the pencil C(x) = xI — C(p). Then the invariant polynomials
of C(z) are

(2.3.2) 1(C) = ... =i (C) =1, in(C) = p(x).
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Proof. For k < m consider a minor of C'(z) composed of the rows
1,...,k and the columns 2,...,k + 1. Since this minor is the determinant
of a lower triangular matrix with —1 on the main diagonal we deduce that
its value is (—1)*. So 0x(C) =1, k =1,...,m—1. This establishes the first
equality in (2.3.2). Clearly d,,(C) = det (2] —C'). Expand the determinant
of C(z) by the first row and use induction to prove that det (zI—C) = p(z).

This shows that i,,(C) = 65:i(1?()1) = p(x). O

Using the results of Problem 2.1.14 and Lemma 2.3.2 we get:

Theorem 2.3.3 Let p;(z) € Dy[z] be normalized polynomials of posi-
tive degrees such that pj(x)|p;+1(x), j=1,...,k —1. Consider the matric

(2.3.3) C(p1,y..-,pr) = @?ZIC(pj).
Then the nontrivial invariant polynomials of xI —C(p1,...,pk) ( i.e. those
polynomials which are not the identity element) are p1(x),...,pr(x).

Combining Theorems 2.2.4 and 2.3.3 we obtain a canonical representa-
tion for the similarity class in F™*"™,

Theorem 2.3.4 Let A € F"*" and assume that pj(z) € Flz], j =
1,...,k are the nontrivial normalized invariant polynomials of tI—A. Then
A is similar to C(p1,...,Dk)-

Definition 2.3.5 For A € F"*" the matriz C(p1,...,px) is called the
rational canonical form of A.

Let F be the quotient field of D. Assume that A € D"*". Let C(pa, ..., px)
be the rational canonical form of A in F™"*™. We now discuss the case when
C(p1y...,pk) € D" Assume that D is Dy. Let §x be the g.c.d of k x k
minors of 21 — A. So §j, divides the minor p(z) = det (I — A)[e, ], a =
{1,...,k}. Clearly p(x) is normalized polynomial in Dy [z]. Recall that
Dy [z] is also Dy (§1.4).

According to Theorem 1.4.8 the decomposition of p(z) into irreducible
factors in Dy [x] is of the form (1.4.4), where a = 1 and each g;(x)is a non-
trivial normalized polynomial in Dy [z]. Hence iy = 535 - is either identity

or a nontrivial polynomial in Dy [z]. Thus

Theorem 2.3.6 Let A € D}*". Then the rational canonical form
C(p1,...,pk) of A over the quotient field F of Dy belongs to Dj".

Corollary 2.3.7 Let A € Clzy,...,xn]"*"™. Then the rational canon-
ical form of A over C(xy,...,x,) belongs to Clxy, ..., xm]""".
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Using the results of Theorem 1.4.9 we deduce that Theorem 2.3.6 applies
to the ring of analytic functions in several variables although this ring is
not DU (§13)

Theorem 2.3.8 Let A € H(Q)"*™ (Q C C™). Then the rational
canonical form of A over the field of meromorphic functions in 0 belongs
to H(2)™>™.

Problems

1. Let p(x) € Dy[z] be a normalized nontrivial polynomial. Assume that
p(xz) = p1(x)p2(z), where p;(x) is a normalized nontrivial polynomial
in Dy(x] for ¢ = 1,2. Using Problem 1.14.1 and 2 show that I —
C(p1,p2) given by (2.3.3) have the same invariant polynomials as
I — C(p) if and only if (p1,p2) = 1.

2. Let A € D" and assume that pi(z),...,pr(z) are the nontrivial
normalized invariant polynomials of I — A. Let

(2.3.4) pi(x) = (¢1(z)™ .. (P(z)™, j=1,...,k,

where ¢1(x),...,¢;(x) are nontrivial normalized irreducible polyno-
mials in Dy [z] such that (¢;,¢;) =1 for ¢ # j. Prove that

(235) ™Mk Z 1, Mk Z mi(k_l) Z Z mi1 Z 0, Z m,;j =n.
i,j=1

The polynomials gbzn“ for m;; > 0 are called the elementary divisors
of I — A. Let

(2.36) E - @m”>oc(¢:n”)'

Show that I — A and zI — E have the same invariant polynomials.
Hence A =~ E over the quotient field F of Dy;. (In some references E
is called the rational canonical form of A.)

2.4 Splitting to invariant subspaces

Let V be an m dimensional vector space over F and let T' € Hom (V). In
§2.2 we showed that the set of all matrices A C F™*™  which represents
T in different bases, is an equivalence class of matrices with respect to the
similarity relation. Theorem 2.2.4 shows that the class A is characterized
by the invariant polynomials of I — A for some A € A. Since I — A and
xI — B have the same invariant polynomials if and only if A ~ B we define:
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Definition 2.4.1 Let T € Hom (V) and let A € F™*™ be a represen-
tation matriz of T given by the equality (2.2.2) in some basis uy, ..., W, of
V. Then the invariant polynomials i1 (x), ..., im(x) of T are defined as the
inwvariant polynomials of xI — A. The characteristic polynomial of T is the
polynomial det (xI — A).

The fact that the characteristic polynomial of T' is independent of a
representation matrix A follows from the identity (1.13.12)

(2.4.1) det (xI — A) =pi(z)...px(x),
where p1(z),...,pr(x) are the nontrivial invariant polynomials of zI — A.
In §2.3 we showed that the matrix C(p1,...,pk) is a representation matrix

of T'. In this section we consider another representation of 7" which is closely
related to the matrix F given in (2.3.6). This form is achieved by splitting
V to a direct sum

(2.4.2) vV =a_,U,
where each U; is an invariant subspace of T' defined as follows:

Definition 2.4.2 Let V be a finite dimensional vector space over F
and T € Hom (V). A subspace U C V is an invariant subspace of T
(T -invariant) if

(2.4.3) TUCU.

U is called trivial if U = {0} or U = V. U is called nontrivial, (proper),
if {0} #U # V. U is called irreducible if U can not be expressed a direct
sum of two nontrivial invariant subspaces of T'. The restriction of T to a
T-invariant subspace U is denoted by T|U.

Thus if V splits into a direct sum of nontrivial invariant subspaces of
T, then a direct sum of matrix representations of 7" on each U; gives a
representation of T'. So, a simple representation of 7' can be achieved by
splitting V into a direct sum of irreducible invariant subspaces. To do so we
need to introduce the notion of the minimal polynomial of T'. Consider the
linear operators I = T°,T,T2,..., ™", where I is the identity operator
(Iv = v). As dim Hom (V) = m?, these m? + 1 operators are linearly
dependent. So there exists an integer ¢ € [0,m?] such that I,7T,...,T%!
are linearly independent and I,T),...,TY are linearly dependent. Let 0 €
Hom (V) be the zero operator: Ov = 0. For ¢ € F[z] let ¢(T) be the
operator

l l
o(T) = Z Tt é(x) = Zcixi.
i=0 i=1

¢ is annihilated by T if ¢(T") = 0.
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Definition 2.4.3 A polynomial ¢(x) € Flz] is a minimal polynomial
of T € Hom (V) if ¢(x) is a normalized polynomial of the smallest degree
annihilated by T'.

Lemma 2.4.4 Let)(x) € Flx] be the minimal polynomial T € Hom (V).
Assume that T annihilates ¢. Then |¢p.

Proof. Divide ¢ by ¢:

d(z) = x(z)(x) + p(x), deg p < deg .

As ¢(T) = (T) = 0 it follows that p(T) = 0. From the definition of ¢ (x)
it follows that p(z) = 0. O

Since F[z] is a unique factorization domain, let

P(x) = o7 ... o),
(pi,pj) =1for1 <i<j<l, dego;>1,i=1,...,1,
(2.4.4)

where each ¢; is a normalized irreducible polynomial if F[x].

Theorem 2.4.5 Let 1) be the minimal polynomial of T € Hom (V).
Assume that v splits to a product of coprime factors given in (2.4.4). Then
the vector space V splits to a direct sum (2.4.2), where each Uj is a non-

trivial invariant subspace of T|U;. Moreover <Z)j-j is the minimal polynomial
Of T‘UJ .

The proof of the theorem follows immediately from the lemma below.

Lemma 2.4.6 Let ¢ be the minimal polynomial of T € Hom (V). As-
sume that v splits to a product of two nontrivial coprime factors

(24.5)  Y(@) =vi(@)e(z), degpy >1,i=1,2, (1,92) =1,
where each 1; is normalized. Then
(2.4.6) V=U, @ Uy,

where each Uj is a nontrivial T-invariant subspace and v; is the minimal
polynomial of T := T'|U;.

Proof. The assumptions of the lemma imply the existence of polyno-
mials 0 (x) and 63(z) such that

(2.4.7) 01 ()11 () + Oz (2o () = 1.



76 CHAPTER 2. CANONICAL FORMS FOR SIMILARITY

Define
(2.4.8) Uj={ueVv: ¢;T)u=0}, j=1,2

Since any two polynomials in T' commute (i.e. p(T)v(T) = v(T)u(T)) it
follows that each Uj is T-invariant. The equality (2.4.7) implies

I =91(T)01(T) + 2(T)02(T).
Hence for any u € V we have
u=1u; + ug, u; = ¢2(T)02(T)11 € Ul, U = 1/11(T)91(T)u S UQ.

So V = U; +Us,. Suppose that u € U;NUy. Then ¥ (T)u = o(T)u = 0.
Hence 01 (T)y1 (T)u = 02(T)1p2(T)u = 0. Thus

u=y(T)u+yY(T)u = 0.
So U; N Us = {0} and (2.4.6) holds. Clearly 7} annihilates v;. Let 1; be
the minimal polynomial of Tj. So @jhpj, 7 =1,2. Now
D1(T)2(T)u = 1 (T)2(T) (wi+12) = o(T)1 (T) s+ (T)ha(T)us = 0.

Hence T" annihilates 1/;1@3 Since v is the minimal polynomial of T" we have
1/)1¢2|’(/)1¢2. Therefore ¢j = ¢j, j = 1,2 As deg ¢j > 1 it follows that
dim Uj Z 1. O

Problems

1. Assume that (2.4.6) holds, where TU; C Uj;, j = 1,2. Let ¢, be

the minimal polynomial of T = T'|U; for j = 1,2. Show that the

minimal polynomial 1 of T is equal to (11{)11 11/2)22)

2. Let the assumptions of Problem 1 hold. Assume furthermore that
¥ = ¢°, where ¢ is irreducible over F[x]. Then either ¢y = % or
Yo = 1.

3. Let C(p) € D™*™ be the companion matrix given by (2.3.1). Let
e = (0i1,...,0im) ", i=1,...,m be the standard basis in D™. Show

(249) C(p)ez =€;—1 — Um—i+1€m, 7= 1’ Lo, m, (eO = 0)

Prove that p(C') = 0 and that any polynomial 0 # g € D[], deg ¢ <
m is not annihilated by C. (Consider ¢(C)e; and use (2.4.9).) That
is: p is the minimal polynomial of C(p).
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Hint: Use the induction on m as follows. Set f; = e,,_;4, for
i=1,....m Let ¢ = 2™ ' +a2™ '+ ... +amu_1. Set Q =
T
[ 0 0 } Use the induction hypothesis on C(q), i.e. ¢(C(q))
0, C(g)
0, and the facts that C(p)f; = Qf; for i = 1,...,m — 1, C(p)f,, =
f,,+1 + Qf,, to obtain that p(C(p))fi = 0. Now use (2.4.9) to show
that p(C(p)fi =0 fori=2,...,m+ 1.

. Let A € F™*™_ Using Theorem 2.3.4 and Problems 1 and 3 show

that the minimal polynomial ¢ of A is the last invariant polynomial
of I — A. That is:

(2.4.10) Y(x) = W,

where d,,_1(z) is the g.c.d. of all (m —1) x (m — 1) minors of xI — A.

. Show that the results of Problem 4 apply to A € Dj}*"™. In particular,

if A~ B then A and B have the same minimal polynomials.

. Deduce from Problem 4 the Cayley-Hamilton theorem which states

that T € Hom (V) annihilates its characteristic polynomial.

. Let A € D™*™_ Prove that A annihilates its characteristic polyno-

mial. (Consider the quotient field F of D.)

. Use Problem 6 and Lemma 2.4.4 to show

(2.4.11) deg ¥ < dim V.

. Let ¢ = ¢*°, where ¢ is irreducible in Flz]. Assume that deg ) =

dim V. Use Problems 2 and 8 to show that V is an irreducible in-
variant subspace of T.

Let p(z) € F[z] be a nontrivial normalized polynomial such that p =
¢*®, where ¢ is a normalized irreducible in F[z]. Let T’ € Hom (V) be
represented by C'(p). Use Problem 9 to show that V is an irreducible
invariant subspace of T

Let T € Hom (V) and let E be the matrix given by (2.3.6), which is
determined by the elementary divisors of T'. Using Problem 10 show
that the representation F of T' corresponds to a splitting of V' to a
direct sum of irreducible invariant subspaces of T

Deduce from Problem 9 and 11 that V is an irreducible invariant
subspace of T if and only if the minimal polynomial ¢ of T satisfies
the assumptions of Problem 9
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2.5 An upper triangular form

Definition 2.5.1 Let M be a D-module and assume that T € Hom (M).
A €D is an eigenvalue of T if there exists 0 £ u € M such that

(2.5.1) Tu=Au

The element, (vector), u is an eigenelement, (eigenvector), corresponding
to X\. An element 0 # u is a generalized eigenelement, (eigenvector), if

(2.5.2) M —-T)fu=0

for some positive integer k, where X is an eigenvalue of T. For T € D™*™

A is an eigenvalue if (2.5.1) holds for some 0 £ u € D™. The element u is
eigenelement, (eigenvector), or generalized eigenelement, (eigenvector), if
either (2.5.1) or (2.5.2) holds respectively.

Lemma 2.5.2 Let T € D™*™. Then A is an eigenvalue of T if and
only if X is a root of the characteristic polynomial det (xI —T).

Proof. Let F be the quotient field of ID. Assume first that A is an
eigenvalue of T'. As (2.5.1) is equivalent to (AI —T)u = 0 and u # 0, then
above system has a nontrivial solution. Therefore det (A\] — T) = 0. Vice
versa, if det (A — T') = 0 then the system (A — T')v = 0 has a nontrivial
solution v € F™. Then there exists 0 # a € D such that u := av € D™ and
Tu = \u. O

Definition 2.5.3 A matriz A = [a;;] € D™*™ is an upper, (lower), tri-
angular if a;; =0 for j <1, (j >1i). Let UT(m,D), LT (m,D), D(m,D) C
D™*™ be the ring of upper triangular, lower triangular, diagonal m X
m matrices. Let UTG(m,D) = UT(m,D) N GL(m,D), LTG(m,D) =
LT(m, D) N GLy, (D).

Theorem 2.5.4 Let T € D™*™. Assume that the characteristic poly-
nomial of T splits to linear factors over D

(2.5.3) det (21 —T) =[x = X), XeD,i=1,... m
i=1

Assume furthermore that D is a Bezout domain. Then
(2.54)  T=QAQ™', Qe€GL(mD), A=]a;"ecUT(m,D),

such that aiy,...,Gmm are the eigenvalues \i,..., N\, appearing in any
specified order.
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Proof. Let X\ be an eigenvalue of T and consider the set of all u € D™
which satisfies (2.5.1). Clearly this set is a D-module M. Lemma 2.5.2
yields that M contains nonzero vectors. Assume that D is Dg. According

to Theorem 1.13.3 M has a basis uy,...,u; which can be completed to a
basis uy,...,u,, in D™. Let
(255) Tu; = ijillj, i=1,....m, B= [b”] e Dmxm,

j=1

A straightforward computation shows that 7'~ B. As Tu; = \u;, i =
1,...,k we have that b;; =0 for j > 1. So

det (zI — T) = det (zI — B) = (z — N)det (I — B),

where B = [bij} =0 € Dm=1x(m=1) " Here the last equality is achieved by
expanding det (zI — B) by the first column. Use the induction hypothesis
to obtain that B &~ A;, where A; € UT(m — 1,D), with the eigenvalues of
B on the main diagonal of A; appearing in any prescribed order. Hence

T =~ C = [c;4]7, where C' € UT(m, D) with ¢11 = A, [cij];ijQ = A;. a

The upper triangular form of A is not unique unless A is a scalar matriz:
A =al. See Problem 1.

Definition 2.5.5 Let T € D™*™ and assume that (2.5.3) holds. Then
the eigenvalue multiset of T is the set S(T) = {A1,..., Am}. The multiplic-
ity of A € S(T), denoted by m()\), is the number of elements in S(T) which
are equal to X\. X is called a simple eigenvalue if m(\) = 1. The spectrum
of T, denoted by spec (T), is the set of all distinct eigenvalues of T':

(2.5.6) > m(\) =m.
Aé€spec (T)
ForT € C™*™ arrange the eigenvalues of T' in the decreasing order of their
absolute values (unless otherwise stated):
(2.5.7) A= ] 2 0,

The spectral radius of T, denoted by p(T'), is equal to |A1].

Problems

1. Let @ correspond to the elementary row operation described in Def-
inition 1.12.6(iii). Assume that A € UT(m,D). Show that if j < 4
then QAQ~! € UT(m,D) with the same diagonal as A. More gen-
eral, for any Q € UTG,,(D) QAQ~! € UT(m,D) with the same
diagonal as A.
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. Show that if T € D™*™ is similar to A € UT(m,D) then the charac-

teristic polynomial of T splits to linear factors over D|z].

. Let T € D™*™ and put

(2.5.8) det (zI —T)=2"+ Z A7
j=1
Assume that the assumptions of Theorem 2.5.4 holds. Show that
(2.5.9)
(-1)*a; = Z det T[a, @) = sp(M1y .oy Am), k=1,...,m.

a€[m]k
Here si(z1,...,2Tm) is the k — th elementary symmetric polynomial
of x1,...,x,,. The coefficient —a; is called the trace of A:

m

(2510) trA= iaii = Z A
=1 =1

. Let T'e D™*™ and assume the assumptions of Theorem 2.5.4. Sup-

pose furthermore that D is Dy. Using the results of Theorem 2.5.4
and Problem 2.4.5 show that the minimal polynomial ¢ (z) of T is of
the form

l

P(@) = [ (@ = i)™,
i=1
a Fajfori#j, 1<s <m;:=m(e), 1=1,...,1
(2.5.11)

where spec (T) = {a1,...,a}. (Hint: Consider the diagonal elements

of ¥(A).)

. Let T € D}*™ and assume that the minimal polynomial of T is given

by (2.5.11). Using Problem 2.4.4 and the equality (2.4.1) show

l
(2.5.12) det (21 = T) = [J (& — i)™

i=1

2.6 Jordan canonical form

Theorem 2.5.4 and Problem 2.5.2 shows that T' € D™*™ is similar to an
upper triangular matrix if and only if the characteristic polynomial of T
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splits to linear factors. Unfortunately, the upper triangular form of T is not
unique. If D is a field then there is a special upper triangular form in the
similarity class of T" which is essentially unique. For convenience we state
the theorem for an operator T' € Hom (V).

Theorem 2.6.1 Let V be a vector space over the field F. Let T €
Hom (V) and assume that the minimal polynomial (x) of T splits to a
product of linear factors as given by (2.5.11). Then 'V splits to a direct sum
of nontrivial irreducible invariant subspaces of T

(2.6.1) V=W,a...0W,

In each invariant subspace W (= W) it is possible to choose a basis con-
sisting of generalized eigenvectors X1, ...,X, such that

Tx; = AoX1,
(2.6.2)
Txpy1 = AoXp+1 +xk, k=1,...,r—1,

where Ao is equal to some «; and r < s;. (For r = 1 the second part of
(2.6.2) is void.) Moreover for each o there exists an invariant subspace W
whose basis satisfies (2.6.2) with \g = a; and r = s;.

Proof. Assume first that the minimal polynomial of T is

(2.6.3) P(x) = 2°.

Recall that ¢ (z) is the last invariant polynomial of T'. Hence each nontrivial
invariant polynomial of T is of the form x" for 1 < r < s. Theorem 2.3.4
implies that V has a basis in which T is presented by its rational canonical
form

Ca)@...aCx™), 1<r<rs<...<rp=s.

Hence V splits to a direct sum of T-invariant subspaces (2.6.1). Let W be
an invariant subspace in the decomposition (2.6.1). Then T := T|W has the
minimal polynomial ", 1 < r <'s. Furthermore, W has a basis x1,...,X,
so that T is represented in this basis by the companion matrix C(z"). It
is straightforward to show that x1,...,x, satisfies (2.6.2) with A\g = 0. As
W is spanned by XT,TXT, . ,Tr_lxr it follows that W is an irreducible
invariant subspace of T. Assume now that the minimal polynomial of T
is (x — Xo)®. Let To =T — M\gI. Clearly z* is the minimal polynomial of
To. Let (2.6.1) be the decomposition of V to invariant subspaces of Tj as
above. In each invariant subspace W choose a basis for Tj as above. Then
our theorem holds in this case too.
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Assume now that the minimal polynomial of T' is given by (2.5.11). Use

Theorem 2.4.5 and the above arguments to deduce the theorem. O
Let
010 0 0
0 0 1 0 0
(2.6.4) H,:=C(")=1|: + + 1 !
000 ... 01
000 ... 00

Sometimes we denote H,, by H when the dimension of H is well defined.

Let W = span (X1, Xs,...,X;). Let T € Hom (W) be given by (2.6.2).
Then T is presented in the basis x1, ..., X, by the Jordan block \oI. + H,.
Theorem 2.6.1 yields:

Theorem 2.6.2 Let A € F"*"™. Assume that the minimal polynomial
P(x) of A splits to linear factors as in (2.5.11). Then there exists P €
GL(n,F) such that

P7'AP =],
(2.6.5) J = @2:1 @?;1 (ailmij + Hmij)’
(2.6.6) L<mig, Smig,y <. <mip=si, i=1..1

Definition 2.6.3 Let A € F"*™ satisfy the assumptions of Theorem
2.6.2. The matriz J in (2.6.5) is called the Jordan canonical form of A.
Let T € Hom (V) and assume that its minimal polynomial splits over F.

Then a representation matriz J (2.6.5) is called the Jordan canonical form
of T.

Remark 2.6.4 Let A € F™*" and suppose that the minimal polynomial
1 of A does not split over F. Then there exits a finite extension K of F
such that v splits over K. Then (2.6.5) holds for some P € GL(n,K). J

is referred as the Jordan canonical form of A.

Corollary 2.6.5 Let A € F"*™. Assume that the minimal polynomial
of A is given by (2.5.11). Let J be the Jordan canonical form of A given by
(2.6.5). Set

(267) Migi+1 = --- = Myn :O, 1= 1,...,l.

Then the elementary polynomials of xI — A, which are the elementary di-
visors of xI — A defined in Problem 2, are

(268) qbij:(x—ai)m”, j:1,...,n7i:1,...,l.
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Hence the invariant polynomials i1(x), ..., in(z) of xI — A are
l
(2.6.9) ir(z) = [[(@ = i)™=, r =1, n.
i=1

The above Corollary shows that the Jordan canonical form is unique up
to a permutation of Jordan blocks.

Problems

1. Show directly that to each eigenvalue Ay of a companion matrix
C(p) € F™*™ corresponds one dimensional eigenvalues subspace spanned
by the vector (1, Xg, A3, ..., A0~ )T,

2. Let A € F™*"™ and assume that the minimal polynomial of A splits in
F. Let Uy, Uy C F™ be the subspaces of all generalized eigenvectors of
A, AT respectively corresponding to A € spec (A). Show that there
exists bases x1,...,X,, and y1,...,ym, in U; and U, respectively so
that

Vi X; =05, 4,j=1,...,m.

(Hint: Assume first that A is in its Jordan canonical form.)

3. Let A € F"*". Let A\, u € F be two distinct eigenvalues of A. Let
x,y € F™ be two generalized eigenvectors of A, AT corresponding to
A, 11 respectively. Show that y 'x = 0.

4. Verify directly that J (given in (2.6.5)) annihilates its characteristic
polynomial. Using the fact that any A € F"*" is similar to its Jordan
canonical form over the finite extension field K of F deduce the Cayley-
Hamilton theorem.

5. Let A, B € F"*™. Show that A =~ B if and only if A and B have the

same Jordan canonical form.

2.7 Some applications of Jordan canonical form

Definition 2.7.1 Let A € F™*" and assume that det (zI — A) splits in
F. Let \g be an eigenvalue of A. Then the number of factors of the form
x— X appearing in the minimal polynomial 1 (x) of A is called the index of
Ao and is denoted by index \g. The dimension of the eigenvalue subspace
of A corresponding to A\ is called the geometric multiplicity of Xg.

Using the results of the previous section we obtain.
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Lemma 2.7.2 Let the assumptions of Definition 2.7.1 hold. Then index g
is the size of the largest Jordan block corresponding to \g, and the geometric
multiplicity of Ao is the number of the Jordan blocks corresponding to \g.

Let T' € Hom (V), X € spec (T) and consider the invariant subspaces

(2.7.1) X, ={xeV: MNI-T)x=0}, r=01,...,
Y, =N -T)V, r=0,1,....

Theorem 2.7.3 Let T € Hom (V) and assume that Xy is the eigen-
value of T'. Let index A\g = m1 > mg > ... > my, > 1 be the dimensions of
all Jordan blocks corresponding to Ay which appear in the Jordan canonical
form of T. Then

P
(2.7.2) dim X, = z:mim(r,mi)7 r=0,1,...,
i=1

dimY, =dimV —dim X,, r=0,1,...

In particular

=X X1 X G... & X,

X(Ao) =X =Xpg1 =..., m=index Ag.
(2.7.3) V=Y2Yi2Y:2...2Y,,

YX) =Ym =Y =

V =X(N\) ®@Y(No)

Let
(2.74) vi=dmX; —dimX;_;, i=1,...,m+1, m:=index \p.

Then v; is the number of Jordan block of size i at least corresponding to Ag.
In particular

(2.7.5) V>V > . > Uy > Vg = 0.
Furthermore
(2.7.6) v; — Vg1 is the number of Jordan blocks of order

7 in the Jordan canonical form of T'corresponding to Ag.

Proof. Assume first that det (zI —T) = ¢(z) = (x — X\g)™. That is T
has one Jordan block of order m corresponding to A\g. Then the theorem
follows straightforward. Observe next that for

Ker (A -T)=0, Range (M —-T)=V, X# ).
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Assume now that det (zI — T) splits in F and V has the decomposition
(2.6.1). Apply the above arguments to each T|W, fori = 1,..., ¢ to deduce
the theorem in this case. In the general case, where det (I — T) does not
split to linear factors, use the rational canonical form of T' to deduce the
theorem. O

Thus (2.7.3) gives yet another characterization of the index A\g. Note
that in view of Definition 2.5.1 each 0 # x € X, is a generalized eigenvector
of T. The sequence (2.7.4) is called the Weyr sequence corresponding to
Ao-

Definition 2.7.4 A transformation T € Hom (V) is diagonable if there
exists a basis in 'V which consists entirely of eigenvectors of T'. That is any
representation matrix A of T is diagonable, i.e. A is similar to a diagonal
matriz.

For such T we have that X; = X,,, for each Ay € spec (T). Theorem
2.6.1 yields.

Theorem 2.7.5 Let T € Hom (V). Then T is diagonable if and only
if the minimal polynomial b of T splits to linear, pairwise different factors.
That is the index of any eigenvalue of T equals to 1.

Definition 2.7.6 Let M be a D-module and let T € Hom (M). T is
nilpotent if T° = 0 for some positive integer s.

Let T € Hom (V) and assume that det (zI — T) splits in F. For Ao €
spec (T) let X(Ao) C V be the T-invariant subspace defined in (2.7.3).
Then the decomposition (2.6.1) yields the spectral decomposition of V:

(277) V= 69/\espec (T)X(A)

The above decomposition is courser then the fine decomposition (2.6.1).
The advantage of the spectral decomposition is that it is uniquely defined.
Note that each X(X), A € spec (T) is direct sum of irreducible T-invariant
subspaces corresponding to the eigenvalue A in the decomposition (2.6.1).
Clearly T — AI|X(A) is a nilpotent operator. In the following theorem we
address the problem of the choices of irreducible invariant subspaces in the
decomposition (2.6.1) for a nilpotent transformation T'.

Theorem 2.7.7 Let T € Hom (V) be nilpotent. Let index 0 = m =
mp > mg > ... 2>my > 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T. Let (2.6.1) be a decomposition of V to
a direct sum of irreducible T-invariant subspaces such that

dim Wi =my >dim Wy =my > ... >dim Wy =my > 1,

(2.7.8)

My =...=M4; > Mi;41 = ... =My, > ... >mip_1+1:...:mi

p:mq.
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Assume that each W; has a basis y;1,...,Yim; satisfying (2.6.2), with
Ao =0. Let X;,Y;,i=0,... be defined as in (2.7.1) for \g = 0. Then the
above bases in W,..., W, can be chosen recursively as follows:

(a) ¥1.15---,Yir,1 s an arbitrary basis in Yp,_1.

(b) Let 1 < k < m. Assume that y;; are given for all | such that
my > m—k+1 and all j such that 1 < 57 < m;y—m + k. Then each
Yi,(k+1) 5 any element in T 'y N Ypok—1, which is a coset of the
subspace Yp—p—1 N Xy = Ker T|Y -1 If m — k = my for some
1 <t < ip then yi,_,41,1,---,Yi,1 5 any set of linearly independent
vectors in Y,_r—1 N Xy, which complements the above chosen wectors
Yij,mu=>m—k+1, m—m+k+12>7toabasis in Y, _r_1.

See Problem 1 for the proof of the Theorem.

Corollary 2.7.8 Let the assumptions of Theorem 2.7.7 hold. Suppose
furthermore that Z C 'V is an eigenspace of T'. Then there exists a decompo-
sition (2.6.1) of V to a direct sum of irreducible T-invariant subspaces such
that Z has a basis consisting of | = dim Z eigenvectors of the restrictions
of TIWj,,....,TIWj, for1 <ji <...<j<gq.

Proof. Let Z; .= ZNY,,_1 C ... C Z,, := ZN Yy and denote
l; = dimZ; for i = 1,...,m. We then construct bases in Wy,..., W,
as in Theorem 2.7.7 in the following way. If [y = dim Z; > 0 we pick

Yi,15---,Y1,,1 tobe from Z;. In general, foreachk =1,...,m—1,1 <t <4,

and m; = m — k such that Iy 1 > Ip welet yi, 1111, ¥ieo 1+l —l1

be any set of linearly independent vectors in Zg1, which form a basis in

Zk+1/Zk. O
Problems

1. Prove Theorem 2.7.7

2.8 The matrix equation AX — XB =0

Let A, B € D™*™. A possible way to determine if A and B are similar over
GL(n,D) is to consider the matrix equation

(2.8.1) AX — XB=0.

Then A ~ B if and only if there exists a solution X € D"*" such that
det X is an invertible element in D. For X = [z;;] € D™*" let X € D™
be the column vector composed of the n columns of X:

(282) X = (xllv ey Im1, X125+ -y T2y - - - 7xm(n—1)vx1n7 cee 7:L.mn)—r
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Then the equation (2.8.1), where A € D"™*™ B € D"*™ has a simple form
in tensor notation [MaM64]. (See also Problems 1 and 2.8.13.)

(2.8.3) (I A-B'"®NHX =0.

Assume that D is a Bezout domain. Then the set of all X € D™*" satisfying
(2.8.1) forms a D-module with a basis Xi,...,X,, (Theorem 1.13.3). So
any matrix X which satisfies (2.8.1) is of the form

v
X:ZCEZX“ r, €D, 1=1,...,v.
i=1

It is ”left” to find whether a function
d(x1,...,x,) :=det (Z 2, X5)
i=1

has an invertible value. In such a generality this is a difficult problem. A
more modest task is to find the value of v and to determine if §(x1, ..., z,)
vanish identically. For that purpose it is enough to assume that D is actually
a field F (for example the quotient field of D). Also we may replace F by a
finite extension field K in which the characteristic polynomial of A and B
split. Finally we are going to study the equation (2.8.1) where

AeK™™  BeK"™", XeKm™™"

)

Let ¥(z), ¢(z) and J, K be the minimal polynomials and the Jordan
canonical forms of A, B respectively.

Xi)%, spec (A) ={Aq,..., A},

<
=
I
—-
)
|

@
Il
—

(x_:uj)tja spec (B) = {u1,..., uc},

<
Il
—

<
=
i
—.

PlAP=J=¢a'_,J,
(2.8.4)

Ji = &1 (Nilm,, + Hm,,)s

Q'BQ =K = o}, K;,

Kj =% (ujln, +Hn,), 1<nj, <...<njg=t;, j=1,....k

H
A

E

2
A

_...§mi1:5i, iil,...,l,
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Let Y = P71 XQ. Then the system (2.8.1) is equivalent to JY — YK = 0.
Partition Y according to the partitions of J and K as given in (2.8.4). So

Y =[Yij], Y e KM,
qi pj

mizzmir, njzznﬁ, i=1,...,0,j=1,... k.
r=1 r=1

Then the matrix equation for Y reduces to [k matrix equations
(2.8.5) JiYe; =Y K; =0, i=1,...,01,j=1,... k.
The following two lemmas analyze the above matrix equations.

Lemma 2.8.1 Let i € [l], j € [k]. If \i # p; then the corresponding
matriz equation in (2.8.5) has the unique trivial solution Y;; = 0.

Proof. Let

Ji =N, + 5, Ji = @I Hp,,,
Kj=pln, + K, Kj=®;L Hy, .

Note that J* = K¥ =0 for u > m; and v > n;. Then (2.8.5) becomes
(Ni = pj)Yij = =JY3j + Yi; K.
Thus

(N = 1)*Yi5 = =Ji(Ni = ) Yij + (N — ) Yig K =
—Ji(=JiYij + Yy Kj) + (= JiYi; + Vi Kj) K =
(*Ji)zyvij + 2(7JZ)Y’”KJ + Y;Jsz

Continuing this procedure we get
T - r T\U [T U
(v Yy = 3 (D) Iy
u=0

Hence for r = m; + n; either J¥ or f(;_“ is a zero matrix. Since A\; # p;
we deduce that Y;; = 0. O

Lemma 2.8.2 Let Z = [zo8] € F™*™ satisfy the equation

(2.8.6) H,.7 = ZH,.
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Then the entries of Z are of the form

Zag =0 for 8 < a+mn — min(m,n),
(2.8.7)

Zaf = Z(a+1)(5+1) for § > o+ n — min(m, n).

In particular, the subspace of all m X n matrices Z satisfying (2.8.6) has
dimension min(m,n).

Proof. Note that the first column and the last row of H; are equal to
zero. Hence the first column and the last row of ZH,, = H,,Z are equal to
zero. That is

Za1 =2mp =0, a=2,....m, =1,...,n—-1.
In all other cases, equating the («, 8) entries of H,,Z and ZH,, we obtain
2(a+1)B = Za(f-1)s a=1,....om—1, =2,...,n.
The above two sets of equalities yield (2.8.7). O

Combine the above two lemmas to obtain.

Theorem 2.8.3 Consider the system of (2.8.5). If X\; # p; then Y;; =
0. Assume that A\; = pj. Partition Y;; according to the partitions of J; and
K; as given in (2.8.4):

Y, = [Yig‘uv)}’ Yj?u) e KMinXmiv y=1,... ¢, v= 1,...,pj.

Then each Yig»”v) s of the form given in Lemma 2.8.2 with m = my;, and
n = nj,. Assume that

)\i:/’Lia i=1,...,%
(2.8.8)
Ai#,uj, Z:t+17,l,]:t+1,,k

Then the dimension of the subspace Y C K™*™ of block matrices Y =
[Yij]ﬁf“jzl satisfying (2.8.5) is given by the formula

qi,Pi

¢
(2.8.9) dim Y = Z Z min(my, Niy ).

=1 u,v=1
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Consider a special case of (2.8.1)
(2.8.10) C(A)={XeDh™": AX -XA=0}

Then C(A) is an algebra over D with the identity I. In case D is a field F,
or more generally D is a Bezout domain, C(A) has a finite basis. Theorem
2.8.3 yields

l qi
dim C(A) = Z Z min(miua miv)~
i=1 u,v=1

(Note that the dimension of C(A) does not change if we pass from F to an
finite extension field K in which the characteristic polynomial of A splits.)
As {m;, )P, is a decreasing sequence we have

qi qi
E mln(mMu miv) = UMy, + § My

v=1 v=u+1

So

L g
(2.8.11) dim C(A) =) > " (2u— miy.

i=1u=1

Let i1(x), ..., in(x) be the invariant polynomials of x7—A. Use (2.6.7-2.6.9)
to deduce
(2.8.12) dim C(A) =) " (2u — 1)deg in_us1(2).

u=1

The above formula enables us to determine when any commuting matrix
with A is a polynomial in A. Clearly, the dimension of the subspace spanned
by the powers of A is equal to the degree of the minimal polynomial of A.

Corollary 2.8.4 Let A € F*"*". Then each commuting matriz with
A can be expressed as a polynomial in A if and only if the minimal and
the characteristic polynomial of A are equal. That is, A is similar to a
companion matriz C(p), where p(x) = det (zI — A).

A matrix for which the minimal and characteristic polynomial coincide is
called nonderogatory. If the minimal polynomial of A is a strict factor of the
characteristic polynomial of A, i.e. the degree of the minimal polynomial
is strictly less than the degree of the characteristic polynomial, then A is
called derogatory.

Problems
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. For A = [a;;] € D™*P, B = [b] € D" let
(2813) A® B := [a”B] c ]D)Trmqu7
be the tensor (Kronecker) product of A and B. Show

(A1®A2)(31®Bg) = (AlBl)(X)(AQBQ), A; € Dmixm, B; € DmXpi, 1=1,2.

. Let p : D™*™ — D™ be given by u(X) = X, where X is defined be
(2.8.2). Show that

wAX) = (I,A)u(X), w(XB)=(B'®@L,)uX), AcDh™™ BecD"

. Let Pe F™*™m Qe F**"™ R e F™ ™ Let

— P R _ P 0 (m+n) X (m+n)
A_{O Q]’B_[O Q}EIF .

Assume that the characteristic polynomials of P and @ are coprime.

L Y] which satisfies (2.8.1). Hence

Show that there exists X = [ 0 I

A= B.
. Let A= @f_,A; € F**". Show that

14
(2.8.14) dim C(A) > ) " dim C(4,),

and the equality holds if and only if

(det (I — A;),det (xI — Aj))=1 fori=1,...,¢ j=1,...,0—1.

. Let A € D"*". Show that the ring C(A) is a commutative ring if
and only if A satisfies the conditions of Corollary 2.8.4, where F is
the quotient field of D.

. Let A € D"*", B € C(A). Then B is an invertible element in the
ring C(A) if and only if B is a unimodular matrix.

. Let AeDm>*™m B e D"*". Define
(2.8.15) C(A,B):={X eD™": AX - XB=0}.

Show that C'(A, B) is a left (right) module of C'(A) (C(B)) under the
matrix multiplication.
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8. Let A, B € D"*". Show that A ~ B if and only if the following two
conditions hold:

(a) C(A, B) is a C(A)-module with a basis consisting of one element
U;

(b) any basis element U is a unimodular matrix.

2.9 A criterion for similarity of two matrices

Definition 2.9.1 Let A € D™*™ B € D"*™. Denote by r(4, B) and
v(A, B) the rank and the nullity of the matriz I, ® A — B' ® I,,, viewed as

a matriz acting on the vector space F™*™ where F is the quotient field of
D.

According to Theorem 2.8.3 we have

(2.9.1)
qi;Pi

r(A,B) = mn — Z Z min (Myq,, My )-

i=1 u,v=1

Theorem 2.9.2 Let A € D™*™, B e D"*". Then

v(A,B) < -(v(A,A) +v(B, B)).

N =

Equality holds if and only if m = n and A and B are similar over the
quotient field F.

Proof. Without loss of generality we may assume that D = F and the
characteristic polynomials of A and B split over F[z]. For x,y € R let
min(z,y) (max(z,y)) be the minimum (maximum) of the values of x and
y. Clearly min(z,y) is a homogeneous concave function on R?. Hence

min(a, ¢) + min(b, d) + min(a, d) + min(b, c)

(2.9.2) min(a+b,c+d) > 5

A straightforward calculation shows that if « = ¢ and b = d then equality
holds if and only if a = b. Let

N = max(m,n), mi, =mnj, =0,
fOrQi<u§N; pl<v§N7 i:l’...7€7j:1,...,k.
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Then
¢,N k,N
v(A,A) +v(B,B) = Y (2u—Dmi+ Y _ (2u—1)ng, >
1, u=1 J,u=1
t,N
> (2u— 1) (M + niu).
i,u=1

and the equality holds if and £ = k = ¢. Next consider the inequality

t,N N
D Qu—= 1) 4 niw) = DY min(miy + i, My + Niy) >
i,u=1 i=1 u,v=1

1 t N

3 Z Z (min(my, My ) + min(miy, niy ) +

=1 u,v=1

min(ny, Miy) + Min(n,, Ny )) =

t,N t  qi,pi

1 .

3 E (2u — 1) (Mg, + M) + E E min (M, Ny ).
i, u=1 i u,v=1

Combine the above results to obtain the inequality (2.9.2). Equality sign
holds in (2.9.2) if and only if A and B have the same Jordan canonical
forms. That is m = n and A is similar to B over F. O

Suppose that A ~ B. Hence (2.2.1) holds. The rules for the tensor
product (Problem 2.8.1) imply

IA-BT@I=(Q"N) 'eNIA-AT2DQ"®I),
(2.9.3)
I©A-B T ol=((Q) 'eQUeA-ATo)(Q" @Q™h).

Hence the three matrices
(2.9.4) IQA-AT®I, I®A-B'®I I®B-B'®I

are similar. In particular, these matrices are equivalent. Over a field F
the above matrices are equivalent if and only if the have the same nullity.
Hence Theorem 2.9.2 yields.

Theorem 2.9.3 Let A,B € F"*"™. Then A and B are similar if and
only if the three matrices in (2.9.4) are equivalent.
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The obvious part of Theorem 2.9.3 extends trivially to any integral domain
D.

Proposition 2.9.4 Let A,B € D"*™. If A and B are similar over D
then the three matrices in (2.9.4) are equivalent over D.

However, this condition is not sufficient for the similarity of A and B even
in the case D = Z. (See Problem 1.) The disadvantage of the similarity
criterion stated in Theorem 2.9.3 is due to the appearance of the matrix
I® A— BT @1, which depends on A and B. It is interesting to note that
the equivalence of just two matrices in (2.9.4) does not imply the similarity
of A and B. Indeed

IRA-AT@I=T10(A+N)—-(A+ XTI

for any A € F. If F has an infinite characteristic then A % A + A for
any A # 0. (Problem 2.) Also if A = H, and B = 0 then v(A4,A) =
v(A, B) = n. (Problem 3.) however, under certain assumptions the equality
v(A,A) = v(A, B) implies A = B.

Theorem 2.9.5 Let A € C**™. Then there exists a neighborhood of
A = lag]

(295) D(A,p) = {B = [bZJ] eCcnxm . Z ‘bij — aij|2 < p2},

i,j=1
for some positive p depending on A, such that if
(2.9.6) v(A,A)=v(A,B), B¢ D(A4,p),
then B is similar to A.

Proof. Let 7 be the rank of I® A — AT ® I. So there exist indices

a={(a,a21),..., (a1, a2.)}, B={(B11,B21),---,(Bir, Bor)} C [n] x[n],

viewed as elements of [n2],, such that det (I® A— AT ® I)[a, 8] # 0. Also
det (I@A— AT ®I)[y,6] =0 for any 7,0 € [n?],41. First choose a positive
p’ such that

(2.9.7) det I®A—B'" @1I)[a, 8] #0,for all B € D(A,p').

Consider the system (2.8.1) as a system in n? variables, which are the

entries of X = [z;;]7. In the system (2.8.1) consider the subsystem of r
equations corresponding to the set a:

n
(2.9.8) Zaikxkj — xikbkj =0, t=aiy, j=ay, p=1,...,m
k=1
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Let

(299) Tkj = 5k] for (/f,j) 7& (/Blpa /621))’ p= 17 s, T

The condition (2.9.7) yields that the system (2.9.8)-(2.9.9) has a unique
solution X (B) for any B € D(A,p’). Also X(A) = I. Use the continuity
argument to deduce the the existence of p € (0, p’] so that det X (B) # 0 for
all B € D(A,p). Let V be the algebraic variety of all matrices B € C**™
satisfying

(2.9.10) det (@ A—B' @I)[y,6] =0 foranyv,0 € Q(ri1)n2-

We claim that V N D(A4, p) is the set of matrices of the form (2.9.6). In-
deed, let B € VN D(A,p). Then (2.9.7) and (2.9.10) yield that v(A4, B) =
v(A,A) = n? —r. Assume that B satisfies (2.9.6). Hence (2.9.10) holds
and B € VN D(A,p). Assume that B € VN D(A, p). Then

AX(B)— X(B)B=0, detX(B)#0 = A~ B.

Problems

1. Show that for A and B given in Problem 2.2.1 the three matrices in
(2.9.4) are equivalent over Z, but A and B are not similar over Z.
(See Problem 2.2.1.)

2. Show that if F has an infinite characteristic then for any A € F™**™
A~ A+ A if and only if A = 0. (Compare the traces of A and
A+ AL)

3. Show that if A = H,, and B =0 then v(A, A) = v(A, B) =n.

4. Let A,B € D™*™. Assume that the three matrices in (2.9.4) are
equivalent. Let Z be a maximal ideal in D. Let F = D/Z and view
A, B as matrices over F. Prove that A and B similar over F. (Show
that the matrices in (2.9.4) are equivalent over F.)

2.10 The matrix equation AX — XB =C

A related equation to (2.8.1) is the nonhomogeneous equation

(210.1) AX-XB=C, AeF™™ BeF"™" C,XecFm",
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This equation can be written in the tensor notation as
(2.10.2) (I, A-B"®1,)X =C.

The necessary and sufficient condition for the solvability of (2.10.2) can
be stated in the dual form as follows. Consider the homogenous system
whose coefficient matrix is the transposed coefficient matrix of (2.10.2),
(see Problem 1),

(I, AT —B®1,)Y =0.

Then (2.10.2) is solvable if and only if any solution Y of the above system
is orthogonal to C' (e.g. Problem 2). In matrix form the above equation is
equivalent to

ATY - YBT =0, Y eF™*",

)

The orthogonality of Y and C are written as trY T C = 0. (See Problem
3.) Thus we showed:

Theorem 2.10.1 Let A € F™*™ B € F"*"™. Then (2.10.1) is solvable
if and only if

(2.10.3) trZC =0
for all Z € T™*"™ satisfying
(2.10.4) ZA—-BZ =0.
Using the above Theorem we can obtain a stronger version of Problem 4.
Theorem 2.10.2 Let
G =[Gyt Gy €F"*™ Giy=0forj<i, ij=1,...,¢

Then

14
(2.10.5) dim C(G) > Y " dim C(Gy)).

Proof. Consider first the case £ = 2. Let G = {A E} Assume that

0 B

U X .
T = {O V] commutes with G. So

(2.106) AU -UA=0, BV-VB=0, AX-XB=UE-EV.
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Theorem 2.10.1 implies that U € C(A), V € C(B) satisfy the last equation
of (2.10.6) if and only if tr Z(UE — EV) = 0 for all Z satisfying (2.10.4).
Thus the dimension of pairs (U, V) satisfying (2.10.6) is at least
dim C(A) + dim C(B) — dim C(B, A).

On the other hand, for a fixed (U, V) satisfying (2.10.6), the set of all X
satisfying the last equation of (2.10.6) is of the form Xy + C(A, B). The
equality (2.8.9) yields dim C'(A4, B) = dim C(B, A). Hence (2.10.5) holds
for £ = 2. The general case follows straightforward by induction on ¢. O

We remark that contrary to the results given in Problem 2.8.4 the equal-

ity in (2.10.5) may occur even if G;; = G;; for some i # j. (See Problem
4.)

Theorem 2.10.3 Let A ¢ F™*™ B e F**" C € F™*™. Let

0 B 0 B
Show that F' =~ G if and only if the matriz equation (2.10.1) is solvable.
Proof. Assume that (2.10.1) solvable. Then U = {Igb f} € GL(m+

n,F) and G = U"1FU.

Assume now that F ~ G. We prove the solvability of (2.10.1)) by
induction on m + n, where m,n > 1. Let K be a finite extension of F such
that the characteristic polynomial of A and B split to linear factors. Clearly
it is enough to prove the solvability of (2.10.1) for the field K. Suppose first
that A and B do not have common eigenvalues. Then Problem 2.8.3 yields
that F' ~ G. Assume now that A and B have a common eigenvalue A;.
For m = n =1 it means that A = B = Ay € F. Then the assumption that
F ~ G implies that C' = 0 and (2.10.1) is solvable with X = 0.

Assume now that the theorem holds for all 2 < m +n < L. Let m +
n = L. The above arguments yield that it is enough to consider the case
where the characteristic polynomials of A and B split to linear factors
and \; is a common eigenvalue of A and B. By considering the matrices
F— MInin, G— Ay, we may assume that 0 is an eigenvalue of A
and B. By considering the similar matrices U~ FU, U~'GU where U =
Uy ® U, Uy € GL(m,F), U, € GL(n,F) we may assume that A and B

are in a Jordan canonical form of the form
A=A10Ay, B=B1®By, AT'=0, B} =0, 0 ¢ (spec (Az2)Uspec (Bz)).
(It is possible that either A = A; or B = By.) Let

| Im X 1 0 X _|Ci1 Cr2
U[O In:|’ X{le 0]’0[021 022]'
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Use Problem 2.8.3 to deduce that one can choose X2, X5 such that G’ =
A C
—1 _
UGU =G = {0 B
we will assume that Ci5 = 0, Cy; = 0. Permute second and third blocks in
F, G to obtain that F, G are permutationally similar to

and C1, =0, C4; = 0. For simplicity of notation

A, 0 0 0 Al Cip 0 0
|0 B 0 0 . 10 B 0 0
F=10 0 4 o ["%]0 0 4 0w |’

0 0 0 B 0 0 0 B

respectively. So the Jordan canonical form of F.G corresponding to 0 are
A 0 A Cn

0 BJ ’ [o BJ e

spectively. The Jordan canonical form of F.G corresponding to other eigen-

Ay 0 Ay Oy

0 B2:| ’ { 0 B

determined by the Jordan canonical forms of {

values are determined by the Jordan canonical forms of [
respectively. Hence

A1 0 -~ A1 011 A2 0 - A2 022

0 Bi| |0 Bi|” |0 By |0 Byl
Thus if either A or B are not nilpotent the theorem follows by induction.

It is left to consider the case where A and B are nilpotent matrices,

which are in their Jordan canonical form. If A =0, B = 0 then C' = 0 and
the theorem follows. So we assume that either at least one of the matrices
in {A, B} is not a zero matrix. Since dim Ker F' = dim Ker G Problem

6 yields that (after the upper triangular similarity applied to G) we may
assume that Ker F' = Ker G. Let

A= @leAi? B = @?:133"

where each A;, B; is an upper triangular Jordan block of dimension m;, n;
respectively. Let

C:[CUL Cijecrnixnj7i:17-‘-7puj:17'~-7q>

be the block partition of C induced by the block partition of A and B respec-
tively. The assumption that Ker F' = Ker G is equivalent to the assumption
that the first column of each Cj; is zero. Consider V = F™*" /Ker F. Then
F, G induce the operators F', G on V which are obtained from F, G by delet-
ing the rows and columns corresponding to the vectors in the kernels of A
and B. (These vectors are formed by some of the vectors in the canonical
basis of ") Note that the Jordan canonical forms of F',G are direct

|
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sums of reduced Jordan blocks (obtained by deleting the first row and col-
umn in each Jordan block) corresponding to F.G respectively. As F' and
G have the same Jordan blocks it follows that F G have the same Jordan
blocks, i.e. Fr~G. Ttis easy to see that

A 0

0 B

A=aP A, B= @;1 B;, C=(Cy),

A; € F(mﬁl)x(mﬁl) B; € ]F(njfl)x(nrl), Cij € Flmi—Dx(n;=1)

o
I
o

Here Ai,Bj7C’ij obtained from A;, B;,C;; be deleting the first row and
column respectively. Since F ~ G we can use the induction hypothesis.
That is there exists X = (X;;) € F™*" partitioned as C with the following
properties: The first row and the column of each X;; is zero. A;X;; —
X;;Bj—C;; have zero entries in the last m; —1 rows and in the first column.
By considering U~'GU with U = 181 7

n
the last m; — 1 rows and the first column of each Cj; are zero. Finally we
observe that if A; and B; are Jordan blocks that the equation (2.10.1) is
solvable by letting X;; be a corresponding matrix with the last m; — 1 rows
equal to zero. O

we already may assume that

Problems
1. Let A® B be defined as in (2.8.13). Prove that (A®B)"T = AT®@BT.
2. Consider the system

Az =b, AeF™" beF"

Show the above system is solvable if and only any solution of ATy =0
satisfies y 'b = 0. (Change variables to bring A to its diagonal form
as in §1.12.)

3. Let X, Y € D™*™. Let u(X),u(Y) € D™ be defined as in Problem
2.8.2. Show that

wX)Tu(Y)=trY "X,

4. Assume in Theorem 2.10.2 £ = 2, G11 = Gaos = 0, G2 = I. Show
that in this case the equality sign holds in (2.10.5).
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5. Let A; € F**"i 4§ =1,2 and suppose that A; and As do not have a
common eigenvalue. Assume that A = A; ® Ay. Let

C=[Cyli, X =[X;]], Ciy, Xij €F"X™ i j=1,2.

Using Problem 2.8.4 prove that the equation AX —X A = C is solvable
if and only if the equations A; X;; — X;; A; = Cy;, i = 1,2 are solvable.

6. Let A € F™*™ B € F"*" be two nilpotent matrix. Let C € F™*"
and define the matrices F,G € F(m+n)x(m+n) a5 in Theorem 2.10.3.
Show that dim Ker F' > dim Ker G. Equality holds if and only if
CKer B C Range A. Equivalently, equality holds if and only if there
exists X € F™*™ such that

Ker F =Ker UT'GU, U= {Im X} .

0 I,

2.11 A case of two nilpotent matrices

Theorem 2.11.1 Let T € Hom (V) be nilpotent. Let index 0 = m =
mp > mo > ... 2>my > 1 be the dimensions of all Jordan blocks appearing
in the Jordan canonical form of T. Let Z C V be an eigenspace of T
corresponding to the eigenvalue 0. Denote by W = V /Z. Then T induces
a nilpotent operator T' € Hom (W). The dimension of Jordan blocks of T’
correspond to the positive integers in the sequence mj,mb, ... ,m;), where
m}; is either m; or m; — 1. Furthermore, exactly dim Z of indices of m); are
equal to m; — 1.

Proof. Suppose first that p = 1, i.e. W is an irreducible invariant
subspace of T. Then Z is the eigenspace of T and the theorem is straight-
forward. Use Corollary 2.7.8 in the general case to deduce the theorem. O

Theorem 2.11.2 Let A € F™*"™ be a nilpotent matriz. Put
Xp={xelF": Afx=0}, k=0,...
Then
(2.11.1) Xo={0} and X, CX;41,i=0,...
Assume that

X; #Xi41 fori=0,...,p—1, and X, =F", p=index0.



2.11. A CASE OF TWO NILPOTENT MATRICES 101

Suppose that B € F"*" satisfies

(2.11.2) BX;;1CX;, fori=1,...,p—1.
Then B is nilpotent and

(2.11.3) v(A, A) <v(B,B).
Equality holds if and only if B is similar to A.

Proof. Clearly (2.11.2) holds for any A € F**". As BPF" = BPX,, C
Xo = {0}, it follows that B is nilpotent. We prove the claim by induction
on p. For p=1 A = B = 0 and equality holds in (2.11.3). Suppose that
the theorem holds for p = ¢ — 1. Let p = q.

Assume that the Jordan blocks of A and B are the sizes g =mq1 > ... >
m; > 1and l; > ... > [, > 1respectively. Recall that X is the eigenspace
of A corresponding to A = 0. Hence j = dim X;. Since BX; = Xy = {0}
it follows that the dimension of the eigenspace of B is at least j. Hence
k> j.

Let W := V/X,. Since AX; = {0} A induces a nilpotent operator
A" € Hom (W). Let X, = ker(A’)",i = 1,.... Then X!, = X;;1/X1,i =
0,1,.... Hence the index of A’ = ¢ — 1. Furthermore the Jordan blocks
of A" correspond to the positive numbers in the sequence m} = m; — 1 >
... >m =m;—1. Since BX; = {0} it follows that B induces the operator
B’ € Hom (W). The equality X, = X;1/X; implies that B'X], C X|_;
fori=1,....

Theorem 2.11.1 implies that the Jordan blocks of B’ correspond to
nonzero lf,...,1;, where I} is either I; or l; — 1. Furthermore exactly j
of I} are equal to l; — 1. Recall (2.8.11) that

V(A A) = (20— 1)m; =Y (20— Dymj+ > (2 — 1) = v(A, A') + j°.

i=1 i=1 i=1

Assume that

I =...=lk1 >lk1+1 =...:lk2 >lk2+1 =... >l/€r71+1 =... :lk,,wa
where k,. = k. let kg = 0. Suppose that in the set of {ks_1 +1,...,ks} we
have exactly ¢ < ks — ks—1 indices such that I, =, — 1 for r € {ks—1 +
1,...,ks}. We then assume that Il =1, — 1 for r = ks, ks —1,..., ks —i+1.
Hence I1 > ... > 1, > 0. Thus v(B’,B’) = Zle(% —1)li. So

k k

v(B,B)=> (2i— )i =v(B',B)+ > (2i —1)(l; = ;) > v(B', B') + j*.

i=1 =1
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equality holds if and only if I} = [; — 1 for ¢ = 1,...,j. The induc-
tion hypothesis implies that v(A’, A’) < v(B’, B’) and equality holds if
and only if A ~ B’, i.e A’ and B’ have the same Jordan blocks. Hence
v(A, A) < v(B, B) and equality holds if and only if A ~ B. O

2.12 Historical remarks

The exposition of §2.1 is close to [Gan59]. The content of §2.2 is standard.
Theorem 2.3.4 is well known [Gan59]. Other results of §2.3 are not common
and some of them may be new. §2.4 is standard and its exposition is close
to [Ganb9]. Theorem 2.5.4 is probably known for Dgp (see [Lead8] for the
case D = H(Q), Q C C.) Perhaps it is new for Bezout domains. The
results of §2.6 are standard. Most of §2.7 is standard. The exposition of
§2.8 is close to [Ganb9|. For additional properties of tensor product see
[MaM64]. Problem 2.8.8 is close to the results of [Fad66]. See also [Gur80]
for an arbitrary integral domain D. Theorems 2.9.2 and 2.9.3 are taken
from [Fri80b]. See [GaB77] for a weaker version of Theorem 2.9.3. Some of
the results of §2.10 may be new. Theorem 2.10.1 was taken from [Fri80al.
Theorem 2.10.3 is called Roth’s theorem [Rot52]. Theorem 2.11.2 is taken
from [Fri80b).



Chapter 3

Functions of Matrices and
Analytic Similarity

3.1 Components of a matrix and functions of
matrices

In this Chapter we assume that all the matrices are complex valued (F = C)
unless otherwise stated. Let ¢(z) be a polynomial (¢ € C[z]). The following
relations are easily established

#(B) = Pp(A)P~', B=PAP™', A, BecC"™", Pec GL,(C),
(3.1.1)

(A1 @ A2) = ¢(A1) @ ¢(Az2).
It often pays to know the explicit formula for ¢(A) in terms of the Jordan

canonical form of A. In view of (3.1.1) it is enough to consider the case
where J is composed of one Jordan block.

Lemma 3.1.1 Let J = \gl + H € C"™*", where H = H,,. Then for
any ¢ € Clz]

n—1
o) =3 L0 g

k!
k=0

Proof. For any ¢ we have the Taylor expansion

N )
P(z) = Z ¢ k(!/\o) (x — X)), N =max(deg ¢,n).

k=0

103
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As H® = 0 for ¢ > n from the above equality we deduce the lemma. O

Using the Jordan canonical form of A we obtain.

Theorem 3.1.2 Let A € C**". Assume that the Jordan canonical
form of A is given by (2.6.5). Then for ¢ € Clx] we have

mij—

(3.1.2) P(A) = _ el Z ¢ m”)P*l.

Definition 3.1.3 Let the assumptions of Theorem 3.1.2 hold. Then
Zir, = Zix,(A) is called the (i, k) component of A and is given by

Zip =P0®...00&!, H), ®0...60)P ",
(3.1.3)

k':O,...,Si—L sizmil,izl,...,é.

Compare (3.1.2) with (3.1.3) to deduce

E sl g,
(3.1.4) (b(A):Z ¢ (Az)zij.

Definition 3.1.4 Let A € C"*"™ and assume that Q C C contains
spec (A). Then for ¢ € H(Y) define ¢(A) by (3.1.4).

Using (3.1.3) it is easy verify that the components of A satisfy

Zij»
ZijZpg =0 if eitheri #p, ori=pand j+q > s,
(3.1.5)
ZijZiq = Zi(j1q), forj+q<si—1,
‘
= P(Z AiZio + Zil)P71

i=1

i=1,...,¢, j=1,...,8; — 1, are linearly independent,

Consider the component Z;,,_1). The above relations imply
(316) AZi(Sifl) - Zi(sifl)A == )‘iZi(Sifl)'

Thus the nonzero columns of Zj,_1), Z;(—si_l) are the eigenvectors of

A, AT respectively corresponding to \;. (Note that Zi(s;—1) # 0.)
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Lemma 3.1.5 Let A € C*"*". Assume that \; is an eigenvalue of A.
Let X; be the generalized eigenspace of A corresponding to \;:

(3.1.7) X, ={xeC": (MI—-A)x=0}.
Then
(3.1.8) rank Zis,—1) = dim (I — A)* !X

Proof. It is enough to assume that A is in its Jordan form. Then X, is
the subspace of all x = (x1,...,2,)", where the first Z;_:ll S my; co-
ordinates and the last Zf,:iﬂ Z?"Zl mp; coordinates vanish. So (A —
A)*i=1X; contains only those eigenvectors which correspond to Jordan
blocks of the length s;. Clearly, the rank of Z;, 1) is exactly the number
of such blocks. O

Definition 3.1.6 Let A € C"*™. Then the spectral radius p(A), the

peripheral spectrum spec ..;(A) and the index A of A are given by
A) = Al
p(A) relax RY
(3.1.9) C={Xespec(A): |Al=p(A)},
index A = max index A.
AEspec peri(A)

Problems

1. Let A € C"*™ and let ¢ € C[z]| be the minimal polynomial of A.
Assume that © C C is an open set in C such that spec (A) C . Let
¢ € H(Q?). Then the values

(3.1.10) #*(N), k=0,...,index A — 1, X € spec (A)

are called the wvalues of ¢ on the spectrum of A. Two functions ¢, 0 €
H(2) are said to coincide on spec (A) if they have the same values on
spec (A). Assume that ¢ € Clz] and let

o=wip+0, degh < degr).

Show that € coincide with ¢ on spec (A). Let

_ () _ SoN g . o
= w(x)—i_ﬁ = w(x)—&—zz m, s; =index \;, e =1,... 4,

< |

i=1 j=1
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where 1 is given by (2.5.11). Show that «;j, j = si,...,s; — p are
determined recursively by ¢, j = 0,...,p. (Multiply the above
equality by ¥ (z) and evaluate this identity at A;.) For any ¢ € H(Q)
define 6 by the equality

L
(3.1.11) ZZ a”

The polynomial € is called the Lagrange-Sylvester (L-S) interpolation
polynomial of ¢ (corresponding to ). Prove that

(3.1.12) H(A) = 0(A).

Let 0; be the L-S polynomials of ¢; € H(Q2) for j = 1,2. Show that
0165 coincides with L-S polynomial of ¢1¢2 on spec (A). Use this fact
to prove the identity

(3.1.13) P1(A)2(A) = ¢(4), ¢ = d162.

2. Prove (3.1.13) by using the definition (3.1.4) and the relation (3.1.5).

3. Let the assumptions of Problem 1 hold. Assume that a sequence
{dm}$° € H(Q) converges to ¢ € H(Q). That is {¢,}5° converges
uniformly on any compact set of 2. Hence

lim ¢ (\) = ¢ (N\), foranyj e Zy and A € Q.

m—r o0

Use the definition (3.1.4) to show

(3.1.14) Hm ¢ (A) = ¢(A).

m— o0
Apply this result to prove
[eS) N
Am Am
(3.1.15) =3 (= Jim > =)

Na m!
m=0 =0

m

(3.1.16) (M — A)~ ZA 5 for [A] > p(A).
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3.2 Cesaro convergence of matrices

Let
(3.2.1) Ay =[P ec™, k=0,1,...

be a sequence of matrices. The p—th Cesaro sequence is defined as follows.
First Ayo = Ay for each k € Z;. Then for p € N Ay, defined recursively
by

k

1
(3.2.2) App = lall"] == ) Y Ajpa. k€Zy peN.
§=0

Definition 3.2.1 A sequence {A,}§° converges to A = [a;;] € C"™*" if

(k)

ler&aij =ay, t=1,....m,j=1,...,n <= ler&Ak:A.
A sequence {Ar}§° converges p-Cesaro to A = [a;;] if imp_yo0 App = A

forp € Zy. A sequence {Ap}§ converges p-Cesaro exactly to A = [a,;] if
limy 00 Akp = A and {Ag p—1}572, does not converge.

It is known (e.g. [Har49]) that if { Ay} is p-Cesaro convergent then {A;} is
also p + 1-Cesaro convergent. A simple example of exact 1-Cesaro conver-
gent sequence is the sequence {\*}, where |\| = 1, A\ # 1. More generally,
see [Har49] or Problem 1:

Lemma 3.2.2 Let |A] = 1, X # 1. Then for p € N the sequence
{(pfl) kYoo s ezactly p-Cesaro convergent.

We now show how to recover the component Z, s, _1)(A4) for 0 # A\, €

SPeC i (A) using the notion of Cesaro convergence.

Theorem 3.2.3 Let A € C™ ™. Assume that p(A) > 0 and A\, €

SPeC peri(A). Let
a— D! A A ,
(3.2.3) A = (Sksal)(p\ |2)k, Sq = index A\,.
Then
(3.2.4) klim Akp = Za(sa—1), P =index A —index \, + 1.
—00

The sequence Ay, is exactly p-Cesaro convergent unless either spec ,q,;(A) =
{Aa} or index A < index A\, for any A # Ao in spec ,,;(A). In these
exceptional cases limy oo Ap = Zo(s,—1)-
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Proof. It is enough to consider the case where A\, = p(4) = 1. By
letting ¢(x) = z¥ in (3.1.4) we get

si—1
(3.2.5) Ak =3%" <k> NI 75

i=1 j=0 ™
So ¢ 1
= o= Dk(k—1)...(h—7+1) xj
Ak = Z ksa71 ]' )‘z Zij~
=1 j=0
Since the components Z;;, ¢ = 1,...,¢, j = 0,...,s; — 1 are linearly

independent it is enough to analyze the sequence (Z;’Q_ 1 1)! (’;) /\f_j , k=7j,7+
1,... Clearly for |A\] < 1 and any j or for |A| = 1 and j < s, —1 this sequence
converges to zero. For \; =1 and j = s, — 1 the above sequence converges
to 1. For |\ =1, \; # 1 and j > s, — 1 the given sequence is exactly
7 — Sa + 2 convergent to 0 in view of Lemma 3.2.2. From these arguments
the theorem easily follows. O

The proof of Theorem 3.2.3 yields:

Corollary 3.2.4 Let the assumptions of Theorem 3.2.3 hold. Then

N
. 1 (s=1!, A ., B .
(3.2.6) ]\}1_13(1)0 Nl E = (p(A)) =7, s=index A.

k=0
If p(A) € spec (A) and index p(A) = s then Z = Z,ay(s—1). Otherwise
Z =0.

Problems

1. Let [A] =1, A # 1 be fixed. Differentiate the formula

AR -1

r times with respect to A and divide by r! to obtain
k—1 . r—1
AN kE—1\ .11 A —1
M=k Ayl A 1)
z() > s (57 e e

where f(A,r,¢) are some fixed nonzero functions. Use the induction
on r to prove Lemma 3.2.2.
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2. Let ¢(z) be a normalized polynomial of degree p — 1. Prove that
the sequence {¢(k)A¥}2° ) for [A| = 1, A # 1 is exactly p-Cesaro
convergent.

3. Let A € C™ ™. For \; € spec (A) let

(3.2.7) Zii(A) = [0 j=0,...,index \; — 1.

pv lp,v=1»
Let
3.2.8) index,,, A; ;== 1+ max{j: () 0, 7=0,...,index \; — 1},
iz 2%

where index,,, \; = 0 if z,(f,z) =0for 7 =0,...,index;\; — 1.
(3.2.9) puv(A) = max{|\;| : index,, A; > 0},

where p,, (A) = —oo if index,, A; = 0 for all A\; € spec (A). The
quantities index ., A;, pu.(A) are called the (u,v) index of A; and
the (u,v) spectral radius respectively. Alternatively these quantities
are called the local index and the local spectral radius respectively.
Show that Theorem 3.2.3 and Corollary 3.2.4 could be stated in a
local form. That is for 1 < u,v < n assume that

Ao = p,uu(A)a Sa = indexpuAaa Ak = (agf/))v Ak = [ayu,k]v Ak,p = [a;uz,kp]a
where Ay, and Ay, are given by (3.2.3) and (3.2.2) respectively. Prove
klirréo Qo kp = zfﬁ‘,(s‘*’l)), p = index,, A — index,, Ao + 1,
N

. 1 (s=1' aur & .
1\}51100 Nl kZ:O = (pW(A)) =2y, S=index,, A, pu(A) >0,

where z,,,, = O unless \; = p,,,(A) € spec (A) and index,,, A\ =index,,, =
. . _ (1(s—1))
s. In this exceptional case z,, = zu .

Finally A is called irreducible if p,,(A) = p(A) for each p,v =
1,...,n. Thus for an irreducible A the local and the global versions
of Theorem 3.2.3 and Corollary 3.2.4 coincide.

3.3 An iteration scheme
Consider an iteration given by

(3.3.1) Xt =Ax'+b, i=0,1,...,
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where A € C™*™ and x’,b € C™. Such an iteration can be used to solve a
system

(3.3.2) x = Ax +b.
Assume that x is the unique solution of (3.3.2) and let y* := x* — x. Then
(3.3.3) ytl=Ay' i=0,1,...

Definition 3.3.1 The system (3.3.3) is called stable if the sequence
y', i =0,1,... converges to zero for any choice of y°. The system (3.3.3)
is called bounded if the sequence y*, i = 0,1,... is bounded for any choice

of y°.
Clearly, the solution to (3.3.3) is y* = A’y?, i =0,1,... So (3.3.3) is stable
if and only if

(3.3.4) lim A" = 0.

11— 00

Furthermore (3.3.3) is bounded if and only if
(3.3.5) |AY| <M, i=0,1,...,

for some (or any) vector norm || - || : C**™ — R, and some M > 0. For
example one can choose the o, norm on C™*"™ to obtain the induced matrix
norm:

(336) ||BH = max |bij|, B = [blj] e Ccmxn,

g

See §7.1 and §7.4 for definitions and properties of vector and operator
norms.

Theorem 3.3.2 Let A € C"*". Then
1. The condition (3.3.4) holds if and only if p(A) < 1.

2. The condition (3.3.5) hold if either p(A) < 1 or p(A) =1 and index
A=1.

8. The condition

(3.3.7) lim A =B

1—00
holds if and only if either p(A) < 1 or p(A) =1 and the only eigen-
value on the unit circle is A = 1 whose index is 1. Furthermore, if
(3.3.7) holds then B®> = B, i.e. B is a porjection.
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Proof. Consider the identity (3.2.5). Recall that all the components of
A. are linearly independent. 1. Clearly, (3.3.4) is equivalent to

k—o0

k ,
lim (j))\f_j =0, X\ €spec(A),j=0,1,...,index \; — 1.

Hence the above conditions are equivalent to p(A) < 1.

2. Since all vector norms on C™*™ are equivalent, the condition (3.3.5)
is equivalent to the statement that the sequence (];) /\ffj, k=0,...,1s
bounded for each A; € spec (A) and each j € [0,index \; — 1]. Hence
p(A) < 1. Furthermore if |A;| = 1 then index \; = 1.

3. Clearly, (3.3.7) holds if and only if the sequence (f) /\f_j, k=0,...,
is convergent for each \; € spec (A) and each j € [0,index A\; — 1]. Hence
p(A) < 1. Furthermore if |A;| = 1 then A; = 1 index A; = 1. Assume that
(3.3.7) holds. So A*A? = A%, Let i — oo to deduce that B2 = B. O

Problems

1. Let A € C™"™ and @ be the minimal polynomial of A given by
(2.5.11). Verify

l s;i—1 J oAt
(3.3.8) A=Y Y “— 7.
i=1j=0 I
Use (3.1.5) or (3.1.15) to show
d
.3. —et = Ae?t =M A
(3 3 9) At A At AtA

dt

(In general ¢ may be complex valued, but in this problem we assume
that ¢ is real.) Verify that the system

d
(3.3.10) d—’; = Ax, a(t)eC"
has the unique solution
(3.3.11) x(t) = eA=t)x(t,).

The system (3.3.10) is called stable if lim;_,, x(¢) = o for any solution
(3.3.11). The system (3.3.10) is called bounded if any solution x(t)
(3.3.11) is bounded on [tg,c0). Prove that (3.3.10) is stable if and
only if

(3.3.12) RA <0 foreach A € spec (A).
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Furthermore (3.3.10) is bounded if and only if each A € spec (A)
satisfies

(3.3.13) RA<0 and index A=1if RA=0.

3.4 Cauchy integral formula for functions of
matrices

Let A € C"*™, ¢ € H(Q), where € is an open set in C. If spec (A) C Q it
is possible to define ¢(A) by (3.1.4). The aim of this section is to give an
integral formula for ¢(A) using the Cauchy integration formula for ¢(\).
The resulting expression is simply looking and very useful in theoretical
studies of ¢(A). Moreover, this formula remains valid for bounded operators
in Banach spaces (e.g. [Kat80]-[Kat82]).

Consider the function ¢(z,\) = (A — 2)~!. The domain of analyticity
of ¢(x, A) (with respect to x) is the punctured complex plane C at A. Thus
if A & spec (A) (3.1.4) yields

[

4 S;—
(3.4.1) M —A)t=>" ARy AT
i=1 j:0

Definition 3.4.1 The function (A — A)~! is called the resolvent of A
and is denoted by

(3.4.2) R\ A)= (M- A)!

We call a curve in C a simple closed curve if it is a rectifiable noninter-
secting closed curve. It is well known that the interior of a simple closed
curve in C bounds a simply connected domain. Let I' = {T';,..., s} be a
set of disjoint simple closed curves such that I forms the boundary 0D of
an open set D and

(3.4.3) DUT CQ, T =0D.

For ¢ € H(2) the classical Cauchy integration formula states (e.g. [Rud74])

1
3.4.4 =——— [ (A=0O"to(N)d\, (¢eD.
B9 90 == [ =07 ¢
Differentiate the above equality j times to obtain
¢ (Q)

(3.4.5) ) "UtDg(NdN, ¢CeD, j=0,1,2,...

1
4! B 277\/—71/1‘)\
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Theorem 3.4.2 Let Q be an open set in C. Assume thatT = {T'q,...,Tx}
is a set of disjoint simple closed curves such that T is a boundary of an open
set D, and TUD C Q. Assume that A € C"*™ and spec (A) C D. The for

any ¢ € H(Q)

(3.4.6) d(A) = (\)dA.

1
—= [ R(\,A
2w/ —1 /p
Proof. Insert the expression (3.4.1) into the above integral to obtain

4 87;71

1 1 .
R(\, A)o A=) UV H(N)AN) Z;;.
= | RO =323 (g |3 20 e 2
Use the identity (3.4.5) to deduce
£ s;—1
1 / d ¢(J)
— [ RO\ A)p(N)dA =
el 2.2

The definition (3.1.4) yields the equality (3.4.6). O

We generalize the above theorem as follows.

Theorem 3.4.3 Let Q be an open set in C. Assume thatT = {T'q,...,Tx}
is a set of disjoint simple closed curves such that T is a boundary of an open
set D, and T UD C Q. Assume that A € C**™ and spec (A)NT = (. Let
spec p(A) :=spec (A) ND. Then for any ¢ € H(QY)

(3.4.7) > Z d) Zij = QW\lﬁ FR()\,A)gb()\)d)\.

AiE€spec p(A) j=0
If spec ,(A) = 0 then the left-hand side of the above identity is zero.
See Problem 1.

We illustrate the usefulness of Cauchy integral formula by two examples.

Theorem 3.4.4 Let A € C"*" and assume that X\, € spec (A). Sup-
pose that D and T satisfy the assumptions of Theorem 3.4.3 (2 = C).
Assume furthermore that spec (A) ND = {A\,}. Then the (p,q) component
of A is given by

(3.4.8) Zpa(A) = ﬁ /F RO, A)(\ — A,)7dA.

(Zpq =0 forqg> s, —1.)
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See Problem 2.

Our next examples generalizes the first part of Theorem 3.3.2 to a com-
pact set of matrices.

Definition 3.4.5 A set A C C"*" is called power stable if

(3.4.9) lim (sup ||A¥||) =0,
A

k—oo " Ac

for some vector norm on C"*". A set A C C"*™ is called power bounded

if
(3.4.10) ||A*|| < K, forany A€ Aandk=0,1,...,

for some positive K and some vector norm on C"*".

Theorem 3.4.6 Let A C C" ™ be a compact set. Then A is power
stable if and only if p(A) < 1 for any A € A.

To prove the theorem we need a well known result on the roots of
normalized polynomials in C[z] (e.g. [Ost66]).

Lemma 3.4.7 Let p(z) = 2™ + Y i~ a;z™ " € Clz]. Then the zeros

&1, &m of p(x) are continuous functions of its coefficients. That is for a
given ay,...,a, and € > 0 there exists §(¢), depending on ay,...,a,, such
that if |b; — a;| < 0(€), i =1,...,m it is possible to enumerate the zeros of

g(z) = a™+3 " bix™ by my, ... N, such that |n;—&| <e.i=1,...,m.
In particular the function

3.4.11 = .
( ) p(p) = max 5]
is a continuous function of a1, ..., Q.

Corollary 3.4.8 The function p : C"*™ — R, which assigns to A €
C™*™ its spectral radius p(A) is a continuous function.

Proof of Theorem 3.4.6. Suppose that (3.4.9) holds. Then by Theorem
3.3.2 p(A) < 1 for each A € A. Assume that A is compact and p(A4) < 1.
Corollary 3.4.8 yields

p = I}f?fp(A) =pA)<l, AcA
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Recall that (A — A)~1 [#@A)H, where p;;(A) is the (j,4) cofactor of
Al — A. Let A1,..., A, be the eigenvalues of A counted with multiplicities.

Then for [A| > p

|det (A — A))| ﬁ ﬁw

Let p < r < 1. Since A is a bounded set, the above arguments yield that
there exists a positive constant K such that |[(\ — A)7!|| < K for each
A€ A, |\ =r. Apply (3.4.6) to obtain

1
3.4.12 AP = A — A)7IAPAN,
( ) P |)\|:T( )

for each A € A. Combine this equality with the estimate ||\ —A) 7| < K
for |[A\| = r to obtain ||AP|| < KrP*! for any A € A. As 7 < 1 the theorem
follows. O

Theorem 3.4.9 Let A C C**". Then A is power bounded if and only

(3.4.13) [J(M —A)7H| < forall A€ Aand |\ > 1,

K
Al =17
for some vector norm || - || on C*"*™ and K > ||1,,|].

Proof. For |A\| > p(A) we have the Neumann series

(3.4.14) (M = A)~ )\Z+1
Hence for any vector norm on C™*"
(3.4.15) [[(M —A)7Y| < Z IAl”l’ I\l > p(A).

(See Problem 3.) Assume first that (3.4.10) hold. As A° = I, it follows
that K > ||I,||. Furthermore as each A € A is power bounded Theorem
3.3.2 yields that p(A) < 1 for each A € A. Combine (3.4.10) and (3.4.15)
to obtain (3.4.13).

Assume now that (3.4.13) holds. Since all vector norms on C™**™ are
equivalent we assume that the norm in (3.4.13) is the [, norm given in
(3.3.6). Let A € A. Note that (A] — A) in invertible for each || > 1.

Hence p(A) < 1. Let (M — A)~! = [;);(753)] Here p(\) = det (A — A)
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is a polynomial of degree n and p;;(A) (the (j,7) cofactor of A\ — A) is a

polynomial of degree n — 1 at most. Let AP = [ag)L p=20,1,... Then for
any r > 1 the equality (3.4.12) yields that

9 2my/ =1 Jpa=r P(N) 2w Jo  p(rev=19)

Problem 6 implies that

27 —
N 2Oy = L [T 00T s iy rogy

4(2n — 1)rpt+!
0] < ACn =Dt P

‘ i 4(2’[7, — 1)7“p+1K
YO wlp+1l) = p(A) T

ey o Y P}

. _ 1 :
Choose r =1+ Py to obtain

a§§)| < 4(2n — 1)eK

™

(3.4.16) | . dj=1,....n,p=0,1,..., Ac A

Hence ||AP|| < 2@n=Dek o

Problems

1. Use the proof of Theorem 3.4.2 to prove Theorem 3.4.3.
2. Prove Theorem 3.4.4

3. Let A € C™"*". Show the Neumann series converge to the resolvent
(3.4.14) for any || > p(A4). (You may use (3.4.1).) Prove (3.4.15) for
any vector norm on C™"*™,

4. Let f(x) be a real continuous periodic function on R with period 27.
Assume furthermore that f’ is a continuous function on R. (f’ is
periodic of period 27.) Then the Fourier series of f converge to f
(e.g. [Pin09, Cor. 1.2.28]).

f0) = Z age¥ "
k€EZ
(3.4.17)
1 Oo+2m

ap = ag f(0)e V=040, k€ Z, 6, € R.

o 2 0o

Use integration by parts to conclude that

1 Oo+2m
3.4.18 - "(O)e VTR0, k e 7)\{0}.
Bty w= g [ e \(0)
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Assume that f/(#) vanishes exactly at m(> 2) points on the interval
[0,27). Show that

< 9
lao| < Qg[}ggr)lf( s

(3.4.19)

lax| < |£(0)], for all k € Z\{0}

k] 0cl0.27)
(Hint. The first inequality of (3.4.19) follows immediately from (3.4.17).

Assume that f’ vanishesat 0 < 0y < ... < 0,1 < 27 < 6, = p+27.
Then

0;

0;
[ ree e < [ p@las -

97;71 ai—l
i) — ; < ,=1,... .
‘f(ez) f(0171)| 7296H[%)a§()|f(0)|7 G 17 , M

)

Use (3.4.18) to deduce the second part of (3.4.19).)

5. A real periodic function f is called a trigonometric polynomial of
degree n if f has the expansion (3.4.17), where a;, = 0 for |k| > n and
an # 0. Show

(a) A non zero trigonometric polynomial f(60) of degree n vanishes at
most 2n points on the interval [0,27). (Hint. Let z = eV~1. Then
J = 27"p(2)]|z)=1 for a corresponding polynomial p of degree 2n.)

(b) Let f(0) = % be a nonconstant function, where g is a nonzero
trigonometric polynomial of degree m at most and h is a nowhere
vanishing trigonometric polynomial of degree n. Show that f’ has at
most 2(m + n) zeros on [0, 27).

6. Let p(2), ¢(z) be nonconstant polynomials of degree m, n respectively.
Suppose that ¢(z) does not vanish on the circle |z| = r > 0. Let

M := max|,|—, 15%3! Show that for all k € Z

(3.4.20) = /zﬁ PreY™") y=mio ggy < 4Mmax(m +n,2n — 1)
- 2 q(rev=19) N mmax(|k], 1)

Hint. Let F(z) = 2&) — p()42) e o nonconstant rational function.
a(z) " q(2)a(z)

Then F(reV=1) = f1(0) + V=1f2(6), where f1, f as in Problem 5.
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Clearly |f1(0)[,|f2(6)] < M. Observe next that

F(0) + V=1£5(0) =
V=TIreV =Y (' (reV=1)q(reV 1) — p(reV=1)g (reV=1)(q(rev=17))?
lq(rev=19)|2 '

Hence f{, f5 vanish at most 2max(m + n,2n — 1) points on [0, 27).
Use (3.4.19) for fi, f2 to deduce (3.4.20).

7. Let « > 0 be fixed and assume that A C C"*"™. Show that the
following statements are equivalent:

(3.4.21) ||A*|| < kK, forany A€ Aandk=0,1,...,
1 KA

Hint. Use the fact that (—l)k(_(l:a))k_o‘ € [a,b], k=1,... for some
0 <a<b, (eg[Olv74], p’119).)

8. Let A € C™*". Using (3.4.1) deduce
(3.4.23) Zi(sim1) = wllrr;_(x —AN)Si(xl =AY i=1,...,L

let R(x, A) = [ru,]. Using the definitions of Problem 3 show

(3.4.24) 257D = lim (z — \)® 7 (x), if s = index ,,\; > 0.

® TN,

9. A set A C C™ " is called exponentially stable if

(3.4.25) lim sup ||e??|| = 0.
T— 00 t>T

Show that a compact set A is exponentially stable if and only if
RA < 0 for each A € spec (A) and each A € A.

10. A matrix B € C™*" is called projection (idempotent) if B> = B. Let
I" be a set of simply connected rectifiable curves such that I' from a
boundary of an open bounded set D C C. Let A € C"*" and assume
that T' N spec (A) = (). Define

(3.4.26) Pp(A) = Txl/jl/rR(x,A)d:c,
1
2my/—1

A(D) := /FR(x, A)zdx.
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Show that Pp(A) is a projection. Pp(A) is called the projection of
A on D, and A(D) is called the restriction of A to D. Prove
(3.4.27)

Pp(A) = Z Zio, A(D) = Z (NiZio + Zin).

Ai€spec p(A) Xi€spec p(A)

Show that the rank of Pp(A) is equal to the number of eigenvalues
of A in D counted with their multiplicities. Prove that there exists a
neighborhood of A such that Pp(B) and B(D) are analytic functions
in B in this neighborhood. In particular, if D satisfies the assumptions
of Theorem 3.4.4 then Pp(A) is called the projection of A on \,:
Pp(A) = Zy.

11. Let B = QAQ~! € C™*". Assume that D satisfies the assumptions
of Problem 10. Show that Pp(B) = QPp(A)Q .

12. Let A € C™*™ and assume that the minimal polynomial ¢ (z) of
A is given by (2.5.11). Let C* = U; & ... ® Uy, where ecach U,
is an invariant subspace of A (AU, C U,), such that the minimal
polynomial of A|U, is (z — A,)°. Show that

(3.4.28) U, = Z,0C".

Hint. It is enough to consider the case where A is in the Jordan
canonical form.

13. Let D; satisfy the assumptions of Problem 10 for i =1,..., k. Assume
that D; N D; =  for i # j. Show that Pp, (A)C" N Pp,(A)C" = {0}
for i # j. Assume furthermore that D; Nspec (A) #0, i=1,...,k,
and spec (A) C UK, D;. Let

Pp,(A)C" =span (yi,...,.yD), i=1,... .k
X = b’§1)7 '7Y7(111)7~'~7y5i)} c Cnxn.

Show that
(3.4.29)

k
X1AX = ZEBBZ», spec (B;) = Dy Nspec (A), i=1,....,k.
i=1

14. Let A € C**™ and A, € spec (A). Show that if index A\, = 1 then
(A= \I)% _
Zpo = H O /]\j)sj . sj = index \;.
Aj€spec (A),N\j#Np

Hint. Use the Jordan canonical form of A.
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3.5 A canonical form over Hy

Consider the space C"*™. Clearly C"*" can be identified with C™. As
in Example 1.1.3 denote by H, the set of analytic functions f(B), where
B ranges over a neighborhood D(A, p) of the form (2.9.5) (p = p(f) > 0).
Thus B = [b;;] is an element in H}*". Let C € HJ*" and assume that
C = C(B) is similar to B over Hy. Then

(3.5.1) C(B) = X~'(B)BX(B),

where X (B) € H})*" and det X (A4) # 0. We want to find a ”simple” from
for C(B) (simpler than B!). Let M4 be the quotient field of Hy (the set
of meromorphic functions in the neighborhood of A). If we let X € M’*"
then we may take C(B) to be R(B) - the rational canonical form of B
(2.3.3). According to Theorem 2.3.8 R(B) € H',*". However B and R(B)
are not similar over Hy in general. (We shall give below the necessary
and sufficient conditions for B ~ R(B) over H4.) For C(B) = [¢;;(B)] we
may ask how many independent variables are among ¢;;(B), i,j =1,...,n.
For X(B) = I the number of independent variables in C(B) = B is n®.
Thus we call C(B) to be simpler than B if C(B) contains less independent
variable than B. For a given C(B) we can view C(B) as a map

(3.5.2) C(-) : D(A, p) — C™™,

where D(A, p) is given by (2.9.5), for some p > 0. It is well known, e.g.
[GuR65], that the number of independent variables is equal to the rank of
the Jacobian matrix DC(-) over M4

ou(C)
361—]-

(3.5.3) DC(B) := ( (B)) € HY, ™"

where p is the map given in Problem 2.8.2.

Definition 3.5.1 Letrank DC, rank DC(A) be the ranks of DC(-), DC(A)
over the fields M 4, C respectively.

Lemma 3.5.2 Let C(B) be similar to B over Hy. Then

(3.5.4) rank DC(A) > v(A, A).
Proof. Differentiating the relation X ~}(B)X(B) = I with respect to
bi; we get
0X7 _ _x19X

8bij 6bij
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So
oC 0X 0X
5. =X (- X YB+B X VW+ENX
where

(3.5.6) Eij = [0iadjpla 5y €C™", i=1,...,m, j=1,...,n,

and m = n. So

X(4) o (A)X Y(A)=AP;; — PjA+ E;;, Pj= 0X (A)X1(A)
8bij 8bij
Clearly, AP;; — P;; A is in Range A, where
(3.5.7) A=(I®A-AT®I):C™" - C™<",

According to Definition 2.9.1 dim Range A = r(A, A). Let
(3.5.8) C™*" = Range A @ span (I'y, ... Toan))-
As Eyj, i,j =1,...,n is a basis in C**"

r,= Z ozz(-;))Eij, p=1,...,v(4,A).

4,J=1

Let

1= 3 a2 (4) = XA, + T,)X(A), @y € Range (A).

G2 Obij
p=1,...,v(4,A).

According to (3.5.8) T1,...,T,(a,4) are linearly independent. Hence (3.5.4)
holds. O
Clearly rank DC > rank DC(A) > v(A, A).

Theorem 3.5.3 Let A € C"*" and assume that I'y,...,T',4,4) be any
v(A, A) matrices satisfying (3.5.8). Then for any nonsingular matriz P €
C™ ™ it is possible to find X(B) € H*", X(A) = P, such that

v(AA)
X"YB)BX(B)=P'AP+ Y  fi(B)PT'T;P,
i=1
(3.5.9)
fiEHA, fi(A):O, i=1,...,U(A,A).
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Proof. Let Ry,...,R,4,4) be a basis in Range A. So there exist T}
such that AT, — T;,A =R, for i =1,...,7(A, A). Assume that X(B) is of
the form

r(A,A)
XBP =1+ > gi(B)T;, g;€Ha, gj(A)=0, j=1,...,7(4A).
j=1

(3.5.10)

The theorem will follow if we can show that the system

r(A,A) r(A,A) v(A,A)

(3.5.11) B(I+ Y g¢T) =0+ > gT)A+ > £l
J=1 Jj=1 i=1

is solvable for some g1,...,9,(a,4), f1,-- -5 fu(a,4) € Ha which vanish at
A. Clearly, the above system is trivially satisfied at B = A. The implicit
function theorem implies that the above system is solved uniquely if the
Jacobian of this system is nonsingular. Let B = A+ F, F = [f;;] €
Cm>m. Let a;(F'),B;(F) be the linear terms of the Taylor expansions of
fi(A+F),g;(A+ F). The linear part of (3.5.11) reduces to

r(A,A) r(A,A) v(AA)
F+ Y BAT = Y BTiA+ > ol
j=1 j=1 i=1
That is
r(A,A) v(AA)
F = Z ﬂjRj'i_ Z OQFZ
j=1 i=1

In view of (3.5.8) a1,...,ay(4,a), 51, -+, Br(a,4) are uniquely determined
by F. O

Note that if A = al then the form (3.5.9) is not simpler than B. Also
by mapping T — P~'TP we get

—_~—

(35.12)  C™*" = Range P~'AP @span (P'T\P,...,P7'T,(a.4)P).

Lemma 3.5.4 Let B € H}*". Then the rational canonical form of B
over My is a companion matriz C(p), where p(x) = det (I — B).

Proof. The rational canonical form of B is C(p1,...,px) is given by
(2.3.3). We claim that £k = 1. Otherwise p(z) and p/(x) have a common
factor over M 4. In view of Theorem 2.1.9 implies that p(x) and p'(z)
have a common factor over Hy. That is any B € D(A,p) has at least
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one multiple eigenvalue. Evidently this is false. Consider C = P~'BP
where P € C™*" and J = P !AP is the Jordan canonical form of A.
So C € D(J,p"). Choose C to be an upper diagonal. (This is possible
since J is an upper diagonal matrix.) So the eigenvalues of C are the
diagonal elements of C, and we can choose them to be pairwise distinct.
Thus p(z) and p’(z) are coprime over M4, hence &k = 1. Furthermore
p1(z) = det (zI — C(p)) = det (zI — B). O

Theorem 3.5.5 Let A € C"*". Then B € H\*" is similar to the
companion matric C(p), p(z) = det (zI — B) over Hy if and only if
v(A,A) = n. That is the minimal and the characteristic polynomial of
A coincide, i.e. A is nonderogatory.

Proof. Assume first that C(B) in (3.5.1) can be chosen to be C(p).
Then for B = A we obtain that A is similar to the companion matrix.
Corollary 2.8.4 yields v(A, A) = n. Assume now that v(A, A) = n. Accord-
ing to (2.8.12) we have that é1(x) = is(x) = ... = i,_1(x) = 1. That is, the
minimal and the characteristic polynomials of A coincide, i.e. A is similar
to a companion matrix. Use (3.5.9) to see that we may assume that A is a
companion matrix. Choose I'; = E,,;, i = 1,...,n, where E,; are defined
in (3.5.6).

It is left to show that Range A N span (Ent, .-, Enn) = {0}. Suppose
that I' = Z?Zl a; E,; € Range ([l) Theorem 2.10.1 and Corollary 2.8.4
yield that tr[A* =0, k =0,1,...,n — 1. Let a = (a1,...,q,). Since the
first n — 1 rows of I are zero rows we have

O:'DI‘FAAk:Oéz4ken7 ej:(§j1,...,5jn)T, jil,,’n

For k£ = 0 the above equality implies that a,, = 0. Suppose that we already
proved that these equalities for £ = 0,...,¢ imply that a,, = ... = ap_; =
0. Consider the equality tr TA“*! = 0. Use Problem 2.4.9 to deduce

J4

£+1 _
A ep =€py—1+ Zf(@-l—l)jen—j-
Jj=0

SotrTA™ =,y 1 asap =...=ap_¢ =0. Thus a,,_r_; = 0, which

implies that I' = 0.
Theorem 3.5.3 yields that

C(B)=X""(B)BX(B) = A+ Xn:fi(B)Em-
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So C(B) is a companion matrix. As det (zI — C(B)) = det (xI — B) it
follows that C(B) = C(p). O.

Problem 5 yields.
Lemma 3.5.6 Let A; € C™"*™ § =1,2 and assume that

C"*" = Range A; @ span (ng), .. F( i)

Saay) i=12.

Suppose that A1 and Ay do not have a common eigenvalue. Then

Cmtnz)x(nitn2) — Range ATE\B/AQ @
span (T @0, Ty ) @0.00T 00T 7,, ).

Theorem 3.5.7 Let A € C"*™. Assume that spec (A) consists of ¢

distinct eigenvalues A1, ..., \g, where the multiplicity of \; is n; for i =
1,...,¢. Then B is similar over Hy to the matriz
Z@c (B) € HY X" (M, — Ci(A)™ =0, i=1,...,L
(3.5.13)

Moreover C(A) is the Jordan canonical form of A.

Proof. Choose P in the equality (3.5.9) such that P~*AP is the

Jordan canonical of A and each P~!T"; P is of the form Z§:1 Fl(»j ) as follows
from Lemma 3.5.6. Then (3.5.9) yields the theorem. O

Problems

1. Let A = Zle ®H,,, n Z -1 n;. Partition any B € C**™ as

a block matrix as A: B = [By], B;; € C" ™, 4,5 = 1,... k.
Using the results of Theorem 2.8.3 and Theorem 2. 10 1 show that the
matrices

Fa,ﬁ,'y _ [1’\7(;;’47577)]]; c (cnxn7

(o.8,7) _ ng Xn; : .o
Ly =0eCmr i, if (a, B) # (i, 4),
I
v=1,...,min(ne,ng), o, f=1,....k,

satisfy (3.5.8).
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2. Let A be a matrix given by (2.8.4). Use Theorem 3.5.7 and Problem
1 to find a set of matrices I'y,...,I',(4,4) which satisfy (3.5.8).

3. Let A € C™*™ and assume that \; is a simple eigenvalue of A, i.e. \; is
a simple root of the characteristic polynomial of A. Use Theorem 2.8.3
to show the existence of A(B) € Hy such that A\(B) is an eigenvalue
of B and A(A) = \;.

4. Let A satisfy the assumptions of Theorem 3.5.7. Denote by D, an
open set satisfying the assumptions of Theorem 3.4.4 for p=1,... 4.
Let Py (B) be the projection of B € H}*" on Dy, k=1,...,¢. Prob-
lem 10 implies that Py(B) € H}*", k = 1,...,¢. Let P,(A)C" =
span (x' ... xku) k = 1,...,¢, B € D(A,p), where p is some
positive number. Let X(B) € H}*" be formed by the columns
Py(B)x*', ... Py(B)x*" k = 1,...,£. Show that C(B) given by
(3.5.1) satisfies (3.5.13). (This yields another proof of Theorem 3.5.7.)

3.6 Analytic, pointwise and rational similar-
ity
Definition 3.6.1 Let Q C C™ and A, B € H(Q)"*". Then

(a) A and B are called analytically similar, denoted by AéB, if A and B
are similar over H().

(b) A and B are called pointwise similar, denoted by AéB, if A(x) and
B(x) are similar over C for all © € Qq, for some open set Qy D .

(¢) A and B are called rationally similar, denoted by AQB, if A and B are
sitmilar over the field of meromorphic functions M(Q).

Theorem 3.6.2 Let Q@ C C™ and assume that A, B € H(Q)"*™. Then
ARB = AXB = AXB.
Proof. Suppose that
(3.6.1) B(z) = P~ (2)A(z)P(2),

where P, P~1 € H(2)"*". Let 79 € Q. Then (3.6.1) holds in some neigh-

borhood of zy. So AZB. Assume now that A~B. Let C(p1,---,px) and
C(q1,--.,q¢) be the rational canonical forms of A and B respectively over

M(Q). Then

C(pi,...,on) = S(x) tA(x)S(2), Clq,...,q)=T(x)"'Bx)T(x),
S(x), T(x) € H(Q)"™", det A(x) #£0, det B(x) £ 0.
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Theorem 2.3.8 yields that C(p1,...,px),C(q1,...,q¢) € H(Q)"*™. Let
Qp D Q be an open set such that A, B, S,T € H(Q)"*"™ and A(x) and
B(x) are similar over C for any x € Qy. Let o € Qp be a point such
that det S(zo)T(xzo) # 0. Then for all x € D(zg,p) C(p1,...,0k) =
C(q1,...,qe). The analyticity of C(p1,...,px) and C(qi,. .., q¢) imply that

these matrices are identical in H(Q), i.e. A~B. O

Assume that A~B. Then according to Lemma 2.9.4 the three matrices

I@A@x)—Al@)" @I, T®Al)-B@)' ®I, IT®B()-Bk)' oI
(3.6.2)

are equivalent over H(€2). Theorem 2.9.3 yields.

Theorem 3.6.3 Let A, B € H(Q)"*". Assume that the three matrices
in (3.6.2) are equivalent over H(QY). Then ARB.

Assume that 2 C C is a domain. Then H(Q) is EDD. Hence we can
determine when these matrices are equivalent.

The problem of finding a canonical form of A € Q™*™ under analytic
similarity is a very hard problem. This problem for the ring of local analytic
functions in one variables will be discussed in the next sections. We now
determine when A is analytically similar to its rational canonical form over
He, the ring of local analytic functions in the neighborhood of ¢ € C™.

For A, B € H(Q2)™*™ denote by r(A, B) and v(A, B) the rank and the
nullity of the matrix C = I ® A — BT ® I over the field M(£). Denote by
r(A(x), B(x)) and v(A(z), B(z)) the rank of C(x) over C. As the rank of
C(x) is the largest size of a nonvanishing minor, we deduce

r(A(C), B(Q)) < r(A(z), B(z)) < r(4, B)
(3.6.3)
v(A, B) < v(A(z), B(z)) < v(A(C), B(C)), =€ D(C,p)

for some positive p. Moreover for any p > 0 there exists at least one
xo € D(C, p) such that

(3.6.4) r(A(xo), B(zo)) = (A, B), v(A(xo, B(zg)) =v(A4,B).

Theorem 3.6.4 Let{ € C™ and A € H?X". Assume that C(p1, ..., pr)
is the rational canonical form of A over My and C(o1,...,00) is the ra-
tional canonical form of A(C) over C. That is p; = p;(A,x) and o;(X\) are
normalized polynomials in A belonging to H¢[A] and C[A] respectively for
i=1,....,kand j=1,...,¢. Then
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(a) > k;
(b) Hz OUZ 1( )‘ g:opk—i(/\vg) fOTqZO,l,...,k— 1.
Moreover £ =k and p;(\, () = o;(A) fori=1,... k if and only if

(3.6.5) r(A(C), B(Q)) = (A, B), v(A((), B(()) = v(A, B),
which is equivalent to the condition
(3.6.6) r(A(¢), B(C)) = r(A(z), B(x)),

v(A(Q), B(Q)) = v(A(z), B(z)), x € D((,p)
for some positive p.

Proof. Let
i J
un—k+1’(>\7x) - H pa(Avx)a vn—€+j()‘) = H o
a=1 ps=1
i=1,...k j=1,...,10
ua(A\ ) =vg(A) =1, for a<n—k, g<n—=~L

So u;(A\,x) and v;(\) are the g.c.d. of all minors of order i of matrices
M — A and M — A((¢) over the rings M[\] and C[)] respectively. As
u; (A, z) € He[A] it is clear that u;(A, ) divides all the minors of I — A(()
of order i. So u;(\,)|v;(A) for i =1,...,n. Since v,_, = 1 it follows that
Un—¢(A, ) = 1. Hence k < £. Furthermore
un(A, ) =det (A — A(x)), v,(A) =det (A — A(()).

Therefore u,()\,¢) = v,(\) and 7;”8”2“(())\‘ é) This establishes claims (a)
and (b) of the theorem. Clearly if C(q1,...,q¢) = C(p1,...,p%)(¢) then
k=/¢ and p;(A\,¢) = q;(A) for i = 1,...,¢. Assume now that (3.6.5) holds.
According to (2.8.12)

E

V(A A) = (2i — 1)deg pr_is1(\,2),
i=1
¢
Y(A(Q), A(Q)) = Y (2] — D)deg gr—j11(A).
j=1

Note that the degrees of the invariant polynomials of AT — A and AI — A(¢)
satisfy the assumptions of Problem 2. From the results of Problem 2 it
follows that the second equality in (3.6.5) holds if and only if k¥ = ¢ and
deg p;(A,x) = deg ¢;(\) for i = 1,..., k. Finally (3.6.3-3.6.4) imply the
equivalence of the conditions of (3.6.5) and (3.6.6). O
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Corollary 3.6.5 Let A € H}™". Assume that (3.6.6) holds. Then
AXB if and only if AXB.

Proof. According to Theorem 3.6.2 it is enough to show that AXB

implies that A~B. Since A satisfies (3.6.6) the assumption that AXB
implies that B satisfies (3.6.6) too. According to Theorem 3.6.4 A and B
are analytically similar to their canonical rational form. From Theorem
3.6.2 it follows that A and B have the same rational canonical form. a

Problems
1. Let )
0 =z 0 =z
a= 2], sw= [ 7.

Show that A(z) and B(zx) are rationally similar over C(z) to Ho =
A(1). Prove that

A AHy, B AH,, AXB, A AB

over Cl[z].

2. Let n be a positive integer and assume that {¢;}7, {m;}} are two
nonincreasing sequences of nonnegative integers satisfying

k k
<> mi, k=1,...,n-1,
i=1 1=1
n n
i=1 =1

Show (by induction) that

n

> (20— 1)m; <

i=1 %

I

Il
N

(20 — 1)¢;

and equality holds if and only if ; =m;, i =1,...,n.

3. Let (, €C, n=1,...,and lim, o ¢, = (. Suppose that 2 C Cis a
connected set and ¢, € Q, n=1,..., ¢ € Q. Recall that if f € H(Q)
and f(¢,) =0, n=1,...,then f = 0. Show that for A, B € H(Q)"*"

the assumption that A(¢,) = B(¢,), n =1,..., implies that AXB.



3.7. A GLOBAL SPLITTING 129

3.7 A Global Splitting

From this section to the end of the chapter we assume that €2 is a domain
in C. We now give a global version of Theorem 3.5.7.

Theorem 3.7.1 Let A € H(Q)"*™. Suppose that
(3.7.1) det (A — A(z)) = d1(A, 2)d2 (A, ),

where ¢y, da are two nontrivial normalized polynomials in H(Q)[A] of posi-
tive degrees ny and no respectively. Assume that (¢1(\, zo), p2(A, z9)) = 1
for each xy € Q. Then there exists X € GL(n,H(£2)) such that

X7 2)C(2)X () = C1(z) ® Ca(2),
(3.7.2)

Ci(x) e H(Q)™ "™, det (A — Ci(z)) = ¢s(N\,x), i=1,2.

Proof. Let P;(z) be the projection of A(z) on the eigenvalues of A(z)

satisfying ¢;(\,z) = 0. Since (¢1(\, zo), p2(A,z9)) = 1 it follows that
Pi(z) € H(Q)™*™ for i = 1,2. (See Problem 3.4.10.) Also for any xo the

rank of P;(zg) is n;. Since H(Q2) is EDD each P;(z) can be brought to the
Smith normal form

Pi(x) = Uy(a) ding(e)” (2). ..., el (2),0,...,0)Vi(2)),
Ui, Vi € GL(n;, H(Q)), i = 1,2.
As rank Pi(xp) = n; for any zp € Q we deduce that egz) =1, j =

1,...,n, ¢ = 1,2. Let ugi)(x),...,ugf)(x) be the columns of U;(x) for
i=1,2. As V € GL(n,H(£2) we obtain

(3.7.3) P;(z)C" = span (ugi) (x)y. ., ul(fi) (x)),
for any x € Q. Let
X(2) = [u @).....ul) (@), 0 @), ..., ) (2)] € HE@Q)™ "

According to Problem 3.4.13 det X(xzg) # 0 for any zo € H(Q). So
X(x) € GL(n,H(£2)). Then (3.7.2) follows from (3.4.29). O

3.8 First variation of a geometrically simple
eigenvalue

Theorem 3.8.1 Let A(z) be a continuous family of n x n complex val-
ued matrices for |r — xo| < 0, where the parameter x is either real or
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complex. Suppose that
(3.8.1) A(z) = Ap + (x — 20) A1 + |z — zo|o(1).

Assume furthermore that g is a geometrically simple eigenvalue of Ag of
multiplicity m. Let x1,...,Xm and y1,...,¥m be eigenvectors of Ay and
A] respectively corresponding to \o, which form a biorthonormal system
yiij =4y, 1,7 =1,...,m. Then it is possible to enumerate the eigenval-
ues of A(x) by M\i(x), i =1,...,n, such that

(3.8.2) Ai(z) = Ao+ (& — zo)ps + | — x0lo(1), i=1,...,m,
where [y, ..., um are the eigenvalues of the matrix
(383) S = [323] S (mem’ Sij = yiTAlxj, i,j = 17 e,

Proof. By considering the matrix P~1A(x)P, for an appropriate P €
GL(n,C), we can assume that Ay is in the Jordan canonical form such that
the first m diagonal entries of Ay are Ag. The proofs of Theorems 3.5.3 and
3.5.7 implies the existence of

X(B)=1I+Z(B), ZeHX™", Z(0)=0,

such that
(3.8.4) X"YB)(Ao + B)X(B) = @;_1Cs(B), C1(0) = XoIpm.
Substituting
B(z) = A(z) — Ay = (z — 20) Ay + |z — x0lo(1),
X(z) = X(B(z)) = I + (x — 20) X1 + |z — 20|o(1)
we get

C(X) = X_lA(a:)X(x) = AO + (l’—xo)(Al +AOX1 —Xle) + |.’17—$0‘0(1).

According (3.8.4) Ai(z),...,Am(z) are the eigenvalues of C1(B(x)). As
C1(B(x0)) = AoIm, by considering (C1(B(x)) — MoIm)/(x — o) we deduce
that (A;(z) — Ao)/(x — xo) are continuous functions at xg. Also

(C1(B(x)) = Xolm)/ (& — o) = [vi | (A1 + Ao X1 — X1 Ao)u;] i + o(1),

where w; = v; = (8;1,...,0,) " for i =1,...,m. Since u; and v; are the
eigenvectors of Ag and A] respectively corresponding to Ao fori =1,...,m,
it follows that v;” (49X —X1Ap)u; =0fori,j =1,...,m. This establishes
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the result for a particular choice of eigenvectors uy, ..., u,, and vi,..., Vy,.
It is left to note that any other choice of the eigenvectors x1,...,x,, and
Y1i,-...,¥Ym, which form a biorthonormal system amounts to a new matrix
S1 which is similar to S. In particular S and S; have the same eigenvalues.

O

Problems

1. Let A(z) = {2 (1)] . Find the eigenvalues and the eigenvectors of

A(z) in terms of v/z. Show that (3.8.2) does not apply for 2o = 0
in this case. Let B(z) = A(2?). Show that (3.8.2) holds for z¢ even
though A\g = 0 is not geometrically simple for B(0).

3.9 Analytic similarity over Hj

Let A, B € H{*". That is

A(z) =Y Apa®, |z <r(A),
k=0
(3.9.1)

B(x) =Y Bia*, |z[ <r(B).
k=0

Definition 3.9.1 For A,B € H{*" let n(A, B) and k,(A, B) be the
index and the number of local invariant polynomials of degree p of the matrix
I, ® A(x) — B(z)" ® I, respectively.

Theorem 3.9.2 Let A,B € Hy*". Then A and B are analytically
similar over Hy if and only if A and B are rationally similar over Hy and
there exists n(A, A) + 1 matrices Ty, ..., T,, € C**™ (n = n(A, A)), such
that det Ty # 0 and

k
(3.9.2) Y AT i —Tp iBi=0, k=0,...,1(A,A).
=0

Proof. The necessary part of the theorem is obvious. Assume now
that A(m)éB(x) and the matrices Ty, ..., T, satisfy (3.9.2), where Tj €
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GL(n,C). Put

C(z) =T(2)Bx)T (z), T(x)=)Y Tpz".
k=0

As det Ty # 0 we deduce that B(z)~C(z). Hence A(z)~C(z). In
particular (A, A) = r(A,C). Also (3.9.2) is equivalent to A(z) — C(z) =
2"10(1). Thus

(I, @ A(z) — A(x)T @ I,) — (I, ® A(z) — C(z) " @ I,) = 2" O(1).

In view of Lemma 1.15.2 the matrices (I, @ A(z) — A(z) " ®1L,), (I, ® A(x) —
C(z)" ®I,,) are equivalent over Hy. In particular n(A, A) = n(A,C). Also
1,0,...,0 satisfy the system (3.9.2) where B; = C;,i = 0,1,...,n. Theorem
1.15.3 yields the existence P(z) € Hy™™ such that

Hence A(x)%C(x) By the definition C(m)’g:B(x) Therefore A(z)~B(z).
O

Note that if n(A, A) = 0 the assumptions of Theorem 3.9.2 are equiv-
alent to A(x)éB(x) Then the implication that A(x)éB(x) follows from
Corollary 3.6.5.

Suppose that the characteristic polynomial of A(x) splits over Hy. That
is

n
(3.9.3)  det (M — A(z)) = [[(A = Xi(x)), Xi(w) €Ho, i=1,...,n.
i=1
As Hy is ED Theorem 2.5.4 yields that A(x) is similar to an upper trian-
gular matrix. Using Theorem 3.5.7 and Theorem 2.5.4 we obtain that A(z)
is analytically similar to

C(l') = @leCZ-(x), Cz((E) c I_ISLZ'Xm7
(3.9.4)
(ailni B CZ(O))?L = 0’ Qi = A’ﬂz (0)7 Qg 7& Qi for ¢ 7é ja Zaj = 1, . ,e.

Furthermore each C;(z) is an upper triangular matrix. In what follows we
are more specific on the form of the upper triangular matrix.

Theorem 3.9.3 Let A(z) € Hy*". Assume that the characteristic
polynomial of A(x) splits in Hy. Then A(x) is analytically similar to a block
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diagonal matriz C(x) of the form (3.9.4) such that each C;(x) is an upper
triangular matriz whose off-diagonal entries are polynomial in x. More-
over, the degree of each polynomial entry above the diagonal in the matriz

Ci(x) does not exceed n(Cy, Cy) fori=1,..., L.

Proof. In view of Theorem 3.5.7 we may assume that ¢ = 1. That is,
A(0) has one eigenvalue ag. Furthermore, by considering A(x)—agl we may
assume that A(0) is nilpotent. Also in view of Theorem 3 we may assume
that A(x) is already in the upper triangular form. Suppose in addition to
all the above assumptions A(x) is nilpotent. Define

Xpy={y: Afy=0,yecHy}, k=01,...,.
Then
0} =X CX1 &XoG... & X, =Hp.

Using Theorem 1.13.3 one can show the existence of a basis y1 (), ...,y (z)
in Hy, such that yi(z),...,yy,(z) is a basis in Xy, for k = 1,...,p. As
A(x)Xj41 C X we have

Pk
Az)y; = Zgij}’i(x)7 Ve <J < Yhta.

i=1
Define g;; = 0 for 7 > 15, and ¢, < j < Yp41. Put
G(x) = [9i5]7, T(2) = [y1(2), ..., yn(x)] € Hy*".

Since y1(z),...,¥n(z) is a basis in Hj we deduce that T'(z) € GL(n, Hp).
Hence

G(z) =T (@)A@)T(2), s=n(4A4)=n(G.G).

Let .
G(x):ZGjmj, G(k):Zijj, kE=0,1,...,.
3=0 3=0

We claim that G(*)&G(z). First note that
(I, ®G(z) —Gx)" @I,) — (I, @ G (2) - G¥(x)T @ I,) = 2°T1O(1).

Lemma 1.15.2 implies that the matrices (I, ® G(z) — G(z)" ® I,,), (I, ®
G (z) — G®(2)T @ I,,) have the same local invariant polynomial up to
the degree 5. So (G, G) < r(G®), G*)) which is equivalent to

(3.9.5) v(G®,G¥) < (G, Q).
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Let

Yk:{y:(yl,...,yn)T: yj =0forj >y}, k=0,...,p.

Clearly if g;; = 0 then (4, j) — th entry of G is also equal to zero. By the
definition g;;(z) = 0 for i > ¢y, and ¥x < j < Y41. So G (2)Yyi1 C Yy
for k=0,...,p— 1. Theorem 2.11.2 implies

(3.9.6) v(G(x0), G(xg)) < Z/(G(S) (z0), G(S)(JJO))

for all g in the neighborhood of the origin. Hence v(G,G) < v(G),G()).
This establishes equality in (3.9.5), which in return implies equality in
(3.9.6) for 0 < |zg| < p. Theorem 2.11.2 yields that G(z¢) ~ G ()
for 0 < |zo|] < p. From Theorem 3.6.2 we deduce that GRG®). As
G(x)I — IG®™ = 2°t10(1) Theorem 3.9.2 implies that GAG). This es-
tablishes the theorem in case that A(z) is a nilpotent matrix.

We now consider the general case where A(x) is an upper triangular
matrix. Without loss of generality we may assume that A(x) is of the form

A(l‘) = [A”K, Aij S Hgixnj,
(397) Aij (x) =0 for j < 1, (A”(l‘) - )\l(l‘)Inz)n’ =0,
Ai #E Nj(x), fori#j, 4,5=1,...,L
We already showed that
Aji(x) = Ty(x) "' Fu(2)Ti(z), Ti € GL(n,H,),

and each Fy;(x) — A;(x)I,, is a nilpotent upper triangular matrix with poly-
nomial entries of the form described above. Let

T(x) = Z Ti(x), G(z)=[Gy(x)]i = T(z) ' A(x)T(2).

As X\i(z) # A\j(x) for ¢ # j Problem 3 implies v(G,G) = Zle v(Gii, Gii)-
Let G®¥)(z) = [Ggf)] be defined as above. Theorem 2.10.2 implies

4
v(GP, W) > S w(El, 6P).
i=1

Using Theorem 2.11.2 as above we obtain v(Gy;, Gi;) < Z/(ch , G ) Com-
bine the above inequalities we obtain v(G, G) < v(G®), G()), Compare this
inequality with the inequality (3.9.5) to deduce equality in (3.9.5). Hence
(3.9.8) (G G = (G, Gi), i=1,...,L

1 )
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Let

e k
Dl(ér) = )\z(x)-[nl = ZDijifj, ka) = ZDijmjv
j=0 j=0
(3.9.9)
D(a) = ©{ Dix), DW(@) = &1 D" (@),
Then (3.9.8) is equivalent to
V(Ggf) - DES), GE:) - DZ(S)) = V(Gii - D’iiv Gii - Dii)a = 17 I ,g.

As above Theorem 2.11.2 yields that Ggf) — Dgs)’ngii - D; = Gz(-f) -
DES) + D;~Gy;. Since Xi(z) # Aj(z) for i # j we finally deduce that
GA~G) — D@ 4+ D. Also GI — I(G®) — D) 4 D) = z°+10(1). Theorem
3.9.2 yields GAG®) — D 4+ D. The proof of the theorem is completed. O

Theorem 3.9.4 Let P(x) and Q(x) be matrices of the form (3.9.4)

P() = &%, Py(), Pi(x) € Hy*™,

(a1, — P;(0))™ =0, a; #aj fori # 37, 4,5 =1,...,p,
(3.9.10)

Q(z) = ®]_,Q,(x), Qj(x) € Hy’ ™™,

(ﬂjIn_j - QJ(O))nJ = 07 51 7£ 5j for i 7£ ja Za] = 1; - q.
Assume furthermore that
(3911) ai:ﬁi, izl,...,t, aj#ﬁj,

i=t+1,....p, j=t+1,...,q, 0 <t <min(p,q).

Then the nonconstant local invariant polynomials of I @ P(z) — Q(x)" ® I
are the nonconstant local invariant polynomials of I ® P;(z) — Qi(x)" ® I
fori=1,...,t. That is

t
(3912) KJP(PvQ) :Zﬂp(HaQi)a p= 15"'a'
i=1

In particular if C(x) is of the form (3.9.4) then

(3.9.13) n(C,C) = 112;@77(01-, Ci).
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Proof. Theorem 1.15.3 implies k,(P, Q) = dim W,_; —dim W,,, where
W, € C™*™ is the subspace of n x n matrices X such that

k
(3.9.14) > P iX; - X;Qrj =0, k=0,...,p.
7=0
Here
=3P, Pi(a) =Y PYad, Py =t P,
j=0 j=1
o0 ) o0 .
Q) =Y Q;a7, Qi(x) = > QVa’, Q; =L ,QY.
7=0 j=1

Partition X; to [ng], XJ) € Cme®s o =1,....p, B=1,...,q. We
claim that Xgﬁ) =0 if either a > t+1,0or 8 >t+ 1, or « # B. Indeed

in view of Lemma 2.8.1 the equation Po(a)Y — YQE)’B) = 0 has only the
trivial solution for «, 8 satisfying the above conditions. Then the claim

that Xgﬁ) = 0 follows by induction. Thus (3.9.14) splits to the system
k . .
SRO XD -xPQ =0, i=1,...t
7=0

Apply the characterizations of k,(P,Q) and kp(FP;, Q;) for i = 1,...,¢ to
deduce (3.9.12). Clearly (3.9.12) implies (3.9.13). O

We conclude this section by remarking that main assumptions of Theo-
rem 3.9.3, the splitting of the characteristic polynomial of A(z) in Hy, is not
a heavy restriction in view of the Weierstrass preparation theorem (Theo-
rem 1.8.4). That is the eigenvalues of A(y™) split in Hy for some value of
m. Recall that m can be always be chosen n!, i.e. the minimal m divides
n!. Problem 1 claims A(z)~B(z) < A(y™)~B(y™). In view of Theo-
rem 3.9.3 the classification problem of analytic similarity classes reduces to
the description of the polynomial entries which are above the diagonal (in
the matrix C' in Theorem 3.9.3). Thus given the rational canonical form of
A(z) and the index n(A, A) the set of all possible analytic similarity classes
which correspond to A is a certain finite dimensional variety.

The case n = 2 is classified completely (Problem 2). In this case to
a given rational canonical form there are at most countable number of
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analytic similarity classes. For n = 3 we have an example in which to a
given rational canonical form there the family of distinct similarity classes
correspond to a finite dimensional variety (Problem 3).

Problems

1. Let A(z), B(z) € Hy*™ and let m be a positive integer. Assume that
A(y™T(y) = T(y)A(y™) where T'(y) € Hy*". Show

A(@)Q(x) = Q@)B(x), Q™) =—Y Tlye = ), Qz) € Hy*".

Prove A(sc)éB(x) — A(ym)éB(ym).
2. Let A(z) € H2*? and assume that
det (A — A(z)) = (A = A (2)) (A — A2(x),

LU) = Z)\gi)xj €Hy, 1=12,

#28  _1<p<o,

1 _ () : 1)
AT = ]—O Dy A 1o

J p+1

Show that A(z) is analytically similar either to a diagonal matrix or

to
B(x) = Pl(()x) /\;ffx)] ., k=0,....p(p>0).

Furthermore if A(LL‘)&B(]}) then n(A, A) = k. (Hint: Use a similarity
transformation of the form DAD~!, where D is a diagonal matrix.)

3. Let A(z) € H3*3. Assume that
A(@)=C(p), p\z)=AXA—2>™)A—z'™), m>1.

Show that A(z) is analytically similar to a matrix

0 aF  a(x)
B(z,a)= [0 2?™ a* |, 0<kyky < oo (2™ =0),
0 0 a*m

where a(x) is a polynomial of degree 4m — 1 at most. (Use Problem
2.) Assume that ky; = ky = m. Show that B(z, a)~B(z,b) if and only
if
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(1) if a(0) # 1 then b — a is divisible by z™.

(2)ifa(0) =Tand 42 =0, i=1,....k—1, L¢ £ 0for 1 <k <m
then b — a is divisible by z™*F.

(3) if a(0) = 1 and g;‘f =0, i=1,...,m then b — a is divisible by
x%m,

Then for k1 = k2 = m and a(0) € C\{1} we can assume that a(x) is a
polynomial of degree less than m. Furthermore the similarity classes
of A(x) is uniquely determined by such a(x). These similarity classes
are parameterized by C\{1} x C™~! (the Taylor coefficients of a(z)).

4. Let P and @ satisfy the assumptions of Theorem 3.9.4. Show that P
and @ are analytically similar if and only if

p=qg=t, m;=n,, Pi(x)éQi(a:), 1=1,...,¢t.

3.10 Strict similarity of matrix polynomials

Definition 3.10.1 Let A(x), B(x) € Clz]"*™. Then A(x) and B(z)

are called strictly similar (A’;‘f:B) if there exists P € GL(n,C) such that
B(z) = PA(z)P~!.

Definition 3.10.2 Let ¢ be a positive integer and (Ao, A1, ..., As), (Bo, . - .

(Cmy+L D Then (Ao, Ay, ..., Ag) and (B, ..., By) are called simultane-
ously similar (Ag, A1, ..., Ag) = (By,...,Be) if there exists P € GL(n,C)

7BZ) €

such that B; = PAipil,Z' =0,...,¢, i.e. (BQ,Bl,...,Bg) = P(AQ,Al,...,A[)Pil.

Clearly

Proposition 3.10.3 Let

4 P4
(3.10.1) A(z) =" Aia’, B(z) =) _ Bia' € Cla]™".
=0

i=0
Then (ARB) if and only if (Ao, Ay, ..., As) ~ (Bo,...,By).

The problem of simultaneous similarity of matrices, i.e. to describe the
similarity class of a given m (> 2) tuple of matrices or to decide when a
given two tuples of matrices are simultaneously similar, is a hard problem.
See [Fri83]. There are some cases where this problem has a relatively simple
solution.
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Theorem 3.10.4 Let £ > 1 and (Ay,...,Ay) € (C™*™)HL Then

(Ao, ..., Ap) is simultaneously similar to a diagonal tuple (By,...,Bs) €
C* ™)1 e, each B; is a diagonal matriz, if and only if Ao, ..., Ay are
£+ 1 commuting diagonable matrices:

(3.10.2) AiA; = AjA;, i j=0,... L.

Proof. Clearly if (Ao,...,As) is simultaneously similar to a diago-
nal tuple then Ag,..., Ay a set of commuting diagonal matrices. Assume
that Ag,...,As a set of commuting diagonal matrices. We show that
(Ao, ..., Ap) is simultaneously similar to a diagonal tuple by the double

induction on n and /¢. It is convenient to let £ > 0. For n = 1 the theorem
trivially holds for any ¢ > 0. For £ = 0 the theorem trivially holds for any
n > 1. Assume now that p > 1, ¢ > 1 and assume that the theorem holds
forn <p—1landallfandforn =pand ¥l < g—1. Assume that Ay,..., A, €
CP*P are g+1 commuting diagonable matrices. Suppose first that Ay = alj.
The induction hypothesis yields that (Bi,...,By) = P(A1,...,A,)P™ ! is
a diagonal g-tuple for some P € GL(n,C). As PAoP~! = Ay = al, we
deduce that (Ao,Bl, RN B/) = P(A(),Al, ce 7Ag)P71.
Assume that Ay is not a scalar matrix, i.e Ay # %trA I,. Let

Ay = QAQ ™" = @ aily,,
k

1§sz ai#aj fOI‘Z‘#.j? iaj:]w"'aka ZnZ:p
=1

Then the g+1 tuple (Ao, ... ,flq) = Q(Ay,...,4,)Q 1 isaq+1 tuple of di-
agonable commuting matrices. The specific form of Ag and the assumption
that Ap and A; commute implies

Aj = @']leiij,i; jlj’i S (CpiXpi, i=1,...,k, j=1,...,q.

The assumption that ([lo, ceey flq) is a ¢+ 1 tuple of diagonable commuting
matrices implies that each i the tuple (ailpi,flu .. .,flq,i) is ¢ + 1 tuple
of diagonable commuting matrices. Hence the induction hypothesis yields
that (a;1p,, flu . ,flqyi) is similar to a g+ 1 diagonal tuple for 7 =1,..., k.
It follows straightforward that (Ag, 4; ..., A,) is simultaneously similar to

a diagonal g + 1 tuple. O

The problem when A(x) € C[z]"*™ is strictly similar to an upper tri-

angular matrix B(z) € C[z]"*"™ is equivalent to the problem when an ¢+ 1
tuple (Ao, ..., Ap) € (C**™)**1! is simultaneously an upper triangular tu-
ple (Bo,...,By), i.e. each B; is an upper triangular matrix, is solved in

[DDG51]. We bring their result without a proof.
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Definition 3.10.5 Let D be a domain, let n,m be positive integers and
let Cyp,...,Cp € D", Then A(C,,...,Cy) C D" ™ denotes the minimal
algebra in D™*™ containing I,, and Cq,...,Cy,. That is every matriz F' €
A(C,,...,Cp) is a noncommutative polynomial in Cy,...,Ch,.

Theorem 3.10.6 Let m,{ be positive integers and let Ag,..., Ay €
(Can)f#*l‘ TFAE:
(a) (Ao, ..., As) is simultaneously similar to an upper triangular tuple (By, ..., By) €
MH(C)Z'H.
(b) For any 0 < i < j </l and F € A(A,,...,As)) the matriz (A;A; —
A;A;)F is nilpotent.

The implication (a) = (b) is trivial. (See Problem 2.) The verification
of condition (b) can be done quite efficiently. (See Problem 3.)

Corollary 3.10.7 Letm, ¢ be positive integers and assume that Ag, ..., Ay €
C™ ™ are commuting matrices. Then (Ao, ..., Ay) is simultaneously similar
to an upper triangular tuple (By, ..., By).

See Problem 4.

Problems

1. Let F be a field. View F**" as an n? dimensional vector space over
F. Note that any A € F™"*™ acts as a linear transformation on F"*"
by left multiplication: B +— AB, B € C"*™. Let Ag,..., Ay € F™"*",
Let W = span (I,,) and define

¢
Wk:Wk71+ZAjWk:717 k=1,...,.
j=0
Show that Wi_; C Wy for each k > 1. Let p be the minimal
nonnegative integer for which the equality Wy = Wy holds. Show
that A(A,,...,4¢) = W,. In particular A(A,,...,A,) is a finite
dimensional subspace of F™*".

2. Show the implication (a) = (b) in Theorem 3.10.6.

3. Let the assumptions of Problem 1 hold. Let Xy = A(A,,..., 4y) and
define recursively

X = Z (AZA] — AjAZ')Xk,1 C ann, k=1,...,.

0<i<j<t
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Show that the condition (a) of Theorem 3.10.6 to the following two
conditions:
(C)AikaXk, 1=0,...,0, k=0,.....
(d) There exists ¢ > 1 such that X, = {0} and X}, is a strict subspace
of Xy fork=1,...,q.

4. Let Ag,...,Ap € F™*™. Assume that 0 # x € F" and Agx = AoX.
Suppose that AgA; = A;Ag, i=1,...,¢.

(a) Show that any nonzero vector in A(A4,, ..., A¢)span (x)(D span (x))
is an eigenvector of Ay corresponding \g.

(b) Assume in addition that Ay, ..., A; are commuting matrices whose
characteristic polynomials split in I to linear factors. Show by induc-
tion that there exists 0 # y € A(A,,..., Ag)span (x) such A;y =
)\iy, Z:O,,g

(¢) Show that if Ag,..., A, € F™*™ are commuting matrices whose
characteristic polynomials split in F to linear factors then (A, ..., Af)
is simultaneously similar over GL(n,F) to an upper triangular ¢ + 1
tuple.

3.11 Similarity to diagonal matrices

Theorem 3.11.1 Let A(z) € HY*" and assume that the characteristic
polynomial of A(x) splits in Ho as in (3.9.3). Let
(3.11.1) B(z) = diag(A1(x), ..., An(2)).

Then A(x) and B(x) are not analytically similar if and only if there exists
a nonnegative integer p such that

kp(A, A) + kp(B, B) < 26,(A, B),
(3.11.2)
k(A A)+ kj(B,B) =2K;(A,B), j=0,...,p—1, ifp>1.
In particular A(z)=B(z) if and only if the three matrices given in (2.9.4)
are equivalent over Hy.
Proof. Suppose first that (3.11.2) holds. Then the three matrices in

(2.9.4) are not equivalent. Hence A(:z:)a;é:B(z). Assume now that A(z)a/é:B(x).
Without a loss in generality we may assume that A(z) = C(z) where C(z)
is given in (3.9.4). Let

B(z) = &i_,B;(z), Bj(0) = ajl,,, j=1,...,L
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We prove (3.11.2) by induction on n. For n =1 (3.11.2) is obvious. Assume
that the (3.11.2) holds for n < N — 1. Let n = N. If A(0) % B(0) then
Theorem 2.9.2 implies the inequality (3.11.2) for p = 0. Suppose now
A(0) = B(0). That is A;(0) = B;(0) = a;l,,;, j = 1,...,£. Suppose first
that £ > 1. Theorem 3.9.4 yields '

14 £
Kp(A, A) = Z“p(Aj’Aj)a tp(A, B) = Z“p<Aijj)a
j=1 Jj=1
¢
kp(B, B) = rp(Bj, By).
j=1

Problem 4 implies that A(z) AB(x) <= A,(x) ~B;(z) for some j. Use
the induction hypothesis to deduce (3.11.2). It is left to consider the case

A(O) = B(O) = Qp, KZ()(A,A) = /QQ(A, B) = Fio(B,B) = 0.

Let
A (g) = AW a0l pay ) B@) a0l
X X

Clearly

K“P(AaA) = "ip*1<A(1)’ A(l))7 KVP(A>B> = ’%pfl(A(l)’B(l))’
tip(B, B) = rip_1(BY, BW).

Furthermore A(z)~B(z) < AM(z)~B®(z). Continue this process. If
at some (first) stage k either A®)(0) % B®*)(0) or A%)(0) has at least two
distinct eigenvalues we conclude (3.11.2) as above. Suppose finally that
such k does not exist. Then A(z) = B(z) = A(x)I, which contradicts the

assumption A(x)a/éB(x). O

Let A(z) € H{*". The Weierstrass preparation theorem (Theorem
1.8.4) implies that the eigenvalues of A(y®) are analytic in y for some s|n!.
That is the eigenvalues Ai(x),. .., A, (z) are multivalued analytic functions
in  which have the expansion

k
s

/\j(x):Z)\jkx , j:l’.._7n_
k=0

In particular each \; has s; branches, where s;|m. For more properties of
the eigenvalues A1 (z),. .., Ay (x) see for example [Kat80, Chap.2].
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Let A(z) € C[z]"*". Then
¢
(3.11.3) A(z) =Y Apa*, A, eC™ k=0,...,L
k=0
The eigenvalues of A(z) satisfy the equation

det (A — A(x)) = A"+ Zaj(x))\"*j, a;j(z) e Clz], j=1,...,n.

(3.11.4)

Thus the eigenvalues A;(x), ..., A, (x) are algebraic functions of x. (See for
example [GuR65].) For each ¢ € C we apply the Weierstrass preparation
theorem in H¢ to obtain the Puiseausz expansion of \j(x) around z = (:

k
s

(3.11.5) A(@) =D X —=0)+, j=1,...,n
k=0

For simplicity of notation we choose s < n! for which the above expansion
holds for each ¢ € C. (For example s = n! is always a valid choice.) Since
A(z) is a polynomial matrix each \;j(z) has Puiseaux expansion at co. Let

L
A@) =a'B(), Bl =Y Aw'™
k=0

Then the Puiseaux expansion of the eigenvalues of B(y) at y = 0 yields

k

(3.11.6) Nj(@) =2ty Np(oo)z™r, j=1,...,n.
k=0

Equivalently, we view the eigenvalues \;(x) as multivalued analytic func-
tions over the Riemann sphere P = C U oo. To view A(z) as a matrix
function over P we need to homogenize as in §2.1.

Definition 3.11.2 Let A(x) be given by (3.11.3). Denote by A(zo,x1)
the corresponding homogeneous matrix

E/
(3117) A(l'o,iﬁ) _ ZAkel’g_kxlf c C[I()’xl]nxn,

k=0
where ¢! = —1 if A(z) =0 and Ay # 0 and A; = 0 for 0/ < j < Cif
A(x) # 0.
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Let A(z), B(z) € Clz]™*™. Then A(z) and B(x) are similar over C[x],
denoted by A(z) ~ B(x), if B(x) = P(x)A(x)P~!(z) for some P(z) €
GL(n,C[z]). Lemma 2.9.4 implies that if A(z) ~ B(z) then the three
matrices in (3.6.2) are equivalent over Clx]. Assume a stronger condition

AXB. Clearly if B(z) = PA(z)P~! then B(zg,z1) = PA(zo,21)P L
According to Lemma 2.9.4 the matrices

(3.11.8) I® Az, x1) — Azo, 1) @1,
I1® A(zo, 1) — B(zo, 1) ® 1, 1® B(xg, 1) — B(zo,21)" @1,

are equivalent over Clzg,z1]. Lemma 1.12.3 yields.

Lemma 3.11.3 Let A(z), B(z) € Clz]™ ™. Assume that A(z)~B(z).
Then the three matrices in (3.11.8) have the same invariant polynomials
over Clxg, z1].

Definition 3.11.4 Let A(x), B(x) € Clx]™*". Let A(xo,x1), B(zo,x1)
be the homogeneous matrices corresponding to A(x), B(x) respectively. De-
note by ix(A, B,xo,x1), k = 1,...,7(A, B) the invariant factors of I ®
A(.’Eo, $1) — B(il,'()7 l’l)T ® 1.

The arguments of the proof of Lemma 2.1.2 imply that ix (A, B, o, x1) is
a homogeneous polynomial for k = 1,...,r(A, B). Moreover ix(A, B,1,x)
are the invariants factors of I ® A(x) — B(z)" ® I. (See Problems 5-6.)

Theorem 3.11.5 Let A(x) € Clz]"*". Assume that the characteristic
polynomial of A(x) splits to linear factors over Clz]. Let B(x) be the di-
agonal matriz of the form (3.11.1). Then A(x) ~ B(z) if and only if the

three matrices in (3.6.2) are equivalent over Clz]. Furthermore A(z)~B(x)
if and only if the three matrices in (1.34.8) have the same invariant factors
over Clxg, z1].

Proof. Clearly if A(x) ~ B(x) then the three matrices in (3.6.2) are

equivalent over C[z]. Similarly if A(z)=B(z) then the three matrices in
(1.34.8) have the same invariant factors over Clzg,21]. We now show the
opposite implications.

Without loss of generality we may assume that B(x) is of the form

B(x) = @& Ai(@) I, € Cla]™™, N(z) # Nj(2), i #j4, 1,5 =1,...,m.
(3.11.9)

Thus for all but a finite number of points ( € C we have that

(3.11.10) M(Q) AN fori# 4, i,j=1,...,m.
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Assume first that A(z) ~ B(z). Let P;(A) be the projection of A(x) on
Aj(z) for 5 = 1,...,m. Suppose that (3.11.10) is satisfied at ¢. Problem
3.4.10 yields that each P;j(z) is analytic in the neighborhood of . Assume
that (3.11.10) does not hold for ¢ € C. The assumptions that the three
matrices in (3.11.8) have the same invariant polynomials imply that the
matrices in (3.6.2) are equivalent over He. Now use Theorem 3.11.1 to get
that A(z) = Q(z)B(x)Q(z)~!, @ € GL(n,H¢). Clearly P;(B), the pro-
jection of B(x) on Aj(x), is 0@ I,,; @ 0. In particular P;(B) is analytic in
the neighborhood of any ¢ € C and its rank is always equal to n;. Prob-
lem 3.4.11 yields that P;(A)(z) = Q(z)P;(B)(z)Q(z)~' € HZ ™. Hence
rank P;j(A)(¢) = n; for all ¢ € C. Furthermore P;(A)(x) € HZ*", i.e. each
entry of Pj(A) is an entire function (analytic function on C). Problem
3.4.14 yields that

4 o7 A MO
(3.11.11) P](A)(O_kﬂ# N OESWARE 1,..

SN
Hence each entry of P;(A)(¢) is a rational function of ¢ on C. Since
P;(A)(x) is analytic in the neighborhood of each ¢ € C it follows that
Pi(z) € Clz]™*™. We also showed that its rank is locally constant, hence
rank Pi(x) = n;, i =1,...,m. Therefore the Smith normal form of P;(z)
over Cz] is P;(z) = U;(z) (I, ® 0)Vi(z), U;,V; € GL(n,C[z]). Let

uy;(x),..., Uy, s(x) be the first n; columns of U;(x). Then P;(z)C" =
span (u i(x),...,up, i(x)). Recall that Pj(x) + ...+ Py(x) = I,,. Hence

u,1(x), .. Uy 1(2), .., urm (), ..., Uy, m(x) is a basis for C™ for each
x € C. Let S(z) be the matrix with the columns

11171(37), .. .7un171(1‘), .. .,uLm(x), . ,unm’m(x).

Then S(z) € GL(n,C[z]). Let D(z) = S~!(z)A(z)S(x) € Clz]™*". Since
A(x) is pointwise diagonable D({) = B((), where ¢ satisfies (3.11.10) and
B(z) is of the form (3.11.9). Since only finite number of points ¢ € C do
not satisfy the condition (3.11.9) it follows that D(xz) = B(x). This proves
the first part of the theorem.

Assume now that the three matrices in (1.34.8) have the same invariant
factors over Clzg,1]. The same arguments imply that A(zg, 1)~B(z, 1)
over the ring Hy. That is P;(A) is also analytic at the neighborhood ¢ = cc.
So P;j(A) is analytic on P hence bounded, i.e. each entry of P;(A4) is
bounded. Hence P;j(A) is a constant matrix. Therefore S(x) is a con-

stant invertible matrix, i.e. A(z)~B(x). O
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Let A(x) € C[z]™*™ be of the form (3.11.3) with £ > 1 and A, # 0.
Assume that A(z) is strictly similar to a diagonal matrix B(z). Then
A(zx) is pointwise diagonable, i.e. A(x) is similar to a diagonal matrix
for each z € C, and A, # 0 is diagonable. Equivalently, consider the
homogeneous polynomial matrix A(zg,z1). Then A(zg,z1) is pointwise
diagonable (in C?). However the assumption that any A(zg, 1) is pointwise
diagonable does not imply that A(x) is strictly equivalent to a diagonal
matrix. Consider for example

2

2
= T S Zox1
(3.11.12) A(l’) = [O 1 —|—1‘2:| = A(xo,x1) = [O $% +x%] .

(See Problem 2.)

Definition 3.11.6 Let A(z) € Clz]™™*™ be of the form (3.11.3) with
¢>1and Ay # 0. Let M\p(z) and Ag(z) be two distinct eigenvalues of
A(z). (Ap(x) and Aj(x) have distinct Puiseaux expansion for any ( € P.)
The eigenvalues Ap(x) and Ag(x) are said to be tangent at ( € P if their
Puiseauz expansion at ¢ satisfy

(3.11.13) k() = Ar(€), k=0,...,s.

(Note that two distinct eigenvalues are tangent at oo if the corresponding
eigenvalues of A(z,1) are tangent at 0.)

Note that for A(z) given in (3.11.12) the two eigenvalues of A(z) z? and
1 + 22 are tangent at one point ¢ = oo. (The eigenvalues of A(x,1) are 1
and 1+ 22.)

Theorem 3.11.7 Let A(x) € Clz]™*™ be of the form (3.11.3) with £ >
1 and Ay # 0. Assume that B(x) € Clx]"*" is a diagonal matriz of the
form 3270 Ni(z) Iy, where ky,...,ky, > 1. Furthermore Ay (z),..., An(2)
are m distinct polynomials satisfying the following conditions:

(a) £ >deg N\;(x), i=1,...,m.

(b) The polynomial A\;(xz) — Xj(x) has only simple roots in C for i # j.
(Xi(€) = Ai(CQ) = Ai(Q) # Aj(Q))-

Then one of the following conditions imply that A(z) = S(z)B(z)S~ (),
where S(z) € GL(n,Clx]).

I. The characteristic polynomial of A(x) splits in Clz], i.e. all the
eigenvalues of A(x) are polynomials. A(x) is point-wise diagonable in C
and no two distinct eigenvalues are tangent at any ¢ € C .

II. A(z) is point-wise diagonable in C and Ay is diagonable. No two
distinct eigenvalues are tangent at any point ¢ € CU {oco}. Then A(z) is
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strictly similar to B(x), i.e. S(x) can be chosen in GL(n,C). Furthermore
A (x), ..., Am(x) satisfy the additional condition:

(c) deg )\1(?) = [. Furthermore, fzori # j either ‘g&" (0) # e, (0) or
(— —1y.
T (0) = G (0) and G=A(0) # G (0).

dtxz dt dt=1z dt-1g

Proof. View A(x) as matrix in M™*", where M is field of rational
functions. Let K be a finite extension of M such that det (AI — A(x)) splits

to linear factors over K. Then A(x) has m distinct eigenvalues Ay, ..., A\p, €
K of multiplicities ni,...,n, respectively. We view these eigenvalues as
multivalued functions Ai(z),..., A (z). Thus for all but a finite number

of points ¢ (3.11.10) holds. Assume that ¢ satisfies (3.11.10). Denote by
P;(¢) the projection of A(¢) on A;(¢). Problem 10 implies that P;(x)
is a multivalued analytic in the neighborhood of ¢ and rank P;(¢) = n;.
Problem 14 yields (3.11.11). We claim that in the neighborhood of any
¢ € C each A; and P; is multivalued analytic and rank P;(x) = n;. Let
¢ € C for which (3.11.10) is violated. For simplicity of notation we consider
A1(z) and Pi(z). Let

MO =...=20) # M), k=r+1,...,m.
Theorem 3.5.7 implies the existence of Q(x) € GL(n,H¢) such that

Q™! (2)A(2)Q(z) = Ci(z) ® Ca(a),

r
Cj(m)eH?ijj7 i=12 m :Zni’ Mo =N — M.
i=1

The eigenvalues of Cy (z) and Ca(x) are A1 (z), ..., A\ () and A1 (2), ..., A (2)
respectively in some neighborhood of {. Since C(xz) is pointwise diagonable

in H¢ it follows that C4(x) and Cy(x) are pointwise diagonable in He. We
claim that \;(x) € He, the projection P;(x) of Cy () on A\i(z) is in H’meml
and rank Py(¢) = n; for i = 1,...,r. Ifr =1 A\ (z) = n%trcl(x) € He
and Py(z) = I,,,. Assume that 7 > 1. Since C}(¢) is diagonable and has
one eigenvalue A;(¢) of multiplicity m; it follows that C1(¢) = A () Im,-
Hence

Ci(z) = A\ (O)Im, + (= O)Ch(x), Ci(z) € Hp

Clearly Cy(z) has r distinct eigenvalues Ay (z), ..., A.(z) such that

M(@) = M)+ (@ —OM(x), i=1,...,r

Each A;(z) has Puiseaux expansion (3.11.5). The above equality shows
that for 1 < i < j < 7 X(z) and Aj(x) are not tangent if and only if
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Ai(¢) # Aj(n). By the assumption of theorem no two different eigenval-
ues of A(z) are tangent in C. Hence A\;(¢) # \;j(n) for all i # j < r.
That is Cy(¢) has r distinct eigenvalues. Apply Theorem 3.5.7 to C'l(g)
to deduce that C({) is analytically similar Cy @ ... ® C; such that C;
has a unique eigenvalues Xz(x) of multiplicity n; for ¢ = 1,...,r. Hence
i) = n%tr Ci(x) € He = M\(x) € He. Clearly the projection of Cy(x)
on A;(z) is I,,. Hence 13}(33) is analytically similar to the projection to
0®...01,,...00. So Pi(x) € H?“X"“, rank P;(z) = n; for i = 1,..,7.
Hence Py (z) € H}™", rank Pi(z) = ny as we claimed.

Assume now that A1 (), ..., A, (x) are polynomials. Hence and P;(xz) are
entire functions on C. (See for example [Rud74].) Since lim|,| o % = A

it follows that lim supy,|_, o |)‘|;(|‘f)‘ < p(A), where p(A) is the spectral radius

of Ay. Hence each \;(x) is polynomial of degree ¢ at most. Since Ay # 0
it follows that at least one of A\;(x) is a polynomial of degree ¢ exactly.
We may assume that deg A\j(z) = ¢. This proves the condition (a) of the
theorem. The condition (b) is equivalent to the statement that no two
distinct eigenvalues of A(x) are tangent in C.

Define P;(¢) by (3.11.11). As in the proof of Theorem 3.11.5 it follows
that P;(z) € Clz]"*™ and rank P;(z) = n;, i = 1,...,m. Furthermore
we define S(z) € GL(n,C|x]) as in the proof of Theorem 3.11.5 such that
B(z) = S~Y(x)A(x)S(x). This proves the first part of the theorem.

To prove the second part of the theorem observe that in view of our
definition of tangency at oo the condition (c¢) is equivalent to the condition
that no two distinct eigenvalues of A are tangent at infinity. Assume now
that A; is diagonable and no two distinct eigenvalues are tangent at oo.
Then the above arguments show that each P;(x) is also multivalued analytic
at co. By considering z7!A(x) it follows that P;(z) is bounded at the
neighborhood of co. Hence P;(z) = P;(0) for i = 1,...,m. Thus S €
GL(n,C). So A(z) is diagonable by a constant matrix. In particular all
the eigenvalues of A(x) are polynomials. Sice no two distinct eigenvalues
are tangent at co we deduce the condition (c) holds. O

Problems

1. Let A(z) € C[z]™*™. Assume that there exists an infinite sequence of
distinct points {(;}3° such that A((x) is diagonable for k = 1,....,.
Show that A(z) is diagonable for all but a finite number of points.
(Hint: Consider the rational canonical form of A(x) over the field of
rational functions C(x).)
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2. Consider the matrix A(x) given in (3.11.12). Show
(a) A(x) and A(xg,x1) are pointwise similar to diagonal matrices in
C and C? respectively.
(b) The eigenvalues of A(x) are not tangent at any point in C.
(c) Find S(z) € GL(2, C[z]) such that S~ (z)A(x)S(z) = diag(z?, 1+
(d) Show that A(z) is not strictly similar to diag(z2,1 + z2).
(

¢) Show that the eigenvalues of A(x) are tangent at { = co.

3.12 Property L

In this section and the next one we assume that all pencils A(x) = Ag+ A1z
are square pencils, i.e. A(z) € Clz]™*™, and Ay # 0 unless stated otherwise.
Then A(xg,z1) = Apxo + Ar271.

Definition 3.12.1 A pencil A(z) € C[z]"*" has property L if all the
eigenvalues of A(xg,x1) are linear functions. That is A\;(xg,21) = ;a0 +
Bix1 is an eigenvalue of A(xg,x1) of multiplicity n; fori=1,...,m, where

n= Zni, (0, Bi) # (¢, B5), for 1 <i < j <m.
i=1

The proofs of the following propositions is left to the reader. (See Problems
1-2)

Proposition 3.12.2 Let A(x) = Ag + zA; be a pencil in Clx]™*".
TFAE:
(a) A(x) has property L.
(b) The eigenvalues of A(x) are polynomials of degree 1 at most.
(¢) The characteristic polynomial of A(x) splits to linear factors over Clx].

(d) There is an ordering of the eigenvalues of Ay and Ay, ai,...,a, and
bi,..., by, respectively, such that the eigenvalues of Agxg+ A1x1 are ajzo+
bl.Tl, s, QR + bnxl.

Proposition 3.12.3 Let A(x) be a pencil in Clz]"*™. Then A(z) has
property L if one of the following conditions hold:
(a) A(z) is similar over C(z) to an upper triangular matriz U(z) € C(x)™*™.
(b) A(x) is strictly similar to an upper triangular pencil U(x) = Uy + Uz,
i.e. Uy, Uy are upper triangular.
(¢) A(x) is similar over Clz] to a diagonal matriz B(x) € Clz]™*™.
(d) A(z) is strictly similar to diagonal pencil.
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Note that for pencils with property L any two distinct eigenvalues are
not tangent at any point of P. For pencils one can significantly improve
Theorem 3.11.7.

Theorem 3.12.4 Let A(z) = Ag + Az € Clz]"*" be a nonconstant
pencil (A1 # 0). Assume that A(z) is pointwise diagonable on C. Then
A(z) has property L. Furthermore A(x) is similar over Clx] to a diagonal
pencil B(x) = By + Bix. Suppose furthermore that Ay is diagonable, i.e.
Az, 1) is pointwise diagonable on C?. Then A(x) is strictly similar to the
diagonal pencil B(x), i.e. Ag and Ay are commuting diagonable matrices.

Proof. We follow the proof of Theorem 3.11.7. Let Ay (x), ..., Ay (x) be
the eigenvalues of A(x) of multiplicities ny, ..., n,, respectively, where each
Aj(z) is viewed as multivalued function of z. More precisely, there exists
an irreducible polynomial

Gz, A) = N + > ¢y (x)N\™9 € Cla, A,
(3.12.1)
d)(xv >‘)|det ()‘I - A(:L’)),

such that \;(z) satisfies the algebraic equation
(3.12.2) é(z,\) = 0.

Moreover all branches generated by A;(z) on C will generate all the solu-
tions A(x) of (3.12.2). Equivalently all pairs (z, A) satisfying (3.12.2) form
an affine algebraic variety Vo C C2. If we compactify V; to a projective
variety V' C P? then V is a compact Riemann surface. V\V; consists of a
finite number of points, the points of Vj at infinity. The compactification
of Vp is equivalent to considering \;(z) as a multivalued function on P.
See for example [GuR65]. Note that any local solution of (3.12.2) is some
eigenvalue \;(z) of A(x). Since A(() is diagonable at ¢ € C Theorem 3.8.1
implies that the Puiseaux expansion of \;(x) around ¢ in (3.11.5) is of the
form

(@) = MO + 3 Ar(O e - 0.
k=s

Then

d\j(z)  ~k B
5 =2 PO =0
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So d’\é;w) is a multivalued locally bounded function on C. Equivalently,

using the fact that A;(z) satisfy (3.12.2) we deduce

9¢(x,\)
(3.12.3) S 1C—ry
dx 9¢(z,A)
dy
Hence d)‘éa(cx) is a rational function on V', which is analytic on Vj in view

of the assumption that A(x) is pointwise diagonable in C. The Puiseaux
expansion of \;j(z) it oo (3.11.6) is

k
s

Aj(z) == Z Ajr(oc0)z ™5 .
k=0

Hence

d\;(z s—k &
% = )\jo(OO) + Z s /\jk(oo)x s,
k=1

That is the multivalued function (D‘C’l%igﬂ) is bounded at the neighborhood of
oo. Equivalently the rational function in (3.12.3) is bounded at all points
of V\Vy. Thus the rational function in (3.12.3) is bounded on a compact
Riemann surface (3.12.2). Hence it must be constant, i.e. d’\jf) =b; =
Aj(xz) = a; +bjxz. So we have property L by part (b) of Proposition 3.12.2.
In particular two distinct eigenvalues of A(z) are not tangent at any ¢ € P.
The first part of Theorem 3.11.7 implies that A(z) is similar to B(x) =
Yoiey ®(aj + bjx)I,; over Clz.

Assume now that A; is diagonable. Then the second part of Theorem
3.11.7 yields that A(x) is strictly similar to B(z), which is equivalent to
the assumption that Ag, A; are commuting diagonable matrices (Theorem
3.10.4). O

Theorem 3.12.5 Let A(x) = Ag + Az € Clz]™*™. Assume that Ay
and Ay are diagonable and AgAy # A1Ag. Then exactly one of the following
conditions hold:

(a) A(x) is not diagonable exactly at the points (1, ...,(,, where 1 < p <
n(n —1).
(b) A(z) is diagonable exactly at the points (1 =0,...,{, for some g > 1.

Proof. Combine the assumptions of the theorem with Theorem 3.12.4
to deduce the existence of 0 # ¢ € C such that A(¢) is not diagonable.
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Consider the homogenized pencil A(zg, 1) = Agxo + A121. Let
Clp1s- -, px) (@0, 21) = @, C(p;) € Clag, a1]""",

k
Hpi(xo,xl,)\) = det (M — A(xo, 1)),
i=1

pi(Io,l‘l,A) = )\ml + Z)\miijpij(x) S C[mg,xl][/\],l S m; = 1, .. .,k,

j=1
p1lpz2| - Pk,

be the rational canonical form A(zg,x1) over C(xp,z1). (See 2.3.) That is
each p;(xg,z1,\) is a nontrivial invariant polynomial of A\ — A(zg,x1).
Hence each p;(zo,x1,A) is a homogeneous polynomial of degree m,; in
29,71, A. Furthermore A(zg,z1) = S(xo,1)C(p1, ..., pr)(T0,21)S (20, 21) "
for some

S(zo,x1) € Clzg, z1]"*"™ N GL(n,C(zq, z,)). Choose o = 7 # 0 such that
det S(7,21) is not identically zero in x;. Then A(x) = A(1, z) is pointwise
similar to

%C’(ph ..., pr) (T, 7x) at all point for which det S(7,7z) # 0, i.e. at all but
a finite number of points in C.

Since C[zo, x1, A] is Dy, then pi(zo, z1, ) = [[i—, ¢i(z0, 21, A)%, where
each ¢; is a nonconstant irreducible (homogeneous) polynomial and ¢; is
coprime with ¢; for ¢ # j. Assume first that some ¢; > 1. Then C(pg)(7,t)
has a multiple eigenvalue for any ¢t € C, hence it is not diagonable. That is
the condition (b) of the theorem holds.

Assume now that ¢; = ... = ¢, = 1. This is equivalent to the assump-
tion that pg(zo,21,A) = 0 does not have multiple roots for some (zg,z1).
We claim that it is possible to choose 7 # 0 such that pg(7, 1, A) has my

pairwise distinct roots (in A) except in the points (i, ...,(;. Consider the
discriminant D(zg, z1) of px(zo,z1,A) € Clzo,z1][A]. See 1.9. Since py;
is a homogeneous polynomial of degree i for i = 1,...,my it follows that

D(zg,x1) is homogeneous polynomial of degree my(my — 1) < n(n — 1).
Since pg(zo,z1,A) = 0 does not have multiple roots for some (xg,x1) it
follows that D(xzg, 1) is not a zero polynomial, and pg(xg,21,A) = 0 has a
multiple root if and only if D(xg,z1) = 0. Choose 7 # 0 such that D(7, x;)
is not a zero polynomial. Let (1, ..., {, be the distinct roots of D(r, ) = 0.
Since the degree of D(zg,x1) is at most n(n — 1) it follows that the degree
of D(r,x) is at most n(n — 1). Hence 0 < g < n(n — 1). By the defini-
tion of the invariant polynomials it follows that pg(xo,x1, A(zo,21)) = 0.
Hence pi (1, 7t, A(7,7t)) = 0. Let t € X = C\{C1,..., (s} Since pi(7,7t, \)
has my, distinct roots, which are all eigenvalues of A(7,7t) it follows that
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A(r,Tt) = TA(¢) is a diagonable matrix. O

For n = 2 the case (b) in Theorem 3.12.5 does not arise. See Problem
4. We do not know if the case (b) of Theorem 3.12.5 arises.

Problems

1. Prove Proposition 3.12.2.

2. (a) Show that property L is equivalent to the condition (a) of Propo-
sition 3.12.3.

(b) Prove the other conditions of Proposition 3.12.3.

3. Show that a pencil A(z) = Ag + A1z € C[z]**? have property L if
and only if A(z) is strictly similar to an upper triangular pencil.

4. Let A(wg,z1) = Agxo + A121 € Clx0,71]?*2. Then exactly one the
following conditions hold.

(a) A(zp, 1) is strictly similar to a diagonal pencil. (Property L
holds).

(b) A(z, 1) is not diagonable except exactly for the points (g, x1) #
(0,0) lying on a line axg+bx; = 0. (Property L holds, AgA; = A1 Ag
but A; is not diagonable for some i € {1,2}, A(xg,z1) has a double
eigenvalue.)

(¢) A(zmg, 1) is diagonable except exactly for the points (xg,x1) #
(0,0) lying on a line axg 4+ bx; = 0. (Property L holds.)

(d) A(xg, 1) is diagonable except exactly the points (zg,x1) # (0,0)
which lie on two distinct lines in C2. (Property L does not hold.)

5. Let
01 0 1 1 2
Ap=10 0 1|, A=]1 1 2
0 0O -1 -1 -2

(a) Show that A, A; are nilpotent while Ay 4+ A; is nonsingular.
(b) Show that A(x) = Ay + Aix does not have property L.
(c) Show that A(x) is diagonable for all  # 0.
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3.13 Strict similarity of pencils and analytic
similarity

Let A(z) = Ao + A1z, B(z) = By + Biz € Clz]™*™. Recall the notion of

strict equivalence A(z)2B(z) (2.1) and strict similarity A(z)~B(z) (3.10).

Clearly A(z)~B(z) = A(z)<B(z). (2.9.3) yields.

Proposition 3.13.1 Let A(z), B(x) € C[z]"*™ be two strictly similar
pencils. Then the three pencils in (3.6.2) are strictly equivalent.

Using Kronecker’s result (Theorem 2.1.7) we can determine if the three
pencils in (3.6.2) are strictly equivalent. We now study the implications of
Proposition 3.13.1.

Lemma 3.13.2 Let A(z) = Ag + A12, B(z) = By + Biz € Clz]™*™ be
two pencils such that

(3.13.1) I®Ax) - Ax)" @ IRT® A(z) — B(z)" @ 1.
Then there exists two nonzero U,V € C"*™ such that

(3.13.2) A(x)U —UB(z) =0, VA(z)— B(x)V =0.

In particular

(3.13.3) ApgKer V, A1Ker V C Ker V, BgKer U, BiKer U C Ker U.

Proof. As A(z)I — I A(x) = 0 it follows that the kernels of I ® A(z) —
Alx)T®I € (C[J;]”ZX"2 and its transpose contain a nonzero vector I,, € C"”
which is induced by I,,. (See 2.8.) Hence the kernel of I® A(z) — B(z)" @1
contain nonzero constant vectors. This is equivalent to (3.13.2).

Assume that (3.13.2) holds. Let x € Ker V. Multiply the second equal-
ity in (3.13.2) from the right by x to deduce the first part (3.13.3). The
second part of (3.13.3) is obtained similarly. O

Definition 3.13.3 Ay, A; € C"*™ have a common invariant subspace
if there exist a subspace U C C", 1 < dim U < n—1 such that AgU, AU C
U.

The following claims are left to the reader (see Problems 1-2).
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Proposition 3.13.4 Let A(x) = Ay + xzA; € Clz|"*"™. Then A(x) is
strictly similar to a block upper triangular pencil

_ | Bu(z) Bia(x)
B(a) [ ) Bgz(x)} 7
(3.134) Bu(z) € Clal™ ™, Buala) € Cla]™™, Bao) € Cla]"™*"

1 S ni,n2, Ny +ng = n,
if and only if Ag, A1 have a common invariant subspace.

Proposition 3.13.5 Assume that A(x) € Clz]"*™ is similar over C(z)
to a block upper triangular matriz B(x) of the form (3.13.4). Then det (A —
A(z)) € Clz, A] is reducible.

Theorem 3.13.6 Let A(x) = Ao + A1z, B(x) = By + Biz € Clz|™*".
Assume that either det (A — A(zx)) or det (A — B(x)) is irreducible over
Clz,A]. Then A(z)ZB(z) if and only if (3.13.1) holds.

Proof. Assume that (3.13.1) holds. Suppose that det (A — A(z)) is
irreducible. Propositions 3.13.4-3.13.5 imply that Ag, A; do not have a
common invariant subspace. Lemma 3.13.2 implies that the matrix V in
(3.13.2) is invertible, i.e. B(x) = VA(z)V L. Similarly if det (\I — B(x))
is irreducible then B(z) = Ut A(z)U. O

Definition 3.13.7 Let Z,, C (C™"*™)?2 be the set of all pairs (Ag, A1)
such that det (A — (Ao + A1x)) irreducible.

We will show later that Z,, = (C"*")2\ X,, where X,, is a strict subvariety
of (C"*™)2. That is, for most of the pencils A(z),(Ag, A1) € (C"*")?
det (A — A(z)) is irreducible. Clearly if (Ao, A1)*(Bo, B;) then cither
(Ao, Al), (Bo, Bl) €1, or (Ao,Al), (Bo,Bl) ¢ In.

Corollary 3.13.8 Let (AO7 Al), (BO, Bl) €7Z,. Then A(.Z‘) =Ao+Aix
is strictly similar to B(x) = By + Byx if and only if (3.13.1) holds.

We now discuss the connection between the notion of analytic similarity
of matrices over Hy and strict similarity of pencils. Let A(z), B(z) € H{*"
and assume that n(A, A) = 1. Suppose that AéB(x). Theorem 3.9.2
claims that A(z) ~ B(z) if and only if there exists two matrices Ty €
GL(n,C), T, € C™"*" such that

ATy =ToBy, ATy + AgTy = Ty By + T By.
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Let

Ao Ay

(3.13.5) F(Ag, Ay) = { o A

:| c (C2n><2n

Then (3.9.2) is equivalent in this case to
(3.13.6) F(Ao, AV)F(Ty, T1) = F(Tp, T1)F(Bo, By).

As det F(Ty, Ty) = (det Tp)? it follows that Tp is invertible if and only if
F(Ty,Ty) is invertible.

Definition 3.13.9 Let Ag, A1, Bo, By € C"*". Then F(Ap, A1) and
F(By, By) are called strongly similar (F(Ag, A1) & F (Ao, A1)) if there ex-
ists F(Tp, T1) € GL(2n,C) such that (3.13.6) holds.

Clearly F(AQ,Al) = F(AQ,Al) = F(Ao,Al) ~ F(Bo,Bl). It can be
shown that the notion of strong similarity is stronger that the notion of
similarity. (Problem 10.)

Proposition 3.13.10 The matrices F(Ag, A1) and F(By, By) are strongly
similar if and only if the pencils

A(I) = F(Oal) + F(AOaAl)‘Ta B(I) = F(07I) + F(BOaBl)‘T
are strictly similar.
Proof. Let [P;;]? € C?"*2". Then F(0,I)P = PF(0,I) if and only if

Py = Poy, Py; = 0. That is P = F(Py1, P12) and the proposition follows.
O

Clearly F(Ap, A1) = F (Ao, B1) = Ag = By. Without loss of generality
we may assume that Ag = By. (See Problem 5.) Consider all matrices
Ty, Ty satisfying (3.13.6). For Ay = By (3.13.6) reduces to

AoTO = T()Ao, A0T1 — T1A0 = T()Bl — AlT().

Theorem 2.10.1 yields that the set of matrices Ty which satisfies the above
conditions is of the form

(3137) P(Al,Bl) = {TO S C(Ao) :
tr(V(T031 — AlT‘())) =0, forall V € C(A())}

Hence
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Proposition 3.13.11 Suppose that F(Ag, A1) = F(Ag, B1). Then

As in Theorem 2.9.5 for a fixed Ap, A; there exists a neighborhood
D(A;, p) such that the first two equalities in (3.11.9) imply that F'(Ag, A1) =
F(Ag, By) for all By € D(Ay1,p) (Problem 4).

We now considering a splitting result analogous to Theorem 3.5.7.

Theorem 3.13.12 Assume that

0
A o

0|, AP ecrxm =12,
0o AL

(3.13.9) Ag =

where Ag(i) and Agg) do not have a common eigenvalue. Let

1 1
By B
BQl B22

1 1
Ay AR

A= 1 1
A5 Af)

) Blz

be the block partition of A1, By as the block partition of Ag. Then
(3.13.10) P(A1, Bi) = P(A), BY) & P(AY, BYy).
Moreover

F(Ag, A1) = F(Ag, By) < F(AY Ay~ PAY B fori=1,2.
Proof. According to Problem 4 C'(A4p) = C(qu)) &) C(Aé%)). Then the
trace condition in (3.13.7) reduces to

0 1 1 0 0 1 1 0
(VT BYY — AYT) + V(1" BY) — A5 T") =0,
where
V=niaW I =1V e 1" c c(4AY) & c(4D).

Choosing either V5 = 0 or V; = 0 we obtain (3.13.10). The right impli-
cation of the last claim of the theorem is straightforward. As det Ty =

det TV det T it follows that Ty € GL(n,C) < T\” € GL(n;,C), i =

7

1,2. This establishes the left implication of the last claim of the theorem. O

Thus, the classification of strong similarity classes for matrices F'(Ag, A1)
reduces to the case where Ay is nilpotent (Problem 6). In the case Ag =0
F(0,4;) 2 F(0,B1) < A; =~ B;. In the case Ay = H,, the strong
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similarity classes of F(H,,A;) classified completely (Problem 9). This
case corresponds to the case discussed in Theorem 3.5.5. The case Ay =
H,,® H,, can be classified completely using the results of Problem 2 (Prob-
lem 3.13.11).

Problems

1.
2.
3.

Prove Proposition 3.13.4.
Prove Proposition 3.13.5.

Let A(xz) € C[z]™*™ and assume that A(z)U C U C C" is a non-
trivial invariant subspace of A(z), i.e 1 < dimU < n — 1. Let
p(z,A) € Clz, ] be the minimal polynomial of A(z)|U. Thus 1 <
deg yp(z,\) < n — 1. Show that p(z,\)|det (Al — A(z)). Hence
det (AI — A(x)) is reducible over C[z, A].

Modify the proof of Theorem 2.9.5 to show that for a fixed Ag, A1 €
C™*™ there exists p > 0 such that the first two equalities in (3.13.8)
for By € D(Ay, p) imply that F(Ag, A1) & F(Ag, By).

Show that for any P € GL(n,C)
F(Ap, A)) = F(By,B1) <= F(Ag, A)) =2 F(PByP~',PB, P ).

Assume that F(Ag, A1) = F(By, B1). Show that there exists P €
GL(n,C) such that Ay = PByP~ 1.

. Show that for any A € C

F(Ao, A1) =2 F(Bo, B1) <= F(Ao — A, Ay) = F(By — M, By).

. Let A; e C"*"™ ¢ =0,...,s— 1. Define

Ay A1 Ay .. A4

0 Ay Ay ... A,
F(Ao,...,As_l) = . . . € Comxsm,

0 0 0 .. A

F(Ao,...,As—1) and F(By,...,Bs_1) are called strongly similar

(F(Ag,...,As—1) 2 F(By,...,Bs_1))

F(Ag,...,As-1) = F(Ty,...,Ts—1)F(Bo,...,Bs—1)F(To, ..., Ts_1) ",
F(To, . ,Tsfl) S GL(STL, C)

Show that F(Ao,...,As—1) = F(By,...,Bs_1) if and only if the
equalities (3.9.2) hold for k =0,...,s — 1 and Ty € GL(n,C).
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8. Let

Z=H,&... @Hru X = [qu]‘iv [qu}‘i c (CsnXsn’

Xpq = [xz(‘?q)]?v Yig = [yl(]pq)]? eC™™, pg=1,....s.

Show that if each X, is an upper triangular matrix then

det X = H det [2PD]?

rrlp.g=1
r=1

(Expand the determinant of X by the rows n,2n, ..., sn and use the
induction.) Define

Ar = [a)]3, B, = [b{7)]; € €%,

r+1 r+1
ry _ () ) _ (pa) _
az(ﬂq) = § :'r(n—r-&-i—l)i’ b:gq) = E :y(n—r+i—1)i7 r=0,....,n—1L
i=1 i=1

Using Theorem 2.8.3 show

F(Z, X)X F(Z,Y) < F(Ay,...,An_1) = F(Bo,...,Bn_1).

9. Let X = [z45]7, Y = [y;5]7 € C**". Using Problems 7-8 show that
F(H,,X) > F(H,,Y) if and only if

Z T(n—rti)yi — Zy(n—T+i)i> forr=1,...,n.
=1

i=1

10. Let X = [x;;]3 € C?*2. Show that if x5 # 0 then F(Hs, X) = Hy.
Combine this result with Problem 9 to show the existence of ¥ €
C2*2 such that F(Hz, X) is similar to F(Hs,Y) but F(Ha, X) is not
strongly similar to F'(Hs,Y).

(3.13.11)

Assume in Problem 8 s = 2. Let

n—1 n—1

A(z) =Y A, B(x) =Y B’ € Hy**.
1=0

i=0

Use the results of Problems 7-8, (3.9.2) and Problem 2 to show that
F(Z,X) = F(Z,Y) if and only if the three matrices in (3.6.2) have
the same local invariant polynomials up to degree n — 1.



160CHAPTER 3. FUNCTIONS OF MATRICES AND ANALYTIC SIMILARITY

3.14 Historical remarks

The exposition of §3.1 is close to [Ganb9]. The results of §3.2 were inspired
by [Rot81]. The notion of local indices (Problem 3.2.3) can be found in
[FrS80]. The content of §3.3 are standard. Theorem 3.3.2 can be found
in [Wie67] and Problem §3.3.1 in [Gan59]. The use of Cauchy integration
formula to study the properties of analytic functions of operators and ma-
trices as in §3.4 is now common, e.g. [Kat80] and [Kat82]. Theorem 3.4.6
is standard. Theorem 3.4.9 is a part of the Kreiss matrix stability theorem
[Kre62]. The inequality (3.4.16) is due to [Tad81]. The results of Problem
3.4.7 are from [Fri81]. The results of §3.5 influenced by Arnold [Arn71], in
particular Theorem 3.5.3 is from [Arn71]. See also [Was77]. The subject
of §3.6 and its applications in theory of differential equations in neighbor-
hood of singularities was emphasized in works of Wasow [Was63],[Was77]
and [Was78]. Theorem 3.6.4 for one complex variable appears in [Fri80b].
Corollary 3.6.5 is due to [Was63]. Theorem 3.7.1 for simply connected do-
main is due to [Gin78]. See [WasT78] for the extension of Theorem 3.7.1 to
certain domains 2 C CP. It is shown there that Theorem 3.7.1 fails even
for simply connected domains in C3.

Theorem 3.8.1 can be found in [Kat80] or [Fri78]. The results of §3.9
were taken from [Fri80b]. It is worthwhile to mention that the conjecture
stated in [Fri80b] that A(z) and B(z) are analytically similar over Hy if
the three matrices in (3.6.2) are equivalent over Hy is false [Gur81, §6].
The contents of §3.10 are known to the experts. The nontrivial part of this
section (Theorem 3.10.6) is due to [DDG51]. Theorem 3.11.1 is stated in
[Fri80b]. Some other results in §3.11, in particular Theorem 3.11.5, seem to
be new. Property L of §3.12 was introduced by Motzkin-Taussky [MoT52]
and [MoT55]. Theorem 3.12.4 is a slight improvement of [MoT55]. Our
proof of property L in Theorem 3.12.4 follows [Kat80]. Many results in
§3.13 are taken from [Fri80a] and [Fri80b]. It connects the analytic simi-
larity of matrices with simultaneous similarity of certain pairs of matrices.
Simultaneous similarity of matrices is discussed in [Fri83].



Chapter 4

Inner product spaces

4.1 Inner product

Definition 4.1.1 Let F = R,C and let V be a vector space over F.
Then (-,-) : VXV — F is called an inner product if the following conditions
hold:

a) (ax+0by,z) =a(x,z) +b(y,z), foralla,beF, x,y,z€V,
br) forF=R (y,x)=(x,y), forallx,y eV,

(
(
(be) forF=C (y,x)=(x,y), forallx,yeV;
(¢c) (x,x) >0 forallxe V\{0}.

Ix|| :== \/(x,%) is called the norm (length) of x € V.

Other standard properties of inner products are mentioned in Problems
1-2 below. We will use the abbreviation IPS for inner product space. In
this chapter we assume that F = R, C unless stated otherwise.

Proposition 4.1.2 Let V be a vector space over R. Identify V¢, called
the complexification of V, with the set of pairs (x,y), x,y € V. Then
V¢ is a vector space over C with

(a +V-1b)(x,y) == a(x,y) + b(—y,x), foralla,beR, x,y € V.

If V has a basis e, ..., e, over R then (e,,0),...,(e,,0) is a basis of V¢
over C. Any inner product {-,-) on 'V over F induces the following inner
product on V¢:

(x,y), (w,v)) = (x,u) + {y,v) + V=1({y,u) - (x,v)), x,y,u,v € V.

161
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We leave the proof of this proposition to the reader (Problem 3 below).

Definition 4.1.3 Let 'V be an IPS. Then
(a) x,y € V are called orthogonal if (x,y) = o.
(b) S, T CV are called orthogonal if (x,y) =0 foranyx€ S,y €T.
(¢c) For any S C V, St C V is the mazimal orthogonal set to S.

(d) X4,..., Xy is called an orthonormal set if
<Xi,Xj> :57;]‘, fOT all i,jil,...7m.
(e) Xy4,...,Xp 18 called an orthonormal basis if it is an orthonormal set

which is a basis in V.

Definition 4.1.4 (Gram-Schmidt algorithm.) Let V be an IPS
and S = {X4,...,Xm} C V a finite (possibly empty) set (m > 0). Then
S ={e,,...,e,} is the orthonormal set (p > 1) or the empty set (p = 0)
obtained from S using the following recursive steps:

(a) If x, = 0 remove it from S. Otherwise replace x, by ||X, ||~ *x,.

(b) Assume that x,,...,Xg is an orthonormal set and 1 < k < m. Let
Vitr = Xpt1 — Zf:(xkﬂ,xi})(i. If yri1 = 0 remove Xgy, from S. Oth-
erwise replace Xp, by ||Ye+all Vit

Corollary 4.1.5 Let V be an IPS and S = {X;,...,xp,} C V ben
linearly independent vectors. Then the Gram-Schmidt algorithm on S is
given as follows:

1
Y1 =Xy, Ti1 1= ||y1||7 €, = Y1,
11
(4.1.1) rii = (X, €5), J=1,...,4—1,
1—1 1
Yii=X; — erieja ri = |yl €= —yi, i=2,...,n.
— Tii
j=1
In particular, e; € S; and ||y;|| = dist(x;, S;—. ), where S; = span (X,,...,X;)

fori=1,...,n and Sy = {0}. (See Problem 4 below for the definition of
dist(x;, S;—,).)

Corollary 4.1.6 Any (ordered) basis in a finite dimensional IPS 'V
induces an orthonormal basis by the Gram-Schmidt algorithm.

See Problem 4 below for some known properties related to the above no-
tions.
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Problems
1. Let V be an IPS over F. Show
(0,x) = (x,0) = o,

for F =R (z,ax + by) = a{z,x) + b(z,y), foralla,b € R, x,y,z € V,
for F = C (z,ax + by) = a(z,x) + b(z,y), forall a,b € C, x,y,z € V.

2. Let V be an IPS. Show
(a) ||ax|| = |a| ||x]|| for a € F and x € V.
(b) The Cauchy-Schwarz inequality:
[y < IIx[ Tyl
and equality holds if and only if x, y are linearly dependent (collinear).
(c) The triangle inequality
I+l < Il + Iyl
and equality holds if either x =0 or y = ax for a € R,.
3. Prove Proposition 4.1.2.

4. Let 'V be a finite dimensional IPS of dimension n. Assume that

S C V. Show
(a) If x,,...,%X,, is an orthonormal set then x,,...,x,, are linearly
independent.
(b) Assume that e, ..., e, is an orthonormal basis in V. Show that

for any x € V the orthonormal expansion holds

n

(4.1.2) X = Z(x,ei>ei.

=1
Furthermore for any x,y € V

n

(4.1.3) (x,y) =Y (x,e)(y,e).

=1

(c) Assume that S is a finite set. Let S be the set obtained by the
Gram-Schmidt process. Show that S = () <= span S = {0}. Show
that if S'# () then e,,...,e, is an orthonormal basis in span S.
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(d) There exists an orthonormal basis e,,...,e, in Vand 0 <m <n
such that

€,...,6, €S, span S =span (e,,...,€n),

St = span (emi1, .-+, €n),

(S+)t = span S.

(e) Assume from here to the end of the problem that S is a subspace.
Show V = S @ S+
(f) Let x € V and let x = u + v for unique u € S, v € St. Let

P(x) := u be the projection of x on S. Show that P: V — Visa
linear transformation satisfying

P?=P, RangeP =S, KerP =S5
(g) Show

dist(x,.5) := ||x — Px|| < ||x — w|| for any w € S
(4.1.4) and equality <= w = Px.

(h) Show that dist(x,S) = |jx — w|| for some w € S if and only if
x — w is orthogonal to S.

Let X € C™*" and assume that m > n and rank X = n. Let
Xy, .., X, € C™ be the columns of X, i.e. X = [x,...x,]. Assume
that C™ is an IPS with the standard inner product (x,y) = y*x.
Perform the Gram-Schmidt algorithm (4.1.5) to obtain the matrix
Q=le,...e,) € C™*". Let R = [r;;]} € C™" be the upper trian-
gular matrix with r;;, j < given by (4.1.1). Show that QTQ = I,
and X = QR. (This is the QR algorithm.) Show that if in addition
X € R™*" then @) and R are real valued matrices.

Let C € C™*™ and assume that {A1,...,\,} are n eigenvalues of C
counted with their multiplicities. View C as an operator C : C" —
C". View C" as 2n-dimensional vector space over R?®. Let C =
A++/—1B, A, B € R™*™,

A -B
B A
C™ — C™ as an operator over R in suitably chosen basis.

a. Then C := [ ] e RZM*(n) represents the operator C :

b. Show that {\1, A, ..., Ay, An} are the 2n eigenvalues of C counting
with multiplicities.

¢. Show that the Jordan canonical form of C, is obtained by replacing
each Jordan block AI + H in C by two Jordan blocks AI + H and
M+ H.
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4.2 Special transformations in IPS

Proposition 4.2.1 Let V be an IPS and T : V — V a linear trans-
formation. Then there ezists a unique linear transformation T* : V — V
such that (Tx,y) = (x,T*y) for allx,y € V.

See Problems 1-2 below.

Definition 4.2.2 Let 'V be an IPS and let T : V. — V be a linear
transformation. Then
(a) T is called self-adjoint if T* =T ;
(b) T is called anti self-adjoint if T* = =T}
(¢) T is called unitary if T*T =TT* = 1I;
(d) T is called normal if T*T = TT*.

Denote by S(V), AS(V), U(V), N(V) the sets of self-adjoint, anti
self-adjoint, unitary and normal operators on V respectively.

Proposition 4.2.3 Let V be an IPS over F = R, C with an orthonor-
mal basis E = {e,,...,e,}. Let T : V = V be a linear transformation.
Let A = [a;;] € F"*™ be the representation matriz of T in the basis E:

(421) Qi5 = (Tej,ei>, Z,] =1,...,Nn.
Then for F =R:

T* is represented by A,
T is self — adjoint <= A= A",
T is anti self — adjoint <= A= —A",

a

(

(b
(c
(
(

— =

d) T isunitary <= A isorthogonal <= AAT = ATA =1,
e) Tisnormal <= Aisnormal <= AA" = AT A,
and for F = C:

T* is represented by A* (:= AT),
T is self — adjoint <= A is hermitian <— A = A",

S
Nl

=
~ ~—

T is anti self — adjoint <= A is anti hermitian <— A = —A*,
T is unitary <= Aisunitary < AA*=A"A=1,
T isnormal <= Aisnormal <= AA* = A*A.

~—~ o~~~
SRS
=

@
~—

See Problem 3 below.
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Proposition 4.2.4 Let V be an IPS over R, and let T € Hom (V).
Let V¢ be the complexification of V. Then there exists a unique Tp €
Hom (V¢) such that Tc|V = T. Furthermore T is self-adjoint, unitary or
normal if and only if Tc is self-adjoint, unitary or normal respectively.

See Problem 4 below.
Definition 4.2.5 For a domain D with identity 1 let

S(n,D):={AcD™™: A=A"},
AS(n,D):={AecD™": A=-A"},
O(n,D):={AecD™": AAT = ATA=1},
SO(n,D) :={A € O(n,D): detA=1},
DO(n,D) := D(n,D) N O(n,D),

N(n,R) :={AcR™": AAT = AT A},
N(n,C):={AeC"": AA* = A*A},
H,={AeC"": A=A"},

AH, ={AeC™": A=-A%},
U,:={AeC"": AA"=A"A=1},
SU,:={A€U,: detA=1},

DU,, :=D(n,C)NU,.

See Problem 5 below for relations between these classes.

Theorem 4.2.6 Let'V be an IPS over C of dimensionn. Then a linear
transformation T : V — 'V is normal if and only if V has an orthonormal
basis consiting of eigenvectors of T .

Proof. Suppose first that V has an orthonormal basis e, ..., e, such
that Te; = \je;, © = 1,...,n. From the definition of T™* it follows that
T*e; = Xiei, i=1,...,n. Hence TT* =T*T.

Assume now T is normal. Since C is algebraically closed T has an
eigenvalue A\;. Let V, be the subspace of V spanned by all eigenvectors
of T corresponding to the eigenvalue \;. Clearly TV, C V,. Let x € V,.
Then T'x = A\, x. Thus

T(T*x) = (TT*)x = (T*T)x = T*(Tx) = \,T*x = T*V, C V,.

Hence TV, T*V, € V. Since V =V, @ Vi it is enough to prove the
theorem for T|V, and T|V7.

As T|V, = M\, Iy, it is straightforward to show T*|V, = X\, Iy, (see
Problem 2 below). Hence for T'|V, the theorem trivially holds. For T|V+
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the theorem follows by induction. O

The proof of Theorem 4.2.6 yields:

Corollary 4.2.7 Let V be an IPS over R of dimension n. Then the
linear transformation T : 'V — V with a real spectrum is normal if and
only if V has an orthonormal basis consiting of eigenvectors of T.

Proposition 4.2.8 Let 'V be an IPS over C. Let T € N(V). Then

T is self — adjoint <= spec (T) C R,
T is unitary <= spec (T) C S'={ze€C: |z|=1}.

Proof. Since T is normal there exists an orthonormal basis e,,...,e,
such that Te; = \;e;, i = 1,...,n. Hence T*e; = \;e;. Then

T=T" <= Ni=M\,i=1,...,n,
TT* =TT =1 < |\|=1,i=1,...,n.

a

Combine Proposition 4.2.4 and Corollary 4.2.7 with the above proposi-
tion to deduce:

Corollary 4.2.9 Let V be an IPS over R and let T € S(V). Then
spec (T) C R and V has an orthonormal basis consisting of the eigenvectors
of T.

Proposition 4.2.10 Let 'V be an IPS over R and let T € U(V). Then
V = ®ic{-1,1,2,....k} Vi, where k > 1, V; and V; are orthogonal for i # j,
such that
(a) TIV_, =—-Iy_,dimV_, > o,
(b) TV, = Iy, dim V, > o,
(¢c) TV, = V,;, dimV,; = 2, andspec (T|V;) C S*\{—-1,1} for i =
2. .. k.

)

See Problem 7 below.

Proposition 4.2.11 Let V be an IPS over R and let T € AS(V).
Then V = @jc(i,5,... k) Vi, where k > 1, and V; and V; are orthogonal for
i # j, such that
(a) T|V, = oy, dim V, > o,

(b) TV; =V,;, dim V; = 2, spec (T|V;) C V/—1R\{o} fori=2,... k.
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See Problem 8 below.

Theorem 4.2.12 Let 'V be an IPS over C of dimension n. Let T €
Hom (V). Let A1,..., A\, € C be n eigenvalues of T counted with their

multiplicities. Then there exists a orthonormal basis g, ..., of V with
the following properties:
(4.2.2)

Tspan (g17"'agi) C span (glv"'7gi)7 <Tgl7gl> = )‘iv 1=1,...,N.

Nezt, let V be an IPS over R of dimensionn. LetT € Hom (V) and assume
that spec (T) C R. Let A1,..., A, € R be n eigenvalues of T' counted with

their multiplicities. Then there exists an orthonormal basis g,,...,8n of V
such that (4.2.2) holds.

Proof. Assume first that V is an IPS over C of dimension n. The
proof is by induction on n. For n = 1 the theorem is trivial. Assume that
n > 1. Since A\; € spec (T) it follows that there exists g, € V, (g,,8,) =1
such that T'g, = A\,g,. Let U := span (g,)*. Let P be the orthogonal
projection on U. Let T} := PT|y. Then T} € Hom (U). Let A\a,..., A\,
be the eigenvalues of T counted with their multiplicities. The induction
hypothesis yields the existence of an orthonormal basis g, . .., g, of U such
that

Tispan (gs,...,8:) C span (8, ...,8i), (1.8, 8i) = N, i=1,...,n.

It is straightforward to show that Tspan (g,,...,8;) C span (g,,...,8;i)
for i = 1,...,n. Hence in the orthonormal basis g,,...,g, T is presented
by an upper diagonal matrix B = [b;;]7, with b11 = A1 and b; = 5\1-, 1=
2,...,n. Hence \q, 5\2, e A, are the eigenvalues of T counted with their
multiplicities. This establishes the theorem in this case. The real case is
treated similarly. O

Combine the above results with Problems 6 and 12 below to deduce:

Corollary 4.2.13 Let A € C"*". Let \1,..., \, € C be n eigenvalues
of A counted with their multiplicities. Then there exists an upper triangular
matriz B = [b;;]7 € C"*", such that b;; = A\;, i =1,...,n, and a unitary
matriz U € U, such that A=UBU~*. If A € N(n,C) then B is a diagonal
matriz.

Next, let A € R"™*"™ and assume that spec (T) C R. Then A= UBU™!
where U can be chosen to be a real orthogonal matriz and B is a real upper
triangular matriz. If A € N(n,R) and spec (A) C R then B is a diagonal
matriz.
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It is easy to show that U in the above Corollary can be chosen in SU,, or
SO(n, R) respectively (See Problem 11 below).

Definition 4.2.14 Let 'V be a vector space and assume thatT : V — 'V
is a linear operator. Let 0 # v € V. Then W = span (v,Tv,T?v,...) is
called a cyclic invariant subspace of T generated by v. (It is also referred
as a Krylov subspace of T generated by v.) Sometimes we will refer to W
as simply a cyclic subspace, or a Krylov subspace.

Theorem 4.2.15 Let V be a finite dimensional IPS. Let T : V. — V
be a linear operator. For 0 #v € V let W =span (v,Tv,...,T""*v) be a
cyclic T-invariant subspace of dimension r generated by v. Let u,,...,u,

be an orthonormal basis of W obtained by the Gram-Schmidt process from
the basis [v,TV,...,T""'v] of W. Then (Tu;,u;) =0 for1 <i<j—2,

i.e. the representation matriz of T|W in the basis [u,,...,u,]| is upper
Hessenberg. If T is self-adjoint then the representation matriz of T|W in
the basis [u,,...,u,] is a tridiagonal hermitian matriz.

Proof. Let W; = span (v,...,797v) for j = 1,...,7 + 1. Clearly
TW; Cc W, , for j = 1,...,r. The assumption that W is a T-invariant
subspace yields that W = W, = W, ,. Since dim W = r, it follows that
v,...,T"7*v are linearly independent. Hence [v,...,T""*v] is a basis for
W. Recall that span (u,,...,u;) =W, forj=1,...,r. Let r > j > i+2.
Then Tu; € TW; C Wit,. Asu; L Wy, it follows that (T'u;,u;) = o.
Assume that T* = T. Let r > i > j + 2. Then (Tu;,u;) = (u;,Tu;) = o.

Hence the representation matrix of T|W in the basis [u,, ..., u,] is a tridi-
agonal hermitian matrix. O
Problems

1. Prove Proposition 4.2.1.

2. Let P,Q € Hom (V), and a,b € F. Show that (aP +bQ)* = aP* +
bQ*.

3. Prove Proposition 4.2.3.

4. Prove Proposition 4.2.4 for finite dimensional V. (Hint: Choose an
orthonormal basis in V.)
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5. Show the following

SO(n,D) € O(n,D) C GL(n, D),

S(n,R) C H, C N(n,C),

AS(n,R) c AH,, C N(n,C),

S(n,R), AS(n,R) C N(n,R) C N(n,C),
O(n,R) c U, C N(n,C),

SO(n,D), O(n,D), SU,, U, are groups

S(n,D) is a D — module of dimension (n —: 1),

AS(n,D) is a D — module of dimension <Z> ,

H,, isan R — vector space of dimension n”.
AH, =v-1H,

6. Let E = {e,,...,e,} be an orthonormal basis in an IPS V over F.
Let G = {g,,...,8x} be another basis in V. Show that F is an
orthonormal basis if and only if the transfer matrix either from E to
G or from G to F is a unitary matrix.

7. Prove Proposition 4.2.10.
8. Prove Proposition 4.2.11.

cosf sin 9}

9. (a) Show that A € SO(2,R) is of the form A = .
—sinf cos6

R

(b) Show that SO(2,R) = eASR) /marginparadded commasThat
is, for any B € AS(2,R), ef € SO(2,R), and any A € SO(n,R)
is eP for some B € AS(2,R). (Hint: Consider the power series for

¢B B = {_09 g})

(c) Show that SO(n,R) = eAS(WR) (Hint: Use Propositions 4.2.10
and 4.2.11 and part b.)

(d) Show that SO(n,R) is a path connected space. (See part e.)

(e) Let V be an n(> 1)-dimensional IPS over F = R. Let p € [n —1].
Assume that x,,...,x, and y,,...,yp are two orthonormal systems
in V. Show that these two o.n.s. are path connected. That is, there
are p continuous mappings z;(¢) : [0,1] = V, ¢ = 1,...,p such that
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10.

11.

12.

13.
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for each t € [0,1] z,(),...,2,(t) is an o.n.s. and z;(0) = x;,2;(1) =
Vit =1,...,D.

(a) Show that U, = eAHn. (Hint: Use Proposition 4.2.8 and its
proof.)

(b) Show that U,, is path connected.
(c) Prove Problem 9e for F = C.

Show
(a) D1DD} = D for any D € D(n,C), D, € DU,,.

(b) A € NnC) < A =UDU* forsomeU € SU,, D €
D(n,C).

(c) A € Nn,R), 0(A) CR <= A =UDU', forsomeU €
SO,., D € D(n,R).

Show that an upper triangular or a lower triangular matrix B € C"*"

is normal if and only if B is diagonal. (Hint: consider the equality
(BB*)u1 = (B*B)11.)

Let the assumptions of Theorem 4.2.15 hold. Show that instead of
performing the Gram-Schmidt process on v, Tv,...,T""*v one can
perform the following process. Let w, := HTIHV' Assume that one al-
ready obtained 4 orthonormal vectors w,,...,w;. Let w;1 1 := T'w; —
Z;:1<Twi,wj>wj. If w; 1 = 0 then stop the process, i.e. one is left
with ¢ orthonormal vectors. If w;;, # o then w;;, = mvhﬂ
and continue the process. Show that the process ends after obtaining
r orthonormal vectors w,,...,w,. and u; = w; fori =1,...,r. (This
is a version of Lanczos tridiagonalization process.)

4.3 Symmetric bilinear and hermitian forms

Definition 4.3.1 Let V be a module over D and Q : VXV = D. Q
is called a symmetric bilinear form (on V) if the following conditions are
satisfied:

(a) Q(x,y) = Q(y,x) for all x,y € V (symmetricity);
(b) Q(ax + bz,y) = aQ(x,y) + bQ(z,y) for all a,b € D and x,y,z € V
(bilinearity).

For D = C, Q is called a hermitian form (on V) if Q satisfies the
conditions (a') and (b) where
(@) Q(x,y) = Q(y,x) for all x,y € V (barsymmetricity).
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The following results are elementary (see Problems 1-2 below):

Proposition 4.3.2 Let'V be a module over D with a basis E = {e,,...,e,}.

Then there is a 1 — 1 correspondence between a symmetric bilinear form Q
on'V and A € S(n,D):

Q(x,y) =n' AL, where

Xzzgieia yzzniei» é_: (513"'7£n)—r7n: (771a~»-777n)—r eD"

Let 'V be a vector space over C with a basis E = {e,,...,e,}. Then there
is a 1 — 1 correspondence between a hermitian form @ on'V and A € H,,:

Q(x,y) = n"AE, where

X = Zgieia y= Zniei» EZ (513"'7£n)—r7n: (771?"'77]71)T e C".

Definition 4.3.3 Let the assumptions of Proposition 4.3.2 hold. Then
A is called the representation matrixz of Q in the basis E.

Proposition 4.3.4 Let the assumptions of Proposition 4.3.2 hold. Let
F ={f1,...,£,} be another basis of the D module V. Then the symmetric
bilinear form Q is represented by B € S(n,D) in the basis F, where B is
congruent to A:
B=U"TAU, U € GL(n,D)

and U is the matriz corresponding to the change of basis from F to E. For
D = C the hermitian form Q is presented by B € H,, in the basis F, where
B is hermicongruent to A:

B=U"AU, U € GL(n,C)
and U is the matriz corresponding to the change of basis from F to E.

In what follows we assume that D =F = R, C.

Proposition 4.3.5 Let V be an n dimensional vector space over R.
Let Q : V xV = R be a symmetric bilinear form. Let A € S(n,R) be the
representation matriz of Q@ with respect to a basis E2 in V. Let V¢ be the
complezification of V over C. Then there exists a unique hermitian form
Qc : Ve x Ve = C such that Qclvxv = Q and Q¢ is presented by A with
respect to the basis E in V.

See Problem 3 below.
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Normalization 4.3.6 Let V be a finite dimensional IPS over F. Let
Q : VXV — F be either a symmetric bilinear form for F = R or a
hermitian form for F = C. Then a representation matriz A of Q is chosen
with respect to an orthonormal basis E.

The following proposition is straightforward (see Problem 4 below).

Proposition 4.3.7 Let V be an n-dimensional IPS over F. Let @ :
V xV — T be either a symmetric bilinear form for F = R or a hermi-
tian form for F = C. Then there exists a unique T € S(V) such that
Q(x,y) = (Tx,y) for any x,y € V. In any orthonormal basis of V, Q and
T are represented by the same matrix A. In particular the characteristic
polynomial p(\) of T is called the characteristic polynomial of Q. Q has
only real roots:

M(Q) = =2 A(Q),

which are called the eigenvalues of Q. Furthermore there exists an orthonor-
mal basis F = {f1,...,£,} in V such that D = diag(A1(Q), ..., \(Q)) is
the representation matrix of Q in F.

Vice versa, for any T € S(V) and any subspace U C V the form
Q(T,U) defined by

Q(T,U)(x,y) = (I'x,y) forx,yecU

is either a symmetric bilinear form for F = R or a hermitian form for
F=C.

In the rest of the book we use the following normalization unless stated
otherwise.

Normalization 4.3.8 Let 'V be an n-dimensional IPS over F. Assume
that T € S(V). Then arrange the eigenvalues of T counted with their
multiplicities in the decreasing order

M(T) > ... > (D).

Note that the same normalization applies to real symmetric matrices and
complex hermitian matrices.
Problems

1. Prove Proposition 4.3.2.

2. Prove Proposition 4.3.4.

3. Prove Proposition 4.3.5.

4. Prove Proposition 4.3.7.
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4.4 Max-min characterizations of eigenvalues

Definition 4.4.1 Let 'V be a finite dimensional vector space over the
field F. Denote by Gr(m, V) the space of all m-dimensional subspaces in
V where m € {0,...,n} , where n is the dimension of V.

Theorem 4.4.2 (The convoy principle) Let 'V be an n-dimensional
IPS. Let T € S(V). Then

T
(4.4.1) M(T)= max  min (T, %) =
UeGr(k,V) 0#x€U (X, X)

T —1,. ..
Ueréﬁf,vﬁk@( ,U)), k=1,...,n,

where the quadratic form Q(T,U) is defined in Proposition 4.3.7. For

k € {0,...,n} let U be an invariant subspace of T spanned by eigenvec-

tors e,,...,e, corresponding to the eigenvalues A\ (T),...,\e(T). Then

M(T) = M(Q(T,U)). Let U € Gr(k, V) and assume that \p(T) =

A (Q(T,U)). Then U contains an eigenvector of T corresponding to Ay (T).
In particular

(4.4.2) M(T) = max) <<x x)

Moreover for any x # 0

M (T) = <Z;X’X ’;> e Tx =\ (T)x,
An(T) = <<1;(X;( ’;> Tx = A (T)x,

The quotient L% 0 £ x € V is called the Rayleigh quotient. The

(x,x)
characterization (4.4.2) is called the convoy principle.
Proof. Choose an orthonormal basis E = {e,,...,e,} such that
(443) Tei = )\i(T)ei, (ei,ej> = 57;]‘ Z,] =1,...,Nn.
Then
T (T2 -
(4.44) < X7X> 222:1’” ( )|x| , X:leel;&o

{x,x) 2imy |il?
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The above equality yields straightforward (4.4.2) and the equality cases in
these characterizations. Let U € Gr(k, V). Then the minimal characteri-
zation of A\, (Q(T,U)) yields the equality

(4.4.5) A(Q(T,U)) = min (Tx,x)

L e for any U € Gr(k, U).

Next there exists 0 # x € U such that (x,e;) =ofori=1,...,k—1. (For
k =1 this condition is void.) Hence
(Tx,%) _ s M)l

b, = S S W) = AT 2 M(QT L))

Let

M(T) = o = Xy (T) > A D)1 (T) = o = Ay (T) > . >
(4.4.6)\n7,71+1(T) =...=X @ =20), n=0<n<...<n,=n.
Assume that nj_1 < k < n;. Suppose that A\ (Q(T,U)) = A\g(T). Then

for x € U such that <x e;) = 0 we have the equality )\k (Q(T,U)) = A\ (T)
if and only if x = Y17, z;e;. Thus Tx = A\x(T)x.
Let Uy = span (e,,...,e;). Let 0 #x = Zf:1 € Uy. Then
(Tx,%) _ Sy M)l
= = 2 Ak(T) = A(Q(T, Uk)) = M(T).
(x,%) Sy |2

Hence M\ (Q(T, Uy)) = (7). O

It can be shown that for k > 1 and A (T) > M\ (T) there exists U €
Gr(k, V) such that A\, (T) = A\(T,U) and U is not an invariant subspace
of T, in particular U does not contain all e,, ..., e satisfying (4.4.3). (See
Problem 1 below.)

Corollary 4.4.3 Let the assumptions of Theorem 4.4.2 hold. Let 1 <
¢ <n. Then

(4.4.7) M(T) = | ma  A(@Q(T, W), k=1, 0

Proof. For k < ¢ apply Theorem 4.4.2 to A\ (Q(T, W)) to deduce that
A (Q(T,W)) < A (T). Let Uy = span (e,,...,es). Then

/\k(Q(T,UZ)):/\k(T), k=1,...,f.
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Theorem 4.4.4 (Courant-Fischer principle) Let V be an n-dimensional
IPS and T € S(V). Then

. (Tx,x)
min max
WeGr(k—1,V) 0£xeWL (X, X)

M (T) = , k=1,...,n.
See Problem 2 below for the proof of the theorem and the following corol-
lary.

Corollary 4.4.5 Let 'V be an n-dimensional IPS and T € S(V). Let
k, ¢ € [n] be integers satisfying k < 1. Then

)\n—é-Hi:(T) < Ak(Q(T7 W)) < )\k(T)a for any W e GI‘(& V)

Theorem 4.4.6 Let V be an n-dimensional IPS and S,T € S(V).
Then for any i,j € N,i+ j —1 < n the inequality Xiy;—1(S+T) < A;(S) +
A (T) holds.

Proof. Let U;_,, V;_, C V be eigenspaces of S, T spanned by the
first i« — 1,7 — 1 eigenvectors of S, T respectively. So

(Sx,x) < X(9)(x,%x), (Ty,y) < X\(T){y,y) forall x € Uj- |y € Vj-{l.

Note that dimU;_, = ¢ —1,dmV;_;, = j—1. Let W = U,;_, +
Vi_;. Then dmW =1 -1 < i+4j — 2 Assume that z € Wi,
Then ((S + T)z,z) = (Sz,z) + (Tz,z) < (N(S) + \;j(T))(z,2). Hence

Maxg_,cwL % < Ai(S)+A;(T). Use Theorem 4.4.4 to deduce that
Xitim1(S+T) < N(S+T) < Xi(S)+ N\ (T). O

Definition 4.4.7 Let V be an n-dimensional IPS. Fix an integer k €
[n]. Then Fy, = {f1,...,fx} is called an orthonormal k-frame if < £;,£; >=
dij for i,j = 1,...,k. Denote by Fr(k, V) the set of all orthonormal k-
frames in V.

Note that each Fy € Fr(k, V) induces U = span Fy € Gr(k, V). Vice
versa, any U € Gr(k,V) induces the set Fr(k, U) of all orthonormal k-
frames which span U.

Theorem 4.4.8 Let V be an n-dimensional IPS and T € S(V). Then
for any integer k € [n]

k k
A (T) = T, £;).
DNM) = omax Y (TEE)

i=1 i=1



4.4. MAX-MIN CHARACTERIZATIONS OF EIGENVALUES 177

Furthermore
k k
S ON(T) =) (T )
i=1 i=1
for some k-orthonormal frame F, = {f1,... £k} if and only if span Fy is

spanned by e, ..., ey satisfying (4.4.3).
Proof. Define

k
trQ(T,U) =Y _ M(Q(T,U)) for U e Gr(k, V),

(4.4.8)
k
trp 7= X(T).

Let Fy, = {f1,....fr} € Fr(k, V). Set U = span Fix. Then in view of
Corollary 4.4.3

k

k
> (Th, £) = tr Q(T,U) < > \(T).

=1

Let Er = {e,,...,er} where e,,...,e, are given by (4.4.3). Clearly
try T = tr Q(T, span Ey). This shows the maximal characterization of try T

Let U € Gr(k, V) and assume that try, T = tr Q(T,U). Hence \;(T) =
X(Q(T,U)) for i = 1,...,k. Then there exists Gy, = {g,,...,8k} €
Fr(k,U)) such that

. (Tx,x)
min
O#x€span (g:,.--,8i } <X’ X>

= M(Q(T,U)) = N(T), i =1,....,k.

Use Theorem 4.4.2 to deduce that T'g; = \;(T)g; for i =1,... k. O

Theorem 4.4.9 Let V be an n-dimensional IPS and T € S(V). Then
for any integer k,l € [n], such that k +1 < n, we have that

I+k k
N(T)= min max Tt £;).
Z i(T) WEGH(L,V) {£1,.... £ }€Fr (k, VAW L) Z< iofi)
i=l+1 i=1
Proof. Let W; := span (e,,...,€;),j = 1,...,n, where e,,...,e, are

given by (4.4.3). Then V, := VN'W; is an invariant subspace of T Let
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Ty :=T|V,. Then \;(T1) = \y(T) for i = 1,...,n —I. Theorem 4.4.8 for

Ty yields
k l+k

max Z Tt f;) Z A

1
{f1, f }EFr (R, VAW S

Let Ty := T|Wl+k and W € GI"(Z,V) Set U := Wy N W+, Then
dim U > k. Apply Theorem 4.4.8 to —T5 to deduce

k k
D> Xi(=Ty) ZZ —Tf;,f;) for {f1,...,f} € Fr(k, U).
i=1

The above inequality is equal to the inequality

I+k k
> Z (Tf;,£;) for {fi,... £} € Fr(k,U) <
i=l4+1 i=1
k
T, f).
{fl,..‘,fk}énF?é,VﬁWL);< wfi)
The above inequalities yield the theorem. O

Definition 4.4.10 Let V be an n-dimensional IPS. Assume that k €
n] and 1 < iy < --- < i < n are integers. Let Uy := {0} and U; €
Gr(ij, V) for j = 1,...,k. (Uy,...,Uy) is called a flag in V if U, C
U, C -+ C Uyg. The set of all such flags is denoted by F(i1,..., ik, V).

Theorem 4.4.11 Let 'V be an n-dimensional IPS. Assume that k € [n]
and 1 < i3 < --- < i < n are integers. Then for each T € S(V) the
following characterization holds:

k
Z)\i]. (T) = max
— (Us,. o, Uk)EF (iay-000k)
j=1
k
min Z Txj,Xj).

X1, Xk, Xp EUp, (Xp,Xq) =0pq,p,q€[K] =1
Proof. We first prove by induction on the dimension n = S(V) the
inequality

k k

4.4.9 i (T) > min Tx;,X;),
( ) Z ]( ) xl,...,xk,XPEUP,(xp,xq)zépq,p,qe[k]j;< ! j>
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for each k € [n] and each flag (U,,...,Uy).

Clearly, for n = 1 equality holds. Assume that the above inequality
holds for n = N. Let n = N + 1. Suppose first that £ = N + 1. Then
trT = Z;V:1<ij, x;) and equality holds in the above inequality.

Assume that k € [N]. Suppose first that i, < N. Let W € Gr(N,V)
such that Uy ¢ W. Then (U,,...,Uyg) is a flag in W. The induction
hypothesis yields that the right-hand side of (4.4.9) is bounded above by
Sk i, (Q(T, W)). Corollary 4.4.3 yields that

j=1
k
Z)"JT = Z

Hence (4.4.9) holds.

Assume now thati; = N+j—k+1forj=k,...,land i1 < N+I—-kif
I>1. Lety,,...,y, be an orthonormal set of eigenvectors of T' correspond-
ing to the eigenvalues A1(T"), ..., A\, (T) respectively. Let W be N dimen-
sional subspace of V which contains U;_, and span (Xy i, -, XN41+i—k)-
Clearly, i; — 1 < dim U; N'W <4, for j € [k]. Hence

U_,CcUnNnWC---CU,NW.

Therefore there exists a flag (U’,...,U}) in W with the following prop-

erties: First, U} = Uj for j = 1,...,1 — 1. Second i} := dim U’ = i; — 1

for j =1,..., k. Third, U} C U; for j =1,...,k. (Note that if i; — 1 =

dim U; \W then U, = U; N W) Let # =i for j = 1,...,0— 1if I > 1.
The induction hypothesis yields

k k
Z)\ij (Q(Ta W)) > min Z TX]?X]

= Xiyeens xk.,xp€U;J,(xp,xq> pa:D,qE [k

Clearly, the right-hand side of the above inequality is not less than the
right-hand side of (4.4.9). It is left to show that the left-hand side of
the above inequality is not more then the left-hand side of (4.4.9). Since
span (XN41,---,XN414i—k) & W it follows that A;, 1 (Q(T, W)) = Ay, (T)
for j = k,...,l. Corollary 4.4.3 yields that \;(T) > X\(Q(T, W)) for i €
[N]. Hence the right-hand side of (4.4.9) is not less than the right-hand
side of the above inequality. This establishes (4.4.9).

Let U;; = span (y,,...,y;;) for j = 1,... k. Recall that (x;,x;) >
Ai; (T) for each x; € Uj satisfying (x;,x;) = 1. Hence the right-hand side
of (4.4.9) is at least 2?21 Ai;(T). This establishes the theorem. O

Problems
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. Let V be a 3 dimensional IPS and 7' € Hom (V) be self-adjoint.

Assume that
AM(T) > X (T) > A3(T), Te; =XN(T)e;, i =1,2,3.

Let W = span (e,, e;).

(a) Show that for each ¢ € [A3(T), A1(T)] there exists a unique W(t) €
Gr(1, W) such that A (Q(T,W(t))) = t.

(b) Let t € [A2(T), \(T)]. Let U(t) = span (W(t),e,) € Gr(2,V).
Show that A2(T) = A2 (Q(T, U(2)).

. (a) Let the assumptions of Theorem 4.4.4 hold. Let W € Gr(k —

1,V). Show that there exists 0 # x € W= such that (x,e;) =
o for k+1,...,n, where e,,...,e, satisfy (4.4.3). Conclude that

M(Q(T, W) > {820 > 2 (7).

(b) Let U, = span (e,,...,e;). Show that A\ (Q(T,U})) = et (T)
for{=1,...,n—1.

(¢c) Prove Theorem 4.4.4.

(d) Prove Corollary 4.4.5. (Hint: Choose U € Gr(k, W) such that
U C Wﬁspan (en_g+k+1, ey en)l. Then )\n_g+k(T) < /\k(Q(T, U)) <
A(Q(T, W)).)

Let B = [bij]?,j:l € H,, and denote by A € H,,_, the matrix obtained
from B by deleting the j — th row and column.

(a) Show the Cauchy interlacing inequalities
)\1(B) 2 )\Z(A) 2 )\i+1(B)7 for i = ]., e — 1.

(b) Show the inequality A1(B) + A (B) < A1(A) + by;.
Hint: Express the traces of B and A respectively in terms of
eigenvalues to obtain

AL(B) + An(B) = bii + M\ (A) + E(Ai(A) — Xi(B)).

Then use the Cauchy interlacing inequalities.

4. Show the following generalization of Problem 3.b ([Big96, p.56]). Let

B € H,, be the following 2 x 2 block matrix B =
Show that

Bi1 Bio
Bi; B |

A1(B) + An(B) < A1(B11) + Ai(Baa2).
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Hint. Assume that Bx = \,(B)x,x' = (x/],x]), partitioned as
B. Consider U = span ((x,,0)7,(0,x])7). Analyze \(Q(T,U)) +
A (Q(T,U)).

5. Let B = [b;;|? € H,. Show that all eigenvalues of B are positive if
and only if det [b;;]¥ >0 for k=1,...,n.

6. Let T € S(V). Denote by ¢4 (T),t0(T),t—(T) the number of posi-
tive, negative and zero eigenvalues among A1 (T) > ... > A, (T). The
triple «(T') := (¢4(T),t0(T),t—(T)) is called the inertia of T. For
B e H, let «(B) := (t4(B),t0(B),t—(B)) be the inertia of B, where
t+(B),to(B), t—(B) is the number of positive, negative and zero eigen-
values of B respectively. Let U € Gr(k, V). Show

(a) Assume that A\, (Q(T,U)) > o,i.e. Q(T,U) > 0. Then k < 14 (T).
If K = ¢ (T) then U is the unique invariant subspace of V spanned
by the eigenvectors of T corresponding to positive eigenvalues of T'.

(b) Assume that \i(Q(T,U)) > o, i.e. Q(T,U) > o. Then k <
i (T) 4+ o(T). If k = 14(T) + to(T) then U is the unique invariant
subspace of V spanned by the eigenvectors of T corresponding to
nonnegative eigenvalues of T'.

(c) Assume that A\ (Q(T,U)) < o, i.e. Q(T,U) <o. Then k < ._(T).
If kK =¢_(T) then U is a unique invariant subspace of V spanned by
the eigenvectors of T' corresponding to negative eigenvalues of 7.

(d) Assume that A\ (Q(T,U)) < o, ie. Q(T,U) < o. Then k <
t—(T) + 0o(T). Itk =1_(T)+ to(T) then U is a unique invariant
subspace of V spanned by the eigenvectors of T corresponding to
nonpositive eigenvalues of 7.

7. Let B € H,, and assume that A = PBP* for some P € GL(n,C).
Then ((A) = «(B).

4.5 Positive definite operators and matrices

Definition 4.5.1 Let V be a finite dimensional IPS over F = C,R.
Let S,T € S(V). Then T = S, (T = S) if (Tx,x) > (Sx,x), ((I'x,x) >
(Sx,x)) for all 0 # x € V. T is called positive (nonnegative) definite if
T > 0 (T = 0), where 0 is the zero operator in Hom (V).

Denote by S (V)° C S; (V) C S(V) the open set of positive definite
self-adjoint operators and the closed set of nonnegative self-adjoint opera-
tors respectively. Denote by Sy (V) the closed set of nonnegative definite
self-adjoint operators of trace one.
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Let P,Q be either quadratic forms, if F = R, or hermitian forms, if
F = C. Then we write Q > P, (Q = P) if Q(x,x) > P(x,x), (Q(x,x) >
P(x,x)) for all 0 # x € V. @Q is called positive (nonnegative) definite if
Q >~ 0(Q = 0), where 0 is the zero operator in Hom (V).

For A,B € H,,, we write B> A ,(B = A) if x*Bx > x*Ax (x*Bx >
x*Ax) for all0 #x € C". B € H,, is called is called positive (nonnegative)
definite if B = 0 ,(B = 0). Denote by Hy, . C H,,  C H, the open set
of positive definite n X n hermitian matrices and the closed set of n x n
nonnegative hermitian matrices respectively. Denote by H,, , , the closed
set of m X m nonnegative definite hermitian matrices of trace one. Let
S (n,R) :=S(n,R)NH, 1, Sy(n,R)° := S(n,R)NH;, ,, S, ,(n,R) :=
S(n,RYNH,, 4 ;.

Use (4.4.1) to deduce:

Corollary 4.5.2 Let 'V be an n-dimensional IPS. Let T € S(V). Then
we write T = 0, (T > 0) if and only if \p(T) > 0, (A (T) > 0). Let S €
S(V) and assume that T > S ,(T = S). Then A\(T) > X\i(S) ,(N(T) >
Ai(S)) fori=1,...,n.

Proposition 4.5.3 Let V be a finite dimensional IPS. Assume that
T €8S(V). Then T = 0 if and only if there exists S € S(V) such that T =
S2. Furthermore T = 0 if and only if S is invertible. For 0 < T € S(V)
there exists a unique 0 < S € S(V) such that T = S*. This S is called the

square root of T and is denoted by Tz.

Proof. Assume first that T' = 0. Let e, ..., e, be an orthonormal basis
consisting of eigenvectors of T as in (4.4.3). Since \;(T) >0, i =1,...,n
we can define P € Hom (V) as follows

Pei:\/)\i(T)ei, i:l,...,n.

Clearly P is self-adjoint nonnegative and T = P2.

Suppose now that T = S? for some S € S(V). Then T € S(V) and
(Tx,x) = (Sx,5%) > 0. Hence T > 0. Clearly (Tx,x) =0 < Sx =o.
Hence T > 0 <= S € GL(V). Suppose that S > 0. Then \;(S) =

Mi(T), i =1,...,n. Furthermore each eigenvector of S is an eigenvector
of T. It is straightforward to show that S = P, where P is defined above.
Clearly T' > 0 if and only if \/\,,(T) > 0, i.e. if and only if S is invertible. O

Corollary 4.5.4 Let B € H,, ,(S(n,R)). Then B = 0 if and only there
exists A € H, (S(n,R)) such that B = A%. Furthermore B = 0 if and only
if A is invertible. For B = 0 there exists a unique A = 0 such that B = A2,
This A is denoted by Bx.
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Theorem 4.5.5 Let V be an IPS over F = C,R. Let x,,...,X, €

V. Then the grammian matric G(X,,...,X,) := [(X;,X;)]7 is a hermitian
nonnegative definite matriz. (IfF =R then G(x,,...,X,) is real symmetric
nonnegative definite.) G(X,,...,X,) > 0 if and only X,,...,x, are linearly

independent. Furthemore for any integer k € [n — 1]
(4.5.1) det G(x4,...,%x,) < det G(Xy,...,x;) det G(Xgt1,---5Xn)-

Equality holds if and only if either det G(Xx,,...,xx) det G(Xgt1, .-, Xpn) =
oor(x;,x;)=o0fori=1,...;kandj=k+1,...,n.

Proof. Clearly G(x,,...,%x,) € H,. If V is an IPS over R then
G(x,,...,%,) € S(n,R). Let a = (a,,...,a,)" €F". Then

n n
a*G(x,,...,xp)a= (Z aiX;, Zajxj> > o.
=1 Jj=1

Equality holds if and only if > | a;x; = 0. Hence G(x,,...,%,) > 0 and
G(xy,...,%X,) > o if and only if x,,...,%, are linearly independent. In
particular det G(x4,...,X,) > o0 and det G(X4,...,%Xy,) > o if and only if
X,,...,Xy are linearly independent.

We now prove the inequality (4.5.1). Assume first that the right-hand
side of (4.5.1) is zero. Then either x,,...,Xg O Xgtq,-..,X, are linearly
dependent. Hence x,,...,x, are linearly dependent and det G = 0.

Assume now that the right-hand side of (4.5.1) is positive. Hence
Xy, X and Xgyq, ..., X, are linearly independent. If x,, ..., x, are lin-
early dependent then det G = 0 and strict inequality holds in (4.5.1). It is
left to show the inequality (4.5.1) and the equality case when x,, ..., x, are
linearly independent. Perform the Gram-Schmidt algorithm on x,,...,x,
as given in (4.1.1). Let S; = span (x,,...,x;) for j = 1,...,n. Corol-
lary 4.1.1 yields that span (e,,...,e,—1) = S,—,. Hence y, = x, —
U bjx; for some by,...,b,—1 € F. Let G’ be the matrix obtained from
G(ixl, ..., Xy) by subtracting from the n-th row b; times the j-th row. Thus
the last row of G' is ((yn,X1)s- -, (¥n,Xn)) = (0,...,0,|yn]|?). Clearly
det G(x,,...,%,) = det G'. Expand det G’ by the last row to deduce

det G(X4,...,%xp) =det G(X4y ..., Xpn—y) l¥nll>=... =

n

(452)  det G(x,....xt) ] lyil* =
i1=k-+1

det G(x4,...,Xk) H dist(x;,59,—,)%, k=n—1,...,1.
1=k+1
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Perform the Gram-Schmidt process on Xj4,,...,X, to obtain the orthog-
onal set of vectors yx41,...,¥n such that

S :=span (Xp41,...,%X;) =span (Jit1,...,yj), dist(x;,S;—1) = [|¥;,

for j = k+1,...,n, where Sy = {0}. Use (4.5.2) to deduce that det G(Xjt1, . ..

H;.l:kJrl ly;ll*. As Sj,l C Sj_1 for j > k it follows that

lly;ll = dist(x;,S;—-,) < dist(x;, S’jﬂ) =|yjll, j=k+1,...,n.

This shows (4.5.1). Assume now equality holds in (4.5.1). Then |y;|| =

H}A’JH for j = k+1,...,n. Since 53;1 C Sj,1 and S’j —X; € ijl C
S;_1, it follows that dist(x;,S;—,) = dist(y;, Sj—1) = ||y;||. Hence ||y;| =
dist(y;, Sj—1). Part (h) of Problem 4.1.4 yields that y; is orthogonal on
S;—1. In particular each y; is orthogonal to Sy for j = k+1,...,n. Hence
x; LSy forj=k+1,...,n,ie (xj,x;) =o0for j >k and i < k. Clearly,
if the last condition holds then

det G(x,,...,%,) =det G(X4,...,xk) det G(Xgg1y---,Xn)- O

det G(x,,...,%,) has the following geometric meaning. Consider a par-
allelepiped II in V spanned by X, ...,X, starting from the origin 0. Then
IT is a convex hull spanned by the vectors 0 and ), ¢ x; for all nonempty
subsets S C {1,...,n} and \/det G(x,,...,X,) is the n-volume of II. The
inequality (4.5.1) and equalities (4.5.2) are "obvious” from this geometrical
point of view.

Corollary 4.5.6 Let 0 < B = (b;;)} € H,, +. Then
det B < det [b;;]¥ det [b;;]7, 1, fork=1,...,n— 1.

For a fixed k equality holds if and only if either the right-hand side of the
above inequality is zero or by; =0 fori=1,...;k and j=k+1,...,n.

Proof. From Corollary 4.5.4 it follows that B = X? for some X € H,,.
Let x,,...,%, € C" be the n-columns of X7 = [x,...x,]. Let (x,y) =
y*x. Since X € H,, we deduce that B = G(x,,...,Xp)- O

Theorem 4.5.7 Let V be an n-dimensional IPS. Let T € S. TFAE:
(a) T > 0.
(b) Let g,,...,8n be a basis of V. Then det ((Tgi,gj>)ﬁj:1 > o0, k =
1,...,1.
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Proof. (a) = (b). According to Proposition 4.5.3 T' = S? for some S €
S(V)NGL(V). Then (T, &) = (Sgi, Sg;). Hence det (T, &))" ,_, =
det G(Sg,,...,Sg;). Since S is invertible and g,,..., g are linearly in-
dependent it follows that Sg,,...,Sgy are linearly independent. Theorem
4.5.1 implies that det G(Sg,,...,Sgk) >ofork=1,...,n.

(b) = (a). The proof is by induction on n. For n = 1 (a) is obvious.
Assume that (a) holds for n = m — 1. Let U := span (g,,...,8,—,) and
Q := Q(T,U). Then there exists P € S(U) such that (Px,y) = Q(x,y) =
(Tx,y) for any x,y € U. By induction P = 0. Corollary 4.4.3 yields
that A\p—1(T) > A\p—1(P) > 0. Hence T has at least n — 1 positive eigen-
values. Let e,,...,e, be given by (4.4.3). Then det ((T'e;,e;))};—, =
[T, M(T) > 0. Let A= (apg)t € GL(n, C) be the transformation matrix

from the basis g,,...,8, to €,,...,€,, ie.

n
g = E Qpi€p, 1 =1,...,N.
p=1

It is straightforward to show that

(Tgi,g;) = AT ((Tey, eq)) A =
(4.5.3)

det ((T'g;, g;))y = det ((T'e;, e;))7|det A|* = |det AJ? H)‘i(T)'
Since det ((T'g;,g;))7 > 0 and M (T) > ... > Ap—1(T) > 0 it follows that
An(T) > 0. O

Corollary 4.5.8 Let B = [b;;]t € H,. Then B > 0 if and only if
det [b;]¥ >0 fork=1,...,n.

The following result is straightforward (see Problem 1 below):

Proposition 4.5.9 Let V be a finite dimensional IPS over F = R,C
with the inner product (-,-). Assume that T € S(V). Then T > 0 if and
only if (x,y) := (Tx,y) is an inner product on V. Vice versa any inner
product (+,-) : V.x V. = R is of the form (x,y) = (Tx,y) for a unique
self-adjoint positive definite operator T € Hom (V).

Example 4.5.10 Each 0 < B € H,, induces an inner product on C™:
(x,y) = y*Bx. Fach 0 < B € S(n,R) induces an inner product on R":
(x,y) = y? Bx. Furthermore any inner product on C* or R™ is of the above
form. In particular, the standard inner products on C" and R™ are induced
by the identity matriz I.
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Definition 4.5.11 Let V be a finite dimensional IPS with the inner
product {-,-). Let S € Hom (V). Then S is called symmetrizable if there
exists an inner product (-,-) on 'V such that S is self-adjoint with respect

to (7)

Problems
1. Show Proposition 4.5.9.

2. Recall the Holder inequality

n n 1 n 1
(4.5.4) Y wyiar < (O aba) (Y yla)
=1 =1 =1

for any x = (z4,..,20) Yy = W1y -5 Yn) 2 = (a1,...,0a,) € R%
and p,q € (1,00) such that % + % = 1. Show
(a) Let A€ H,y,x € C* and 0 < i < j < k be three integers.
Then

(4:5.5) x' AT < (x" A'x) = (x AP 2.
Hint: Diagonalize A.

(b) Assume that A = e® for some B € H,,. Show that (4.5.5) holds
for any three real numbers 7 < j < k.

4.6 Convexity
Definition 4.6.1 Let V be a finite dimensional vector space over R.

1. For any set T C V we let C1T be the closure of T in the stan-
dard topology in 'V (which is identified with the standard topology of
RAmM=V)

2. For any two points X,y € V denote by (x,y) and [x,y], the open and
the closed interval spanned by X,y respectively. Le., the set of points
of the form tx + (1 — t)y, where t € (0,1) and [0, 1], respectively.

3. Set C C 'V is called convex if for any x,y € C the open interval (x,y)
is in C. (Note that a convex set is connected).
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4. Assume that C C'V is a nonempty convex set and let x € C. Denote
by C —x the set {z: z=y—x, y € C}. Let U = span (C — x).
Then the dimension of C, denoted by dim C, is the dimension of the
vector space U. The interior of C — x as a subset of U is called the
relative interior and denoted by ri (C —x). Then the relative interior
of C is defined as ri (C — x) + x.

5. HC 'V is called a hyperplane if H=U + x, where x € V and U is a
subspace of V of codimension one, i.e. dim U =dim V — 1.

6. Assume that C C 'V is convexr. A point e € C is called an extremal
point if for any x,y € C such that e € [x,y] the equality x =y = e
holds. For a convex set C denote by ext C the set of the extremal
points of C.

7. Denote by I1,, C R} the set of probability vectors, i.e., all vectors with
nonnegative entries that add up to one.

8. Let S C V. The convex hull of S, denoted by conv S, is the minimal
convex set containing S. (We also call conv S the conver set generated
by S.) For each j € N let conv;_1 S be the set of vectors z € V such

thatz = Y"1_ pix; for allp = (Pry---sp) " € I and x,,...,%x; € S.

9. Let C be convexr. F C C is called a face of C if F is a conver set
satisfying the following property: Let x,y € C and asume that %x +
2y € F. Then x,y € F. F is called dim F-face of C.

10. Let C be a convex set. For f € V' \ {0} and x € V denote

H, (f,x) and H_(f,x) are called the upper and the lower half spaces
respectively, or simply the half spaces.

It is straightforward to show that dim C, ri C do not depend on the choice
of x € C. Furthermore ri C is convex. See Problem 3 or [Roc70]. It is
known that ext (conv S) C S [Roc70] or see Problem 1 below. Suppose that
S is a finite set of cardinality N € N. Then conv S = convy_1S and conv .S
is called a finitely generated convex set. The following result is well known
[Roc70]. (See Problem 8 below for finitely generated convex sets.)
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Theorem 4.6.2 Let V be a real vector space of finite dimension. Let
C C V be a nonempty compact convex set. Then conv(ext C) = C. Let
d := dim C. Then convg(ext C) = C. More general, for any S C 'V let
d = dim (conv S). Then convg S = convS. That is, every vector in conv S
is a convex combination of some d + 1 extreme points. (Carathéodory’s
theorem. )

In many case we shall identify a finite dimensional vector space V over
R with R%. Assume that the C C V is a nonempty compact convex set of
dimension d. Then the following facts are known. If d = 2 then ext C is a
closed set. For d > 3 there exist C such that ext C is not closed.

Assume that V is a complex finite dimensional subspace, of dimension
n. Then V can be viewed as a real vector space Vg of dimension 2n. A
convex set C C V is a convex set Cg C Vg. However, as we see later,
sometimes it is natural to consider convex sets as subsets of complex vector
space V, rather then subsets of V.

Assume that f € V/\ {0}. Then we associate with f a real valued
functional fg : V — R by letting fr(x) = R f(x). Then

Ho(f, x) := Ho(fg,x), H (f,x) := H, (fg,x), H_(f,x); = H_(fg, %)

are the real hyperplane and the real half spaces in V. Note also that
H_(f,x) = Hy (—f,x).

In what follows we assume that V is a finite dimensinal vector space
over F = R, C, which is treated as a real vector space.

Definition 4.6.3 An intersection of a finite number of half spaces
N Hy (£, %;) is called a polyhedron. A nonempty compact polyhedron is
called polytope.

Clearly, a polyhedron is a closed convex set. Given a polyhedron C,
it is a natural problem to find if this polyhedron is empty or not empty.
The complexity of finding out if this polyhedron is empty or not depends
polynomially on: the dimension of V, and the complexity of all the half
spaces in the characterizing C. This is not a trivial fact, which is obtained
using an ellipsoid method. See [Kha79, Kar84, Lov86].

It is well known that any polytope has a finite number of extreme
points, and is equal to the convex hull of its extreme points [Roc70, p’12].
Morevover, if S is a fintie set than conv S is a polytope.

In general it is a difficult problem to find explicitly all the extreme
points of the given compact convex set, or even of a given polyhedron. The
following example is a classic in matrix theory.
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Theorem 4.6.4 Let H,, ., C C™*" be the convex set of nonnegative
definite hermitian matrices with trace 1. Then

(4.6.1) ext (H, +,) = {xx", x € C" x"x = 1},
(4.6.2)  ext (H,4+,NS1,R)) = {xx", x e R",x"x =1}.

FEach matriz in H,, 4, or H,, 1, N S(n,R) is a convexr combination of at
most n extreme points.

Proof. Let A = xx*,x € C",x*x = 1. Clearly A € H,, .. Suppose
that A = aB + (1 — a)C for some B,C € H,, 1, and a € (0,1). Hence
A = aB = 0. Since y*Ay > ay*By > o it follows that y*By = o for
y*x = 0. Hence By = 0 for y*x = 0. Thus B is a rank one nonnegative
definite matrix of the form txx* where t > 0. Since tr B = 1 we deduce
that t =1 and B = A. Similarly C = A. Hence A is an extremal point.

Let F € H,, +,. Then the spectral decomposition of F' yields that
F = Z?:l AiX; X}, where xix; = 0;5,1,j = 1,...,n. Furthermore, since F’
is nonnegative definite of trace 1, \1,..., \,, the eigenvalues of F', are non-
negative and sum to 1. So F € conv{x,x¥,...,x,x%}. Similar arguments
apply to nonnegative real symmetric matrices of rank 1. O

Definition 4.6.5 Let C{,Cy C V, where V is a finite dimensional
vector space over F =R, C. Cy,Cs are called hyperplane separated if there
exists £ € V' \ {0} and x € V such that C; C H4(f,x),Ce C H_(f,x).
Ho(f, x) is called the separating (real) hyperplane. Ho(f,x) is said to sepa-
rate C1 and Cq properly if Ho(f,x) separates C; and Co and Ho(f,x) does
contain C1 and Cs.

The following result is well known [Roc70, Theorems 11.3].

Theorem 4.6.6 Let Cy,Co be nonempty conver sets in a finite dimen-
sional vector space V. Then there exists a hyperplane separating C1 and
Cs properly if and only ri C; Nri Cy = ().

Corollary 4.6.7 Let Cy be a compact convez set in a finite dimensional
vector space V. over F = R, C. Assume that Cy contains more than one
point. Let x be a an extreme point of C. Then there exists a hyperplane
which supports properly Cy at x. Le., there exists f € V' \ {0}, such that
Rf(x) < Rf(y) for each'y € C. Furthermore, there exists y € C such that

Rf(x) <Rf(y)-

Proof. Let C; = {x}. So Cz is a convex set. Problem 4 yields that
ri C1 N1i Cy = 0. Use Theorem 4.6.4 to deduce the Corollary. O
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Definition 4.6.8 A point x of a convex set C in a finite dimensional
vector space V s called exposed, if there there exist a linear functional
f € V'\ {0} such that REf(x) > Rf(y) for any y € C\{x}.

Clearly, an exposed point of C is an extreme point, (Problem 5). There
exist compact convex sets with extreme points which are not exposed. See
Problem 6. In what follows we need Straszewiz [Str35].

Theorem 4.6.9 . Let C be a closed convex set. Then the set of exposed
points of C is a dense subset of extreme points of C. Thus every extreme
point is the limit of some sequence of exposed points.

Corollary 4.6.10 Let C be a closed convex set. Let x € C be an iso-
lated extreme point. (Le. there is a neighborhood of x, where x is the only
extreme point of C.) Then X is an exposed point.

Definition 4.6.11 Let D C R"™. D is called a regular set if the interior
of D, denoted by D° C R"™, is a nonempty set, and D is a subset of C1D°.
D is called a domain if D is open and connected.

Assume that D is a reqular set. A function f : D — R is in the class
CK(D), i.e. f has k continuous derivatives, if f € CX(D°) and f and any
of its derivatives of order not greater than k have a continuous extension
to D.

Assume that f € CY(D). Then for each x = (x,,...,z,)" € D° the
gradient of f at x is given as V f(x) := ((%(x), e ai{n (x)"T. xeD° is
called critical if V f(x) = 0.

Definition 4.6.12 Let C C 'V be a convex set. Assume that f: C — R.
f s called convex if

(4.6.3) ftx+ (1 —t)y)) <tf(x)+ (1 —1t)f(y) for allt € (0,1),x,y € C.

f is called log-convez if f >0 on C and

(4.6.4)  f(tx+ (1 —ty)) < (F&) () forallt € (0,1),x,y € C.

f s called strictly convex or strictly log-convez if strict inequality holds in
(4.6.3) and (4.6.4), respectively.

A function g : C — R is called (strictly) concave if the function —g is
(strictly) convez.

Proposition 4.6.13 Let C C 'V be convex. Then CLC is convex. As-
sume that C is a regular set and f € CO(C1C). Then f is convex in C1C if
and only if f is convez in C.
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See Problem 12 below.
The following result is well known. (See Problems 13 below.)

Theorem 4.6.14 Let D C RY be a regular conver set. Assume that
f € C3(D). Then f is convex if and only if the symmetric matriz H(f) :=
[%]ij:l is nonnnegative definite for each 'y € D. Furthermore, if H(f)
is positive definite for each 'y € D, then f is strictly convex.

Definition 4.6.15 Denote by R := RU{—00, 0} the extended real line.

Then a+ 0o =00+ a =00 fora € RU{c0}, a — 0o =—00+a=—o0 for
a € RU{—o0} and oo — 00, —o0o + oo are not defined. For a > 0 we let
aco = ooa = 00, a(—o00) = (—oo0)a = —oo and 0co = 000 = 0, 0(—o0) =

(=00)0 = 0. Clearly for any a € R —oo < a < co. Let C be a convex set.
Then f: C — R is called an extended convex function if (4.6.3) holds.

Let f : C — R be a convex function. Then f has the following continuity
and differentiability properties:

In the one dimensional case, where C = (a,b) C R, f is continuous on
C and f has a derivative f’(z) at all but a countable set of points. f(x)
is a nondecreasing function (where defined). In particular f has left and
right derivatives at each x, which are given as the left and the right limits
of f'(x) (where defined).

In the general case where C C V| f is a continuous function in ri C, f
has a differential Df in a dense set C; of ri C, the complement of C; in
ri C has a zero measure, and D f is continuous in C;. Furthermore at each
x € 11 C f has a subdifferential ¢ € Hom(V,R) such that

(4.6.5) fly) > f(x)+é(y —x) forally e C.

See for example [Roc70].
The following result is well known (see Problems 14-15 below):

Proposition 4.6.16 (The mazimal principle) Let C be a convez set
and let fg : C — R be an extended convex function for each ¢ in a set ®.
Then

f(x) :==sup fy(x), foreachx eV,
pcP

is an extended convex function on C.

Proposition 4.6.17 Let S C V and assume that f : convS — R is a
convex function. Then

sup  f(x) =sup f(y).

x€conv S yES
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If in addition S is compact and f is continuous on convS then one can
replace sup by max.

See Problem 16 below for a generalization of this proposition.

Corollary 4.6.18 Let V be a finite dimensional IPS over F = R,C.
Let S C S(V). Let f :convS — R be a convex function. Then

sup f(A) = sup f(B).
A€conv S BeS

Definition 4.6.19 For x = (z,,...,2,) ",y = (Y1, Yn) ' € R" let
x<y <= z;<y;,i=1,...,n. Let DCR" and f:D — R. f is called
a nondecreasing function on D if for any x,y € D one has the implication
x<y= f(x) < fy)

Problems
1. Show
(a) For any nonempty subset S of a finite dimensional vector space
V over I, conv S is a convex set.
(b) Furthermore, if S is compact, then C := conv S is compact and

ext (C) C S.

2. Let C be a convex set in a finite dimensional subspace, with the set
of extreme points ext (C). Let E; C ext (C) and C; = conv E;. Show
that ext (Cl) = El.

3. Let V be a finite dimensional space and C C 'V a nonempty convex
set. Let x € C. Show
(a) The subspace U := span (C — x) does not depend on x € C.
(b) C — x has a nonempty convex interior in U and the definition of

ri C does not depend on x € C.

4. Let C be a convex set in a finite dimensional vector space V. Assume
that C contains at least two distinct points. Show

(a) Show that dim C > 1.
(b) Show that ri C Next (C) = 0.

5. Let x € C be an exposed point. Show that x is an extreme point of

C.
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10.

11.

Consider the convex set C € R2, which is a union of the three convex
sets:

Cy = {(X7Y)T7 |X| <1 |Y| < l}a Co = {(X’ Y)T7 (X - 1)2 + y2 < 1}’
Cs = {(X’Y)Ta (X+ 1)2 +y2 < 1}'

Show that C has exactly 4 extreme points (+1,41)" which are not
exposed points.

Show that II,, := conv{e,,...,e,} C R", wheree,,...,e, is the stan-
dard basis in R", is the set of probability vectors in R". Furthermore,
ext IT, = {e,,...,e,}.

Let S C R™ be a nonempty finite set. Show

(a) Let S = {x,,...,xy}. Then convS = convy_1(S).
(b) Any finitely generated convex set is compact.

(c) S C ext conv S.

(d) Let f1,..., fm : R® — R be linear functions and a1, ..., a,, € R™.
Denote by A the affine space {x € R" : f;(x) =a;, i = 1,...,m}.
Assume that C := convS N A # (). Then C is a finitely generated
convex set such that ext C C convy, S. (Hint: Describe C by m + 1
equations with #S variables as in part a. Use the fact that any
homogenous system in m + 1 equations and [ > m + 1 variables has
a nontrivial solution.)

(e) Prove Theorem 4.6.2 for a finitely generated convex set C and a
finite S.

Let C be a convex set of dimension d with a nonempty ext C. Let
¢’ = convext C. Show that ext C' = ext C.

Let C be a convex set in a finite dimensional space, with the set of
extreme points ext (C). Let Ey C ext (C) and C; = conv E;. Show
that ext (Cy) = Ej.

Let C C V be convex set and assume that f : C — R be a convex
function. Show that for any k£ > 3 one has the inequality

k k
(4.6.6) 1 piwg) <3 pif (wy),

for any u,,...,u; € C,p:= (py,...,pr)" € II}. Assume in addition
that f is strictly convex, p > 0 and not all u,, ..., u are equal. Then
strict inequality holds in (4.6.6).
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12. Prove Proposition 4.6.13.

13

14.
15.
16.

17.
18.
19.

20

(a) Let f € C*((a,b)). Show that f is convex on (a,b) if and only if

'(x) is nondecreasing on (a,b). Show that if f/(z) is increasing on
(a,b) then f is strictly convex on (a,b).
(b

) Let f € C([a,b]) N C'((a,b)). Show that f is convex in [a,b] if
and only if f is convex in (a,b). Show that if f'(z) is increasing on
(a,b) then f is strictly convex on [a, b].

(c) Let f € C?((a,b)). Show that f is convex on (a,b) if and only
if f” is a nonnegative function on (a,b). Show that if f”(z) > 0 for
each = € (a,b) then f is strictly convex on (a,b).

(d) Prove Theorem 4.6.14.
Prove Proposition 4.6.16.
Prove Proposition 4.6.17.

Assume the assumptions of Proposition 4.6.17. Assume in addition
that f(convS) C [0,00] and g : convS — (0, 00) is concave. Then

100 I0)
x€cconvS g X) yES g(y)

If in addition S is compact and f, g are continuous on conv S then one
can replace sup by max.

Show Proposition 4.7.2.
Prove Lemma 4.7.5.
Let x,y € R™. Show that x <y <— —y < —x.

. Prove Corollary 4.7.12.

4.7 Majorization

Definition 4.7.1 Let

For

Q::{x:(ajl,...,mn)TER": Ty > Ta > > Tt

X = (z,...,7,)" € R" let x = (z9,...,2,)" € RT be the unique

rearrangement of the coordinates of X in a decreasing order. That is, there
exists a permutation w on {1,...,n} such that x; = x4, i =1,...,n.
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Let x = (z1,..,20) ",y = Y1y, yn) | € R™. Then x is weakly ma-
jorized by 'y (ory weakly majorizes x), denoted by x <y, if

k k

(4.7.1) ZL'SZ%’ k=1,...,n.

i=1 i=1
x s magorized by 'y (or'y majorizes x), denoted by x <y, if x 3y and
Z:'L:1 T; = E:‘L:1 Yi-

Proposition 4.7.2 Lety = (y,,...,yn)' € RT,. Let

M(y) ={xeR{: x=<y}
Then M(y) is a closed convex set.
See Problem 1 below.

Definition 4.7.3 A € R}™" is called a doubly stochastic matriz if the
sum of each row and column of A is equal to 1. Denote by Q,, C R}*™ the
set of doubly stochastic matrices. Denote by %Jn the nxn doubly stochastic
matriz in which every entry equals %, i.e. Jn € RI™ is the matriz in which
every entry is 1.

Definition 4.7.4 P € R} " is called a permutation matriz if each row
and column of P contains exactly one nonzero element which is equal to 1.
Denote by P, the set of n X n permutation matrices.

Lemma 4.7.5 The following properties hold:

1. A € RT™" is doubly stochastic if and only if A1 = AT1 =1, where
1=(1,...,1)7 €R".

0 ={1}.

Q,, is a convex set.
A,BeQ,=ABc,.
Pn C Q.

S St e

P is a group with respect to the multiplication of matrices, with I,
the identity and P~ = PT.

7. A€ Qy, BEQm—)A@BEQl+m.

See Problem 2 below.
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Theorem 4.7.6 (), is a convez set generated by Py,. i.e. , = conv P,.
Furthermore, Py, is the set of the extreme points of Q. That is, A € R*"
is doubly stochastic if and only
(4.7.2)

A= Z apP for some ap >0, where P € P,,, and Z ap = 1.

PEP, PEP,

Furthermore, if A € P, then for any decomposition of A of the above form
one has the equality ap = 0 for P # A.

Proof. In view of properties 3 and 5 of Lemma 4.7.5 it follows that
any A of the form (4.7.2) is doubly stochastic. We now show by induction
on n that any A € Q,, is of the form (4.7.2). For n = 1 the result trivially
holds. Assume that the result holds for n = m — 1 and assume that n = m.

Assume that A = (a;;) € Q. Let [(A) be the number of nonzero entries
of A. Since each row sum of A is 1 it follows that [(A) > n. Suppose first
[(A) < 2n—1. Then there exists a row ¢ of A which has exactly one nonzero
element, which must be 1. Hence there exists 7,j € [n] such that a;; = 1.
Then all other elements of A on the row ¢ and column j are zero. Denote
by A;; € ]RE:L_I)X(”_U the matrix obtained from A by deleting the row and
column j. Clearly A;; € €,—1. Use the induction hypothesis on A;; to
deduce (4.7.2), where ap = 0 if the entry (4,7) of P is not 1.

We now show by induction on [(A) > 2n — 1 that A is of the form
(4.7.2). Suppose that any A € Q,, such that [(A) <1 — 1,1 > 2n is of the
form (4.7.2). Assume that [(A) = 1. Let S C [n] x [n] be the set of all
indices (4,7) € [n] x [n] where a;; > 0. Note #S = [(A) > 2n. Consider
the following system of equations in n? variables, which are the entries
X = [xij]ln,jzl € Rnxm:

n n
E Ti5 = E xjizo, Z:L,’I’L
Jj=1 Jj=1

Since the sum of all rows of X is equal to the sum of all columns of X
we deduce that the above system has at most 2n — 1 linear independent
equations. Assume furthermore the conditions x;; = 0 for (7, j) ¢ S. Since
we have at least 2n variables it follows that there exist X # 0, x,, satisfying
the above conditions. Note that X has a zero entry in the places where A
has a zero entry. Furthermore, X has at least one positive and one negative
entry. Therefore there exist b,c¢ > 0 such that A — bX, A+ c¢X € Q,, and
I(A-bX),l(A+cX) <l SoA—bX,A+ cX are of the form (4.7.2). As
A= (A-bX) + bic (A + ¢X) we deduce that A is of the form (4.7.2).

Assume that A € P,. Counsider the decomposition (4.7.2). Suppose
that ap > 0. So A—apP > 0. Therefore if the (4, j) entry of A is zero then
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the (4, ) entry of P is zero. Since A is a permutation matrix it follows that
the nonzero entries of A and P must coincide. Hence A = P. O

Theorem 4.7.7 Let 2, s C ), be the set of symmetric doubly stochas-
tic matrices. Denote

1
(4.7.3) Pns={A. A= §(P +P") for some P € P,}.
Then A € Pp s if and only if there exists a permutation matriz matriz

P € P, such that A= PBP", where B = diag(Bu, ..., B;) and each B; is
a doubly stochastic symmetric matriz of the following form:

1. 1 x 1 matriz [1].

) 0 1
2.2><2matrm;[1 0}

1 1
0 5 0 0 3
10 1 00
3. n X n matrix . . ..
S D
5 0 0 5 0

Furthermore, §, s = conv P, s and P, s = ext Q,, 5. That is, A € Q, , if
and only if
(4.7.4)

A= z brR for some ar >0, where R € P, s, and Z br = 1.
RePnp,s RePn,s

Moreover, if A € Py, s then for any decomposition of A of the above form
br =0 unless R = A.

Proof. Assume that A € Q,, ;. As A is doubly stochastic (4.7.2) holds.
Clearly, A= AT = > pep, apP". Hence

A= %(A+AT): > ap(%(P—f—PT)).
PEP,

This establishes (4.7.4).

Let Q@ € P,. So Q represents a permutation (bijection) o : [n] —
[n]. Namely Q = [q;;]}';—; where qij = d5(:); for i,j € [n]. Fix i € [n]
and consider the orbit of i under the iterations of o: o*(i) for k € N,
Then o decomposes to t-cycles. Namely, we have a decomposition of [n]
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to a disjoint union U;cCj. On each C; = {c14,...,¢;,,;} o acts as a
cyclic permutation ¢y ; — ca; — -+ — ¢;-1; — ¢, — c1,; Rename
the integers in [n] such that: Each C; consists of consecutive integers;
cpj=cij+p—1lforp=1,...,l; 1<l <... <l Equivalently, there
exists a permutation P such that PQP~' = PQP" has the following block
diagonal form: diag(Q1,...,Q:). @, is [1] if and only if I; = 1. For [; > 2
Qj = [6(i+1)j]7j=1, where n +1 = 1. Tt now follows that %P(Q +QNPT
has one of the forms 1,2,3.

Suppose that A € P, ; has a decomposition (4.7.4). Assume that
br > 0. Then A —brR > 0. If the (¢,7) entry of A is zero then the
(i,7) entry of R is also zero. Without loss of generality we may assume
that A = diag(Bs, ..., B;) here each B; has one of the forms 1,2,3. So
R = diag(Ry,...,R:). Recall that R = %(Q +QT) for some Q € P,.
Hence Q = diag(Q1,...,Q:), where each Q; is a permutation matrix of
corresponding order. Clearly, each row and column of R; has at most two
nonzero entries. If B; has the form 7 or 2 then R; = (); = B;. Suppose
that B; is of the form 3. So B; = %(FJ + FjT) for a corresponding cyclic
permutation and R; = %(Qj —|—Q]-T). Then a straightforward argument show
that either Qj = Fj or Qj = F’jT O

Theorem 4.7.8 Let x,y € R". Then x <y if and only if there exists
A € Q,, such that x = Ay.

Proof. Assume first that x = Py for some P € P,. Then it is
straightforward to see that x < y. Assume that x = Ay for some A € Q,,.
Use Theorem 4.7.6 to deduce that x < y.

Assume now that x,y € R™ and x < y. Since x = Px,y = Qy for some
P,Q € P, it follows that x < y. In view of Lemma 4.7.5 it is enough to
show that x = By some B € Q,. We prove this claim by induction on n.
For n = 1 this claim is trivial. Assume that if x < y € R! then x = By for

some B € () for all | < m — 1. Assume that n =m and x < y. Suppose

first that for some 1 < k < n — 1 we have the equality Zle z; = Zle Y,
Let

X = (§17"'7§k)—r7y1 = (£17"'7Ek)—r € Rk7

Xz = (£k+17 cee a&n)—ray2 = (ykJrla s 7yn>—r € Rn_k'

Then x; < y,,X, < y,. Use the induction hypothesis that x;, = B;y;,7 =
1,2 where By € Qi, Bs € Q,,_i. Hence x = (B @ Bs)y and B; ® By € Q,,.
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It is left to consider the case where strict inequalities hold in (4.7.1) for
k=1,...,n—1. We now define a finite number of vectors

Y=2, 2, =2, > ... = ZN = Zy - X,
where N > 2, such that
1. z;4, = Byz; fori=1,...,N — 1.
2. 25:1 z; = Zle w; for some k € [n—1], where zy = w = (w,,...,w,)".
Observe first that we cannot have y. = ... =y . Otherwise x =y
and we have equalities in (4.7.1) for all ¥ € [n], which contradicts our
assumptions. Assume that we defined

Y=2, =2 =2, = ... =% =2, = (Uy, ..., Uy

for 1 < r such that Zlegi < Zle u; for k =1,...,n — 1. Assume that
UL = ... = Up > Upp1 = ... = Upyq, WheTe Upyq > Uptgt1 if D+ ¢ <n. Let
Ct)=(1—=t)Iptq+ ﬁ‘]pﬂ) ® I, (ptq)) for t € [0,1] and define u(t) =
C(t)z,. We vary t continuously from ¢ = 0 to ¢t = 1. Note that u(t) = u(t)
for all t € [0,1]. We have two possibilities. First there exists ¢y € (0, 1] such
that u(t) = x for all t € [0,tg]. Furthermore for w = u(t,) = (w,,...,w,)"
we have the equality Zle T, = Zle w; for some k € (n—1). In that case
r=N—1and zy =u(t,).

Otherwise let z,, = u(1) = (vy,...,v,)", where v; = ... = v, >
Up+q+1- Repeat this process for z,,, and so on until we deduce the condi-
tions 1 and 2. So x = Byzy = BNBNy_1ZNy—, = By ... B,y. In view of 4
of Lemma 4.7.5 we deduce that x = Ay for some A € Q,.

O

Combine Theorems 4.7.8 and 4.7.6 to deduce:

Corollary 4.7.9 Let x,y € R". Then x <y if and only if
(4.7.5) X = Z apPy for some ap > o, where Z ap = 1.
PcP, PePn

Furthermore, if x <y and x # Py for all P € P, then in (4.7.5) each
ap < 1.

Theorem 4.7.10 Let X = (2,,...,2,)" <y = (Ya,---,yn) . Let
¢:[y, .yl = R be aconvex function. Then

(4.7.6) D o) < bl

=1 i=1
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If ¢ is strictly convex on [yn,yl] and Px # y for all P € P, then strict
inequality holds in (4.7.6).

Proof. Problem 3 below implies that if x = (z,,... ,Jcn)—r <y =
(Y1, Yn) ! then x; € [yn,gl] for i = 1,...,n. Use Corollary 4.7.9 and
the convexity of ¢, (see Problem 11 below), to deduce:

$zi) < Y app((Py)i), i=1,...,n.

PeP,

Observe next that Y . ¢(y;) = >y #((Py);) for all P € P,. Sum up
the above inequalities to deduce (4.7.6).

Assume now that ¢ is strictly convex and x # Py for all P € P,. Then
Corollary 4.7.9 and the strict convexity of ¢ implies that at least in one
the above 7 — th inequality one has strict inequality. Hence strict inequality
holds in (4.7.6). O

Definition 4.7.11 Let V be an n-dimensional IPS, and T € S(V).
Define the eigenvalue vector of T to be X(T) := (M (T), ..., \p(T))T € RT,.

Corollary 4.7.12 Let 'V be an n-dimensional IPS. Let T € S(V), and
F,=A{f1,...£,} € Fr(n, V). Then

(T, £1), ... (Tf,, £) T < X(T).

Furthermore, if ¢ : [M(T), A1 (T)] = R is a convex function, then

Z P(A(T)) = max > o(Thi, 1))

(£, £ EF(n, V)

i=1 i=1
Finally, if ¢ is strictly convez, then >, ¢(N(T)) = doi ) o((Tf;, £)) if
and only if f1,...,fn is a set of n orthonormal eigenvectors of T'.

See Problem 4 below.

Problems

1. Show Proposition 4.7.2.

2. Prove Lemma 4.7.5.

3. Let x,y € R". Show that x <y <— -y < —x.
4. Prove Corollary 4.7.12.
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4.8 Spectral functions
Definition 4.8.1

1. D is called a Schur set if D C RY and the following property holds:
Assume that'y € D. Then each x € R’i which satisfies x <y belongs
to D.

2. A function h : D — R is called Schur’s order preserving if
h(x) < h(y) foranyx,y € Dsuchx <y.

h is called strict Schur’s order preserving if a strict inequality holds
in the above inequality whenever x # y. h is called strong Schur’s
order preserving if

h(x) < h(y) forany x,y € Dsuchx <y.

3. Let T C S(V), where V is an n-dimensional IPS over F =R, C. Let
AXT)={XMT) e R : TeT} A function f:T — R is called a
spectral function if there exists a set D C R’i and h : D — R such
that X(T) € D and f(T) = h(\(T))

Note that if h((z1,...,2,)) = >.ry g(x;) for some convex function
g : R — R then Corollary 4.7.12 implies that h : R{ — R is Schur’s order
preserving. The results of Section 4.4 yield:

Proposition 4.8.2 Let V be an n-dimensional IPS, D C R be a
Schur set and h : D — R be a Schur’s order preserving function. Let
T € S(V) and assume that A\(T) € D. Then

BT = 325 M0

Theorem 4.8.3 Let D C RT{,‘ be a reqular Schur set in R™. Let F €
CY(D). Then F is Schur’s order preserving if and only if

F F
(4.8.1) g—xl(x) >...> g—mn(x), for each x = (x,,...,2,)" €D.
If for any point x = (x,,...,7,)" € D such that x; > x;1 the inequality

I (x) > G«Si (x) holds then F is strict Schur’s order preserving.
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Proof. Assume that F' € C1(D) and F is Schur’s order preserving. Let
X=(2y,...,2,)" €D° Hence z; > ... > x,. Let € = (0i1,...,0in) ,i=
1,...,n. Fori e [l,n—1]NZ; let x(t) := x + t(e; — €;+,). Then

min; _ Ta— s
x(t) € R for [t| <7 := jElL,n 1]22+ h JJH’

(4.8.2)
and x(t,) < x(t,) for —7 <t, <t, <7

See Problem 1 below. Since D° is open there exists ¢ > 0 such that x(t) €
De° for t € [—e¢,€]. Then f(t) := F(x(t)) is an increasing function on [—e, €.
Hence f/(0) = gﬂi (x) — 8251 (x) > o. This proves (4.8.1) in D°. The
continuity argument yields (4.8.1) in D.

Assume now that (4.8.1) holds. Lety = (y1,...,yn) ;2= (21,...,2,) " €

D and define

y(t) =1 —t)y +1tz, g(t) := F((1 — t)y + tz), fort € [0,1].

Suppose that y < z. Then y(¢,) < y(t.) for 0 <t; <ty < 1. Since D is a
Schur set, [y,z] C D. Then

; T
= Om it j=1

See Problem 2 below. Hence ¢'(t) > 0, i.e. g¢g(t) is a nondecreasing
function on [0,1]. Thus F(y) = g(o) < g(1) = F(z). Assume that

for any point x = (x,,...,7,)' € D such that x; > x;;1 the inequal-
ity %(X) > 8iFl (x) holds. Suppose that y # z. Then ¢'(¢t) > 0 and
F(y) = g(0) <g(1) = F(2). o

Theorem 4.8.4 Let D C RY be a regular Schur set in R™. Let F €
CY(D). If F is strong Schur’s order preserving then

OF OF
4.8.4 —(x)>...> =—(x) > o, foreach x = (z,,...,x,)" €D.
R CETUES e CREN
Suppose that in addition to the above assumptions D is convez. If F satisfies
the above inequalities then F' is strong Schur’s order preserving. If for any
point x = (v,,...,2,)" €D gTI:(X) > o0 and g—i(x) > 8351 (x) whenever
x; > x41 holds, then I is strict strong Schur’s order preserving.
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Proof. Assume that F is strong Schur’s order preserving. Since F' is
Schur’s order preserving (4.8.1) holds. Let x = (x,,...,7,)" € D°. Define
w(t) = x+te,. Then there exists e > 0 such that w(t) € D° for t € [—e, €.
Clearly w(t,) < w(ty) for —e < t; < t2 < e. Hence the function h(t )

F(w(t)) is not decreasing on the interval [—e, €]. Thus dF —~(x) = h'(0) >

Use the continuity argument to deduce that Ba I (x)>o0 for any x € D.

Assume that D is convex and (4.8.4) holds. Let y,z € D and define y(t)
and g¢(t) as in the proof of Theorem 4.8.3. Then

g = S0P

8CE2‘ 8(Ei+1 =1

(4.8.5)

n

3xn

j:l

See Problem 2 below. Assume that y < z. Then ¢'(¢t) > 0. Hence F(y) <
F(z).
Assume now that for any point x = (z,,...,z,)" €D aaTF(x) > o0 and

%(x) > dgF (x) whenever z; > z;11. Let y,z € D and assume that

y=zandy ;é z. Define g(t) on [0, 1] as above. Use (4.8.5) to deduce that
g'(t) > 0 on [0,1]. Hence F(y) < F(z). O

Theorem 4.8.5 Let V be an n-dimensional IPS over F = R,C. Then
the function tr; : S(V) — R, where tr;(T) = 22:1 Ai(T), is a continuous
homogeneous convex function fori=1,...,n—1. tr,(T) = tr T is a linear

function on S(V).

Proof. Clearly tr;(aT) = atr;(T) for a € [0,00). Hence tr; is a homo-
geneous function. Since the eigenvalues of T' are continuous it follows that
tr; is a continuous function. Clearly tr, is a linear function on the vector
space S(V). Combine Theorem 4.4.8 with Proposition 4.6.16 to deduce
that tr; is convex. O

Corollary 4.8.6 Let V be a finite dimensional IPS over F = R,C.
Then

AMad+(1—a)B) < aA(A)+ (1 —a)A(B), for any A, B € S(V), a € [0,1].

For a € (0,1) equality holds if and only if there exists an orthonormal basis
[Vi,...,Vy] in 'V such that

AVZ‘ = )\1(14)1117 BVZ' = )\l(B)V“ 1= 1,...,MN.
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See Problem 4 below.

Proposition 4.8.7 Let'V be an n-dimensional IPS over F = R,C. For
D C R” let

(4.8.6) ATID):={T€S(V): A(T)eD}

IfD C R™ is a regular convex Schur set then X' (D) is regular convez set
in the vector space S(V).

Proof. The continuity of the function A : S(V) — RZ implies that
A~!(D) is a regular set in S(V). Suppose that A, B € A(D)"! and a € [0, 1].
Since D is convex, aA(A)+(1—a)A(B) € D. Since D is a Schur set Corollary
4.8.6 yields that A(cA+(1—a)B) € D. Hence aA+(1—a)B € X" '(D). O

Definition 4.8.8 For x = (z,,...,2,)' € D" denote
D(x) := diag(z,,...,xy).

Theorem 4.8.9 Let D C RU be a regular convex Schur set and let
h:D — R. Let V be an n-dimensional IPS over F = R,C. Let f :
A1 (D) = R be the spectral function given by f(A) := h(X(A)). Then the
following are equivalent:

(a) f is (strictly) convex on X~ (D).
(b) h is (strictly) convex and (strictly) Schur’s order preserving on D.

Proof. Choose a fixed orthonormal basis [u,,...,u,]. For simplicity

of the argument we assume that F = C. Identify S(V) with H,. Thus
we view T := A"'(D) as a subset of H,. Since D is a regular convex
Schur set, Proposition 4.8.7 yields that 7T is a regular convex set. Let
X = (z,,...,2,)" € R™ Then A(D(x)) =x. Thus D(x) € T <= x€D
and f(D(x)) = h(x) for x € D.
(a) = (b). Assume that f is convex on 7. By restricting f to D(x),x € D,
we deduce that h is convex on D. If f is strictly convex on 7 we deduce
that h is strictly convex on D.

Let x,y € D and assume that x < y. Then (4.7.5) holds. Hence

D(x)= > apPD(y)P".
PeP,

Clearly A(PD(y)PT) = A(D(y)) = y. The convexity of f yields

h(x) = f(D(x)) < > apf(PD(y)PT) = f(D(y)) = h(y).

PePy
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See Problem 4.7.11. Hence h is Schur’s order preserving. If f is strictly
convex on 7 then in the above inequality one has a strict inequality if
x #y. Hence h is strictly Schur’s order preserving.

(b) = (a). Assume that h is convex. Then for A,B €T

af(A)+(1-a)f(B) = ah(A(A))+(1=a)h(A(B)) = h(aA(A)+(1-a)A(B)).

Use Corollary 4.8.6 and the assumption that h is Schur’s order preserving
to deduce the convexity of f. Suppose that h is strictly convex and strictly
Schur’s order preserving. Assume that f(aA+ (1 —a)B) = af(A)+ (1 —
a)f(B) for some A,B € T and a € (0,1). Hence A(4A) = A(B) and
AMaA+ (1 —a)B) = aA(A) + (1 — a)A(B). Use Corollary 4.8.6 to deduce
that A = B. Hence f is strictly convex. O

Theorem 4.8.10 Let D C RU be a regular conver Schur set and let
h € CYD). Let V be an n-dimensional IPS over F = R,C. Let f :
A71(D) = R be the spectral function given by f(A) := h(X(A)). Then the
following are equivalent:
(a) f is convex on A" (D) and f(A) < f(B) for any A, B € X' (D) such
that A < B.
(b) h is convex and strongly Schur’s order preserving on D.

Proof. We repeat the proof of Theorem 4.8.9 with the following modi-
fications.
(b) = (a). Since h is convex and Schur’s order preserving, Theorem 4.8.9
yields that f is convex on 7. Let A,B € T and assume that A < B.
Then A(A) < A(B). As h is strongly Schur’s order preserving h(A(4)) <
WAB)) = J(A) < (B).
(a) = (b). Since f is convex on 7, Theorem 4.8.9 implies that h is
convex and Schur’s order preserving. Since h € C!(D), Theorem 4.8.3
yields that h satisfies the inequalities (4.8.1). Let x € D° and define
x(t) := x + te,. Then for a small a > 0, x(¢) € D° for t € (—a,a). Clearly
D(x(t,)) < D(x(t,)) for t; < ta. Hence g(t) := f(D(x(t)) = h(x(t)) is a
nondecreasing function on (—a, a). Hence %(X) = ¢'(0) > o. Use the con-
tinuity hypothesis to deduce that h satisfies (4.8.4). Theorem 4.8.4 yields
that h is strong Schur’s order preserving. O

Theorem 4.8.11 Assume that n < N are two positive integers. Let
V be an N-dimensional IPS over F = R,C. Let A,y : S(V) — RY, be

the map A X(ny(A) = (M (A),..., \(A)T. Assume that D C RT isa

reqular convex Schur set and let T := )\(_nl) (D) c S(V). Let f: T — R be
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the spectral function given by f(A) := h(Ay)(A)). Then the following are
equivalent:
(a) f is convex on T.

(b) h is convex and strongly Schur’s order preserving on D.
(c) f is convex on T and f(A) < f(B) for any A,B € T such that A < B.

Proof. Let 7 : RQ: — RY be the projection on the first n coordinates.

Let Dy := 7 1(D) C R{. It is straightforward to show that D; is a regular

convex set. Let hy ;== hom:D; — R. Then%:Ofori:n—&—l,...,N.

(a) = (b). Suppose that f is convex on 7. Then Theorem 4.8.9 yields
that h; is convex and Schur’s order preserving. Theorem 4.8.3 yields the
inequalities (4.8.1). Hence 92 (y) > -9 _(y) = o for any y € D,. Clearly

Oxy, = O0Tp4,

h is convex and
oh (x) = oh,
Thus h satisfies (4.8.4). Theorem 4.8.4 yields that h is strongly Schur’s

order preserving.
Other nontrivial implications follow as in the proof of Theorem 4.8.10.

(y),i=1,...,n, wherex €D, y € D,, and 7(y) = x.

Problems

1. Let x = (z,,...,2,)" € R™ and assume x; > ... > x,,. Let x(t) be
defined as in the proof of Theorem 4.8.3. Prove (4.8.2).

2. Let D C R™ be a regular set and assume that [y,z] C D,y =
(Wi sYn) 2 = (21,...,2,) . Let F € CY(D) and assume that
g(t) is defined as in the proof of Theorem 4.8.3. Show the equal-
ity (4.8.5). Suppose furthermore that >, y; = > ._, z;. Show the
equality (4.8.3).

3. (This problem offers an alternative proof of Theorem 4.7.10.) Let
a < band n € N. Denote

[a, 0], = {(21,...,2n) ERY : x; €a,b], i=1,...,n}.
(a) Show that [a,b]¥ is a regular convex Schur domain.
(b) Let f € C!([a,b]) be a convex function. Let F : [a,b]" — R be
defined by F((z1,...,2,)") = Y1, f(x;). Show that F satisfies
the condition (4.8.1) on [a, b]% . Hence Theorem 4.7.10 holds for any
X,y € [a,b]™ such that x < y.

(¢) Assume that any convex f € C([a,b]) can be uniformly approxi-
mated by as sequence of convex fi € C!([a,b]),k = 1,... Show that
Theorem 4.7.10 holds for x,y € [a,b]™ such that x <y.
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4. Use Theorem 4.4.8 to show the equality case in Corollary 4.8.6

5. Forp € [1,00) let [|xpw = (X0, wilzi|P) 7, where x = (z,,...,2,)] €
R™ and w = (w,,...,w,)" € R%.

(a) Show that || - |, w : R® — R is a homogeneous convex function.
Furthermore this function is strictly convex if and only if p > 1 and
w; >0 for i =1,...,n. (Hint: First prove the case w = (1,...,1).)

(b) For ¢ > 1 show that | - || : R" — R is a convex function.
Furthermore this function is strictly convex if and only if w; > 0 for
i=1,...,n. (Hint: Use the fact that f(x) = x4 is strictly convex on
0,00).)

(c) Show that for ¢ > 0 the function || - |7, : R}  — R is strong
Schur’s order preserving if and only if w; > ... > w, > 0. Further-
more this function is strictly strong Schur’s order preserving if and

only if wy >...>w, > 0.

(d) Let V be an n-dimensional IPS over F = R,C. Show that for
q>1, wy > ... > wy, > 0 the spectral function 7' — [[A(T)[| ,, is a
convex function on S(V); (the positive self-adjoint operators on V.)
If in addition w, > 0 and max(p,q) > 1 then the above function is
strictly convex on S(V).

6. Use the differentiability properties of convex functions to show that
Theorems 4.8.10 and 4.8.11 hold under the lesser assumption h €
C(D).

7. Show that on HY, | the function logdet A is a strictly concave func-
tion, i.e. det (xA+(1—a)B) > (det A)*(det B)!~“. (Hint: Observe
that —logz is a strictly convex function on (0, 00).)

4.9 Inequalities for traces

Let V be a finite dimensional IPS over F = R,C. Let T : V — V be a
linear operator. Then trT is the trace of the representation matrix A with
respect to any orthonormal basis of V. See Problem 1 below.

Theorem 4.9.1 Let V be an n-dimensional IPS over F = R,C. As-
sume that S,T € S(V). Then tr ST is bounded below and above by

i=1
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Equality for the upper bound holds if and only if ST =TS and there exists

an orthonormal basis X,,...,x, € V such that

(4.9.2) Sx; = N(9)xi, Tx; =N(T)xs, i=1,...,n.

Equality for the lower bound holds if and only if ST =TS and there exists
an orthonormal basis X4, ...,x, € V such that

(4.9.3) Sx; = Mi(9)xs, Txi = i (T)xi, i=1,...,n.

Proof. Let y,,...,y, be an orthonormal basis of V such that

- )‘ ( )yl7 Z s Ty
)\1(T) (T) o Ar(T) = = A(T) > >
Aik,1+1(T) )\u( ) )\n(T), 1< <...<ip=n.

If k=1 < i1 = n it follows that T'= A1 I and the theorem is trivial in
this case. Assume that & > 1. Then

tr ST = Z)\ Sy, yi) =

n—1 [ n

S T) = A1 (D) Sy yi) + A(T)(Y(Syryi)) =
=1 =1 1=

k-1 i

Z(Aij (1) - )‘ij+1 (1)) Z<SYZ7 vi) + A\ (T) tr S.

J=1 =1

Theorem 4.4.8 yields that >,°, (Sy;, yi) < 3,2, Mi(S). Substitute these
inequalities for j = 1,...,k — 1 in the above identity to deduce the upper
bound in (4.9.1). Clearly the condition (4.9.2) implies that tr ST is equal
to the upper bound in (4.9.1). Assume now that tr ST is equal to the upper
bound in (4.9.1). Then >°,° (Sy,,yi) = > /2, M(S) for j = 1,...,k — 1.
Theorem 4.4.8 yields that span (y.,...,y;,) is spanned by some i; eigenvec-
tors of S corresponding to the first 7; eigenvalues of S for j =1,...,k — 1.
Let x,,...,x;, be an orthonormal basis of span (y,,...,y;, ) consisting of
the eigenvectors of S corresponding to the eigenvalues of A1 (S), ..., A, (5).
Since any 0 # x € span (y,,...,¥i,) is an eigenvector of T' corresponding
to the eigenvalue \;, (T) it follows that (4.9.2) holds for i = 1,...,4;. Con-
sider span (y,,...,¥i,). The above arguments imply that this subspace
contains iy eigenvectors of S and T corresponding to the first i eigenvalues
of S and T. Hence U,, the orthogonal complement of span (x,,...,%;,) in
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span (yi,...,¥i, ), spanned by X; 4i,...,X;,, which are i — ¢; orthonor-
mal eigenvectors of S corresponding to the eigenvalues A;, 4 (5), ..., Ay, (S).
Since any nonzero vector in U, is an eigenvector of T' corresponding to the
eigenvalue A, (T") we deduce that (4.9.2) holds for i = 1,...,i2. Continuing
in the same manner we obtain (4.9.2).

To prove the equality case in the lower bound consider the equality in
the upper bound for tr S(—T). O

Corollary 4.9.2 Let V be an n-dimensional IPS over F = R, C. As-
sume that S,T € S(V). Then

n

(4.9.4) D Ni(S) = (1) < (S —T)2.

i=1
Equality holds if and only if ST = TS and V has an orthonormal basis
Xy, -y Xp Satisfying (4.9.2).

Proof. Note

n

D A(S) = X(T)? =tr S® + tr T° — an: i (S)Ni(T).

i=1 i=1

Corollary 4.9.3 Let S,T € H,,. Then the inequalities (4.9.1) and
(4.9.4) hold. Equalities in the upper bounds hold if and only if there exists
U € U, such that S = Udiag \(S)U*, T = Udiag\(T)U*. Fquality in
the lower bound of (4.9.1) if and only if there exists V € U, such that
S =Vdiag \(S)V*, =T = V diag \(-T)V*.

Problems
1. Let V be a n-dimensional IPS over F = R, C.

(a) Assume that T': 'V — V is a linear transformation. Show that
for any orthonormal basis x,,...,X,

n
tr’l = Z(Txi,xi>.

=1

Furthermore, if F = C then trT is the sum of the n eigenvalues
of T
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(b) Let S,T € S(V). Show that tr ST =trTS € R.

2. (a) Let S,T € S(V). Show that tr ST € R. Furthermore, {S,T) :=
tr ST is an inner product on S(V) over R.

(b) Let ¢ : S(V) — R be a linear functional. Show that there exists
F € S(V) such that ¢(X) = tr X F for each X € S(V).

3. Assume that S,T € S; (V).

(a) Show that tr ST > 0. Furthermore tr ST = 0 if and only if
ST =TS =0.

(b) Suppose furthermore that T' € S;(V)°. Then tr ST = 0 if and
only if S =0.

(c¢) Show that P € S(V) is nonnegative definite if and only if tr PS >
0 for each S € S, (V). Furthermore P is positive definite if
tr PS > 0 for each S € S (V) \ {o}.

4.10 Singular Value Decomposition

Let U,V be finite dimensional IPS over F = R, C, with the inner products
(-, )u, (-, )v respectively. Let uy,...,u,, and vq,..., v, be bases in U and
V respectively. Let T : V — U be a linear operator. In these bases T is
represented by a matrix A € F™*™ as given by (1.11.2). Let 7% : U* =
U—V*=V. Then T*T : V — V and TT* : U — U are self-adjoint
operators. As

(IT*Tv,v)y = (ITv,Tv)y >0, (TT"u,u)y = (T"u,T"u)y >o0

it follows that T*T > 0,TT* > 0. Let

(4.10.1) T*Tc; = \(T*T)c;, {ci,cr)v = ik, 4,k =1,...,m,
M(T*T) > ... > X (T7T) > 0,

(4102) TT*dJ = )\J(TT*)d], <dj7dl>U = 5]‘[, ],l =1,...,M,
MTTH) > ... > \p(TTF) >0,

Proposition 4.10.1 Let U,V be finite dimensional IPS over F = R, C.
Let T : V — U. Then rank T = rank T* = rank T*T = rank TT* = r.

Furthermore the self-adjoint nonnegative definite operators T*T and TT*
have exactly r positive eigenvalues, and

(4.10.3) XN(T*T) = N(TT*) >0, i=1,... rank T.
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Moreover fori € [1,r] Tc; and T*d; are eigenvectors of TT* and T*T cor-
responding to the eigenvalue \;(TT*) = N\;(T*T) respectively. Furthermore
if ¢y,...,Cp satisfy (4.10.1) then d; := %,2 =1,...,7 satisfy (4.10.2)
fori=1,...,r. A similar result holds for d,,...,d,.

Proof. Clearly Tx =0 < (I'x,Tx) =0 <= T*Tx = 0. Hence

rank T*T = rank T = rank T* = rank TT* =r.

Thus T*T and TT* have exactly r positive eigenvalues. Let ¢ € [r]. Then
T*Tc; # 0. Hence T'c; # 0. (4.10.1) yields that TT*(T'c;) = \(T*T)(Tc;).
Similarly T*T(T*d;) = A\ (TT*)(T*d;) # o. Hence (4.10.3) holds. Assume
that c,, ..., c, satisfy (4.10.1). Let dy,...,d, be defined as above. By the
definition ||d;|| =1,i=1,...,7r. Let 1 <4 < j <r. Then

0= (ci,¢j) = M(T*T){ci, ¢;) = (T*Tc;, c;) = (Te;, Tej) = (di, dj) = o.

Hence &1, ...,d;, is an orthonormal system. a
Let

0i(T) =/ A(T*T) fori=1,...,r, o;(T)=0fori>r,

(4.10.4)
o(p)(T) := (01(T),...,00(T))" € Ry, peN
Then o;(T) = 0;(T*),i = 1,...,min(m,n) are called the singular values

of T and T* respectively. Note that the singular values are arranged in a
decreasing order. The positive singular values are called principal singular
values of T and T* respectively. Note that

|Tc;||? = (T'c;,Te;) = (T*Tc;, ;) = N(T*T) = 07 =
[|Tci|| =04y i=1,...,n, and
IT7d;||* = (T"d;, T*d;) = (TT"d;,di) = \i(TT") = 05 =

|Td;|| =04, j=1,...,m.

Let c,,...c, be an orthonormal basis of V satisfying (4.10.1). Choose an
orthonormal basis d,,...,d,, as follows. Set d; := %72 =1,...,7. Then
complete the orthonormal set {d,,...,d,} to an orthonormal basis of U.
Since span (d,, ..., d,) is spanned by all eigenvectors of TT* corresponding
to nonzero eigenvalues of TT™ it follows that ker T* = span (dy4,, .. .,d).
Hence (4.10.2) holds. In these orthonormal bases of U and V the operators
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T and T* are represented quite simply:

Tc;, =0;(T)d;, i=1,...,n, whered; =0 fori>m,
(4.10.5)

T*d; = o0;(T)cj, j =1,...,m, wherec; =0 forj > n..
Let
(4.10.6) X = [s45];2y, sij = 0fori # j, sy = oy fori = 1,...,min(m.n).

In the case m # n we call ¥ a diagonal matrix with the diagonal o1, . . ., min(m,n)-
Then in the bases [d,,...,d;,] and [c,,...,¢c,] T and T* represented by
the matrices ¥ and X" respectively.

Lemma 4.10.2 Let [u,,...,un],[Vi,...,Vy] be orthonormal bases in
the vector spaces U,V over F = R, C respectively. Then T and T* are
represented by the matrices A € F™*™ and A* € F™"*"™ respectively. Let U €
U,, and V € U, be the unitary matrices representing the change of bases
[dy,...,dw] to[u,,...,uy] and [c,,...,c,] to [v,,...,V,] respectively. (If
F =R then U and V are orthogonal matrices.) Then

(4.10.7) A=USV* e F™"  UeU,, VeU,.

Proof. By definition Tv; = > aju;. Let U = (ugp)]_1,V =
(vjq);fq:l. Then

n n m n m m
TCq = E ’quTVj = E Vjq E a0 = E Vjq E Q5 E uipdp~
j=1 j=1 i=1 j=1 p=1

=1

Use the first equality of (4.10.5) to deduce that U*AV = X. O

Definition 4.10.3 (4.10.7) is called the singular value decomposition
(SVD) of A.

Proposition 4.10.4 Let F = R,C and denote by Ry ix(F) C Fmx»
the set of all matrices of rank at most k € [min(m, n)]. Then A € Ry n.k(F)
if and only if A can be expressed as a sum of at most k matrices of rank
1. Furthermore Ry, nix(F) is a variety in F™*" given by the polynomial
condition that each (k + 1) x (k+ 1) minor of A is equal to zero.

For the proof see Problem 2 below.
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Definition 4.10.5 Let A € C™*™ and assume that A has the SVD
given by (4.10.7), where U = [u,,...,up],V = [vi,...,Vv,]. Denote by
Ay = Zf;l ou; vy € C™" for k =1,...,rank A. For k > rank A we
define A := A (= Arank A)-

Note that for 1 < k < rank A, the matrix Ay is uniquely defined if and
only if o, > oky1. (See Problem 1 below.)

Theorem 4.10.6 For F = R,C and A = [a;;] € F™*" the following
conditions hold:

rank A
(4.10.8) 1Alp = Vir A*A = Vir Ad = | > 0i(A)?
i=1
(4.10.9) [|Allz2:== max [|Ax||, = 0,(A).

x€F™ | [x]|a=1

(4.10.10)

i A—Blly = ||A— A = A),k=1,...,rank A — 1.
Benrflif,kam” 2 =l k|| = okt1(A) ran

oi(A) > Ui([az'qu];n:fqzl) > it (m—m)+(n—n)(A),
(4.10.11)

m' e€[m],n €n), 1<ii<...<ip <m, 1<j <...<jp<n.

Proof. The proof of (4.10.8) is left as Problem 7 below. We now show
the equality in (4.10.9). View A as an operator A : C* — C™. From the
definition of || A||2 it follows

*A* Ax
Al = XL X N (ATA) = 01 (A)
1Al = max ——— 1(A74) = 01 (4)7,
which proves (4.10.9).
We now prove (4.10.10). In the SVD decomposition of A (4.10.7) assume
that U = [u, ... u,] and V = [v, ... v,]. Then (4.10.7) is equivalent to the
following representation of A:

(4.10.12) A= "oy,
i=1

m n * _ * _ Y4 —
u,...,u, €ER™, vy, .., v, €R”, wjuy; =vivy =645, 4,5 =1,...,7,
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where r = rank A. Let B = Zle 0wV € Ry ni(F). Then in view of
(4.10.9)

T
1A= Bll2 =1 ouvi|lo = ok
k+1
Let B € Ryyn,k(IF). To show (4.10.10) it is enough to show that || A—B||2 >
Ofk+1- Let
W:={xeR": Bx=0}
Then codim W > k. Furthermore
A—BJ|Z> max A— B)x|]? =
lA=BIE>  max (4= B)x|
HXIIQIE?,):((EW X"ATAX 2 Apa (A74) = 02+17
where the last inequality follows from the min-max characterization of
Ait1(A*A). /
Let C' = [ay;,];v",. Then C*C is an a principal submatrix of A*A of

i,q=1"
dimension n’. The interlacing inequalities between the eigenvalues of A*A

and C*C yields (4.10.11) for m' = m. Let D = [a;,;,]»".";. Then DD* is
a principle submatrix of CC*. Use the interlacing properties of the eigen-

values of CC* and DD* to deduce (4.10.11). O

We now restate the above results for linear operators.

Definition 4.10.7 Let U,V be finite dimensional vector spaces over
F = R,C. Fork € Z; denote Ly(V,U) := {T € L(V,U) : rank T <
k}. Assume furthermore that U,V are IPS. Let T € L(V,U) and as-
sume that the orthonormal bases of [d,,...,dn],[C1y...,¢cs] of U,V re-
spectively satisfy (4.10.5). Define Ty := 0 and Ty := T for an integer
k > rank T. Let k € [rank T — 1]. Define T}, € L(V,U) by the equality
Ti(v) = S8 0:(T)(v,c;)d; for any v € V.

Tt is straightforward to show that Tj € Li(V,U) and T} is unique if
and only if 0 (T") > o441(T). See Problem 8 below. Theorem 4.10.6 yields:

Corollary 4.10.8 Let U and V be finite dimensional IPS over F =
R,C. Let T : V — U be a linear operator. Then

(4.10.13) IT||p := Vtr T*T = Vtr TT* =

(4.10.14) [IT|l2:= max ||T%]|. =o0.(T).
x€V,||x||2=1



4.10. SINGULAR VALUE DECOMPOSITION 215

4.10.15 i T— — T), k=1,...,rank T — 1.
( ) Qeﬁf(lilz,m” Qllz = o4+1(T) ran

Problems

1. Let U,V be finite dimensional inner product spaces. Assume that
T € L(U, V). Show that for any complex number ¢ € C, o;(tT) =
t|o:(T) for all 4.

2. Prove Proposition 4.10.4. (Use SVD to prove the nontrivial part of
the Proposition.)

3. Let A € C™*™ and assume that U € U,,,V € U,. Show that
0;(UAV) = 0,(A) for all 4.

4. Let A € GL(n,C). Show that o1(A71) = 0,,(A)~ .

5. Let U,V be inner product spaces of dimensions m and n respectively.
Assume that

U=U,oU,, dimU, =m,, dimU,=m,,
V=V,eV,, dimV,=n,, dimV,=n,.

Assume that T € L(V,U). Suppose furthermore that TV, C U,,
TV, CU,. Let T; € L(V,;,U;) be the restriction of T to V; for i =
1,2. Then rank T = rank Ty +rank Ty and {o1(T),...,0rank T(T)} =
{01(T1)7 +++y0rank Ty (TI)} U {01(T2)7 -+ 0rank Ty (TZ)}

6. Let the assumptions of the Definition 4.10.5 hold. Show that for
1 <k <rank A, Ay is uniquely defined if and only if o > opy1.

7. Prove the equalities in (4.10.8).

8. Let the assumptions of Definition 4.10.7 hold. Show that for k €
[rank T — 1] rank Tx = k and T} is unique if and only if 0% (T) >
Uk+1(T).

9. Let V be an n-dimensional IPS. Assume that T' € L(V) is a normal
operator. Let A1 (T),..., A, (T) be the eigenvalues of T" arranged in
the order |A(T)| > ... > |An(T)|. Show that o;(T") = |A\(T)| for
1=1,...,n.
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4.11 Characterizations of singular values

Theorem 4.11.1 Let F = R, C and assume that A € F™*™. Define

(4.11.1) H(A) = L(f ‘g] € Hon .

Then

)\Z(H(A)) = G’i(A), >\m+n+17i(H(A)) = —UZ‘(A)7 1= 1, . ,rank A7
(4.11.2)
Nj(H(A)) =0, j=rank A+1,...,n+m —rank A.

View A as an operator A : F* — F™. Choose orthonormal bases [d,, ..., dpn],
[C1,...,Cp] in F™ F™ respectively satisfying (4.10.5). Then

8 0 -een[2] [0 8] -]
(4.11.3) i=1,...

Ker H(A) = span ([dfﬂﬂ] {d(’)ﬂ] , L:’J L?n]).

Proof. It is straightforward to show the equalities (4.11.3). Since all
the eigenvectors appearing in (4.11.3) are linearly independent we deduce
(4.11.2). O

Corollary 4.11.2 Let F =R, C and assume that A € F™*". Let A=
Ala, B] € FP*9 be a submatriz of A, formed by the set of rows and columns
a € Qpm, B € Qqn respectively. Then

(4.11.4) 0i(A) < oy(A) fori=1,....

For 1 € [rank A] the equalities 0;(A) = 0,(A),i = 1,...,1 hold if and only
if there exist two orthonormal systems of | right and left singular vectors
Cyy...,cp € F*, d,,...,d; € F*, satisfying (4.11.3) for i = 1,...,1 such
that the nonzero coordinate vectors c,,...,c; and d,,...,d; are located at
the indices (3, « respectively.

See Problem 1 below.

Corollary 4.11.3 Let V,U be inner product spaces over F = R, C.
Assume that W is a subspace of V. Let T € L(V,U) and denote by
T € L(W,U) the restriction of T to W. Then o;(T) < o;(T) for any
i € N. Furthermore O’i(T) =0y(T) fori=1,...,1 <rank T if and only if
U contains a subspace spanned by the first | right singular vectors of T.
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See Problem 2 below.
Define by R? \ :=RY{ NR%}. Then D C R} | is called a strong Schur
set if for any x,y € R} \,x <y we have the 1mphcatlon yeD=xeD.

Theorem 4.11.4 Let p € N and D C R{’h\ be a regular convex strong
Schur domain. Fiz m,n € N and let o) (D) := {A € F"*" : 0,)(A) €
D}. Let h : D — R be a conver and strongly Schur’s order preserving
Junction on D. Let f: o) :— R be given as hoa ). Then f is a conver
function.

See Problem 3 below.

Corollary 4.11.5 Let F = R,C, m,n,p € N, ¢ € [1,00) and w; >
wy > ... 2> wp > 0. Then the following function

Q

f:F™" 5 R, where f(A) = szaz e, AeFmxn

is a conver function.

See Problem 4 below.
We now translate Theorem 4.11.1 to the operator setting.

Lemma 4.11.6 Let U,V be finite dimensional inner product spaces
with the inner products (-, Yu, (-, -)v respectively. Define W :=V @ U to
be the induced IPS with

<(y,X), (V7 u)>W = <YaV>V + <X7 u>U-

Let T : V — U be a linear operator, and T : U — V be the adjoint of T.
Define the operator

(4.11.5) T:W W, T(y,x):=(T*x,Ty).

Then T is self-adjoint operator and 12 = T*T @& TT*. Hence the spectrum
of T is symmetric with respect to the origin and T has ezactly 2rank T
nonzero eigenvalues. More precisely, if dim U = m,dim V = n then:

N(T) = =Aman—is1(T) = 04(T), fori=1,...,rank T,

)\j(T):O, forj=rank T+ 1,...,n+m —rank T.

Let {d,, ... ,dpinm,n)} € Fr(min(m,n),U),
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{c1, ..\ Crmin(m,n) } € Fr(min(m, n), V) be the set of vectors satisfying (4.10.5).
Define

1

1
(4117) Z; = —Q(ci,di), Zm4n—it1 = ﬁ(ci, 7di),
i=1,...,min(m,n).
Then {21, Zmins - - - Zanin(m,n)» Emtn—min(m,n)+1 ; € Fr(2min(m,n), W). Fur-
thermore Tz; = oi(T)z;, sz+n_i+1 = —0i(T)Zm+tn—it+: fori=1,... min(m,n).

See Problem 5 below.

Theorem 4.11.7 Let U,V be m and n-dimensional inner product spaces
over C respectively. Let T : V. — U be a linear operator. Then for each
k € [min(m,n)]

k

> R(Tg fi)u =

i=1

k
(4.11.8) Y " 0i(T) =

max
{f1,..,fx }€Fr(k,U),{g1,...,8% }EFr (K, V)

k
max Tg: ful.
{fl,“.,fk}EFr(k,U),{gl,‘..,gk}eF‘r(k,V);|< & fi)ul

Furthermore Zle o:(T) = Zle R(Tg;,f;)u for some two k-orthonormal

fmmes Fk = {f17 s ,fk}a Gk = {g}v s 7gk} zfand Only Spal ((glafl)v LR (gka fk))
is spanned by k eigenvectors of T' corresponding to the first k eigenvalues
of T.

Proof. Assume that {f,...,fi} € Fr(k,U),{g,,...,gr} € Fr(k, V).
Let w; := ﬁ(gi,fi),i =1,...,k. Then {w,,...,wi} € Fr(k, W). A
straightforward calculation shows Zf:1<TWi7Wi>W = Zf:l R(Tg; f)u.
The maximal characterization of Zle Xi(T), (Theorem 4.4.8), and (4.11.6)
yield the inequality Zle oi(T) > Zle R(Tg;,f;)u for k € [min(m,n)].
Letcy, ..., Cmin(m,n)» A, - - Amin(m,n) satisfy (4.10.5). Then Lemma 4.11.6
yields that Zle oi(T) = Zle R(Tc;,d;)u for k € [min(m,n)]. This
proves the first equality of (4.11.8). The second equality of (4.11.8) is
straightforward. (See Problem 6 below.)

Assume now that Zle o,(T) = Zle R(Tg;,f;)u for some two k-
orthonormal frames Fy, = {fy,...,fi},Gx = {g1,...,8k} Definew,,..., wy
as above. The above arguments yield that Ele (Tw;, wi)w = Zle Ni(T).
Theorem 4.4.8 yields that span ((g1, f1),- .., (g, fik)) is spanned by k eigen-
vectors of T corresponding to the first k eigenvalues of T. Vice versa,
assume that {f1,...,fi} € Fr(k,U),{g.,...,8} € Fr(k, V) and
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span ((g1,f1), ..., (gk, fk)) is spanned by k eigenvectors of T corresponding
to the first k eigenvalues of T. Define {w,,...,w;} € Fr(W) as above.
Then span (w,,...,wy) contains k linearly independent eigenvectors cor-
responding to the the first k£ eigenvalues of T. Theorem 4.4.8 and Lemma
4.11.6 yield that o;(T) = 32 (Twi, wi)w = b R(Tg;, f))u. O

Theorem 4.11.8 U,V be m and n dimensional inner product spaces.
Let S,T : V — U be linear operators. Then

min(m,n)
(4.11.9) Rir(S*T) < > 0i(S)au(T).

=1

Equality holds if and only if there exists two orthonormal sets
{ds, ..., dmingm,n) } € Fr(min(m,n),U), {c., ..., Cmin(m,n) } € Fr(min(m,n), V),
such that

S*dz :UZ‘(S)Ci, T*dz :O'i(T)Ci7 ZZ 1,...,min(m,n).

Proof. Let A, B € C"*™. Then tr B*A = tr AB*. Hence 2R tr AB* =
tr H(A)H(B). Therefore 2R tr S*T' = tr ST. Use Theorem 4.9.1 for S, T
and Lemma 4.11.6 to deduce (4.11.9). Equality in (4.11.9) if and only if
tr ST = S N(S)Ni(T).

Clearly, the assumptions that {d.,...,dmin(m,n)} € Fr(min(m,n), U),
{c1, .. Cmin(m,n)} € Fr(min(m,n), V), and the equalities (4.11.10) imply
equality in (4.11.9).

Assume equality in (4.11.9). Theorem 4.9.1 and the definitions of ST
yield the existence {d.,...,dmin(m,n)} € Fr(min(m,n), U),

{c1, .-\ Cmin(m,n) } € Fr(min(m, n), V), such that (4.11.10) hold. O

Theorem 4.11.9 Let U and V be finite dimensional inner product
spaces over F =R, C. Let T : V — U be a linear operator. Then

411.11 i T— —
( ) octin o 1T - Ql|r

Furthermore ||T — Q||r = Ziir}jfl o2(T) for some Q € Ly(V,U),k <
rank T, if and only there Q = Ty, where Ty, is defined in Definition 4.10.7.
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Proof. Use Theorem 4.11.8 to deduce that for any @ € L(V,U) one
has

T —Q|% = tr T*T — 2R tr Q*T + tr Q*Q >

rank T k k
Z o} (T) - 22%@)@(@) + ZU?(Q) =
k - Z_11ra1mk T Zr;ik T
D (oi(T) = 0@+ D (D)= Y o).
i=1 i=k+1 i=k+1

Clearly ||T — Tx||% = Zrar;s:{ o?(T). Hence (4.11.11) holds. Vice versa if

Q € Lg(V,U) and ||T — Q% = Ezdnklfl o?(T) then the equality case in
Theorem 4.11.8 yields that @ = Tj. ]

Corollary 4.11.10 Let F = R,C and A € F™*"™. Then

(411.12)  min _ ||[A—B||r =
BERm,n,k(F)

Furthermore ||A — B||r = \/Eral}ckﬁ‘ o2(A) for some B € Ry ni(F),k <
rank A, if and only if B = Ay, where Ay is defined in Definition 4.10.5.

Theorem 4.11.11 Let F =R, C and A € F™*"™. Then

k+j
4.11.13 0;(A— B) oi(A),
e Sene S o
j= 1,...,m1n(m,n) fk, k=1,...,min(m,n) — 1.

Proof. Clearly, for B = Aj we have the equality 25:1 0;(A—B) =
Zf+,g+1 0i(A). Let B € Ry n.i(F). Let X € Gr(k,C™) be a subspace which
contains the columns of B. Let W = {(0T,x")T € F™"*t" x € X}. Observe
that for any z € W+ one has the equality z"H((A-B))z = z*H(A)z. Com-

bine Theorems 4.4.9 and 4.11.1 to deduce Y 7_, o;(B—A) > Z L oi(A).
O

Theorem 4.11.12 Let V be an n-dimensional IPS over C. Let T :
V — V be a linear operator. Assume the n eigenvalues of T, A\ (T), ..., \n(T),
are arranged the order |\ (T)| > ... > |\ (T)|. Let
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Aa(T) = (IM(D), .., 2D, o(T) := (01(T), ..., 00(T)). Then Xo(T) =
o(T). That is

k E
(4.11.14) DTN oi(T), i=1,...,n.
i=1 i=1

Furthermore, Zle |\ (T)| = Zle o;(T) for some k € [n] if and only if
the following conditions hold: There exists an orthonormal basis X4, ..., Xn
of V such that

1. TXZ' = Al(T)XZ,T*XZ = )\Z(T)XZ fOT’i = ].7 .. .,k.

2. Denote by S : U — U the restriction of T to the invariant subspace
U = span (Xgt1,---,Xpn). Then ||S||l2 < |Ae(T)].

Proof. Use Theorem 4.2.12 to choose an orthonormal basis g,,...,8x
of V, such that T is represented by an upper diagonal matrix A = [a;;] €
C™*"™ where a;; = N(T),t = 1,...,n. Let ¢ € C,l¢;] = 1 such that
EN(T) = |X\(T)| for i =1,...,n. Let S € L(V) be presented in the basis
g.,.-.,8n by a diagonal matrix diag(eq, ..., €, 0,...,0). Clearly, 0;(S) =1
fori=1,...,kand 0,(S) =0fori =k+1,...,n. Furthermore, Rtr S*C =
S |X(T)|. Hence Theorem 4.11.8 yields (4.11.14).

Assume now that Zle (A (T)| = Zle 0;(T). Then equality holds in
(4.11.9). Hence there exists two orthonormal bases {c,,..., ¢}, {ds,...,dy}
in 'V such that (4.11.10) holds. It easily follows that {c,,...,ci}, {d4,...,dx}

are orthonormal bases of W := span (g, ...,gx). Hence W is an invariant
subspace of T and T*. Hence A = A; @ A,, i.e. A is a block diagonal
matrix. Thus A; = aij]ﬁjzl € CF*k Ay = [aijmj:kﬂ e Cn—k)x(n—k)

represent the restriction of T to W,U := W+, denoted by T; and Tb
respectively. Hence ¢;(Ty) = o;(T) for ¢« = 1,...,k. Note that the re-
striction of S to W, denoted by S is given by the diagonal matrix D; :=
diag(eq, ..., ex) € U(k). (4.11.10) yields that S;'Tyc; = o4(T)c; for i =
1,...,kie o1(T),...,0%(T) are the eigenvalues of S;'7T}. Clearly S;'Ty
is presented in the basis [g,,...,gx] by the matrix D;'A;, which is a

diagonal matrix with |A1(T)]|,...,|A\x(T)| on the main diagonal. That is
ST has eigenvalues | A (T)], ..., |\ (T)|. Therefore o;(T) = |\;(T)| for
i=1,...,k. Theorem 4.10.6 yields that
k k k k
rATA = Y agl =)0l (A) =) ol(T) =D (D).
ij=1 i=1 i=1 i=1

As Ai(T),..., A\x(T) are the diagonal elements of A; is follows from the
above equality that A; is a diagonal matrix. Hence we can choose x; = g;
for i =1,...,n to obtain Part I of the equality case.
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Let Tx = Ax where ||x|| = 1 and p(T) = |A|. Recall ||T||]2 = o1(T),
where o1(T)? = M\ (T*T) is the maximal eigenvalue of the self-adjoint
operator T*T. The maximum characterization of A\ (T*T) yields that
A2 = (Tx, Tx) = (T*"Tx,x) < A\, (T*T) = ||T||2. Hence p(T) < ||T)|2-

Assume now that p(T) = ||T||2. p(T) = 0 then ||T|]s = 0= T =0,
and theorem holds trivially n this case. Assume that p(7) > 0. Hence
the eigenvector x, := x is also the eigenvector of T*T corresponding to
M(T*T) = |M?. Hence |A\?x = T*Tx = T*(Ax), which implies that
T*x = Ax. Let U = span (x)* be the orthogonal complement of span (x).
Since T'span (x) = span (x) it follows that 7*U C U. Similarly, since
T*span (x) = span (x) TU C U. Thus V = span (x) @ U and span (x), U
are invariant subspaces of T and T*. Hence span (x), U are invariant sub-
spaces of T*T and TT*. Let T be the restriction of 7" to U. Then 7777 is
the restriction of T*T. Therefore ||T1|3 = A\ (T1 * Ty) > M (T*T) = ||T|3.
This establishes the second part of theorem, labeled 1 and 2.

The above result implies that the conditions I and 2 of the theorem
yield the equality p(T) = ||T|2. O

Corollary 4.11.13 Let U be an n-dimensional IPS over C. Let T :
U — U be a linear operator. Then |X,(T)| = o(T) if and only if T is a
normal operator.

Problems

1. Let the assumptions of Corollary 4.11.2 hold. Denote by #a«, # the
cardinalities of the sets a, 3.

(a) Since rank A < rank A show that the inequalities (4.11.4) reduce

to 0i(A) = 0;(A) = 0 for i > rank A.

(b) Noting that H(A) is a submatrix of H(A), use the Cauchy in-
terlacing principle to deduce the inequalities (4.11.4) for i =
1,...,rank A. Furthermore, if p’ := m — #«a,q¢ = n — #/ then
the Cauchy interlacing principle gives the complementary in-
equalities o;(A) > 0114 (A) for any i € N.

(c¢) Assume that 0;(A) = 0;(A) for i =1,...,] <rank A. Compare
the maximal characterization of the sum of the first k eigenvalues

of H(A) and H(A) given by Theorem 4.4.8 for k = 1,...,1 to
deduce the last part of Corollary (4.11.2).

2. Prove Corollary 4.11.3 by choosing any orthonormal basis in U, an
orthonormal basis in V whose first dim W elements span W, and
using Problem 1 above.
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. Combine Theorems 4.8.11 and 4.11.1 to deduce Theorem 4.11.4.

(a) Prove Corollary 4.11.5.

(b) Recall the definition of a norm on a vector space over F = R, C
7.1.1. Show that the function f defined in Corollary 4.11.5 is a
norm. For p = min(m,n) and w; = ... = w, = 1 this norm is
called the g — Schatten norm.

. Prove Lemma 4.11.6.

. Under the assumptions of Theorem 4.11.7 show.

(a)

R(Tg, fi)uv =

k
=1

max
{f1,...fx }€Fr(k,U),{g1,....81 }EFr (K, V)

2

|(T'g:, fi) Ul

k
=1

max
{f1,.. . fx }€Fr(k,U),{g1,....8% }EFr (K, V) 3

(b) Forwy; > ... 2w, >0

k k
w;0; T) = max wﬁ)% T iafi .
; D= et gremgey) 2 VR T80

i=1

. Let the assumptions of Theorem 4.11.7 hold. Show

k k
(T) < TE,|y.
;Uz( )—{fl,“.,flﬁff:y(k,m;” v

Furthermore, equality holds if and only if 01(T) = - -+ = o4 (T).
Hint: First study the case rank T = 2.

Let U,V be finite dimensional inner product spaces. Assume that
P,T € L(U,V). Show that Rtr(P*T) > — ™™™ 5,(8)0;(T)
and that equality holds if and only if S = —P and T satisfy the
conditions of Theorem 4.11.8.
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4.12 Moore-Penrose generalized inverse

Let A € C™*™. Then (4.10.12) is called the reduced SVD of A. Tt can be
written as

A=U,% V', r=rank A, ¥, :=diag(o1(A),...,0:(A)) € S;(R),

(4.12.1)
U, = [u17~ . ~aur] € merv‘/r = [V17 s 7V7’] € (CnXTvU:Ur = Vr*vr =1I,.

Recall that

AA*IIZ' = 0'7;(14)2ui7 A*AVZ = Ui(A)QVZ',
1 1

MA u;,u; = Oi(A)Avi,z:l,...,r.

v; =

Then
(4.12.2) Al =V, 2 U e v

is the Moore-Penrose generalized inverse of A. If A € R™*™ then we assume
that U € R™*" and V € R"*", i.e. U,V are real valued matrices.

Theorem 4.12.1 Let A € C™*"™. Then the Moore-Penrose generalized
inverse AT € C"*™ satisfies the following properties.

1. rank A = rank AT,
2. ATAAT = AT, AATA = A, A*AAT = ATAA* = A*.

3. ATA and AAT are Hermitian nonnegative definite idempotent matri-
ces, i.e. (ATA)?2 = ATA and (AA")? = AAT, having the same rank as
A.

4. The least square solution of Ax = b, i.e. the solution of the system
A*Ax = A*b, has a solution'y = A'b. This solution has the minimal
norm ||yl||, for all possible solutions of A*Ax = A*b.

5. If rank A = n then At = (A*A)~YA*. In particular, if A € C"*" is
invertible then AT = A™1.

To prove the above theorem we need the following proposition.

Proposition 4.12.2 Let E € C*™ G € C™*". Then
rank EG < min(rank E, rank G). Ifl = m and E is invertible then rank EG =
rank G. If m = n and G is invertible then rank EG = rank E.
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Proof. Let e,,...,e,, € Cl,g,,...,g, € C™ be the columns of
E and G respectively. Then rank E = dim span (e,,...,e;). Observe
that EG = [Eg,,...,Eg,] € C*"  C(Clearly Eg; is a linear combina-
tion of the columns of E. Hence Fg; € span (e,,...,e;). Therefore
span (Eg,,...,Fg,) C span (e,,...,e), which implies that rank EG <
rank E. Note that (EG)T = GTET. Hence rank EG = rank (EG)T <
rank GT = rank G. Thus rank EG < min(rank E,rank G). Suppose F is
invertible. Then rank EG < rank G = rank E7}(EG) < rank EG. Hence
rank EG = rank G. Similarly rank EG = rank E if G is invertible. a

Proof of Theorem 4.12.1.

1. Proposition 4.12.2 yields that rank AT = rank V,X-1U* < rank ©71U* <
rank X! = r = rank A. Since ¥, = VAU, Proposition 4.12.2
yields that rank At > rank E;l =r. Hence rank A = rank Af.

2. AAT = (U, VNV, E:UF) = U X, B, 'U* = U, U¥. Hence
AATA = (U UNU, 2, V) =U, BV = A.

Hence A*AAT = (V,X,U7)(U,U?) = A*. Similarly ATA = V,V* and
ATAAT = AT ATAA* = A%,

3. Since AA" = U,U} we deduce that (AA")* = (U, U)* = (U})*U} =
AAT ie. AATis Hermitian. Next (AAT)? = (U,U})? = (U U} (U U}) =
(U, U}) = AAT, i.e. AA' is idempotent. Hence AA' is nonnegative
definite. As AA! = U,.I.U*, the arguments in Part 1 yield that
rank AAT = r. Similar arguments apply to ATA =V, V*.

4. Since A*AA' = A* it follows that A*A(ATb) = A*b, ie. y = A'b is
a least square solution. It is left to show that if A*Ax = A*b then
||x|| > ||ATb|| and equality holds if and only if x = A'b.

We now consider the system A*Ax = A*b. To analyze this system
we use the full form of SVD given in (4.10.7). It is equivalent to
(VETU*)(USV*)x = VXTU*b. Multiplying by V* we obtain the
system TS (V*x) = XT(U*b). Let z = (2,,...,2,)T = V*x,

c = (c,...,cm)T = U*b. Note that z*z = x*VVx = x*x, i.e.

llz|]| = ||x||. After these substitutions the least square system in
21,..., 2, variables is given in the form o;(A)%z; = 0;(A)c; for i =
1,...,n. Since 0;(A) = 0 for ¢ > r we obtain that z; = ﬁci
for i = 1,...,r while z.41,...,2, are free variables. Thus ||z||* =

>, = + > ... |zi[?. Hence the least square solution with the
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minimal length ||z|| is the solution with z; =0 for i = r +1,...,n.
This solution corresponds the x = A'b.

5. Since rank A*A = rank A = n it follows that A*A is an invertible
matrix. Hence the least square solution is unique and is given by
x = (A*A)"*A*b. Thus for each b one has (A*A)~'A*b = A'b,
hence AT = (A*A)~1A*.
If Ais an n x n matrix and is invertible it follows that (A*A)~1A* =
A7L(AH) 1A = AL, O

Problems

1. P € C"*"is called a projection if P2 = P. Show that P is a projection

if and only if the following two conditions are satisfied:

e FEach eigenvalue of P is either 0 or 1.

e P is a diagonable matrix.

2. P € R"*" ig called an orthogonal projection if P is a projection and

a symmetric matrix. Let V C R™ be the subspace spanned by the
columns of P. Show that for any a € R",b € V, ||la—b|| > ||]a— Pa]]
and equality holds if and only if b = Pa. That is, Pa is the orthogonal
projection of a on the column space of P.

Let A € R™*™ and assume that the SVD of A is given by (4.10.7),
where U € O(m,R),V € O(n,R).

(a) What is the SVD of AT?

(b) Show that (A7) = (ANT.

(c) Suppose that B € R™™™. Is it true that (BA)" = ATBT? Justify!

4.13 Approximation by low rank matrices

We now restate Theorem 4.11.8 in matrix terms. That is we view A, B €
C™*™ ag linear operators A, B : C" — C™, where C™, C™ are inner product
spaces equipped with the standard inner product.

Theorem 4.13.1 Let A, B € C™*", and assume that o1(A) > o2(A) >

... >0,01(B) > 02(B) > ... > 0, where 0,(A) = 0 and o;(B) = 0 for
i >rank A and j > rank B respectively. Then

m m

(4.13.1) —> 0i(A)oi(B) <Rtr AB* <) 0i(A)i(B).

i=1 i=1
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Equality in the right-hand side holds if and only if C*,C™ have two or-
thonormal bases [cy,...,cp),[dy,...,dm] such that (4.11.10) is satisfied
for T = A and S = B. FEquality for the left-hand side holds if and only
if C",C™ have two orthonormal bases [ci,...,¢y],[dy,...,dn] such that
(4.11.10) is satisfied for T = A and S = —B

Theorem 4.11.9 yields:

Corollary 4.13.2 For A € C™*" let Ay be defined as in Definition
4.10.5. Then minger,, . (¥ ||[A— B3 = ||[A= A2 =31 ft1 oi(A)2. Ap
is the unique solution to this minimal problem if and only if 1 < k < rank A
and o (A) > op+1(A).

We now give a generalization of Corollary 4.11.9. Let A € C™*™ and
assume that A = Ug¥ 4V} is the SVD of A given in (4.10.7). Let Uy =
[u, u, ...uy],Va =[v, v, ...v,] be the representations of U,V in terms
of their m,n columns respectively. Then

rank A rank A
(413.2) Pajere = Y wuf € C™™, Pyygne = Y vivi € C,

i=1 i=1

are the orthogonal projections on the range of A and A*, respectively.

Theorem 4.13.3 Let A € C™*"™ C € C™*P R € C?*" be given. Then
X = C’T(Pc7leftAPR7right)kRT is a solution to the minimal problem

(4.13.3) |A = CXR||F,
XERP q, k((C

having the minimal || X||p. This solution is unique if and only if either
k > rank PC,lcftAPR,right or 1 <k < rank PC,lcftAPR,right and
0k (Po et APR right) > Ok+1(Pc 1ett APR right )-

Proof. Assume that C = UcXc V4, R = UrXRrVy are the SVD de-
compositions of C' and R, respectively. Recall that the Frobenius norm is
invariant under the multiplication from the left and the right by the corre-
sponding unitary matrices. Hence ||A — BXC||p = |A — 2o X%g||, where
A= ULAVR, X = V4 XUg. Clearly, X and X have the same rank and the
same Frobenius norm. Thus it is enough to consider the minimal problem
mingc.r ||[A — ScXSg||p. Let s = rank C,t = rank R. Clearly if
C or R is a zero matrix, then X = 0,4 is the solution to the minimal
problem (4.13.3). In this case either Pc efs O Prright are zero matrices,
and the theorem holds trivially in this case.
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It is left to consider the case 1 < s,1 < t. Define
C = diag(o1(C),...,04(C)) € C*** Ry := diag(c1(R),...,0:(R)) € C***.

Partition A and X to 2x2 block matrices A = [A;;]?,_; and X = [X;;]?,_;,
where A1, X117 € C¥%'. (For certain values of s and ¢, we may have to
partition A or X to less than 2 x 2 block matrices.) Observe next that
7 :=YcXYp = [Zij]z?,jzb where Z1; = C1X11 Ry and all other blocks Z;;
are zero matrices. Hence

1A=2Z|[% = [[An—=Zullz+ D AllE = [[An—(Awllz+ D (14417
2<i+j<4 2<i+j<4
Thus X = [Xij}?,jzlv where X11 = Ol_l(All)le_l and X’L'j = 0 for all
(i,5) # (1,1) is a solution ming r (¢ ||A = S XTg||F with the mini-
mal Frobenius form. This solution is unique if and only if the solution Z1; =
(A11)x is the unique solution to ming,, er, , , () |[[A11 — Z11||r. This hap-
pens if either £ > rank A;; or 1 < k < rank A1y and ox(A11) > ok4+1(A411).
A straightforward calculation shows that X = ZE(PZCJGRAPZ R,right)kEE.
This shows that X = CT(Pc et APR rignt)xR' is a solution of (4.13.3)
with the minimal Frobenius norm. This solution is unique if and only
if either k£ > rank Pc 1eptAPR vight Or 1 < k < rank Pc et APR righe and
0k (Pciett APR right) > 0k41(Po 1ett APR right )- o

Corollary 4.13.4 Let the assumptions of Theorem 4.13.3 hold. Then
X = CVAR? is the unique solution to the minimal problem miny ccrxq || A—
CX R||p with the minimal Frobenius norm.

We now give a version of Theorem 4.13.3 for the operator norm ||Afs =
g1 (A)

Theorem 4.13.5 Let A € C™*™ C € C"*P, R € C?*" be given. Con-
sider the minimum problem minxcg, ., (c) ||[A—CXR||2. Use the singular
value decompositions of C and R, as in proof of Theorem 4.13.3, to replace
this minimum problem with

. Ay Agp Zi1 0
1134 = _ ,
( ) : Zue%lf,k(c) | { Az1 Ag 0 0 l2

Then

(4.13.5)  max(og1(A11), [[[A21 Aga]ll2, [I[ATs ASs]ll2) < p
< 3max(ok41(A11) [[[A21 Azall2, I[AT2 A5][l2)
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Proof. (41010) ylelds that O'k+1(A11) < ||A11 — leHZ- Let F =

[ A —Znn Ar

Ao Az

submatrix of F' is not greater than ||F||s. Combine these two results, and

the fact that the positive singular values of B and B* coincide, to deduce
the lower bound for y in (4.13.5). The triangle inequality yields

An—-Z117 O 0 0 0 A
P e S A | I P I el I

] are equal to the pos-

. Corollary 4.11.2 yields that the operator norm of a

Clearly, the positive singular values of 0 0

A1 Az
itive singular values of [Aa; Ags]. Choose Z1; such that ogi1(A11) =
[[A11 — Z11]|2. Use the above inequality and Corollary 4.11.2 to deduce the

upper bound for p in (4.13.5). O

Theorem 4.13.6 Let a,,...,a, € C™ and k € [m — 1] be given. Let
A=la,...a,] € C"*". Denote by Ly, € Gr(k,C™) a k-dimensional sub-
space spanned by the first k left singular vectors of A. Then

n n
(4.13.6) min g min ||a;, — b;||2 = E min |ja; — b||3.
LEGI‘(}C,C"”) i1 b,eL P b; €Ly

Proof. Let L € Gr(k,C™)and b,,...,b, € L. Then B :=[b,...b,] €
Rim.ni(C). Vice versa, given B € Ry, k(C), the column space of B is
contained in some L € Gr(k,C™). Hence Y ., ||la; — b;||2 = ||A — B|J2.
Corollary 4.13.2 implies that the minimum stated in the left-hand side of
(4.13.6) is achieved by the n columns of Ag. Clearly, the column space of
A is equal to L. (Note that Ly is not unique. See Problem 3 below.) O

Problems

1. Let A € S(n,R) and assume the A = QT AQ, where Q € O(n,R) and
A = diag(aq,...,q,) is a diagonal matrix, where |aq| > ... > |an| >
0.
(a) Find the SVD of A.

(b) Show that o1(A4) = max(A1(A4), |A\(A)]), where A\ (4) > ... >
An(A) are the n eigenvalues of A arranged in a decreasing order.
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2. Let k,m,n be positive integers such that k¥ < min(m,n). Show that
the function f : R™*"™ — [0,00) given by f(A4) = Zle 0i(A) is a
convex function on R™*™,

3. Show that the minimal subspace for the problem (4.13.6) is unique if
and only if o1,(A) > or+1(A).

4. Prove Corollary 4.13.4.

4.14 (CU R-approximations

Let A = [a;;];52, € C™*", where m,n are big, e.g. m,n > 105. Then the
low rank approximation of A given by its SVD has prohibitively high com-
putational complexity and storage requirements. In this section we discuss a
low rank approximation of A of the form CU R, where C € C"™*P R € CI*"™
are obtained from A by reading p, ¢ columns and rows of A, respectively.
If one chooses U as the best least squares approximation given by Corol-
lary 4.13.4 then U = CTAR!. Again, for very large m,n this U has too
high computational complexity. In this section we give different ways to
compute U of a relatively low computational complexity.
Let

I={1<a1<...<ag<m}Cm], J={l<Bi<...<Bp,<n}C[n]

be two nonempty sets of cardinality ¢, p respectively. Using the indices in
I, J, we consider the submatrices

Arg = [aakﬁz]Zf:l € CTP,
(4.14.1) R = A[[n] = [aakj]%,?:l e Ccm,

C= A[m]] = [aiﬁl];?l’:pl c Cmxp,

Thus, C' = Ay); and R = Ajp,) are composed of the columns in J and the
rows I of A, respectively. The read entries of A are in the index set

(4.142) 8= [m] x [n\(([m]\I) x ([n]\])), #S =mp+qn —pq.

We look for a matrix F' = CUR € C™*", with U € CP*1 still to be
determined. We determine U, as a solution to the least square problem
of minimizing »; ;e laij — (CUR);;|?, ie.,

(4.14.3) Uopt = arg Ué%i&q Z |ai; — (CUR);[.
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It is straightforward to see that the above least squares is the least squares
solution of the following overdetermined system

TU = A, T = [t )] € CUPTITPOXPL 40 0 1y = aggay,
(4.14.4)

U= [u(k,l)] € (Cpq’ A = [a(i,j)] € (Cmp-‘rqn—pq7 (27.7) € Sa (kvl) € [p] X [q}

Here U , A is viewed as a vector whose coordinates are the entries of U and
the entries of A which are either in C' or R. Note that T is a corresponding
submatrix of A ® A.

Theorem 4.14.1 Let A € C™*", and let I C [m], J C [n] have cardi-
nality q and p, respectively. Let C = Ay, ; € C"*P, and R = App,) € CP*"
be as in (4.14.1) and suppose that Ary is invertible. Then the overdeter-

mined system (4.14.4) has a unique solution U = AI_}, i.e., the rows in I

and the columns in J of the matrix CA;}R are equal to the corresponding
rows and columns of A, respectively.

Proof. For any I C [m], J C [n], with #I = q, #J = p, and U € C™*"
we have the identity

(4.14.5) (A[m]JUAI[n])I'] =A;;UA;;.

Hence the part of the system (4.14.4) corresponding to (CUR);; = Ay
reduces to the equation

(4.14.6) ArgUAL = Apy

If A;; is a square matrix and invertible, then the unique solution to this
matrix equation is U = AI_J1 Furthermore
(A1 s A7] Arpn)) 1) = A11 AT} At = At
(Apn s AT AL pmys = Apngs A7) Ars = Apny-

This results extends to the general nonsquare case.

Theorem 4.14.2 Let A € C™*", and let I C [m], J C [n] have cardi-
nality q and p, respectively. Let C' = Ay € C™*P, and R = Ajp,) € CPXT
be as in (4.14.1). Then U = A;J is the minimal solution (with respect to
the Frobenius norm) of (4.14.3).
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Proof. Consider the SVD decomposition of A7
Ay =WEV*, W e C?™, V € CP*?, ¥ = diag(oy,...,0.,0,...,0) € R,

where W,V are unitary matrices and o1,...,0, are the positive singular
values of Ar;. In view of Theorem 4.14.1 it is enough to assume that
max(p,q) > r. W.lo.g. we may assume that I = [q], J = [p]. Let

Wy = [ 0 w OqX(m—q) ] e cmxm
(m—gq)Xxq m—q
V= { 0 14 OPX(;—:D) ] e Crxn,
(n—p)xp n—p

Replace A by A; = W1 AVy". It is easy to see that it is enough to prove
the theorem for A;. For simplicity of the notation we assume that A; = A.
That is, we assume that A7; = ¥,@0(q—r)x (p—r), Where X, = diag(oy,...,0;)
and r = rank Ay;. For U € CP*? denote by U, € CP*? the matrix ob-
tained from U by replacing the last p — r rows and ¢ — r columns by rows
and columns of zeroes, respectively. Note that then CUR = CU,.R and
IU:|F < |JU||F, and equality holds if and only if U = U,. Hence, the
minimal Frobenius norm least squares solution U of is given by U = U,..
Using the fact that the rows r+1,...,qg and columns 7+ 1,...,p of CUR
are zero it follows that the minimum in (4.14.3) is reduced to the minimum
on &' = [m] x [r] U[r] x [n]. Then, by Theorem 4.14.1 the solution to the
minimal Frobenius norm least square problem is given by %f. O

For a matrix A define the entrywise maximal norm

(4147) ||AHoo,e = max |aij|, A= [aij] e Ccmxn,
i€[m],j€[n]

Theorem 4.14.3 Let A € C™*™ p € [rank A]. Define

4.14.8 = det A > 0.
( ) Hp Ic[m],Jcr[?z%);;I:#J:p| ot Ar|

Suppose that
(4.14.9) |det Ary| > dpp, 0 € (0,1],1 C [m],J C [n],#I = #J =p.
Then for C, R defined by (4.14.1) we have

p+1

(4'14'10) HA - CAI_JlR”oo,e < OP-H(A)'
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Proof. We now estimate |a;; — (CA;;R);;| from above. In the case
p = rank A, i.e. op41(A) = 0, we deduce from Problem 1 below that
aij — (CA7}R);j = 0 . Assume 0,11(A) > 0. By Theorem 4.14.1 a;; —
(CA R);j = 0 if either i € I or j € J. It is left to consider the case i €
[mN\I,j € [n]\J. Let K = IU{i}, L = JU{j}. Let B = Aky. Ifrank B=p
then Problem 1 yields that B = BKJA;}BIK. Hence a;; — (CA;}R)U =0.
Assume that det B # 0. We claim that
det B
det A]J '
It is enough to consider the case where I = J =[p|,i=j=p+ 1K =L =
[p + 1]. In view of Theorem 4.14.1 B — BKJA;}BJL = diag(0,...,0,t),
where ¢ is equal to the left-hand side of (4.14.11). Multiply this ma-
trix equality from the left by B~! = [bst,—ﬂﬁil- Note that the last
row of B~'Bgy is zero. Hence we deduce that bip+1)(p41),—1t = 1, ie
t=0b" Use the identity B~! = (det B)~'adj B to deduce the

(p+1)(p+1),—1°
equality (4.14.11).

We now estimate o1(B~!) from above. Note that each entry of B~ =
(det B)~'adj B is bounded above by |det B|~!p,. Hence o1 (B~!) < ("Z;gtl)gf.
Recall that o1 (B~ = 0,,41(B)~!. Thus

|det B| |det B| (p+ 1)opt1(B)
< 1 B) = < .
’up — (p+ )UP+1( ) ‘det A[J‘ — (5

Since B is a submatrix of A we deduce 0p41(B) < op41(4). O

(4.14.11) aij — (CA7;R)y; = £

Problems

1. Let A € C™*™ rank A = r. Assume that I C [m],J C [n],#I =
#J = r. Assume that det A;; # 0. Show that A = C’A;}R.

4.15 Some special maximal spectral problems

Theorem 4.15.1 Let V be an n-dimensional IPS over R. Let p € [n]
and D C RU be a convex Schur set. Let D, be the projection of D on the
first p coordinates. Let h : D, — R and assume that f : X~ (D) —
R is the spectral function given by A — h(A)(A)), where Ay (A) =
(AM(A), ..., 0 (A))T. Let S € X '(D). Assume that h is nondecreasing
on Dy. Then

(4.15.1) sup f(A) = sup f(B),

A€conv S BECOHV(p;1)718
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and this result is sharp.

Proof. Since dim convS < dim S(V) = ("}"), Theorem 4.6.2 implies

2

that it is enough to prove the theorem in the case S =T := {A1,...,Ax},

where N < (";1) + 1. Observe next that since D is a convex Schur set and

S ¢ A7Y(D) it follows that convS € A™*(D) (Problem 2 below).

Let A € convT. Assume that x,,...,x, are p-orthonormal eigenvectors
of A corresponding to the eigenvalues A1 (A),..., A, (A). For any B € S(V)
let B(x,,...,%p) = ({(Bxi, %))} j=, € Sp(R). We view S,,(R) as a real vec-

tor space of dimension (p;rl). Let T := {A1 (X4, .., Xp), - s AN (X o Xp) } C
S,(R). It is straightforward to show that for any B € convT one has
B(x,,...,%,) € convT'. Let T be the restriction of conv T’ to the line in
Sp(R)

{X = (l’ij) € SP(R) DXy = )\z(A)(S”, fori+j5 > 2}.

Clearly A(x4,...,x,) € T. Hence T = [C(x4,...,%p), D(X4,...,%p)] for
some C, D € conv T. It is straightforward to show that C, D € COMY 41y _y T.
(See Problem 8 below.) Hence maxy ¢ 211 = max({CX,,X,), (DX,,X,)).
Without loss of generality we may assume that the above maximum is
achieved for the matrix C. Hence C(x,,...,%p) is a diagonal matrix
such that A\ (C(x4,...,%p) > A (A4) and A\(C(x4,...,%p))) = Xi(A4) for
t=2,...,p. Let U=span (x,,...,X,). Since x,,...,X, are orthonormal
it follows that \;(Q(C,U)) = A\i(C(x,,...,%p)) for i =1,...,p. Corollary
4.4.7 yields that A,y (C) > X (A). Since h is increasing on D we get
h(Xp)(C)) = h(Apy(A)). See Problem 3 below which shows that (4.15.4)
is sharp. O

Theorem 4.15.2 Let V be an n-dimensional IPS over C. Let p € [n]
and D C RQ be a convex Schur set. Let D, be the projection of D on the
first p coordinates. Let h : D, — R and assume that f : A YD) - R s
the spectral function given by A — h(Ay(A)). Let S C AH(D). Assume
that h is nondecreasing on D,. Then

(4.15.2) sup f(A) = sup  f(B),

A€conv S Beconvp2_1S

and this result is sharp.

See Problem 4 below for the proof of the theorem.
It is possible to improve Theorems 4.15.1 and 4.15.2 in special interesting
cases for p > 1.
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Definition 4.15.3 Let 'V be an n-dimensional IPS over F = R,C and
p € [n]. Let A € S(V). Then the p-upper multiplicity of A,(A), denoted by
upmul(A, p), is a natural number in [p| such that

Ap—upmul(A,p) (A) > Ay _wpmui(a,py+1(A4) = ... = A, (A4),  where \g(A) = oc.
For any C C S(V) let upmul(C, p) := maxaec upmul(A, p).
See Problem 10 below for sets satisfying upmul(C, p) < k for any k € N.

Theorem 4.15.4 Let V be an n-dimensional IPS over R. Let p € [n]
and denote p(p) := upmul(conv S, p). Then

(4.15.3) sup A (A) = sup Ap(B).

A€conv S Beconyv ,(p)(2p—u(p)+1) 718
2

Proof. For u(p) = p (4.15.4) follows from Theorem 4.15.1. Thus, it is
enough to consider the case p > 1 and p(p) < p. As in the proof of Theorem
4.15.1 we may assume that S = {A;,...,Ax} where N < (”‘QH) + 1. Let
M = {B € convS : A(B) = maxacconvs Ap(A)}. Since A\,(4) is a
continuous function on S(V) and convS is a compact set it follows that
M is a nonempty compact set of convS. Let v := w - 1.
Assume to the contrary that the theorem does not hold, i.e. MNconv,S =
0. Let M :={p = (pr,-..,pn)" € Pxv : > A € M}. Then M’
is a nonempty compact set of Py and any p € M’ has at least v + 2
positive coordinates. Introduce the following complete order on Py. Let
X = (z1,...,28) ",y = (Y1,...,yn) | € RY. As in Definition 4.7.1 let

X =(Z1,...,Z8) ", ¥ = (G1,...,Un) " € RY be the rearrangements of the
coordinates of the vectors x and y in the nonincreasing order. Then x <y
if either x =y or x; = y; fori =0,...,m — 1 and X,,;, < ¥,, for some

m € [n]. (We assume that x, =y, = 00.) Since M’ is compact there exists
a maximal element p = (p,,...,pn) € M’ ie. g € M’ = q < p. Let
Z:={ie(N): p;>0}. Then #Z > v+ 2. Let B = Ef\ilpiAi € conv S
be the corresponding matrix with the maximal A, on convS. Assume that
Xi,...,X, € V is an orthonormal basis of V, consisting of the eigenvectors
of B corresponding to the eigenvalues A1(B),..., A, (B) respectively. Let
m := upmul(B,p) < u(p). Consider the following systems of M
equations in #Z unknowns ¢; € R,i € Z:

g =0, fori e (N)\Z, Zqi =0,

€L
ZQi<Ain7Xk>=O, j=1,....k—1, k=p,....p—m+1,
i€l
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Zqi<Aixj7xj> = ZQi<AiXanp> j=p—1,....,p—m+1if m > 1.
ieT i€T

Since #7 > v + 2 = “@Cr—u@+l) 4 4 Wp%mﬂ) it follows that there
exists 0 # q = (¢u,...,qn)' € RY whose coordinates satisfy the above
equations. Let B(t) := B+tC, C := Zil q;A;,t € R. Then there exists
a > 0 such that for ¢t € [—a,a] p(t) := p+1tq € Py = B(t) € convS.
As in the proof of Theorem 4.15.1 consider the matrix B(t)(X,,...,X,) €
S,(R). Since B(0)(xi,...,%Xp) = B(Xy,...,%p) is the diagonal matrix
diag(A1(B),. .., Ap(B) the conditions on the coordinates of q imply that
B(t)(X4,...,Xp) is of the form (diag(A1(B), ..., Ap—m(B)) +tC1) & (A, +
tb)I,, for a corresponding Cy € S,_,,,(R). Since A,_,,(B) > A,(B) it fol-
lows that there exists a’ € (0, a] such that

Apom(Bt) (X1, ..., %)) = Ap_m(diag(A, (B), ..., Ap_m(B)) +tC,) >
Ap(B) + [th], A\p(B(t)) = \p(B) +tb, for |t] <d'.

Hence A\, (B(t)) > A\, (B) +tb for |[t| < a’. As B(t) € conv S for [t| < a’ and
Ap(B) > Ap(B(t)) for |t| < o' it follows that b = 0 and A,(B(t)) = A\,(B)
for |t| < a'. Hence p +tq € M’ for |t| < a'. Since q # o, it is impossible
to have the inequalities p — a’q < p and p + a’q < p. This contradiction
proves the theorem. O

It is possible to show that the above theorem is sharp in the case u(p) =
1, see Problem 9 (d2) below. Similarly one can show that: (See Problem 6
below.)

Theorem 4.15.5 Let V be an n-dimensional IPS over C. Let p € [n]
and denote p(p) := upmul(conv S, p). Then

(4.15.4) sup A (A) = sup Ap(B).

A€conv S Beconv,(py(2p—pu(p))—15

Problems

1. (a) Let x,y € R™. Show the implication x <y = x <Xy.
(b) Let D C RY and assume that f: D — R is strong Schur’s order

preserving. Show that f is nondecreasing on D.

(c) Let i € [2,n]NN and f be the following function on R™: (z1,...,2,)
x;. Show that f is nondecreasing on R™ but not Schur’s order pre-
serving on RT{;

T

|_>
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2. Let D C R’{J be a convex Schur set. Let V be an n-dimensional IPS

over F = R,C. Let S C S(V) be a finite set such that S ¢ A~*(D).
Show that convS € A~ (D).

3. (a) Let A € H, and assume that tr A = 1. Show that A, (4) < & and
equality holds if and only if A = %In.
(b) Let By = [Mentantlencnip e §(pR) for 1 <k <1< pbe
the symmetric matrices which have at most two nonzero equal entries
at the locations (k,1) and (I, k) which sum to 1. Let Q1, ..., Q(p+1) €
2

S(p,R) be defined as follows:

Q1 :=FEn+ FEa, Qy:=FE\ — Eigs+ Eqs, ...,

Qp 2:E11 *E1p+E237'~-a

Q2p73 = E11 - E2(p—1) + EQ;Dv ceey Q(g) = E11 - E(P—Q)p + E(p—l)pﬂ
Qz)+1 = E11 = Ep-1)p; Q(g)ﬁ = By, fori=2,...,p.

Let S = {Ql,...7Q(p;1)} Show that %Ip € convS = COnV(p;I)_ls
and %Ip ¢ COIlV(p-gl)72S.

(c¢) Let S C S(p,R) be defined as in (b). Show that tr A = 1 for each
A € conv S. Hence
M) = Ay =L s A\ (B)
Adconys PN T A p P p Baon%l(?ﬁl)ds PR
2
(d) Assume that n > p and let R; := Q; ® 0 € S(n,R), where Q; is
defined in b, for i = 1,...,("1'). Let S = {Rl,...,R(pﬂ)}. Show
2

that

1 1
AN =N OO =5 e e, s H )
2

4. (a) Prove Theorem 4.15.2 repeating the arguments of Theorem 4.15.1.
(Hint: Note that the condition (Bx;,x;) = o for two distinct or-
thonormal vectors x;,x; € V is equivalent to two real conditions,
while the condition (Bx;,x;) = A\;(A) is one real conditions for B €
S(V).)

(b) Modify the example in Problem 3 to show that Theorem 4.15.2 is
sharp.

5. Let C = A+ +/—1B € C"*", A, B € R"™*".
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(a) Show C' € H,, if and only if A is symmetric and B is antisymmet-
ric: BT = —B.

(b) Assume that C' € H, and let C e R(Q")X(?”) be defined as in
Problem 6. Show that C € S(2n,R) and Az;—1(C) = A (C) = X\ (C)
fori=1,...,n.

(¢) Use the results of b to obtain a weaker version of Theorem 4.15.2
directly from Theorem 4.15.1.

6. Prove Theorem 4.15.5.

7. Let F be a field and k € Z;. A = [a;;] € F™*" is called a 2k + 1-
diagonal matrix if a;; = 0 if [i—j| > k. (1-diagonal are diagonal and 3-
diagonal are called tridiagonal.) Then the entries ai(ry1),- -+ G(n—t)n
are called the k-upper diagonal.

(a) Assume that A € F"*" n > k and A is 2k + 1-diagonal. Sup-
pose furthermore that the k-upper diagonal of A does not have zero
elements. Show that rank A > n — k.
(b) Suppose in addition to the assumptions in (a) that A € H,,. Show
that upmul(A, p) < k for any p € [n].

8. Let V be an n-dimensional IPS over F =R, C. Let SC S(V) and p €
[n]. Define the weak p-upper multiplicity denoted by wupmul(conv S, p)
as follows. It is the smallest positive integer m < p such that for any
N = (”‘QH) + 1 operators Aj,..., Ay € S there exists a sequence
Ajr € S(V),j € [N],k € N, such that limy_,oc A1 = Aj,j € [N]
and upmul(conv{A; x,..., AN x},p) < m for k € N.

(a) Show that wupmul(conv S, p) < upmul(conv S, p).
(b) Show that in Theorems 4.15.4 and 4.15.5 one can replace upmul(conv S, p)
by wupmul(conv S, p).
9. (a) Show that for any set S C D(n,R) and p € [n] wupmul(conv S, p) =
1. (Hint: Use Problem 7.)
(b) Let Dl = diag(éil, ey 5zn)»1 = 1, ey Let S := {]:)17 [N ,Dn}.
Show that for p € [2,n] NN

1
Dgclgﬁ(vs/\p(D) ~ Decomp_1S (D) = p = Deconvy_sS Ap(D) =0.

(c) Show that the variation of Theorem 4.15.4 as in Problem 8b for
wupmul(conv S, p) = 1 is sharp.

(d) Let A € S(n,R) be a tridiagonal matrix with nonzero elements
on the first upper diagonal as in 7b. Let ¢ € R and define D;(t) =
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D; + tA, where D; is defined as in b, for ¢ = 1,...,n. Let S(t) =
{Di(t),...,Dyn(t)}. Show

d1. For ¢ # 0 upmul(conv S(t),p) =1 for p € [2,n] N Z.
d2. There exists € > 0 such that for any [t| <e

Ap(A) = Ay (B) > A (C).
Aegrixsu) p(4) BECOIIREZ},(ls(t) r(B) CEcoIrgi}fQS(t) p(C)

Hence Theorem 4.15.4 is sharp in the case upmul(conv S, p) = 1.

10. (a) Let S C H,, be a set of 2k + 1-diagonal matrices. Assume that ei-
ther each k-upper diagonal of any A € S consists of positive elements,
or all k-upper diagonals of A € S are equal and consist of nonzero
elements. Show that upmul(conv S, p) < k.

(b) Let S C H, be a set of 2k + 1-diagonal matrices. Show that
wupmul(conv S,p) < k + 1.

4.16 Multiplicity index of a subspace of S(V)

Definition 4.16.1 Let V be a finite dimensional IPS over F = R, C.
Let U be a nontrivial subspace of S(V). Then the multiplicity index of U
is defined

mulind U := {maxp € N: 3JA € U\{o} such that \,(4) = ... = \,(4)}.

Clearly for any nontrivial U mulind U € [1,dim V]. Also mulind U =
dimV <= I €V. Let
(4.16.1)

—1)(2n — 2
k(r,n,R) := (r=1)@n-r+2)

2 )

k(r,n,C) = (r—1)(2n — r +1).

The aim of this section to prove the following theorem.

Theorem 4.16.2 Let 'V be an IPS over F = R,C of dimension n >
3. Assume that r € [n — 1]\ {1}. Let U be a subspace of S(V). Then
mulind U > r if dim U > k(r,n,F) and this result is sharp.

Proof. Assume first that F = R. Fix the value of n > 3 and denote
k(r) := k(r,n,F). Suppose to the contrary that the theorem is wrong.
Let n > 3 be the minimal positive integer for which the theorem is false.
Let r € [n — 1]\ {1} and U € Gr(x(r),S(V)) be the minimal r and a
corresponding subspace U = span (Bi,...,B,)) for which the theorem
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is false. The minimality of r yields that there exists A € U such that
AM(A) = ... = A1(4) > A (A). Assume that

AXZ' = Al(A)X“ X; € \/'7 <X7;,Xj> = §ij, Z,] =1,...,N.
For r — 1 orthonormal vectors y,,...,y,—, € V denote

#(r)
B(Y:,...yr—)={B€UB=> tB;
Jj=1
k()
thBjyi—toyi =0,i=1,...,r —1, for some t,,...,t. ;) € R}.
j=1

We claim that dim B(y,,...,y»—.) > 1. Indeed, by representing S(V)
as S(n,R) with respect to the orthonormal basis y,, ..., ¥,, we may assume
that U is a k(r) dimensional subspace of S(n,R) and y,,...,y, is a stan-
dard basis in R™. Then the number of variables in the equations defining
B(y.y...,¥r—1) is k(r) + 1, while the number of equations is x(r). Note
also that if in these equations t; = ... = t,(,) = 0 then ¢, = 0. Hence there
exists a nontrivial B € B(y,,...,¥r—1)-

Consider next B(x,,...,X,—,). Clearly, A € B(x,,...,X,—,). Suppose
that dim B(x,,...,X,—,) > 1. So there exists B € B(x,,...,X,—,), B &
span (A) such that Bx; = sx; for ¢ = 1,...,7 — 1. By considering —B
instead of B if necessary, we may assume that A;(B) > 0. Consider A(b) :=
A+ bB,b € R. Clearly A(b)x; = (A (A4) + bs)x; for i = 1,...,r — 1.
Furthermore, A\;(A(0)) = A (A) > A\-(4) = A (A(0)) fori = 1,...,r — 1.
Hence there exists a positive € so that A1 (A(b)) = (M (A) + bs) for |b] < e.

Suppose first that s = 0. Increase continuously b from the value 0.
Since we assumed that our theorem fails for U it follows that for each b > 0
A1(A(b)) = A (A). One the other hand the Weyl’s inequality yields that
A1(A(b)) > bA1(B) + A\ (A). For b > 1 we obtain a contradiction.

Hence s # 0. By considering A(b) for |b| < € we deduce that

A(ADB) = ... = A1 (A(B)) = M(A) +bs > A (A(D)).

Replacing A by A(b) if needed, we can assume that A;(A) # 0. By consid-
ering B’ := B — s’ A we can assume that B'x; =0fori=1,...,7r—1. This
gives us a contradiction as above. Hence we conclude that dim B(x,,...,x,) =
1.

Next we claim that dim B(y,,...,yr—.) = 1 for any system of r —
1 orthonormal vectors y,,...,y,—, in V. Furthermore, one can choose
B(yiy- Y1) €B(Yiy---,¥r—1) \ {0} such that

(4.16.2) By, Yre1)Yi = NYi, 1=1,...,7—1.
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Since r < n it is known that there exists a continuous family of r — 1
orthonormal vectors x, (t),...,X,—,(t) for ¢t € [0,1] such that

(4.16.3) x;(0) =x%;, x(1)=y:; t=1,...,r—1.

See Problem 4.2.9(e). Since dim B(x,,...,X,—,) = 1 it follows that there
exists € > 0 such that for t € [0,€) dim B(x,(t),...,%X,—,(t)) = 1. Let
s € (0,1] and assume that for each ¢ € [0, s] dim B(x,(t),...,X,—,)(t) = 1.
Then we can choose a unique B(t) € B(x,(t),...,%,—.(t)),t € [0, s] with
the following properties. First, B(0) = A. Second, tr B(t)? = tr A%, Third,
B(t) depends continuously on ¢. Since U does not satisfy the theorem

it follows that A;(B(t)) = ... = A—_1(B(t)) > A.(B(t)). Furthermore,
x,(t),...,x,—,(t) are r — 1 orthonormal eigenvectors of B(t) correspond-
ing to A1(B(t)). Suppose first that s = 1. Then our claim holds for

B(y1s.--,¥r—1). Assume now that sg € (0,1] is the minimal ¢ € (0,1]
satisfying dim B(x,(t),...,%,—,(t)) > 1. Let B(¢) be the unique matrix in
B(x,(t),...,%xr—,(t)) defined as above for t < so. Let sj,j € N be an in-
creasing sequence converging to sg. By taking a subsequence of s;,j € N we
can assume that lim; .o, B(s;) = C. Then C € B(x,(S0);.--,Xr=1(S0))-
Furthermore, A1 (C) = ... = A\_1(C) and x1(So), .-, Xr—1(S0) are r — 1
orthonormal vectors corresponding to A;(C). The above arguments show
that the assumption dim B(x, (), . - -, Xr—1(80)) > 1 contradicts that U vi-
olates our theorem. Hence dim B(x,(t),...,X,—,)(t) = 1 for each ¢t € [0,1]
and our claim is proved.

We finally obtain a contradiction to the assumption that U violates our
theorem by constructing a nonzero matrix C' € U satisfying

Cy;i =X\, (Q)yi, i=1,....,7—1, X (C)>X(C) >N, (C),

for some r — 1 orthonormal vectors y,,...,¥,—:-

Suppose first that » = 2. Since U violates our theorem it follows that
any C € U\ {o} satisfies the above condition. Assume now that r > 2.
Consider a k(r) — 1 dimensional subspace U’ of U which does not contain

A. Let x,,...,X, be an orthonormal set of eigenvectors of A as defined
above. In U’ consider the subspace of all matrices B satisfying Bx; = 0 for
i=2,...,7—1. By assuming x,, ..., X, is a standard basis in R"™ we deduce

that one has exactly k(r—1) linear conditions on B viewed as real symmetric
matrices. Since k(r—1) < k(r) —1 one has a nonzero B € U’ satisfying the
above conditions. If \y(B) = ... = A\,,—1(B) = 0 then C = B. Otherwise
we can assume that A\j(B) > A2(B) > 0. Let B(t) = A+tB. So A;1(A) is an
eigenvalue of B(t) of multiplicity r — 2 at least. Clearly, Then there exists
€ > 0 such that for || < e A\.(B(t)) < A1 (B(0)) = A\ (A). Thus, for |t] < e
A2(B(t)) < A1(A). For t > 1 A (B(t)) > A2(B(t)) > M(A). Let T := {t >
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0, A2(B(t)) > M(A)}. So each t € T satisfies t > € Let to := inf{¢t, t € T'}.
We claim that Al(B(tO)) > /\Q(B(to)) =...= )\7.(3(1*,0)) = )\1(A) In view
of definition to we must have equality A2(B(tp)) = A1(A). On the other
hand for ¢ > tg A2(B(t)) > A1(A). Hence A2(B(to)) has to be an eigenvalue
of multiplicity » — 1 at least. Since U violates our theorem we must have
the inequality A1(B(to)) > A2(B(tg)). Also if Aa(B(tg)) = A\ (B(to)) then
A (=B(tg)) = ... = A—1(—B(to)) which contradicts our assumption that
U violates out theorem. Hence C' = B(ty) € U is whose existence was
claimed above.

We now show that such C contradicts our previous results. Assume
that Cy;, = \,(Q)y; for i = 2,...,r, where y,,...,y, is an orthonormal
system. Consider the set B(ya,...,y,). Clearly, C € B(ya,...,yr). we
showed that dim B(y,,...,y,) = 1. Hence span (C) = B(y,,...,y,). We
also showed that the maximal eigenvalue of either C' or —C' has mulitplicity
r — 1. This contradicts our results on C. Hence for each subspace U of
S(V) overR of dimension x(r) at least mulind U > r.

We now show that our result is sharp. Let U C S(n,R) be a subspace
of matrices A = [a;;]};_, satifying

a;; =0, ,4,j=1,...,n—r+1, trA=0.

Clearly, dim U = k(r) — 1. we claim that there non nonzero matrixA in
U such that A\ (4) = ... = A\.(4). Assume to the contrary that such
nonzero A exists. As tr A = 0 we must have that A;(A) > 0. Consider
the matrix B = A;(A)l, — A. So rank B < n —r. One the other hand
the (n —r 4+ 1) x (n — r + 1) submatrix based on the first n — r + 1 rows
and columns if A(A)I,_,11. So rank B > n —r + 1 which contradicts the
previous observation on the rank of B.

The proof of the theorem for F = C is similar, and is left as a Problem
1. O

Denote

(4.16.4) f(rR) = T(T;’ YV tp0)=r

Theorem 4.16.3 Let V be an IPS over F = R,C of dimension n > 2.
Assume that r € [n — 1]. Let W be a subspace of S(V). Assume that W
has the following property: If x,,...,x, € V satisfy the equalities

(4.16.5) > (Axi,x;) =0 for all Ae W

=1
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then x, = ... =x%, = 0. Suppose that

(4.16.6) dim W < f(r+1,F) — LTJrl

|.
Then W contains a positive definite operator.

To prove the theorem we need the following results. Observe first that
S(V) is a real vector space of dimension f(dim V,F). S(V) has a nat-
ural inner product (S,T) = tr(ST). Furthermore, any linear functional
¢ : S(V) — R is of the form ¢(X) = tr(XF) for some F € S(V). See
Problem 4.9.2. For a subspace W C S(V) denote by W+ C S(V) the or-
thogonal complement of W. Recall that S; (V) and S (V)? are the closed
cone of nonnegative definite operators and the positive definite operators
respectively in S(V).

Lemma 4.16.4 Let W be a nontrivial subspace of S(V). Then
(4.16.7) WNS,(V)={o} —= W NS, (V) #0.

Proof. Suppose that the right-hand side of (4.16.7) holds. Problem
4.9.2 implies the left-hand side of (4.16.7).

Assume now that the left-hand side of (4.16.7) holds. Let Si,(V)
be the set of all nonnegative definite operators with trace one. Clearly,
S+..(V) is a compact convex set. The left-hand of (4.16.7) is equivalent
to WNS;,(V) =0. Since W is a closed convex set, there is a linear
functional ¢ : S(V) — R which separates W and Sy , (V) [Roc70]. That
is, there exists a € R such that ¢(X) < a for each X € W and ¢(S5) > a
for each S € S; ,(V). Since W is a nontrivial subspace, it follows that ¢
vanishes on W. So a > 0. Assume that ¢(X) = tr XT for all X € S(V).
So tr ST > 0 for each S € Sy ; (V). Problem 4.9.3 yields that T € S (V)°.
As tr XT =0 for X € W we deduce that T € W+. O

Proof of Theorem (4.16.3) Let U = W=. According to Lemma
(4.16.4) one needs to show that UN S, (V) = {o}. Assume to the contrary
that U NS4 (V) contains a nonzero nonnegative definite S. Let T be a
nonzero nonnegative matrix in U with a minimal rank m. The assumption
that the condition (4.16.5) yields that x, = ...x, = o implies that m > r.

Observe that

T k=, F) 4 |

dim U > f(n,F) — f(r +1,F) + | 1.

Assume first that m = n. So T = P? for some positive definite P. Let
U, C U be a subspace of codimension one such that P ¢ U,. Clearly,
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dim U, > s(n —r,n,F) + 2] >

n

+ =

for r € [n —1]. (Note that for
r = n —1 one has xk(1,n,F) = 0,|ZtL] = 1.) Consider the subspaces
U, =P 'U,P ' CcU :=P'UP*CS(V). Sol € U and I ¢ U’.
Suppose first that r < n —2,ie. n—r € [n— 1]\ {1}. Since dim U’ >
k(n —r), Theorem (4.16.2) yields the existence of a nonzero A € U/ such
that Ay = ... = A\,_,(A). Hence B := A\;(A)I — A is a nonzero nonnegative
definite operator at most of rank r.

Suppose now that r = n— 1. Then U’ contains a nonzero matrix A. So
B := )\1(A)I — A a nonzero nonnegative definite operator of rank r =n —1
at most. Therefore PBP is a nonzero nonnegative definite operator of at
most rank 7 in U. This contradicts the minimality of the rank of 7.

It is left to consider the case where rank T = m < n. For r = n—1 such
T does not exists. Hence UN S (V) = {o} as claimed.

Assume now that r € [n — 2]. Suppose furthermore that S(V) is either
S(n,R) or H,. By considering the subspace P~'UP~* we may assume
without loss of generality that T = A; = diag(1,,,0). Let A;,...,A;s be a
basis of U. So d > k(n —r,n,F)+ 1 Partition A; = [A;1 A;j 2], where each
Aj 1 is n x m matrix. We claim that As,..., Ay 4 are linearly dependent
over R. Assume that Z;n:z ajA;o = 0. The number of variables as,...,aq
is at least k(n—r,n,F). The number of real equations is f(n,F)— f(m,F) =
k(n—m+1,F). Thus, if m > r+ 1 we have always a nontrivial solution in

=3

ag,...,aq.
So assume to the contrary that m = r + 1,d = k(n —r) + 1 and
Ag,..., Ay 4 are linearly independent. Partition each A;o = [ ?jj ]
J:2
for j = 2,...,d. Hence span (Ag,...,Aq) contains a block diagonal ma-

trix diag(C, F'), where F' is an arbitrary diagonal matrix. In particular
A = diag(C,I,,—,—1) € U. Hence a1 A; + A is positive definite for a; > 1.
This fact contradicts our assumption that U does not contain a positive def-
inite matrix. Hence As o, ..., As 4 are linearly dependent over R. So there
exists a nonzero matrix in span (Ag,...,Aq) of the form A = diag(F,0).
As A; and A are linearly independent it follows that F' # Ay (F')I,,. Hence
A1(F)A; — A is a nonzero nonnegative definite matrix of rank at most m—1.
This contradicts the minimality of the rank of 7' O

Problems
1. Prove Theorem 4.16.2 for F = C.

2. (Calabi’s theorem.) Let 51,52 € S(n,R). Assume that if x € R”
satisfies x ' S;x = x| S,x = 0 then x = 0.
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(a) Show that if n > 3 then there exists a1, as € R such that a1.57 +
a2S5 is positive definite.

(b) Assume that n = 2. Give an example of S1,S2 € S(2,R) satis-
fying the above conditions, such that span (Sq1,S2) NSy (2,R) =

{o}.
3. Show that Theorem (4.16.3) implies Theorem (4.16.2).

4.17 Rellich’s theorem
Definition 4.17.1

1. For S C C denote S := {2, z € S}.
2. A domain Q C C is called R-symmetric if Q = Q.

3. Assume that a domain Q@ C C is R-symmetric. Let A(z),U(z) €
H(Q)**™. Then A(z) and U(z) are called hermitian and unitary an-
alytic respectively if

(4.17.1) Alz) =AD", UR)'=U®)*, foralzec.

Theorem 4.17.2 (Rellich’s theorem) Let Q0 be an R-symmetric do-
main. Assume that A € H(Q)™*™ is hermitian analytic in . Suppose
that J is a real open interval in Q. Then there exists an R-symmetric
domain 0y, where J C Q1 C Q, such that the following properties hold:

1. The characteristic polynomial of A(z) splits in H(Q). That is, det (al,—
A(2)) = [T, (@ — a;(2)), where ay(2), ..., an(z) € H().

2. There exists a unitary analytic U € H(Qp)™ ™ such that A(z) =
U(z)diag(ai(z),...,an(2))U(2)*.

To prove the above theorem we start with the following result.

Lemma 4.17.3 Let Q C C be an R-symmetric domain. Assume that
A € H(Q)™*™ is hermitian analytic in Q. Let C(p1,...,pr) € H(Q)"*™
be the rational canonical form of A over the field of rational functions
M(Q). pi(a,z),...,pp(a,2) € H(Q)[a] are nontrivial invariant polyno-
mials of al, — A(z), monic in o, such that pj|pj41 for j=1,....,k—1 and
H§=1 pi(a, z) = det (al, — A(z)). Then there exists a nonzero analytic
function f € H() such that the following conditions hold:
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1. Denote by Z(f) the zero set of f in Q. (So Z(f) is a countable set
whose accumulation points are on the boundary of €2.)

2. Let Qg :=Q\ Z(f). Then A is similar to C(p1,...,pr) over H(2).
3. For each ¢ € Qy the polynomial py(c, () has simple roots.
4. For each ¢ € Qo the matriz A(C) is diagonable.

Proof. Theorem 2.3.6 yields that C(p1,...,pr) € H(Q)"*". As A is
similar to C(p1, ..., px) over M(Q) it follows that A = XC(p1,...,pr)X !
for some X € GL(n, M(£2)). Let g be the product of the denomina-
tors of the entries of X. Then Y := gX € H(Q)"*" N GL(n, M(£2)) and
A=YCO(p1,...,pr)Y L Let fi ;= det Y. Then Z(f;) is a countable set
in Q whose accumulation points are on the boundary of Q2. So for each
¢ e Q3 :=Q\ Z(f1) A(C) is similar to C(p1,...,px)(¢). Let fo € H(Q)
be the discriminant of py(a,z). We claim that fy is not identically zero.
Assume to the contrary that fo = 0. Then for each ¢ € € the polynomial
pr(a, ¢) has a mulitple root. Hence C(py)(¢) and C(p1, ..., pr)(¢) are not
diagonable. Since 2 is R-symmetric it contains a real open interval J. (See
Problem 3.4.17.2.) Clearly, J\ Z(f1) is a countable union of open intervals.
Let ¢ € J\ Z(f1). As A(¢) is a hermitian matrix, A(¢) is diagonable. This
contradicts our results that A(¢) is similar to C(p1, ..., px)(¢), which is not
diagonable. Hence fo # 0. Let f = fi1fs and Qo := Q\ Z(f) C Q3. Let
¢ € Q9. Then the polynomial pg(a, ¢) has simple roots. Hence each p;(«, ()
has simple roots. Therefore C'(p1,...,pr)(¢) is similar to a diagonal matrix,
which implies that A({) is similar to a diagonal matrix. O

Proof of Theorem 4.17.2 We first show that for ( € J the character-
istic polynomial of A(z) viewed as a matrix in H?X" splits in H¢. Since
each p; divides py, it is enough to show that py(c, z) splits in He. As-
sume that the degree of py (v, z) with respect to a is m. Let Z(f) and Qs
be defined as Lemma 4.17.3. So J N Z(f) consists of a countable number
of points who can accumulate only to the end points of J. Furthermore,
JNQe = J\ Z(f) consists of a countable number of intervals. Assume that
¢ e J\Z(f). Since all the roots of pg(«, () are distinct, the implicit func-
tion theorem yields that py(a, z) splits in H¢. It is left to consider the case
when ¢ € JNZ(f). So pr(e, z) has m simple roots in some punctured disk
0<|z—(| <r. Aspg(a,z) € He[a] is a monic polynomial in « of degree
m, each root B;(z) satisfying pr(58;(2),2) = 0 is a multivalued function in
0 < |z —¢| < r. That is, when we take one branch /3;(z) on a closed circle
2(0) = C+r1e?V=1r € (0,7) for 6 € [0, 2] then B;(C+€>™V~Tr)) may give
another branch 8;/(¢ + 71). Theorem 1.8.4 claims that if we replace z —
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by w® then each f;(w?) is locally analytic in w. Since A(§) is a hermitian
matrix for each £ € R it follows that all the eigenvalues of A(&) are real. So
Bj(w®) is real value for w > 0. Hence the Taylor coefficients of each §;(w®)
are real. Equivalently, 8;(z) has the Puiseux expansion

(4.17.2) Bi(2) =3 Brlz = 0)*,
=0

where 8, € R, 1 =0, ..., j =1,...,d. By considering the branch f;(z)
on a closed circle z = ¢ + 1V~ for § € [0,2n] we get the the Puiseux
expansion of 3;/(z):

(4.17.3) Bir(z) =Y Biae = (2= ).

=0

Hence each coeflicient ﬂj,lem«\fm is real. Therefore 8;; = 0 if s does
not divide I. Thus we showed that the Puiseux expansion of each j;(z) is
a Taylor expansion. This shows that pi(a, z) splits in He.

For each ¢ € J let r(¢) > 0 be the largest r such that the disk |z —
¢] < r(¢) is contained in €2 and each (;(z) is analytic in this disk. Let
O = Uces{z, |z —¢| <r(Q)}. So Q] is a simply connected R-symmetric
domain contained in Q. Hence each ;(z) is analytic in ©}. This proves
part (1) of the theorem for .

Since pj_1|p; for j = 1,...,k — 1 it follows that S1(z),...,0m(2) €
H(Q)) are the distinct roots of the characteristic polynomial of A(z). So

m m

(4.17.4) pr(a, 2) = H(a — Bi(2)), det (al, — A(z)) = H(Of = Bi(2)"™,

i=1 =1

wheren; € N, j=1,...,m, ni+---+n,, = n. Hence for each { € Q{\Z(f)
the multiplicity of the eigenvalue §;(() is exactly n;.

Since ] is EDD domain it follows that the null space of A — B;I, has
a basis consisting of n; = nul (A — 8;1,,). Clearly7 n’; is also the nullity of
A= B, in Q) \ Z(f). Hence n; =n; for j=1,.. m

Assume that 1 < j <! < m. Suppose that u € nul (A — §,1,,),v €
nul (A — B;1,). We claim that h(z) := u(2)*v(z) € H(£2!) is identically
zero in Q). Indeed, let ¢ € J\ Z(f). As u(¢) and v(¢) are eigenvectors
of A(C) corresponding to two different eigenvalues it follows that h(¢) = 0.
Since Z(f) is countable set, the continuity of h(z) yields that h(z) is zero
on J. Hence h is identically zero in €.

We now show that we can choose an orthogonal basis in each nul (A —
piln). Let uyj,...,u,, ; be a basis in nul (A — p;l,) C H(}). Hence
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u,,;(¢) # 0 for each ¢ € H(Q)). Let hy j(2) :=u, ;(2)*u, ;(z) € H({2]). So
h1,(¢) > 0 for each ¢ € J. Hence {v, v € nul (A — u;I,), uj ;v = o}
is a subspace of nul (A — p;I,) of dimension n; — 1. Continuing this
process we obtain an orthogonal basis of each nul (A — p;I,). That is,

we can assume that u, j,...,u,, ; is a basis in nul (A — p;l,) satisfy-
ing uf ;ug; = o for i # ¢. In view of the orthogonality conditions of
nul (A il ) and nul (A — 1,,) for j # | we conclude that we obtained
an orthogonal basis v,, ..., v, of H(Q;)™ which consists of eigenvectors of

A. That is, vivy = o for ¢ # q. Let g; :==v}v, e H{2)) fori =1,...,n
The arguments above imply that g;(¢) > 0 for each ¢ € J. Let r(¢)
be the maximal r such that each g;(z) # 0 in the disk |z — {| < r con-
tained in Q}. Define @ := Uccs{z,|z — (| < 7'(¢)}. So € is a sim-
ply connected R-symmetric domain in C. Let ,/g; € H(2;)be the unique
square root of g; which is positive on J. Define w; := ﬁvi € H(£2,)™ for
i=1,...,n. Let U = [w,...wy,] € H(£2,)"*™. Then U is unitary analytic
and A = U diag(ay,...,a,)U* in Q4. O

Problems

1. Let ©Q C C be a domain. Assume that J C R is an interval contained
in Q. Show that there exists an R-symmetric domain {2; such that
JCQ CO.

2. Assume that Q@ C C is an R-symmetric domain and A(z),U(z) €
H(Q)™>".
(a) For each z € Q let A1(z) := A(2)*,U1(z) := U(Z)*. Show that
A1, U, € H(Q)nxn
(b) Show that € contains an open interval J C R.
(¢) Assume that zop € RNQ. Let

oo

(417.5)  A(z) =) (2 —x0) A = (z— )
3=0

§=0
Show that A(z),U(z) are hermitian and unitary analytic respec-
tively if and only if the following conditions hold:

(4.17.6) = A, ZUk o =00jLn, j=0,....

Hint: To show that the above equalities imply that A(z),U(z)
are hermitian and unitary analytic, use the analytic continuation
principle for A(z) — A1(z) and U(z)U;(z) — I,, respectively in .
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4.18 Hermitian pencils

Definition 4.18.1 A(z) := Ap+ zA4; is called a hermitian pencil if Ag
and A1 are hermitian matrices of the same order.

In this section we assume that Ag, A1 are hermitian matrices of order n.
Observe that the pencil A(z) = Ap + z4; is hermitan analytic in C, i.e.
A(z)* = A(z) for z € C. The precise version of Lemma 4.17.3 and Theorem
4.17.2 for A(z) is as follows:

Theorem 4.18.2 Let A(z) = Ag + zA; € C[z]™*™ be a hermitian pen-
cil. Then C(p1,...,pr) € C[z]"*"™ is the rational canonical form of A(z)
over C(z). p1(e, 2),...,pr(a, z) € Clz][a] are the nontrivial invariant poly-
nomials of al, —A(z), monic in o, such that pj|pj+1 forj=1,...,k—1 and
H?:l pr(a, z) = det (al, — A(2)). Furthermore, the following conditions
hold:

1. pj(a,2) = oz}nj + 30 pji(2)a™iTt where deg pji(2) < i fori =
1,...,mjandj=1,... k.

2. The discriminant of px(c, z) with respect to « is a nonzero polynomial
D(pi)(z) of degree m(m — 1) at most, where m = my,.

3. Let Z(D(px)) C C be the zero set of D(py). Then for each ( €
C\ Z(D(pr)) A(Q) is similar to a diagonal matriz.

4. The roots of pr(a,z) = 0, B1(2),...,Bm(z), are finite multivalued
analytic functions in C\ D(pg). The set {B1(2),...,Bm(z)} is the
spectrum of A(z) for z € C\ D(py). Furthermore, the following con-
ditions are satisfied:

(a) Let ¢ € D(py). Then each Bj(z) has Puiseuzr expansion (4.17.2)
in a disk D(¢,r(¢)) = {2z € C, 0 < |z —¢| < r({)}, where
r(C) s the biggest r such that {z, 0 < |z — (| < r} N D(pg) =
0}. A closed circle z(0) := ¢ + e~ r € (0,7(C)) for 6 €
[0,27] in D(¢,7(C)) induces a permutation o(C) : [m] — [m].
That is, B3;(2(27)) = Bo(c)j)(¢ +71) for j = 1,...,m. FEach
cycle of this permutation of length q consists of q branches of
eigenvalues 1(z), ..., Bm(z), which are cyclically permuted by
a(¢) after completing one closed circle z(0).

(b) Each eigenvalue B;(z) has a fized multiplicity n; in C\ D(px)
for 5 =1,...,m. The multiplicities of each 5;(z) are invariant
under the action of o(C) for ¢ € D(py). That is (4.17.4) holds.
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(c) For each ( € D(pg) the polynomial pr(a, ) has at least one
multiple root. That is, there exists 1 < i < j < m such that

Bi(¢) = B;(Q)-

5. There exists a simply connected R-symmetric domain 3 C C con-
taining the real line R such that B1(z), ..., Bm(z), are analytic func-

tions in Qq. Furthermore x,,...,x, € H(£2,)"™ are the corresponding
normalized eigenfunctions:
(4.18.1)

A(2)x;(2) = a;(2)xi(2), xi(2)"x;(2) = 035, 4,5 =1,...,n, 2 € 24,
where aq, . ..,a, € H(Qp) are the n eigenvalues of A(z) for z € Q.

6. TFAE
(a) AOAI = Ale.
(b) There exists an orthonormal basis X,,...,%Xy in C" such that
(4182) Aixj = Q4,5Xj, j: 1,...,Nn, iZO,l.

(¢) For each ¢ in C A(C) is diagonable.
(d) A(z) has property L.

Proof. Consider the homogeneous pencil A(z,w) = wAy + z4; €
Clz,w]. Clearly, each minor of the matrix al,, — A(z,w) of order [ is a
homogeneous polynomial in «, z, w of total degree [. Hence the nontrivial
invariant polynomials of al, — A(z,w) over the field C(z,w) are homo-

geneous polynomials p,(a, z,w),j = 1,...,k, which are monic in « and
of total degrees mq,..., my respectively. So p;_1|p; for j = 1,...,k — 1.
Furthermore, H§=1 ﬁj = det (al,, — A(z,w)). Clearly, p;(a, z,w) = o™ +
S pii(z,w)a™i Tt and deg pj; = my; —i for i = 1,...,m; and j =

1,...,k Letpj(e,2) :=pj(e, z,1) for j =1,..., k. Then pi(e, 2), ..., pr(c,
are the nontrivial invariant polynomials of al, — A(z) over C(z). Further-
more, Hlepj =det (al,, — A(2).

1. Clearly, p; i(z) = p;i(z,1). Hence deg p;; <mj;—ifori=1,...,m,
and j =1,...,k.

2. Let D(pr)(z,w) be the discriminant of py(c, z, w) with respect to
a. Then D(pi)(2) = D(pPr)(#,1). The proof of Lemma 4.17.3 yields that
D(p)(#) is a nonzero polynomial. Hence D(py)(z,w) is a nonzero homo-
geneous polynomial of total degree m(m — 1). Thus D(py)(z) is of degree
at most m(m — 1).

3. This claim follows from the proof of Lemma 4.17.3.

4. This claim follows from the proof of Lemma 4.17.3.
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(a) The Puiseux expansion (4.17.2) follows from Theorem 1.8.4. Let
2(0) == ¢+ me®Y"lr € (0,7(¢)) for # € [0,27] be a closed cicle in
D(¢,r(¢)). Then this closed circle induces the following permutation per-
mutation o(¢) : [n] — [n]. Namely, the Puiseux expansion of ag,(¢)(;) is
given by (4.17.3). Clearly, the cycle o(¢)!=1(4) + a(¢)!(j) for j =1,...,s
gives all branches of «;(z) in D(¢,r(()).

(b) (4.17.4) implies that the multiplicity of 5;(z) is n; for z € C\
Z(D(pr)). The action of o(() for ¢ € Z(D(py)) yields that n,);y = ny.

(¢) Since pg(a, 2) is a monic polynomial with respect to «, px(a, ¢) has
a multiple root if and only if ¢ € Z(D(pg))-

5. This claim follows from Rellich’s theorem 4.17.2.

6. The equivalence of (a) and (b) follows from Problem 1.

The implication (b) and (¢) is trivial.

Theorem 3.12.4 yields the implication (¢) and (d).

Assume that (d) holds. So «;(z) = ag; + a1z for j =1,...,n. Thus
a;1,...,a;, are the n eigenvalues of A; for ¢ = 0,1. Without loss of
generality we can assume that a;; > -+ > ay,. We show that Ay, 4;
commute by induction on n. Clearly, for n =1 Ay, A; commute. Suppose
this claim is true for each n < N. Assume that n = N.

Suppose first that a;1 = -+ = a1,,. Then A1 = a111, and Ag, Ay
commute. Suppose now that a1 = ---a1,4 > a1,44+1 for some g € [n —1].
Assume that
(4.18.3) A1(t) > -+ > A\ (t) are eigenvalues of A(t), t € R.

Clearly, there exists ¢y > 0 such that A;(¢) = ao; + a1,;t for t > o and
j=1,...,q. Chooset > ty. Let x,,...,x, be the orthonormal eigenvectors

of A(t) corresponding Aq(t),. .., A;(t) respectively. Hence

q

D (a0, +art) =Y A(t) =

j—l j=1

ZX*A ZX*A XJ+ZX o) ALX;

Theorem 4.4.9 yields:

t q t
ZX;A(tO)Xj < Z)\j(to), Zx; A x; <
Jj=1 Jj=1 j=1

Recall that

((t—to)

i MQ

q

D Ailto) =Y (a0 +a1jto), Y A((t—to)Ar) = (t—to) Y a.
=1 j=1

=1 j=1
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Hence in the above two inequalities we have equalities. Let

U = span (Xi,...,X4). The equality case in Theorem 4.4.9 yields that
U is spanned by the ¢ eigenvectors of A(tp) and A; corresponding to
Ai(to), ..., Aq(to) and A; respectively. In particular U is a common in-
variant subspace of A(tp) and Ay, hence U is an invariant subspace of Ay
and A;. Therefore Ut is a common invariant subspace of Ay and A;.
So the restrictions of A(z) to U and U+ are hermitian pencils which have
property L. The induction assumption yields that the restrictions of Ag, A1
to U, U+ commute. Hence Ay, A; commute. O

Definition 4.18.3 Let A(z) be a hermitian pencil. Assume that ¢ € C.

1. ¢ is called a crossing point of the pencil A(z) if 5;(¢) = B;(C) for
i # .
2. ¢ is called a regular point of B;(z) if Bi(z) € He. (See Problem 38.)

3. € is called a resonance point of A(z) if A(C) is not diagonable.

Theorem (4.18.2) yields:

Corollary 4.18.4 Let A(z) = Ag+ zA; € C"™*™ be a hermitian pencil.
Then

1. ¢ is a crossing point if and only if ¢ € Z(D(pg)).

2. The number of crossing points is at most n(n — 1).

3. Every resonance point of A(z) is a crossing point.

4. A(2) has a resonance point if and only if AgA1 # A1Aop.

5. Assume that AgAy # A1Ag. Then there exists 2q distinct points
C1,C1s--5Cq:Cq € C\R, where 1 < ¢ < "("T_}), such that A(z) is not
diagonable if and only if z € {(1,(1, ..., Cq, g}

Let A(z) = A1 + zA; be a hermitian pencil. Rellich’s theorem yields
that the eigenvalues and orthonormal eigenvectors of A(z) can be chosen
to be analytic on the real line. That is, (4.18.1) holds. Fix ¢ € R. Expand
each «;(z),x;(z) in Taylor series at t:

o

(4.18.4) aj(z2) = oz —t), x;(2) = (2 —t)x;.
=0

l=o0



4.18. HERMITIAN PENCILS 253

The orthonormality conditions in (4.18.1) yield:
S
(4.18.5) X oXr0 = Ojr, ij‘,lxr,s# =o0, j,reln],geN.
l=o0

The eigenvalue condition A(2)x;(z) = «;(2)x;(2) is equivalent to:
(4.18.6)

S
A)Xj0 = joXj0, A)Xj s+ AiXj sy = Zajylxj,s,l, j€n],seN.
=0

In some situations, as in the proof of Theorem 4.18.2, we need to arrange
the eigenvalues of A(t) in a nonincreasing order as in (4.18.3). Usually, A;(t)
is not analytic on R. However, if ¢ is not a crossing point then each A;(t)
is analytic in some disk |z — ¢| < r(t). Assume that ( € R. We call ¢ a
noncrosing point of A;(¢) if there is an open interval I = {¢, |t —(| < r} such
that A;(t) has a constant multiplicity as an eigenvalue of A(t). Otherwise
¢ is called a crossing point of A\;(¢). We call ¢ a point of analyticity of A; if
Ai(t) = B;(t) on I and ( is a regular point of §;(z). See Problem 3.

Lemma 4.18.5 Let the assumptions and the definitions of Theorem
4.18.2 hold. Assume (4.18.3). Then R\ Z(D(py)) is the union of q disjoint
open intervals I; = (a;—1,a;) fori=1,...,q, where ag = —0c0 < a3 < -+ <
ag = 00.

1. For each interval I; there is a permutation o; : [n] — [n] such that
Aj(t) = ag,(jy(t) fort € [a;_1,a;] and j € [n].

2. Lett € I;. Assume that the multiplicity of Xj(t) isn;. Letu,, ..., Uy,
be an orthonormal basis of for eigenspace of A(t) corresponding to
Aj(t). Then there exists 5i(z) € H(1) such that A\;(t) = Bi(t) for
t € I;. Furthermore, there exist z,(2),...,2n,;(2) € H(£2,)", which
form an orthonormal basis of the eigenspace of A(z) corresponding to
Bi(z), such that z,.(t) = u, forr=1,...,n;.

3. Let t € I;. Then Ni(t) = y;A.y; for any eigenvector A(t)y; =
)\j(t)yj,y;y; = 1.
4. Assume that { € RNZ(D(py)). That is, ¢ is one of the end points of

the two adjacent intervals I; = (a;—1,¢) and Ii11 = (¢, ait1).

(a) Suppose that ¢ is a noncrossing point of A\;(t). Then there ex-
ists Bi(z) € H() such that X\j(t) = Bi(t) fort € (a;—1,ait1).
Furthermore, N;(C) = yjAyy; for any eigenvector A(Q)y; =
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Ni(Q)yj, Y7y = 1. Aj(C) has multiplicity n;, which is the mul-
tiplicity of \j(t) for t € I;. Let u,,...,u,, be an orthonormal
basis of for eigenspace of A(C) corresponding to A\;(¢). Then

there exists z,(z),...,2n,(2) € H(§2,)" orthonormal eigenvec-
tors of A(z) corresponding to Bi(z) such that z.(¢) = u, for
r = 1, ceey g

(b) Assume that ¢ is a crossing point of A;(¢). Suppose that \;(t) =
Bi(t) fort € I; and \j(t) = By (t) for in I11. Let ny,ny be the
multiplicities of Bi1(z), B (z) € H(Q) respectively. Assume fur-
thermore that u,(2), ..., up,(2),vi(2),...,Vn, (2) € H(£2,)™ are
the orthonormal eigenvectors of A(z) corresponding to Bi(z), B (2)
respectively. Let U = span (u,((),...,uy,(()),

V =span (vi((),...,Vn,(C)). Then the left and the right deriva-
tives of \j(t) at ¢ are given by:

(4.18.7) Ni(C—) = A, N(CH) = Vi A,

foranyueUveV u'u=vv' =1.

Proof. Since D(pg) is a nonzero polynomial it follows that Z(D(py)) is
a finite (possibly empty) set in C. Hence R\ Z(D(py)) is a finite union of
disjoint intervals, whose closure is R.

1. As the interval I; does not contain a crossing point £;(t) # Bi(t)
for 1 < j <l <mandt € I. Soeach §i(t) is an eigenvalue of A(t)
of multiplicity n; for [ = 1,...,m. Hence there exists a permutation o; :
[n] — [n] such that A\;(t) = aq,;)(t) for j = 1,...,n. Since each \;(t) is
a continuous function n R it follows that the equality \;(t) = oy, (t) is
valid for the closed interval [a;_1, a;].

2. Recall that a;(z) = B;(2) for some I € [m]. 8;(z) is of multiplicity 7.
Hence the multiplicity n; of A;(t) is ny for t € I;. Let v,(2),...,vn,;(2) €
H(£2,)™ be a set of orthonormal eigenvectors of A(z) corresponding to 5;(z).

Clearly, u,,...,u,, for a basis in span (v, (t),..., vy, (t)). Hence there ex-
ists a unitary matrix O € U(n;) such that Ov,(t) = u, for r =1,...,n;.
Let z.(2) = Ov,(z) forr =1,...,n;. Thenz,(2),...,2n,(2) is an orthonor-

mal basis of the eigenspace of A(z) in H(£2;)" corresponding to 5;(z).

3. Rename the analytic eigenvalues of A(z) in H(€;) and the corre-
sponding orthonormal eigenvectors so that A;(t) = «;(t) for t € I; for
j=1,...,n. Let y; be an eigenvector of A(t) of unit length corresponding
to A;(t). The arguments of the proof of part 2 imply that we can assume
that x;(z) = z,(2) and x,(t) = y,.

Recall that the eigenvalue condition A(2)x;(z) = a;(2)x;(z) is equiva-
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lent to (4.18.6). Furthermore

ajo=Ni(t), aj1=N(t), X(t)=%Xj0, Xj,Xjo=1.

The first condition and the second condition of (4.18.6) for s = 1 are
A(t)Xj0 = @joXj0,  Al)X1 0+ AiXjio = Qj0oXa,0 T QX0

Multiply the second equality by x7, to deduce that a;; = X;}OAlxj'?O.
Hence the equality a1 = xj ,A,%;, yields the equality )\;» (t) =y;Ay;-

4. Assume that ¢ € RN Z(D(pk)). So ¢ = a; for i € [¢ — 1]. Hence ( is
a crossing point for some f,.(2).

(a) Suppose that ¢ is a noncrossing point of A;(¢). Then there exists
Bi(z) such that A;(¢) = 5,(¢). Hence ( is a regular point of 5;(z). Therefore
Aj(t) = Bi(¢t) for t € (a;—1,a,+1). Hence the results of 2-3 hold for each
t € (aj—1,ai+1), in particular for ¢t = .

(b) Assume that ¢ is a crossing point of A;(¢). So A;(t) = Bi(t) for
t € I, and \j(t) = Br(t) for t € I;11. (We do not exclude the possibility
that [ = I".) Recall that \;(¢) = Bi(¢). Hence \;(¢—) = B/(¢). Similarly,
N (C+) = B1,(¢). The equalities (4.18.7) follow from part 3. O

Theorem 4.18.6 Let Ag, Ay € H,, and A(t) = Ay + tA; fort € R.
Assume (4.18.3). Suppose that k € n — 1] and 1 < iy < --- < < n are
integers. Then the following inequality holds:

k

k
(4.18.8) D A (Ag+ A1) DN (Ao) + > A (Ar).
j=1

Jj=1

Equality holds if and only if the following conditions hods: There exists T

invariant subspaces Uy, ..., U, C C" of Ag and Ay such that each Uy is

spanned by k-orthonormal vectors of Ay corresponding to A1 (A1), ..., A\x(A1).
Let py 1 (t) > ... > pp(t) be the eigenvalues of the restriction of A(t) to Uy

forl=1,...,r. Then there exists by =0 < by < -+ < b._1 < b, = 1 with

the following properties: For each | € [r] and t € [by_1,b)] pji(t) = i, (t)

forj=1,... k.

Proof. We use the notations and the results of Lemma 4.18.5. Recall

that each \;(¢) is continuous on R and analytic in each I; for i = 1,...,q.
That is, each A;(t) is piecewise smooth. Fix I;. Then there exist n analytic
orthonormal vectors x, (t), ..., X, (t) in I; corresponding to A1 (t), ..., An (%)

respectively. Assume that ¢ € [;. Part 3 of Lemma 4.18.5 yields that
Ni(t) = x;j(t)* Ayx;(t) for j € [n]. Let f(t) = S.5_ i (t). Then f'(t) =

j=1""
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lel x;, (t)*Aix;, (t). Theorem 4.4.9 yields that f'(t) < E?Zl Aj(Ayr).

k

1 1
1) — £(0) = / F(t)dt < / (3 M (An)dt =3 A (Ar).

Jj=1 Jj=1

The above inequality is equivalent to (4.18.8).

We now discuss the equality case in (4.18.8). Suppose first that equality
holds in (4.18.8). Let 0 < b3 < ... < br—1 < 1 be the intersection points
of (0,1) N Z(D(py)), i-e. (0,1)N Z(D(px)) = U;_{ {bi}. Let by = 0,b, = 1.
Since f(t) is analytic in each (b;_1,b;) our proof of inequality (4.18.8) and
the equality assumption implies

k k
£ = xiat)Aixi, o(t) = > Nj(Ay).
j=1 j=1
Here x,(2),...,%n,(2) is a set of orthonormal eigenvectors of A(z) in

H(Q1)™ such that the eigenvector x;;(t) corresponds to to A;(t) for ¢ €
(bi—1,b;). Theorem 4.4.9 implies that U(t) := span (x;, (t),...,%;, (1))
is spanned by k orthonormal eigenvectors of A; corresponding to eigen-
values A1(41),...,A\x(A1). Hence A;U(t), A(t)U(t) C U(t). Therefore
AoU(t) € U(t). Fix tg € (bi—1,b1). Let Uy = U(t,). So Uy is an invari-
ant subspace of Ag, A;. Let A(z,U;) be the restriction of A(z) to U;. So
A(z,U;) can be viewed as a hermitian pencil in C[z]***. So its eigenvalues
7 (2), ... k() € H(Qq) are k analytic eigenvalues of A(z,U;). The proof
of Theorem 4.17.2 yields that there exists an R-symmetric domain Ql such
that y,(2),...,yk(z) € H(Ql)" N U; are orthonormal vectors of A(z,U;)
corresponding to

Y1(2), ..., (2). Furthermore p;;(t) = ~v;(t) for j = 1,...,k for t €
(bi—1,b1). By the construction v;(to) = X, (to) for j = 1,..., k. Hence
pii(t) = v5(t) = A, (t) for t € (by—1,br). Since all these function are con-
tinuous on [bj_1,b;] we deduce the equalities hold for ¢ € [b;_1,b;]. This
proves our claim on U,,...,U,.

Assume now that there are r k-dimensional subspaces U, ..., U, which
are invariant for Ag and A;. Let Ao(U;), A,(U;) be the restrictions of
Ap and A; to U; respectively. Denote by pq,;(t) > ... > ug(t) the k
eigenvalues of A(t,U;) for I = 1,...,7. We also assume that there exists
bo < by < ... < br_1 < b such that u;;(t) = X\;,(t) for t € [bi_1,b] for
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l=1,...,r. Observe first that
k

k k
i, (br) — Z Ai;(bi-1) = Zﬂj7l(bl) - Zﬂj,l(bl—l) =

1 j=1 j+1

J

k
tr A(by, Up) — tr A(by—y, Up) = (b — b)) tr Ay (Up) = (b = bia) > Aj(Ay).
Jj=1

Add the above equalities for [ =1,...,7 to deduce (4.18.8). O

Problems

1. Let Agp, Ay € C™*™ be normal matrices. Show that AgA; = A1 A if
and only if (4.18.2) holds. Hint: Use Corollary 3.10.7 to show that
commuting Ag, A; have a common eigenvector.

2. Let A(z) = Ay + zAs be a hermitian pencil. Show that A(z) does not
have a crossing point if and only if A; = a1[,. Hint: Show that if
A(z) does not have a crossing point then py(, z) splits in C[z]. Hence
A(z) has property L.

3. Let A(z) = A1 + zAz be a hermitian pencil. Let pi(a, z) € Cla, 2] be
defined as in Theorem 4.18.2.

(a) Let ¢ be a crossing point of A(z). Let 8;(z) be the multivalued
root of pr(a, z) in 0 < |z — ¢| < r(¢). Show that lim, ¢ 8;(z) =
Bi(¢), where B;(() is a corresponding root of pg(a, ().

(b) Suppose f;(¢) is a simple root of p(e, (). Show that S;(z) is
analytic in |z — (] < 7({).

(c) Give an example of a hermitian pencil with property L, where
each \;(t) is not analytic at least one point ¢; € R.

4. Prove the inequality (4.18.8) using Theorems 4.4.11 and 4.4.9.

4.19 Eigenvalues of sum of hermitian matri-
ces
Let V be an n-dimensional IPS over F = R,C. Recall that A(C) =

(A (C), ..., 2 (C)T for C € S(V). Clearly, for t > 0 we have the equal-
ity A;i(tC) = tA(C) for i = 1,...,n, i.e. each \;(C) is homogeneous for
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t > 0. Assume that A, B € S(V). An interesting and important question
is the relations between the eigenvalues of A, B and A + B. Some of these
relations we discussed in §4.4 and §4.8. Corollary (4.8.6) for a = % yields

(4.19.1) A(A+ B) < A(A) + X(B).
Equality holds if and only if the conditions of Corollary (4.8.6) hold.

Theorem 4.19.1 Let V be an IPS over F = R,C of dimension n.
Assume that A, B € S(V). Then TFAE:

1. MA+ B) — A(4) < X(B).

2. XA+ B) lies in the convex hull of the set {\(A)+ PX(B), P € P,},
where P, is the group of n X n permutation matrices.

3. Let k € [n—1]. Then for each k distinct integers i1,...,1i in [n] the
following inequality holds:

k
(4.19.2) A (A+B) <D N (A) + D M(B).

j=1
Furthermore, all the above statements hold.

Proof. 1.=2. Theorem 4.7.8 yields that A(A + B) — A(A) = FA(B)
for some doubly stochastic matrix F. Theorem 4.7.6 implies that F is a
convex combination of permutation matrices. Hence A(A + B) is in the
claimed convex set.

2.=3. 2 is equivalent to the statement that A(A + B) — A(4) is in
the convex hull of of the set spanned by PA(B),P € P,. Since the co-
ordinates of A(B) are arranged in a nonincreasing order it follows that
Zle(P)\(B))i‘7 < Zle Aj(B) for each P € P, for any k distinct integers
i1,...,1 in [n]. Hence (4.19.2) holds.

3.=1. Clearly, tr(A + B) = tr A + tr B. The assumption that (4.19.2)

for each k integers i1, ..., in [n] and for each k € [n — 1] is equivalent to
AA+ B) — A(4) < A(B).
Theorem (4.18.6) yields (4.19.2). Hence conditions 1. - 3. hold. O

Recall the definition of the p-norm in R™: |x|, := (Z?:l \gcj|p))57

where x = (z,,...,2,)" and p € [1,00]. Problem 1 and Theorem 4.7.10
yield:
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Corollary 4.19.2 Let V be an IPS over F = R,C of dimension n.
Assume that A,B € S(V). Let f : [AM(A — B),\ (A — B)] be a convex

function. Then

n

(4.19.3) D> F(A) = X(B) <D F(A (A= B)).
j=1

=1

In particular,

(419.4) S (A = MBI < ST N(A—B)P for eachp> 1,
j=1

j=1
(4.19.5)  max|A;(A4) — A;(B)| < max|\;(A— B)|.
j€ln] j€ln]
Equivalently:
(4.19.6) IAA) = AX(B)llp < |A(A=B)|, for eachp € [1,00].

For A € C™*™ denote by o(A) := (51(A), ..., Omin(m)) ' -
Theorem 4.19.3 Let A, B € C"™*™. Then

(4.19.7) o(A)—o(B) 20(A—- B),

(4.19.8) lo(A) —o(B)|l, < |lo(A—B)|, for eachp e [1,].

Proof. Let [ = min(m,n) and H(A) € H,1,, be defined by (4.11.1).
Recall that A(H(A)) = (01(4),...,01(A),0,...,0,—0y(A),...,—o1(A))".
(Note that if m = n then there are no zero coordinates in A(H(A)).) The-
orem 4.19.1 for H(A), H(B) yields A(H(A)) — A(H(B)) < A(H(A — B)).
This relation yields (4.19.7).

Observe next:

IA(H(A)) = AH(B))], = 27 |o(4) = #(B)]|,,

INH (A~ B), =27 |o(A — B)|l,.

Use Corollary 4.19.2 for H(A), H(B) to deduce (4.19.8). O

Problems

1. Let V be an IPS over F = R, C of dimension n. Assume that A, B €
S(V). Show

(a) A(A) — A(B) < A\(A - B).
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(b) A\j(A) —Xj(B) € M(A—B),\M(A—B)|forj=1,...,n.

(¢) Prove (4.19.5). Hint: Take the % power if the inequality (4.19.4)
and let p — oo.

2. Assume that A, B € C™*™. Show that (4.19.8) for p = oo is equiva-
lent to |0;(A) — 0;(B)| < 01(A—B) for i = 1,...,min(m,n).

4.20 Perturbation formulas for eigenvalues and
and eigenvectors of Hermitian pencils

Let B € H,. Denote by B € H,, the Moore-Penrose inverse of B. (See
§4.12.) That is, B is uniquely characterized by the condition that BfB =
BB is the projection on the subspace spanned by all eigenvectors of B
corresponding to the nonzero eigenvalues of B.

Theorem 4.20.1 Let A(z) = Ag + zA; € C[z]™*™ be a hermitian pen-
cil. Assume that the eigenvalue ag is a simple eigenvalue for Ag. Sup-
pose furthermore that Agx, = @oXo, X:Xo = 1. Let a(z) € H(Q) and
x(z) € H(£2,)™ be the analytic eigenvalue and the the corresponding ana-
lytic normalized eigenvector satisfying a(0) = ag as described in part 5 of
Theorem 4.18.2. Then a(z) and x(z) has power series:

oo

(4.20.1) a(z) = Z a;20, x(z)= Z 2Ix;.

§=0
It is possible to choose x(z) such that

a)p = X:A1XO7
Xy = (ao—[ - AD)TAGCH
(4.20.2) ag =x5A:x; = x2A; (aol — AO)TAIXO,
X, = (aod — Ay)T(Ay —a D)x, — (éx’l‘xl)xD
az =x5A,((ao] — AO)T)ZAlxo,

Proof. By replacing Ay, A1 with U*AgU,U* AU, where U € U,
we may assume that Ay is a diagonal matrix diag(ds, . .., d,), where d; = ag
and d; # ag for i > 1. Moreover, we can assume that x, = (1,0,...,0) .
Note that (agl — Ag)" = diag(0, (ag — d1)7%,..., (ag — d,,)~'). (We are
not going to use explicitly these assumptions, but the reader can see more
transparently our arguments using these assumptions.)
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The orthogonality condition x(z)*x(z) = 1 yields:
k
(4.20.3) Y xixp =0, keN
j=0

The equality A(z)x(z) = a(z)x(z) yields

k
(4.20.4) Aoxg + Ayxpy = axp_j, keN.

j=o

Since «(s) is real for a real s we deduce that a; € R. Consider the
equality (4.20.4) for k = 1. Multiply it by x} and use the equality x}A, =
aox; to deduce the well known equality a1 = x5 AyX,, which is the first
equality of (4.20.2). (See part 3 of Lemma 4.18.5 .) The equality (4.20.4)
for k =1 is equivalent to (agl — Ag)x, = A;X, — a:X,. Hence x, is of the
form

(4.20.5) x, = (apl — AO)T(AIXO —a,X,) +b,x0 = (ao] — A)TAIXO +b,X,,

for some b;. The orthogonality condition fx}x, = o implies that Rb; = 0.
So by = /—1¢; for some ¢; € R. Replace the eigenvector x(z) by

y(z) = eV x(2) = Yy,
j=o

Yo =X0, Y1 =Xy — V16 Xy = (aoI - A)T(Alxo - a1X0)~

Note that y(2)*y(z) = 0. Hence we can assume the second equality of
(4.20.2).

Multiply the equality (4.20.4) for k = 2 by x} and use x5 A, = a,x},x5x; =
o to obtain as = x*A,x,. This establishes the third equality of (4.20.2).
Rewrite the equality (4.20.4) for k = 2 as (ag/—Ag)x. = A, X, —a, X, —a2Xo.
Hence

(4.20.6) X, = (a0l — Ao)T(A, — a,I)x, + byX,.

Let c; = Sbhy. Replace x(z) by y(z) = e"V=¢*"x(2) to deduce that we
can assume that by, € R. Multiply the above equality by x} to deduce
that xfx, = b,. (4.20.3) for k = 2 yields 2Rx’x, + xIx, = 0. Hence
by = —ix/ x,. This establishes the fourth equality of (4.20.2).

Multiply the equality (4.20.4) for k = 3 by x to deduce

* * *
as = X5 A:1X, — a;X0Xs = X5 (A — a1 1)X,.
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Observe next that from the first equality in (4.20.2), x}(A4, — a,])x, = 0.
Also x%(aoI — A,)T = 0*. This establishes the last equality of (4.20.2). O

Note that if Ag, A; are real symmetric then x(¢) can be chosen to be in
R™ for all t € R. In this case x(¢) is determined up to +1. Hence if x, € R™
is an eigenvector of A satisfying x! x, = 1 then x(¢) is determined uniquely.
In particular, x,,x, are determined uniquely by (4.20.2).

Theorem 4.20.2 Let Ay € H,,,n > 2. Assume that ag is a simple
eigenvalue of Ao, with the corresponding eigenvector AXo = 0oXo, Xp5Xo = 1.
Suppose furthermore that |\ — ag] > r > 0 for any other eigenvalue A
of Ag. Let Ay € H,, A, # o, and denote by ||A;|| the lo norm of Aj,
i.e. the mazimal absolute value of the eigenvalues of Ay. Let a(z) be the
eigenvalue of A(z) = Ao + zA1, which is analytic in the neighborhood of R
and satisfymg the condition a(0) = ag. Let a1, as be given by (4.20.2). Fix
0<e< 2I|A I Then
Al Aq|P|sP

2
. . - < (r — 2¢]|AL]])?
(4.20.7) |a(s) — (ag + a1s + azs?)| < (r — 2¢||A4|])2

for all s € [—c¢, .

Proof. Let )\1(3) > An(8) be the eigenvalues of A(s),s € R. Note
that A1(0),...,A,(0) are the eigenvalues of Ag. Assume that X;(0) = a;.
Let p(s) = min(Ai—1 (5)—Ai(5), Ai(5)—Ais1 (5), where Ao(s) = 00, Ans1(s) =
—o00. Thus r < p( ). Let 1 > ... > B, be the eigenvalues of A;. Then
[|A1]] = max(|B1], |Bn]). (4.19.5) for A = A(s) and B = Ay yields

Aj(s) =X (O)f < sl [|Aull, 7 =1,...,m.

Hence

(4.20.8) p(s) = p(0) — 2[s|[[A1]| > 0 for s € (zﬁfl)u’ 2ﬁ£(1)1)|)'

In particular, \;(s) is a simple eigenvalue of A(s) in the above interval.
Assume that s is in the interval given in (4.20.8). It is straightforward to
show that

1 1
<

p(s) — p(0) = 2s| || Ax]]

(One can assume that A(s) is a diagonal matrix.)
Use the Taylor theorem with remainder to obtain the equality

(4.20.9) I(a(s)] = A(s)'ll =

1
(4.20.10)  af(s) — (ag + sa; + s2az) = 604(3) (t)s® for some t, |t| < |s|.
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Use Theorem 4.20.1 to deduce that

%“(3) (1) = xi()"((As — @i () (i ()] — A(t)N)* Auxi(t),

where x;(s) is an eigenvector of A(s) of length one corresponding to a;(s).
As o/(t) = x;(t)*A,x;(t) we deduce that |of(t)] < ||A1||. Hence ||4; —
o (t)I|] < 2||Aq||. Therefore

1 4]| A3
30001 <114 - D (@l - Aw) P4 < L]
Use the inequality (4.20.9) and the inequality r < p(0) to deduce the
theorem. O

4.21 Historical remarks

§4.1 and §4.2 are standard. Corollary 4.2.13 is Schur’s unitary triangula-
tion theorem [Schu09]. Theorem 4.2.15 is Lanczos method [Lanc50]. §4.3
is standard. A hermitian form is also called a sesquilinear form. §4.4
is well known. The maximal and minimal characterizations (4.4.2) are
called Rayleigh’s principle [Ray73]. The convoy principle, Theorem 4.4.2,
is stated in the paper by Pdlya and Schiffer [PS54]. It is a precise ver-
sion of Poincaré’s min-max characterization [Poi90]. The Courant-Fischer
principle, Theorem 4.4.4, is due to Fischer [Fis05] and Courant [Cou20].
Inequalities of Theorem 4.4.6 are called Weyl’s inequalities. Theorem 4.4.8
is Ky Fan’s inequality [Fan49]. Theorem 4.4.11 is Wielandt’s characteri-
zation [Wieb6]. §4.5 is standard. The results of §4.6 on convex sets and
functions are well known. §4.7 is well known. The notion of majorization
was in introduced formally by Hardy-Littlewood-Pélya [HLP52]. See also
[MOA11]. Theorem 4.7.6 is called Birkhoft’s theorem [Bir46]. Sometime it
is referred as Birkhoff-von Neumann theorem [vNe53]. Theorem 4.7.7 is due
to Katz [Katz70]. Theorems 4.7.8 and 4.7.10 are due to Hardy-Littlewood-
Pélya [HLP52]. The results of §4.8 are close to the results in [Fri84]. See
also [Dav57]. Theorem 4.9.1 goes back to von Neumann [vNe37]. Corollary
4.9.3 is a special case of Hoffman-Wielandt theorem [HW53]. §4.10 is a
classical subject. See [Ste93] for a historical survey. Most of the results of
§4.11 are well known to the experts. Theorem 4.11.8 goes back to von Neu-
mann [vNe37]. The notion of Moore-Penrose generalized inverse in §4.12
was introduced in [Mo020] and [Pen55]. Most of the results in §4.13 are
well known. Theorem 4.13.3 is due to Friedland-Torokhti [FriT07]. The
notion of CU R decomposition and some results about it discussed in §4.14
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appear in Goreinov-Tyrtyshnikov-Zamarashkin [GorTZ95]. The results of
§4.15 are taken from [Fri73]. The results of §4.16 are taken from Friedland-
Loewy [FrL76]. Theorem 4.16.3 is due to H.F. Bohnenblust (unpublished).
It is a generalization of [Cal64]. Most of the results of §4.17 are due to
Rellich [Rel37, Rel69]. Our exposition follows some results in [Kat80] and
[Wim86]. In §4.20 we combine Rellich’s theorem with our results in Chap-
ter 3, in particular §3.11. Theorem 4.18.6, which gives exact condition for
Wielandt’s inequality (4.18.8) [Wie56], is new. Other results in this section
should be known to the experts. The results of §4.19 are known to the
experts. Theorem 4.19.1 is due to Lidskii and Wielandt [Lid50, Wieb56].
Corollary 4.19.2 is due to Kato [Kat80]. A more general problem is to
characterize the eigenvalues of A + B, where A, B are hermitian matrices
with given eigenvalues. The characterization of such a set was conjectured
by Horn [Hor62]. This conjecture was settled by the works of Klyachko
[Kly98] and Knutson-Tao [KT99]. See Friedland [Fri00] for generalization
of Horn’s characterization for hermitian matrices and compact operators,
and improved conditions by Fulton [Ful00]. The contents of §4.20 should
be known to the experts.



Chapter 5

Elements of Multilinear
Algebra

5.1 Tensor product of two free modules

Let D be a domain. Recall that N is called a free finite dimensional module
over D if N has a finite basis e,,...,e,, i.e. dim N = n. Then N’ :=
Hom (N, D) is a free n-dimensional module. Furthermore we can identify
Hom (N, D) with N. (See Problem 1 below.)

Definition 5.1.1 Let M, N be two free finite dimensional modules over
an integral domain D. Then the tensor product M ® N is identified with
Hom (N’,M). Moreover, for each m € M;n € N we identify m @ n €
M ®p N with the linear transformation m®@mn : N’ — M given by f —
f(n)m for any f € N'.

Proposition 5.1.2 Let M,N be free modules over a domain D with

bases [dy, ..., dp], [€1,...,ey] respectively. Then M ®p N is a free module
with the basis d; ® ej,1=1,...,m,j =1,...,n. In particular
(5.1.1) dim M ® N = dim M dim N.

(See Problem 3.) For an abstract definition of M ®p N for any two
D-modules see Problem 16 below.

Intuitively, one views M ® N as a linear span of all elements of the form
m ® n, where m € M, n € N satisfy the following natural properties:

1. a(m®n) = (am) ®n=m® (an) for all a € D.

265
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2. (agm; + a,m,) ®n = a,(m, ®n) + a,(m, ® n) for all ay,as € D.

(Linearity in the first variable.)

3. m® (a,n, +a,n,) =a,(Mm®n,) +a(u®n,) for all a;,as € D.

(Linearity in the second variable.)

The element m®mn is called a decomposable tensor, or decomposable element
(vector), or rank one tensor.

Proposition 5.1.3 Let M,N be free modules over a domain D with

bases [dy, ..., dp], [€1,...,€,] respectively. Then any T € M®pN is given
by
1=m,j=n
(512) T = Z aijdi & €, A= [aij] e Dpmxn,
i=j=1

Let [uy,...,up],[Vi,...,vy] be different bases of M,IN respectively. As-
sume that T = Z:,:],Zl biju; ® v; and let B = [b;;] € D™*". Then B =
PAQT, where P and Q are the transition matrices from the bases [d,, . .., d,,]
to [uy,...uy) and [e,,...,e,] to [vy,...,v,].

(That is, [d,,...,dp] = [U1,...up]P, [e1,...,€p] = [Vi,...,V,]Q.)
See Problem 6 below.

Definition 5.1.4 Let M, N be free finite dimensional modules over a
domain D. Let 7 € M ®p N be given by (5.1.2). The rank of T, denoted by
rank 7, is the rank of the representation matriz A, i.e. rank 7 = rank A.
The tensor rank of T, denoted by Rank 7, is the minimal k such that T =
Zleml ®n; for somem; € M,n; € Nyl =1,... k.

The rank 7 is independent of the choice of bases in M and N. (See
Problem 7 below.) Since M ®p N has a basis consisting of decomposable
tensors it follows that

(5.1.3) Rank 7 < min(dim M, dim N) for any 7 € M ®p N.

See Problem 8 below.

Proposition 5.1.5 Let M, N be free finite dimensional modules over
a domain . Let 1 € M ®p N. Then rank 7 < Rank 7. If D is a Bezout
domain then rank 7 = Rank 7
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Proof. Assume that M, N have bases as in Proposition 5.1.3. Sup-
pose that (5.1.2) holds. Let 7 = Zle m; ® n;. Clearly, each m; @ n; =
ok, aijadi ® ej, where A; = [a;;];52, € D™ is rank one matrix.
Then A = ZLI A;. Tt is straightforward to show that rank A < k. This
shows that rank 7 < Rank 7.

Assume that D is a Bezout domain. Let P € GL(m,D) such that
PA = [b;;] € D"™*" is a Hermite normal form of A. In particular, the first
r := rank A rows of B are nonzero rows, and all other rows of B are zero
rows. Let [u,,...,u,] :=[d,,...,d;y]P~* be a basis in M. Proposition
5.1.3 yields that 7 = EZRJL b;ju; ®e;. Define n; = E;Zl bijej,l=1,...,r.
Then 7 = Z;Zl u; ® n;. Hence r > Rank 7, which implies that rank 7 =
Rank 7. O

Proposition 5.1.6 Let M;, N, be free finite dimensional modules over
D. Let T; : M; — N; be homomorphisms. Then there exists a unique
homomorphism on T : M, ® M, — N, ® N, such that T(m, ® m,) =
(Tym,) ® (T.m,) for all m, € M, , m, € M,. This homomorphism is
denoted by Ty @ Ts.

Suppose furthermore that W ., W, are free finite dimensional D-modules,
and P; : N; — W, i = 1,2 are homomorphisms. Then (P ®P)(T1 1) =
(PTh) @ (PoT3).

See Problem 9 below.

Since each homomorphism 7; : M; — N;,i = 1,2 is represented by a
matrix, one can reduce the definition of T7 ® T5 to the notion of tensor
product of two matrices A; € D™ *™1 Ay, € D"2*™2. This tensor product
is called the Kronecker product.

Definition 5.1.7 Let A = [a;;]; 2", € D™ B = [b;]07_, € DP9,

ij= ij=

Then A® B € D™P*™ 4s the following block matrix:

anB a2 B v a1nB

ang (IQQB agnB
(5.1.4) A® B := . . . .

am1B Gm, 2B eeo QmnB

In the rest of the section we discuss the symmetric and skew symmetric
tensor products of M ® M.
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Definition 5.1.8 Let M be a free finite dimensional module over D.
Denote M®? := M ® M. The submodule Sym*M C M®?, called a 2-
symmetric power of M, is spanned by tensors of the form sym?(m,n) :=
m®n+n®m for allm,n € M. sym?(m, n) = sym?(n, m) is called a 2-
symmetric product of m and n, or simply a symmetric product Any vector
7 € Sym*M is a called a 2-symmetric tensor, or simply a symmetric tensor.
The subspace /\2 M C M®2, called 2-exterior power of M, is spanned by
all tensors of the form mAn:=m®n—n®m, for allm,n e M. mAn =
—n Am is called the wedge product of m and n. Any vector T € /\2 M is
a called a 2-skew symmetric tensor, or simply a skew symmetric tensor.

Since M®2 can be identified with D™*™ it follows that Sym?(M) and
/\2 M can be identified with the submodules of symmetric and skew sym-
metric matrices respectively. See Problem 12. Observe next that 2m®n =
sym?(m,n) + m A n. Assume that 2 is a unit in D. Then M®? =
Sym?(M)@ A* M. Hence any tensor 7 € M®? can be decomposed uniquely
to asum 7 = T, 47, where 7, 7, € M®2 are symmetric and skew symmetric
tensors respectively. (See Problem 12 below.)

Proposition 5.1.9 Let M, N be a finite dimensional module over D.
Let T : Hom (M,N). Then

T®T:Sym’M — Sym°N, TeT: AM- AN,
See Problem 13 below.

Definition 5.1.10 Let M, N be finite dimensional modules over D. Let
T : Hom (M,N). Then T AT € Hom (A’ M, A’ N) is defined as the
restriction of T ® T to \> M.

Proposition 5.1.11 Let M, N be a finite dimensional module over D.
Let T : Hom (M,N). Then

1. Assume that [d,,...,dp] is a basis of M. Thend;Adj,1 <i<j<m
is a basis of N> M.

2. Assume that S : Hom (L, M). Then ST ANST = (SANS)(T AT).

Problems

1. Let N be a free module with a basis [e,,...,e,]. Show
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(a) N’ := Hom (N,D) is a free module with a basis [fi,...,f,],
where f;(e;) = d;;,4,7 =1,...,n.

(b) Show that (IN’) can be identified with N as follows. To each
n € N associate the following functional n : N’ — D defined by
n(f) = f(n) for each f € N’. Show that n is a linear functional
on N’ and any 7 € (N') is equal to a unique n.

2. Let F be a field and V be an n-dimensional subspace of V. Then
V' :=Hom (V,F) is called the dual space of V. Show

(a) (V') can be identified with V. Te. for each v € V, let v :
V’' — F be the linear functional given by v(f) = f(v). Then any
1 € (V') is of the form v for some v € V

(b) For X CV, FC V'denote by X1t :={feV': f(x) =0, Vx €
X})LFLt={veV: f(v) =0, Vf € F}. Then X+, F! are
subspaces of V',V respectively satisfying

(X*H)* =span (X), dim X* =n — dim span (X),
(FH)t =span (F), dim F* =n — dim span (F).

(¢) Let U,,..., Uy be k-subspaces of either V or V'. Then

k
(MUt =Y U, (DUt =N U7,
=1 =1
(d) Foreach bases {v,,va,...,v,}, {fi,...,£,} in V, V' respectively
there exists unique dual bases {g,,8.,...,8n},{U:,...,u,} in
V',V respectively such that g;(v;) = fi(u;) = 0;5, i,j =1,...,n.
(e) Let U C V,W C V' two m-dimensional subspaces. TFAE
i. UnW+t = {o}.
i. ULtNW = {o}.
iii. There exists bases {u,,...,un}, {fi,...,f,} in U W re-
spectively such that f;(u;) = d;5,4,5 =1,...,m.

3. Show Proposition 5.1.2.

4. Let U be the space of all polynomials in variable x of degree less than
m: p(z) = 27" a;x’ with coefficients in F. Let V be the space of
all polynomials in variable y of degree less than n: q(y) = Z;”:—Ol by’
with coefficients in F. Then U ® V is identified with the vector
space of all polynomials in two variables z,y of the form f(z,y) =
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11.
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Zﬁgig ~!¢ijxiyd with the coefficients in F. The decomposable ele-

ments are p(x)q(y),p € U,q € V. (The tensor products of this kind
are basic tools for solving PDE (partial differential equations), using
separation of variables, i.e. Fourier series.)

Let M = D™, N = D", Show

(a) M®N can be identified with the space of m x n matrices D"*™.
More precisely each A € D™*"™ is viewed as a homomorphism
A : D" — D™, where D™ is identified with M’.

(b) The decomposable tensor m ® n is identified with mn”. (Note

mn? is indeed rank one matrix.)

Prove Proposition 5.1.3.

Show that rank 7 defined in Definition 5.1.4 is independent of the
choice of bases in M and N.

Let the assumptions of Proposition 5.1.3 holds. Show that the equal-
ities
- Sae
=1 J

yield (5.1.3).

bijej) = » (> bidi) ®e;
1 Jj=

= 1 i=1

Prove Proposition 5.1.6.

Let the assumptions of Proposition 5.1.2 hold. Arrange the basis
of M ®p N in the lexicographical order: d, ® e,,...,d; ® e,,d, ®
e,...,.d;®e,,...,d,, Re,,...,d,, ®e,. We denote this basis by
dy,...,dp]®[e,..., e

Let M;, N; be free modules with the bases [d, 1, ..., dm, 1], [€1,05- - -, €nyi]
for [ = 1,2. Let T; : M; — N; be a homomorphism represented by
A; € D™*™ in the above bases for [ = 1,2. Show that T} ® T5

is represented by the matrices A; ® As with respect to the bases
diayeesdm, 1]®€11,. - en, 1]and [dy o, ..., di, 2]®[€1,2y -+ €0y 2]

Let A € D™ "™ B € DP*4. Show

(a) If m = n and A is upper triangular, then A ® B is block upper
triangular.

(b) If m =n,p = g and A and B are upper triangular, then A ® B
is upper triangular.
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(c) If A and B are diagonal then A ® B is diagonal. In particular
Iy @ I, = Lnp.

(d) Let C € D™ D € D™ P, Then (C®D)(A®B) = (CA)®(DB).

(e) A € GL(m,D),B € GL(p,D) then A ® B € GL(mp,D) and
(A B)"'=A"1t® B!

(f) rank A®B = rank A rank B. (Use the fact that over the quotient
field F of D, A and B are equivalent to diagonal matrices.)

(g) Let m =n,p = q. Show that det A ® B = det A det B.

12. Let M be a free module with a basis [d,, ..., d,,]. Identify M®? with
D™*™ . Show that Sym*M is identified with S,,(D) C D™*™  the
module of m xm symmetric matrices: AT = A, and A\®> M is identified

with AS(m, D), the module of m x m skew symmetric matrices: A7 =
—A.

Assume that 2 is a unit in D. Show the decomposition 7 € M®?
as sum of symmetric and skew symmetric tensor is equivalent to the
following fact: Any matrix A € D™*™ is of the form A = 271(A4 +
AT) +271(A — AT), which is the unique decomposition of a sum of
symmetric and skew symmetric matrices.

13. (a) Prove Proposition 5.1.9.

(b) Show that (Sym?M,Sym?N) and (A°>M, A>N) are the only
invariant pairs of submodules of T®? for all choices of T €
Hom (M, N).

14. Prove Proposition 5.1.11.

15. Let M be a module over the domain D. Let X C M be a subset
of M. Then span X is the set of all finite linear combinations of the
elements from X.

(a) Show that span X is a submodule of M.
(b) span X is called the submodule generated by X.
16. Let X be a nonempty set. For a given domain D denote by Mp(X)

the free D-module generated by X. That is, Mp(X) has a set of
elements e(x),x € X with the following properties:

(a) For each finite nonempty subset Y C X, the set of vectors
e(y),y € Y are linearly independent.

(b) Mp(X) is generated by {e(z),z € X}.
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Let M, N be two modules over an integral domain . Let P be the
free module generated by M x N := {(m,n): m € M,n € N}. Let
Q C P generated by the elements of the form

e((am, + bm,, cn, + dn,)) — ace((m,,n,)) —

ade((m,,n,)) — bee((m,, n,) — bde(m,, n,)),

for all a,b,c,d € D and m,, m, € M,n,,n, € N Then M ®p N :=
P/Q is called the tensor product of M and N over D.

Show that if M, N are two free finite dimensional modules then the
above definition of M ®p N is isomorphic to Definition 5.1.1.

5.2 Tensor product of several free modules

Definition 5.2.1 Let M; be free finite dimensional modules over a do-
main D fori=1,....k, where k > 2. Then M := @F_ M; =M, @ M, ®
... ® My is the tensor product space of M,,..., Mg, and is defined as
follows. For k = 2 M, ® M, is defined in Definition 5.1.1. For k > 3
®F_ M, is defined recursively as (®i:11Mi) ® Mg.

Note that from now on we suppress in our notation the dependence on
D. When we need to emphasize D we use the notation M, Qp ... ®p M.
M is spanned by the decomposable tensors

k .
@M i=m, M, ®...0my, m; € M;,i=1,...,k,

also called rank one tensors. One has the basic identity:

am, ®m, ®...0mg) =(am,)@m, ®...  my =
m,Q(@m,)®..0my=...=m, @m, ®...Q (amyg).

Furthermore, the above decomposable tensor is multilinear in each variable.
Clearly

(5.21)  ®F  my,;, ji=1,...,myi=1,...,kis abasis of @ M,

ifm, ;,...,m,,, ; is a basis of M; for i = 1,...,k.
Hence
k
(5.2.2) dim ®F , M; = Hdim M,.

=1
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Thus
m1,M2,...,Mj
— k k
(523) a = E (o ®i—1 mj, ;, for any o ®i:1Mi-
J1=j2="=jr=1
Denote

(5.2.4)  Dmxexme.— @k DM for ke Nand m; € Nji=1,...,k.

My X.o. XM 3 : o . MM ) )
A e D™ is given as A := [ajlmjk]jlz’m’:jk:l, where aj,.. j, €
D,j;=1,....,my,i =1,.... k. Ais called a k — tensor. So 1-tensor is a

vector and 2-tensor is a matrix.

In particular ®f:1MZ- is isomorphic to D™ Furthermore, af-
ter choosing a basis of ®¥_;M; of the form (5.2.1) we correspond to each
7 € ®F M, of the form (5.2.3) the tensor A = [a;, ;"o _ €

Ji==jre=1

XMy

ID)mIX...ka

Proposition 5.2.2 Let M;,N;,i = 1,...,k be free finite dimensional
modules over . Let T; : M; — N;,2 = 1,...,k be homomorphisms. Then
there exists a unique homomorphism on T : @F_M; — ®F_ N; such that
T(®F_m;) = @F_ (Tym;) for all m; € M;,i = 1,...,k. This homomor-
phism is denoted by @F_,T;.

Suppose furthermore that Wi, 1 = 1,...,k are free finite dimensional
D-modules, and P; : N; — W;,i = 1,...,k are homomorphisms. Then
(@F_1 P) (@ Th) = ®f_, (PT;).

See Problem 3 below.

Since each homomorphism T; : M; — N;,7 = 1,...,k is represented
by a matrix, one can reduce the definition of ®*_,T; to the notion of the
tensor product of k matrices.

Definition 5.2.3 Let A; = [aljyimlji:f € Dmixni 4 =1,...,k. Then
the Kronecker product A := ®@F_|A; € DMi-meXM-k s the matriz with
the entries

k

A =100 00) Gredi) b Ol Greii) 7= Halijiv'“
=1

fOTli: 1,...,mi, ji = 1,...,7’Li, Z:L,k'

where the indices (I1,...,lx),l; =1,...,m;,i =1,...,k, and the indices
(J1s--3dk), Ji =1,...,ny, i = 1,..., k are arranged in lezicographical order.
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It is straightforward to show that the above tensor product of matrices
can be recursively defined by the Kronecker product of two matrices as
defined in Definition 5.1.7. See Problem 4 below. The tensor products of k
matrices have similar properties as in the case k = 2. See Problem 5 below.

We now consider the k-symmetric and k-exterior products of a free finite
dimensional module M. In view of the previous section we may assume
that k& > 3. Recall that ¥, the permutation group of k elements of [k] and
sign o € {1, —1} is the sign of o € 3.

Definition 5.2.4 Let M be a free finite dimensional module over D and
2 < k € N. Denote M®* .= @F_ M, where M; =M fori=1,... k. The
submodule SymkM C M®* called a k-symmetric power of M, is spanned
by tensors of the form

(5.2.5) sym®(m,,...,my) := Z ®F m, ),

oeXy
for all m; € M,i = 1,.... k. sym*(m,,...,my) is called a k-symmetric
product of m,,...,my, or simply a symmetric product. Any tensor T €

SymkM 18 a called a k-symmetric tensor, or simply a symmetric tensor.
The subspace /\k M C M®F called the k-exterior power of M, is spanned
by all tensors of the form

(5.2.6) AP m;=m, A...Amy = Z sign 0 @, m, ;)
oeXy,

for all m; € M,i = 1,...,k. A" m; is called the k- wedge product of
m,,...,mg. Any vector 7 € /\k M is a called a k-skew symmetric tensor,
or simply a skew symmetric tensor.

Proposition 5.2.5 Let M,N be free finite dimensional modules over
D. LetT € Hom (M,N). Fork € N et T®* : M®* - N®* pe T ® ... T.
—_——

k
Then
k k

T . Sym*M — Sym*N, 7%k . /\M — /\N.
See Problem 6 below.

Definition 5.2.6 Let M, N be free finite dimensional modules over D.
Let T € Hom (M,N). Then A*T € Hom (A" M, A" N) is defined as the
restriction of T®* to \* M.

Proposition 5.2.7 Let M, N be free finite dimensional modules over
D. Let T € Hom (M, N). Then
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1. Let [d,,...,dp],[€1,... €] be bases in M,IN respectively. Assume
that T' is represented by the matriz A = [a;;] € D™ in these bases.
Then AFT represented in the bases

/\ledji, 1<j<...<jp<m, Al e, 1<, <...<lp <n.

by the matriz NFA € ID)(Z)X(T), where the entry (1, ..., k), (J1,- -+, Jk))
of Nk A is the the k x k minor of A obtained by deleting all rows and
columns of A except the (ly,...,l;) rows and (j1,...,jr) columns.

2. Let L be a free finite dimensional module and assume that S : Hom (L, M).
Then N¥(T'S) = (AFT)(ARS).

See Problem 6 below.

Remark 5.2.8 In the classical matriz books such as [Gan59] and [MaM64]
the matriz AF A is called the kth compound matriz or kth adjugate of A.

The following proposition is proved is proven straightforward:

Proposition 5.2.9 Let M,,...,M;,M := @ M, be free finite di-
mensional modules over D with bases given in (5.2.1). Let[n, ;,..., Ny, ;| =
m, ,,...,my,, |7, ", T; = [tij;] € GL(m;,D) be another basis of M; for
i=1,...,m;. Let « € M be given by (5.2.3). Then

(5.2.7)a = Z b, 1, ®f_y ny, i, where

M1,..e, my k

bh _____ I, = Z (Htlijiyi)ajl-njk for li:].,...7mi,i: 1,.‘.,147.

G1yein=1 i=1
That is if A= [aj, .|, B:=[bi, 1] then B= (®F_T;)A.

Definition 5.2.10 Let M,, ..., My be free finite dimensional modules
over a domain D. Let 7 € ®F_M,. The tensor rank of T, denoted by

Rank 7, is the minimal R such that T = Zf;l ®§:1ml,i for some my;; €
M,l=1,...,Ri=1,...,k.

We shall see that for £ > 3 it is hard to determine the tensor rank of a
general k-tensor, even in the case D = C.

Let M be a D-module, and let M’ = Hom(M, D) be the dual module
of M. For m € M, g € M’ we denote (m,g) := g(m). Let

m,,....mpyeM, g, ....,grcM.
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It is straightforward to show

(m, Ao Amg, g AL AgE) :k‘!<®f:1mi,g1/\.../\gk> =
<m15g1> <m17gk>
(5.2.8) kldet : :

(Mg .. (me g

See Problem 9b below.
Assume that M is an m-dimensional free module over D, with the basis

d,,...,d;,. Recall that M’ is an m-dimensional free module with the dual
basis £,,... £,
(529) <d2,fj> :fj(dl‘) :(Sij; i,j =1,...,Mm.

Let M,,..., My, M := ®@*_ M, be free finite dimensional modules over
D with bases given in (5.2.1). Let f, ;,...,f,, ; be the dual basis of M for

i=1,...,k. Then M’ is isomorphic to ®*_; M/, where we assume that
(5.2.10)
k
<®§:1mi7®']§:1gi> = H<m’ugz>7 m; € M“gz S Ml, 1= 1,.. .,]{7.

In particular, M’ has the dual basis ®*_,f;, ;,ji = 1,...,m;,i=1,...,k.

Assume that d,,...,d,, is a basis of M and f,,...,f,, is the dual basis
of M. Note that A" M’ is a submodule of (A" M)’. See Problem 9¢ below.
Note that if Q C D then A* M’ = (A" M)".

Let N be a module over D of dimension n, as defined in Problem 1.6.2.
Assume that M C N is a submodule of dimension m < n. For any k € N
we view A"M as a submodule of A*"N. A°M := 1, A" M is a one
dimensional module, while for k£ > m it is agreed that /\k M is a trivial
subspace consisting of zero vector. (See Problem 11 below.)

Let O C N be another submodule of N. Then (A’ M) A(A?O) is a
submodule of AP*(M + 0) of AP*? N, spanned by (m, A...Am,) A (0, A
...N0g), where m,,...,m, € U,0,,...,0, € O for p,g > 1. Ilf p=0 or
q = 0 then (A" M) A(A? O) is equal to A?O or A” M respectively.

In in the next sections we need the following lemma

Lemma 5.2.11 Let V be an n-dimensional vector space over F. As-
sume that 0 < p1,p2, 1 < q1,q2,k == p1 + ¢ = p2 + g2 < n. Suppose that
U,,U,, W, , W, are subspaces of V such that dim U; = p;,dim W; > ¢;
fori=1,2 and U, "W, =U,N'W, ={0}. Then

(5.211) (AT ANAW) (AT AAW,) # {0}
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if and only if the following condition holds. There exists a subspace V, C'V
of dimension k at such that

(5.2.12) U, cv,,U,cV,, V,C(U,+W,), V, C(U,+W,).

Proof. Assume first that (5.2.11) holds. Note that

P1 q1 k P2 q= k
ATIAAW) S AU +W), (AU) AAW.) € \(U, +W.).

Let V, := (U, + W,) N (U, + W,). Problem 11a below yields that

P1 q1 D2 q= k
(5.2.13) (AU AAW) N (AU AAW) S A Ve

The assumption (5.2.11) implies that dim V, > k. We now show that U, C
V.. Assume to the contrary that dim U, NV, = ¢ < p,. Choose a basis
Vi,...,Vpsuchthat in Vsuchthat v,,...,v, and v,,..., vy, Vvp 41,...,V,
are bases of U, and V, respectively. Observe that the span of vectors
Vi A AV AV v, for pp <y <. <Uig, < n ocontain the subspace

(AP* U,) A(A” W,). On the other hand the subspace A"V, has a basis
formed by the exterior products of k vectors out of v,,..., vy, vp 11,..., V.
Hence ( (AU, )A (A® W, ) )n A"V, = {0}, which contradicts
(5.2.11-5.2.13). So U, C V,. Similarly U, C V,.

Next we claim that dim (U, 4+ U,) < k. Assume to the contrary that
dim (U, +U,) =5 > k. Let u,,...,u, be a basis of V, such that

Uy,...,Up, and Uy, ..., Up, 4p.—j,Up, £1,---,U;j

1

are bases of U, and U, respectively. Then (A" U, JA (A" W, ) is
spanned by (";17’ 1) linearly independent vectors u;, A...u;,, where 1 <i; <
. <ig<mnand{l,...,p1} C {i1,..., 4 }. Similarly, (A" U, ) A\ (A® W.,)
is spanned by (" _F?) linearly independent vectors uj, A ...uj;,, where
1< <...<jp <nand {17...,])1 +p2—j,p1+1,...7j} C {il,...,ik}.
Since j > k it follows that these two subset of vectors of the full set of the
basis of A"V do not have any common vector, which contradicts (5.2.11).
So dim (U, +U,) < k. Choose V, any k dimensional subspace of V, which
contains U, + U,.

Vice versa, suppose that V, is a k-dimensional subspace of V satisfying
(5.2.12). So /\k V, is a one dimensional subspace which is contained in
(A" U; )N (A" W, ) for i = 1,2. Hence (5.2.11) holds.

O
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Problems

1. Let M,,..., My, N be free finite dimensional modules over D. A
map f : M, x ... x My — N is called multilinear, if by fixing all
variables m,,...,m;_,,m;,,,...,my, the map f is linear on M,
for i = 1,...,k. Show that ®%_,M; is determined uniquely by the
following universal lifting property: There exists a unique multilin-
ear F': M, x ... x My, — ®¥_ M, such that each multilinear map
f:M; x...xMj — N can be lifted to a linear map fe ®F M; - N
satisfying f = fo F.

2. Let M,, ..., Mg be free finite dimensional modules over D. Show that
for any o € ¥ ®f:1MU(Z-) is isomorphic to ®f:1Mi.

3. Prove Proposition 5.2.2.

4. Show

(a)
(b)

Let A € D™*™ and B € DP*9. Then the definitions of A ® B
given by Definitions 5.1.7 and 5.2.3 coincide.

Let the assumptions of Definition 5.2.3 hold. Assume that k& >
3. Then the recursive definition of ®f=1Ai = (®f;11Ai) ® Ap
coincides with the definition of ®¥_; A; given in Definition 5.2.3.

5. Let A; e DX j=1,....k > 3. Show

(a)
(b)

(h)

k
@1 (aidi) = ([Ti2) ai) @y Ai
(@, 4i)T = @, AT
If m; = n; and A; is upper triangular for i+ = 1,...,k then
®k_| A; is upper triangular.

If Ay,..., Ay are diagonal matrices then ®F_; A; is a diagonal
matrix. In particular ®§:1Imi =T, ..m,-

Let B; € Dlixmi,i =1,..., k. Then (®7{C:1BZ)(®,]L€:1A1) = ®$:1(BZAZ)
A; € GL(m;,D),i = 1,...,k then ®*_, A, € GL(m, ...m;,D)

and (@f_,4;) " = ®f, A7

rank ®K ;A= Hi;l rank A;.

k
Hj:1 mj

For m; = ni,i = 1, ey k, det ®§€:1 Az = H;C:l (det Al) i

6. Prove Proposition 5.2.7.
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7. (a) Let A € D™*" B € D"*P. Show that AAB = AFA AF B for
any k € [1, min(m,n,p)] NN.

(b) Let A € D"*™. Then AFA is upper triangular, lower triangular,
or diagonal if A is upper triangular, lower triangular, or diagonal
respectively.

(d) If A € GL(n,D) then A*A € GL((}),D) and (A*A) =1 = AFA™L,

8. Let F be an algebraically closed field. Recall that over an algebraically
closed A € F™"*" is similar to an upper triangular matrix.

(a) Let A; € F™*"i for ¢ = 1,...,k. Show that there exists T; €
GL(n;,F) such that (®F_, T;)(®F_; A;)(®F_,T;) =" is an un upper
triangular matrix. Furthermore, let A;;,..., Ay, ; be the eigen-
values of A;, counted with their multiplicities. Then Hle Njii
for j; = 1,...,n;,4 = 1,...,k are the eigenvalues of ®F_,A;
counted with their multiplicities.

(b) Let A € F™*™ and assume that Aj,...,\, are the eigenvalues
of A counted with their multiplicities. Show that Hle Aj,; for
1 <ji1 <...<jp <n are all the eigenvalues of A*A counted
with their multiplicites.

9. Let M be a finitely generated module over D.

(a) Let m,,...,my € M. Show that for any o € ¥ m,,) A... A
mg () = sign om, A ... Amy. In particular, if m; = Zj# a;m;
then m, A... Amy; = 0.

(b) Prove the equality (5.2.8).

(¢) Assume that d,,...,d,, is a basis of M and f,,...,f,, is a dual
basis of M’. Show that %fl AN ANf 1 <i, <. .<ipg<m
can be viewed as a basis for (A" M)’ for k € [1,m].

10. Let M be an m-dimensional module over D as defined in Problem
1.6.2. Show

(a) A" M is a 1-dimensional module over D.
(b) A"V is a zero module over D for k > m.
11. (a) Let V be an finite dimensional vector space over F and assume

that U, W are subspaces of V. Show that A"UN A*"W =
AN(UNWwW).
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Hint: Choose a basis v,,...,v, in V satisfying the following
property. vi,..., vy and Vi, ..., V), Vi, ... Vigp— are bases
for U and W respectively. Recall that v;, A... A v, ,1 <14, <
... <1 < nform a basis in /\k V. Observe next that bases of U
and W are of the form of exterior, (wedge), products of k vectors
from v,,..., vy and vy, ..., Vi, Vipg1, - . . Vipyp— Tespectively.

(b) Assume that V is a an n-dimensional module of D,. Suppose
furthermore that U, W are finitely generated submodules of V.
Show that A" UNnA"W = AF(UnwW).

12. Let V be an n-dimensional vector space over F and UC V,W C V'
be m-dimensional subspaces. Show

(a) Let {u,,...,un},{f,,...,f} be bases of U, W respectively.
Then the vanishing of the determinant det [(u;, f;)]7";_, is in-
dependent of the choice of bases in U, W.

(b) Let F be a field of infinite characteristic. TFAE
i. dim Ut N'W > o.
ii. dim UNW+ > o.
iii. AU C (AT W)L
iv. "W c (AN"TTU)L
v. For any bases {u,,...,un},{f,,...,fn} of U ‘W respec-
tively (u, A... Ay, B AL AEL) = 0.

Hint: If dim UXN'W = o use Problem 2(e). If dim Ut*NW > o
choose at least one vector of a basis in W to be in UL N'W and
use (5.2.8).

5.3 Sparse bases of subspaces
Definition 5.3.1 1. For0 # x € F" denote span (x)* := span (x)\{0}.

2. The support of X = (z,,...,2,) € F" is defined as supp (x) = {i €
{1,...,n}: z; #o}.

3. For a nonzero subspace U C F", a nonzero vector x € U 1is called
elementary if for every 0 #y € U the condition supp (y) C supp (x)
implies supp (y) = supp (x). span (x)* is called an elementary class,
in U, if x € U is elementary.

4. Denote by £(U) the union of all elementary classes in U.
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5. A basis in {u,,...,un} in U is called sparse if u,,...,u,, are ele-
mentary.

Proposition 5.3.2 Let U be a subspace of F" of dimension m € [n].
Then

1. x € U is elementary if and only if for each 0 #y € U the condition
supp (x) C supp (x) implies that y € span (x)*.

2. £(U) consists of a finite number of elementary classes.
3. span (£(U)) =U.

4. For each subset I of {1,...,n} of cardinality m — 1 there exists an el-
ementary x € U such that supp (x)¢ := {1,...,n}\supp (x) contains
1.

See Problem 1 below for proof.

Definition 5.3.3 Let F be a field of 0 characteristic.

1. A = [a;;] € F**™ is called generic if all the entries of A are alge-
braically independent over Q, i.e. there is no nontrivial polynomial p
in kn variable with integer coefficients such that p(aiy,...,a,) = 0.

2. A is called nondegenerate if all min(k,n) minors of A are nonzero.

3. An 1 < m-dimensional subspace U C F" is called nondegenerate if
for J C {1,...,n} of cardinality n —m + 1 there exists a unique
elementary set span x* such that J = supp (x).

Lemma 5.3.4 Let A € F¥*" 1 <k <n be of rank k. TFAE:
1. A is nondegenerate.

2. The row space of A, (viewed as a column space of A" ), is nondegen-
erate.

8. The null space of A is nondegenerate.

Proof. Consider first the column space of AT denoted by U C F”.
Recall that any vector in U is of the form x = ATy for some y € F*. Let
I C{1,...,n} be aset of cardinality k— 1. Let B = (AT)[I,:] € FF=1xk be
a submatrix of AT with the rows indexed by the set I. The condition that
supp (x) C I€ is equivalent to the condition By = 0. Since rank B <k —1,
there exists 0 # x € U such that supp (x) C I°. Let d be defined as in
Problem 3 below.
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Assume that rank B < k — 1. Then d = 0, (see Problem 3(b) below).
Furthermore, it is straightforward to show that for each 7 € I¢ there exists
a nonzero x € U such that supp (x) C (I U {j})° So det A[;,IU{j}] =0
and A is not degenerate.

Suppose that rank B = k — 1, i.e. d # 0. Then for any nonzero
x € U,supp (x) C I is in span (ATd)*. Let j € I°. Expand det A[:
,TU{j} by the column j to deduce that (A'd); = det A[:, TU{j}]. Thus
supp (x) = I¢ if and only det A[:,T U {j}] # 0 for each j € I°. These
arguments show the equivalence of 7 and 2.

The equivalence of 1 and 8 are shown in a similar way and are discussed
in Problem 4 below.

O

For a finite set J denote #J the cardinality of J.

Definition 5.3.5 Let J = {J1,...,Ji} be t subsets of [n], each of car-
dinality m — 1. Then J satisfies the m-intersection property provided that

(5.3.1) #Niep Ji <m —#P for all ) #£ P C [t].

It is known that for given a set J one can check efficiently, i.e. in poly-
nomial time, whether [J satisfies the m-intersection property. See Problems
5 - 7 below.

The aim of this section is to prove the following theorem.

Theorem 5.3.6 Let F be a field of 0 characteristic and assume that
A € FF*" s generic over Q.

1. Let T ={I,...,Is} denote the collection of s < k subsets of [n] each
of cardinality n — k+ 1. Then the elementary vectors x(I,), ..., x(Is)
in the row space of A with supports I, ..., I, are linearly independent
if and only if T' .= {I¢,... I}, consisting of the complements of the
supports, have the k-intersection property.

2. Let J ={J1,...,Ji} denote the collection of t < n — k subsets of [n]
each of cardinality k+1. Then the elementary vectorsy(J,),...,y(J¢)
in the null space of A with supports Jy, ..., Jy are linearly independent
if and only if J' := {J§, ..., Jf}, consisting of the complements of the
supports, have the n — k-intersection property.

The proof of this theorem needs a number of auxiliary results.

Lemma 5.3.7 Let A € F*¥*" be nondegenerate.
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1. Let T ={I,...,Is} denote the collection of s < k subsets of [n] each
of cardinality n —k+ 1. Then the elementary vectors x(I,), ..., x(Is)
in the row space of A with supports I, ..., 1, are linearly independent
if and only if the k x s submatriz of N*~1 A determined by its columns
indezed by I, ..., IS has rank s.

2. Let by,...,b,_x € R™ be a basis in the null space of A and denote
by BT € F**("=K) the matriz whose columns are by,... by_j. Let
J ={J1,...,Jit} denote the collection of t < n—k subsets of [n] each
of cardinality k + 1. Then the elementary vectors y(J,),...,y(J;) in
the null space of A with supports Jyi,...,J; are linearly independent
if and only if the (n — k — 1) x t matriz A""*~1B determined by its
columns indexed by Ji,...,J7 has rank t.

See Problems 8-9 below for the proof of the lemma.

Corollary 5.3.8 et A € F¥*" be nondegenerate.

1. Let T ={I,..., I} denote the collection of k subsets of [n] each of
cardinality n —k+1. Then the elementary vectors x(1,),...,x(Is) in
the row space of A with supports I, ..., I are not linearly independent
if and only if the determinant of the full row kx k submatriz of NF~1X
determined by its columns indexed by I, ..., If is identically zero for
any X € Fkxn

2. Letb,,...,b,_x € R™ be a basis in the null space of A and denote by
BT € F**("=k) the matriz whose columns are b,, ..., b,_p. Let J =
{J1,...,Ji} denote the collection of t < n — k subsets of [n] each of
cardinality k + 1. Then the elementary vectors y(J.),...,y(Jn—k) in

the null space of A with supports Jy, ..., Jo_i are linearly independent
if and only if the determinant of the full row (n—k—1)x(n—k—1) sub-
matriz A"K=YY " determined by its columns indexed by J¢,. .., JS

is identically zero for any Y € Fn—k)xn,

(One may use Problem 10 below to show part 2 of the above Corollary.)

Definition 5.3.9 Let V be an n-dimensional vector space over F. Let
U,,...,U; C V bet subspaces of dimension m — 1.. Then {U,,..., U}
satisfies the dimension m-intersection property provided that

(5.3.2) dim Nep U; <m — #P for all ) # P C [t].

Theorem 5.3.6 follows from the following theorem.
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Theorem 5.3.10 Let V be an n-dimensional vector space over a field
F of 0 characteristic, and where n > 2. Let 2 < m € [n] and assume
that U,,...,U,, € Gr(m — 1, V’). Let W,,,(U,,...,U,,) C Gr(m,V) be
the variety of all subspaces X € Gr(m, V) such that the one dimensional
subspace Y = N™ (A" X) € @™~V s orthogonal on the subspace
W o= (A" TTUDAN" U A AN Up) € @IV of di-
mension one at most. Then W,,(U,,...,Up,) is a strict subvariety of
Gr(m, V) if and only if U,,..., U, satisfy the dimension m-intersection
property.

Proof. Since each U; is m—1 dimensional we assume that /\mf1 U, =

span (w;) for some w; € A" " U; fori =1,...,m. Then W = span (w, A
...AWy,). Choose a basis x,,...,X,, in X. Let y; be the wedge product of
m — 1 vectors from {x,,...,x, }\{x;} fori=1,....,m. Theny,,...,ym

are linearly independent and Y = span (y, A ... Ayy). The condition that
Y 1 W,ie. Y1NW is a nontrivial subspace, is equivalent to the condition

(5.3.3) ViAo AYm, Wi A AWy) = mldet ((yi, wi))i

ij=1 = O

See Problem 5.2.12. Since F has 0 characteristic, the condition (5.3.3) is
equivalent to the vanishing of the determinant in the above formula. We
will use the formula (5.2.8) for each (y;, w;).

Assume first that U,, ..., U,, do not satisfy the dimension intersection
property. By interchanging the order of U,,...,U,, if necessary, we may
assume that there exists 2 < p < m such that Z := ﬂ?ZIUj has dimension
m —p+ 1 at least. Let Z, C Z be a subspace of dimension m — p + 1.
Then dm X NZ: >m—(m—p+1) =p—1. Let F C XNZL bea
subspace of dimension p — 1. Assume that x,,...,X,, is a basis of X such
that x,,...,x,_, is a basis of F. So X; C F for i =p,...,m. Hence

X;NU; 2 X;NZ* 2 X;NZy DFNZy # {0} fori=p,....,m, j=1,...,p.

Thus (y;,w;) =ofori=p,...,m, j=1,...,p. See Problem 5.2.12. Hence
any p x p submatrix [(y;, w;)]{";_,, with the set of columns (p), must have
a a zero row. Expand det [(y;, w;)]{";_, by the columns (p) to deduce that
this determinant is zero. Hence W,,,(U,,...,U,,) = Gr(m, V).

We now show by induction on m that if U,,..., U,, € Gr(m—1, V') sat-
isfy the dimension m-intersection property then there exists X € Gr(m, V)
such that dim Y+ N'W = o, for each n = m,m + 1,.... Assume that
m = 2. As dim (U, NU,) = o we deduce that dim (U, + U,) = 2. Let
U; = span (w;),¢ = 1,2. Then {u,,u,} is a basis in Z = span (u,, u,).
Hence Z' is a subspace of V of dimension n — 2. Thus there exists a
subspace X € Gr(2, V) such that dim X N Z+ = o. Note that A" ' X =
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X,/\m_1 U, = U;,i = 1,2. Let x,,x, be a basis in X. The negation of
the condition (5.3.3) is equivalent to (x, A X,,u; Au,) # 0. Use Problems
5.1.2(e) and 5.2.12 to deduce this negation.

Assume the induction hypothesis, that is, for 2 < [ < n and any [
dimensional subspaces ﬂl, e ,le C V' satisfying the [-dimensional inter-
section property there exists X € Gr(1, V) such that dim YINW =0
Let m =1+ 1 and assume that U,, ..., U,, satisfy the m-dimensional in-
tersection property. Let P := {P C (m — 1) : dim Nep U; = m — #P}.
Note that {i} € P for each ¢ € (m — 1). The m-intersection property
yields that U, N (N;epU;) is a strict subspace of N;epU; for each P € P.
Le. NiepU; & U, for each P € P. Equivalently (N;epU;)* 2 Ux.
Problem 12(d) below yields that U\ Upep (NicpU;)t # 0. Let x,, €
UL\ Upep (NiepU;)*. Define U; := U; N {xp}t,i=1,...,0. Forie ()
we have that {i} € P, hence x,,, ¢ U+. Thus U; € Gr(I—1,V),i=1,...,1.
We claim that ﬂh . ,ﬂl satisfy the [-dimensional intersection property.

Assume to the contrary that the /-dimensional intersection property is
violated. By renaming the indices in (I) we may assume that there is 2 <
k € (1) such that dim N;cgy U; > 1~k =m—k—1. Since U; C Uy,i € ()
we deduce that dim M;e ) U; > m—k—1. The assumption that U, ..., Uy,
satisfy the m-dimensional intersection property yields dim Ny U = m—
k,ie. (k) € P. Since X, & (Mie(ryUs)+ we deduce that dim (Mg Ui) N
{xn}+ = dim Nie (k) U; = m—k — 1, contradicting our assumption. Hence
Uy,..., U, satisfy the [-dimensional intersection property.

Let vy,...,Vyh_1,Xy, be a basis in V. Let f,,...,f, be the dual ba-
sis in V'. (See Problem 5.1.2(d).) Note that U; C span (f;,...,f,_,).
Let V, = span (v,,...,v,—,). Then we can identify span (f,,...,f,_,)
with V’. The induction hypothesis yields the existence of X € Gr(l, V,)
such that dim Y- N'W = 0. Assume that X is the columns space of
the matrix X = [z;;] € F"*!. The existence of the above X is equiva-
lent to the statement that the polynomial pg g (%11, .., @), defined
in as in the Problem 15 below, is not identically zero. Recall that U,, €

span (f,,...,f,_,). Problem 13 below yields the existence of a nontrivial
polynomial py(z11,...,%,) such that X € Gr(l,V,), equal to the col-
umn space of X = [z;;] € F"*!, satisfies the condition dim X N Ul =
0 <= pu(Tiry-.,Tn1) # 0. As puU,. Py, ©, 18 a nonzero polynomial

we deduce the existence of X € Gr(l,V,) such that dim X N UL = o0 and
X ¢ W (Uy,...,0)).

Assume that x,,...,X,,_, is a basis of X. Let X := span (X, ..., Xm)-
We claim that X ¢ W,,(U,,...,U,,). Let X; be the m — 1 dimen-
sional subspace spanned by {x,,...,%x, }\{x;} for ¢ = 1,...,m. Then
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A" X, = span (yi),i = 1,...,m and /\’"‘1X = span (¥,,...,Ym)-
Let /\m U; = span (w;),i = 1,...,m. Note that x,, € X; N UL
for i = 1,...,m — 1. Problem 13 below yields that (y;,w,,) = o for
i=1,...,m— 1. Hence det [(y;, W)=, = (¥m, Wn)det [(ys, w)];",_,
Since X,, = X we obtain that dim X,, N U} = 0. Hence (y,,, Wn) # o.
It is left to show that det [(y;, w;)]" 2% # o. Let X; C X; be the sub-

1]1

space of dimension | — 1 = m — 2 spanned by {x,,...,Xm_, }\{x;} for
i =1,...,m — 1. Note that X; C X. So /\Hxi = span (y;) and
we can assume that y; = y; A x,, for ¢ = 1,....,m — 1. Recall that

U; = {xn}* NU;. As dim Ul =dim U; — 1 we deduce that there exists
u; € U; such that (x,,,u;) =1fori=1,...,m—1. SoU; = UZGBspan (u;).
Let /\l_1 U, = span (W;). We can assume that w; = Ww; A u; for ¢ =
1,...,m — 1. Problem 14 below yields that (§; A X, W; A u;) = I{y;, W;)
fori,7 =1,...,m — 1. Hence det [(y;, w;)]""_, = "™ 'det [(yz,\?vﬁ]m_l

,]=1 7,J=1
Since X € Wy, (Uy,...,U;) we deduce that det [(yi,wj>]” 1 # 0, ie.
X &€ Wn(U,,...,Uy). O

Lemma 5.3.11 Let Jy,...,J: be t <m < n subsets of [n] each of car-
dinality m — 1. Assume that Jy,...,Jy satisfy the m-intersection property.
Then there exists m — t subsets Jii1,...,Jm of [n] of cardinality m such
that the sets Jy,...,Jn satisfy the m-intersection property.

Proof. It suffices to show that there is a subset Jiy1 C [n] of
cardinality m — 1 such that Ji,...,Ji41 that satisfies the m-intersection
property. If ¢ = 1 then choose Jo # Ji. Assume that ¢ > 2. Let
P ={P C[t]: # Nicp Ji = m — #P}. Note that {i} € P for i € [t].

Let P,Q € P and assume that P N Q # (). We claim that PUQ € P.
Let X := NiepJs, Y = NjcqJj. Then #X = m — #P,#Y = m — #Q.
Furthermore #(X NY) = #X + #Y — #(X UY). Observe next X U
Y C NgepngJr. Hence the m-intersection property of Jy,...,J; yields
#(XUY) <m—#(PNQ). Combine the m-intersection property with all
the above facts to deduce

m—#(PUQ)>#Nicpug i =#(XNY) =
m—#P+m—#Q —#(XUY) >
m—#P+m—#Q — (m—#(PNQ)) =m—#PUQ).

It follows that there exists a partition { Py, ..., P} of [¢] into [ sets such that

equality in (5.3.1) holds for each P;, and each P C [t] satisfying equality in
(5.3.1) is a subset of some P;.
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As #Niep, Ji =m —#P1r > m—t > 1, we let x € Njep, J;. Choose
Jir1 be any subset of cardinality m — 1 such that Jiy1 N (Niep, J;) =
(Niep, Ji)\{z}. Since #Ji11 = m — 1 it follows that J;;1 contains exactly
#P; elements not in N;ep, J;-

We now show that Ji,..., Jy+1 satisfy the m-intersection property. Let
QC[tjand P:=QU{t+1}. f Q € P then #Njep J; <m—#Q —1 =
m — #P. Assume that Q € P. To show (5.3.1) we need to show that
Nic@Ji & Jer1. Suppose first that @ C P;. Then z € NjegJ; and z & Jii1.
Assume that Q C Pj,j > 1. So P,NQ =0 and P, UQ ¢ P. Hence

q = #((Nier, Ji) N (NjeqJi)) = # Mkerug Jk < m — (#P1 + #Q) — 1.

Thus #((Njeqdi)\(Nicp, Ji)) = m — #Q — g > #P, + 1. We showed above
that #(Ji\(Miep, Ji)) = #P1. Therefore NiegJi & Jit1- O

Proof of Theorem 5.3.6.
1. Suppose first that J; := I, ..., Js := IS do not satisfy the intersection k
intersection property. Let P C [s] for which ¢ := #(NiepJ;) > k —#P + 1.
Note that #P > 2. We can assume that P = (p) for some 2 < p < s.
We claim that y; := A¥=*A[;, J;],i = 1,...,p are linearly dependent. Let
J = nNY_,J;. By renaming the indices if necessary we may assume that
J = (q). Suppose first that the columns i = 1,.. ., q are linearly dependent.

Hence any k—1 columns in J; are linearly dependent for ¢ = 1,...,p. Thus
yi=0fori=1,...,pand y,,...,y, are linearly dependent.
Assume now that the columns in ¢ = 1, ..., q are linearly independent.

Let C € F**¥ be an invertible matrix. Then A¥~1C is also invertible. Thus
Yi,---,¥p are linearly dependent if and only if (A\*71Q)y,,..., (A*7*CQ)y,
are linearly dependent. Thus we may replace A by A; := CA. Choose C
I, X

such that 4; = o F

}, where O € F(F~9%4 ig the zero matrix and

F e Fk—a)x(n—q)

Consider a k — 1 minor A;[{i}¢, K] for some K C [n] of cardinality
k — 1 containing set J. Expanding this minor by the first ¢ columns
we deduce that it is equal to zero, unless i = ¢ + 1,...,k. Let J/ :=
J\J,i = 1,...,p. Observe next that the submatrix of A¥~1A; based
on the rows {g + 1}°,...,{k}° and columns Ji,...,J, is equal to the
matrix AFTITLE[ L] Jy}]. Hence rank A A T ] =
rank AK"971F[; {J7,...,J0}]. Since ¢ > k —p+1 it follows that F' has at
most k — (k—p+1) = p— 1 rows, which implies that A¥~971F has at most
p—1rows. Hence rank A\K"971F[; {J},...,J}] <rank AK"97'F <p—1.
Lemma 5.3.7 implies that x(I,),...,x(I,) are linearly dependent, which
yield that x(I,),...,x(Is) are linearly dependent.
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Assume now that Jy :=If, ..., Js := IS satisfy the intersection k inter-
section property. By Lemma 5.3.11 we can extend these s sets to k subsets
J1,...,Ji C [n] of cardinality k — 1 which satisfy the intersection k inter-
section property. Let V := F" and identify V' := F?, where (v,f) = fTv.
Let {f,,...,f,} be the standard basis in F". Let U; = ®j¢c,span (f;),j =
1,...,k. Then U,,..., Uy have the k-dimensional intersection property.
(See Problem 16 below). Theorem 5.3.10 yields that there exists a sub-
space X € Gr(k,V) such that X & Wi(U,,...,Uy). Assume that X
is the column space of BT € F"** and that the columns of BT are
b,,...,bg. As in the proof of Theorem 5.3.10 let y; = Aje i\ iy Pj, Wi =
Njesf;,i=1,...,k. Note that y; is i-th column of AF=1BT. Furthermore
(yi,w;) = A¥"1B[{i}¢, J;]. The choice of B is equivalent to the condition
det [(yi,w;)]F;—, # o. This is equivalent to the condition that the minor
of k x k submatrix of A*~!B based on the columns Ji, ..., J; is not equal
to zero. Since A is generic, the corresponding minor of AF~1A # 0. (Oth-
erwise the entries of A will satisfy some nontrivial polynomial equations
with integer coefficients.) Hence the k columns of A*~!A corresponding to
Ji,...,Jy are linearly independent. In particular the s columns of AF~1A4
corresponding to Ji, ..., Js are linearly independent. Lemma 5.3.7 implies
that x(I,),...,x(Is) are linearly independent.

2. For a generic A let B € F("=%)*" he such that the columns of BT span
the null space of A. So ABT = 0 and rank B = n — k. According to
Problem 4(e) below B is generic. Note that for any J C [n] of cardinality
kE+1x(J,B)=y(J, A).

Assume that J7, ..., J; do not satisfy the the n—Fk intersection property.
The above arguments and 1 imply that y(J,, A),...,y(J;, A) are linearly
dependent.

Suppose now that Ji, ..., J; satisfy the the n — k intersection property.
Extend this set to the set Ji,..., J,_, each a set of cardinality k+ 1, such
that Jf, ..., JS_, satisfy the n —k intersection property. Let B € F(n—k)xn
be generic. 1 implies the n — k vectors x(J,, B),...,x(Jn—k, B) in the
row space of B are linearly independent. Let A € FF*™ such that the
columns of AT span the null space of B. So rank A = k and BA"T = 0.
According to Problem 4(e) below A is generic. Hence it follows that
x(J;, B) =y(Ji, A),i = 1,...,n—k are linearly independent vectors. Prob-
lems 3-4 below yield that we can express the coordinate of each elementary
vector in the null space of A in terms of corresponding k X k& minors of
A. Form the matrix C = [y(J,,A) ... y(Ju_g, A)] € F**(=F) Since
rank C = n — k it follows that some (n — k) minor of C is different form
zero. Hence for any generic A the corresponding minor of C' is different
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from zero. Le. the vectors y(J,, A),...,y(Jn—k, A) are always linearly in-

dependent for a generic A. In particular, the vectors y(J,, A),...,y(Js, A)

are linearly independent. |
Problems

1. Prove Proposition 5.3.2.
2. Let A € FF*" be generic. Show

(a) All entries of A are nonzero.
(b) A is nondegenerate.
3. Let D be a domain and B € D(k_l)”, where £k > 1. Let B; €

D*=1x(-1) he the matrix obtained by deleting the column i for
i=1,...,k Denote d = (d,,—ds,...,(—1)*"*dy)". Show

(a) d =0 if and only if rank B < k — 1.
(b) Bd =0.

(c¢) Assume that x € ker B. If rank B = k — 1 then x = bd for some
b in the division field of D.

4. Let A € FF*™ 1 < k < n. Assume that 1 < rank A =1<k. Show

(a) For any I C {1,...,n} of cardinality n — ! — 1 there exist 0 #
x € nul A such that supp (x) C I¢.

(b) Let I C {1,...,n} be of cardinality n — k — 1 and denote B :=
Al:, T¢) € RF*(+1) | Then dim {x € nul A: supp (x) C I°} =1
if and only if rank B = k.

(¢) Let I C {1,...,n} be of cardinality n — k — 1 and denote B :=
Al:,1¢) € RF*(+1) | Then there exists an elementary vector x €
nul A with supp (x) = I¢ if and only if for each j € I¢, det A[:

AN{GH A 0.
(d) The conditions I and 3 of Lemma 5.3.4 are equivalent.
(e) Let rank A =1 < k. Then nul A is nondegenerate if all minors

of A of order [ are nonzero.

5. Let J be defined in Definition 5.3.5. Show
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(a) The condition (5.3.1) is equivalent to
#(UiepJi) >n—m+#P for all ) # P C [t].

(b) Assume that J satisfies (5.3.1). Let Jpy1 be a subset of [n]
of cardinality m — 1. Then J’' := J U {Ji1+1} satisfies the m-
intersection property if and only if

# Uiep (Ji N Jeq1) 2 4P for all  # P C [t].

In particular, if J' satisfies m-intersection property then each
Jf N Jiyq is nonempty for ¢ = 1,...,¢t. Hint: Observe that
Jf U (UiepJ§) decomposes to union of two disjoint sets Jg,
and Uiep(JiC N Jt+1).

6. Let Sy,...,S; be t nonempty subsets of a finite nonempty set S of

cardinality at least t. Sy,...,.S5; is said to have a set of distinct rep-
resentatives if there exists a subset {s1,...,s:} C S of cardinality ¢
such that s; € S; for i = 1,...,t. Show that if Si,...,5S; has a set of
distinct representatives then

#Ujep S; > #P forall ) £ P C [t]

Hall’s Theorem states that the above conditions are necessary and
sufficient for existence of a set of distinct representatives [Hal35].

Let the assumptions of Problem 6 hold. Let G be a bipartite graph
on a set of vertices V = [t] US and the set of edges F C [t] x S as
follows. (i,s) € [t] x S if and only if s € S;. Show that Sq,...,S; has
a set of distinct representatives if and only if G has a match M C E,
i.e. no two distinct edges in M have a common vertex, of cardinality
t.

Remark: There exist effective algorithms in bipartite graphs G =
(ViUVa, E), E CV; x V; to find a match of size min(#Vy, #V52).

8. Let A € FF*" be nondegenerate. Show

(a) Let I C [n] be of cardinality n — k+ 1. Then there exists x(I) =
(Zy,...,xy,) in the row space of A, with supp (x(I)) = I, whose
nonzero coordinates are given by z; = (—1)Pit1det A[:, I°U{j}]
for any j € I, where p; is the number of integers in /¢ less than
J.
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(b) Let I and x(I) be defined as in (a). Show that there exists a
unique z(I) = (2,,...,2x) € F¥ such that x(I) = z(I)A. Use
the fact that (zA); = o for any j € I° and Cramer’s rule to show
that z; = (—1)'det A[{i}¢,I¢] fori=1,...,k.

(c) Let I,...,Is C [n] be sets of cardinality n — k 4+ 1. Let
x(1,),z(1,),...,x(Is),z(Is) be defined as above. Then

i. x(1,),...,x(I;) are linearly independent if and only if
z(1,),...,z(I) are linearly independent.

ii. Let D = diag(—1,1,—1,...) € F**k. Then the matrix
D[z(I1,)" z(L,) ... z(I,)] € F¥*¢ is the submatrix
ARLAL IS, ... IEY]. Hence z(1),...,z(I5) are linearly
independent if and only if the submatrix AK=TA[; {I¢, ..., I¢}]
has rank s.

iii. The submatrix AF=LA[; {If, ..., I¢}] has rank s if and only
if not all the determinants
det AF=LA[{ir}e, ..., {is e}, (IS, ..., I} for 1 < iy < ig <
... < iy < k are equal to zero.

iv. x(1,),...,x(I) is a basis in the row space of A if and only
if the determinant of the full row submatrix of AF~1A cor-
responding to the columns determined by If,..., I is not
equal to zero.

9. Let A € F**™ be nondegenerate. Let b,,...,b,_; € R™ be a basis in
the null space of A and denote by BT € F**("=%) the matrix whose
columns are b,,...,b,_;. Show

(a) Let J C [n] be of cardinality k 4+ 1. Then there exists y(J) =
(Y1,---,Yn) " in the column space of BT, with supp (y(J)) = J,
whose nonzero coordinates are given by y; = (—1)PiT!det B[:
,JeU{j}] for any j € J, where p; is the number of integers in
J€ less than j.

(b) Let J and y(J) be defined as in (a). Show that there exists
a unique u(J) = (uy,...,up—)' € F*7F such that y(J) =
BTu(J). Use the fact that (BTu); = o for any j € J¢ and
Cramer’s rule to show that u; = (—1)det B[{i}¢, J¢] for i =
1,...,n—k.

(c) Let Jy,...,J; C [n] be sets of cardinality k + 1. Let
yv(J.),u(Jy),...,y(Jt),u(J:) be defined as above. Then

i y(J.),...,y(J:) are linearly independent if and only if
u(Jy),...,u(Jy) are linearly independent.
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ii. Let D = diag(—1,1,—1,...) € F?*=%**"=k_ Then the matrix
Dlu(J,) u(Jy) ... u(Jy)] € F(»=R)xt ig the submatrix
AVREIBL LU, L, JEY]. Hence u(J,),...,u(J;) are lin-
early independent if and only if the submatrix
APR=LBL LJ¢, ..., ] has rank t.

iti. The submatrix A"~*=1B[; {Jf,...,Jf}] has rank ¢ if and
only if not all the determinants
det A"F=L BI{igYe, . iy, {4JE, . JEY for 1<y <
1o < ... < i <n—k are equal to zero.

iv. y(J1),...,x(Jp—k) is & basis in the null space of A if and
only if the determinant of the full row submatrix of A»"*~1B
corresponding to the columns determined by J7,...,J5_,
is not equal to zero.

Let C € F*X("=k) he a matrix of rank n — k. Show that there exists
A € FF* of rank k such that AC = 0.

Let F be a field of 0 characteristic. Let p(z1,...,z,) € Flz1,...,z5]
Show that p(z1,...,2,) = 0 for all x = (z,,...,7,)" € F" if and
only if p is the zero polynomial. Hint: Use induction.

Let F be a field of 0 characteristic. Assume that V. = F". Identify
V' with F". So foru € V,f € V/ (u,f) = f'v. Show

(a) U C V is a subspace of dimension of n — 1 if and only if there
exists a nontrivial linear polynomial I(x) = a,2, + ... + apZy,
such that U is the zero set of I(x), i.e. U = Z(I).

(b) Let U,,..., Uy be k subspaces of V of dimension n — 1. Show

that there exists a nontrivial polynomial p = Hle l; € Flxy, ..., zp),

where each [; is a nonzero linear polynomial, such that U;—1U;
is Z(p).

(c) Show that if U,, ..., Uy are k strict subspaces of V then U¥_, U;
is a strict subset of V. Hint: One can assume that dim U; =
n—1,i=1,...,k and the use Problem 11.

(d) Let U,U,,..., Uy be subspaces of V. Assume that U C U¥_ U,.
Show that there exists a subspace U; which contains U. Hint:
Observe U = UF_ (U, N U).

Let the assumptions of Problem 12 hold. Let X = [z;;],U = [u;;] €

F**!, View the matrices ALX, AU as column vectors in F(?). Let
pu(T11,. .. 2n) = det (XTU) = (ALX)T ALU. View py as a poly-
nomial in nl variables with coefficients in F. Show
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(a) py a homogeneous multilinear polynomial of degree .

(b) py is a trivial polynomial if and only if rank U < 1.

(¢) Let X € Gr(l,V),U € Gr(l, V') and assume that the column
space of X = [z;;] = [%4,..., %], U = [u5] = [u,, ..., ] € F*<!
are X, U respectively. Then

pu(T11, ..., Tn) = det [uiji]é’j:l,

Xy A AR A AW =Upy (B, Tag).
In particular, dim X N U+ =0 <= py(z,1,...,20) # .

14. Let F be a field of 0 characteristic. Assume that V is an n-dimensional
vector space with n > 2. Let X C V,U C V' be m > 2 dimensional
subspaces. Assume that X ¢ U'. Let x,, € X\U'. Let U =
{Xm}+ NU. Let X be any m — 1 dimensional subspace of X which
does not contain x,,,. Show

(a) dim U =m —1,X = X @ span (x,,).
(b) There exists u,, € U such that (x,,,u,,) = 1. Furthermore
U = U @ span (u,,).

(¢) Let {Xy,...,Xm_1},{us,...,upm_,} be bases of X,Y respec-
tively. Then

(Xy Ao v A Xy, Uy AUy A A Uy,) =

M(Xy A AXppeq, Uy AUy Ao AUy ),

where u,, is defined in (b). Hint: Use (5.2.8) and expand the
determinant by the last row.

(d) Assume that A™ ' X = span (y), A" ' U = span (w). Then
(¥ Axp, WA U,) = m(y, w).

15. Let the assumptions of Theorem 5.3.10 hold. View V and V' as F".
Soforue V,f € V' (u,f) = fTv. Let X € Gr(m, V) be the column
space of X = [z;;] € F"*™. Show that there exists a homogeneous
polynomial pu,,. . u,, (11,...,Znm) of degree m(m — 1) such that
X € Wp(U,,...,Uy,,) if and only if pu, .. u, (11, -, Tnm) = 0.

Hint: Choose a basis of X to be the columns of X. Then use the
first paragraph of Proof of Theorem 5.3.10 and Problem 13.

16. Let F be a field and V an n-dimensional subspace over F. Let
Vy,...,Vy beabasisof V. For ) # K C [n] let Ux = ®;cxspan (v;).
Let t < m and assume that Ki,...,K; C [n] be sets of cardinality
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m — 1 for any 2 < m € [n]. Show that Ug_,..., Uk, satisfy the
m-dimensional intersection property if and only if K,..., K; satisfy
the m-intersection property.

17. Let V be an n-dimensional vector space over F of characteristic 0.
Show

(a) Let 2 <m < n. If U,,...,U,, are m — 1 dimensional vector

spaces satisfying the m-dimensional intersection property then
- -1

dim >, A" U =m.

(b) Form = 3,n = 4 there exist U,, U,, U, which do not satisfy the
3-dimensional intersection property such that dim E?:1 AU, =
3. Hint: Choose a basis in V and assume that each U; is
spanned by some two vectors in the basis.

(¢) Show that for 2 < t < m = n, U,,...,U; satisfy the n-
intersection property if and only if dim Y¢_, AN U =t

5.4 Tensor products of inner product spaces

Let F = R, C and assume that V; is a n;-dimensional vector space with the
inner product (-,-); fori =1,... k. Then Y := ®%_ V; has a unique inner
product (-, -) satisfying the property

k
(5.4.1) (@ x;,@F y;) = H(xi,yi>i, for all x;,y; € Vi, i =1,...,k.

=1

(See Problem 1 below.) We will assume that Y has the above canonical
inner product, unless stated otherwise.

Proposition 5.4.1 Let U;, V; be finite dimensional inner product spaces
over F := R, C with the inner product (-, -Yu,, (-, )v, fori=1,...,k respec-
tively. Let X := ®F_ U, Y := ®%_ V; be an IPS with the canonical inner
products (-, -)x, (-, )y respectively. Then the following claims hold.

1. Assume that T; € L(V,;,Uy) fori=1,... k. Then ®%_,T; € L(Y,X)
and (97, T;)" = @}, T} € L(X,Y).

2. Assume that T; € L(V;) is normal fori = 1,.... k. Then ®F_|T; €
L(Y) is normal. Moreover, @F_,T; is hermitian or unitary, if each
T; is hermitian or unitary, respectively.
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3. Assume that T; € L(V;,Uy) fori =1,...,k. Let on(T;) > ... >
Orank T; (T3) > 0,wheres;(T;) = 0, for] > rank T;, be the singular
values of T;. Let €, 4,...,¢Cn,; and dy;,...,dp, ; be orthonormal
bases of V; and Uj; consz’stmg of right and left singular vectors of T;
as described in (4.10.5):

Ticji,izo'ji(Ti)dji,iv jizl,..., i:1,...,k.

Then

(@F TRk 1CJL,z:<HUJL ) . dj, Ji=1,...,1=1,...,k.

In particular

(5.4.2) || @7, Til| = 01(®

) HHTH—Hal
0'1—[;9:1 rankT Q= 1T HardnkT

We consider a fixed IPS vector space V of dimension n and its exte-
rior products /\kV for k = 1,...,n. Since /\kV is a subspace of Y :=
®f:1Vi,V1 =...= YV, =V, it follows that /\k V has a canonical inner
product induced by (-, -)y. See Problem 3a below.

Proposition 5.4.2 Let V,U be inner product spaces of dimension n
and m respectively. Assume that T € L(V,U). Suppose that c,,...,cy,
and d,,...,d,, are orthonormal bases of V and U composed of the right
and left singular eigenvectors of T respectively, as given in (4.10.5). Let
k € [min(m,n)]. Then the orthonormal bases

k
1 . .
—cil/\.../\cike/\V, 1<, <...<i <n,

VE!

k
dj, A Adj e AU, 1<ji <. <jr<m,

N

are the right and the left singular vectors of N*T € L(N* V, A¥ U), with
the corresponding singular values Hle 0;,(T) and Hle 0, (T) respectively.
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In particular

k
NTe, A Aeg = |[AFT)|dy AL Ady, [ AT =0, (AT) = [ oa(D),
=1

k
k
N Tcrank T—k+1 VAN Crank T = H Orank T7k+l<T)drank T—k+1 Ao A drank T

=1

are the biggest and the smallest positive singular value of NFT for k <
rank T.

Corollary 5.4.3 Suppose that 'V is an IPS of dimension n. Assume
that T € Sy (V). Let M(T) > ... > M\(T) > 0 be the eigenvalues of

T with the corresponding orthonormal eigenbasis c,,...,c, of V. Then
AT € SL(N“V). Let k € [n]. Then the orthonormal base ﬁcil A A

Cip, 1 < iy, <...< i <nof /\kV is an eigensystem of AFT, with the
corresponding eigenvalues Hle Xi,(T). In particular

k
NTe, Ao Aeg = || AFTlles Ao Aek, ([ AT = X (AFT) = [T A(T).
=1
k
N¥Te A A =II> T)d A...nd
rank T—k+1 /N« -« /A Crank T rank T7k+l( ) rank T—k+1 /\ .. rank T

=1
are the biggest and the smallest positive eigenvalue of NFT' for k < rank T.

See Problem 4 below.

Assume that the assumptions of Proposition 5.4.2 hold. Then c,,...,cg
and d,,...,dy are called the first k-right and k-left singular vectors respec-
tively.

Theorem 5.4.4 Let U, V, W be finite dimensional inner product spaces.
Assume that P € L(U, W), T € L(V,U). Then

k k
(5.4.3) [[o:(PT) <[[o:(P)oi(T), k=1,...

i=1

For k < min(rank P,rank T), equality in (5.4.3) holds if and only if the
following condition is satisfied: There exists a k-dimensional subspace Vy,
of V which spanned by the first k-orthonormal right singular vectors of T,
such that TV, is a k-dimensional subspace of U which is spanned the first
k-orthonormal right singular vectors of P.



5.4. TENSOR PRODUCTS OF INNER PRODUCT SPACES 297

Proof. Suppose first that & = 1. Then ||PT|| = ||PTv||, where
v € V,||v|| = 1 is the right singular vector of PT. Clearly, ||PTv|| =
[|P(Tv)|| < ||P|| IITv]| < ||P|| ||T]|, which implies the inequality (5.4.3)
for k = 1. Assume that ||P|| ||T|| > 0. For the equality ||PT|| = ||P|| ||T]|
we must have that T'v is the right singular vector corresponding to P and
v the the right singular vector corresponding to 7'. This shows the equality
case in the theorem for k = 1.

Assume that k& > 1. If the right-hand side of (5.4.3) is zero then
rank PT < min(rank P,rank Q) < k and o4 (PT) = 0. Hence (5.4.3) triv-
ially holds. Assume that k¥ < min(rank P,rank Q). Then the right-hand
side of (5.4.3) is positive. Clearly
min(rank P, rank T) < min(dim U, dim V,dim W). Observe that A*T €
LA*V,\"U),A*P e L(N* U, A" W). Hence (5.4.3) for k = 1 applied to
NPT = NP AF T yields o1 (AFPT) < o1 (AFP)o (AFT). Use Proposition
5.4.2 to deduce (5.4.3). In order to have o1 (A¥PT) = o1 (A*P)o1(AFT), the
operator AFT must have a right first singular vector x € /\k V, such that
0 # A*Tx is a right singular vector of A* P corresponding to o1 (AFP). Tt is
left to show to show that x can be chosen as ¢, A...Acg, where c,,...,cg
are the first k-right singular vectors of T'. Suppose that

o1(T)=...=0,(T) >0, 41(T) = ...
(5.4.4) =0,(T)>...>0=0,(T) for j > 1,

Assume first that k = [; for some i < p. Then o1(AFT) > 0o(A*T) and

c, A...Acy is the right singular vector of A*T corresponding to o (AFT).

Then o1 (A*P AP T) = 01 (A*P)o1 (AFT) if and only if (AFT)c, A...Acy, =

Tc,A...NTcy, is the right singular vector of A* P corresponding to o (AFP).
Assume that

UI(P):~~-:Um1(P)>0m1+1(P):...
:Umg(p)>...>O:0j(P) fOI‘j>mq,

Suppose that k = m;_1 +r, where 1 <r < m; —m;_;. (We assume here
that mo = 0.) Let U, be the subspace spanned by the m;_; right singular
vectors of P corresponding to the first m;_; singular values of P and W,
be the subspace spanned by m; — m;_; right singular vectors of P corre-
sponding the 0., , y1(P),...,0m,;(P). Then any right singular vector of
AFP corresponding to o1 (A P) is in the subspace ( A" U,) A (A" W,).
Let Vi = span (c,,...,¢k). So ¢, A...Ack is a nonzero vector in /\’C Vi
and (A*T)c, A...Acy is a nonzero vector in A¥ W, where W, := TV, and

U, = {0}. The equality in (5.4.3) yields that ( AT Ul) A ( /\TWI) N
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(/\0 U2> A (/\’“Wz) # {0}. Lemma 5.2.11 yields that U, € TV} and
TV, CU, + W,. So TV}, is spanned by the first k£ right singular vectors
of P.

Assume now that k = [;_1 + 5,1 < s < l; — l;_1. Then the subspace
spanned by all right singular vectors of AFT corresponding to o (A*T) is
equal to

(/\li‘1 U2) A (/\S WQ), where U; and W, are the subspaces spanned

the right singular vectors of T corresponding to the first [;_; and the
next l; — l;—1 singular values of T" respectively. Let U, := T'U;, W, =

TW,. The equality in (5.4.3) yields that (/\’"ﬂ'*l Ul) A (/\TW1> N
(/\li’1 U2> A (/\6 W2> contains a right singular vector of A*P corre-

sponding to o1 (A*P). Lemma 5.2.11 yields that there exists a k dimensional
subspace V' such that V! DU, + U, and V/, C (U, + W,)N (U, +W,).
Hence there exists a k-dimensional subspace Vj of U; + W, containing
U, such that V! = TV}, contains U, and is contained in U, +W,. Hence
TV} is spanned by the first k right singular vectors of P.

Assume now that Hé:1 0;(P)oi(T) > 0. Then 0 < 0;(P),0 < o4(T)
fori=1,...,0. Assume that for k = 1,...,1 equality holds in (5.4.3). We
prove the existence of orthonormal sets c,,...,c;, d,,...,d; of right sin-
gular vectors of T and P respectively such that ﬁck =dy,k=1,...,1
by induction on [. For [ = 1 the result is trivial. Assume that the result
holds for [ = m and let [ = m + 1. The equality in (5.4.3) for k =m + 1
yields the existence of m + 1 dimensional subspace X C U such that X is
spanned by the first m + 1 right singular vectors of T and TX is spanned
by the first m + 1 right singular vectors of P. a

Theorem 5.4.5 Let the assumptions of Theorem 5.4.4 hold. Then
equalities in (5.4.3) hold for k = 1,...,1, where | < min(rank P, rank T),
if and only if there exist first l-right singular vectors c,,...,c; of T, such

1

that WTC17 cee ﬁTcl are the first l-right singular vectors of P.

Proof. We prove the theorem by induction on [. For [ = 1 the
theorem follows from Theorem 5.4.4. Suppose that the theorem holds for
Il =j. Let | = j+ 1. Since we assumed that equality holds in (5.4.3) for
k =1 Theorem 5.4.4 yields that there exists an [-dimensional subspace V;
of V which is spanned by the first [ right singular vectors of T, and TV, is
spanned by the first [ right singular vectors of P. Let 1" € L(V,, TV)), Pe
L(TV,;,PTV,) be the restrictions of T' and P to the subspaces V;, TV,
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respectively. Clearly
(5.4.5) 0i(T) = 04(T) > 0, 04(P) = 04(P) >0, fori=1,...,1.

The equahtleb in (5.4.3) for k = 1,...,limply that o;(PT) = 0:(P)oi(T)
fori =1,...,1. Let Q := PT € L(VZ,PTVl) Clearly Q is the restric-
tion of Q = PT to V;. Corollary 4.11.3 yields that 0,(Q) < 0;(Q) for
i = 1,.... Since det Q = det P det T we deduce that Hﬁzl 0:(Q) =
Hi:l oi(P) Hi‘:l o5(T). The above arguments show that Hizl 0:(Q) =
le 10:(Q) > 0. Corollary 4.11.3 yields that 0;(Q) = 04(Q). Hence we
have equalities H L 0i(PQ) = Hk L0i(P)oi(T) for i = 1,...,1. The in-
duction hypotheslb yields that there exist ﬁl"bt [ —1-right blngular vectors of
T C,,...,C/_,, such that (T) Tc17 . (T) Tcl . are the first [-right sin-

gular vectors of p. Complete c,,...,c;_; to an orthonormal basis ¢, , ..., ¢
of V;. Then ¢; is a right singular vector of 7' corresponding o;(7). Since
Tc;is orthogonal toTc,,...,Tc;_,, which are right singular vectors of Pit

follows that (T)Tcl is a rlght singular vector of P corresponding to o; (T)

Use (5.4.5) and the fact that T and P are the corresponding restrictions of
T and P respectively to deduce the theorem. O

In what follows we need_to consider the half closed infinite interval
[—00, 00) which is a subset of R, see §4.6. Denote by [—00, 00)¥ C [—00,00)"

the set of x = (z,,...,2,) where 1 > ... >z, > —0c0.
We now extend the notions of majorization, Schur set, Schur order
preserving function to subsets of [—00,00)0 . Let x = (24,...,2,),y =

(Yry -3 Yn) € [—oo,oo)’{‘. Then x <y, i.e. x is weakly majorized by y,
if the inequalities Zle x; < Zle y; hold for i = 1,...,n. x <y, ie x
majorized by y, if x <y and > 31" @, = Y1, yi. A set D C [—00,00)% is
called a Schur set if for any y € D and any x <y x € D.

Let I C [—00,00) be an interval, which may be open, closed or half
closed. Denote by I, the interior of I. f : I — R is called continuous
if the following conditions hold: First, f|Iy is continuous. Second, if a €
[-00,00) NI is an end point of I then f is continuous at a from the left or
right respectively. Suppose that —oco € I. Then f : I — R is called convex
on [ if f is continuous on I and a nondecreasing convex function on Ij.
(See Problem 6 below.) f is called strictly convex on I if f continuous on
I and strictly convex on Iy. If —oo € I then f is continuous on I, and is
an increasing strictly convex function on Iy. Note that the function e” is a
strictly convex function on [—o00, 00).

Let D C [—00,00)™. Then f : D — R is continuous, if for any x € D and
any sequence of points x; € D, with k € N, the equality limy_, o f(xx) =
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f(x) holds when limy_,+ xx = x. D is convex if for any x,y € D the point
tx + (1 —t)y is in D for any ¢ € (0,1). For a convex D, f : D — R is
convex if f is continuous and f(tx+ (1 —t)y) < tf(x)+ (1 —t)f(y) for any
t € (0,1). For a Schur set D C [—00,00)", f: D — R is called Schur order
preserving, strict Schur order preserving, strong Schur order preserving,
strict strong Schur order preserving if f is a continuous function satisfying
the properties described in the beginning of §4.8. It is straightforward to
generalize the results on Schur order preserving functions established in
§4.8 using Problem 7 below.
Let the assumptions of Theorem 5.4.4 hold. For any k € N let

(5.4.6) or(T) = (o1(T),...,0u(T)) € R .,
log oy, := (log oy (T),...,logoy(T)) € [—o0,00)".

Theorem 5.4.4 yields

logo,(PT) = logo,(P) + logo(T) for any k € [1, max(rank P, rank T)]

logok(PT) < logok(P) +log o (T) for k > max(rank P,rank T),

logo(PT) <logoi(P) +logoi(T) if k =rank P = rank T = rank PT,
(5.4.7)

See Problem 8 below.

Theorem 5.4.6 Let U, V, W be inner product spaces. Assume that
TeL(V,U),PeL(UW)andl eN.

1. Assume that D C [—o0, oo)l\ is a strong Schur set containing

log o (PT),log o (P) +logoy(T). Let h : D — R be a strong Schur
order preserving function. Then h(logo(PT)) < h(logo;(PT) +
log o (PT)). Suppose furthermore that h is strict strong Schur order
preserving. Then equality holds in the above inequality if and only if

equality holds in (5.4.3) fork=1,... L.

2. Assume thatlog o (PT) < log o (P)+logo(T), and D C [—o0, oo)l\
is a Schur set containing log o(PT),logo(P) 4+ logo(T). Let h :
D — R be a Schur order preserving function. Then h(logo(PT)) <
h(log o (PT) + logo(PT)). Suppose furthermore that h is strict
Schur order preserving. Then equality holds in the above inequality if
and only if equality holds in (5.4.3) fork=1,...,1—1.

See Problem 9 below.
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Corollary 5.4.7 Let U, V, W be inner product spaces. Assume that
T € L(V,U),P € L(U,W) and | € N. Assume that logo;(PT) <
logo;(P) + logo(T), and I C [—o00,00) is an interval set containing
logo1(P) + logo1(T),logo(PT). Let h : I — R be a convex function.
Then

1 !
(5.4.8) Zh(logaz (PT)) Z (logo;(P) +logo;(T)).

i=1 i=1

Corollary 5.4.8 Let U, V, W be inner product spaces. Assume that
TeL(V,U),PecL(U,W) andl €N. Then for anyt >0

l
(5.4.9) Zaz PT) < oy(P)
= =1

Equality holds if and only if one has equality sign in (5.4.3) fork =1,...,1.

Proof. Observe that the function h : [—oo,oo)l\ — R given by

h((z1,...,21)) = Zi:l e!®i is strictly strongly Schur order preserving for
any t > 0. a

The following theorem improves the results of Theorem 4.11.12.
Theorem 5.4.9 Let V be an n-dimensional IPS over C and assume

that T € L(V). Let Mi(T),..., A\ (T) € C be the eigenvalues of T counted
with their multiplicities and arranged in order |\ (T)| > ... > |A\n(T)|. Let

Ao(T) = (JM(D)],- -, [AM(D)]) and X k1 (T) == (M (D), ..., [M(T)]) for
k=1,...,n. Then
(5.4. 10)
l n n
H H T) forl=1,....n—1, and [[1X(T) = [[ o:(T)
i=1 i=1 i=1 i=1
Forl=1,...,k <n equalities hold in the above inequalities if and only if

the conditions 1 and 2 of Theorem 4.11.12 hold.
In particularlog Ag 1 (T) = logoy(T) fork =1,...,n—1 andlog A, (T) <
logo (T).

Proof. By Theorem 4.11.12 |A\;(A!'T)| < o1 (A!'T). Use Problem 8
below and Proposition 5.4.2 to deduce the inequalities in (5.4.10). The
equality T\, [Xi(T)] = HL L 0i(T) is equivalent to the identity |det T'|? =
det TT™.
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Suppose that for I = 1,...,k < n equalities hold in (5.4.10). Then
[\i(T)| = 0;(T) for i = 1,...,k. Hence equality holds in (4.11.14). The-
orem 4.11.12 implies that conditions 1,2 hold. Vice versa, assume that
the conditions 1,2 of Theorem 4.11.12 hold. Then from the proof of The-
orem 4.11.12 it follows that |\;(T)| = o4(T) for ¢« = 1,...,k. Hence for
I =1,...,k equalities hold in (5.4.10). O

Corollary 5.4.10 Let V be an n-dimensional IPS. Assume that T €
L(V).

1. Assume that k € [n—1] and D C [—o0, oo)k\ is a strong Schur set con-
taining log o (T'). Let h : D — R be a strong Schur order preserving
function. Then h(log A, (T)) < h(logo(T)). Suppose furthermore
that h is strict strong Schur order preserving. Then equality holds
in the above inequality if and only if equality holds in (5.4.10) for
l=1,... k.

2. LetI C [—00,00) be an interval containing log o1 (T),log ok (T),log | Ak (T)].
Assume that f : I — R is a convex nondecreasing function. Then
Zf:l fQog X (T))) < Zle fQog|oi(T)]). If f is a strictly convex
increasing function on I then equality holds if and only if equality
holds in (5.4.10) for 1 =1,...,k. In particular for any t > 0

k

k
(5.4.11) ST <Y (1)
i=1

i=1
Equality holds if and only if equality holds in (5.4.10) forl =1,... k.

3. Assume that D C [—00,00)% is a Schur set containing log o, (T). Let
h: D — R be a Schur order preserving function. Then h(log A (T")) <
h(logo,(T)). Suppose furthermore that h is strict Schur order pre-
serving. Then equality holds in the above inequality if and only if
equality holds T is a normal operator.

Problems

1. Let V; be an n;-dimensional vector space with the inner product (-, -);
fori=1,...,k.
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(a) Let e, 4,...,€,,,; be an orthonormal basis of V; with respect
(-,); for i = 1,...,k. Let {-,-) be the inner product in Y :=
®F_ 'V, such that ®%_je;, ; where j; = 1,...,n;,i = 1,...,k is
an orthonormal basis of Y. Show that (5.4.1) holds.

(b) Prove that there exists a unique inner product on Y satisfying

(5.4.1).
2. Prove Proposition 5.4.1.
3. Let V be an n-dimensional IPS with an orthonormal basis e, ..., e,.
Let Y := ®% V, V, =... =V, =V be inner product spaces with

the canonical inner product (-, -)y. Show

(a) Let k € [n]. Then the subspace A"V of Y has an orthonormal
basis

e, N...Ne; 1 <4 <ip, <...<1i<n

VR

(b) Let k € N. Then the subspace Sym*V of Y has an orthonomal

basis a(iy, .. .,ix)sym*(e;,,...,e;, ), 1 <i, < ... < i <n. The
coefficient «(iy,...,1) is given as follows. Assume that i; =
.= ’ill < ilﬁ»l = ... = il1+l2 < ... < ill+»--+lr—1+1 = ... =

ity +..+1,, where Iy +...+1, = k. Then «a(iy,..., i) = ﬁ

4. (a) Prove Proposition 5.4.2.
(b) Prove Corollary 5.4.3.

5. Let U,V be inner product spaces of dimensions n and m respec-
tively. Let T € L(V, U) and assume that we chose orthonormal bases
[C1y..-5Cn],[dy,...,dy] of V, U respectively satisfying (4.10.5). Sup-
pose furthermore that

o(T)=...=0,T)>0,11(T)=...=0,(T)>...>
(5.4.12)
o, +1(T)=...=0,(T)>0,1<l) <...<l, =rank T.

Let
(5.4.13) V,:=span (¢;,_,41,---,C)y E=1,...,D, lop:=0.

(a) Let k = I; for some i € [1,p]. Show that o1 (AFT) > ao(AFT).
Furthermore the vector ¢, A ... A ¢ is a unique right singular
vector, (up to a multiplication by scalar), of AFT' corresponding
to o1 (AFT). Equivalently, the one dimensional subspace spanned
by the the right singular vectors of A*T is given by /\k EBz»:lVZ-.
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(b) Assume that I; —l;_1 > 2 and [;_; < k <; for some 1 < i < p.
Show that

(5.4.14) oy (N'T)=...= o) (T > oty o

7).
The subspace spanned by all right singular vectors of A*T' cor-
responding to o1 (AFT) is given by the subspace:

k_li—l

li1
(A& VO AC A Vo).

Let I :=[—00,a),a € R and assume that f: I — R is continuous. f
is called convex on I if f(tb+ (1 —t)c) < tf(b) + (1 —t)f(c) for any
b,ce I and t € (0,1). We assume that ¢t(—oo0) = —oo for any ¢ > 0.
Show that if f is convex on I if and only f is a convex nondecreasing
bounded below function on I,.

D C [-00,00)¥ such that D" := D NR" is nonempty. Assume that
f: D — R is continuous. Show

(a) D is a Schur set if and only if D’ is a Schur set.

(b) f is Schur order preserving if and only if f|D’ is Schur order
preserving.

(c) f is strict Schur order preserving if and only if f|D’ is strict
Schur order preserving.

(d) f is strong Schur order preserving if and only if f|D’ is strong
Schur order preserving.

(e) f is strict strong Schur order preserving if and only if f|D’ is
strict strong Schur order preserving.

Let the assumptions of Theorem 5.4.4 hold. Assume that rank P =
rank T = rank PT. Let & = rank P. Show that the arguments of the
proof of Theorem 5.4.5 implies that Hle o;(PT) = Hle o;(P)oi(T).
Hence log o (PT) < log o, (P) +log ok (T).

Prove Theorem 5.4.6 using the results of Section 4.8.

Show that under the assumptions of Theorem 4.11.8 one has the in-
equality 3!, 04(S*T)" < 31, 03(S)toy(T)" for any | € Nand ¢ > 0.

(a) Let the assumptions of Theorem 5.4.9 hold. Show that (5.4.10)
imply that A\;(T") = 0 for ¢ > rank T.
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(b) Let V be a finite dimensional vector field over the algebraically
closed field F. Let T € L(V). Show that the number of nonzero
eigenvalues, counted with their multiplicities, does not exceed
rank T. (Hint: Use the Jordan canonical form of T'.)

5.5 Matrix exponents

For a matrix C' € C™*™ with all eigenvalues of C are in the disk |z —1| < 1
we define

(5.5.1) log C :=log(I 4 (C — 1)) Z c )Y,
(5.5.2) C* :=e*1°8C where z € C and p(C—1)<
(See §3.1.)

Proposition 5.5.1 Let a >0, A(t) : (—a,a) = C"*™, assume that
(5.5.3) lim — = B.

Then for any s € C

(5.5.4) lim (I + A(t))& = P

Proof. The assumption (5.5.3) yields that B(t) := 1 A(t),t # 0, B(0) :=
B is continuous at ¢ = 0. Hence ||B(t)||2 = 01(B(t)) < ¢ for |t] < §'. Let
§ :=min(0’, 5-). . Denote C(t) = I + A(t) = I + tB(t). Hence

p(O0) ~ 1) < or(O0) — 1) = [AW)]> < ltle < § for 1] <5

Assume that t € (—0,d) \ {0}. Use (5.5.1) to obtain

oo

Z log(] +A[) =s) %B(t)i = sB(t) +
i=1 7

M ?
V)
—
N
~—
<
|
—_
o}
—~
~
~—
<

I|
N

Recall that

IIZ IIz<ZH B(t)'|lz <
Z| |t~ 1IIB( e Jsl(= It\c—log(l—lt\C)_

|t
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Hence , s
lim (T + A(t))t = exp(}ir% : log(I + A(t)) = e*B.
—

Theorem 5.5.2 (The Lie-Trotter formula) Let Aq,..., A € C™" ",
Then for any s € C

(5.5.5) }in(l)(etAletAz ety E = et i A
—

In particular

(5.5.6) lim (6%‘416%‘42 . 'G%Ak)N = X A,
N—o0o,NEN

Proof. Clearly e!4i = I +tA; + [t|*?0(1) for |t| < 1. Hence

k
A(t) == etttz gtAe _ T = tZAi +[t]2O(1).

i=1

Therefore the condition (5.5.3) holds, where B = Zle A;. Apply (5.5.4)
to deduce (5.5.5). Choose a sequence ty = 3 for N =1,2,..., and s = 1
in (5.5.5) to deduce (5.5.6). O

Proposition 5.5.3 Let V; is an n;-dimensional vector space for i
L,....,k over F = R,C. LetY := ®F_ V,. Assume that A; € L(V;),i
1,.... Then

(5.5.7) @k et = et As ¢ Lk V), where
k
(A1, Ag = 1, ®@...0Iy_, ® Ay, @I, ®...® I, €L®L_,V)),
i=1
foranyt eF.

See Problem 1.

Definition 5.5.4 Let V be an n-dimensional vector space over F. As-
sume that A € L(V). Denote by A,r the restriction of (4,...,A)g to
————
k
APV

Corollary 5.5.5 Let the assumptions of Definition 5.5.4 hold for F =
R,C. Then A*et4 = etArr for any t € F.
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Definition 5.5.6 A subspace U C H,, is called a commuting subspace
if any two matrices A, B € U commute.

Note that if A, B € H,, then each eigenvalue of ee? are positive. (See
Problem 4.)

Recall that a function f : D — R, where D C RY is a convex set is
called affine if f and —f are convex functions on D.

Theorem 5.5.7 Let

(5.5.8) fr:H,xH, =R, fu(A B): Zlog)\ ck=1,...,n.

(The eigenvalues of e*e® are arranged in a decreasing order.) Then f,(A, B) =
tr(A+ B) is an affine function on H,, xH,,. Assume that U,V C H,, be two
computing subspaces. Then the functions fr : U X V are convex functions
on U x V.

Proof. Clearly

fn(A, B) = log(det e“e?) = log ((det e?)(det e?)) =
log det e 4 logdet ef = tr A+ tr B = tr(A + B).

Hence f,, (A, B) is an affine function on H,, x H,,.

Assume that k& € [n — 1]. Since e“e® has positive eigenvalues for all
pairs A, B € H,, it follows that each fi is a continuous function on U x V.
Hence it is enough to show that

—

fk:( (A1 + A2), (Bl+B2)) 5 (fr(A1, Br) + fr(Az2, B2)),
(5.5.9) fork—l,...,n—l,

[\)

and for any Ay, As € U, B,, B, € V. (See Problem 5.)
We first consider the case k = 1. Since A1 Ay = A A1, B1By = B> By it
follows that

62(A1+A2) 3(B1+B2) _ 6%A26%A16%316%B2.
Observe next that
67%‘42 (6%A26%A16%316%B2)6%A2 = B%Ale%Bl BQ@%AQ =

1 1
fl(i(Al + Ay), 5(31 + By)) = Al(eéAle%Ble%Bze%Az)'
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Hence
M(ebArebBrebBaehiny < gy (3 edBrcdBacie) <
01(6%‘416%31)01(@23262‘42) =
A(e2A1edBredBiotanyd ) (ehAzedBaciBapidayd
)\1(6%‘416%’4162Ble2Bl)%)\l(e%Aze%Aze%Bze%Bz)% _
(5.5.10) Ap(edeBr)En (e42eB7)2

This proves the convexity of fi.

We now show the convexity of fi. Use Problem 6 to deduce that we may
assume that U = UD,,(R)U*,V = VD, (R)V* for some U,V € U(n). Let
U, Vi C H(Z) be two commuting subspaces defined in Problem 6(d). The
above result imply that g : Uy x Vi, — R given by g(C, D) = log(e“eP) is
convex. Hence

95 ((Ar) s + (A)), 5 (Br)e + (Ba)a) <

1

5(9((A1)Ak7 (Bi)ak) + g((A1) ax, (B1)ax))-

The definitions of (A,..., A)g and A« yield the equality 2(Axx + Bax) =
———

k
(3(A+ B))ar. Use Problem 3 to deduce that the convexity of g implies the
convexity of f. a

Theorem 5.5.8 Let A, B € H,,, k € [n]. Assume that fi,(tA,tB),t € R

is defined as in (5.5.8). Then the function M nondecreases on (0, 00).
In particular

k k
(5.5.11) Z/\i(A+B > log A(e? k=1,...,n,
; p
(5.5.12) tr eAJrB < tr(e?e®). (Golden-Thompson inequality)

Equality in (5.5.12) holds if and only if AB = BA. Furthermore, for
k € [n — 1] equality holds in (5.5.11) if and only if the following condition
hold: There exists a common invariant subspace W C C™ of A and B of
dimension k which is spanned by the first k-eigenvectors of A+ B and e?eP
respectively.

Proof. Theorem 5.5.7 yields that gx(t) := fr(tA,tB) is convex on
R. (Assume U = span (A),V = span (B) and (t,7) € R? corresponds
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to (tA,7B) € U x V .) Note that g;(0) = 0. Problem 8 implies that

gkt(t) nondecreasing on (0,00). Problem 9 implies that lim o g"'t(t) =

Zle Xi(A + B). Hence (5.5.11) holds. Theorem 5.5.7 yields equality in
(5.5.11) for k = n. Hence (5.5.11) is equivalent to

(5.5.13) XA+ B) < log A(ee?).

Apply the convex function e® to this relation to deduce (5.5.12).

We now show that equality holds in (5.5.12) if and only if AB = BA.
Clearly if AB = BA then e4etP = et(A+B) hence we have equality in
(5.5.12).

It is left to show the claim that equality in (5.5.12) implies that A and
B commutes. Since e” is strictly convex it follows that equality in (5.5.12)
yields equalities in (5.5.11). That is, A(A+B) = log A(ee?). In particular,
A (A+ B) =log M\ (eeP). Hence g’“t(t) is a constant function on (0, 1] for
k € [n]. Consider first the equality 2g; (%) = g1(1):

)\1(6%146%3)2 = X\ (e?eB).
Recall that
/\1(6%‘46%3)2 <o (e%Ae%B 2= )\1(€%A6B6%A) =\ (e?eB).

ia 1p

Hence we have the equality \;(e2“e = o1(ez%e2”). Similarly we con-

clude the equality
(5.5.14) H)\i(e%Ae%B) = Hai(e%Ae%B)

for each k € [n]. Therefore Ap(e24e2B) = gy (e24e2B) for ecach k € [n).

Theorem 4.11.12 yields that e24¢38 is a normal matrix. Hence

—~

e

1 1 1 1 lp* 1p* 1 1
62A62B:(62A62B)*:62B 62A :62A€2B.

So €34 and e2B commute. As both matrices are hermitian it follows that

there exists an orthonormal basis x,,...,x, which are eigenvectors of e34
and ez B. Clearly, x,, ..., X, are eigenvectors of A and B. Hence AB = BA.

Assume now that equality holds in (5.5.11) for k¥ = 1. Hence (5.5.14)
holds for k = 1. Let F := e%A7G = e2B, Let U,V C C" be the invariant
subspaces of FG and GF corresponding to A1 (FG) = A1 (GF) respectively.
Since F,G € GL(n,C) it follows that GU = V,FV = U. Assume that
FGx = X\, (FG)x, where ||x]|, = 1. So

M(FG) = |[FGx|l < 0, (FG) = A, (FG).
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The arguments of the proof of Theorem 4.11.12 yield that GFx = (FG)*x =
A (FG)x. Hence U = V. So FU = GU = U. Let Ay, By, F1, Gy, I; be the
restrictions of A, B, F,G, I, to U. Note that F1G; = G1F; = \M(FG)I4.
I} and Gy commute. Since Fy, G are hermitian, it follows that U has an

orthonormal basis x,,...,X,, consisting of eigenvectors of Fj, G respec-
tively. Hence x,,...,x,, are eigenvectors of A;, By respectively. Assume
that

AXiZOZiXi, BXi:ﬂiXi7 1= 1,...,m.

As F1G1 = M (FG)I4 it follows that a; + 8; = v for i = 1,...,m. Further-
more, e‘eB|y is e71;. So g1(1) =y = A\ (A + B) and A\ (e?ef) = e7. Let
W = span (x,). So W is an invariant 1-dimensional subspace of A and B,
such that it corresponds to the first eigenvalue of A + B and e“e”.
Assume now that equality holds in (5.5.11) for k € [n — 1]\ {1}. As
we showed above, this equality is equivalent to the equality (5.5.14). Let
Ay := Ay, By := B Then (5.5.14) is equivalent to Aj(ez42¢282) =
al(e%AZe%E‘)?). Our results for the case & = 1 imply that As and Bs

have a common eigenvector in C(Z), which corresponds A1 (As + By) and
A1 (e42eP2) respectively. This statement is equivalent to the existence of a
common invariant subspace W C C™ of A and B of dimension k which is
spanned by the first k-eigenvectors of A + B and e?e? respectively.

Suppose finally that there exists a common invariant subspace W C C™
of A and B of dimension k£ which is spanned by the first k-eigenvectors of
A+ B and e?e® respectively. Let Ay, By be the restrictions of A, B to W re-
spectively. Theorem 5.5.7 implies that tr(A4; + By) = Zle log \;(eAreBr).
As W is spanned by the first k-eigenvectors of A+ B and e?e? respectively,
it follows that

k k k
tr(Ay + By) = Z Xi(A+ B), Z log \;(e?1eBr) = Z log \; (e?eP).
i=1 i=1 i=1
The proof of the theorem is completed. g
Let
1
(5.5.15) C(t) = n logez*4etPertd € H,, teR\{o}.

tC(t) is the unique hermitian logarithm of a positive definite hermitian

.1 1
matrix ezt4etBezt tAptB

(5.5.16) lim C(t) = C(0) := A+ B.

4 which is similar to e . Proposition 5.5.1 yields

(See Problem 11.) In what follows we give a complementary formula to
(5.5.16).
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Theorem 5.5.9 Let A,B € H,, and assume that C(t) is be the her-

mitian matriz defined as (5.5.15). Then Zle Xi(C(t)) are nondecreasing
functions on [0,00) for k =1,...,n satisfying

(5.5.17) A(C(®#) < A(A) + A(B).
Moreover there exists C' € H,, such that

(5.5.18) lim C(t) = C,

t—o00

and C commutes with A. Furthermore there exist two permutations ¢,y
on {1,...,n} such that

(5.5.19) )\l((;') = )\¢(z) (A) + )‘111(1)(B)’ 1=1,...,n.

Proof. Assume that ¢ > 0 and let \;(t) = e®(C®) § =1 ... n be
the eigenvalues of G(t) := e2!4¢tBeat4. Clearly

1 1 1 1
/\1(t) _ ||62tAetBe2tA||2 < ||€2tA||2||€tB||2H€2tAH2 _ et(/\l(A)Jr)\l(B))'

By considering A*G(t) we deduce

k
H \i(t) < etZ?zl Ai(A)Jr)\z‘(B)’ EL=1

i=1

seeeyn, t>0.

Theorem 5.5.7 implies that for k& = n equality holds. Hence (5.5.17) holds.
Let gi(t) be defined as in the proof of Theorem 5.5.8. Clearly g"t(t) =

Zle Ai(C(t)). Since ng(t) is nondecreasing we deduce that Zle Ai(C(1))

is nondecreasing on [0, c0). Furthermore (5.5.17) shows that ng(t) is bounded.

Hence lim;_ o ng(t) exists for each k = 1,...,n, which is equivalent to
(5.5.20) lim \(C(t) =w;, i=1,...,n.
t—oo
Let

W] = . =Wpy D> Wbl = .. =Wpy > oo > Wpy_ 41 = ... =Wn,,
(5.5.21) ng=0<n; <...<n,=n.
Let wo := w1 + L,wp41 = wp, — 1. Hence for ¢ > T the open inter-
val (Ltgisl @1ty contains exactly n; — n;_1 eigenvalues of C(t) for

i = 1,...,r. In what follows we assume that ¢ > T. Let P;i(t) € H,
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be the orthogonal projection on the eigenspace of C(t) corresponding to
the eigenvalues An,_,+1(C(t)),..., A\n, (C(t)) for i = 1,...,r. Observe that
P;(t) is the orthogonal projection on the eigenspace of G(t) the eigenspace
corresponding to the eigenvalues A, ,+1(t),..., Ap, (t) fori=1,...,r. The
equality (5.5.18) is equivalent to

(5.5.22) lim P(t)=P;, i=1,...,r

t—o0

The claim that CA = AC is equivalent to the claim that AP; = P;A for
t=1,...,7.

We first show these claims for ¢ = 1. Assume that the eigenvalues of A
and B are of the form

MA) =...=A) = >N 1A)=... = ,(A) =az > ... >
Ay +1(A) = ... =X, (A) = ay,

MB)=...= X (B) =61 > An11(B) = ... = A, (B) = B2 > ... >
Amg_141(B) = ... = A, (B) = By,

(6.523) lhp=0<lh<...<lp=n, my=0<m; <...<mg=n

Note that if either p = 1 or ¢ = 1, i.e. either A or B is of the form al,
then the theorem trivially holds. Assume that p,q > 1. Let @Q;, R; be the
orthogonal projections on the eigenspaces of A and B corresponding to the
eigenvalues «; and §; respectively, for i =1,...,p,7=1,...,¢. So

p q
1 1. )
€§At — Zeiathi’ eBt — ZeBJtRj7
i=1 =1
p,p,q )
5 (o i i)t
G(t) — Z 62(a1+a2+ﬂj) QileQi2~

i1 =ig=j=1

Observe next that

K:= {(’L,]) S {1,,]?} X {1a-~-7Q}a QlRJ #0}7
P q p.q

I=0"Q)O R)=> QiRj= Y QiR;
i1 j=1 i,j=1 (i,)eK

rank Q;R; = rank (QiR;)* = rank R;Q; = rank (Q;R;)(QiR;)* = rank QiRJ?Qi,
Qi1RjQi2 = (QHRJ)(R]le) 7& 0= Qi1RjQi1 7é 07 QiszQiz 7é 0.
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(See Problem 14.) Let

Y1 = 1nax ai+ﬂj7 ICl = {(Za.]) S ]Caai+ﬂj :’Yl}a

(i,)eK
5.5.24 n' = rank QRiQi, v, = max  aj+ f;, .
( ) 1 (@ j)ZG’Cl : ! (1,)eR\K1 J

From the above equalities we deduce that K1 # (0. Assume that (4, ), (¢, ') €
K1 are distinct pairs. From the maximality of 7; and the definition of K;
it follows that i # ¢’,j # j'. Hence Q;R;Q;(Qs+R;:Qy) = 0. Furthermore
vy is well defined and 7f < 1. Let

Dy (t) := Z e(az‘Jrﬁj*"/l)tQiRjQi +
(4,5)EL\K1
Z e%(ail +Oéi2+2ﬁj72’yl)tQileQi2'
(ilxj)’(iQ)j)eK;i1¢i2

(5.5.25) D= Y QiR;Qi, D(t)=D+D(t).
(i,5)EK1

Then n} = rank D. (See Problem 15b). We claim that
(5.5.26) w1 =71, N1 =n].

From the above equalities and definitions we deduce G(t) = e"**D(t).
Hence \;(t) = e\ (D(t)). As each term e2 (@i +eia+28;=21)t 5phearing in
D (t) is bounded above by e~2(1=1) we deduce Dy (t) = e2 (=71t Dy(t)
and < ||Dz2(t)|]2 < K. Hence lim;_,o, D(t) = D. Since rank D = nf we
deduce that we have $X;(D) < XA(D(t)) < 2X(D) for i = 1,...,n}. If
n} < n then from Theorem 4.4.6 we obtain that

Xi(D(t) = Mi(D+ Di(t) < Mi(D) +Ai(Di(t) = A (Dy(t)) < ez =K,

fori=mny+1,...,n. Hence

wi=v1,i=1,...,n}, w< %(’y—l—%), i=n)+1,...,n,

which shows (5.5.26). Furthermore lim; o, Pi(t) = P;, where P; is the
projection on DC". Since Q;Q; = 9;;Q; it follows that QD = DQ, for
i =1,...,p. Hence AD = DA = AP, = PiA. Furthermore P,C" is a
direct sum of the orthogonal subspaces Q;P;Q;C", (i,5) € K1, which are
the eigen-subspaces of A corresponding to \;(A) for (¢,7) € K.

We now define partially the permutations ¢,. Assume that 1 =
{(i1,71),- -+, (0, Jo)}. Then wy = v1 = oy, + Bj, for k = 1,...,0. Let
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ep = 0 and e, = e,_1 +rank Q; R;, Q;, for k=1,...,0. Note that e, = n].
Define

¢(8) :lik—1+5_€k—l7 ¢(8) :mjk—1+8_€k:—1)
(5.5.27) fors=ep_1+1,...,e5, k=1,...,0.

Then w; = ws = )\¢(s)(z4> + )‘w(s)(B) fors=1,...,n1.
Next we consider the matrix

Gy = /\"1+1G(t) _ /\nl—o—le%AteBte%At _ e%AAnﬁlteBAnﬁlte%AAant.

So A\ (Ga(t)) = H:L:lirl A;(t) and more generally all the eigenvalues of G(t)
are for the form

ni+1
H /\j1(t) e ')‘jn,1+1(t)7 I1<in<je<...<Jm+1<n.
i=1

Since we already showed that lim;_ s M =w; fori=1,...n we

deduce that

ni+1 ) —
lim ([T Au (). A, 0 (8)F = 2 i,
i=1

t—o0

Hence all the eigenvalues of Gy(t)* converge to the above values for all
choices of 1 < j1 < j2 < ... < Jn,+41 < n. The limit of the maximal
eigenvalue of Go(t)7 is equal to 1t F9mi+@i for § = ny +1,...,ny, which
is of multiplicity ne —ni. Let P51(t) be the projection on the eigenspace
of G2(t) spanned by the first no — ny eigenvalues of Ga(t). Our results for
G(t) yield that limy_,o P21(t) = P»1, where Py 1 is the projection on a
direct sum of eigen-subspaces of A n,+1. Let W,(t) = P, (t)C™ + P,(t)C™
be a subspace of dimension ng spanned by the eigenvectors of G(t) corre-
sponding to A1(t),..., A, (t). Then P;(t) A"+ C" is the the subspace
of the form (A" Py (t)C"™) A(P2(t)C™). Since lim;_, o P;(t)C" = P,C™ and
limt oo Po 1 ($) A™MHLC™ = Py A™TIC™ we deduce that limy,oo P2 (t)C" =
W, for some subspace of dimension ny — ny which is orthogonal to P,C".
Let P, be the orthogonal projection on W,. Hence lim;_,o, P2(t) = Ps.
(See for details Problem 12.)

We now show that that there exists two permutations ¢, on {1,...,n}
satisfying (5.5.27) such that w; = agu) + By for i = ng +1,...,no.
Furthermore AP, = P, A. To do that we need to apply carefully our results
for wy,...,wn,. The logarithm of the first no—n; limit eigenvalues of Gg(t)%
has to be of the form A\, (Axni+1)) 4+ Ap(Bani+1). The values of indices a and
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b can be identified as follows. Recall that the indices ¢(i),i = 1,...,n; in
wi = Ag(i)(A) + Ay(iy(B) can be determined from the projection P;, where
P, is viewed as the sum of the projections on the orthogonal eigen-subspaces
Q:R;C", (i,7) € K1. Recall that Py 3 A" C™ is of the from A" (PC") A
(P,C™). Since P,C™ is orthogonal to P;C™ and A™ (P,C™) A (P,C™) is an
invariant subspace of A,n,+1 it follows that P,C™ is an invariant subspace
of A. It is spanned by eigenvectors of A, which are orthogonal to P;C™
spanned by the eigenvectors corresponding Ay(;y(A),7 = 1,...,n1. Hence
the eigenvalues of the eigenvectors spanning P>C" are of the form A\ (A)
for k € Iy, where Zo C {1,...,n}\{¢(1),...,¢(n1)} is a set of cardinality
ny — ny. Therefore PoQ; = Q;P>,i = 1,...,p, which implies that P,A =
AP;.

Note that A((Aani+1)) = D205 Ay (A) + Ak(A) for k € Zp. Since
Gi(t) = exAeBlezAt is similar to the matrix Hy(t) = e2BleAtezAt we
can apply the same arguments of Ha(t) := A™T1H;(t). We conclude that
that there exists a set Jo C {1,...,n}\{¢¥(1),...,%(n1)} is a set of car-
dinality ny — n1 such that A\y((Bani+1)) = D202 Ay (B) + A (B) for
k' € J>. Hence the logarithm of the limit value of the largest eigenvalue
of Gg(t)% which is equal to wy + ... + wp, + Wn, 41 Is given by ng — ny
the sum of the pairs Ag(Apni+1)) + Ap(Bpani+1). The pairing (a,b) in-
duces the pairing (k, k') in Zy x J2. Choose any permutation ¢ such that
@(1),...,6(n1) defined as above and {p(ny + 1),...¢(n2)} = Zo. We de-
duce the existence of a permutation ¢, where (1), ...,9(n1) be defined as
above, {¢(n1 + 1),...,9%(n2)} = Jo, and (¢(i),1(7)) is the pairing (k, k)
for i = ny +1,...,n2. This shows that w; = Ag)(A) + Ay (B) for

i=mn1+1,...,ny. By considering the matrices A" T1G(t) for i = 2,...,r
we deduce the theorem. o
Problems

1. Prove Proposition 5.5.3. (Hint: Show that the left-hand side of
(5.5.7) is one parameter group in ¢ with the generator (A4y,..., Ax)g.)

2. Let the assumptions of Proposition 5.5.3 hold. Assume that
A(Az) = (Al(Az% ey >\n (Az)) fori = 1, ceey k. Show that the ny...ng

7

eigenvalues of (A4i,...,Ax)g are of the form Zle Ai; (Ai), where
ji = 17-“’”7577;: 1,k

(Hint: Recall that the eigenvalues of ®¥_,ef4¢ are of the form

Hf:l efhii (40, )
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Let the assumptions of Definition 5.5.4 hold for F = C. Assume

that A(A) = (A1,...,Ay). Show that the (}) eigenvalues of A, are

Ay 4o+ N, forall 1 <iy<...<ig<n.

. Let A, B € C™*n,

(a) Show that e?e? is similar ez4eBez4,
(b) Show that if A, B € H,, then all the eigenvalues of e are real
and positive.

Let g € Cla,b]. Show that the following are equivalent

(a) g(%(xl +13)) < 2(g(x1) + g(a2)) for all z1, 2o € [a,b].

(b) g(t1m1+tawe)) < t1g(x1)+tag(zs) for all ty,te € [0,1], 81 +t2 =1
and z1, 22 € [a,b].

Hint: Fix z1,22 € [a,b]. First show that (a)=(b) for any ¢1,t2 €
[0, 1] which have finite binary expansions. Use the continuity to de-
duce that (a)=(b).

(a) Let D,(R) C H,, be the subspace of diagonal matrices. Show
that D,,(R) is a maximal commuting subspace.

(b) Let U C H,, be a commuting subspace. Show that there exists a
unitary matrix U € U(n) such that U is a subspace of a maximal
commuting subspace UD,, (R)U*.

(c¢) Show that a commuting subspace U C H,, is maximal if and
only if U contains A with n distinct eigenvalues.

(d) Let U C H,, be a commuting subspace. Show that for each
k € [n] the subspace Uy, := span (A, x : A € U) is a commuting
subspace of H(n)

k
Let A,B € H,, and assume that f;(A, B) is defined as in (5.5.8).
Prove or give a counterexample to the following claim: The function
fr : Hy x H,, = R is a convex function for k = 1,...,n — 1. (We
suspect that the claim is false.)

Let g : [0,00) — R be a continuous convex function. Show that
if g(0) = 0 the the function @ nondecreasing on (0,00). (Hint:
Observe that g(z) < %g(y) + (1= $)9(0) for any 0 <z < y.)

(a) Show that one can assume in (5.5.5) that ¢ € C.

(b) Show that if A, B € H,, then lim;« ¢ 1 log A;(e'4e!P) = X;(A+B)
fori=1,...,n.
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10.

11.

12.

Let A, B € H,,. Prove that treA™5 = tre“e® implies that AB = BA
using the conditions for equalities in (5.5.11) stated in the last part
of Theorem 5.5.8.

Let C(t) be defined by (5.5.15).

(a) Show that C'(—t) = C(t) for any ¢t # 0.
(b) Show the equality (5.5.16).

Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-, ). Let

(5.5.28)  S(U):={ueU, (u,u)y=1}, U isasubspace of V

be the unit sphere in U. (S({0}) = (.) For two subspaces of U, W C
V the distance dist(U,V) is defined to be the Hausdorfl distance
between the unit spheres in U, W:
dist(U, V) := max( max min |jlu—v]||, max min ||v—ul|),
ues(U) ves(V) ves(V) ues(u)
(5.5.29)
dist({0}, {0}) = o,dist({0}, W) = dist(W,{0}) = 1 if dim W > 1.

(a) Let dim U,dim V > 1. Show that dist(U,V) < 2. Equality
holds if either UN (V)* or UL NV are nontrivial subspaces. In
particular dist(U, V) = 2 if dim U # dim V.

(b) Show that dist is a metric on Gr(V) := U __ Gr(m, V).

(¢) Show that Gr(m, V) is a compact connected space with respect
to the metric dist(-,-) for m = 0,1...,n. (I.e. for each sequence
of m~dimensional subspaces U;,7 € N one can choose a subse-
quence ij,j € N such that U;;,j € N converges in the metric
dist to U € Gr(m, V). Hint: Choose an orthonormal basis in
each Uj;.)

(d) Show that Gr(V) is a compact space with the metric dist.

(e) Let U,U; € Gr(m,V),i € Ny1 <m < n. Let P,P, € S(V)
be the orthogonal projection on U, U; respectively. Show that
lim;_, o, dist(U;, U) = o if and only if lim;_,, P; = P.

(f) Let U; € Gr(m, V), W, € Gr(I,V),1 <m,l and U; L W; for
i € N. Assume that lim;_, dist(U;, U) = o and
dist((A™ U;) AW, X) = o for some subspaces U € Gr(m, V),
X € Gr(l, A" V). Show that there exists W € Gr(l, V) or-
thogonal to U such that lim;_, . dist(W;, W) = o.
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13. Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-,-). Let m € [n —1]NN and assume that U, W €

Gr(m, V). Choose orthonormal bases {u,, ..., un}, {w,,...,wp,}in
U, W respectively. Show
(a) det ({wi, w;))7%=, = det ({w;,u))_,.
(b) Let x,,...,X;, another orthonormal basis in U, i.e.
Xi = Y e QeiUk, 4 = 1,...,m where Q = (qr;) € F™*™ is

orthogonal for F = R and unitary for F = C. Then
det (<Xi’wj>)zlj:1 = det Qdet (<uk,Wj>)ij:1-
(c) [U, W] := |det ((u;, w;))7_,| is independent of the choices of

orthonormal bases in U, W. Furthermore [U, W] =[W,U].
(d) Fix an orthonormal basis in {w,,...,w;,} in W. Then there
exists an orthonormal basis {u,,...,u,,} in U such that the
matrix ((u;, w;))i"_, is upper triangular. Hint: Let W; =
span (Wit,,...,w,) fori=1,...,m—1. Consider span (w,)N

U which has dimension m — 1 at least. Let U, be an m — 1
dimensional subspace of span (w,)* NU. Let u, € S(U)NUL.
Use U,,V, to define an m — 2 dimensional subspace U, C U,
and u, € S(U,)N U as above. Continue in this manner to find

an orthonormal basis {u,, ..., un}.
(e) [U,W] < 1. ([U, W] is called the cosine of the angle between
U, W)

(f) [U,V] =0 <= UtNV #{0} «— UNV, +#{0}. Hint:

Use (d) and induction.
14. Let V be an n-dimensional inner product space over F = R,C,
with the inner product (-,-). Let I,m € [n] NN and assume that

U € Gre([,V),W € Gr(m,V). Let P,Q € S(V) be the orthogonal
projections on U, W respectively. Show

(a) U+ W=UnNWaUnN(UNW)tawn(UnWw)-.

(b) rank PQ = rank QP = rank PQP = rank QPQ.

(c) rank PQ = dim W —dim WN U, rank QP = dim U —dim UnN
W,

15. Let V be an n-dimensional inner product space over F = R, C, with
the inner product (-,-). Assume that V = @l_ U; = @72, W, be two
decompositions of V to nontirivial orthogonal subspaces:
dmU; =l; —l;—,,i=1,...,p, dmW;=m; —m;_,, j=1,...,q,

O=l<h<...<lp=n, 0=mg<m; <...<myg=n.
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Let Q;,R; € S(V) be the orthogonal projections on U;, W, re-
spectively for ¢ = 1,...,p,7 = 1,...,q. Let n;; := rank Q;R;,i =
1,....,p,j=1,...,q.

Denote K := {(3,5) € {1,...,p} x {1,...,¢} : Q;R; # 0}. For
ie{l,...,p},7€{1,...,q} let

Ji={je{l,....q}, (i,i) €K}, IZ;:={i €{1,...,p},(i,j) € K}
Show

(b) Let (i1,41),---,(is,Js) € K and assume that i, # i, Jo # Jo-

Then
s s s
rank Y Q;, Ry, =rank (3 Qi R;,)O_QiR;,)" =
a=1 a=1 a=1
s s s
rank Z QiaRjaQia = Z rank QiaR’jaQia = Z rank Qia Rja'
a=1 a=1 a=1

(c) rank P; <37 7 njj, where strict inequality may hold

(d) Ul = Zjeji Uij, where Uij = Pin,dim Uij = Nyj for i =
1,...,p,5=1,...,q.

(©) Q) =Yier, Qs 5= 1,0

(f) rank Q; < Ziezj njj, where strict inequality may hold.

g) W, =>._~ W, where W;; = Q,;U;,dim W,; = n,;,; for j

J i€Z; Vi J J J J

1,...,q,t=1,...,p.

5.6 Historical remarks

§5.1 and §5.2 are standard. The results of §5.3 are taken from Brualdi-
Friedland-Pothen [BFP95]. The first part of §5.4 is standard. The second
part of §5.4, which starts from Theorem 5.4.6, continues our results from
Chapter 4. The results of §5.5 are well known to the experts. Identity
5.5.6 is called the Lie-Trotter formula. Theorem 5.5.7 is taken from Cohen-
Friedand-Kato-Kelly [CFKK82]. Inequality (5.5.12) is called Golden-Thompson
inequality [Gol57, Tho65]. See also [Pet88, S092]. Theorem 5.5.9 is taken
from Friedland-So [FrS94] and Friedland-Porta [FrP04].
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Chapter 6

Nonnegative matrices

6.1 Graphs

6.1.1 Undirected graphs

An undirected graph is denoted by G = (V| E). It cousists of vertices v € V|
and edges which are unordered set of pairs (u, v), where u,v € V, and u # v,
which are called edges of G. w and v are called the end points of (u,v).
The set of edges in G is denoted by E. Let n = #V be the cardinality of
V, i.e. V has n vertices. It is useful to identify V' with [n]. For example,
the graph G = ([4],{(1,2), (1,4),(2,3),(2,4),(3,4)}) has 4 vertices and 5
edges.

In what follows we assume that G = (V, E) unless stated otherwise. A
graph H = (W, F) is called a subgraph of G = (V, E) if W is a subset
of V and any edge in F' is an edge in E. Given a subset W of V' then
EW) ={(u,v) € E,u,v € W} is the set of edges in G induced by W. The
graph G(W) := (W, E(W)) is call the subgraph induced by W. Given a
subset F' of E, then V(F) is the set of vertices which are end points of F'.
The graph G(F) = (V(F), F) is called the subgraph induced by F.

The degree of v, denoted by deg v is the number of edges that has v as
its vertex. Since each edge has two different vertices

(6.1.1) D degv = 24E,
veV

where #FE is the number of edges in F. v € V is called an isolated vertex
if deg v = 0. Note that V(FE) is the set of nonisolated vertices in G, and
G(E) = (V(E), F) the subgraph of G obtained by deleting isolated vertices
in G.

321
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The complete graph on n vertices is the graph with all possible edges. It
is denoted by K,, = ([n],&,), where &, = {(1,2),...,(1,n),(2,3),...,(n —
1,n)}. For example, K3 is called a triangle. Note that for any graph on
n vertices G = ([n], E) is a subgraph of K, obtained by erasing some of
edges in K,,, but not the vertices! I.e. E C &,.

G = (V,E) is called biparite if V is a union of two disjoint sets of
vertices V1 U V5 so that each edge in E connects some vertex in V; to some
vertex in Fo. Thus F C Vi X Vo = {(v,w),v € Vi,w € Va}. So any
bipartite graph D = (V4 U V5, E) is a subgraph of the complete bipartite
graph Ky, v, := (V1 UV, Vi x V). For positive integers I, m the complete
bipartite graph on I, m vertices is denoted by K, := ([[] U [m], []] x [m]).
Note that K ,, has [ + m vertices and Im edges.

6.1.2 Directed graphs

A directed graph, abbreviated as digraph, is denoted by D = (V,E). V
is the set of vertices and F is the set of directed edges, abbreviated as
diedges, in G. So E is a subset of V x V = {(v,w),v,w € V. Thus
(v,w) € E is a directed edge from v to W. For example, the graph
D = ([4],{(1,2),(2,1),(2,3),(2,4),(3,3),(3,4), (4,1)}) has 4 vertices and
7 diedges.

The diedge (v,v) € E is called a loop, or selfloop.

deginv = #{(w,v) € E}? degoutv = #{(an) € E}7

the number of diedges to v and out of v in D. deg;,,,deg,,; are called the
in or out degrees. Clearly we have the analog of (6.1.1)

(6.1.2) Z deg;,,v = Z deg, v = #E,

veV veV

A subdigraph H = (W, F) of D = (V,E) and the induced subdigraphs
D(W) = (W,E(W)),D(F) = (V(F), F) are defined as in §6.1.1. v € V is
called isolated if deg,,, (v) = deg,,,.(v) = 0.

6.1.3 Multigraphs and multidigraphs

A multigraph G = (V, E) has undirected edges, which may be multiple, and
may have multiple loops. A multidigraph D = (V, E) may have multiple
diedges.

Each multidigraph D = (V, E) induces an undirected multigraph G(D) =
(V, E"), where each diedge (u,v) € E is viewed as undirected edge (u,v) €
E'. (Each loop (u,u) € E will appear twice in E’.) Vice versa, a multigraph
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G = (V, E’) induces a multidigraph D(G) = (V, E), where each undirected
edge (u,v) induces diedges (u,v) and (v,u), when u # v. The loop (u,u)
appears p times in D(G) if it appears p times in G.

Most of the following notions are the same for graphs, digraphs, multi-
graphs or multidigraphs, unless stated otherwise. We state these notions
for directed multidigraphs D = (V, E') mostly.

Definition 6.1.1

1.

10.

A walk in D = (V, E) a given by vov1 ... v,, where (v;_1,v;) € E for
i=1,...,p. One views it as a walk that starts at vy and ends at vp,.
The length of the walk p, is the number of edges in the walk.

A path is a walk where v; # v fori # j.
A closed walk is walk where v, = vy.

A cycle is a closed walk where v; # v; for 0 < i < j <p. A loop
(v,v) € E is considered a cycle of length 1. Note that a closed walk
vwv, where v # w, is considered as a cycle of length 2 in a digraph,
but not a cycle in undirected multigraph!

D is called a diforest if D does not have cycles. (A multigraph with
no cycles is called forest.)

Let D = (V, E) be a diforest. Then the height of v € V', denoted by
height(v) is the length of the longest path ending at v.

Two vertices v,w € V,v # w are called strongly connected if there
exist two walks in D, the first starts at v and ends in w, and the
second starts in w and ends in v. For multigraphs G = (V, E) the
corresponding notion is u,v are connected.

A multidigraph D = ([n], E) is called strongly connected if either
n=1and (1,1) € E, orn > 1 and any two vertices in D are strongly
connected.

A multigraph G = (V, E) is called connected if eithern =1, orn > 1
and any two vertices in G are connected. (Note that a simple graph on
one vertex G = ([1],0) is considered connected. The induced directed
graph D(G) = G is not strongly connected.)

Assume that a multidigraph D = (V, E) is strongly connected. Then
D is called primitive if there exists k > 1 such that for any two
vertices u,v € V there exists a walk of length k which connects u and
v. For a primitive multidigraph D, the minimal such k is called the
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11.

12.

13.

1.

15.

16.
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index of primitivity, and denoted by indprim(D). A strongly connected
multidigraph which is not primitive is called imprimitive.

For W C V, the multidisubgraph D(W) = (W, E(W)) is called a
strongly connected component of D if D(W) is strongly connected,
and for any W G U C V the induced subgraph D(U) = (U, E(U)) is
not strongly connected.

For W C V, the subgraph G(W) = (W, E(W), of multigraph G =
(V,E), is called a connected component of G if G(W) is connected,
and for any W G U C V the induced subgraph G(U) = (U, E(U)) is
not connected.

A forest G = (V, E) is called a tree if it is connected.

A diforest D = (V, E) is called a ditree if the induced multigraph G(D)
18 a tree.

Let D = (V,E) be a multidigraph. The reduced (simple) digraph
D, = (V,,E,) is defined as follows. Let D(V;),i = 1,...,k be all
strongly connected components of D. Let Vo = V\(UE_, Vi) be all
vertices in D which do not belong to any of strongly connected com-
ponents of D. (It is possible that either Vi is an empty set or k =0,
i.e D does not have connected components, and the two conditions are
mutually exclusive.) Then V, = (Uyev, {v}) UF_, {Vi}, i.e. V, is the
set of all vertices in V' which do mot belong to any connected compo-
nent and the new k vertices named {Vi},...,{Vi}. A vertex v’ €V,
is viewed as either a set consisting of one vertexr v € Vi or the set V;
for somei=1,..., k. Then E, does not contain loops. Furthermore
(s,t) € E,, if there exists an edge from (u,v) € E, where u and v are
in the set of vertices represented by s and t in V, respectively.

Two multidigraphs Dy = (V1, E1), Da = (Va, E3) are called isomor-
phic if there exists a bijection ¢ : Vi — Vo which induces a bijection
¢ : Ey — Es. That is if (u1,v1) € Ey is a diedge of multiplicity k
in Ey then (p(ur), ¢(v1)) € Es is a diedge of multiplicity k and vice
versa.

Proposition 6.1.2 Let G = (V, E) be a multigraph. Then G is a dis-
joint union of its connected components. That is, there is a unique de-
composition of V' to UE_, Vi, up to relabeling of Vi, ..., Vi, such that the
following conditions hold:

1.

Vi,..., Vi are nonempty and mutually disjoint.
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2. Fach G(V;) = (V;, E(V;)) is a connected component of G.
3. EBE=Uf,V,.

Proof. We introduce the following relation ~ on V. First, we assume
that v ~ v for each v € V. Second, for v,w € V,v # w we say that v ~ w if
v is connected to w. It is straightforward to show that ~ is an equivalence

relation. Let Vi,..., Vs be the equivalence classes in V. That is v,w € V;
if and only if v and w are connected. The rest of the proposition follows
straightforward. O

Proposition 6.1.3 Let D = (E,V) be a multidigraph. Then the re-
duced digraph D, is a diforest.

See Problem 6 for proof.

Proposition 6.1.4 Let D = (V, E) be a multidigraph. Then D is di-
forest if and only if it is isomorphic to a digraph D1 = ([n], E1) such that
if (i,7) € Eq then i < j.

Proof. Clearly, D; can not have a cycle. So if D is isomorphic to
D, then D is a diforest. Assume now that D = (V| E) is a diforest. Let
V; be all vertices in V having height ¢ for ¢ = 0,...,k > 0, where k is
the maximal height of all vertices in D. Observe that from the defini-
tion of height it follows that if (u,v) € D, where v € V;,w € V; then
i < j. Rename the vertices of V such that V; = {n; +1,...,n;41} where
0=ng <n; <...<ngy1 =n:=#V. Then one obtains the isomorphic
graph Dy = ([n], E1), such that if (i,5) € Eq then ¢ < j. O

Theorem 6.1.5 Let D = (V, E) be as strongly connected multidigraph.
Assume that #V > 1. Let £ be the g.c.d, (the greatest common divisor),
of lengths of all cycles in D. Then exactly one of the following conditions
hold.

1. £ =1. Then D is primitive. Let s be the length of the shortest cycle
in D. Then indprim(D) < #V +s(#V —2).

2. ¢ >1. Then D is imprimitive. Furthermore, it is possible to divide
V to £ disjoint nonempty subsets Vy,...,Vy such E C Ulevi X Vig1,
where Vyyq = V.

Define D; = (V;, E;) to be the following digraph. (v,w) € E; if there
s a path or cycle of length ¢ from v to w in D, fori=1,...,1. Then
each D; is strongly connected and primitive.
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The proof of this theorem is given in 6.3. If D is a strongly connected
imprimitive multidigraph, then ¢ > 1 given in (2) is called the index of
imprimitivity of D.

6.1.4 Matrices and graphs

Denote by Ry D Z the set of nonnnegative real numbers and nonnegative
integers respecively. Let S C C. By S,(S) € 8**" denote the set of all
symmetric matrices A = [a;;],a;; = a;; with entries in §. Assume that
0 € §. Then by S,,0(S) C Su(S) the subset of all symmetric matrices
with entries in S and zero diagonal. Denote by 1 = (1,...,1)" € R»
the vector of length n whose all coordinates are 1. For any ¢t € R, we let
signt = 0if t = 0 and signt = |tT| ift #0. For A € R™*" we denote
A>0,A>0,4A>0if Ais anonnegative matrix, a nonnegative nonzero
matrix, and a positive matrix respectively. For A, B € R™*™ we denote
B>AB>AB>AifB-A>0B—-A>0,B—A>0.

Let D = (V, E) be a multidigraph. Assume that #V = n and label the

vertices of V as 1,...,n. We have a bijection ¢; : V — [n]. This bijection
induces an isomorphic graph D; = ([n], F1). With D; we associate the
following matrix A(D1) = [ay]f;—; € Z}7*". Then a;; is the number of

directed edges from the vertex ¢ t the vertex j. (If a;; = O then there no
diedges from ¢ to j.) When no confusion arises we let A(D) := A(D), and
we call A(D) the adjacency matriz of D. Note that a different bijection
¢2 : V — [n] gives rise to a different A(Ds), where A(Dy) = PTA(D;)P
for some permutation matrix P € P,. See Problem 9.

If D is a simple digraph then A(D) € {0,1}™*™. If D is a multidigraph,
then a;; € Z, is the number of diedges from i to j. Hence A(G) € Z*". If
G is a multigraph then A(G) = A(D(G)) € Sy(Zy4). If G is a simple graph
then A(G) € Sn0({0,1}).

Proposition 6.1.6 Let D = (V, E) be a multidigraph on n vertices. Let
A(D) be a representation matriz of D. For an integer k > 1 let A(D)* =

[agf)] € 21", Then az(-f) is the number of walks of length k from the vertex

i to the vertex j. In particular, 1T A1 and tr A are the total number of
walks and the total number of closed walks of length k in D.

Proof. For k = 1 the proposition is obvious. Assume that k£ > 1.
Recall that

k
(6.1.3) a,(j) = Z iy Qi « - - Qg _y e

i1,eeip—1€[N]
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The summand ag;, @4, - - - @4,,_,; gives the number of walks of the form
igi1ts . .. ix—1%k, where 39 = 4,4 = j. Indeed if one of the terms in this
product is zero, i.e. the is no diedge (¢p, ip+1) then the product is zero. Oth-
erwise each positive integer a; ;,,, counts the number of diedges (ip, ip41)-
Hence i, @i, - - - a4y, _,j is the number of walks of the form ig1%2 . . . ix—1¢k.
The total number of walks from ¢ = ig to j = i; of length k is the sum
given by (6.1.3). To find out the total number of walks in D of length & is

Z?:jzl agf) = 1T A1. The total number of closed walks in D of length & is

Siiag) =AD" 0

With a multibipartite graph G = (V1UVa, E), where #V; = m, #Va = n,
we associate a representation matrix B(G) = [bj;];i2}_, as follows. Let
1 : Vi = [m],¢1 : Vo — [m] be bijections. This bijection induces an
isomorphic graph Dy = ([m] U [n], E1). Then b;; is the number of edges
connecting i € [m] to j € [n] in D;.

A nonnegative matrix A = [a;;]j_;_; € R}*" induces the following
digraph D(A) = ([n], E). The diedge (i, j) is in E if and only if a;; > 0.
Note that of A(D(A)) = [signa;] € {0,1}"*". We have the following
definitions.

Definition 6.1.7

1. A = [a;;] € R™*" is combinatorially symmetric if sign a;; = sign aj
fori,j=1,... n.

2. Assume that A € R}*"™. Then A is irreducible if D(A) is strongly
connected. Otherwise A is called reducible.

3. A e RV is primitive if AF s a positive matriz for some integer
k>1.

4. Assume that A € R*™ is primitive. Then the smallest positive inte-
ger k such that A* > 0 is called the index of primitivity of A, and is
denoted by indprim(A).

5. A e RY™ is imprimitive if A is irreducible but not primitive.

Proposition 6.1.8 Let D = ([n], E) be a multidigraph. Then D is

strongly connected if and only if (I + A(D))"~! > 0. in particular, a
nonnegative matriz A € R*™ is irreducible if and only if (I + A)"~! > 0.

Proof. Apply the Newton binomial theorem for (14#)"~! to the matrix
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(I+AD)"!

(I+A(D)"" = ; <” - 1) A(D).

p

Recall that all the binomial coefficients (";1) are positive forp =0,...,n—
1. Assume first that (I + A(D))"~! > 0. That is for any i, j € [n] the (i, j)
entry of (I + A(D))"~! is positive. Hence the (i,j) entry of A(D)? is
positive for some p = p(i,5). Let i # j. Since A(D)? = I, we deduce that
p(i,7) > 0. Use Proposition 6.1.6 to deduce that there is a walk of length
p from the vertex i to the vertex j.

Suppose that D is strongly connected. Then for each i # j we must
have a path of length p € [1,n — 1] which connects i and j, see Problem
1. Hence all off-diagonal entries of (I + A(D))"~1 are positive. Clearly,
(I + A(D))"~' > I. Hence (I + A(D))"~* > 0.

Let A € R*". Then the (i, j) entry of (I4+A)"~! is positive if and only
if the (i, j) entry of (I + A(D(A)))"~* is positive. Hence A is irreducible if
and only if (I + A)"~! > 0. O

Problems

1. Assume v; ...v, is a walk in multidigraph D = (V, E). Show that it
is possible to subdivide this walk to walks vy, ;41...0n,,2=1,...,q,
where ng = 0 < n; < ... < ng = p, and each walk is either a cycle,
or a maximal path.

Erase all cycles in v; ... v, and apply the above statement to the new
walk. Conclude that a walk can be “decomposed” to a union of cycles
and at most one path.

2. Let D be a multidigraph. Assume that there exists a walk from v to
w. Show that

(a) if v # w then there exists a path from v to w of length #V — 1
at most;

(b) if v = w there exists a cycle which which contains v, of length
#V at most.
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3. Let G = (V, E) be a multigraph. Show that the following are equiva-
lent.

(a) G is bipartite;
(b) all cycles in G have even length.

4. Assume that G = (V, E) is a connected multigraph. Show that the
following are equivalent.

(a) G is imprimitive;
(b) G is bipartite.

5. Let D = (V, E) be a multidigraph. Assume that the reduced graph D,
of D has two vertices. List all all possible D, up to the isomorphism,
and describe the structure of all possible corresponding D.

6. Prove Proposition 6.1.3.

7. Let A(D) € Z*™ be the representation matrix of the multidigraph
D = ([n], E). Show that A(D)+ A(D)T is the representation matrix
of the multigraph G(D) = ([n], E’) induced by D.

8. Let G = ([n], E’) be an multigraph, with the representation matrix
A(G) € Su(Zy4). Show that A(G) is the representation matrix of the
induced multidigraph D(G). In particular, if G is a (simple) graph,
then D(G) is a (simple) digraph with no loops.

9. Let D = (V,E),D; = (V4, E1) be two multidigraphs with the same
number of vertices. Show that D and D; are isomorphic if and only
if A(D,) = PTA(D)P for some permutation matrix.

10. Let G = (V4 U V,, E) be a bipartite multigraph. Assume that #V; =
m,#Vo = n and B(G) € ZT*" is a representation matrix of G.
Show that a full representation matrix of G is of the form A(G) =

Omxm  B(G)
B(G)T Opnxn

6.2 Perron-Frobenius theorem

The aim of this section to prove the Perron-Frobenius theorem.

Theorem 6.2.1 Let A € Rﬁxn be an irreducible matriz. Assume that
n>1. Then

1. The spectral radius of A, p(A), is a positive eigenvalue of A.
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p(A) is an algebraically simple eigenvalue of A.

To p(A) corresponds a positive eigenvector 0 < u € R", i.e. Au =
p(A)u. (u is called the Perron-Frobenius vector of A.)

All other eigenvalues of A of A satisfy the inequality |\| < p(A) if and
only if A is primitive, i.e. A¥ >0 for some integer k > 1.

Assume that A is imprimitive, i.e. not primitive. Then there exists
exactly h—1 > 1 distinct eigenvalues Ay, ..., A\p—1 different from p(A)
and satisfying |\;| = p(A). Furthermore, the following conditions
hold.

(a) A; is an algebraically simple eigenvalue of A fori=1,... ,h—1.

%JZl,...,h—l and 1 are all h roots

of unity, i.e. \; = p(A)e%Fi fori=1,...,h—1. Furthermore,
if Az; = \iz;,2; # 0 then |z;| = u > o, the Perron-Frobenius
etgenvector u given in 3.

(c) Let ¢ be any h-root of 1, i.e. (" = 1. Then the matriz CA is
similar to A. Hence, if X is an eigenvalue of A then (X is an

eigenvalue of A having the same algebraic and geometric multi-
plicity as .

(d) There exists a permutation matriz P € P,, such that PT AP = B
has a block h-circulant form

(b) The complex numbers

0 By 0 0 0 0
0 0 By 0 0 0
B= ,
0 0 0 0 : 0 Bpun
| B,y 0 0 0 i 00

Bi(i-‘rl) S Rnixni+lai = 17 ey h’a Bh(h+1) = Bh17

Npy1 = N1,N1 + ...+ Nnp =n.
Furthermore, the diagonal blocks of B" are all irreducible prim-
itive matrices, i.e.

(6.2.1)
C;:= Bi(i+1) . B(h—l)hBhl . B(i—l)i S RTXW’, i=1,...,h,

are irreductble and primitive.
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Note that the 1 x 1 zero matrix is irreducible. Hence Theorem 1 excludes
the case n = 1.

Our proof follows closely the proof of H. Wielandt [Wie50]. For a non-
negative matrix A = [a,;;] € R*" define

(6.2.2) r(x) = min (Ax);

T
‘ , where x = (2,,...,2,) >0.
1,T;>0 Ty

It is straightforward to show, e.g. Problem 1, that
(6.2.3) r(x) = max{s > o, sx < Ax}.

Theorem 6.2.2 (Wielandt’s characterization) Let n > 1 and A =
lai;] € RY*™ be irreducible. Then
(AX)Z‘

6.2.4 = i =p(A) > o.
( ) ngT(X) x:(mlT?‘fn)ng iglilgo iz p< ) ©

The mazimum in the above characterization is achieved exactly for allx > 0
of the form x = au, where a > 0 and u = (u,,...,u,)" > 0 is the unique
positive probability vector satisfying Au = p(A)u. Moreover, p(A) is a
geometrically simple eigenvalue.

Proof. Let r(A) := supy5or(x). So r(4) > (1) = min; >_;_,
Since an irreducible A can not have a zero row, e.g. Problem 2, it follows
that r(A) > r(1) > o. Clearly, for any x > 0 and a > 0 we have r(ax) =
r(x). Hence

Qjj.

(6.2.5) r(A) = supr(x) = sup r(x).
x>0 x€ell,

Since A is irreducible, (I + A)"~1 > 0. Hence for any x € I, y = (I +
A)"*x > 0. (See Problem 3a.) As r(y) is a continuous function on
(I + A)"~1,, and II,, is a compact set, it follows that r(y) achieves its
maximum on (I + A)"~!1L,

r1(A) = max = r(v), for some v in (I + A)"*II,.
YE(IJFA)n_lHn

r(A) is defined as the supremum of r(x) on the set of all x > 0 it follows
that 7(A) > r1(A). We now show the reversed inequality r(A) < r1(A4)
which is equivalent to r(x) < r,(A) for any x > 0.

One has the basic inequality

(6.2.6) r(x) <r((I+A)" 'x),x >0, with equality iff Ax = r(x)x,
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see Problem 3d. For x € II,, we have r(x) < r((I + A)" 'x) < r,(4). In
view of (6.2.5) we have r(A) < r1(A). Hence r(A4) = r1(A).

Suppose that r(x) = r(A),x > 0. Then the definition of r(A) (6.2.5)
and (6.2.6) yields that r(x) = r((I + A)"~*x). The equality case in (6.2.6)
yields that Ax = r(A)x. Hence (1 + r(4))" 1x = (I + A)" 'x > 0,
which yields that x is a positive eigenvector corresponding to the eigenvalue
r(A). So x = au,a > o for the corresponding probability eigenvector
u=(u,...,u,) ", Au=r(4)u.

Suppose that r(z) = r(A) for some vector z = (z,,...,2,)" > 0. So
z >0 and Az = r(A)z. Let b = min; Z-. We claim that z = bu. Otherwise
w =z —bu > 0, w has at least one coordinate equal to zero, and Aw =
r(A)w . So r(w) = r(A). This is impossible since we showed above that
w > 0! Hence z = bu. Assume now that y € R™ is an eigenvector of A
corresponding to r(A). So Ay = r(A)y. There exists a big positive number
¢such that z = y+cu > 0. Clearly Az = r(A)z. Hence r(z) = r(A) and we
showed above that z = bu. Soy = (b — c¢)u. Hence r(A) is a geometrically
simple eigenvalue of A.

We now show that r(A) = p(A). Let A # r(A) be another eigenvalue of
A, which may be complex valued. Then

n
(/\Z)i = \z; = (Az)i = Zaiij, 1=1,...,M,
j=1

where 0 # z = (z,,...,2,)' € C" is the corresponding eigenvector of
A. Take the absolute values in the above equality, and use the triangle
inequality, and the fact that A is nonnegative matrix to obtain

Azl <Y aglel i=1.n.
j=1

Let |z| := (|z1],.--,]2a])T = 0. Then the above inequality is equivalent to

|A| |z] < Alz|. Use (6.2.3) to deduce that |[A| < r(|z|). Since r(|z]) < r(A)

we deduce that |[A\| < r(A). Hence p(A) = r(A), which yields (6.2.4). O

Lemma 6.2.3 Let A € R*" be an irreducible matriz. Then p(A) is
an algebraically simple eigenvalue.

Proof. Clearly, we may assume that n > 1. Theorem 6.2.2 implies that
p(A) is geometrically simple, i.e. nul (p(A)I —A) = 1. Hence rank (p(A)I—
A) =n — 1. Hence adj (p(A)I — A) = tuv ', where Au = p(A)u, ATv =
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p(A)v,u,v >0 and 0 # ¢t € R. Note that uv' is a positive matrix, hence

truv' =v'u> 0. Since

(det (AT — A))'(A = p(A)) = tradj (p(A)L = A) = t(v ) £ o,

we deduce that p(A) is a simple root of the characteristic polynomial of A.

O
As usual, denote by S! := {z € C,|z| = 1} the unit circle in the complex
plane

Lemma 6.2.4 Let A € R™" be irreducible, C € C"*". Assume that
|C| < A. Then p(C) < p(A). FEquality holds, i.e. there exists \ € spec C,
such that X = (p(A) for some ¢ € S, if and only if there exists a complex
diagonal matriz D € C™"*™  whose diagonal entries are equal to 1, such that
C = (DAD™'. The matriz D is unique up to a multiplication by t € S*.

Proof. We can assume that n > 1. Assume that A = [a;;],C = [¢;5].
Let z = (2,,...,2,)" # 0 be an eigenvector of C' corresponding to an
eigenvalue A, i.e. Az = Cz. The arguments of the proof of Theorem 6.2.2
yield that |A| |z] < |C| |z|. Hence |A| |z| < |A| |z|, which implies that
Al < r(Jz]) < r(A) = p(A).

Suppose that p(C) = p(A). So there exists A € spec C, such that |A\| =
p(A). So X = (p(A) for some ¢ € S'. Furthermore, for the corresponding
eigenvector z we have the equalities

Al |2 = |C2| = |C] |2| = Alz| = r(A)[z|.

Theorem 6.2.2 yields that |z| is a positive vector. Let z; = d;|z], |d;| = 1
for i = 1,...,n. The equality |Cz| = |C| |z| = A|z| combined with the
triangle inequality and |C| < A, yields first that |C| = A. Furthermore for
each fixed ¢ the nonzero complex numbers c¢;121, ..., ¢inz, have the same
argument, i.e. ¢;; = Ciaijc?j for j =1,...,n and some complex number (j,
where |(;| = 1. Recall that Az; = (Cz),;. Hence ¢; = (d; for i = 1,...,n.
Thus C = (DAD™!, where D = diag(dy,...,d,). It is straightforward to
see that D is unique up tD for any t € S'.

Suppose now that for D = diag(ds,...,dy), where |d1| = ... =|d,| =1
and |¢| = 1 we have that C = ¢(DAD~!. Then \;(C) = (\(A) for
i=1,...,n. So p(C) = p(A). Furthermore ¢;; = (d;c;;jd;,i,j = 1,...,n.
So |C| = A. O

Lemma 6.2.5 Let (1,...,(, € S be h distinct complex numbers which
form o multiplicative semi-group, i.e. for any integers i,j € [1,h] (;(; €
{C1,...,Cn}. Then the set {(1,...,Cn} is the set, (the group), of all h roots

2mi/—T .
ofl: e » ,i=1,... h.
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Proof. Let ¢ € T := {(1,...¢n}. Consider the sequence (%,i = 1,....
Since ¢*t! = (¢ fori =1,..., and T is a semigroup, it follows that each (’
isin 7. Since T is a finite set, we must have two positive integers such that
¢* = ¢! for k < 1. Assume that k and [ are the smallest possible positive

integers. So ¢(? =1, where p =l—k > 1, and T, := {¢,(?,..., (P71, (P =1}
npp V=1
are all p roots of 1. ( is called a p-primitive root of 1. Le. ( = e%

where p; is an positive integer less than p. Furthermore p; and p are
coprime, which is denoted by (p1,p) = 1. Note that ¢* € T for any integer
i.

Next we choose ¢ € T, such that ( is a primitive p-root of 1 of the
maximal possible order. We claim that p = h, which is equivalent to the
equality 7 = T,. Assume to the contrary that 7, C 7. Let n € T\7,. The
previous arguments show that n = is a ¢-primitive root of 1. So 7, C T,
and T, € Tp. So g can not divide p. Also the maximality of p yields that
g < p. Let (p,q) = r be the g.c.d., the greatest common divisor of p and q.
So 1 <r < q. Recall that Euclid algorithm, which is applied to the division
of p by g with a residue, yields that there exists two integers i, j such that

ip+jqg =r. Let [ := 22 > p be the least common multiplier of p and q.

2m/=T 2 /=T
Observe that (' =e~ » €T, =e ¢« €T, So

= ()Y = T = e T
As ¢ is an [-primitive root of 1, we obtain a contradiction to the maximality
of p. So p=~h and T is the set of all h-roots of unity. O

Lemma 6.2.6 Let A € R}" be irreducible, and assume that for a
positive integer h > 2, A has h — 1 distinct eigenvalues A1, ..., \p_1, which
are distinct from p(A), such that |A\1| = ... = |An—1| = p(A). Then the
conditions (5a-5c) of Theorem 6.2.1 hold. Moreover, PT AP = B, where B
is of the form given in (5d) and P is a permutation matric.

Proof. Assume that (; := % €Stfori=1,...,h—1and ¢ =
1. Apply Lemma 6.2.4 to C = A and A = (;p(A) to deduce that A =
CiDiAD;I where D, is a diagonal matrix such that [D| =1 fori=1,...,h.
Hence, if A is an eigenvalue of A then (;\ is an eigenvalue of A, with an
algebraic and geometrical multiplicity as . In particular, since p(A) is an
algebraically simple eigenvalue of A, \; = (;p(A) is an algebraically simple
of Afori=1,...,h—1. This establish (5a).

Let T ={¢1,...,(n} Note that
(6.2.7)

A= GDiAD; = iDi(¢D;AD; ) Dt = (GiG)(DiDy) A(Di D)~
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So (i¢jp(A) is an eigenvalue of A. Hence (;¢; € T, i.e. T is a semigroup.
Lemma 6.2.5 yields that {(i,...,(,} are all h roots of 1. Note that if
Az; = N\iz;,z; # 0, then z; = tD;u for some 0 # t € C, where u > 0 is
the Perron-Frobenius vector given in Theorem 6.2.1. This establish (5b) of
Theorem 6.2.1.2 _

Let ( = e 7 € T. Then A = (DAD™', where D is a diagonal
matrix D = (dy,...,d,),|D| = I. Since D can be replaced by d; D, we can
assume that d; = 1. (6.2.7) yields that A = ("D"AD~" = TAI~!. Lemma
6.2.4 yields that D" = diag(d},...,d") = tI. Since d; = 1 it follows that
D" = I. So all the diagonal entries of D are h-roots of unity. Let P € P,
be a permutation matrix such that the diagonal matrix E = PTDP is of
the following block diagonal form

2mk; /T
E =1, @Nljn'z@"'@:ul—llnw =€ )

=10 -1, 1<k <ke<...<ki1<h—-1

Note that [ < h and equality holds if and only if k; =i. Let ug = 1.

Let B = PTAP. Partition B to a block matrix [By;]!_;_, where B;; €
R}*™ for i,j = 1,...,1. Then the equality A = (DAD™! yields B =
(EBE~!. The structure of B and E implies the equalities

By =cB=lBy, =11
Hj—1

Since all the entries of B;; are nonnegative we obtain that B;; = 0 if
Cﬁ;—: # 1. Hence B;; = 0 for i = 1,...,1 Since B is irreducible it follows
that not all B;1,..., B; are zero matrices for each i = 1,...,[. First start
with ¢ = 1. Since po = 1 and j; > 1 it follows that u; # ¢ for j > 1. So
Bij =0for j =3,...,l. Hence Bia # 0, which implies that p; = (, i.e.
ki = 1. Now let ¢ = 2 and consider j = 1,...,l. As k; € [k1 +1,h — 1]
for ¢ > 1, it follows that Bo; = 0 for j # 3. Hence By3 # 0 which yields
that ko = 2. Applying these arguments for i = 3,...,l — 1 we deduce that
Bij =0for j #i+1, Biy1) # 0,k; =1 for o = 1,...,01 — 1. It is left to
consider ¢ = [. Note that

CHi—1 _ ¢!
N C

Hence Bj; = 0 for j > 1. Since B is irreducible, By; # 0. So ¢! = 1. Since
[ < h we deduce that [ = h. Hence B has the block form given in (5d). O

= ¢'"=U=Y which is different from 1 for j € (2,1].

Proposition 6.2.7 Let A € R}*" be irreducible. Suppose that 0 <
w € R is an eigenvector of A, i.e. Aw = Aw. Then A = p(A) and w > 0.
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Proof. Let v > 0 be the Perron-Frobenius vector of AT, i.e. ATv =
p(A)v. Then

viAw = v (Ow) = p(A)v w = (p(A) = \)v'w = o.

If p(A) # X we deduce that v'w = o, which is impossible, since v > 0 and
w > 0. Hence A = p(A4). Then w is the Perron-Frobenius eigenvector and
w > 0. O

Lemma 6.2.8 Let A € R} be irreducible. Then A is primitive if and
only if one of the following conditions hold:

1. n=1and A > 0.

2. n > 1 and each eigenvalue \ of A different from p(A) satisfies the
inequality |\| < p(A). Le. condition (4) of Theorem 6.2.2 holds.

Proof. If n = 1 then A is primitive if and only if A > 0. Assume now
that n > 1. So p(A) > 0. By considering B = ﬁA, it is enough to
consider the case p(A) = 1. Assume first that if A # 1 is an eigenvalue of A
then |A| < 1. Theorem 6.2.2 implies Au = u, A"w = w for some u,w > 0.
Sow'u>o0. Let v:= (w'u)"*w. Then ATv = v and v'u = 1. The
results of §3.3 yield that limj_,., A¥ = uv’ > 0. So there exists integer
ko > 1, such that A* > 0 for k > ko, i.c. A is primitive.

Assume now A is has exactly h > 1 distinct eigenvalues A satisfying
|A\| = 1. Lemma 6.2.6 implies that there exists a permutation matrix P
such that B = PT AP is of the form (5d) of Theorem 6.2.1. Note that B"
is a block diagonal matrix. Hence B = (B")J is a block diagonal matrix
for j =1,...,.... Hence, B" is never a positive matrix, so A" is never a
positive matrix. In view of Problem 4, A is not primitive. O

Lemma 6.2.9 Let B € R}*" be an irreducible, imprimitive matriz,
having h > 1 distinct eigenvalues A satisfying |\ = p(B). Suppose fur-
thermore that B has the form (5d) of Theorem 6.2.1. Then B" is a block
diagonal matriz, where each diagonal block is an irreducible primitive ma-
triz whose spectral radius is p(B)". In particular, the last claim of (5d) of
Theorem 6.2.1 holds.

Proof. Let D(B) = ([n], E) be the digraph associated with B. Let
po = 0,p1 = po+ni,...,pn = ph—1+np = n. Denote V; = {p;_1+1,...,p;}
for i = 1,...,h, and let Vj1 := V5. So [n] = UL ,Vi. The form of B
implies that £ C ULIVZ- X Viy1. Thus, any walk that connects vertices
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j,k € V; must be divisible by h. Observe next that B" = diag(Cy,...,Cp),

where C; = [cﬁ)}}gk:l, o, Gy = [C;}Iz)]?ikzl are defined in (6.2.1). Let
D(C;) = (V, E;) be the digraph associated with C; for ¢ = 1,...,h. Then
there exists a path of length A from j to k in V; if and only if cglk) > 0.
Since B is irreducible, D(B) is strongly connected. Hence, each D(C;) is
strongly connected. Thus, each C; is irreducible.
Recall that Bu = p(B)u for the Perron-Frobenius vector

u' = (u/,...,u)) >0",u; € RY,i =1,...,h Thus, B'u = p(B)"u,
which implies that C;u; = p(B)"u;,i = 1,...,h. Since u; > 0 Proposition
6.2.7 yields that p(C;) = p(B)",i = 1,...,h. Recall that the eigenvalues

of B" are the h power of the eigenvalues of B, i.e. \;(B") = \;(B)" for
i = 1,...,n. Furthermore, B has h simple eigenvalues p(B)esz\zm,i =

1,...,h with |A| = p(B), and all other eigenvalues satisfy |A| < p(B).
Hence B" has one eigenvalues p(B)" of an algebraic multiplicity » and all
other eigenvalues yu satisfy |u| < p(B)".

Since B" = diag(Cy,...,C}), we deduce that the eigenvalues of B" are
the eigenvalues of C1,...,Cp,. As C; is irreducible and p(C;) = p(B)", we
deduce that all other eigenvalues p of C; satisfy |u| < p(C;). Lemma 6.2.8
yields that C}; is primitive. O

Problems
1. Prove equality (6.2.3).

2. Show thatifn >1and A € Rixn is irreducible then A does not have
a zero row or column.

3. Assume that A € Rixn is irreducible. Show

(a) For each x € II,, the vector (I + A)"~!x is positive.

(b) The set (I + A", = {y = I+ A" *x,x € II,} is a
compact set of positive vectors.

(c) Show that r(y) is a continuous function on (I + A)"~11I,,.

(d) Show (6.2.6). Hint: use that (A+1)""1(Ax—r(x)x) is a positive
vector, unless Ax = r(x)x.

4. Assume that A € R}™" is irreducible. Show the following are equiv-
alent
(a) A is primitive.

(b) There exists a positive integer kg such that for any integer k > kg
AF > 0.
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5. Let D = ([h],E) be thecycle 1l =2 — ... > h—1—h — 1.

(a) Show that representation matrix A(D) is a permutation matrix,
which has the form of B given in (5d) of Theorem 6.2.1, where
each nonzero block is 1 x 1 matrix [1]. A(D) is called a circulant
matrix.

(b) Find all the eigenvalues and the corresponding eigenvectors of
A(D).

6. Let the assumptions of Lemma 6.2.9. Assume the notation of the
proof of Lemma 6.2.9.

(a) Show that the length of any closed walk in D(B) is divisible by
h.

(b) Show that a length of any walk from a vertex in V; to a vertex
V;, such that 1 < ¢ < j < h, minus j — ¢ is divisible by A.
(¢) What can you say on a length of any walk from a vertex in V;

to a vertex Vj, such that 1 <j <i < h?
(d) Show that each C; is irreducible.

7. Let D = (V, E) be a digraph and assume that V' is a disjoint union
of h nonempty sets Vi,...,Vs. Denote Vi1 := Vi. Assume that
E c UM V; x Viyy. Let D; = (V;, E;) be the following digraph. The
diedge (v, w) € E;, if there is a path of length h in D from v to w in
D.

(a) Show that D is strongly connected if and ouly if D; is strongly
connected for ¢ =1,...,h.
(b) Assume that D is strongly connected. Let 1 <i < j < h. Then

D; is primitive if and only if D; is primitive.

8. Let B € R*™ be a block matrix of the form given in (5d) of Theorem
6.2.1.

(a) Show that B" is a block diagonal matrix diag(Cy, ..., C},), where
C; is given (6.2.1).

(b) Show that B is irreducible if and only if C; is irreducible for
i=1,....h

(¢) Assume that B is irreducible.

i. Let 1 <i < j < h. Then C; is primitive if and only if C; is
primitive.
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9.

10.

11.

12.

ii. B has h distinct eigenvalues on the circle |z| = p(B) if and
only if some Cj is primitive.

Assume the assumptions of Lemma 6.2.6. Let Au = p(A)u,u =
(Uy,...,u,) " > 0. Assume that 7 is an h-root of unity, and suppose
that Az = nz,z = (2,,...,2n), such that |z| = u. Assume that
z; = u; for a given ¢ € [n]. (This is always possible by considering
‘j‘ z.) Show z; =7 (J)u , for a suitable integer k(j), for j=1,...,n
Furthermore, given an 1nteger k then there exists j € [n] such that
z5 = nkuj.

Hint: Use the proof of Lemma 6.2.6.

Let B € R}™™ be an irreducible block matrix of the form given in
(5d) of Theorem 6.2.1. Let Cy,...,C} be defined in (6.2.1). Suppose
that B has more than A distinct eigenvalues on the circle |z| = p(B).
Then TFAE

(a)

(b)

(c)

(d) Let D(B) = ([n], E) and V; = {pi—1 +1,...,p;} fori=1,...,h
be defined as in the proof of Lemma 6.2.9. Then each V; is a
disjoint union of ¢ nonempty sets Wi, Wiyp,..., Wiy (41 for
i =1,...,h, such that E C Uqh1W X Wji1, where Wy :=
Wi. Let H =(W,,F;),F; C W x W; be the following digraph.
The diedge (v,w) is in Fj, if and only if there is a path of length
ghin D(B) from v to w in W;. Then each digraph Hj is strongly
connected and primitive.

B has ¢h eigenvalues the circle |z| = p(B), for some ¢ > 1.
Each C; has ¢ > 1 distinct eigenvalues on |z| = p(C;) = p(B)".
Some C; has ¢ > 1 distinct eigenvalues on |z| = p(C;) = p(B)".

Hint: Use the structure of the eigenvalues A\ of B on the circle
|A| = p(B), and the corresponding eigenvector z to A given in (5b) of
Theorem 6.2.1.

For A€ RP"and 0 < x = (z1,...,%,)" € R} let R(x) = max;ey)

Assume that A is irreducible. Show that infxso R(x) = p(A4). Le.
Ax)i

(6.2.8) min max Ax) = p(A).

X=(Z1,..,Tn)>01€[N] Ty

Furthermore, R(x) = p(A) if and only if Ax = p(4)x.
Hint: Mimic the proof of Theorem 6.2.2.

Let n > 1 and D = ([n], F) be a strongly connected digraph. Show

i

(AX)I .
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(a) If D has exactly one cycle, it must be a Hamiltonian cycle, i.e.
the length of of this cycle is n. Then D is not primitive.

(b) Suppose that D has exactly two directed cycles. Then the short-
est cycle has length n — 1 if and only if it is possible to rename
the vertices so that the shortest cycle is of the form 1 — 2 —

. — n—1 — 1 and the second cycle is a Hamiltonian cycle
1—-2— ... >n—1—n— 1. In this case D is primitive.
Moreover A(D)* > 0 if and only if k > n? — 2n + 2.

(¢) Assume that D is primitive. Show that the shortest cycle of D
has at most length n — 1.

6.3 Index of primitivity

Theorem 6.3.1 Let A € Rixn be a primitive matriz. Let s > 1 be
the length of the shortest cycle in the digraph D(A) = ([n],E). Then
As(=2+n 5 0. In particular A1+ > 0.

Proof. For n = 1 we have that s = 1 and the theorem is trivial. Assume
that n > 1. Note that since A is primitive s < n—1. (See Problem 6.2.12c.)

Suppose first that s = 1. So D(A) contains a loop. Relabel the vertices
of D(A) to assume that (1,1) € E. Le. we can assume that A = [a;;]
and a;; > 0. Recall that from 1 to j > 1 there exists a path of length
1 <l(j) <n—1. By looping at 1 first n — 1 — I(j) times we deduce the
existence of a walk of length n — 1 from 1 to j > 1. Clearly, there exists a
walk of length n—1 from 1to1: 1 - 1 — ... — 1. Similarly, for each j > 1
there exists a walk of length n — 1 from j to 1. Hence, the first row and
the column of A"~ ! is positive. Thus, A2("~1) = An~147~1 {5 a positive
matrix.

Assume now that s > 2. Relabel the vertices of D(A) such that one has
the cycle on vertices ¢ := {1,2,...,s}: 1 = ... = s = 1. Then the first
s diagonal entries of A® are positive. Since A was primitive, Lemma 6.2.8
implies that A* is primitive. Our previous arguments show that (A%)"~!
has the first s rows and columns positive. Let

Fyy I

An_s —
[ Fo1 Fao

] VFiy € RS Fig, Fy € R Ry e RETT9X 079,

Clearly, F11 > ([ai;]i_;—;1)"°. Since D(A) contains a cycle of length s on

[s] it follows that each row and column of Fy; is not zero. Clearly,

(631) AS(”_Q)"F" — A(W—S)As(n—l).
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Hence the first s rows of A5("=2)+7 are positive. We claim that each row of
F5 is nonzero. Indeed, take the shortest walk from j € U := {s+1,...,n}
to the set of vertices V' := [s]. This shortest walk is a path which can con-
tain at most n — s vertices in U, before it ends in i € V. Hence the length
of this path is m(j) < n—s. After that continue take a walk on the cycle ¢
of length n — s —m(j), to deduce that there is a walk of length n — s from j
to V. Hence the j — s row of F; is nonzero. Use (6.3.1) and the fact that
the first s rows of (A%)"~! positive to deduce that A5(»=2)+" > (), O

Proof of Theorem 6.1.5. Problem 6.1.1 yields that the length L of
any closed walk in D is a sum of lengthes of a number of cycles in D. Hence
¢ divides L. Assume that D is primitive, i.e. A*¥ > 0 for any k > kq. Hence
for each k > kg there exists a closed walk in D of length k. Therefore ¢ = 1.

Suppose now that D = (V| E) is imprimitive, i.e. A(D) is imprimitive.
(5d) of Theorem 6.2.1 yields that there V' decomposes to a nonempty dis-
joint sets Vi,...,V,, where h > 1. Moreover E C U?:lvi X Vit1, where
Vi+1 = V7. So any closed walk must be divisible by A > 1. In particular,
the length of each cycle is divisible by h. Thus ¢ > h > 1. Hence D is
primitive if and only if £ = 1. Suppose that D is primite. Theorem 6.3.1
yields that A(D)*"=2*" > 0, where s is the length of the shortest cycle.
This proves part 1 of Theorem 6.1.5.

Assume now that D is imprimitive. So A(D) has h > 1 distinct eigen-
values of modulus p(A(D)). Relabel the vertices of D so that A(D) is of
the form B given in (5d) of Theorem 6.2.1. As we pointed out, each cycle
in D is divisible by h. It is left to show that the £ = h. Let D; = (V;, E;)
be defined as in the proof of Lemma 6.2.9. It is straightforward to see that
each cycle in D; corresponds of length L to a cycle in D of length hL.
Since C; is primitive, it follows from the first part of the proof, that the
g.c.d of lengths of all cycles in C; is 1. Hence, the g.c.d. of lengths of the
corresponding cycles in D is h. ]

Problems
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010 0
0 0 1 0
1. Show that the matrix A:= [ : : : [ is a primitive ma-
0 00 ... 1
110 ... 0

trix such that A=’ is not a positive matrix. Le., the last part of
Theorem 6.3.1 is sharp [Wie50].

2. Let A € R}™™ be irreducible. Assume that A has d € [n] positive
diagonal elements. Show that A2"~4=1 > 0. ([HoV58))

6.4 Reducible matrices

Theorem 6.4.1 Let A € R*™. Then p(A), the spectral radius of A,
is an eigenvalue of A. There exists a probability vector x € II,, such that
Ax = p(A)x.

Proof. Let J,, € {1}"*" be a matrix whose entries are 1. For € > 0 let
A(e) = A+eJ,. Then A(e) > 0. Hence,

(6.4.1)  p(A(e)) € spec (A(e)) and A(e)x(e), 0 < x(¢) € I, for € > o.

Since the coefficients of the characteristic polynomial of A(e) are polynomial
in e, it follows that the eigenvalues of A(e) are continuous function of .
Hence

lim spec (A(g)) = spec A, 21_% p(A(e)) = p(A).

e—0
Combine that with (6.4.1) to deduce that p(A) € spec A. Choose ¢ =
%,k‘ = 1,...,. Since II,, is a compact set, there exists a subsequence
1 < k1 < k2 < ... such that limj ,. x(ex,) = x € II,. The second
equality of (6.4.1) yields that Ax = p(A4)x. O

It is easy to have examples where p(A) = 0 for some A € R7?*", and p(A)
is not a geometrically simple eigenvalue. (L.e. the Jordan canonical form
of A contains a Jordan block of order greater than one with the eigenvalue

p(A).)
Proposition 6.4.2 Let A € R*".

1. Assume that C € RY™ and A > C. Then p(A) > p(C). If either A
or C are irreducible then p(A) = p(C) if and only if A= C.
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2. Assume that B € RT*™ 1 < m < n is a principle submatriz of
A, obtained by deleting n — m rows and columns of A from a subset
J C [n] of cardinality n —m. Then p(B) < p(A). If A is irreducible
then p(B) < p(A).

Proof. 1. Suppose first that A is irreducible. Then Lemma 6.2.4 yields
that p(A) > p(C). Equality holds if and only if A = C. Suppose next that
C' is irreducible. Then A is irreducible. Hence p(A) > p(C), and equality
holds if and only if C' = A.

Assume now that A is reducible. Let A(g),C(g) be defined as in the
proof of Theorem 6.4.1. For € > 0 the above arguments show that p(A(e)) >
p(C(g)). Letting € \, 0 we deduce that p(A) > p(C).

2. By considering a matrix A; = PAPT for a corresponding P € P,
we may assume that A; = A A , where B = Aj;. Clearly,
Ao1 Az
p(A1) = p(A), and Ay irreducible if and only if A irreducible. Let C =

B Omx (n—m) } Then A; > C. Part 1. yields that p(A) =
O(nfm)xm O(nfm)x(nfm)

p(A1) > p(C). Suppose that A; is irreducible. Since C is reducible,
A # C. Hence p(C) < p(A1) = p(A). O

Lemma 6.4.3 Let A € R™". Assume that t > p(A). Then (tI —
A)~1 > 0. Furthermore, (tI — A)~' > 0 if and only if A is irreducible.

Proof. Since t > p(A) it follows that det (tI — A) # 0. (Actually,
det (tI — A) > 0. See Problem 1.) So (tI — A)~! exists and (tI — A)~! =
1(I — 14)~'. Since p(+A4) < 1 we have the the Neumann series [Neu77]

(3.4.14):

=1
(6.4.2) (tr—A)~"=>" tﬁAk, for |t| > p(A).
k=0

Since A¥ > 0 we deduce that (tI — A)~! > 0. Let A*F = [a%.c)]. The
the (i,7) entry of (tI — A)~! is positive, if and only if al(? > 0 for some
k = k(i, ). This shows that (tI—A)~! > 0if and only if 4 is irreducible. O

Theorem 6.4.4 Let A € R}*" be a nonnegative matriz. Then there
exists a permutation matriz P € P,, such that B = PAPT has the Frobenius
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normal form:

(6.4.3) B=
[ Bin Bi2 ... Bz Biuqn Bityo) -+ Biap
0 By ... Byt Bogqn Biyo) -+ Bowayp
0 0 “e Btt Bt(t—‘rl) Bt(t+2) e Bt(t-i-f) ,
0 O “ .. O B(tJrl)(tJrl) O e O
o 0 0 0 @ 0 0 Buip+s)

Biy € R"™ ™ g, j=1,...t+f,mi+...+ngp=mn,t>0, f>1

FEach By; is irreducible, and the submatriz B’ := [Bij}f:;:tﬂ is block diag-
onal. Ift =0 then B is a block diagonal. Ift > 1 then for eachi=1,...,t
not all the matrices Biit1),-- -, Byt ) are zero malrices.

Proof. Let D, = (W, F) be the reduced graph of D(A) = ([n], E).
Then D, is a diforest. Let £ > 1 be the length of the longest path in the
digraph D,.. For a given vertex w € W let £(w) be the length of the longest
path in D, from w. So ¢(w) € [0,4]. For j € {0,...,£} denote by W; the
set of of all vertices in W such that £(w) = j. Since D,. is diforest, it follows
that Wy, ..., Wy is a decomposition of W to nonempty set. Note if there
is a diedge in D, from W; to W; then ¢ > j. Also we have always at least
one diedge from W; to W;_q fori=4¢,...,1,if £ > 0.

Assume that #W; = mi44_; for j =0,...,¢. Let My = 0 and M; =
> _,m; for j =1,...,¢. Then we name the vertices of W; as {M,_; +
L...,My_j+myypj} for j =0,...,0 Let f:=#Wy = myy1 and t :=
#(US,W,) = Y5 m;. Note that f > 1 and t = 0 if and only if £ =
0. Hence the representation matrix A(D,) is strictly upper triangular.
Furthermore the last f rows of A(D,.) are zero rows.

Recall that each vertex in W corresponds to a maximal strongly con-
nected component of D(A). That is, to each i € W = [t + f] one has
a nonempty subset V; C [n], which correspond to the maximal connected
component of D(A). Let n; := #V; for ¢ = 1,...;t+ f. Let Nyp = 0
and N; = 23:1 n;,t = 1,...,t + s. Rename vertices of D(A) to satisfy
Vi={N;_1+1,...,N;_1 + n;}. Then PAPT is of the form (6.4.3). Fur-
thermore, the digraph induced by B;; is a strongly connected component
of D(A). Hence By; is irreducible. Note B;; = 0, for j > 4 if and only if
there is no biedge from the vertex ¢ to the vertex j in D,.. Recall that for
i < t, the vertex i represents a vertex in Wy, for some k > 1. Hence, for
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i < ¢t there exists j > i such that B;; # 0. O

Theorem 6.4.5 Let A € R*™. Then there exists a positive eigenvec-
tor x > 0 such that Ax = rx if and only if the following conditions hold:
Let B be the Frobenius normal form of A given in Theorem 6.4.4. Then

1. p(Bsny+1) = --- = p(Baspy+)) =75
2. p(By) <r fori=1,...,t;
3. r=p(A4).

Proof. Clearly, A has a positive eigenvector corresponding to r, if and
only if B has a positive eigenvector corresponding to r. Thus we may
assume that A = B. Suppose first that Bx = rx for x > 0. Let x' =
(u/ ...,uLf), where 0 < u; € R™ for ¢ = 1,...,t + f. Since B’ =

[Bij]g;:t 41 is a block diagonal matrix we deduce that Bju; = ru; for
i=t+1,...,t+f. Proposition 6.2.7 yields the equality r = p(B(11)(t+1)) =
... = p(Bg4)(t+5)). Hence 1. holds. Furthermore,

t+f
(644) .B“l.lZ + Z Bijllj = ru;, 1= 1,... ,t.
Jj=i+1

Since for each i € [t] there exists an integer j(i) € {i +1,...,t + f} such
that B;; > 0 we deduce that Bju; < ru; for each ¢ € [1,t]. Use Problem
6.2.11 to deduce that p(B;;) < r for ¢ € [t]. Hence 2. holds. As B is block
upper triangular then p(B) = max;cj¢4 5 p(Bi;) = . Hence 3. holds.
Assume now that 1.-3. hold. Consider the equality (6.4.4) for ¢ = t.

Rewrite it as
t+f

Vi = Z Btjuj = (7"[ — Btt)lli.
Jj=t+1

Since some B;; > 0 it follows that v; > 0. As r > p(By) and By is
irreducible, Lemma 6.4.3 implies that (rI — By)~! > 0. Hence u; :=
(rl — By)~ vy > 0. Thus we showed that there exists u; > o so that equal-
ity (6.4.4) holds for ¢ = t. Suppose we already showed that there exists
Uy, ...,u, > 0 such that (6.4.4) holds for ¢ = t,t — 1,...,k. Consider the
equality (6.4.4) for i = k — 1. Viewing this equality as a system of equa-
tions in ug_,, the above arguments show the existence of unique solution
up_, > 0. Let XT:(ulT,...,utTJrf). Then Bx = rx. O
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Corollary 6.4.6 Let A € R*". Then Ax = p(A)x, ATy = p(A)y,
where x,y > 0 if and only if:

1. The Frobenius normal form of A, given by (6.4.3), is block diagonal,
i.e. t=0.

2. p(Bu) = ... = p(Byy).

Theorem 6.4.7 Let A € R}*". Assume that Ax = x for some x > o.

B = [Bz-j]gile be the Frobenius normal form of A given by (6.4.3). Denote

BF = [Bif)]zl';;l for k =1,2,.... Then the block matriz form of B* is of
the form (6.4.3). Furthermore, the following conditions hold.

1. limy oo BYY =0 fori,j=1,...,t.
2. AF k= 1,2,..., converge to a limit if and only if the matrices By
are primitive fori =t+1,...,t+ f.

3. Assume that By; are primitive and Bju; = w;, Biv; = v;,u;,v; >
0,v,u, =1 fori =t+1,...,t + f. Then limy_ . B¥ = F =
[Eij]zfi;:l > 0, where E has the block matrix form (6.4.3). Further-
more

(a) E is a nonnegative projection, i.e E* = E.
(b) Ei =wv, fori=t+1,...,t+f, and E;; =0 fori,j =1,...,t.
(c) Let

0 FEio

(6.4.5) E= [ 0 Fa i=1j=t+1>

} Bz = [Eylitts
E22 = diag(E(t+1)(t+1)7 s 7E(t+f)(t+f))-

Then E12E22 = Elg. In particular, each row r in a matriz E;;,
where i € [t] and j € {t+ 1,...,t + [}, is of the form cm-jv;'—
for some ¢y ;5 >0 forj=t+1,...,t4+ f. Moreover, there exists

Jj=j(r) >t, such that ¢, ;; > 0.

Proof. Since B is a block upper triangular, it follows that B* is block

B Bi12 . Assume that B,y is block
0 B

diagonal diag(B(¢+1)(t+1),---» B+fye+r)). Hence p(Buyiyeyiy) = 1 for

upper triangular. Let B = [
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i=1,..., f. Furthermore By is upper triangular and p(éll) < 1. Clearly,

~ ~(k
BY, B
0 B§2

I k
(646) Bfl = [B( )] i=j=1> B22 = dlag(B(t+1)(t+1)7 ey Béﬁt-'rf)(t-‘rf))'

Hence BF is of the form (6.4.3). As p(Bi;) < 1 Theorem 3.3.2 yields that
limy,_, 0o Bf; = 0. This implies 1.

Clearly, A*.k = 1,2,... converges if and only if the sequence B* k =
1,2,... converges. Assume first that the second sequence converges. In
particular, the sequence As Bi(ik) =BEfork=t+1,...,t+ f, we deduce
that the sequences B k= 1,2,..., converge for i = [t+ 1, + f]. Theorem
3.3.2 yields that the only eigenvalue of B;; on the unit circle is 1. Since Bj;;
is irreducible and p(By;) =1 for i € [t + 1, + f] we deduce that each Bj;
is primitive.

Assume now that each B;; is primitive. Hence, the algebraic multiplicity
of the eigenvalue of 1 of B is f. We claim that the geometric multiplicity of
lisalso f. Let U¢44,..., U4 s be defined as in 3. For any a¢11,...,a15 >0
we have that B;;(a;u;) = a;u; fori = ¢t+1,...,t+f. From the proof of The-
orem 6.4.5 it follows that B has a positive eigenvector x, Bx = x, such that
x| = (x],...,x a0, app gy ), x; € RY i =1,...,t. Hence
the subspace of eigenvectors of B corresponding to the eigenvalue 1 has
dimension f at least f. Since the algebraic multiplicity of 1 is f it follows
that the geometric multiplicity of 1 is f. As all other eigenvalues \ of B
satisfy |A| < 1 Theorem 3.3.2 yields that lim_,., B¥ = E. This implies 2.
Furthermore, E > 0 is a projection. This shows 3a.

Assume that ¢ € {t +1,...,t+ f}. As By; is primitive and p(B;;) = 1
Theorem 3.3.2 yields limy_, Bfi = FE;. E; > 0 is a projection with
only one eigenvalue equal to 1, which is simple. So rank Ey; = 1. Clearly
FEiu;, = ui7E;Z'-—vi = v;. Hence E;; = tiuiv;r. As Efz = FE;; we deduce
t? = t;, i.e. t; € {0,1}. Since rank E;; = 1 it follows that ¢; = 1. 1. yields
that E;; = 0 for 4, j € [t]. This shows 3b.

Let i € [t]. Recall that E;; = 0 for j € [t]. Since Ex = x it follows that

Z;J;J: 41 Biju; = u;. Hence for each i € [t] and a given row r in matrices
Ei(t41) -+ Eiqt4 ), there exists j = j(r) > ¢, such that E;; has a positive
element in row r. Assume that E is of the form (6.4.5). As E? = E we
deduce that E1oFss = E19. As each row of Ejs nonnegative and nonzero,
it follows that each row of Eps is a nonnegative eigenvector of FEsy corre-

sponding to the eigenvalue 1. This shows 3c. ]

BF =

)

The following result characterize nonnegative projections:
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Theorem 6.4.8 Let F' € R™"™ be a projection, i.e. F?=F. Then F
is permutationally similar to a nonnegative projection G, i.e. G = PFPT
for some P € P,,, which has one of the following forms:

1. Go = 0nxn-
2. (a) Gy = diag(u,v/,...,uv, ), where 0 < w;,v; € Rii,v:ui =
1,1 =1,...,t.
[0 R mxm .
(b) Go = 0 G , where G1 € R ,m € [n—1], is of the form
1
given in 2(a), and each k-row of R is of the form (rav, , ... ,ruv]),
where (Tg1,...,7k¢) > 07,
[ T H mXm -
(c) G5 = 0 0 , where T € R"*™, m € [n—1], has the form ei-

ther 2(a) or 2(b) , and each column of H is either a zero vector or
a nonnegative eigenvector of T corresponding to the eigenvalue
1.

Proof. If F = 0 then we have the case 1. Assume that F' # 0. Since
FF = F it follows that each column of F' is either zero or a nonnegative
eigenvector of F' corresponding to the eigenvalue 1.

Assume first that F' does note have a zero row. Let x be the sum
of all columns of F. Then x > 0 and Fx = x. Hence F satisfies the
assumption of Theorem 6.4.7. Let G = PFPT be the Frobenius normal
form of F. Clearly, G¥ = G. Hence G = E, where E is the projection given
in Theorem 6.4.7. If t = 0 then we have the case 2(a). If ¢ > 1 then G has
the form 2(b).

Assume now that F' has exactly n — m zero rows for some m € [n — 1].
Let F1 = PlFPlT such that the last n — m rows of F} are zero for some
P € P,. Let x be the sum of all columns of P;. Then x" = (x],0]_, ),

Fiy FlQ] Then

0<XIERTandF1xx.LetF1{ 0 0

F11x1:x17 F121:F117 F11F12:F12~
Hence F); satisfies the assumption of Theorem 6.4.7. Let G3 = P2F1P2T,
where P, € P, is a permutation that acts as identity on the last n — m
coordinates of a vector y, such that T is the Frobenius normal form of F};.
Hence T has the form either 2(a) or 2(b). Furthermore TH = H. Let y be
a column of H. Then Ty = y. Hence either y = 0 or y is a nonnegative
eigenvector of T' corresponding to the eigenvalue 1. O
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Theorem 6.4.9 Let A=R}*". Then

6.4.7 A) = limsup(tr A™ 8
P —
Proof. Clearly, for any B € C**", |[trB| = |>.1 ,; X\i(B)|. Hence
|tr B| < np(B ) Therefore, tr A™ = |tr A™| < np(A™) = np(A)™. Thus,
(tr A™)7 < nwnp(A). Therefore, limsup,, .. (tr A™)m < p(A). It is left

to show the opposite inequality.

Assume first that A is an irreducible and primitive. Let Au = p(A)u, ATv =

p(A)v,0 < u,v,v'u=1. Theorem 6.4.7 yields that lim,, . WA’” =
uv . Hence for m > M we have:

tr A™ > p(A)m%tr uv' = @ = lim (tr A™)m > p(A).

m—r o0

Assume that A is an irreducible and imprimitive. If A 1 x 1 zero ma-
trix, then (6.4.7) trivially holds. Assume that n > 1. Without loss of
generality we can assume that A is of the form given in Theorem 6.2.1
part 5d. Then A" = diag(Bi,...,By), where each B; is primitive and
p(B;) = p(A)", see Lemma 6.2.9. So tr A"¥ = Z?:l tr B;-“. Since each B;
is primitive and irreducible, we deduce from the previous arguments that
limy,_, o0 (tr A"¥) 7% = p(A). Hence (6.4.7) holds in this case too.

Assume now that A is not irreducible. Without loss of generality we can
assume that A is in the Frobenius form (6.4.3). Then there exists i € [t+ f]
such that p(A) = p(B;;). Clearly

t+f
(tr A™)m = Ztr )m ter)m =

lim sup(tr Am)m > lim sup(tr B} ) = p(Bi;) = p(A).

m—r oo m—r oo

Problems

1. Let A € R™*™. Show that det (¢t — A) > 0 for t > p(A).

6.5 Stochastic matrices and Markov Chains

Definition 6.5.1 A matriz S is a called a stochastic matriz if S €
R*™, for some integer n > 1, and S1 = 1. Denote by S, C R ™ the set
of n X n stochastic matrices.
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Note that A € R™*™ is a stochastic matrix, if and only if each row of A is
a probability vector. Furthermore, S, is compact semigroup with respect
to the product of matrices, see Problem 1.

Definition 6.5.2 Let A€ S,,.

1. Let B be the Frobenius normal form of A given by (6.4.3). Denote
by Vi,...,Viys the partition of [n] corresponding the partition of B.
i € V; is called a final state if j € {t+1,...,t+ f} and a transient
state if j € [t]. Viga, ..., Vigy and Vi,..., Vi are called the final and
the transient classes of A respectively.

2. w €I, is called a stationary distribution of A if 7T A=m".

Theorem 6.5.3 Let A be a stochastic matriz. Then
1. p(A)=1.

2. The algebraic multiplicity of the eigenvalue 1 is equal to f: the number
of final classes of A. The geometric multiplicity of 1 is f.

3. The set of stationary distributions of A is a convexr set spanned by
the stationary distributions corresponding to the final classes of A. In
particular, the stationary distribution is unique, if and only if f = 1.

4. Assume that X is an eigenvalue of S such that |A\| = 1 and X # 1.
Then

(a) X\ is an m-th root of unity, where m divides the cardinality of
some final class of A.

(b) All other m-th roots if unity are eigenvalues of A.

(c) Let m(\) be the algebraic multiplicity of X\. Then m(X\) < f.
Furthermore, the geometric multiplicity of A is m(\).

Proof. In what follows we apply Theorem 6.4.5. As A1 = 1 it follows
that p(A) = 1.

Assume that B is the Frobenius normal of A given by (6.4.3). Since B is
stochastic and similar to A by a permutation matrix, it is enough to prove
the other statements of the theorem for A = B. Recall that p(B;;) < 1 for
1€ [t] and p(B;;) =1fori =t+1,...,t+ f. As each By; is irreducible it
follows that 1 is a simple eigenvalue of B;; for i =t+1,...,t + f. Hence
the algebraic multiplicity of A =1 is f.

Recall that the geometric multiplicity A of an eigenvalue A of B is equal
to the geometric multiplicity of A in BT. (It is equal to the number of
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Jordan blocks corresponding to A in the Jordan canonical form of B.) Recall
that B;; € R™*"™ isirreducible for ¢ € [t+ f] and stochastic for ¢ > ¢. Hence
B;; has a unique stationary distribution =, € IL,,, for ¢ > t. Let

(6.5.1) x;:= (0, ,...,0, @ ,0 L0 T =t S

MNij419 Nty f
Then x; is a stationary distribution of B. We call x; the stationary distri-
bution of B, orA, induced by the final class V;. Clearly, x;44,..., X4 s are
f linearly independent eigenvectors of B' corresponding to A = 1. Hence
the geometric multiplicity of A = 1.

Assume that 7 is a stationary distribution of B. So BTmw = w. Hence
™= Z{:H_l ¢;x;. Since 7w € II,, and X4, ..., X4y are of the form (6.5.1)
it follows that ¢; > for i = ¢t +1,...,t 4+ f and cq1 + -+ + cpqp = L.
That is, 7 is in the convex set spanned by stationary distributions of B
corresponding to final classes of B. Vice versa, if 7 is in the convex set
spanned by stationary distributions of B corresponding to final classes of
B then 7 is a stationary distribution of B.

Assume that A is an eigenvalue of B, such that |A\| = 1 and A # 1. Hence
A is an eigenvalue of some B;; € R™ %™ for i € {¢t+1,...,t+f}. Since B;; is
an irreducible stochastic matrix Perron-Frobenius theorem yield that that
all eigenvalues of B;; are m-th roots of unity, where m divides n; = #V;.
Furthermore, )\ is a simple eigenvalue of B;;. Hence m(\) < f. The proof
that m(A) is the geometric multiplicity of A is similar to the proof that the
geometric multiplicity of A =11is f. a

The following lemma is straightforward, see Problem 2.

Lemma 6.5.4 Let A € R}*". Then A = DSD~! for some S € S,
and a diagonal matriz D € R}*™ with positive diagonal entries if and only
if Ax = x for some positive x € R".

Definition 6.5.5 Let S € S,, be irreducible. We will assume the nor-
malization that the eigenvector of S and ST corresponding to the eigenvalue
1 are of the form 1 =1, € R} and 7 € 1I,,, the stationary distribution of
A respectively, unless stated otherwise.

Theorem 6.4.7 yields:

Theorem 6.5.6 Let A € S,,. Denote by B = [B,»j]file the Frobenius
normal form of A given by (6.4.3). Then B, Bi1yt+1)s-- > Bee+f)+s)
are stochastic. The sequence A*, k € N converges if and only if Bit1)t+1),
ooy Blogpye+p) are prinitive. Assume that B 1yi41)s - -+ Bt p)ytrp) are
primitive. Then limy_,oo B*¥ = E, where E is stochastic matriz satisfying
the conditions 3 of Theorem 6.4.7. Furthermore, in condition 3(b) we can

assume that w; = 1,,,v; € II,,, fori=t+1,...,t+ f.
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Definition 6.5.7 Let C' = [c;;]{_;—; € R"™™™. Denote by r;(C) :=
Z?Zl cij the i-th row sum of C fori € [n]. Let R(C) = diag(r1(C),...,m(C)).
Assume that 7;(C) > 0 fori € [n]. Then A := R(C)~'C is a stochastic ma-
triz, called the stochastic matriz induced by C. If C is a symmetric matriz
then A is called a symmetrically induced stochastic matrix.

Lemma 6.5.8 Let C' € R*" be a matriz with no zero row and A =
[aij]fj—1 € Sn. Then

1. A is induced by C if and only C = DA, where D is a diagonal matriz
with positive diagonal entries.

2. Assume that C is symmetric. Then
__
i mi(0)

is a stationary distribution of stochastic A induced by C.

w(C) = (r1(C),...,ra(C)T

3. Assume that A is symmetrically induced. Then the Frobenius nor-
mal form of A is Ay = diag(Bia,...,Bys) where each B;; € S,
is a symmetrically induced irreducible stochastic matriz. Let 7; =
(T4 - ,Wni,i)T € II,,, be the unique stationary distribution of Bi;.
Let D(m;) = diag(m1,i, .-, Tn;i). Then a nonnegative symmetric ma-
triz Cy induces Ay if and only if Cy = diag(a1D(m1)Bi1,...,arD(7s)Byy)
for some a1,...,ar > 0.

4. A is symmetrically induced if and only if the following conditions hold:
There exists a positive stationary distribution ® = (7, ...,7,) " of A
such that ma;; = mjaj; for alli,j € [n].

Proof. 1. is straightforward. 2. Assume that C' is symmetric with no
zero row. So the sum of the i-th column is r;(C'). Hence

1
I e —
2i= 1i(C)

3. Assume that A is induced by a symmetric C. Then D(A) = D(C).
Clearly, D(A) is combinatorially symmetric. D(C') induces a simple graph
G(C), where we ignore the loops. So G(C) is a union of f connected
simple graphs. This shows that the Frobenius normal form of A is B =
diag(Bi1, ..., Byys), where each Bj; is irreducible and combinatorially sym-
metric. Without loss of generality we may assume that A = B. Then
C = diag(Cy,...,Cy) and C; = [cpq,ilp2,—=; induces By; € Sy, for i € [f].
Let w(C;) = (7145 - - -, Wni’i)—r be the unique stationary distribution of B;; as

y1'C =7(C)" = =(0)A,
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is a symmetric matrix that induces B;;. 1. yields that there exists diago-
nal matrix D; = diag(di,...,dn, ) with positive diagonal entries so that
Fl‘ = Dl’}/D(ﬂ'l)B” = D101 It is left to show that dl,i = ... = dni,1~
Suppose that cpq; > 0 for p # ¢. Since F; is symmetric it follows that
dpi = dg;. As the induced simple graph G(C;) is connected it follows that
dij = ... =dpn,; = b;. Suppose that a symmetric F' induces A. Then
F = diag(Fy,...,Fs). The previous argument shows that F; = b;C; for
some b; > 0. Hence F' = diag(a17Ch,...,aryCy) as claimed.

4. Assume that A is induced by a symmetric C. Then A; = PAPT =
diag(Bi1, ..., Bys) for some permutation matrix P, and D(w(B;;))B;; are
symmetric for ¢ € [f]. 2. shows that 7 (C) is a positive stationary distri-
bution of A. Part 3. of Theorem 6.5.3 yields that 7(C) = (71,...,7,) " =
(erm(Byy,...,cpm(Bsg) )T for somecy, ..., cp > 0, which satisfy Zle ¢ =
1. Since each D(m(B;;))Bi; is symmetric it follows that mpa,, = mgaq, if
p,q € V;, where V; C [n] induces the finite class corresponding to By;. If
p and ¢ belong to different finite classes then a,q = a4, = 0. Hence the
conditions of 4. hold.

Assume now that the conditions 4) hold. So C' = D(m)A is a symmetric
matrix. Clearly, C induces A. O

given in 2. Then D(ﬂ'i)Bii = (. Suppose that F; = [quﬂ.]Zi o1 € RT X1

We now recall the classical connection between the stochastic matrices
and Markov chains. To each probability vector 7w = (7y,...,m,)" €I, we
associated a random variable X, which takes values in the set [n], such that
P(X =¢)=m fori=1,...,n. Then w(X) := m is called the distribution
of X.

Assume that we are given a sequence of random variables Xg, X1, ...
each taking values in the set [n]. Let 38‘) be the conditional probability of
X =7 given that X;_1 =

(6.5.2) s = P(Xp = j[Xpo1 =), ij=1...,n, k=1,..

Clearly, Sy = [51('?)]?:3':1, k=1,2,...1s a stochastic matrix for k =1,....

Definition 6.5.9 Let Xg, X1,..., be a sequence of random wvariables
taking values in [n]. Then

1. Xo, X1, ... s called a homogeneous Markov chain if
P(Xk = jik|Xk—1 = Jr—1,-- -, Xo = jo) = P(X1 = ji|Xo = jr-1)

fork=1,2,....
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2. Xo,X1,... is called a nonhomogeneous Markov chain if
P(Xk = jrlXk—1 = Jr—1,..., Xo = jo) = P(Xp = j[Xp—1 = jr—1)

fork=1,2,.... (Note that a homogeneous Markov chain is a special
case of nonhomogeneous Markov chain.)

3. A nonhomogeneous Markov chain is called reversible if there exists
7= (m1,...,7) € I, such that

TP (X = j| Xk—1 = 1) = mjP(Xp = i| X1 = J)

fork=1,2....

4. Assume that Xo, X1, ... is a nonhomogeneous Markov chain. w € 11,

is called a stationary distribution if the assumption that w(Xo) = m
yields that (X)) = w for k € N. Markov chain is said to have
a limiting distribution if the limit Too = limp_oom(Xy) exists for
some w(Xo). If moo exists for each w(Xo) € I, and does not depend
on w(Xo) then 7o is called the unique limiting distribution of the
Markov chain.

The following lemma is straightforward, see Problem 4.

Lemma 6.5.10 Let Xy, X1,... be a sequence of random variables tak-

ing values in [n]. Let 7y := w(X}) be the distribution of Xj, fork =0,1,....
Assume that X, X1, ..., is a nonhomogeneous Markov chain. Then

1wl =mfSi...8 fork=1,..., where Sy, are defined by (6.5.2).

2. If Xo,X1,..., is a homogeneous Markov process, i.e. Sy = S,k =
1,2,..., thenﬂ'g =ng Sk fork=1,...,.

3. Assume that Xg, X1, ... is a reversible Markov chain with respect to .
Then m is a stationary distribution of Sy for k =1,.... Furthermore
Wisgf) = 7Tj8§-];) fori,j € [n] and k € N.

Theorem 6.5.11 Let Xy, X1,..., be a homogeneous Markov chain on

[n], given by a stochastic matriz S = [s;;] € S,. Let D(S) and D,.(S) be the
digraph and the reduced digraph corresponding to S. Label the vertices of
the reduced graph D, (S) by {1,...,t+ f}. Let V1,...,Viys be the decom-
position of [n] to the strongly connected components of the digraph D(S).
Assume that B = PSPT,P € P, is given by the form (6.4.3). The ver-
tices, (states), in UL_,V; are called the transient vertices, (states). (Note
that if t = 0 then no transient vertices exist.) The sets Vi,...,V; are called
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the transient classes. The vertices, (states), in UEI{HVZ- are called the final
vertices, (states). Viyi,...,Viys are called the final classes. Furthermore
the following conditions hold.

1. The Markov chain is reversible if and only if By is symmetrically
induced for some i € {t+1,...,t+ f}.

2. The Markov chain is reversible with respect to a positive distribution
if and only if A is symmetrically induced.

3. For each i € U;-:1Vj limy 00 P(Xg = i) = 0.

4. Any stationary distribution w of S is a limiting distribution for w(Xo) =
.

5. The set of limiting distributions of the Markov chain is the set of
stationary distributions.

6. For each w(Xg) the limiting distribution exists if and only if each By;
is primitive fori =t+1,...,t+ f.

7. The Markov chain has a unique limiting distribution if and only if
J =1 and B(y1)(t41) is primitive.

Proof. . Without loss of generality we may assume that S = B. Assume

that the Markov chain is reversible with respect ®# = (m1,...,m,) € IL,.
Lemma 6.5.10 yields that 7 is a stationary distribution of B. Theorem 6.5.3
claims that 7 is supported on the final classes Vi41,..., Vit s. Suppose that
the support of wison Viqyy,...,Vigy, for 1 <43 <... <4 < f ie m =0

for i € [n]\ (U, Vits,). The proof of Theorem 6.5.3 yields that m; > 0if i €
Vpri]. for j € [l] Let B’ = [b;‘j]?zj:l = diag(B(t+il)(t+i1)7 .. -7B(t+il)(t+zj))
and let 7' = (},...,pi’,)7T be the restriction of m to Ué-:thHj. Then
D(r’)B’ is symmetric. Hence B’ is symmetrically induced. In particular,
each B(;1i;)(¢+i;) is symmetrically induced.

Vice versa, assume that By 44 is symmetrically induced for some
i € [f]- Let 7 be the stationary distribution of B supported on V;y;. It is
straightforward to show that B is reversible with respect to 7. This shows
1.

Suppose that the Markov chain is reversible with respect to a positive
distribution. Hence D(m)A is symmetric and A is symmetrically induced.
Vice versa, if A is induced by a symmetric C' then = (C) is a positive sta-
tionary distribution of A. This shows 2.
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Let w(Xp) " =7 = (7],,.. .,7r;'—+f7k) for k =0,1,.... From the proof
of Theorem 6.4.7 we deduce that

t
T _ (k) .
T = E ™08, fori=1,...,t
j=1

In view of part 1 of Theorem 6.4.7 we deduce that limy_,oc m;; = 0 for
i=1,...,t. This proves part 3.

4. follows from Lemma 6.5.10.

Clearly, any limit distribution is a stationary distribution. Combine
that with 4. to deduce 5.

Suppose that w] = (m],.. .,71';:_10,0) is supported only on V;y; for
some ¢ € [f]. That is 7o = 0 if j & V,1;. Then each 7}, is supported on
Viti. Furthermore, WLi’k = ﬂ;r+i,OBé€t+i)(t+i)' Assume that B(;14)(44) 18
imprimitive. Choose m.; 0 to have one nonzero coordinate to be 1 and all
other coordinates to be zero. Assuming that B )¢+ has the form given
in 5d of Theorem 6.2.1, we see that there no is limit distribution. Hence,
to have the limit distribution for each my we must assume that B;1)(+i)
is primitive for ¢ = 1,..., f.

Assume that B(yyj)(¢+q) is primitive for ¢ = 1,..., f. Then Theorem
6.5.6 implies that 7"; = WJE, where E = limy,_, o, B¥ is the stochastic
projection. This establishes 6.

As we pointed out before if we assume that 7y is supported only on
Vi+: then the limit probability is also supported on V;;;. Hence, to have a
unique stationary distribution we must have that f = 1.

Assume that f = 1. Then lim;_, B@H)(tﬂ) =1,,. ,m . Observe
that the limit probability is ] E = (m E)E. Since ] E is supported only
on Vi1 it follows that wJ B2 = (0,...,07, /), which is independent

———

t
of 7wg. This shows 7. g

The proof of the above theorem yields the well known result.

Corollary 6.5.12 Let Xy, X1,..., be a homogeneous Markov chain on
[n], given by a primitive stochastic matriz S = [s;;] € S,,. Assume that
w € I, is the unique stationary distribution of S. Then this Markov chain
has a unique limiting distribution equal to 7.

A stronger result is proven in [Fri06].

Theorem 6.5.13 Let Xy, X1, ..., be a nonhomogeneous Markov chain
on [n], given by the sequence of stochastic matrices S1,Se, ..., defined in
(6.5.2). Assume that limy_, oo Sy = S, where S is a primitive stochastic
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matriz with a stationary distribution . Then the given nonhomogeneous
Markov chain has a unique limiting distribution equal to .

We close this section with Google’s Page Ranking. Let n be the current
number of Web pages. (Currently around a few billions.) Then S = [s;;] €
Sy, is defined as follows. Let A(%) C [n] be the set of all pages accessible from
the Web page i. Assume first that i is a dangling Web page, i.e. A(i) = 0.
Then s;; = % for j =1,...,n. Assume now that n; = #.A(i) > 1. Then
siyj = = if j € A(i) and otherwise s;; = 0. Let 0 < w € II,,,t € (0,1).
Then the Google positive stochastic matrix is given by

(6.5.3) G=tS+(1-t)lw'.
It is rumored that ¢ ~ 0.85. Then the stationary distribution corresponding
to G is given by G'mw = w € II,,. The coordinates of m = (my,...,7,)"
constitute Google’s popularity score of each Web page. Le. if m; > 7; then
Web page i is more popular than Web page j.

A reasonable choice of w would be the stationary distribution of yes-

terday Google stochastic matrix. To find the stationary distribution 7 one
can iterate several times the equality

(6.5.4) w) =w) G, k=1,...,N.
Then 7ry would be a good approximation of 7r. One can choose 7wy = w.

Problems

1. Show

(a) If Sy, 5 € S, then 5155 € S,,.
(b) PS,=8,P =S8, for any P € P,.
(c) Sp is a compact set in R}*".
2. Prove Lemma 6.5.4.
3. Let A,B € C*"*", and assume that A and B are similar. Le. A =
TBT~! for some invertible 7. Then the sequence A* k =1,2,...,

converges if and only if B¥, k =1,2,..., converges.

4. Prove Lemma 6.5.10.
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6.6 Friedland-Karlin results

Definition 6.6.1 Let B = [b;]i,;_; € R"*". B is called a Z-matriz
if bij < 0 for each i # j. B is called an M-matriz if B = rI — A where
A eRY™ andr > p(A). B is called a singular M -matriz if B = p(A)I—A.

The following result is straightforward, see Problem 1.

Lemma 6.6.2 Let B = [b;;] € R"™" be a Z-matriz. Let C = [¢;;] €
R’frxn be defined as follows. c;; = —by; for each i # j and c¢;; = 1o — by;
fori=1,...,n, where ro = max;c(,) by;. Then B =rol —C. Furthermore,
B =rI— A for some A € RY*™ if and only if r = ro+t,A=1tI +C for
somet > 0.

Theorem 6.6.3 Let B € R"*" be a Z — matrix. Then TFAE.
1. Bis an M-matriz.
2. All principal minors of B are nonnegative.

3. The sum of all k x k principal minors of B are nonnegative for k =

1,...,n.

4. For each t > 0 there erists 0 < x € RY}, which may depend on t, such
that Bx > —tx.

Proof. 1 = 2. We first show that det B > 0. Let A1(A),..., A\, (A4)
be the eigenvalues of A. Assume that \;(A) is real. Then r — X\;(A) >
p(A) — \;(A) > 0. Assume that \;(A) is complex. Since A is a real valued
matrix, A;(A) is also an eigenvalue of A. Hence (r — \;(A))(r — X\;(A)) =
|r—=Xi(A)[* > 0. Since det B =[], (r—X;(A)), we deduce that det B > 0.
Let B’ be a principal submatrix of B. Then B’ = rI’ — A’, where A’ is a
corresponding principal submatrix of A and I’ is the identity matrix of the
corresponding order. Part 2 of Proposition 6.4.2 implies that p(A4) > p(A’).
So B’ is an M-matrix, Hence det B’ > 0.

2 = 3. Trivial.
3 = 1. Let det (t/ + B) = t" + >, Bit" . Then B is the sum
of all principal minors of B of order k. Hence 8 > 0 for £k = 1,...,n.

Therefore 0 < det (¢ + B) = det ((¢t + r)I — A) for t > 0. Recall that
det (p(A)I — A) =0. Thus t +r > p(A) for any ¢t > 0. So r > p(A4), i.e. B
is an M-matrix.

1 = 4. Let t > 0. Use the Neumann expansion (6.4.2) to deduce
that (tI + B)™' > 1. So for any y > 0 x := (t/ + B)"'y > 0. So
y = (tI + B)x > 0.
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4 = 1. By considering PBP" = rI — PAPT we may assume that
A= [Aij]file is in the Frobenius normal form (6.4.3). Let Bx > —tx.
Partition x' = (x,... ,x;r+f). Hence (t + r)x; > A;x;. Problem 6.2.11

yields that ¢t +r > p(A;;) for i = 1,...,t + f. Hence t +r > p(A). Since
t > 0 was arbitrary we deduce that r > p(A). O

Corollary 6.6.4 Let B be a Z-matrixz. Assume that there exist x > 0
such that Bx > 0. Then B is an M -matriz.

Theorem 4.4.2 yields:

Lemma 6.6.5 Let B = [fi|i;_ be real symmetric matriz with the
eigenvalues A1 (B) > ... > A\ (B). Assume that \,(B) is a simple eigen-
value, i.e. Ap_1(B) > Au(B). Suppose that Bx = \,(B)x, where x €

R”,x"x = 1. Let U C R™ be a subspace which does not contain x. Then

(6.6.1) min  y' By > \.(B).
yEU,y Ty=1
Corollary 6.6.6 Let B € R™*™ be an M -singular symmetric matriz of
the form B = p(C)I — C, where C is a nonnegative irreducible symmetric
matriv. Let U = {y € R", 1Ty = 0}. Then )\, (B) = 0 is a simple
eigenvalue, and (6.6.1) hold.

Theorem 6.6.7 Let D C R™ be a bounded domain. Assume that f €
C2%(D). Suppose that f|0D = oo, i.e. for each sequence x; € D,i = 1,...,
such that lim; oo x; = x € 9D, lim; o f(x;) = 00. Assume furthermore,
that for each critical point & € D, the eigenvalues of the Hessian H(€) =
[83_26];3_ (§)Iiz;—1 are positive. Then f has a unique critical point § € D,
which is a global minimum, i.e f(x) > f(&€) for any x € D\{¢&}.

Proof. Consider the negative gradient flow

dx(t
(6.6.2) % = —Vf(x(t)), x(t,) =%, € D.
Clearly, the fixed points of this flow are the critical points of f. Observe

next that if x, is not a critical point then f(x(¢)) decreases, as W =
—[[Vf(x(t))]|>. Since f|OD = oo, we deduce that all accumulations points
of the flow x(¢),t € [to,00) are in D, and are critical points of f. Consider
the flow (6.6.2) in the neighborhood of a critical point & € D. Let x =
v+ &,%X, =Yyo + & The for x, close to & the flow (6.6.2) is of the form

dy(t)

g = HEy +Ery)), y(to) = yo.
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For a given 0 > the exists ¢ = £(d) > 0 such that for |y|| < e, [|Er(y)|| <
S|lyll- Let o > 0 be the smallest positive eigenvalue of H(§). Soz' H(£)z >
al/z||? for any z € R™. Choose ¢ > 0 so that ||[Er(y|| < 2|y| for |ly|| <e.
Thus

dly)]*
dt

This shows that if ||y(¢,)|| < € then for ¢t > ¢y ||y (¢)|| decreases. Moreover

dlog |ly(t)[]?
dt

—2(y(t) TH(&)y(t) + y(t) "Er(y))| < —aly|® if [y ()| <e.

< —afort >ty = [ly(t)|* < |lyol[2e™*"") for t > t,.

This shows that lim; . y(t) = 0. Let 8 > « be the maximal eigen-
value of H(£). Similar estimates show that if ||y.| < € then |y(¢)]|*> >
HYDH26_(2’8+Q)(t_tO)~

These results, combined with the continuous dependence of the flow
(6.6.2) on the initial conditions x,, imply the following facts. Any flow
(6.6.2) which starts at a noncritical point x, must terminate at t = oo
at some critical point &, which may depend on x,. For a critical point &,
denote by the set A(€) all points x, for which the flow (6.6.2) terminates
at finite or infinite time at &. (The termination at finite time can happen
only if x, = £.) Then A(£) is an open connected set of D.

We claim that A(€) = D. If not, there exists a point x, € d.A(€) N D.
Since A(&) is open, x, € A(€). As we showed above x, € A(¢’) for some
another critical point &' # €. Clearly A(£) N A(¢') = 0. As A(¢) is open
there exists an open neighborhood of x, in D which belongs to A(¢"). Hence
X, can not be a boundary point of A(£), which contradicts our assumption.
Hence A(€) = D, and £ is a unique critical point of f in D. Hence £ is the
unique minimal point of f. |

Theorem 6.6.8 Let A = [a;;|i;—; € R*™ be an irreducible matriz.

Suppose furthermore that a;; > 0 fori=1,...,n. Letw = (w,,...,w,)" >
0. Define the following function

(6.6.3) f="Ffaw=>_ wilog

=1

, X=(xy,...,2n) > 0.

(Ax);

T

Let D be the interior of I1,,. (D can be viewed as an open connected bounded
set in R"~1, see the proof.) Then f satisfies the assumptions of Theorem
6.6.7. Let 0 < & € II,, be the unique critical point of f in D. Then
f(x) > f(&) for any x > 0. Equality holds if and only if x = t€ for some
t>0.
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Proof. Observe that any probability vector p = (p,,...,pn)' can be
written as p = 21 +y where y € R", 1Ty = o and y > —21. Since
any y € R, 1Ty = o is of the foorm y = wu,(—1,1,0...,0)" + ... +
Up_1(—1,0,...,0,1)T we deduce that we can view II,, as an compact con-
nected set in R”~!, and its interior D, i.e. 0 < p € II,,, is an open connected
bounded set in R*~!.

We now claim that f|OIl, = co. Let 0 < pr = (Prks---sPnk) €
I,k =1,..., converge to p = (py,...,pn) € OI,. Let O # Z(p) C [n]

be the set of vanishing coordinates of p. Observe first that (’1—’?” >ai; >0
for ¢ = 1,...,n. Since A is irreducible, it follows that there exists | €
Z(p),j € [n]\Z(p) such that a;; > 0. Hence
A .
lim (Apr) > lim @QPjk
k— o0 Dk k— o0 Di.k
Thus (Apy)
. . Pk )i
1 > lim log ——— log a;; = oo.
Jim f(pe) > Jim log == + ) logai; = oo

il
Observe next that f(x) is a homogeneous function of degree 0 on x > 0,
ie. f(tx) = f(x) for all ¢ > 0. Hence % = 0. Thus

(6.6.4) x'Vf(x)=o0

for all x > 0. Let £ € D be a critical point of f|D. Then y 'V f(§) = o for
each y € R", 1Ty = 0. Combine this fact with (6.6.4) for x = £ to deduce
that & is a a critical point of f in R%. So Vf(§) = 0. Differentiate (6.6.4)
with respect to x;,4 = 1,...,n and evaluate these expressions at x = &.
Since £ is a critical point we deduce that H(£)€ = 0. We claim that H (&)
is a symmetric singular M-matrix. Indeed

af _ i - ) Qi
(6.6.5) 8—%(:&) = —wj P + ;wl A,

Hence for [ # j

32f - A5 A1
= — , <
00z () Zwl (Ax)2 — ¢

i=1 g

So H(x) is a Z-matrix for any x > 0. Since H(£)&€ = 0 Corollary 6.6.4 yields
that H(&) is a symmetric singular M-matrix. So H(&) = p(C)I — C,C =
[cijli—j—1- We claim that C' is an irreducible matrix. Indeed assume that
aj; > 0. Then

82f ajjajl
cjl=cy = _8I16$]‘ *wj(AE)? > 0.
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Since A is irreducible C' is irreducible. Hence 0 = \,(H(£))is a simple
eigenvalue of H(&). The restriction of the quadratic form corresponding to
the Hessian of f|II,, at &, corresponds to y ' H(&)y where 17y = 0. Corol-
lary 6.6.5 implies that there exists a > 0 such that y " H(&)y > ally||* for
all 1Ty = o. Hence the Hessian of f|D at the critical point 0 < & € IT,,
has positive eigenvalues. Theorem 6.6.7 yields that there exists a unique
critical point & € D of f|D such that f(p) > f(&) for any p € D\{£}. Since
f(x) is a homogeneous function of degree 0 we deduce that f(x) > f(&) for
any x > 0. Equality holds if and only if x = t£ for some ¢t > 0. a

Theorem 6.6.9 Let A € RY*" and assume that
Au=p(A)u, ATv=p(A)v, o<p(A),
O<u= (ul,...,un)—r7v = (V1y...,0n
Then
(Ax )

)T >0,

(6.6.6) Zuv,log > logp(A) for any x = (z4,...,2n

i=1
n

(6.6.7) p(DA) > p(A) H dy™ for any diagonal D = diag(dy,...,d,) > 0.
i=1

Equality holds for x = tu and D = sI, where t > 0,s > 0, respectively.

Assume that A is irreducible and all the diagonal entries of A are positive.

Then equality holds in (6.6.6) and (6.6.7) if and only if x = tu, D = sI for

some t > 0,s > 0 respectively.

Proof. Assume that A = [a;]7_,;_; € R™" be irreducible and a;; > 0
fori=1,...,n. Let w = (u,v,,...,unv,) . Define f(x) as in (6.6.3). We
claim that u is a critical point of f. Indeed, (6.6.5) yields

af 1 .
8xj( u) = U +Zulvl W fijrm(ATv)j =0,j=1,...,n.

Similarly, tu is a critical point of f for any ¢ > 0. In particular, & = tu € II,
is a critical point of f in D. Theorem 6.6.8 implies that f(x) > f(u) =
log p(A) and equality holds if and only if x = tu for some ¢ > 0.

Let D be a diagonal matrix with positive diagonal entries. Then DA
is irreducible, and DAx = p(DA)x for some x = (2,,...,7,)" > 0. Note
that since f(u) < f(x) we deduce

log p(A) < Z UiV; log =logp(DA) — Z u;v; log d;.
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The above inequality yields (6.6.7). Suppose that equality holds in (6.6.7).
Then x = tu, which yields that D = sI for some s > 0. Suppose that
D > 0 and D has at least one zero diagonal element. Then the right-
hand side of (6.6.7)is zero. Clearly p(DA) > 0. Since d;a;; is a principle
submatrix of DA, Lemma 6.4.2 yields that p(DA) > max;c[,) d;as;. Hence
p(DA) =0 if and only if D = 0. These arguments prove the theorem when
A is irreducible with positive diagonal entries.

Let us now consider the general case. For ¢ > 0 let A(g) := A+ cuv'.
Then A(g) > 0 and A(e)u = (p(A) + €)u, A(e)'v = (p(A) + €)v. Hence
inequalities (6.6.6) and (6.6.7) hold for A(e) and fixed > 0,D > o. Let
£ \( 0 to deduce (6.6.6) and (6.6.7). For x = tu, D = sI, where t > 0,8 >0
one has equality. |

Corollary 6.6.10 Let the assumptions of Theorem 6.6.9 hold. Then

(6.6.8) zn: C

T

L > p(A) for any x = (x,...,3,) > 0.

X
If A is irreducible and has positive diagonal entries then equality holds if
and only if x = tu for some t > 0.

Proof. Use the arithmetic-geometric inequality Y., pic; > [[,_, ¢
for any p = (p,...,pn) € II,, and any ¢ = (c,,...,c,) > 0. a

Definition 6.6.11 Let x = (2,,...,2,) .y = (Y1,.--,%n)" € C".

Denote by e* := (e®™,...,e*) T, by x™* := (s o )T for x > 0,
and by x oy the vector (x1y1,--.,TnYn)" . For a square diagonal matriz

D = diag(dy, ..., d,) € C™*™ denote by x(D) the vector (dy,...,d,)".

Theorem 6.6.12 Let 0 < u = (uy,...,u,) ,v = (v;,...,v,)" . Let
0 <w=uov. Assume that A = [a;]}_;—, € R*" is irreducible. Then
there exists two diagonal matrices Dy, Do € Rixn, with positive diagonal
entries, such that DiADou = u, (D, AD,)"v = v if one of the following
conditions hold. Under any of this conditions D1, Do are unique up to the
transformation t~'D1,tDo for some t > 0.

1. All diagonal entries of A are positive.
2. Let N C [n] be a nonempty set of all j € [n] such that aj; = 0.

Assume that all off-diagonal entries of A are positive and the following
inequalities hold.

(6.6.9) Z w; > w; forall j € N.
i€[n]\{j}
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(For n =2 and N = [2] the above inequalities are not satisfied by any

w.)

Proof. We first observe that it is enough to consider the case where
u =1, i.e. B := D;AD, is a stochastic matrix. See Problem 2. In this
case w = V.

1. Assume that all diagonal entries of A are positive. Let f = fa w be
defined as in (6.6.3). The proof of Theorem 6.6.8 yields that f has a unique
critical 0 < £ in II,,. (6.6.5) implies that

. Wikij _ Wj
2 (A8 &~

=1

This is equivalent to the equality (D(A&)~*AD(£))"w = w. A straightfor-
ward calculation show that D(A¢)~*AD(&)1 = 1. Hence D1 = D(A€)™!, Dy
D(e).

Suppose that D1, D, are diagonal matrices with positive diagonal entries
so that D1ADs1 =1 and (D1 ADs)"w = w. Let u = D,1. The equality
D1 AD,1 = 1 implies that D; = D(Au)~*. The equality (D;ADy)"w = w
is equivalent to (D(A(u))"*AD(u))'w = w. Hence u is a critical point of
f. Therefore u = t¢. So Dy =tD(§) and Dy =t~ 1D(A¢)~L.

2. As in the proof of Theorem 6.6.8, we show that f = fy 4 is blows
up to oo as p approaches 9ll,,. Let 0 < py = (P ky---Pnk) | € Ik =
1,..., converge to p = (p1,...,pn) € OI,. Let O # Z(p) C [n] be
the set of vanishing coordinates of p. Since all off-diagonal entries of A
UPr)i — o for each i € Z(p). To

Pi,k
show that limg_,o f(Pr) = oo it is enough to consider the case where

are positive, it follows that limy_,

limy_y o0 % = 0 for some m ¢ Z(p). In view of the proof of Theo-

rem 6.6.8 we deduce that m € N. Furthermore, #Z(p) = n — 1. Hence
limg_yoo Pm,x = 1. Assume for simplicity of notation that m = 1, i.e.
Z(p) ={2,3,...,n}. Let s = max;>2p; k. So limy_oo s, =0. Let a >0

(APk)i ~ aP1k
Pik - Sk

be the value of the minimal off-diagonal entry of A. Then
for i > 2. Also (‘2’7’;)1 > 2%k Thys

- Pi,k

n
f(pr) > w, log as’; +Z w; log Wk _ (Z w; ) log a—i—(—wd—z w;) log psl—:

Pukiss k= i>2
(6.6.9) for j =1 implies that limg_, . f(px) = 0.
Let 0 < & € II, be a critical point of f. We claim that H(§) =

p(C)I —C, and 0 < C is irreducible. Indeed, for j # 1 c;; = > | w; ?Xg);
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Since n > 3 choose i # j,1 to deduce that c¢;; > 0. So C has positive off-
diagonal entries, hence irreducible. Hence 0 < & € II,, is a unique critical
point in II,,. The arguments for 1 yield the existence of Dy, Do, which are
unique up to scaling. |

Problems
1. Prove Lemma 6.6.2.

2. Let B € RT™" and assume that Bu = u,BTv, where 0 < u =
(Uyy .-y upn) ', v = (vs,...,v,) . Then C := D(u)"*BD(u) satisfies
the following C1 = 1,C"w = w, where w = uov.

3. A € R is called fully indecomposable if there exists P € P, such
that PA is irreducible and have positive diagonal elements. Show that
that if A is fully indecomposable then there exist diagonal matrices
Dy, D5, with positive diagonal entries, such that D AD5 is doubly
stochastic. D1, Dy are unique up to a scalar factor t =1 Dy, tDs.

4. Let A € R?*™ and n > 1. Show that the following are equivalent:

(a) A does not have a k x (n—k) zero submatrix for each k € [n—1].
(b) PA is irreducible for each permutation P € P,,.
(¢) A is fully indecomposable.

6.7 Log-convexity
The following results are well known, e.g. [Roc70].
Fact 6.7.1

1. Let D C R™ be a convez set, and f : D — R a convex function. Then
f:D° = R is a continuous function. Furthermore, at each x € D°,
f has a supporting hyperplane. That is there exists p = p(x) € R”
such that

(6.7.1) fly) > f(x)+p" (y —%) for any y € D.

Assume furthermore that dim D = n. Then the following conditions
are equivalent.
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(a) f is differentiable at x € D°. Le. the gradient of f, Vf, at x
ezists and the following equality holds.

(6.7.2)  [If(y) = (fx) + Vf(x) " (y = x)] = olly —x]|)-

(b) [ has a unique supporting hyperplane at X.

The set of points Diff (f) C D°, where f is differentiable, is a dense set
in D of the full Lebesque measure, i.e. D\DIiff(f) has zero Lebesgue
measure. Furthermore, V f is continuous on Diff(f).

(a) If f,g are convex on D then max(f,g), where max(f,g)(x) =
max(f(x),g(z)), is convex. Furthermore, af + bg is convex for
any a,b > 0.

(b) Let f; : D — R fori=1,2,.... Denote by f := limsup, f; the
function given by f(x) := limsup, f(x) for each x € D. Assume
that f : D — R, i.e. the sequence fi(x),i =1,..., is bounded for
each x. If each f; is conver on D then f is convex on D.

Theorem 6.7.2 LetD € R™ be a convex set. Assume that a;; : D — R
are log-convex functions fori,j =1,...,n. Let A(x) := [a;;(x)]7_;—, be the
induced nonnegative matriz function on D. Then p(A(x)) is a log-convex
function on D. Assume furthermore that each a;;(x) € CX¥(D°), for some
k > 1. (Al partial derivatives of a;;(x) of order less or equal to k are
continuous in [ D.) Suppose furthermore that A(x,) is irreducible. Then
0 < p(A(x)) € CK(D°).

Proof. In view of Fact 6.7.1.1a each entry of the matrix A(x)™ is log-
convex. Hence tr A(x)™ is log-convex, which implies that (tr A(x)™)w is
log-convex. Theorem 6.4.9 combined with Fact 6.7.1.1b yields that p(A(x))
is log-convex.

Assume that A(x,) is irreducible for some x, € D°. Since each a;;(x)
is continuous in D?, Problem 1 yields that the digraph D(A(x)) is a con-
stant digraph on D°. Since D(A(x,)) is strongly connected, it follows that
D(A(x))) is strongly connected for each x € D°. Hence A(x) is irreducible
for x € D° and p(A(x)) > o is a simple root of its characteristic polynomial
for x € D°. The implicit function theorem implies that p(A(x)) € CX(D°).

a

Theorem 6.7.3 Let A € R™". Define A(x) = D(eX)A for any x €
R™. Then p(A(x)) is a log-convez function. Suppose furthermore that A
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is wrreducible. Then log p(A(X)) is a smooth conver function on R™, i.e.
log p(A(x)) € C*(R"). Let

A(x)u(x) = p(A(x))u(x), Ax)" v(x) = p(Ax))v(z),
0 < u(x),v(x), with the normalization w(x) =: u(x) o v(x) € II,.

Then
1
6.7.3 Viog p(A(x)) = ——=Vp(A(x)) = w(x).
(6.7.3) (A()) = o Vo(AR) = w()
That is, the inequality (6.6.7) corresponds to the standard inequality
(6.7.4) log p(A(y)) > log p(A(0)) + Vlog p(A(0)) Ty,

for smooth convex functions.

Proof. Clearly, the function f;(x) = e® is a smooth log-convex function
for x = (z,,...,2,)" € R™ Since A > 0 it follows that each entry of A(x)
is a log-convex function. Theorem 6.7.2 yields that p(A(x)) is log-convex.

Assume in addition that A = A(0) is irreducible. Theorem 6.7.2 yields
that log p(A(x)) is a smooth convex function on R™. Hence log p(A(x)) has
a unique supporting hyperplane at each x. For x = o this supporting hy-
perplane is given by the right-hand side of (6.7.4). Consider the inequality
(6.6.7). By letting D = D(e¥) and taking the logarithm of this inequal-
ity we obtain that log p(A) + w(0) Ty is also a supporting hyperplane for
log p(A(x)) at x = 0. Hence Vlogp(A(0)) = w(0). Similar arguments for
any x proves the equality (6.7.3). O

Problems
1. Let D C R™ be a convex set.

(a) Show that if f is a continuous log-convex on D, then either f
identically zero function or positive at each x € D.

(b) Assume that f is positive on D, i.e. f(x) > o for each x € D.
Then f is log-convex on D if and only if log f is convex on D.

(c) Assume that f is log-convex on D. Then f is continuous on D°.

2. Let f : D — R be a log-convex function. show that f is a convex
function.

3. Let D C R™ be a convex set.
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(a) If f,g are log-convex on D then max(f,g) is log-convex. Fur-
thermore, f%g® and af + bg are log-convex for any a,b > 0.

(b) Let f; : D - R i =1,2,... be log-convex. Assume that f :=
limsup, f; : D — R. Then f is log-convex on D.

6.8 Min-max characterizations of p(A)

Theorem 6.8.1 Let ¥ : R — R be a differentiable convex nondecreas-
ing function. Let A € R*", and assume that p(A) > 0. Then

sup Zpl <log Z”):

P=(P1,--pn) " €I, X—(xl, ,xn)>0
(6.8.1) W (log p(A)).

Suppose that V' (logp(A)) > 0 and A has a positive eigenvector u which
corresponds to p(A). If

(6.8.2) _ (mlmansz <log Z)'>=\I’(1ng(A))

then the vector v = pou™" is a nonnegative eigenvector of AT correspond-

ing to p(A). In particular, if A is irreducible, then p satisfying (6.8.2) is
UNLQUE.

Proof. Let u(A) be the left-hand side of (6.8.1). We first show that
u(A) < U(log p(A)). Suppose first that there exists u > 0 such that Au =
p(A)u. Then

in Zpl <log ) sz <10g Z)'>‘If(10gp(f4)),

x=(Z1,.. ,acn)>0

for any p € II,,. Hence u(A) < ¥(logp(A4)).

Let J, € R™*"™ be the matrix whose all entries are equal to 1. For € > 0
let A(e) :== A+eJ,. As A(e) is positive, it has a positive Perron-Frobenius
eigenvector. Hence pu(A(e)) < ¥(log p(A(e))). Since ¥ is nondecreasing and
A(e) > A, it follows that pu(A) < p(A(e)) < U(logp(A(e))). Let e N\, 0,
and use the continuity of ¥(t) to deduce p(A) < ¥(log p(A)).

Assume now that A € R}*" is irreducible. Let u,v > 0 be the the
right and the left Perron-Frobenius eigenvectors of A, such that p* =
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(pt,...,p5)T :==uov € I,. Suppose first that ¥(¢t) = t. Theorem 6.6.9
yields the equality

sz tog )1 105 (4.

x_(m17 1In

Hence we deduce that pu(A) > logp(A). Combine that with the previous
inequality p(A) <logp(A) to deduce (6.8.1) in this case.

Suppose next that ¥ is a convex differentiable nondecreasing function
on R. Let s := ¥'(log p(A)). So s > 0, and

U(t) > ¥(log p(A)) + (t — log p(A))s, for any ¢ € R.
Thus

sz (log all > > U(logp(A)) _IOgP(A))S+SZPi log (Ax

Use the equality (6.8.1) for ®(¢t) = t to deduce that u(A) > U(log p(A)).
Combine that with the inequality p(A) < ¥(log p(A)) to deduce (6.8.1) for
any irreducible A.

Suppose next that A € R is reducible and p(A) > 0. By applying
a permutational similarity to A, if necessary, we may assume that A =
[aij] and B = [a;;]i2;_, € R™*™, 1 < m < n is an irreducible submatrix
of A with p(B) = p(A). Clearly, for any x > 0, (A(x1,...,2,)"); >
(B(x1,...,2,)"); fori=1,...,m. Since ¥ is nondecreasing we obtain the
following set of inequalities

st S (me B2 >

aTell,, 0<xeR"

sup  inf Zq, <log y)i ) = U(log p(B)).

qTel,, O<y€cRm™ “ i
Use the equality p(A) = p(B) and the inequality p(A) < ¥(logp(A)) to

deduce the theorem.
Assume now that

p(A) >0, ¥'(log p(A)) >0, Au=p(A)u, u >0,

and equality (6.8.2) holds. So the infimum is achieved at x = u. Since
X = u is a critical point we deduce that ATpou™ = p(A)pou=*. If A is
irreducible then p is unique.

O
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Corollary 6.8.2 Let A € R*"™. Then

. - (AX)i
(6.8.3) sup inf D; = p(A).
p=(p1+-spn) T EM, x:(ml,...,xn)>0izz1 Z;

Suppose that p(A) > 0 and A has a positive eigenvector u which corresponds
to p(A). If

(6.8.4) inf > p

X=(Z1,..,Tpn)>0 =
then the vector v.=pou~" is a nonnegative eigenvector of AT correspond-
ing to p(A). In particular, if A is irreducible, then p satisfying (6.8.3) is
unique.

Proof. If p(A) > 0 the corollary follows from Theorem 6.8.1 by letting
U(t) = e'. For p(A) = 0 apply the corollary to A; = A+ I to deduce the
corollary in this case. O

Theorem 6.8.3 Let D, 1 denote the convex set of all n xn nonnegative
diagonal matrices. Assume that A € R*™. Then

(6.8.5) p(A+tD1+ (1 —t)D3) < tp(A+ D1) + (1 —t)p(A + Dy)

fort € (0,1) and D1,Ds € Dy, 4. If A is irreducible then equality holds if
and only if D1 — Do = al.

Proof. Let ¢(p) = infx-0 > i, pi f;x)’ for p € I1,,. Since 7‘42?)")1' =
d; + (éﬁix)’ for D = diag(dy,...,d,) we deduce that

n

Uy = juf 3P (LA Dhx = Ynd +otp

Thus (D, p) is an affine function, hence convex on D,, ;. Therefore, p(A+
D) = supyepy, ¥(D,p) is a convex function on D,, ;. Hence (6.8.5) holds
for any t € (0,1) and D1, Dy € D, 4.

Suppose that A is irreducible and equality holds in (6.8.5). Since p(A +
bl + D) = b+ p(A+ D) for any b > 0, we may assume without loss
of generality that all the diagonal elements of A are positive. Let Ay =
A+1tDy+ (1 —t)D,. Since Ap has a positive diagonal and is irreducible we
deduce that Agu = ru, Al v = rv where r > 0,u,v > 0,w :=vou € II,.
Corollary 6.8.2 yields that

p(Ao) = (D1 + (1 =)Dy, w) = th(Dy, w) + (1 = £)3(D2, W).
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Hence, equality in (6.8.5) implies that

n

p(A+D1) = (D1, w) = p(Ao) + (1 =) Y _(dvi — doyi),

=1

p(A+ D2) = (Do, w) = p(Ao) + 1Y (doy — di i),

D1 = diag(dm, ey dn,l)a D2 = diag(dLg, e 7dn72).

Furthermore, the infima on x > 0 in the ¥(Dy,w) and ¥(Dy,w) are
achieved for x = u. Corollary 6.8.2 that u is the Perron-Frobenius eigen-
vector of A+ D; and A+ Ds. Hence D1 — Do = al. Clearly, if D1 — Dy = al
then equality holds in (6.8.5). O

Theorem 6.8.4 Let A € R*"™ be an inverse of an M-matriz. Then
(6.5.6) p((tDy + (1 - )D3)A) < tp(DyA) + (1 — 1)p(DaA),

fort €(0,1), D1,Dy € Dy, . If A >0 and Dy, Dy have positive diagonal
entries then equality holds if and only if D1 = aDs.

Proof. Let A= B~!, where B=rI —C,C € R}*" and p(C) < r. Use
Neumann expansion to deduce that A = 22 r~(+U B’ Hence, A > 0
if and only if C is irreducible. Assume first that A is positive. Denote
by Dj, . the set diagonal matrices with positive diagonal, i.e. the interior
of Dy, 4. Clearly, DA > 0 for D € Dj, ,. Thus, p(DA) > 0 is a simple
eigenvalue of det (\/ — DA). Hence p(DA) is an analytic function on Dy, .
Denote by Vp(DA) € R™ the gradient of p(DA) as a function on D, 4.
Since p(DA) € C*(Dg ) it follows that convexity of p(DA) on Dj | is
equivalent to the following inequality.

(68.7)  p(D(d)A) > p(D(dy)A) + Vp(D(dy)4) " (d - d,), d,d, > 0.
See Problem 1. We now show (6.8.7). Let
DoAu = p(Do)u, VTDOA = p(D0A>VT7 u,v>o,voué€Il,, D, = D(d,).

Theorem 6.7.3 implies that Vp(DgA) = p(DyA)vouod,*. Hence, (6.8.7)
is equivalent to

p(D(d)A) > p(DyA)(vou) (dod;?).

Let D(d)Aw = p(D(d)A)w,w > 0. Then the above inequality follows
from the inequality

(6.8.8) p(DoA)™t > (vou)  (wo (DyAw) ™).
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This inequality follows from the inf sup characterization of p(DgA)~t. See
Problem 2. The equality case in (6.8.7) follows from the similar arguments
for the equality case in (6.8.6). Since p(DA) is a continuous function on
D, +, the convexity of p(DA) on Dy, | yields the convexity of p(DA) on
Dn7+.

Consider now the case where A~! = rI — B, B € R}*",r > p(B), and
B is reducible. Then there exists b > 0 such that for p(B 4+ b1"1) < 7.
For ¢ € (0,b) let A(e) := (r] — (B+¢117))~*. Then the inequality (6.8.7)
holds if A is replaced by A(e). Let € \, 0 to deduce (6.8.7). O

Problems

1. (a) Let f € C%(a,b). Show that f”(z) > 0 for = € (a,b) if and only
if f(z) > f(xo) + f'(xo)(x — o) for each z,zo € (a,b).

(b) Let D C R™ be an open convex set. Assume that f € C%(D).
Let H(f)(x) = [azzafmj](x) € S(n,R) for x, € D. Show that
H(f)(x) >0forallx € Dif and only if f(x) > f(x0)+Vf(x,) " (x
Zo) for all x,x, € D. (Hint: Restrict f to an interval (u,v) C D
and use part (a) of the problem.)

(a) Let F € R™™ be an inverse of an M-matrix. Show

1 inf - T
— = in sup Di .
p( ) P=(P1,..spn) T €I, X=(T1,...,Tn)>0 i=1 Z(FX)Z

Hint: Use Corollary 6.8.2.
(b) Let 0 < F € R}*™ be an inverse of an M-matrix. Assume that

Fu=p(F)u,F'v=p(F)v,u,v>0,vou¢€II,.

Show
1 2 Z;
_— = sup Vil 5—-
p( ) x:(a:,,...,wn)>0; (FX)Z
Furthermore, ﬁ = 2?21 Uzuz(;—x) for x > o if and only if
Fx = p(F)x.

(c) Show (6.8.8). Hint: Use Corollary 6.6.4 to show that A~'Dy!
is an M-matrix.
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3. Let P = [0;(j+1)] € Pn be a cyclic permutation matrix. Show that
p(D(d)P) = ([I}_, d;)= for any d € R".

4. Show that (6.8.7) does not hold for all A € R}*".

5. Let A € R*™ be an inverse of an M-matrix. Show that the convexity
of p(D(e*)A) on R™ is implied by the convexity of p(DA) on D, ;.
Hint: Use the generalized arithmetic-geometric inequality.

6.9 An application to cellular communication

6.9.1 Introduction

Power control is used in cellular and ad-hoc networks to provide a high
signal-to-noise ratio (SNR) for a reliable connection. A higher SNR also
allows a wireless system that uses link adaptation to transmit at a higher
data rate, thus leading to a greater spectral efficiency. Transmission rate
adaptation by power control is an active research area in communication
networks that can be used for both interference management and utility
maximization [Sri03].

The motivation of the problems studied in this section comes from max-
imizing sum rate, (data throughput), in wireless communications. Due to
the broadcast nature of radio transmission, data rates in a wireless network
are affected by interference. This is particularly true in Code Division Mul-
tiple Access (CDMA) systems, where users transmit at the same time over
the same frequency bands and their spreading codes are not perfectly or-
thogonal. Transmit power control is often used to control signal interference
to maximize the total transmission rates of all users.

6.9.2 Statement of problems

Consider a wireless network, e.g., cellular network, with L logical trans-
mitter/receiver pairs. Transmit powers are denoted as py,...,pr. Let
p = (ps,...,pr)" > 0 be the power transmission vector. In many situ-
ation we will assume that p < p := (py,...,p1) ", where p; is the maximal
transmit power of the user [. In the cellular uplink case, all logical re-
ceivers may reside in the same physical receiver, i.e., the base station. Let
G= [gij]ﬁjzl > 0p,x 1, representing the channel gain, where g;; is the chan-
nel gain from the jth transmitter to the ith receiver, and n; is the noise
power for the [th receiver be given. The Signal-to-Interference Ratio (SIR)
for the Ith receiver is denoted by +; = ;(p). The map p — v(p) is given
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by
(6.9.1)

qgupi T

—L — R = (%(p),..., )

7(p) o ¥ Y(P) = ((p) vL(P))

That is, the power p; is amplified by the factor g;;, and diminished by other
users and the noise, inversely proportional to > 21 93P5 +
Define

0, ifi=j
(6.9.2) = [fij]iL,j:17 where fi; = { %’ if i #j
and
(693) g:(gll7"'7gLL)T7 n:(n17"’7nL)T7
s=(s1,...,s1) = M2 i)T.
Y g11 822 gLL
Then
(6.9.4) ¥(p)=po(Fp+s) "
Let
(6.9.5)
L
Dy () := Zwi log(1 +7;), where w = (w, ..., w,)" € II,,~ € ]Rf_.
i=1

The function @y (y(p)) is the sum rate of the interference-limited channel.

We can study the following optimal problems in the power vector p. The
first problem is concerned with finding the optimal power that maximizes
the minimal SIR for all users:

6.9.6 max min y;(p
( ) p€E[0,p] i€[L] (P)

Then second, more interesting problem, is the sum rate maximization
problem in interference-limited channels

(6.9.7) max Py (v(p)).
p€[0,p]

The exact solution to this problem is known to be NP-complete [Luo08].
Note that for a fixed p1,...,pi—1,pi41,...,pr each v;(p),j # [ is a de-
creasing function of p;, while v;(p) is an increasing function of {. Thus, if
w; = 0 we can assume that in the maximal problem (6.9.7) we can choose
pr = 0. Hence, it is enough to study the maximal problem (6.9.7) in the
case w > 0.
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6.9.3 Relaxations of optimal problems

In this subsection, we study several relaxed versions of (6.9.6) and (6.9.7).
We will assume first that we do not have the restriction p < p. Let v(p, n)
be given by (6.9.1). Note that since n > o we obtain

1
~(tp,n) = vy(p, ;n) = v(tp,n) > v(p,n) for ¢t > 1.

Thus, to increase the values of the optimal problems in (6.9.6) and (6.9.7),
we let ¢ — oo, which is equivalent to the assumption in this subsection that
n=_0.

Theorem 6.9.1 Let F € RiXL,L > 2 be a matriz with positive off-
diagonal entries. Let Fu = p(F)u for a unique 0 < u € II;,. Then

1
(6.9.8) max min b = ,

0<p€lly le[L] Z]FZI fip;  PF)

which is achieved only for p = u. In particular, The value of the optimal
problem given in (6.9.6) is less than ﬁ.

(FP)L)—l_

Proof. Clearly, the left-hand side of 6.9.8 is equal to (ming<p max;ez] o

Since F is irreducible, our theorem follows from Problem 11.
Clearly v(p,n) < ~v(p,0). Hence, for p > 0 min;¢[z) v(p, n) < minie(z)v(p, 0).
Since p € [0,p] C Ri we deduce that the value of the optimal problem given
in (6.9.6) is less than —'=. O
p(F)
We now consider the relaxation problem of (6.9.7). We approximate
log(1 + ) by logz for « > 0. Clearly, log(1 4+ =) > logz. Let

L
(6.9.9) Uy(y) = Zwi logv;, ~v=(7,-.. L)
j=1

Theorem 6.9.2 Let F' = [f;j] € RiXL have positive off-diagonal ele-
ments and zero diagonal entries. Assume that L > 3, w = (w,,.. ., wr) ' >
0, and suppose that w satisfies the inequalities (6.6.9) for each j € [L],
where n = L. Let D1 = diag(dm, e 7dL71), D2 = diag(dLg, ey dL72)
be two diagonal matrices, with positive diagonal entries, such that B =
D1FDy,B1 =1,B"w = w.(As given by Theorem 6.6.12.) Then

L

(6.9.10) max Uy(p) = ij logd;, dj.
j=1

Equality holds if and only if p =tD;*1 for some t > 0.



376 CHAPTER 6. NONNEGATIVE MATRICES

Proof. Let p = D,x. Then

L L (BX)
\IIW(DQX) = ij IOg dj,1dj,2 — Z’U}j J .
j=1

Iy
j=1 I

Use Theorem 6.6.9 to deduce that the above expression is not more than
the right-hand side of (6.9.10). For x = 1 equality holds. From the proof of
the second part of Theorem 6.6.12 it follows that this minimum is achieved
only for x = t1, which is equivalent to p = tD; *1. O

6.9.4 Preliminary results

Claim 6.9.3 Let p > 0 be a nonnegative vector. Assume that v(p) is
defined by (6.9.1). Then p(diag(~(p))F') < 1, where F is defined by (6.9.2).

Hence, for v =~(p),

(6.9.11) p = P(v) := (I — diag(y)F) ™ * diag(v)v.
Vice versa, if v is in the set

(6.9.12) I':={y >0, p(diag(v)F) < 1},

then the vector p defined by (6.9.11) is nonnegative. Furthermore, v(P(p)) =
~. That is, v : Rﬁ —T,and P: T — Ri are inverse mappings.

Proof. Observe that (6.9.1) is equivalent to the equality
(6.9.13) p = diag(v)Fp + diag(v)v.

Assume first that p is a positive vector, i.e., p > 0. Hence, v(p) > 0. Since
all off-diagonal entries of F' are positive it follows that the matrix diag(vy)F
is irreducible. As v > 0, we deduce that max;c[i %RFP)" < 1.
The min max characterization of Wielandt of p(diag(y)F), (6.2.4) implies
p(diag(y)F) < 1. Hence, v(p) € T'. Assume now that p > 0. Note that
pi >0 < ~v(p) >0 Sop=0 < ~(p) =o. Clearly, p(v(0)F) =
plorxr) =0 < 1. Assume now that p > 0. Let A ={i: p; > o}. Denote
~(p)(A) the vector composed of positive entries of v (p). Let F(A) be the
principal submatrix of F with rows and columns in A. It is straightforward
to see that p(diag(y(p))F') = p(diag(y(p)(A)F(A)). The arguments above

imply that

p(diag(y(p))F') = p(diag(~(p)(A)F(A)) < 1.
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Assume now that v € I'. Then

(6.9.14) (I — diag(y = (diag(y)F)* > 0pxr.
k=0

Hence, P(v) > 0. The definition of P(«) implies that v(P(v)) = ~. O

Claim 6.9.4 The set T' C Rf; is monotonic with respect to the order
>. Thatisify €I and~y > B > 0 then 3 € I'. Furthermore, the function
P(v) is monotone on T.

(6.9.15) P(y)>P(B)ifyeT and~vy> 3> 0.
Equality holds if and only if v = 3.

Proof. Clearly, if v > 3 > 0 then diag(y)F > diag(8)F which implies
p(diag(y)F) > p(diag(B8)F). Hence, I' is monotonic. Use the Neumann
expansion (6.9.14) to deduce the monotonicity of P. The equality case is
straightforward. O

Note that 4(p) is not monotonic in p. Indeed, if one increases only
the ith coordinate of p, then one increases the ith coordinate of (p) and
decreases all other coordinates of v(p).

As usual, let €; = (6;1,...,0;z)", i =1,..., L be the standard basis in
RZ. In what follows, we need the following result.

Theorem 6.9.5 Let | € [L] and a > 0. Denote [0,a]; x RY™" the set
of allp = (p.,...,pr)" € RE satisfying pi < a. Then the image of the set
[0,a]; x Ri_l by the map v (6.9.1), is given by

(6.9.16) p(diag(7)(F + lvel <1, 0<n.

Furthermore, p = (p.,...,pL) € R+ satisfies the condition p; = a if and
only if v = v(p) satisfies

(6.9.17) p(diag()(F + %ve;)) —

Proof. Suppose that ~ satisfies (6.9. 16) We claim that 4 € T'. Suppose
first that v > 0. Then diag(y)(F + t1ve] ) < diag(y)(F + t,ve]) for any
t; < to. Lemma 6.2.4 yields

(6.9.18) p(diag(y ) ) < p(diag(y)(F + t1ve])) <
p(diag(y)(F + tave] ) < p(diag(y )(FJr Ve N <iforo<t, <t,< g
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Thus v € T'. Combine the above argument with the arguments of the proof
of Claim 6.9.3 to deduce that v € T" for v > 0.

We now show that P(v); < a. The continuity of P implies that it is
enough to consider the case v > 0. Combine the Perron-Frobenius theorem
with (6.9.18) to deduce

(6.9.19) 0 < det (I — diag(y)(F +tve])) for t € [0,a™").

We now expand the right-hand side of the above inequality. Let B = xy | €
RELXL be a rank one matrix. Then B has L — 1 zero eigenvalues and one
eigenvalue equal to y'x. Hence, ] — xy ' has L — 1 eigenvalues equal to
1 and one eigenvalue is (1 —y x) Therefore, det (I —xy ') =1 —y'x.
Since v € T we get that (I — diag(+)F) is invertible. Thus, for any ¢t € R

det (I — diag(y)(F +tve} )) =
(6.9.20) det (I — diag(v)F)det (I —t((I — diag(y)F)~* diag(vy)v)e;)
det (I — diag(y)F)(1 — te; (I — diag(y)F)~* diag(y)v).

Combine (6.9.19) with the above identity to deduce
(6.9.21) 1> te] (I — diag(y)F) * diag(y)v = tP(y); for t € [o,a™").

Letting t ,* a~!, we deduce that P(«); < a. Hence, the set of v defined by
(6.9.16) is a subset of ¥([0, a]; x Ri_l).

Let p € [o0,qa]; X Rffl and denote v = v(p). We show that ~ satisfies
(6.9.16). Claim 6.9.3 implies that p(diag(y)F) < 1. Since p = P(%)
and p; < a we deduce (6.9.21). Use (6.9.20) to deduce (6.9.19). As
p(diag(v)F) < 1, the inequality (6.9.19) implies that p(diag(y)F+tv'e;) <
1 for t € (0,a™ ). Hence, (6.9.16) holds.

It is left to show the condition (6.9.17) holds if and only if P(y); = a.
Assume that p = (p,,...,pr)" € RE, p; = a and let v = v(p). We claim
that equality holds in (6.9.16). Assume to the contrary that p(diag( )(F +
Lve[)) < 1. Then, there exists 3 > v such that p(diag(8)(F++ve;)) < 1.
Since P is monotonic P(83); > p; = a. On the other hand, since (3 satisfies
(6.9.16), we deduce that P(8); < a. This contradiction yields (6.9.17).
Similarly, if v > 0 and (6.9.17) then P(vy); = a. O

Corollary 6.9.6 Let p = (p1,...,p1) > 0 be a given positive vector.
Then v([0, D)), the image of the set [0, D] by the map v (6.9.1), is given by

1
(6.9.22) p <diag( ) <F+ —ve, )> <1, forl=1,...,L, and v € R..
| &)
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In particular, any v € Rﬁ satisfying the conditions (6.9.22) satisfies the
inequalities

(6.9.23) v <A =G, ), where 5 = %, i=1,...,L.
l

Proof. Theorem 6.9.5 yields that ([0, p]) is given by (6.9.22). (6.9.4)
yields
b b

Yz _
=+t <8<l trpelo,p.
Y(p) Ty o) S o S P [0, p]

Note that equality holds for p = p;e;. O

6.9.5 Reformulation of optimal problems

Theorem 6.9.7 The maximum problem (6.9.7) is equivalent to the
maximum problem.

mazimize Y, wylog(1l+ ;)
(6.9.24) subject to  p(diag(v)(F + (1/p)ve] )) <1 V1e [L],
variables: vy, V.

~* is a maximal solution of the above problem if and only if P(v*) is a

maximal solution p* of the problem (6.9.7). In particular, any maximal
solution v* satisfies the equality (6.9.22) for some integer | € [1, L].

We now give the following simple necessary conditions for a maximal
solution p* of (6.9.7). We first need the following result, which is obtained
by straightforward differentiation.

Lemma 6.9.8 Denote by

.
w1 wr, _
v(I)w = yee ey =wo (l+ 1
) (1+’Yl 1+7L> (1+7)
the gradient of ®y. Let v(p) be defined as in (6.9.1). Then H(p) =
[g;ﬂiL:j:U the Hessian matrixz of v(p), is given by
J

H(p) = diag((F'p + v) ") (— diag(v(p)) F + I).

In particular,
Vp®w(v(p)) = H(p) " VOu (7(p)).
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Corollary 6.9.9 Let p* = (p*,...,p%)" be a mazimal solution to the
problem (6.9.7). Divide the set [L] = {1,...,L} to the following three
disjoint sets Smax, Sin, S0 -

Smax = {i € [L], p{ =Di}, Sin = {1 € [L], p{ € (0,p1)}, So = {i € [L], p{ =0}
Then the following conditions hold.

(H(p*) " VO (v(p*)))i = 0 for i € Smax;
(6.9.25) (H(p*) V& (v(p*)))i = 0 for i € Sin,
(H(p*) "Vow(v(p*))): < 0 forie Sy

Proof. Assume that p; = p;,. Then %@w(v(p))(p*) > 0. Assume
that 0 < pf < p;. Then %@w('y(p))(p*) = 0. Assume that pf = 0. Then
2 Pw(v(p)(P*) < 0. .

We now show that the maximum problem (6.9.24) can be restated as
the maximum problem of convex function on a closed unbounded domain.
For v = (v1,..-,72)" > 0 let 4 = log~, i.e. v = €7. Recall that for a
nonnegative irreducible matrix B € REY*" log p(e*B) is a convex function,
Theorem 6.7.3. Furthermore, log(1+¢') is a strict convex function in ¢ € R.
Hence, the maximum problem (6.9.24) is equivalent to the problem

maximize », w; log(1 + e
(6.9.26) subject to log p(diag(e¥)(F + (1/p1)ve] )) <0 V1€ [L],
variables: 4 = (31,...,%,) " € RE.

The unboundedness of the convex set in (6.9.26) is due to the identity
0=e".

Theorem 6.9.10 Let w > 0 be a probability vector. Consider the maz-
imum problem (6.9.7). Then any point 0 < p* < p satisfying the conditions
(6.9.25) is a local mazimum.

Proof. Since w > 0, ®y(e7) is a strict convex function in 4 € RE.
Hence, the maximum of (6.9.26) is achieved exactly on the extreme points
of the closed unbounded set specified in (6.9.26). (It may happen that some
coordinate of the extreme point are —o0c.) Translating this observation to
the maximal problem (6.9.7), we deduce the theorem. O

We now give simple lower and upper bounds on the value of (6.9.7).
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Lemma 6.9.11 Consider the mazimal problem (6.9.7). Let By = (F +
(1/pi)ve; ) forl=1,...,L. Denote R = maxje(r) p(B)). Let ¥ be defined
by (6.9.23). Then

Pw((1/R)1) < Jnax Py (7(P) < Pw (7).

Proof. By Corollary 6.9.6, v(p) < 7 for p € [0,p]. Hence, the upper
bounds holds. Clearly, for v = (1/R)1, we have that p(diag(v)B;) < 1
for I € [L]. Then, from Theorem 6.9.7, ®((1/R)1) yields the lower
bound. Equality is achieved in the lower bound when p* = tx(B;), where
i = argmax;e(z) p(By), for some t > 0. O

We now show that the substitution 0 < p = e9, ie. p = e?,]l =
1,..., L, can be used to find an efficient algorithm to solve the optimal
problem (6.9.6). As in §6.9.3 we can consider the inverse of the maxmin
problem of (6.9.6). It is equivalent to the problem
(6.9.27)

L

ming(q), g(q) = max sie” U+ Y fi;eb ™%, q=(logp,...,logpL

T
a<q — ) ’
Jj=1

Note that s;e” % + Zle fije¥~% is a convex function. Fact 6.7.1.1a im-
plies that g(q) is a convex function. We have quite a good software and
mathematical theory to find fast the minimum of a convex function in a
convex set as q < q, i.e. [NoW99].

6.9.6 Algorithms for sum rate maximization

In this section, we outline three algorithms for finding and estimating the
maximal sum rates. As above we assume that w > 0. Theorem 6.9.10
gives rise to the following algorithm, which is the gradient algorithm in the
variable p in the compact polyhedron [0, p].

Algorithm 6.9.12

1. Choose p, € [0, D]:
(a) FEither at random;
(b) or po =P

2. Giwenpr = (prks---»PLk) € [0,p] fork >0, computea = (a,,...,ar,

Vo®w(v(Pr)). If a satisfies the conditions (6.9.25) for p* = py, then
P is the output. Otherwise let b = (b,,...,br)" be defined as fol-
lows.
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(a) b; =0 if pir, =0 and a; < 0;
(b) b; =0 ifpi,k =p; and a; > 0;
(¢) bi=a; if 0 < p; < pi.

Then Pr+. = Pk + txb, where ty, > 0 satisfies the conditions pr4+, €
[0,p] and Oy (v(pPr + tibr)) increases on the interval [0,ty].

The problem with the gradient method, and its variations as a conjugate
gradient method is that it is hard to choose the optimal value of ¢; in each
step, e.g. [Avr03]. We now use the reformulation of the maximal problem
given by (6.9.26). Since w > 0, the function ®y(e7) is strictly convex.
Thus, the maximum is achieved only on the boundary of the convex set

(6.9.28) DUF}) = {¥ € RY, log p(ding(e7)(F + (1/p)ve] ) <0, V1}.

If one wants to use numerical methods and software for finding the
maximum value of convex functions on bounded closed convex sets , e.g.,
[NoW99], then one needs to consider the maximization problem (6.9.26)
with additional constraints:

(6.9.29) D({F}.K) = (¥ € DUF}), = -K1}.

for a suitable K > 1. Note that the above closed set is compact and convex.
The following lemma gives the description of the set D({F}, K).

Lemma 6.9.13 Let p > 0 be given and let R be defined as in Lemma
6.9.11. Assume that K >1logR. Let p = P(e *1) = (51— F)~*v. Then

D({F}, K) € logv([p, p))-

Proof. From the definition of K, we have that eX > R. Hence,
ple™®B)) < 1forl =1,...,L. Thus —K1 € D({F}). Let v = e ¥1.
Assume that 4 € D({F}, K). Then 4 > —K1. Hence, v = e¥ > ~. Since
p(diag(y)F) < 1, Claim 6.9.4 yields that p = P(y) > P(y) = p, where
P is defined by (6.9.11). The inequality P(vy) < p follows from Corollary

6.9.6. 3

Thus, we can apply the numerical methods to find the maximum of the
strictly convex function @ (e¥) on the closed bounded set D({F}, K), e.g.
[NoW99]. In particular, we can use the gradient method. It takes the given
boundary point 4, to another boundary point of 4,,, € D({F}, K), in
the direction induced by the gradient of @, (e7). However, the complicated
boundary of D({F'}, K) will make any algorithm expensive.

Furthermore, even though the constraint set in (6.9.24) can be trans-
formed into a strict convex set, it is in general difficult to determine precisely



6.9. AN APPLICATION TO CELLULAR COMMUNICATION 383

the spectral radius of a given matrix [Var63]. To make the problem simpler
and to enable fast algorithms, we approximate the convex set D({F'}, K) by
a bigger polyhedral convex sets as follows. Choose a finite number of points
¢1s---,¢ s on the boundary of D({F'}), which preferably lie in D({F'}, K).
Let

Hi(),...,Hn(€),& € RL be the N supporting hyperplanes of D({F}.
(Note that we can have more than one supporting hyperplane at ¢;, and
at most L supporting hyperplanes.) So each & € D({F}, K) satisfies the
inequality H;(§) <O0for j =1,...,N. Let 4 be defined by (6.9.23). Define
(6.9.30)

D(Cys. S, K) ={€ R, —K1 <€ <log7, Hj(¢) <oforj=1,...,N}.

Hence, D({q,...,¢, K) is a polytope which contains D({F'}, K'). Thus

(6.9.31) max Dy (e7) >
YED(Cy5e-8nr-K)
(6.9.32) max Dy (7).
YeD({F},K)

Since ®, () is strictly convex, the maximum in (6.9.31) is achieved only

at the extreme points of D(¢q,...,¢s, K). The maximal solution can be
found using a variant of a simplex algorithm [?]. More precisely, one starts
at some extreme point of & € D((y, ..., K). Replace the strictly convex

function @y, (e7) by its first order Taylor expansion Ve at €. Then we find
another extreme point n of D({y,..., (s, K), such that We(n) > ¥e(§) =
@ (€%). Then we replace @y (e7) by its first order Taylor expansion ¥, at
7 and continue the algorithm. Our second proposed algorithm for finding
an optimal 4* that maximizes (6.9.31) is given as follows.

Algorithm 6.9.14
1. Choose an arbitrarily extreme point € € D(q,---, ¢ K).

2. Let e, (£) = By (efr) + (wo (1 + ef) 1 o ef)’ (€ — £&,). Solve
the linear program maxg We (&) subject to & € D({y, ..., Cpyp, K) us-
ing the simplex algorithm in [?] by finding an extreme point &, of
D(Cys- -+ € K), such that g, (€41) > We, (€),) = Pw(ese).

3. Compute py, = P(ef++). If py € [0, D], compute a = (a,,...,ar)
Vo®w(v(Pr)). If a satisfies the conditions (6.9.25) for p* = pyi, then
Pk is the output. Otherwise, go to Step 2 using Ve, (§).

T_

Asin §6.9.3, it would be useful to consider the following related maximal
problem:

6.9.33 max w'A.
( ) :YED(<17'“7<MaK) ’Y
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This problem given by (6.9.33) is a standard linear program, which can
be solved in polynomial time by the classical ellipsoid algorithm [?]. Our
third proposed algorithm for finding an optimal 4* that maximizes (6.9.33)
is given as follows. Then p* = P(e7").

Algorithm 6.9.15

1. Solve the linear program maxs w ' subject to 5 € D((q,. .., ¢ K)
using the ellipsoid algorithm in [?].

2. Compute p = P(eY). If p € [0,D], then p is the output. Otherwise,
project p onto [0, p].

We note that 4 € D({4, ...,y K) in Algorithm 6.9.15 can be replaced
by the set of supporting hyperplane D(F,K) = {¥ € p(diag(e7)F) <
1, 4> —K1}or,if L > 3 and w satisfies the conditions (6.6.9), D(F, K) =
{7 € p(diag(eY)F) <1, 4 > —K1} based on the relaxed maximal prob-
lems in Section 4. Then Theorem 6.9.2 quantify the closed-form solution ~
computed by Algorithm 6.9.15.

We conclude this section by showing how to compute the supporting hy-
perplanes H;,j = 1,..., N, which define D({,..., ¢, K). To do that, we
give a characterization of supporting hyperlanes of D({F'}) at a boundary
point { € OD({F}).

Theorem 6.9.16 Let p = (p1,...pr)' > 0 be given. Consider the
convex set (6.9.28). Let ¢ be a boundary point of OD({F}). Then { =
logv(p), where 0 < p = (py,...,pr)" <p. The set B:={l € [L], p, =P}
is nonempty. For each By = (F + (1/p;)ve])) let Hi({) be the supporting
hyperplane of diag(e*)B; at ¢, defined as in Theorem 6.7.3. Then H; <0,
for 1l € B, are the supporting hyperplanes of D({F}) at .

Proof. Let p = P(ef). Theorem 6.9.5 implies the set B is nonempty.
Furthermore, p(e¢B;) = 1 if and only if p; = p;. Hence, ¢ lies exactly at
the intersection of the hypersurfaces log p(e¢B;) = 0,1 € B. Theorem 6.7.3
implies that the supporting hyperplanes of D({F}) at ¢ are H;(¢) < 0 for
leB. O

We now show how to choose the boundary points ¢y, ..., € 0D({F})
and to compute the supporting hyperplanes of D({F}) at each (;. Let
p = P(e7®1) = (ps,...,pr)" be defined as in Lemma 6.9.13. Choose

M; > 2 equidistant points in each interval [Bi’ Di)-

Jip, + (M; — ji)p
(6.9.34)  pj,, 07

iforji:L...,Mi, andi=1,...,L.



6.10. HISTORICAL REMARKS 385

Let

P = {pjl ..... jL — (pjl,lv"'aij,L)Tﬂ min(ﬁ1 —Pj, 155 DL —PjL,L) = O}~

That is, pj,,...;, € P if and only p;, .., £ P. Then

{Cis--o i€t =log¥(P).

The supporting hyperplanes of D({F}) at each ¢, are given by Theorem
6.9.16.

6.10 Historical remarks

§6.1 is standard. §6.2 summarizes Frobenius’s results on irreducible ma-
trices [Fro08, Fro09, Frol2], which generalizes Perron’s results for positive
matrices [Per07]. Our exposition follows Collatz-Wielandt minimax char-
acterization [Col42, Wie50]. §6.3 is well known. The sharp upper bound
for primitivity index is due to Wielandt [Wie50]. The case s = 1 is due
to Holladay-Varga [HoV58]. The general case is due to Sedlacek [Sed59]
and Dulmage-Mendelsohn [DM64]. Most of the results of §6.4 are well
known. The Frobenius normal form of a nonnengative matrix is due to
Frobenius [Frol2]. Most of the results of §6.5 are well known. The expo-
sition of §6.6 follows closely Friedland-Karlin [FrK75]. The second part of
Theorem 6.6.12 is taken from Tan-Friedland-Low [FrT08]. Theorem 6.7.2
is due to Kingman [Kin61]. Other results in §6.7 follow some results in
[Fri8la, CFKK82]. §6.8 follows some results in [Fri8la]. Theorem 6.8.1
for ¥(z) = e gives the Donsker-Varadjan characterization for matrices
[DoV75]. §6.9 follows Tan-Friedland-Low [FrT08].



386 CHAPTER 6. NONNEGATIVE MATRICES



Chapter 7

Various topics

7.1 Norms over vector spaces

In this Chapter we assume that F = R, C unless stated otherwise.

Definition 7.1.1 Let V be a vector space over F. A continuous func-
tion ||+ || : V — [o,00) is called a norm if the following conditions are
satisfied:

1. Positivity: ||v|| = o if and only if v=0.
2. Homogeneity: ||lav]] = |a| ||v|| for each a € F and v € V.
3. Subadditivity: ||u+ v|| < ||lu|| + ||v]| for allu,v € V.

A continuous function || - || : V — [0,00) which satisfies the conditions 2
and 3 is called a seminorm. The sets

Bj={veV, vl <1}, Bj={veV, |v[<1}
S =A{v eV, vl =1},

are called the (closed) unit ball, the open unit ball and the unit sphere of
the norm respectively. Fora € V and r > 0 we let

Bjla,r)={xeV: [x—a| <r}, Bj(ar)={xeV: |x—al<r}

be the closed and the open ball of radius r centered at a respectively. If the
norm || - || is fized, we use the notation

B(a,r) = By (a,r), B°(a,r)= Bﬁ.”(a, T).

387
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See Problem 2 for the properties of unit balls. The standard norms on
F™ are the [, norms:

n 1
(711) H(:cl,. .. ’IH)THP — (Z |xi|p)p, pE [1700)7
i=1
T p— .
Hx1,. . sxn) ! |loo = 1?%Xn|:17,,|.

See Problem 8.

Definition 7.1.2 Let V be a finite dimensional vector space over F.
Denote by V' the set of all linear functionals f : V. — F. Assume that || - ||
is a norm on V. The conjugate norm || - || : V! — F is defined as

f|* = max |f(x)], for f e V'
I61° = g 160

For a norm || - || on F™ the conjugate norm || - || on F™ is given by
(7.1.2) |x[|* = max |y'x| for x € F".
yEB
A norm || - || on 'V is called strictly convex if for any two distinct points

X,y € S| and t € (0,1) the inequality ||tx + (1 —t)y|| < 1 holds. A norm
| -1l on F™ is called C¥, for k € N, if the sphere Sy is a C* manifold. ||- ||
is called smooth if it is C* for each k € N.

Forx = (x,...,2,)" € C" let abs x = (|2,],...,|za])". A norm | - ||
on F™ is called absolute if ||x|| = ||abs x|| for each x € F™. A norm ||| - |||
on F™ is called a transform absolute if there exists an absolute norm || - ||
on F"™ and P € GL(n,F) such that |||x]|| = ||Px]| for each x € F™.

A norm || - || on F™ is called symmetric if the function ||(z1,...,2,)"|]
is a symmetric function in x1,...,x,. (Le. for each permutation 7 :
[n] = [n] and each x = (z,,...,2,)" € F" equality ||(zr(1), - Ta(n)) ' || =
l(z1,...,2,) || holds.

Theorem 7.1.3 Let || - || be a norm on F™. Then the following are
equivalent.

1. || - || is an absolute norm.

2. || - II* is an absolute norm.

3. There exists a compact set L C F™ not contained in the hyperplane
H; = {(y1,...,yn)" €F" y; =0} fori=1,...,n, such that ||x|| =
maxycr (abs y) Tabs x for each x € F".
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4. |Ix|l < ||z|| if abs x < abs z.

Proof. 1=2. Assume that x,y € F". Then there exists z € F" abs z =
abs y such that |z x| = (abs y)Tabs x. Since || - || is absolute |z|| = |y||-
Clearly |y "x| < (abs y) Tabs x. The characterization (7.1.2) yields that

(7.1.3) ||x||* = max (abs y)"abs x.
YEB)

Clearly ||x|| = [|labs x]|.

2=38. The equality (|| - [|[*)* = || - ||, see Problem 3, and the equality
(7.1.3) implies 3 with L = B.-. Clearly By.- contains a vector whose all
coordinates are different from zero.

8=>4. Assume that abs x < abs z. Then (abs y) "abs x < (absy) abs z
for any y € F”. In view of the characterization of the absolute norm given
in 8 we deduce 4.

4=-1. Assume that abs x = abs y. Since abs x < abs y we deduce that
[Ix|| < [ly]l- Similarly ||x|| > |ly||.- Hence 7 holds. O

Definition 7.1.4 A set L C F" is called symmetric if for each y =

(Ysy--yYn) | in L the vector (Yr(1)s - - - ,y,r(n))T is in L, for each permuta-
tion w : [n] — [n].

Corollary 7.1.5 Let || - || be a norm on F™. Then the following are
equivalent.

1. || - || ¢s an absolute symmetric norm.

2. || - |I* is an absolute symmetric norm.

8. There exists a compact symmetric set L C F"™, not contained in the
hyperplane H; = {(y1,...,yn)" € F", y; = 0} fori = 1,...,n, such
that ||x|| = maxyey (abs y)abs x for each x € F".

See Problem 6.

Proposition 7.1.6 Assume that || - || is a symmetric absolute norm on
R?. Then
(7.1.4) [1x[1Z < e[l < lIxlfoo [l for any x € R*.

Proof. The lower bound follows from the Problem 9. We claim that
for any two points on x,y satisfying the condition ||x|| = [|y|| = 1 the
following inequality holds
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(7.1.5) (Il = Iyl (xlloe = llylle) < o

Since ||| is symmetric and absolute it is enough to prove the above inequal-
ity in the case that x = (z,,7.) ", 2, > 2, > 0,y = (¥1,¥%2) ", ¥1 > ¥s > 0.
View B),| as a convex balanced set in R2, which is symmetric with re-
spect to the line z; = z2. The symmetricity of || - || implies that all
the points (z1,20)" € By satisfy the inequality z1 + 22 < 2¢, where
[(c;e)T|| = 1,¢ > 0. Let C,D be the intersection of By, C|. the with
octant K = {(z1,22)" € R% 2z > 2z > 0} respectively. Observe that
the line 21 + zo = 2¢ may intersect D at an interval. However the line
21 + 29 = 2t will intersect D at a unique point (z1(t), 22(t)) T for t € [b,¢),
where [|(20,0)]] = 1,b > 0. Furthermore z;(t), —22(t) are decreasing in
(b,c). Hence, if 21 + 29 > y1 + yo it follows that y; > x;. Similarly,
21 + x2 < y1 + y2 it follows that y; < 1. This proves (7.1.5).

To show the right-hand side of (7.1.4) we may assume that ||x|| = 1. So
[x[|* = |y "x]| for some y € Sy.. Hence ||x|| [[x]|* = |y "x]|. Clearly

ly "x| < min(|x[l: ¥ llso, [%llsoll¥[l2)-

Suppose that ||y]|, < [|x|l.- Then the right-hand side of (7.1.4) follows.
Assume that |y|, > ||x||;. Then Then (7.1.5) yields that ||y]lcc < [|X]|oo
and the right-hand side of (7.1.4) follows. O

A norm ||-|| : F™*™ — R, is called a matriz norm. A standard example
of matrix norm is the Frobenius norm of A = [a;;] € F™*™:

(7.1.6) Al =

Recall that [|A]|p = (327, 4(A)?), where 04(A),i = 1,..., are the singu-
lar values of A. More generally, for each ¢ € [1, 00]

Q=

(7.1.7) [Allg,s = (Z ai(A)7)

is a norm on F™*™ which is called the ¢-Schatten norm of A. Furthermore,
for any integer p € [1,m] and wy > ... > wy, > 0, the function f(A) given
in Corollary 4.11.5 is a norm on F"*". See Problem 4.11.4. We denote
I lloo,s = o1(-) as the || - ||2 operator norm:

(7.1.8) |All2,2 := 01(A) for A € C™*".
See §7.4.
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Definition 7.1.7 A norm || - || on C™*"™ is called a unitary invariant
if lUAV|| = || A|| for any A € C™*™ and unitary U € U(m),V € V(n).

Clearly, any p-Schatten norm on C™*" is unitary invariant.

Theorem 7.1.8 For positive integers m,n let | = min(m,n). For A €
Cm™>" et o(A) := (01(A),...,00(A) . Then || - | is a unitary invariant
norm on C™*™ if and only if there exists an absolute symmetric norm |||-|||
on C' such that ||A|| = |||le(A)||| for any A € C™*",

Proof. Let D(m,n) C C™*™ be the subspace of diagonal matrices.
Clearly, D(m,n) is isomorphic to C!. Each D € D(m,n) is of the form

diag(x),x = (z,,...,2;) ", where x1,...,z; are the diagonal entries of D.
Assume that ||-|| is a norm on C™*™. Then the restriction of ||-|| to D(m,n)
induces a norm ||| - ||| on C! given by |||x||| := || diag(x)||. Assume now that

|- |l is a unitary invariant norm. For a given x € C!, there exists a diagonal
unitary matrix such that U diag(x) = diag(abs x). Hence

[IIxIl] = || diag(x)|| = [|U diag(x)|| = || diag(abs x)[| = [[[abs x[||.
Let 7 : [[] — [I] be a permutation. Denote X := (Zr(,), ..., Zx1)) . Clearly
there exists two permutation matrices P € U(m),Q € U(n) such that
diag(x,) = U diag(x)V. Hence |||x:||| = |||x]||, and ||| - ||| is absolute sym-

metric. Clearly, there exists unitary U,V such that A = U diag(o(A))V.
Hence [|A[| = |[[a(A)]].

Assume now that ||| - ||| is an absolute symmetric norm on C'. Set
Al = |||le(A)]|| for any A. Clearly || - || : C™*™ — R, is a continuous
function, which satisfies the properties 1-2 of Definition 7.1.1. it is left to
show that || - || satisfies the triangle inequality. Since ||| - ||| is an absolute
symmetric and o1(A) > ... > 0;(A) > 0, Corollary 7.1.5 yields that

T
(7.1.9) I Al y:(yl,-4.,yz)ITneaLX,|y1Iz...Z\yzl(abS y) o(4)

for a corresponding a compact symmetric set L C C™, not contained in
the hyperplane H; = {(y1,...,yn)" € F", y; = 0} fori = 1,...,n. Use
Problem 4.11.6b to deduce from (7.1.9) that ||[A + B| < ||A|| + || B| O

Definition 7.1.9 A norm on ||-|| on F**" is called a spectral dominant
norm if || Al > p(A) for every A € F">™.

Since 01(A) > p(A), see (4.11.14) for k = 1, we deduce that any ¢-
Schatten norm is spectral dominant.

Problems
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1. Let V be a finite dimensional vector space over F. Show that a
seminorm || - || : V — Ry is a convex function.

2. Let V be a finite dimensional vector space over F. X C V is called
balanced if tX = X for every ¢t € F such that |¢| = 1. Identify V with
Fdim V' Then the topology on V is the topology induced by open sets
in F™. Assume that || - || is a norm on V. Show

(a) By is convex and compact.
(b) By is balanced.
(c) 0 is an interior point of By..
3. Let V be a finite dimensional vector space over F. Let X C V be a
compact convex set balanced set such 0 is its interior point. For each

x € V\{0} let f(x) = min{r > o0: +x € X}. Set f(0) = 0. Show
that f is a norm on V whose unit ball is X.

4. Let V be a finite dimensional vector space over F with a norm | - ||.
Show
(a) Hf”* = ma‘XyGSH.H |f(y)| for any fe V/.

(b) Show that for any x € V and f € V'’ the inequality |f(x)| <
11

(¢) Identify (V') with V|, i.e. any linear functional on A : V' — F is
of the form A(f) = f(x) for some x € V. Then (||x||*)* = [|x]|.

(d) Let L C V' be a compact set which contains a basis of V’. Define
||| = maxgey, [f(x)]. Then ||x||z is a norm on V.

(e) Show that ||-|| = || - ||z for a corresponding compact set L C V.
Give a simple choice of L.

5. Let V be a finite dimensional vector space over F, dim V > 1, with
a norm || - ||. Show

(a) ext (By.) € Sy-
(b) ext (By.) =Sy if and only if for any x # y € S (x,y) C Bfj .

(c) For each x € S). there exists f € S).- such that 1 = f(x) >
|f(y)| for any y € BHH

(d) Each f € S~ is a proper supporting hyperplane of By at some
point x € Sy,

6. Prove Corollary 7.1.5.
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. Let 'V be a finite dimensional vector space over F. Assume that

I I1, |l - ]2 are two norms on V. Show

(a) |Ix[l, < ||x[| for all x € V if and only if By, 2 By,

(b) Show that there exists C' > ¢ > 0 such that ¢||x|, < ||x|. <
C|x||, for all x € V.

. For any p € [1, o0] define the conjugate p* = ¢q € [1, 0] to satisfy the

equality % + % = 1. Show

(a) Hélder’s inequality: |y*x| < (abs y)Tabs x < ||x||,||y]|p~ for any
x,y € C"\{0} and p € [1,00]. (For p = 2 this inequality is
called the Cauchy-Schwarz inequality.) Furthermore, equalities
hold in all inequalities if and only if y = ax for some a € C\{0}.
(Prove Holder’s inequality for x,y € R’.)

%], is & norm on C™ for p € [1, o0].
||x||p is strictly convex if and only if p € (1, 00).

)

(c)

(d) For p € (1,00) ext (B”,”p) =S|,
)
)

(e) Characterize ext (B, ) for p=1,00 for F = R, C.
(f) For each x € C™ the function ||x||, is a nonincreasing function
for p € [1, 00].
. Show that for any norm || - || on F” the inequality
112 < min(fix[]*[[x[[, [x][*[|x]]) for any x € F".
In particular, if || - || is absolute then ||x||2 < ||x||*|Ix||. (Hint: use

T

the equality ||x||2 =% 'x.)

Let L C F™ satisfy the assumptions of condition 3 of Theorem 7.1.3.
Let v(x) = maxyey(abs y) "abs x for each x € F". Show that v(x)
is an absolute norm on F™.

Let ||- || be an absolute norm on R™. Show that it extends in a unique
way to an absolute norm on C™.

Let V be a finite dimensional vector space over F = R, C.

(a) Assume that || - || is a seminorm on V. Let W := {x € V,||x| =
0}. Show that W is a subspace of V, and for each x € V the
function || - || is a constant function on x + W.
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(b) Let W be defined as above. Let U be the quotient space V/W.
So v € V is viewed as any y € v+ 'V for a corresponding v € V
Define the function ||| - ||| : V = Ry by [||[¥]|| = |ly||. Show that
|| - ||| is & norm on V.

(c) Let U,, U, are finite dimensional vector spaces over F. Assume

that ||| - ||| : U, — Ry is a norm. Let V = U, @ U,. Define
|lu, @ us| = |||u,]|] for each u; € U;,i = 1,2. Show that || - || is
a seminorm on V. Furthermore, the subspace 0 @& U, is the set
where || - || vanishes.

13. Show that for any A € C™*" |[All22 = 0(A) = max|x|,=, [|Ax]|..
(Hint: Observe that ||Ax||2 = x*(A*A)x.)

14. For F = R, C, identify (F™*™)* with F*" by letting ¢4 : C™*" — F
be tr(AT X) for any A € F™*". Show that for any p € [1,00] the
conjugate of the p-Schatten norm || - ||, g is the ¢g-Schatten norm on
Fm>" where % + % =1.

7.2 Numerical ranges and radii

Let S?"~1 := {x € C", x*x = 1} be the unit sphere of the £, norm on C".

Definition 7.2.1 A map ¢ from S*~1 to 2C", the set of all subsets of
C™, is called a v-map, if the following conditions hold.

1. For each x € S>~1 the set ¢(x) is a nonempty compact set.
2. The set Uyegzm—19(X) s compact.

3. Let xi € S yi € ¢p(x) for k € N. Assume that limy,_,oo X, = X
and limy,_,oo yx = y. (Note that x € S?~1.) Then y € ¢(x).

4.y 'x=1 for each x € S and y € ¢(x).

Assume that ¢ from S*~1 to 2" is v-map. Then for A € C"*"

(7.2.1) W¢(A) = Uxes2n-1 Uyeg(x) {yTAX},
7.2.2 re(A) = max TAx
(7.2.2) s(A) o ly ' Ax|

are called the ¢-numerical range and the ¢-numerical radius respectively.

It is straightforward to show that r is a seminorm on C"*", see Problem
1.



7.2. NUMERICAL RANGES AND RADII 395

Lemma 7.2.2 Let ¢ : S"~' — 2" be a v-map. Then spec (A), is
contained in the ¢-numerical range of A. In particular r4(A) > p(A).

Proof. Let A € C™"*" and and assume that A is an eigenvalue of A.
Then there exists an eigenvector x € S?"~! such that Ax = Ax. Choose
y € ¢(x). Then y"Ax = Ay "x = \. Hence X € wy(A). Thus r4(A) > [N

O

Lemma 7.2.3 Let || - || : C"*™ — R be a seminorm, which is spectral
dominant. Then || - || is a norm on C™*™.

Proof. Assume to the contrary that || - || is not a norm. Hence there

exists 0 # A € C™ ™ such that ||A]| = 0. Since 0 = [|A4| > p(A4) we
deduce that A is a nonzero nilpotent matrix. Hence, T~1AT = @f_,J;,
where each J; a nilpotent Jordan block and T' € GL(n,C). Since A # 0
we may assume that J; € C'*!, has an upper diagonal equal to 1, all other
entries equal to 0 and [ > 2. Let B = @leBi where each B; has the same
dimensions as J;. Assume that B; are zero matrices for 7 > 1, if k > 1. Let
B1 = [bij.1] € C**! where ba1 1 = 1 and all other entries of By equal to 0. It
is straightforward to show that the matrix &%_, (J; 4+ tB;) has two nonzero
eigenvalues £/t for t > 0. Let C := T(&F_; B;)T~!. Then p(A+tB) =/t
for t > 0. Hence for ¢ > 0 we obtain the inequalities

p(A+1tB) =Vt < |A+tB| < Al + |[tB|| = t||B|| = | B|| > %
The above inequality cannot hold for an arbitrary small positive ¢. This
contradiction implies the lemma. |

Use the above Lemmas and Problem 1 to deduce.

Theorem 7.2.4 Let ¢ : S> 1 — 2% be a v-map. Then ry(-) is a
spectral dominant norm on C**™,

We now consider a few examples of v-maps.

Example 7.2.5 The function ¢o : S>~1 — 2" given by ¢o(x) := {X}
is a v-map. The corresponding numerical range and numerical radius of
A € C™*™ are given by

wo(A) ={z =x"Ax, for allx € C" satisfying x*x =1} C C,

ro(A) == echax |x* Ax]|.

It is called the classical numerical range and numerical radius of A, or
simply the numerical range and numerical radius of A.
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More generally:

Example 7.2.6 For p € (1,00) the function ¢, : S*"~! — 2C" given
by dp((x1,...,20) ") = {lIxl,P(J22 P22, .., |2a[P722,) T} is a v-map.
The corresponding numerical range and numerical radius of A € C"*" are
denoted by w,(A) and r,(A) respectively.

The most general example related to a norm on C” is as follows.

Example 7.2.7 Let || - || be a norm on C*. For each x € S*71 [et
@)1 (x) be the set of all'y € C" with the dual norm ||y|* = ] Satisfying
y'x =1. Then ®|.| s a v-map. (See Problem 6.) The corresponding nu-
merical range w|.| (A) and the numerical radius .| (A) is called the Bauer

numerical range and the Bauer numerical radius respectively of A € C"*".

Definition 7.2.8 A norm || - || on C™*™ is called stable if there exists
K > 0 such that ||A™| < K||A||™ for all A € C™*™.

Clearly, || - || is stable if and only if the unit ball By, € C**™ is power
bounded, see Definition 3.4.5.

Theorem 7.2.9 Let ¢ : S~ — 2C" be a v-map. Setc:= maxgyeu(n) r'¢(U)-
Then
(7.2.3) I=1 = )7l < =

2| -1

for all |z| > 1, ry(A) < 1.

In particular, a ¢-numerical radius is a stable norm.

Proof. Fix x € S~ We first note that |ly|l. < ¢ for each y € ¢(x).
Let z = =y € S?~1. Then there exists U € U(n) such that Ux =

z. Hence |y|. = y'Ux < r4(U) < c. Assume next that ry(A) < 1.
Hence p(A) < ry(4) < 1. So (2 — A)~! is defined for |z| > 1. Let

v:=(z] — A)7'x,v, := =—Vv. Then for y € ¢(v,) we have

lIvil-

ly x|
vl

On the other hand

= \yT(zI —Aywv,| =z —yTAvl\ > |z| — 1.

by x| < Ilyllallx]l> = Iyll- < c.

Combine the above inequalities to deduce [|(2I — A)x|. < 7= for all
lx|l= = 1. Use Problem 7.1.13 to deduce (7.2.3). Theorem 3.4.9 yields that
the unit ball corresponding to the norm 74(-) is a power bounded set, i.e.
the norm ry(-) is stable. O
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Theorem 7.2.10 Let || - || be a norm on C™*™. Then | - || is stable if
and only if it is spectral dominant.

Proof. Assume first that || - || is stable. So By is a power bounded
set. Theorem 3.3.2 yields that each A € By satisfies p(4) < 1. So if
A # 0 we get that p(H}THA) <1, ie. p(A) <|A| for any A # 0. Clearly
p(0) = ||0]] = 0. Hence a stable norm is spectral dominant.

Assume now that || - || is a spectral dominant norm on C™**™. Recall that
By is a convex compact balanced set, and 0 is an interior point. Define a
new set

A={BeC”" B=(1—-a)A+zI,aco,1], z€C,|z| <a, AcBy}.

It is straightforward to show that A is a convex compact balanced set. Note
that by choosing a = 1 we deduce that I € A. Furthermore, by choosing
a = 0 we deduce that By, € A. So 0 is an interior point of A. Problem 7.1.3
yields that there exists a norm ||| - [|| on C"*™ such that By = A. Since
SH'H C BHHH it follows ‘HA||| < ||A|| for each A € C™"*™. We claim that H||||
is spectral dominant. Assume that |||B]|| = 1. So B = (1 —a)A + zI for

some a € [0,1], z € C, |2] < aand A € B,. Since || - || is spectral dominant
it follows that p(A) < ||A|| < 1. Note that spec (B) = (1 — a)spec (A) + z.
Hence p(B) < (1 —a)p(A) +|2| < (1 —a)+a = 1. So ||| ||| is spectral

dominant. Since |||I][||] < 1 and |||I||]| > p(I) = 1 we deduce that |||I]|| = 1.
Hence, for any z € C, |z| < 1 we have |||2I]]| < 1.
For x € S?1~1 Jet

Cx)={ueC" u=Bx, |||B||| <1}

Clearly C(x) is a convex set in C™. Since for each |||B||| < 1 we have that
p(B) < 1 it follows that x ¢ C(x). The hyperplane separation theorem
Theorem 4.6.6 implies the existence of y € C" such that

(7.2.4) &E(yTx) > §R(yTBx) for all |||B]|| < 1.

Substitute in the above inequality B = 21, |z| < 1 we deduce that R(y 'x) >
R(zy "'x). By choosing an appropriate argument of z we deduce R(y "x) >
|z|]ly "x|. Hence R(y"x) > |y " x|. In view of the strict inequality in (7.2.4)
we deduce that y'x is real and positive. Thus we can renormalize y so
that y ' x. Let ¢(x) be the set of all w € C" such that

Tx=1, max |w'Bx|=1.

IBll<t
Clearly, y € ¢(x). It is straightforward to show that ¢ : S2*~1 — 2C" is a
v-map.
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As w' Bx = tr B(xw ) we deduce that |||[xw"|||* = 1, where ||| -|||* is
the dual norm of ||| - ||| on C™**™:
(7.2.5) NCN* = max |trBC|= max |trBC]|.
BeEB) BES|j

Let R(1,n,n) C C**™ be the variety of all matrices of rank one at most.
Clearly, R(1,n,n) is a closed set consisting of all matrices of rank one and

Onxn. Hence R(1,m,n) N S)). - is a compact set consisting of all Xw ',
where x € S?*~1 and w € ¢(x). Since (||| - ||[*)* = ||| - ||| it follows that
re(B) = max |w' Bx| = max [tr B(xw )| <
x€520—1 wep(x) x€S520—1 wep(x)
max [ tr BC| = [[|B|| < || B].
e+

Hence By € By € B,,(). Theorem 7.2.9 yields that re(+) is a stable
norm. Hence || - || and ||| - ||| are stable norms. O
Use Theorem 7.2.10 and Problem 3 to deduce:

Corollary 7.2.11 Let A C C"*" be a compact, convex, balanced set,
whose interior contains 0. Then A is stable if and only p(A) <1 for each
Ae A

Definition 7.2.12 Let F be field. A subspace 0 # U C F*"*™ is called
stable if there exists an integer k € [n| such that the dimension of the
subspace Ux C F™ is k for any 0 # x € F". U is called mazimally stable
if k=n.

The following result is a generalization of Theorem 7.2.10.

Theorem 7.2.13 Let A C C™*"™ be a compact convex balanced set, (see
Problem 7.1.2 for the definition of a convex balanced set), which contains
the identity matriz. Assume that L := span A is a stable subspace. Then
A is a stable set if and only if p(A) <1 for each A € A.

Proof. Clearly, if A is stable, then each A € A is power bounded,
hence p(A) < 1. Assume now that A is a compact convex balanced set
containing identity such that £ is a stable subspace. Let x € S?*~! and
consider the subspace £x of dimension k. Since A is a compact convex
balanced set it follows that Ax is a compact convex balanced set in £ since
span Ax = Lx it follows that ri Ax. Hence Ax is a unit ball of the norm
| - |lx on the subspace L£x. Since I € A it follows that £ € Ax. We claim
that ||x||x = 1. Assume to the contrary [|x||x < 1. Then (14 ¢)x € Ax
for some € > 0. So there exists A € A such that Ax = (1 + ¢)x. Hence
p(A) > (1 +¢) contrary to our assumptions.
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Identify (£x)" with £x. So a linear functional f : £Lx — C is given by
fly) = 2"y for some z € Lx. Let || - ||X be the conjugate norm on £x.
Denote by B(x) C £x the unit ball of the norm || - ||%. Since ||x||% = 1 it
follows that there exists z(x) € £x such that z(x) 'x = 1 and ||z(x)||% = 1.
We claim that Uyegen-18(x) is a compact set in C™.

Indeed, since £x has a fixed dimension k for each for each x € C" we
can view L£x of the form U(x)W for some fixed subspace W C C" of di-
mension k and a unitary matrix U(x). (U(x) maps an orthonormal basis
of W to an orthonormal basis of £x.) Hence the set C(x) := U*(x)Ax is
a compact convex balanced set in W, with 0 an interior point. Since A is
compact, it follows that C(x) varies continuously on x € S?»~1. Therefore
the set D(x) := U*B(x) C W varies continuously with x € $?"~1. Hence
Uxeszn—1D(x) is a compact set in W, which yields that U,cgen—18(x) is
a compact set in C”. In particular, there exists a constant K such that
|z(x)|l. < K. We now claim that A satisfies the condition 3.4.13 of Theo-
rem 3.4.9. Indeed, for x € S?*!=1 A € A we have that Ax € A(x), hence
|Ax||x < 1. Hence for |A| > 1 we have

|z(x) TN = A)xll. _ A —z(x) " Ax|

M — A)x|., >
It x|z > e K =
AL = 1209 TAx] A = 29T Ax]
K - K B
Al [[Ax[[x[[z(=)[[%x o Al =1 |A[—-1
A = IAxlZGOll o A =1 ]A=1,
K K K

Thus for each |A| > 1 and 0 # x € C™ we have the inequality ||[(A—A)x]|, >
w%”x\b Choose x = (A — A)~'y to deduce the inequality
|OL- Ayl . K
Iyl — (A1
So a1 (M — A)™1) < £~ Hence A satisfies the condition 3.4.13 of Theo-

S =t
rem 3.4.9 with the norm o4 (-). Theorem 3.4.9 yields that A is stable. O

Problem 7 shows that in Theorem 7.2.13 the assumption that £ is a stable
subspace can not be dropped. In [Fri84] we show the following result.

Theorem 7.2.14 Letn > 2,d € [2n—1,n?] be integers. Then a generic
subspace L of C"*™ of dimension d is mazimally stable.

Problems
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1. Let ¢ : >~ 1 — 2" be a v-map. Show that re : C*" - Ry is a
seminorm.

2. Let ¢ : =1 — 2C" be a v-map. Show that r4(I,) = 1.

3. Show that for any p € (1, 00) the map ¢, given in Example 7.2.6 is a
v-map.

4. Show

(a) For any unitary U € C™*™ and A € C"*" wy(U*AU) = wo(A)
and ro(U*AU) = ra(A).
(b) For a normal A € C™*" the numerical range wy(A) is a convex

hull of the eigenvalues of A. In particular r2(A) = p(A) for a
normal A.

(¢) wa(A) is a convex set for any A € C™*". (Observe that it is
enough to prove this claim only for n = 2.)

5. Let A = Jy(0) € C** be a nilpotent Jordan block of order 4.
Show that ro(A) < 1,r2(A%) = 3,r2(A%) = 5. Hence the inequal-
ity ro(A3) < r9(A)ry(A?) does not hold in general.

6. Show that the map ¢ : >~} — 2¢" given in Example 7.2.7 is a

v-map.

7. Let ||-|| be the norm on C"*" given by ||[aij]?=j=1 | := max; jeq1,n) |l
Denote by U,, C C"*™ the subspace of upper triangular matrices. For
n > 2 show.

(a) Uy, is not a stable subspace of C™*™.

(b) U, "By is a compact, convex, balanced set.
(c) p(A) <1 for each A €U, NB..

(d) U, N By is not a stable set.

8. Let C be a compact convex set in a finitte dimensional space V. Show
that C is a polytope if an only if ext C' is a finite set.
7.3 Superstable norms

Definition 7.3.1 A norm ||-|| on C**™ is called superstable if HAk” <
|A||* for k=2,..., and each A € C"*".

Clearly, any operator norm on C™*" is a superstable norm, see §7.4.
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Theorem 7.3.2 The standard numerical radius r2(A) = maxyecn x|, = [X*AX|
is a superstable norm.

To prove the theorem we need the following lemma.

Lemma 7.3.3 Assume that A € C"*" p(A) < 1 and x € S*"~!. Let
zj = e and assume that I,—2zA e GL(n,C) forj=1,...,m. Then

* AM 1 = *
(7.3.1) 1— x*A™x = EZHXjIIi(l*ijjij),

1

where x; = ( H (1—zA))x, y; =
ke[m\{j}

— i=1,...,m.
I [l

Proof. Observe the following two polynomial identities in z variable

ﬁl—zkz Z H (1 = 2k2).

= ke[m]\{j}

Replace the variable z by A obtain the identities

m m

(732) I, A" =[] —=A), I, Z I @-=a4).

k=1 ] LEe[m]\{5}

Multiply the second identity from the right by x to get the identity x =
=3 j=1 Xj- Multiply the first identity by x from the right respectively to
obtain x — A™x = ([[,—, (I, — 2z, A))x. Since I, — z;A for k =1,...,m
commute, we deduce that for each k, x — A™x = (I, — 2 A)x). Hence

1—-x"A"x =x"(x— A"x) = inj(xf A"x) =
m . __

m

1 * 1 . 2 *
- > %I — 2 A)x; = - Z lI%5112(x = 2y Ay;).
j=1

j=1

Proof of Theorem 7.3.2. From the the proof of Lemma 7.3.3 it
follows that (7.3.1) holds for any A € C"*" and some y,,...,ym, € S?" 71,
since for x; = o in (7.3.1) we can choose any y; € S 1. Suppose that
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that ro(A) = 1. Let ¢ € C,|¢] = 1. Apply the equality (7.3.1) to (A and
x € 5?71 to deduce

Mok AMe, 1 C 2 *
1-("x"A XfEZHUsz(l*ZjCWjAWj)
j=1

for corresponding w,,...,w,, € S?»~1. Choose ¢ such that ("x*A™x
|x* A™x|. Since r2(2,CA) = r2(A4) = 1, it follows that (1 — z;(wj Aw;)
0. Hence, the above displayed equality yields 1 — |[x*A™x| > o, i.e 1
|x*A™x|. Since x € S?"~! is arbitrary, it follows that r(A™) < 1
ro(A) = 1. Hence ro(-) is a superstable norm.

O = IAIV

Definition 7.3.4 For an integer n > 2 and p € [1,00] let Kp,, > 1 be
the smallest constant satisfying rp(A™) < Kp ,mp(A)™ for all A € C" ™.

Theorem 7.3.2 is equivalent to the equality K>, = 1. Problem 1b shows
that K1, = Koo, = 1. It is an open problem if sup,, ey max,eoo[1,00] Kp,n <
00.

Theorem 7.3.5 Let || - || be a norm on C"*™ which is invariant under
the similarity by unitary matrices, i.e. |[UAU || = || A|| for each A € C"*"
and U € U(n). Then || - || is spectral dominant if and only if || Al > r2(A)
for any A € C"*™.

To prove the theorem we bring the following two lemmas which are of
independent interest.

Lemma 7.3.6 Let || - || be a norm on C™"*™. Assume that || - || is in-
variant under the similarity by U € GL(n,C), i.e. ||A| = |[UAU™!|| for
each A € C"*". Then U is similar to diagonal matrixz A:

(7.3.3) A =diagM,. . M), Aal = ... = [Aa] > 0.

Proof. Let A\, u € C be two distinct eigenvalues of U. So there are two
corresponding nonzero vectors x,y € C" such that Ux = \x, Uy = py.
For A =xy" we deduce that UAU~! = 2A. Since ||A|| = |[UAU"|| >0
it follows that |A| = |u|. Hence all the eigenvalues of U have the same
modulus.

It is left to show that U is diagonable. Assume to the contrary that
U is not diagonable. Then there exists an invertible matrix T and upper
triangular matrix V = [vij]?:jzl such that v1; = veg = A # 0,v12 = 1, and
V =TVT~!. Choose A=TBT~ !, where B = [bij] 7 j—1, where by = %=
Since |[U* AU ~F|| = || A|| for k =€ N it follows that the sequence of matrices
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UFAU~* k € N is bounded. A straightforward calculation shows that the
(1,2) entry of T-Y (UK AU*)T is k2. Hence the sequence UFAU* k € N
is not bounded, contrary to our previous claim. The above contradiction
establishes lemma. O

Lemma 7.3.7 Let A = diag(A1, ..., A\n) € C™*" and assume that |A\1| =
o= Al >0 and A; # A; fori # j. Suppose that || - || is @ norm on C™*"
which is invariant under the similarity by A. Then

(7.3.4) (| diag(A)|[ < [[A]-
Proof. A-similarity invariance implies
1 « 1 «
—— ) AFANTR| < AFANTF| = 14].
[ DL e I L R

For A = [a;;] € C"*" let

Ay = laijm] = —— § AFANTF
m+1
k=0
At
]- A;'L+1
where ai; m = Gii;, Qijm = G ———————— for ¢ # j.

Tm+ (140

Hence limy,—,o0 Ay, = diag(A). Since || Ay, || < ||A]] we deduce the inequal-
ity (7.3.4). O

Proof of Theorem 7.3.5. Assume first that [|A| > r2(A) for each
A € C"". Clearly, || - || is spectral dominant. Assume now that || - ||
is invariant under similarity by any unitary matrix U, and || - || is spec-
tral dominant. Since || - || is invariant under the similarity by a diag-
onal matrix A = diag(A1,...,An), where |A;| = ... = |Ay] = 1 and
Ai # Aj for i # j, Lemma 7.3.7 yields (7.3.4). Let A = [a;;]. Since
diag(A) = diag(a11,- .-, ann) and || - || is spectral dominant we obtain that

[A]l = || diag(A)[| = p(diag(A)) = max |-

Let V € U(n). Then the first column of V is x € S?*~!. Furthermore,
the (1,1) entry of V*AV is x*Ax. Since || - || is invariant under unitary
similarity we obtain || A|| = |[V*AV|| > |x*Ax]|. As for any x € S?"~! there
exists a unitary V' with the first column x we deduce that || A|| > ra(A). O
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Problems

1. (a) Describe the v-maps ¢j.||,, @|. . -

(b) Show that for for p = 1,00 r,(A) is equal to the operator norm
of ||A|l,, for A € C™*™ viewed as a linear operator A : C* —
C". (See §7.4). Hence K, = Ko = 1, where K, is given
Definition 7.3.4.

(c) Show that for each p € (1,00) and integer n > 2 there exists
A € C™ such that r,(A) < ||Allp, where ||A||, the operator
norm of A.

7.4 Operator norms

Let V, V, be two finite dimensional vector spaces over F = R, C. Assume
that || - ||a, || - ||o are norms on V,, Vy respectively. Let T': V, — V; be a
linear transformation. Then

_ ITxlo

7.4.1 T = max ,
(7.4.1) 7] o225 ]l

a,b -

is called the operator norm of T. Clearly

(742) [Tlles = max [Ty = mas (7],
See Problem 1. Let V. be a third finite dimensional vector space over F
with a norm || - ||.. Assume that @ : V, — V. is a linear transformation.
The we have the well known inequality
(7.4.3) 1QT [|ac < [1Qlb.elITla.b-
See Problem 2.

Assume now that V, =V, =Voand |- la =1 s =1 llc=1"]. We
then denote ||T|| := ||T||lap and ||Q| = ||Qllp,c. Let Id : V — V be the

identity operator. Hence
(74.4) JIdlf =1, [T < QI Tl T™ <|T|™ form =2,....

Assume that V, = F? 'V, = F™. Then T : F" — F™ is represented by a
matrix A € F™*™. Thus ||Al|4 is the operator norm of A. For m = n and
|lla=1"1lls = | we denote by ||A| the operator norm. Assume that
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s,t € [1,00]. Then for A € F™*™ we denote by || A||s,;: the operator norm of
A, where F™ [F™ are equipped with the norms £, £; respectively. Note that
|All2,2 = 01(A), see Problem 7.1.13. For m = n and s =t = p we denote
by ||A||, the £, operator norm of A.

Lemma 7.4.1 Let A = [a;;] € F™ and || - |la, || - o be norms on
C™, C™ respectively. If || - |p is an absolute norm then
(74.5)  [Allap < (@11, arn) TG @mas s amn) T2 Tl
If || - |l s an absolute norm then
(74.6) [ Allap < I (@11, - amn) oy - 1 (@an, - - @mn) Tllo) TI12-

In both inequalities, equality holds for matrices of rank one.

Proof. Let x € F™. Then

(Ax); = iaz‘ﬂj = [(Ax)i| < [(@ins---vaim) 5lxle; i=1,...,m=
j=1
|Ax| < [Ix[la(ll(@1s; .- - am)THZ, sl ama, - aamn)—r”:)—r'
Assume that || - || is an absolute norm. Then
1Ay < lixllall((@ass -y @an) Tl - 1 (@mas s amn) TlE) T o,

which yields (7.4.5). Suppose that A is rank one matrix. So A = uv',

where 0 # u € F™ 0 # v € F". There exists 0 # x € F" such that

v'x = ||v|#||x|la. For this x we have that |Ax| = ||v||}|/x|«|u|. Hence

IAxle — iv[|[ully. Thus [[Alla, > [[v][Z]uls. On the other hand the

[
right-hand of (7.4.5) is ||v||%||ullp. This shows that (7.4.5) is sharp for rank
one matrices.

Assume now that || - ||, is an absolute norm. Theorem 7.1.3 claims that
|- ||% is an absolute norm. Apply (7.4.5) to ||AT|[p« o~ and use Problem le
to deduce the inequality (7.4.6). Assume that A is rank one matrix. Then
AT is a rank one matrix and equality holds in (7.4.6). a

Theorem 7.4.2 Let m,n > 2 be integers. Assume that s,t € [1,00] and
suppose B F™ are endowed with Hélder with norms ||-||s, || - ||+ respectively.
Let s* be defined by the equality + + L =1. Then for A = [a;;]/27_ Fm>"

i=j=
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the following hold.

. s % 1 T L*
(TAT) Al < min((o lagl)F)H Qo lay|) 7)?
i=1 j=1 J=1 =1
(748) [ Allon < Y lagl,
i=j=1
(149) A1 = max Z |aij],
(7.410) [ Aflsc.c0 = max Zlaul
(74.11) [ Afl1,00 = lgigmém |aij]-
Proof. Since || - ||s, || - || are absolute norm the inequalities (7.4.5) and

(7.4.6) hold. As || - || = || - ||s» we deduce (7.4.7). For s = oo we have
s* =1, and for ¢t =1 (7.4.7) yields (7.4.8).

Assume that s = ¢t = 1. So s* = oco. The second part of the in-
equality (7.4.7) yields the inequality [|A]l1,1 < maxi<j<p Y ioy |aij]. Let
ej = (6j1,...,0;,)". Clearly, |le|l, = 1 and ||Ae;||, = >_i~, |a;;|. Hence

HA”l,l > 2211 |aij|. So ||AH1_’1 > maxji<;j<n 2211 |a1-j|, which yields (749)

Since || Alloo.00 = [|AT||1.1, see Problem le, we deduce (7.4.10) from (7.4.9).
Let s = 1,t = co. Then (7.4.7) yields the inequality

[All1,00 < maxicicmai<j<n laij| = lai; |- Clearly, ||Aej [l = lai,j, |-

Hence [|All1,00 > |as,j, |, which proves (7.4.11). O

Theorem 7.4.3 Let 'V be a finite dimensional vector space over C with
an norm || - ||. Let || - || be the induced operator norm Hom (V,V). Then
for A € Hom (V, V) the inequality p(A) < ||A]| holds.

Proof. Assume that A € spec A. Then there exists 0 # x € V such
that Ax = Ax. So [|A| > 1Al — 5. O

[E3

Problems

1. Show
(a) The equality (7.4.2).
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(b) For each t > 0 there exists a vector y € Vg, |ly|ls = t such that

_ Tyl
Tl = "1,

(©) ITlap = maxees, . xes;. F(Tx)].
(d) Denote by [|[T*||p+ 4+ the operator norm of T* : V; — VI

with respect to the norms || - ||, || - ||X respectively. Show that
1T o .= = Ta5-

(€) [[ATlp=,ax = [|A]la,p for A € ™™,
2. Show the inequality (7.4.3).

3. Let T : V — V be a linear transformation on a finite dimensional
vector space V over C with a norm | - ||. Show that p(T) < ||T|.

4. Let A € C™™™. Then A = Q '(A + N)Q, where A is a diagonal
matrix, N strictly upper triangular and A+ N is the Jordan canonical
form of A. Show

(a) Aissimilar to A+tN forany 0 #t € C,ie. A= Q7 (A+tN)Qy.
Show that Q; = @D, for an appropriate diagonal matrix D;.

(b) Let € > 0 be given. Show that one can choose a norm || - ||; on
C™ of the form |x||; := ||Q¢x]|. for |t|-small enough such that
|A]l: < p(A)+e. Hint: Note that |A+tN|j2 < [|All2+][¢][|N]2 =
p(A) +t[Nll2.)

(¢) If N =0 then ||A|| = p(A) where ||x|| = |@x]».

(d) Suppose that each eigenvalue A of modulus p(A) is geometrically
simple. Then there exists || small enough such that ||Al; =

p(A).

5. Let A € C"*™. Then there exists a norm on || - || on C™ such that
p(A) = ||A]l if and only if A each eigenvalue A of modulus p(A)
is geometrically simple. Hint: Note that if p(4) = 1 and there
is an eigenvalue A, |A\| = 1 which is not geometrically simple, then
A™ m € N is not a bounded sequence.

6. Assume that ||-||4, ||-||» are two absolute norm on C™ and C™. Assume
that Q,C™*™ Qo € C™*™ are two diagonal matrices such that the
absolute value of each diagonal entry is 1. Show that for any A €

C™ " |Q1AQ2]lap = | Allap-
7. Show

(a) IfA e R or —A € R then [|Allocy = ZZZ’;;l lagj]-
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(b) Let x = (24,...,2,) ;¥ = (Yu,---,¥n) " € R". We say that y
has a weak sign pattern as x if y; = 0 when x; = 0 and y;x; > 0
for z; # 0. Let A € R™*". Assume that there exists x € R”
such that each row r; of A either r; or —r; has a weak sign

m,n

pattern as x. Then [[Alle,1 = > 27000 fai;l-

a a
(c) Let A = a; a;z ] Assume that ai1,a12,a01, —ags > 0.

Show that ||Allce,1 < @11 + a12 + a21 — ags.
(d) Generalize the results of Problem 7c to A € C™*™.

7.5 Tensor products of convex sets

Definition 7.5.1 Assume that V; is a finite dimensional vector space
over F =R, C fori=1,....,m. Let V = ®;—, V;. Assume that X; C V;
fori=1,...,m. Denote

O X = {®%1x;, forallx; €X;, i=1,...,m}.

We call ©721X; a set tensor product of Xi,...,Xm, or simply a tensor
product of X1,..., X

Lemma 7.5.2 Let C; be a compact convex set in a finite dimensional
vector space V; for i =1,...,m. Then conv®>,C; is a compact convex
set in @1V, whose extreme points are contained in O ext (C;). In
particular, if C1 and Cy are polytopes then conv C1 ® Cs is a polytope.

Proof. Since C; is compact for ¢ = 1,...,m, it is straightforward to
show that C := ©,C; is a compact set in V = ®,V,;. Hence convC
is compact. Let dim V; = d;. Since C; is compact, Theorem 4.6.2 implies

that each x; € C; is of the form x; = Zi;l aij,yij, where a;;, > 0,y;j, €

ext (G;) for j;, =1,...,d; + 1, and Zj:;l ai;; = 1. Hence

orixi= Y. ([Jes) @ty

Ji=-.=jm=1 i=1

Note that [[;~; a;;, > 0 and ij;rl:]i’”;l ", aij, = 1. Hence C C

conv O, ext (C;), which implies conv C C conv O2ext (C;) C conv C.
Assume that Cq, Cy are polytopes. Then conv C; ®Cs is nonempty, com-

pact and convex whose set of extreme points is finite. Hence conv C; ® Cy

is a polytope. (See Problem 7.2.8.) O
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See Problem 1 for an example where ext (C; @ Cs) is strictly contained
in ext (C1) ©® ext (C2). The next two examples give two important cases
where ext (C; © Cz) = ext (C1) @ ext (Cz). In these two examples we view
CP*1 @ C™M*" ag CP™*9" where the tensor product of two matrices A ® B
is the Kronecker tensor product.

Proposition 7.5.3 Let m,n > 2 be integers. Then Qyn © 2y C QU
and ext (conv Q,, © Q) = P © Py

Proof. Let A = [a;;] € Q,,, B = [bpg] € Q. The the entries of A® B =
[ctp )] € RE™™, where c(; ) (j.q) = @ijbpq- Clearly

Z Cli,p)(4,q) = Z ijbpg = bpgs Z Cli,p)(d,q) = Z ijbpg = bpq;
j=1 j=1 i=1 i=1
Z Cli,p)(4.q) = Z aijbpg = aij, Z Cli,p)(4,9) = Z @ijbpg = aij
q=1 q=1 p=1 p=1

Hence A ® B € Q,, where we identify the set [m] x [n] with [mn].
Since Q,,, is convex it follows that conv,, ® Q, C Q,.,. Recall that
ext (Unn) = Pmn. Clearly P, © P,y C Pimpn. Problem 4.7.10 yields that
ext (conv Qp, © Q) = Pry © P O

Proposition 7.5.4 Let m,n > 2 be integers. Then Hy, 4, OH,  , C
H,\n 4., and ext (convH,, + , OH, 1 ,) =ext (Hp, +.) ©ext (Hy 4.).

Proof. Let A € H,,,, B € H,, be nonnegative definite hermitian matri-
ces. Then A® B is nonnegative definite. Since tr A® B = (tr A)(tr B) it fol-
lows that Hy, 4 ; ©H,, + 1 C Hypppy 41 Hence ext (convH,, 4, ©H,, 4 ;) C
ext (Hy,4.) ©ext (Hy 4+1).

Recall that ext (H,, +,,),ext (H,, 1 ,),ext (Hy,p, +,,) are hermitian rank
one matrix of trace 1 of corresponding orders. Since A ® B is a rank one
matrix if A and B is a rank one matrix it follows that ext (H,, +..) ©®
ext (Hy 4.) C ext (Hyp 4., Hence

ext (convH,, + , OH, 1 ,) =ext (Hy, +.) ©ext (Hy 4.).

Problem 7.5.5 Let C; be a compact convex set in a finite dimensional
space V; fori=1,2. Suppose that C; = Naer, H(fn, Xq), were F; is the set



410 CHAPTER 7. VARIOUS TOPICS

of all supporting hyperplanes of C; which characterize C;, for i =1,2. (F;
may not be finite or countable.) The problem is to characterize the set of
all supporting hyperplanes of conv C; © Ca.

Equivalently, suppose we know how to decide if x; belongs or does not
belong to C; for i = 1,2. How do we determine if x belongs or does not
belong conv Cy ® Cy ?

It seems that the complexity of characterization conv C; ® Cy can be much
more complex then the complexity of C; and Cy. We will explain this
remark in the two examples discussed in Propositions 7.5.3 and 7.5.4.

Consider first H,, +,, © Hy, 4 ;. So any element in Hy, +,, © Hy, 4,
is of the form A ® B, where A and B are nonnegative definite hermitian
matrices of trace one. The matrix A ® B is called a pure state in quantum
mechanics. A matrix C' € convH,, 4,  ©H, 4 , is called a separable state.
So convH,, ;, © H, ;. is the convex set of separable states. The set
H,.n +1,.\convH,, , ©H, | , the set of entangled states. See for example
[BeZ06]. The following result is due to L. Gurvits [Gur03]

Theorem 7.5.6 For general positive integers m,n and A € Hy,p 4 4
the problem of decision if A is separable, i.e. A€ convH,, +, ©H, 1 ,, is
NP-Hard.

On the other hand, given a hermitian matrix A € H,,, it well known that
one can determine in polynomial time if A belongs or does not belong to
H,, | .. See Problem 3. We will discuss the similar situation for conv ,,, ©
Q,, in the §7.6.

Definition 7.5.7 Let V; be a finite dimensional vector space over F =
R, C with a norm || - ||; fori =1,...,k. Let V := @F_ 'V, with the norm
|- 1]. Then || - || is called a cross norm if

k
(7.5.1) | @by xill = ] lIxilli

for all rank one tensors.

Identify @%_ V! with V', where (RF_ £;)(®F_ x;) = Hf:1 f;(x;). Then
I -1 s called a normal cross norm if the norm || - ||* on V' is a cross norm
with respect to the norms || - |7 on Vi fori=1,... k.

See [Sch50] for properties of the cross norms. We discuss the following
known results needed in the sequel.

Theorem 7.5.8 Let V; be a finite dimensional vector space over F =
R,C with a norm || - ||; fori = 1,...,k. Let V := @F_ V.. Then there
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exists a norm || - || on 'V satisfying (7.5.7) Furthermore, there exist unique
norms || - |lmax, || - ||min satisfying the following properties. First, || - ||max
and || - |min are normal cross norms. Moreover ||z]|min < ||Z||max for all
z € V. Any cross norm || - || on V satisfies the inequality ||z|| < ||z||max for

all z € V. Third, assume that || - || on 'V satisfies the equality

k
(7.5.2) I @iy £l = [[I6ll; for all £ € Vii=1,... k.
i=1
Le. |||l 4s a cross norm with respect to the norms | - ||¥ on V§ for

i=1,...,k. Then ||z||min < ||z||o for all z € V. More precisely,
(7.5.3)
Bjj-pae = cONV By © ... OBy By, = conv By ©.. OBy ;.

min

Proof. For simplicity of the exposition we let k = 2. Define the set
B := conv By, ©®By,. Clearly, B is a compact convex balanced that 0 is
in its interior. Hence there exists a norm || - ||max such that B = By.,....
We claim that ||[x ® y|/max = [|%]|:[ly]|o- Clearly, to show that it is enough
to assume that |[x|, = [|y|l. = 1. Since x ® y € B,... we deduce that
X ®¥[lmax < 1. Problem 7.1.5c yields that there exists f € S, g € S);
such that

L=1f(x) > [f(x,)], Vx, € By,, 1=g(y) > [f(y.)|, Vy. € By ..
Hence
(7.5.4) l=(feg)(xey)>|(feg)(z) forall z c B|,..

Hence x®y € 8BH,”max = SH'Hxnax’ ie. ||X®Y||max = 1. Therefore the norm
I - [|max satisfies (7.5.1). Let || - || be another norm on V satisfying (7.5.1).
Hence B||'H1®BH'H2 - BH'H’ which yields BH‘Hmax = COHVBHAH1@B”,||2 C B||'H'
Therefore, ||z < ||Z]|max-

We next observe that that || - ||, on V' satisfies the equality

= |- [hnax
(7.5.5) If @ glle = [If]7]lg]Z for all f € V', g € VL.
Recall that [|[f ® gl|. = max,ep,  [(f ® g)(z)]. Use the (7.5.4) to deduce

(7.5.5). Hence ||z||max is @ normal cross norm.
Let || - [[» be the norm given by the unit ball conv B+ © By.; on V".

Hence the above results show that || - ||, is a normal cross norm. Recall
that for any norm || - ||% on V' satisfying (7.5.5) we showed the inequality
][ < [Mh]y for any h € V'. Define || - [[min := [| - |[}- Hence [[z]min < [2]a-

The previous arguments show that || - ||min satisfies the equality (7.5.1).
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Hence ||2]|min < ||2|lmax for all z € V. Also ||Z||min is & normal cross norm.
a

Definition 7.5.9 Let V; be a finite dimensional vector space over F =
R, C with a Buclidean norms ||-||; fori=1,...,k. Let V := ®@%__ V,. Then

1. The norm || - ||min s called the spectral norm and denoted as || - ||spec -
2. The norm || - |max s called the nuclear norm and denoted as || - ||nuc-

Theorem 7.5.10 Let V; be a finite dimensional vector space over F =
R, C with a Euclidean norms ||-||; fori=1,...,k. Let V := ®_ V,. Then
the spectral and nuclear norms are conjugate. Furthermore

7.5.6 Z||spec = max 2, Qick1Xi) |,

(T56)  lzhpee = max_ [z Oregu)]

@57zl = min{ 32 [T Ixsalls 3 @i = 2)-
JE[N] i€[k] JE[N]

Moreover, one can choose N =1+ H crp dim Vi fF=Rand N =1+
2]Liepy dim V; if F = C.

Proof. As || - ||f = || - ||: for i € [k] (7.5.3) yields that the spectral and
nuclear norms are conjugate. Furthermore, (7.5.3) yields (7.5.6). We now
show (7.5.7). Assume the decomposition }_ ¢y ®ie[x)X;j,; = 2. Since the
nuclear norm is a cross norm we deduce

2] nue < Z | ®jen Xj,illnuc = Z H l1%,il:-

JE[N] JE[N] i€[k]

It is left to show that there exists a decomposition of z for which equality
holds. One can assume without loss of generality that ||z|huc = 1. Hence
z is a convex combination of N extreme points of the unit ball of By, .-
(7.5.3) yields that each extreme point of By, .. is ®;e[k)yi, where [|y;][; = 1
for i € [k]. So

2= Y ;@i Yii= Y Ricw(alyji),a; > 0,5 € k], > a;=1.

JEIN] JE[N]

For this decomposition we have that 1 = [|z|lnue = >_c(n [iep ||afyj,i||i.

It is left to show the upper bound on N. Let N’ :=dim V = Hie[k] dim V;.
Assume first that F = R. Then Carathéodory’s theorem yield that N <
1+ N’. Assume that F = C. Then the real dimension of V is 2N’. Hence
N <1+42N'". O
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Proposition 7.5.11 Let k > 1 be an integer. Assume that V,,..., Vg
are inner product spaces over F = R,C. Let V = ®F_ 'V, with the inner
product induced by the inner products on V,,..., V. Assume that || -

1, - 1l ll&s |l || are the induced norms by the corresponding inner products
on Vi,...,Vi, V. Then || - || is a normal cross norm. If dim V; > 1 for
i=1,...,k then || - || is different from || - |lmaz and || - || min-

See Problem 7.

Theorem 7.5.12 Let U,V be finite dimensional vector spaces over
F = R, C with norms || - |, ||| - ||| respectively. Identify W =V @ U’ with
Hom (U, V), via isomorphism 6 : W — Hom (U, V), where (v @ f)(u) =
f(u)v for any f € U'. Then the minimal cross norm on || - ||lmin on W is
the operator norm on Hom (U, V), where the norms on U’ and V are || - ||*
and ||| - ||| respectively. Identify W' with V'@ U ~ Hom (U’, V'). Then the
mazimal cross norm || - |max on W is the conjugate to the operator norm
on Hom (U’, V'), which is identified with W’'.

Proof. Let T € Hom (U, V). Then

T|| = max |||T(u)||| = max g(T'(u))|.
7= max Tl = max_Ja(7()

Let 0= : Hom (U, V) — V® U’ be the isomorphism given in the theorem.
Then g(T'(u)) = (g®@u)(0~*(T)). Let || - || be the norm given by the unit
ball conv Byjj.;jj» © By, on V' ® U ~ W', as in the proof of Theorem 7.5.8.
Then

O~ (D)|; = max =|(g®@u)(@ (1))
07 Dl =y max = (5@ wE (D)
Use the proof of Theorem 7.5.8 to deduce that ||T]| = ||¢(T)||min-
Similar arguments show that the conjugate norm to the operator norm
of Hom (U’, V'), identified with V' @ U ~ W’ gives the norm || - ||max on
W. O

Use the above theorem and Problem 7.1.14 to deduce.

Corollary 7.5.13 Let U,V be finite dimensional inner product spaces
over F = R, C, with the corresponding induced norms. Identify W =V &
U’ with Hom (U, V) as in Theorem 7.5.12. Then ||T||min = 01(T) and

dim V
17| max = Zi:l ai(T).

More generally, given finite dimensional vectors spaces U;, V; over F =
R,C for i = 1,...,k we identify the tensor spaces ®*_, Hom (Uj;, U;) with
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Hom (®F_,U;, ®%_ V;) using isomorphism

v ®F_ Hom (U;, V;) — Hom (®F_, U;, @ V) satisfying
(7.5.8) U@ T (®F1w) = ©f, (Tiw;)
where T; € Hom (U;, V;),u; € Uy, i =1,...,k.

Theorem 7.5.14 Let U;, V; are finite dimensional vector spaces over

F = R,C with the norms || - |, ||| - ||li respectively for i = 1,... k. Let
N;(:) be the operator on Hom (U;, V) for i = 1,...,k. Let || - |lmax be
the mazimal cross norms on U := ®@F_ U, and ||| - ||| be any cross norm

on V := ®@%_V,. Then the operator norm N(-) on Hom (U, V), identified
with @%_,Hom (U;, V;), is a cross norm with respect to the norms N;(-),i =
1,... k.

Proof. Since B|.,... = ®%_ By, we deduce that for any T € Hom(U, V)
one has

N(T) = max T(®F_ uw)]|.
(1)=, o 7@ )]
Let T = ®%_,T;. Since ||| - ||| is a cross norm on V we deduce
k k
N(T) = max ®§: T;(w)l|| = max T (w)l||; = N, (T3).
(T) uieBH.H“ieW\ll 1T (w3 [ “feBll-HwiE““)il;[lH' Colll }:[ (T3)

a

Problems

1. Let V,,V, be one dimensional subspaces with bases v,, v, respec-
tively. Let C; = [—e,,2e,],Ca = [—e,,3€,]. Show that C; ® Cy =
[—3(e; ®e,),6e, ®e,]. Hence ext (C; ® Cy) is contained strictly in
ext (Cl) © ext (CQ)

2. Index the entries of C' € Qy,y, a8 ¢(; ) Show

()
(a) Assume that C € conv (), ® Q,. Then the entries of C' satisfy

m m

> Climia) = D i for each i, j € (m), p,q € (n),
i=1 j=1

> ClimGia) = D Clap) g for cach i, j € (m) p,q € ().

p=1 q=1
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(b) For m = n = 2 the standard conditions for 4 x 4 doubly stochas-
tic matrices, and the conditions in part 2a characterize the set
conv QQ ® QQ.

(c) For m = n > 4 the standard conditions for n? x n? doubly
stochastic matrices, and the conditions in part 2a gives a set
which contains strictly conv €2,,®€2,,. Hint: Consult with [Fri08].

3. Show Assume that A = [a;;]7_;_; € H, and det A = 0. Find 0 #

x € C™ such that Ax = 0. Let x, = ”—;Hx and complete x, to
an orthonormal basis x,,...,x,. Let A,_1 = [X;‘ij]?z_jlzl. Then

A,_1 € H,,_,. Furthermore, AH,,  if and only if A,,_1H,_, ;.
4. Let 7 : C™*" be the transpose map: 7(4) = AT. Show

(a) 7(A) is similar to A for any A € C™*".

(b) 7 leaves invariant the following subsets of C™*™:

R™™, 85 (R), Sn(C), O(n, R), O(n, C),
U(n7 R)v N(”v R)v N(na C)7 HTL7 Hn,+a Hn,+,1-

5. On C™>*™mn viewed as C"™*™@C"™*™, we define the partial transpose
Tpar as follows. Let C' = [c(p) () )iejepig=1] € C™*™ @ CM*",
Them 7par(C) = [€ip),(G.0))imjmpag=1]: Where Eap). (q) = Cig).(p)
for i, j € (m),p,q € (n). Equivalently, s is uniquely determined by
the condition 7pa (A ® B) = A® BT for any A € C™*" B € C"*",
Show

(a) Tpar leaves the following subsets of C™™*™™ invariant: Sy, (R), Hypp,
and all the set of the form X ® Y, where X C C™*™ and
Y C C"*™ are given in Problem 4b. In particular the convex set
of separable states convH,, + ; © H,, 1 , is invariant under the
partial transpose.

(b) Show that for m = 2 and n = 2,3 C € H,,,, is a separable state,
ie. CeconvH,, y,0H, ; ,,if and only C, Tpar (C) € Hpppy 41
(This is the Horodecki-Peres condition [Hor96, Per96].)

6. Let the assumptions of Theorem 7.5.8 hold. Show
(a) Each z € V can be decomposed, usually in many ways, as a sum

of rank one tensors

N
k . ,
z = E ®ierXjyi, Xj4 € Vi, i=1,...,k, j=1,...,N,

Jj=1
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where N = Hle dim V;. Then ||z||max is the minimum of
Zjvzl Hle llx;:|l; over all the above decompositions of z.
(v k
12l min = fieBHﬁ:%}il,...,k (@ £)(2)]

7. Prove Proposiiton 7.5.11. Hint: To prove the first part of the problem
choose orthonormal bases in V,,..., V. To prove the second part
observe that || - || is smooth, while ||  |lmin, || * |[max are not smooth if
dimV;>1fori=1,...,k>1.

7.6 The complexity of conv (), ® (),

In this section we show that there a linear programming problem on €2, ,, :=
conv 2, ® Q,,, whose solution gives an answer to the subgraph isomor-
phism problem, that will be stated precisely below. The subgraph isomor-
phism problem belongs to the class of N P-complete problems [GaJ79]. This
shows, in our opinion, that the number of half spaces characterizing €, ,,
is probably not polynomial in max(m,n), which is analogous to Theorem
7.5.6.

By graph G = (V, E) in this section we mean an undirected simple
graph as in §6.1 on the set of vertices V' and the set of edges E. We assume
that #V = n,#FE = m. We will identify [n] and [m] with V and E, and
not ambiguity will arise. Recall that a vertex v € V is called isolated if
deg v = 0. Recall:

Definition 7.6.1 Let G = (V,E),G' = (V', E') be two undirected sim-
ple graphs. Then G and G’ are called isomorphic if the following condition
hold. There is a bijection ¢ : V. — V' such that (u,v) € E if and only if
(p(u), p(v)) € E'. G' is called isomorphic to a subgraph of G if there erists
a subgraph G1 of G such that G’ is isomorphic to Gy.

We recall that the subgraphs isomorphism problem, abbreviated as SGIP,
which asks asking if G’ is isomorphic to a subgraph of G, is an N P-complete
problem [GaJ79].

We now relate the SGIP to certain linear programming problems on
Q- Let A(G) = lag]i_;—; € {0,1}"*™ € be the adjacency matrix of
G. So A(G) is a symmetric matrix with zero diagonal. Recall that a
different labeling of the elements of V' gives rise to the adjacency matrix
A" = PA(G)PT for some permutation matrix P € P,,. Thus the graph G
gives rise to the conjugacy class of matrices A(G) = {PA(G)PT, P € P,}.
The following result is straightforward, see Problem 1.
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Lemma 7.6.2 Let G = (V, E),G' = (V', E’) are two undirected graphs.
Assume that #V = #V'. Then G and G’ are isomorphic if and only if
A(G) = A(G).

We next introduce the notion of the vertex-edge incidence matrix B(G) €
{0, 13#V>#E_ Then B(G) = [bi;];-7—, € {0,1}"*™, such that b;; = 1 if
and only the edge j contain the vertex i. A different labeling of V' and
E gives rise to the vertex-edge incidence matrix B’ = PB(A)Q for some
P e P,,Q € Pp. Thus the graph G gives rise to the equivalence class of

matrices B(G) = {PB(G)Q, P € Pn,Q € Ppn}.

Lemma 7.6.3 Let G = (V,E),G' = (V', E’) are two undirected graphs.
Assume that #V = #V' #E = #FE'. Then G and G' are isomorphic if
and only if B(G) = B(G").

We now restate the SGIP in terms of bilinear programming on €, x €.
It is enough to consider the following case.

Lemma 7.6.4 Let G' = (V' E'),G = (V, E) and assume n’ := #V' <
n = #V,m' = #E' < m := #E. Let B(G') € {0,1}"*" B(Q) e
{0,1}™*™ be the vertez-edges incidence matrices of G' and G. Denote by
C(G") € {0,1}™*™ the matriz obtained from B(G') by adding additional
n—n' and m —m’ zero rows and columns respectively. Then

6. / T < /|
(7.6.1) peAlaX tr(C(G")QB(A) ' P) <2m

Equality holds if and only if G’ is isomorphic to a subgraph of G.

Proof. Let By = [bij,l]:'i?:l = ]DTB(AA)C?T € B(G) Note that B,
has exactly the same number of ones as B(G), namely 2m, since each edge
is connected is connected to two vertices. Similarly C(G') = [ei]i27—,
has exactly the same number of ones as B(G’), namely 2m’. Hence the
(C(G"), By) = tr(C(G1)B] ) < 2m/. Assume that tr(C(G1)B] ) = 2m’. So
we can delete 2(m — m’) ones in B; to obtain C(G’). Note that deleting
2(m—m’) from By, means to delete m—m’ edges from the graph G. Indeed,
assume ¢;; = b;j1 = 1. So the vertex 7 is connected to the edge j. Hence
there exists another vertex i’ # i such that ¢;;; = 1. As tr(C(G')B{ ) = 2m’
we deduce that by;1 = 1. Hence, if we rename the vertices and the edges
of G corresponding to B; we deduce that G’, represented by the matrix
B(G’), is a subgraph of G. O

We now show how to translate the maximum in (7.6.1) to linear pro-
gramming problem on 2, ,,. As in §2.8 for F' € R™*" let ' € R™"
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be a vector composed of the columns of F, i.e. first we have the coor-
dinates of the first column, then the coordinates of the second column,
and the last n coordinates are the coordinates of the last column. Hence
XFY = (YT ® X)F, where YT ® X is the Kronecker tensor product.

Lemma 7.6.5 Let C, B € R"*™. Then

6.2 t B'P) = N ZB.
(7.6.2) P, W(CRB P)= max (C)

Proof. Since Q7 = Q and ext (2,,) = P,, we deduce

max  tr(CQB'P)= max tr(CYB'X).
PePr,QEPm XeQ,Y e

Observe next that
tr(CYB'X)=tr(C(X"BY ")) = ()" (Y X)B.

As Q= convQ, © Q,, we deduce (7.6.2). O

In summary we showed that if we can solve exactly the linear program-
ming problem (7.6.2), using Lemma 7.6.4 we can determine if G’ is isomor-
phic to a subgraph of G. Since the SGIP is NP-complete, we believe that
this implies that for general m,n the number of half spaces characterizing
Q,.m can not be polynomial.

Problems
1. Prove Lemma 7.6.2.

2. Prove Lemma 7.6.3.

7.7 Variation of tensor powers and spectra

Definition 7.7.1 Let V,,V, be finite dimensional vector spaces over
F =R, C with norms ||-||1, ||-||2 respectively. Let : V, — V., be a nonlinear
map. The map p has a Fréchet derivative at x € V,, or simply differen-
tiable at x, if there exists a linear transformation Ty € Hom (V,, V) such
that

pw(x +u) = p(x) + Txu + o(u)|ul,,
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where |Jo(u)||. — o uniformly as ||ul|, — o. Denote Du(x) := Tx. p is
differentiable, if it has the Fréchet derivative at each x € V., and Du(x) is
continuous on V. (Note that by choosing fizxed bases in V,, V, each Du(x)
is represented by a matriz A(x) = [a;;(x)] € F™*", wheren =dim V,,m =
dim V.. Then a;j(x) is continuous on V, for each i € (m),j € [n].)

Since all norms on a finite dimensional vector space are equivalent, it is
straightforward to show that the notion of Fréchet derivative depend only
on the standard topologies in V,, V,. See Problem 1. For properties of the
Fréchet derivative consult with [Die69].

Proposition 7.7.2 Let V,,V, be finite dimensional vector spaces over
F = R,C with norms || - |1, - |2 respectively. Assume that pn : V, —
V., is differentiable. Then for any x,y € V, the following equality and
inequalities holds.

(1.7.1) () =) = [ Dutla = px+13)(y = )i

(7.7.2) [(y) = p()|2 < [ly —xllx /1 IDu((r = )x +ty)||s,2dt

< lly =[x max [IDp((2 = £)x + ty)

1,2-
€lo ’

(7.7.1) and (7.7.2) are called here the mean value theorem and the mean
value inequalities respectively.

Proof. Let x,u € V, be fixed. Clearly, the function p(x + tu) is a
differentiable function from R to V,, where

dp(x + tu)

(7.7.3) -

= Du(x + tu)u.
Letting u = y — x and integrating the above inequality for ¢ € [0, 1] we get

(7.7.1). Replacing the integration in (7.7.1) by the limiting summation and
using the triangle inequality we obtain

I3) = 16l < [ IDp(G = Ox -+ i)y =)t <

1
AIDMG*0X+WWmMnymﬁ§

|y —x[[, max [Du((1 —t)x +ty)|s»-
tefo,1]
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Theorem 7.7.3 Let 'V be a finite dimensional vector space. Let k € N.
Denote V¥ := V®...@ V. Consider the map 0, : V — V& where
—_———

k
0p(x) =x®...®x. Then

k
(7.7.4)
Dip(x)(u) =u®x®..AX+XQURAX®...AX+...+X Q... ®XQu.
—_——— —_——— —_————
k—1 k—2 k—1

Let || - || be a norm on V and assume that || - ||x is a cross norm on V&
k

(7.7.5) %, @ %2 @ ... @ xllx = [ [ Ixill for x.,...,xx € V.
=1

Denote by Ni(T) := [|T||.|.-1,. the operator norm of T € Hom (V,V®*).

Then

(7.7.6) Ny (Ddx(x)) = kx|

Proof. Fix x,u € V. For ¢t € R expand the vector §;(x + tu) in powers
of t. Then

Op(x+tu) =0k(x) +t(URX® ... AX+XRURX® ... X+
—_——— —_———
k—1 k—2
..+ X®...@x®u)+ higher order terms in ¢.
—_——
k-1

Hence (7.7.4) holds. Apply the triangle inequality to (7.7.4) and use the as-
sumption that ||-|| is a cross norms to deduce the inequality || D (x)(u)]|r <
E||x|*~*|ul|. Hence Ny (Ddx(x)) < k|x||¥=*. Clearly, equality holds if
x = 0. Suppose that x # 0. Then ||Ddy(x)(x)||x = k[x|*. Hence
N (Ddx(x)) > k||x||*~*, which establishes (7.7.6). O

Theorem 7.7.4 Let U be a finite dimensional vector space over F =
R, C. For an integer k > 1 consider the map 6y : Hom (U, U) — Hom (U, U)®*
~ Hom (U®* U®*) given by 0,(T) = T®...QT. Let Wi, C U®* be a
—_—

k
subspace which is invariant for each §,(T),T € Hom (U,U). Denote by

6, : Hom (U, U) — Hom (W, W},) the restriction map 6,(T)[Wy. As-
sume that || - || is a norm on U. Let || - ||x be the mazimal cross norm
U®s Let || - I, I - lx; Il - ll|x be the induced operator norms on Hom (U, U),
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Hom (U, U)® Hom (W, W) respectively. Let Nk(),Nk() be the opera-
tor norm on Hom (Hom (U, U),Hom (U, U)®*),
Hom (Hom (U, U),Hom (Wy, Wy,)) respectively. Then

(7)) NeD(T) = KITIF, N (Da)(T)) < kT
for any T € Hom (V,V).

Proof. Theorem 7.5.14 yields that the operator norm ||-||x on Hom (U®* U®*),
identified with Hom (U, U)®*_ is a cross norm with respect to the operator
norm on Hom (U, U). Theorem 7.7.3 yields the equality in (7.7.7). Ob-
serve next that Dy (T) is Dx(T)|Wy. Hence Ny (Dé(T)) < N(Dd,(T)),
which implies the inequality in (7.7.7). O

A simple example of Wy, is the subspace /\]C U. See Problem 3.

Theorem 7.7.5 Let U be an n-dimensional vector space over F = R, C,
with a norm ||-||. Denote by ||| the induced operator norm on Hom (V, V).
Then for A, B € Hom (U, U)

(7.7.8)
|A|" — [IB]I"

|det A —det B| < ||A— B | A= |IB| < n||A — B||[max(||All, | B|)]™ "

Here “Z:Zn = na"" ! for any a € C. The first inequality is sharp for
A =al,,B =bl, for a,b > 0. The constant n in the second inequality is
sharp.

Proof. In U®" consider the one dimensional invariant subspace W, :=
A" U for each 6,,(T),T € Hom (U, U). See Problem 3. Let e,,...,e, be a
basis in U. Then e, Ae, A ... A e, is a basis vector in /\" U. Furthermore

on(T)(es Nes A...Nep) = (det T)e, ANes A... Aey.

See Proposition 5.2.7. Note that 6, (T) := 6, (T)| A" U is the above opera-
tor. Observe next that any @ € Hom (A" U, A" U), is of the from

Qle, Nes A...Ney) =te, Ne; A... Nep.

Hence the operator norm of @ is |t|. We now apply Theorem 7.7.4 to this
case. The inequality in (7.7.7) yields

Noa(D6,(T)) < || T|" .

Next we apply Proposition 7.7.2, where V, := Hom (U,U) and V, =
Hom (A" U, A" U) equipped with the operator norms, and u(T") = d,(T).
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So ||u(A) — pu(B)||2 = |det A—det B|. The inequality (7.7.2) combined with
the inequality in (7.7.7) yield

1
|det A —det B| < n|A— B / (1 —t)A+tB|" tdt <
0

1
nIIA*BH/O (=)l All+ ¢ BI)" dt =

A" = IB"

| n—1 e )
[A— B = [lA= Bl p_ A" Bl =
TAT=1B] 2

nllA — Bl|[max(]| A, | BID"~".

This shows (7.7.8). Recall that ||zI|| = |z| for any z € F. Hence, for
A=al,B =0l and a,b > 0 equality holds in the first inequality of (7.7.8).
To show that the constant n can not be improved let A = (1+2)I,B =1,
where > 0. Then (7.7.8) is equivalent to the inequality (1 + z)" —1 <
nz(l+ x)" "t Since lim,~ o % =

proved. O

n the constant n can not be im-

Definition 7.7.6 Let X, be the group of permutations o : [n] — [n].
Let S={M\,...; 1, T ={p1,...,pn} be two multisets in C containing n
elements each. Let

dist(S, T) = max min |\j — pi,
j€[n] i€[n]
hdist(S, T) = max(dist(S, T), dist(T, S)),
dist(S, T) = min max |A; — e |-
pdist(S, T) = min ie[n>]<| Ho |

Note: dist(S, T) is the distance from S to T, viewed as sets; hdist(S, T) is
the Hausdorff distance between S and T, viewed as sets; pdist(S, T) is called
permutational distance between two multisets of cardinality n. Clearly

hdist(S, T) = hdist(T,S), pdist(S,T) = pdist(T,S),
(7.7.9)
dist(S, T) < hdist(S, T) < pdist(S, T).
See Problem 4.

Theorem 7.7.7 Let U be an n-dimensional vector space of C with the
norm || - ||. Let || - || be the induced operator norm on Hom (U, U). For
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A,B € Hom (U, U) let S(A),S(B) be the eigenvalue multisets of A, B of
cardinality n respectively. Then

(T.7.10)  pdist(S(A),S(B)) < de%n[A — BI|* [max(||A], |B)]*+
To prove the theorem we need the following lemma.

Lemma 7.7.8 Let the assumptions of Theorem 7.7.7 holds. Define

(7.7.11) h(A, B) = ma dist(S((1 ~ t)A + tB), S(B))
Then

(7.7.12) pdist(S(A), S(B)) < (2n — 1)h(A, B).

Lot Do) i € €, [0 o] 2 77, Donots Ko = 02 DOWB) (A B

)}-

B)).

Then Kg is a closed compact set, which decomposes as union of a k € [n]
connected components. Let A(t) = (1—t)A+tB. Since dist(S(A(t)),S(B)) <
h(A,B) we deduce that Kp contains S(A(t)) for each ¢t € [0,1]. As S(A(t))
various continuously for ¢ € [0, 1], each connected component of K contains
a fixed number of the eigenvalues of S(A(t)) counting with their multiplic-
ities. Since A(1) = B, each connected component of Kp contains a fixed
number of the eigenvalues of A and B counting with their multiplicities.
Rename the eigenvalues of B such that indices of the eigenvalues of A and
B are the same in each component of Kg.

Let C = UP_D(z;,h(A,B)) be such a connected component, where
21,...,%p are p distinct eigenvalues of B. C contains exactly ¢ > p eigen-
values of A and B respectively. We claim that if A € S(A) N C then
max;epp A — 2| < (2p — 1)h(A, B). Consider a simple graph G = (V, E),
where V' = [p] and (4,7) € E if and only if |z; — z;| < 2h(A, B). Since C
is connected it follows that G is connected hence the maximal distance be-
tween two distinct point in G is p—1. So |z; — z;| < 2(p—1)h(A, B). Since
|A—2z;] < h(A, B) for some i € [p], it follows that [A—z;| < (2p—1)h(A4, B) <
(2n—1)h(A, B). Therefore for this particular renaming of the eigenvalues of
B we have the inequality |\;(4)—X;(B)| < 2n—1)h(A,B),i=1,...,n. O

Problem 5 shows that the inequality (7.7.12) is sharp.
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Proof of Theorem 7.7.7. First observe that
dist(S(A),S(B))" < max| | |(Ai(A) —A\(B))| =

max |det (A\;(A)] — B) —det (\(A)I — A)| <

i€[n]
max |det (zI — B) —det (21 — A)|.
2€C,|2[<p(A)
We now apply (7.7.8) to deduce that for |z| < p(A) < || A|| we have

\det (21 — B) — det (21 — A)| < n||A — B|[max(||2I — Al|,||2I — B||)]"~"
< n||A - Bl|[max(|z| + [|Al|, (|| + | B])]" ™" <
n||A = Bl|[max(2|| Al | Al + |B[)]" "

Thus

n—1
no,

(7.7.13)  dist(S(A),S(B)) < nw[|A — B[ = [max(2]|All, [|A] + |B]|)]

We apply the above inequality to A(t) for each ¢ € [0,1]. Clearly, for
t€0,1)

[A@ < (1 =D)[[All + ¢ BI| < max([[A],[|B]l) =
max (2| A@)], [A@)] + [ BI) < 2max([|Al], | B]])-
Also ||A(t) — B||= (1 —1t)||A — B|| <||A — B||. Hence we deduce

n—1

(7.7.14) h(A, B) < nw||A = Bl|= [2max(|A]l, | Bl|)] .

Use (7.7.12) to obtain

n—1

(7.7.15) pdist(S(A),S(B)) < (2n — 1)n= ||A — B||#[2max(|A|, ||B|))] =

Use the inequality

(7.7.16) (2n — 1)2(%)% < 4n(g)% < 4ne? forn € N,
to deduce (7.7.10). (See Problem 6.) O

The inequality (7.7.10) can be improved by a factor of 2 using the following
theorem [EJRS83]. ( See Problem 7.)
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Theorem 7.7.9 Let U be an n-dimensional vector space of C. For
A, B € Hom (U, U) let S(A),S(B) be the eigenvalue multisets of A, B of

cardinality n respectively. Then

n+1

(77.17)  pdist(S(A),S(B)) < (2[—

| — 1) max(h(A, B), h(B, A)).

The above constant is sharp.

Problems
1. Let p: V, — V, be a nonlinear map. Show

(a) Assume that p has a Fréchet derivative at x with respect to
given two norms || - ||1, || - |]2. Then u has a Fréchet derivative at
x with respect to any two norms || - ||a, || - |-

(b) Suppose that p has a Fréchet derivative at x. Then p is contin-
uous at x with respect to the standard topologies on V,, V.

¢) Assume that p has a Fréchet derivative at each point of a com-
1
pact set O C V,. Then p: O — V, is uniformly continuous.

2. Let U,,...,Ug, V,,...,V; be finite dimensional inner product vec-
tor space overs F = R, C. Assume that U := ®F_ U,V := @k V,
have the induced inner product. Identify Hom (U, V) with

[1-_, Hom (U, V). Show

(a) The operator norm on Hom (U, V), with respect to Hilbert
norms, is a normal cross norm with respect to the operator
norms on Hom (U,;,V;), the Hilbert norms, for ¢ = 1,... k.
Hint: Express the operator norm on Hom (U;, V;) and its con-
jugate norm in terms of singular values of T; € Hom (U;, V;) for
i=1,... k.

(b) AssumethatU, =V, =... =
Hom (U, U). Then N (0, (7))
erator norm on Hom (U,,U,).

Uy = Vy. Let §; : Hom (U,,U,) —
= k|| T|[*"*, where || - | is the op-

3. Let U be a vector space over F = R,C of dimension n > 1. Let
k € [n]\ {1}. Show

(a) Wy, := A" U is an invariant subspace for each d;(T) given in
Theorem 7.7.4.
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(b) Assume that U is an inner product space. Let T € Hom (U, U),
and denote by ||T|| = 01(T) > ... > ox(T) > ... the singular
values of T'. Then

k
N (Ddx(T)) = Z oi(T)...0i-1(T)oir (T) . ..o%(T).

In particular, Nj.(Dog(T)) < koy (T)*' = k| T||*~! = N (D6 (T)).
Equality holds if and only if 01(T) = ... = 0%(T). Hint: Con-
sult with [BhF81].

. Prove (7.7.9).

Let A = diag(0,2,4,...,2n—2), B = (2n — 1)I,, € R"*". Show that
in this case equality holds in (7.7.12)

Using the fact that minscpo1) —tlogt = % deduce the last part of
(7.7.16).

Show
(a) Let n =2k +1 and
A = diag(0,...,0,2,4,...,2k),
——
k+1
B =diag(1,3,...,2k — 1,2k +1,...,2k + 1).

k+1

Then equality holds in (7.7.17).
(b) Let n = 2k and

A = diag(0,...,0,2,4,...,2k),
——

k
B =diag(1,3,...,2k — 1,2k +1,...,2k + 1).

k

Then equality holds in (7.7.17).
(¢) max(h(A, B),h(B,A)) is bounded above by the right-hand side
of (7.7.14).
(d) Deduce from (7.7.17) and the previous part of the problem the
improved version of (7.7.10).
(7.7.18)
. 1 1 n—1
pdist(S(A), S(B)) < 2ezn|A — BJ|= fmax([|A[l, [[B])] ="
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7.8 Variation of permanents

Definition 7.8.1 For A = [a;;] € D"*" the permanent of A, denoted

as perm A
perm A = Z H i (i)

oe¥, i=1

The determinant and the permanent share some common properties as
mulitlinear functions on D™*™ as Laplace expansions. However, from the
computational point of view the determinants are easy to compute while
permanents are hard to compute over all fields, except the fields of char-
acteristic 2. (Over the field of characteristic 2 perm A = det A.) For
A € 777" the permanent of A has a fundamental importance in combina-
torics, and usually is hard to evaluate [Val79]. The main aim of this section
is to generalize the inequality (7.7.8) to the permanents of matrices. The
analog of (7.7.8) holds for the norms ¢,,p € [1,00] [BhE90]. However, it
was also shown in [BhE90] that the analog of fails for some operator norm
on C"*",

Theorem 7.8.2 Let || - || be a norm on C™, and denote by | - || the
induced operator norm on C". Let A, B € C"*™. Then

(7.8.1) |[perm A — perm B| <
IA = BldlA" —[IBl") , 4" = B (|l A]]* — |B~[|")
201 A1 = 181D 2 A = 11B*[1)

To prove this theorem we need two lemmas. The first lemma gives the
following formula for the standard numerical radius of a square matrix
with complex entries.

Lemma 7.8.3 Let A €¢ C*"*™. Then

(782) ra(d) = ma (552

).

In particular ro(A) < L(||All + [|A*|]) for any operator norm on C™.

Proof. Let z € S',B = zA. Assume that x is an eigenvector of %(B +
B*) of length one corresponding to the eigenvalue A. Then

A = R(x"(zA)x)] < [x*(zA)x| = |x"Ax| < r,(A).

Hence the right-hand side of (7.8.2) is not bigger its left-hand side. On
the other hand there exists x € C",x*x = 1 and z € C, |z| = 1 such that
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ro(A) = |x*Ax| = x*(2A)x. For this value of z we have that

zA+ZA zA+ zZA
ra(4) < M(—5—) < p(—5—)-
Clearly,
zA+zZA zA+zZA Al + 1Al
p(CAEHA) <A AL AL
Hence ro(A) < (|| Al + [|A*])). .

For A € C™*", view the matrix ®™ A as a linear operator on ®"C",
which is identified with C"". wy(®"A),ro(®@™A) are the numerical range
and the numerical radius of ®" A corresponding to the inner product (-, )
on ®™C" induced by the standard inner product y*x on C".

Lemma 7.8.4 Let A € C"*™. Then perm A € wz(®"A).

Proof. Assume that e; = (0;1,...,8in)",i € [n] is a standard basis in
C". Then ®}_;e;;, where i; € [n],j = 1,...,n, is the standard basis in
®"C"™. A straightforward calculation shows that

1
(7.8.3) (®"Ax,x) =perm A, x = —— Z R, €o(i); (X,X) = 1.
\/a o€,

(See Problem 1.) Hence perm A € wo(®@"A). O

Proof of Theorem 7.8.2. Since x given in (7.8.3) does not depend on

A we deduce perm A — perm B € wa(®"A — ®"B). Let ||| - ||| the maximal
cross norm on ®"C™ induced by the norm || - || on C™. Denote by ||| - ||| the
operator norm on ||| - ||| on ®*C™*™, induced by the norm ||| - ||| on @"C™.

Use the definition of r2(®"A — ®"B) and Lemma 7.8.3 to deduce
(7.8.4) |perm A — perm B| < r3(®"A — "B <

1 n n n * n *

SUlle™ A—@ Bl +|[|@" A" — @"B|)).

Theorem 7.5.14 implies that the operator norm ||| - ||| on ®*C"™*", induced
by the norm ||| - ||| on ®*C", is a cross norm with respect to the operator
norm || - || on C™*™. Observe next

n—1

®R"A— Q"B = Z(@iB) ®(A—B)®" 17 A.
=0
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(Here ®" A means that this term does not appear at all.) Use the triangular

inequality and the fact that the operator norm ||| - ||| is a cross norm we
deduce
n—1 ) )
[[e" A—e"Bll| <Y |I(®"B)® (A~ B) " Al|| <
i=0
n—1—1
: S A= BIdAI = 1BI™)
IBI*lA = BIl A" = :
2 TAI = 1B
Apply the above inequality to (7.8.4) to deduce the theorem. O
Problems

1. Prove (7.8.3).
2. Let the assumptions of Theorem 7.8.2 hold. Show that

[A[" = IIB["
(7.8.5) [perm A —perm B| < |[A - B||-+—+—=—
Al = 1B

in the following cases.
(a) A= A* B = B*.
(b) The norm || - || on C™ is || - ||2.

3. Show that (7.8.5) holds for the norms || - |1, || - ||cc using the following
steps.

(a) For A = [a;;] € C" denote |A| := [|a;;|] € RI™. Show

n n
|[perm A| < perm |A] < Hz |a;i

i=1j=1

(b) Let A = [a,,...,a,],B = [b,,...,b,] € C"*", where a;,b; are
the i — th columns of A, B respectively, for i = 1,...,n. Let

CVO = [al - b17a27"'7an]7 Cnfl = [b17"'7bnflvan - bn]a

Ci=[by,...,bj a4, —biy,8i45,...,8,], fori=1,...,n—2.
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Then
perm A — perm B = Zperm Ci_1 =
i=1
|[perm A — perm B| < Zperm |Ci_1].
i=1
(c) Recall that [[All; = || [A| || = max;ep,) [|ai]|,. Then
I Cima | < llas =il I BITHI AT < |A= Bl I B AT

for i =1,...,n. Hence, (7.8.5) holds for || - ||; norm.

(d) Use the equalities perm AT = perm A, ||[A|l« = |AT|; deduce
that (7.8.5) holds for || - || norm.

7.9 Vivanti-Pringsheim theorem and applica-
tions
We start with the following basic result on the power series in one complex

variable, which is usually called the Cauchy-Hadamard formula on power
series [Rem98, §4.1].

Theorem 7.9.1 Let

(7.9.1) f(z):Zaizi, a; €C,i=0,1,..., and z € C,
i=0
be power series. Define
1
(7.9.2) R=R(f) = ———— € [0,0].
lim sup, |a;|7

(R-is called the radius of convergence of the series.) Then

1. For R =0 the series converge only for z = 0.

2. For R = oo the series converge absolutely and uniformly for each
z € C, and f(z) is an entire function, i.e. analytic on C.

3. For R € (0,00) the series converge absolutely and uniformly to an
analytic function for each z,|z| < R, and diverge for each |z| > R.
Furthermore, there exist (,|(| = R, such that f(z) can not be ex-
tended to an analytic function in any neighborhood of ¢. (C is called
a singular point of f.)
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Consider the Taylor series for the function complex valued i
1 —
= z°.
1-2 Z
=0

Then R = 1, the function L is analytic in C\{1}, and has a singular
point at z = 1. Vivanti-Pringsheim theorem is an extension of this example
[Viv93, Pri94].

Theorem 7.9.2 Let the power series f(z) = > ooy a;z" have positive
finite radius of convergence R, and suppose that the sequence a;,i = 0,1, ...,
is eventually nonnegative. (I.e. all but finitely many of its coefficients are
real and nonnegative.) Then ¢ := R is a singular point of f.

See [Rem98, §8.1] for a proof. In what follows we need a stronger version
of this theorem for rational functions, e.g. [Fri78b, Thm 2|. Assume that
f(2) is a rational function with 0 as a point of analyticity. So f has power
series (7.9.1). Assume that f is not polynomial, i.e. R(f) € (0,00). Then
f has the following form.

N p;

(7.9.3) @) =PE)+Y) (1_bJAZ)]

i=1 j=1

P e Clz],\i, by, i € C\{0}, \; # Ny for i # .

Note that
1

max; ‘/\z| ’

(7.9.4) R(f) =

Definition 7.9.3 Let f(z) be a rational function of the form (7.9.5).
Let p := max|y, =g(s)-1 pi- Denote

— bp,i
fprm = Z (1 — )\iz)p.

#:|Ai|[=R(f)~" and pi=p

forin 15 called the principle part of f, i.e. f — forin does not have poles of
order p on |z| = R(f).

Theorem 7.9.4 Let f(z) be a rational function of the form (7.9.5).
Assume that the sequence of coefficients in the power expansion (7.9.1) is
eventually nonnegative. Then

1. The set {\1,..., AN} is symmetric with respect to R. That is, for
each i € [N] there exists i' € [N] such that A\; = \ir. Furthermore
pi =pir, and bj; = b forj=1,...p; andi=1,...,N.
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2. After renaming the indices in [N] we have: A\ = (f)’ |Xi] = A1 for
i=2,...,M, and |\;| > M\ fori> M. (Here M € [N].).

3. Let p := py. There exists L € [M] such that p; = p fori € [L]\ {1},
and p; < p fori> L.

4. bp1 > 0 and there exists m € [L] such that |b,;| = bp1 for i =
1,...,m and |by;| <bp1 forie[L]\[m].

5. Let ¢ = e After renaming the indices 2,...,m, \; = (1)
fori = 2,...,m. Furthermore there exists | € [m| such that b,; =
¢Hi=Vp, | fori=2,....,m

0. fprin(cz) = C_lfprin(z)-

Proof. We outline the major steps in the proof of this theorem. For all
details see the proof of [Fri78b, Thm 2]. By considering g(z) = f(z) + P;
for some polynomial P;, we may assume that the MacLaurin coefficients
of g are real and nonnegative. AS gprin = fprin, Without loss of generality
we may assume that the MacLaurin coefficients of f real and nonnegative.
Hence f(z) = f(z) for each z where f is defined. This shows part 1.

Part 2 follows from Theorem 7.9.2. For simplicity of the exposition
assume that R(f) = 1. Recall that for each singular point \;* = X; of f
on the circle |z| = 1 we have the equality
(7.9.5) by,

i

i = lim (1 — )P f(Air).
lim (1= )P S (Ror)
In particular b,, 1 = lim, ~ (1 — r)P* f(r) > 0. Since by, 1 # 0 we obtain
that by, 1 > 0. Let p := p;. Since all the MacLaurin coefficients of f are
nonnegative we have the inequality |f(z)] < f(|z|) for all |z] < 1. Hence
limsup,. (1 —7)?|f(A\ir)| < bp1. This inequality and (7.9.5) implies parts
3-4.
For m = 1 parts 56 are trivial. Assume that m > 1. Let b,; =
Nibp.1, ni| =1 for i =2,...,m. In view of the part 1 for each i € [m]\ {1}
there exists i’ € [m]\ {1} such that \; = A/, 7; = 1. Consider the function

9(2) = 2f(2) —mif(Xiz) — =201 = R(mX))a;’.
7=0

So the MacLaurin coefficients of g are nonnegative. Clearly R(g) > 1, and
if g has a pole at 1, its order is at most p — 1. This implies the equality

2fprin(z) - nifprin()\iz) - ﬁifprin(j\iz) =0.
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Therefore the set {\1,..., A} form a multiplicative group of order m.
Hence, it is a group of of all m-roots of unity. So we can rename the indices
2,...,msuch that A\; = 0~V fori =1,...,m. Similarly, n; = 1,72,...,7m
form a multiplicative group, which must be a subgroup of m roots of 1. Fur-
thermore n; +— \; is a group homomorphism. This shows part 5. Part 5
straightforward implies part 6. O

Definition 7.9.5 Let S = {\1,..., Ay} C C be a finite multiset. Le. a
point z € S appears exactly m(z) > 1 times in S. Denote

1. r(S) := maxyes |7].
2. For any t > 0 denote by S(t) the multiset SN {z € C, |z| = t}.

3. For an integer k € N denote by si(S) :== > i, AF the k — th moment
of S. Let so(S) = n.

4. Forz = (zy,...,2x)" € CN denote by oi(2) = Y, s . i <N Zin -+ Zins
fork =1,..., N the elementary symmetric polynomials in z1, ..., zn.

5. Denote z(S) = (Ai,..., )" € C". Then ox(S) := o (z(S)) for
k=1,...,n are called the elementary symmetric polynomials of S.

S is called a Frobenius multiset if the following conditions hold.
1. S=S8.
2. r(S) €8S.

3. m(z) =1 for each z € S(x(S)).

4. Assume that #S(r(S)) =m. Then (S=S for ( = B

A simple example of Frobenius multiset is the set of eigenvalues, counted
with their mulitplicities, of a square nonnegative irreducible matrix.

Theorem 7.9.6 Let S C C be a multiset. Assume that the moments
sk(S),k € N are eventually nonnegative. Then the following conditions
hold.

1. r(S) € S.
2. Denote p:=m(r(S)). Assume that A € S(x(S)). Then m(\) < pu.

3. Assume that r(S) > 0 and suppose that Ay = r(S), A2, ..., Am are all
the distinct elements of S satisfying the conditions |\;| = 7(S), m(\;) =
w fori=1,....,m. Then %,z =1,...,m are the m distinct roots

of 1.
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2w/—1

4. Let ¢ = ™. Then ¢S(x(S)) = S(x(S)).

5. If r(S) > 0,u = 1 and none of the other elements of S are positive,
then S is a Frobenius multiset.
Proof. For a finite multiset S C C define

o0

(7.9.6) fo(z) =31 | =D sk

A€sS k=0

Apply Theorem 7.9.4 to deduce the parts 1-4.

Assume that r(S) is the only positive element of S and y=1. if m =1
then S is a Frobenius set. Suppose the m > 1. Consider the function
9(2) = 2fs(2) — fs(¢2) — fs(Cz). We claim that g is the zero function. Sup-
pose to the contrary that g # 0. In view of 4 we deduce R(f) < R(g) < .
Since the MacLaurin coefficients of g are eventually nonnegative, Theorem
7.9.4 yields that g must have a singular point £ > 0 whose residue at ¢ is
positive. Since p(A) is the only positive eigenvalue of A, all other positive
residues of g, coming from 2 fg are not located on positive numbers. Hence
the residues of g at its poles located on the positive axes are negative in-
tegers. The above contradiction shows that g = 0, i.e. S is a Frobenius
multiset. O

Let A € C™ ™ and assume that S(A) is the eigenvalue multiset of A. Then

oo

(7.9.7) foay(z) =tr(I —zA)~" = Z(tr AN

=0

Corollary 7.9.7 Let A € C"*™. Denote by S be the multiset consisting
of all eigenvalues of A, counted with multiplicities. Assume that the traces

of A¥ k € N are eventually nonnegative. Then the following conditions
hold.

1. p(A) is an eigenvalue of A.

2. Assume that the algebraic multiplicity of p(A) is p. Let A be an eigen-
value of A of multiplicity m(X) satisfying |\ = p(A). Then m(X\) < p.

3. Assume that p(A) > 0 and suppose that A\; = p(A), Aa, ..., Am are all
the distinct eigenvalues of A satisfying the conditions |\;| = p(A), m(\;) =
wfori=1,...,m. Then %,i =1,...,m are the m distinct roots
of 1.

2w/ —1

4. Let ( =e Y. Then ¢S(p(A)) =S.
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5. If p(A) > 0 is an algebraically simple eigenvalue of A, and none of
the other eigenvalues of A are positive, then S is a Frobenius multiset.

Definition 7.9.8 A € R™*" is called eventually nonnegative if A* >0
for all integers k > N.

Lemma 7.9.9 Let B € R™"*™. Then there exists a positive integer M
with the following property. Assume that L > M is a prime. Suppose that
BT is similar to a nonnegative matriz. Then the eigenvalue multiset of B
is a union of Frobenius multisets.

Proof. Associate with the eigenvalues of B the following set T C S!.

For 0 # X\ € spec B we let IT/\\ € T. For A # k € spec B satisfying the

conditions |[A| = |k| > 0 we assume that 2,5 € T. Let T1 C T be the
set of all roots of 1 that are in T. Recall that n € S! is called a primitive
k-root of 1, if n* = 1, and n*" # 1 for all integers k¥’ € [1,k). k is called
the primitivity index of 7. Let L > k be a prime. Then n’ is a k-primitive
root of 1. Furthermore, the map n + n’ is an isomorphism of the group of
of all £ — th roots of 1, which commutes with conjugation n — 7. Clearly,
if n € S, and 7 is not a root of unity then n’ is not root of unity. Define
M € N to be the maximum over all primitivity indices of n € T;. If
T, = () then M = 1. Let L > M be a prime. Assume that B* is similar
to C € R*™. Apply Theorem 6.4.4 and the Perron-Frobenius theorem to
each irreducible diagonal block of of the matrix in (6.4.3), to deduce that
the eigenvalue multiset of S(C) is UEL’{ F; and each F; a Frobenius multiset.

Clearly, spec B = spec B and spec B = spec C. Observe next that
the condition that L is a prime satisfying L > M implies that the map
z + 2zl induces a 1 — 1 and onto map ¢ : spec B — spec C. Moreover,
¢~ 1(r) > 0 if and only of » > 0. Hence ¢ can be extended to a 1 — 1 and
onto map ¢ : S(B) — S(C). Furthermore, ¢~!(F;) is a Frobenius set, where
the number of distinct points F;(r(F;)) is equal to the number of points in
¢~ (F;)(x(¢~(Fj)). Hence S(B) = U;i{¢*1(Fj) is a decomposition of S(B)
to a union of Frobenius multisets. O

Corollary 7.9.10 Assume that a matriz B € R™ ™ is similar to an
eventually nonnegative matriz. Then the eigenvalue multiset S(B) of B is
a union of Frobenius multisets.

Theorem 7.9.11 Assume that the eigenvalue multiset S(B) of B €
R™ ™ 4s a union of Frobenius multisets. Then there an eventually nonneg-
ative A € R™*™, such that S(A) = S(B).
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Proof. It is enough to show that for a given Frobenius multiset F there
exists an eventually A € R™*"™ such that S(A) = F. The claim is trivial
it F = {0}. Assume that »(F) > 0. Without loss of generality we can
assume that 7(F) = 1. Suppose first that F NS = {1}. To each real
point A € F of multiplicity m(\) we associate m(\) the diagonal matrix
G(A) = My € R™(N)xm(X)  For nonreal points A € F of multiplicity m(\)
2R(N) A2 }

we associate the block diagonal matrix H(\) = Im(A) & [ 1 0

Note that H(A) = H(A). Let

C = [1] ®aernr\{1} G(A) Bacr,aa>0 H(N),
C=Co+C1, Co=[]D0n-1)x(n-1)
C1 = [0] @ (Dacrrr\ {1} G(A) aer,sa>0 H(N)).

Clearly,

S(C) =F, CyCy = C1Cy =0, C = Cy,
C™ =G +CF", p(Ch) <1, lim C* =0,

Let X € GL(n,R) be a matrix such X1 = X "1 =e,. Define
1
Ag:=X"1CoX =-11", A, =X"'C,X, A=A +4, =X"X.
n

So S(A) =S(C) =F. Also

A™ = AT+ AT A= Ap, lim AT = lim A™ = A,.
m—»00 m— o0
So A is eventually positive.
Assume now that F is a Frobenius set with 7(F) = 1 such that F N S!

consist of exactly m > 1 roots of unity. Let ( = e, Recall that

(F=F. Let F = F; UF, where 0 ¢ F; and F consists of m(0) copies of 0.
(m(0) =0 < Fog=0. If Fy # 0 then the zero matrix of order m(0) has
Fy as its eigenvalue multiset. Thus it is enough to show that there exists an
eventually nonnegative matrix B whose eigenvalue multiset is F;. Clearly,
F; is a Frobenius set satisfying r(F;) = 1 and F N'S! consist of exactly
m > 1 roots of unity. Assume that all the elements of F;, counted with
their mulitplicity are the coordinates of the vector z = (z,,...,zn) " € CV.
Let

be the the elementary symmetric polynomials in z1,...,zx. Hence the
multiset F; consists of the roots of P(z) := 2V + Z,iv:l(fl)kok(z)zN*k.
Since F'; = Fy it follows that each o (z) is real. As (F; = F; we deduce that
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N =mN' and oy, = 0 if m does not divide k. Let F5 be the root multiset
Q(z) == 2N + ng’:l(—l)mkokm(z)zw*k. Clearly, Fy = Fy Since 1 € F;
it follows that 1 € Fy. Furthermore, F; = ¢~ !(F3), where ¢(z) : C — C
is the map z — 2™. That is, if 2 € Fo has multiplicity m(z) then ¢~1(2)
consists of m points, each of multiplicity m(z) such that these m-points
are all the solutions of w™ = 2. Hence Fo N'S! = {1}. Therefore Fy is a
Frobenius set.

According to the previous case there exists an eventually nonnegative
matrix A € RV XN guch that F5 is its eigenvalue multiset. Let P € Py,
be a permutation matrix corresponding to the cyclic permutation on (m)
i+ i+1,fori =1,...,m, where m+1 = 1. Consider the matrix B = PRA.
Then B is eventually nonnegative, and the eigenvalue multiset of B is F

O

7.10 Inverse eigenvalue problem for nonneg-
ative matrices

The following problem is called the inverse eigenvalue problem for nonneg-
ative matrices, abbreviated an IEPFNM:

Problem 7.10.1 LetS C C be a multiset consisting of n points, (count-
ing with their multiplicities.) Find necessary and sufficient conditions such
that there exists a nonnegative A € R™*™ whose eigenvalue multiset is S.

Proposition 7.10.2 Let A € R}*". Then the eigenvalue multiset S
satisfies the following conditions.

1. S is a union of Frobenius multisets.

2. All the moments of si(S) > 0.

3. si(S) > Sr';'l(,szl for each k,l € N.

Proof. 1 Follows from Theorem 6.4.4 and the Perron-Frobenius theorem
applied to each irreducible diagonal block of of the matrix in (6.4.3). Since
A¥ > 0 it follows that tr A* > 0. Hence 2 holds. Since A* > 0 it is enough
to show the inequality in 3 for k& = 1. Decompose A = [a;;] as D + Ao,
where D = diag(a11,-..,an,) and Ag:= A—D > 0. So A — D! > A} > 0.
Hence tr A' > tr D! = Zl al,. Holder inequality for p = [ yield that

i=1 @i
1

S ai < (O al,)Tn T, which yields 3. ]
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The following result gives simple sufficient conditions for a mulitset S to be
the eigenvalue multiset of a nonnegative matrix.

Proposition 7.10.3 Let S C C be a multiset containing n elements,
counting with multiplicities. Assume that the elementary symmetric poly-
nomials corresponding to S satisfy (—1)¥"1op(S) > 0 for k = 1,...,n
Then there exists A € R*™ such that S is the eigenvalue multiset of A.

Proof. Note that the companion matrix to the polynomial P(z) =
2"+ 3" (=1)%04(S)z" ! is a nonnegative matrix. O
Recall the MacLaurin inequalities [HLP52, p’ 52].

Proposition 7.10.4 Let w = (w,,...,w,_,)' € R}, Then the se-

k(W)

1
quence (‘En,l) ) ¥ nonincreasing for k=1,...,n— 1.
k

Proposition 7.10.5 Let S be a multiset of real numbers, which con-
tains exactly one positive number. Assume that the sum of all elements in
S is nonnegative. Then S satisfies the conditions of Proposition 7.10.3. In
particular, there exists A € RI*™ such that S is the eigenvalue multiset of

A.

Proof. Without loss of generality we may assume that

S={l,—wy,...,w,— 1}Wherew120f0ri:1, ,n— 1and1>zz lwl
Denote z = (1, w17 ety —Wp_,)" and w = (w17 oy wy_y) . Clearly,
01(z) > 0,(—1)""*0,(2) = 0p—1 (W) > 0. Observe next that

ors1(z) = (1) (o (W) — oppa (W) for k=1,...,n — 2.
Thus to prove that (—1)*o441(z) > o it is enough to show that that the
sequence o;(W),i = 1,...,n — 1 is nonincreasing,.

Observe that o1(w) < 1. We now use Use Proposiiton 7.10.5. First
observe that

(UZ(,VI’))%SM ) e b rk=1...n-1
(k) n—1"n-—

Next
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Hence S satisfies the conditions of Proposition 7.10.3. The last part of
Proposition 7.10.3 yields that there exists A € R}*" such that S is the
eigenvalue multiset of A. O

Example 7.10.6 Let S = {\/2,v/—1,—/—1}. Then S is a Frobenius
set. Furthermore, s2(S) = 0 and all other moments of S are positive. Hence
the condition 8 of Proposition 7.10.2 does not hold for k = 1,1 = 2. In
particular, there is an eventually nonnengative matrix A € Rixz)’, which
can not be nonnegative, whose eigenvalue multiset is S.

Theorem 7.10.7 Let S = {1, A2, A3} be a multiset satisfying the fol-
lowing properties.

1. r(S) € S.
2.S=S8.
3. s1(S) > 0.
4. (51(9))% < 3s5(S).
Then there exist A € Riix?, such that S is the eigenvalue multiset of A.

Proof. Suppose first that S C R. It is straightforward to show that S
is a union of Frobenius multisets. In that case the theorem can be shown
straightforward. See Problem 2. It is left to discuss the following renormal-
ized case S = {r, e\/_il‘g,e_\/je}7 where > 1,60 € (0,7). The condition
s1(S) > 0 yields that

(7.10.1) 2cos0 +r > 0.
The condition (s1(S))? < 3s2(S) boils down to

(r— 2008(% +0))(r— 2008(% —6))>0.

For r > 1,6 € (0,7) we have r —2cos(§ +6) > 0. Hence the condition 4 is
equivalent to

(7.10.2) r— 2COS(% —0)>0.

PERVERES
Let U be the orthogonal matrix é V2 0 2 | and J = 131; So
YPREVERRS |
T 0 0
U'TJU = diag(3,0,0). Sis the eigenvalueset of B= | 0 cosf sinf
0 —sinf cosf
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Then A := UBU T is the following matrix

. 9 —cosf)  cos(§ +0) cos(5 —0)
3 I 1 1 |—5| cos(5—90) —cosf  cos(§ +0)
111 cos(§ +60) cos(3 —0)  —cost
The above inequalities show that A > 0. O

A weaker version of the solution of Problem 7.10.1 was given in [BoH91].

Theorem 7.10.8 Let T C C\{0} be Frobenius mulitiset satisfying the
following conditions.

1. T(x(T)) = {x(T)}.
2. s(T) >0 for k € N.
3. If si(T) > 0 then sy (T) > 0 for all l € N.

Then there exist a square nonnegative primitive matriz A, whose eigenval-
ues multiset is a union of T and mg > 0 copies of 0.

We prove the above theorem under the stronger assumption
(7.10.3) sk(T) >0 for k > 2,
following the arguments of [Lafl2].
Lemma 7.10.9 Let A,, € C"*™ be the following lower Hessenberg ma-

trix
[ s 1 0 S 0 ]
S2 81 2 0 0
53 s2 s1 3 0 .. . 0
S3
(7.104) A, =
Sn—1 Sn—2 . . . S92 851 n—1
L Sn Sn—1 . . . 83 82 S1 i

Let S = {A1,..., An} C C be the unique multiset such that s, = si(S)
fork=1,... ,n. Let oq,...,0, be the n-elementary symmetric polynomials
corresponding to S. Then the characteristic polynomial of A,is given by

(7.10.5) det (zI, — A,) = 2"+ i(—l)ii! (n) oy

c 1
i=1
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Proof. Recall the Newton identities.
k—1 ‘
$1 =01, Sk= (—1)k_1kok + Z(—l)’_laisk,i fork=2,...,n.
i=1

Let p(z) be the polynomial given by the right-hand side of (7.10.5). Denote
by C(p(z)) € C**" the companion matrix corresponding to p(z). Let Q =
[¢ij] € C"*"™ be the following lower triangular matrix.

(=1)"oi

Gij = 1
(-1

Use the Newton identities to verify the equality 4,Q = C(p(z))Q. Hence

A,, is similar to C(p(z)), and the characteristic polynomial of 4,, is given
by (7.10.5). 0

j=1,...,4,i=1,...,n, where g := 1.

Proof of Theorem 7.10.8 under the assumption 7.10.3. Let T =

{A1,..., An} be a multiset in C. Denote by o1,...,0, the elementary sym-

metric polynomials corresponding to T. Let p(z) = 2™ + > | (—1)"0;z" "

be the normalized polynomial whose zero set is T. For m € N denote

Sm = TU{0,...,0}. Let 0;,, be the i — th elementary symmetric poly-
——

nomial corresp(I)rIllding to Sy for i = 1,...,n +m. Then o0;,, = o; for
i=1,...,nand o, ,, =0for i =n+1,...,n+m. The s;(T) = sx(Sm) for
all k € N. Denote by A,;,, € CFTm™X("+m) the matrix (7.10.4), where
s = sk(T) for k =1,...,n+ m. Observe that

%

et (2T =~ Anin) = (" + S0 = 20~ 1ionan e,

i=1 j=1

Let

1)(—1)1-0'1‘2’“71-.

(7.10.6) pm(2):=2"+ ) (|-

j—l),
n-—+m
=13

Denote by To, = {A,m, - s An,m} the multiset formed the n zeros of py,.
Since lim,, 00 pm(z) = p(z) we deduce that lim,,— o pdist(Ty, T) = 0.

That is, we can rename Aq pm, . . ., Ap,m, M € N such that limy,, oo Xim = A
for i = 1,...,n. Let By, € Cmtn)x(m+n) he the matrix defined by
(7.10.4), where sx, k = 1,...,m+n are the moments corresponding to Ty,.

Then det (21,41 — ﬁBrﬁm) = 2™p(z). Thus, if the first n+m moments
corresponding to Ty, are nonnegative, it follows that that the multiset Sy,
is realized as an eigenvalue set of a nonnegative matrix.
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We now show that the above condition holds for m > N, if T satisfies
the assumption 1 of Theorem 7.10.8 and (7.10.3). It is enough to consider
the case where T = {A\; = 1, A\a,..., \n}, where 1 > |Ag| > ... > |A,|. Let
€= %M. First we choose M big enough such that after renaming the
elements of the multiset of T},, we have that |\, ,, — Xi| <efori=1,...,n
and m > M. Note that since T,, = T, it follows that \;,, € R and
A,m > 1 —¢ for m > M. Furthermore, |X; | < 1—3¢fori=2,...,n.
Hence

1— 3¢

se(Thn) > (1 —&)*(1 — (n—1)( P %),

Thus for k > k(e) := % and m > N we have that s;(T},) >
0. Clearly s1(T;,) = s1(T) and limy, 00 Sk (Trm) = sx(T) for k =2,..., [k(e)].
Since sx(T) > 0 for n > 1 we deduce the positivity of all sg(7T,,) for all

k>1iftm>N > M. a

It is straightforward to generalize this result to a general Frobenius
multiset. See [Fril2].

Theorem 7.10.10 Let T C C\{0} be a Frobenius mulitiset satisfying
the following conditions.
1. T(x(T)) = {x(T),(x(T),...,¢™m " e(T)} for ¢ = = where m > 1
s an integer.

2. s1(T) >0 for k e N.
3. If 5x(T) > 0 then s3;(T) > 0 for all | € N.

Then there exist a square nonnegative irreducible matrix A, whose eigen-
values multiset is a union of T and mgy > 0 copies of 0.

Proof. Observe first that s;(T) = 0 if m fk. Let ¢ : C — C be the
map z — 2™. Since (T = T it follows that for z € T with multiplicity
m(z) we obtain the multiplicity z™ in ¢(T) is mm(z). Hence ¢(T) is
a union of m copies of a Frobenius set Ty, where r(T;) = r(T)™ and
T1(r(Ty1)) = {r(T1)}. Moreover Sim,(T) = ms(Ty). Hence T; satisfies
the assumptions of Theorem 7.10.8. Thus there exists a primitive matrix
B € R}™™ whose nonzero eigenvalue multiset is T1. Let A = [A;]i%;_; be
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the following nonnegative matrix of order mn.

Oan I’I’L Oan Oan AR O’I’LXTL
O’ﬂX’ﬂ O’I’LXTL In O’I’LX”L AR O’I’L><7l
(7.10.7) A=
0n><n O’I'LXTL OTLXTL 0n><n AR I’I’L
B O’I’LXTL OTLXTL 0n><n AR O’I’LXTL

Then A is irreducible and the nonzero part of eigenvalue multiset if T. (See
Problems 4 and 5.)

Problems

1. Definition 7.10.11 Let S C C be a finite multiset. S is called a sems
Frobenius multiset if either S has m elements all equal to 0, or the
following conditions hold.

(a) 7(S) >0, S=S8, r(S) €8.
(b) m(z) < p:=m(r(S)) for each z € S such that |z| = r(S).

(c) Assume that S contains exactly m distinct points satisfying |z| =

r(S),m(z) = p. Then (S =S for { = e

S is called an almost a Frobenius multiset if the the number points in S,

counted with their mulitplicites, satisfying z € S, |z| = r(S), m(z) < p
is strictly less than mu.

Let fs by (7.9.6). Show

(a) S={1,1,2,z}, with |2| = 1, 2 # £1 is a semi Frobenius multiset,
and fs has nonnegative moments.

(b) Let S = Ul_,S;, where each S; is almost a Frobenius multiset.
Then fs has eventually nonnegative MacLaurin coeffients.

(c) Assume that the MacLaurin coefficients fg are eventually non-
negative. Then 7(S) € S. Suppose furthermore that 0 < « <
r(S) is the second largest positive number contained in S. Then
SN{zeC, a<|z| <r(S)}is a semi Frobenius set.

(d) Assume that the MacLaurin coefficients fg are eventually non-
negative. Suppose that S contains only one positive number of
mulitplicity one. Then S is semi Frobenius.
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(e) Assume that the MacLaurin coefficients fg are eventually non-
negative. Suppose that S contains only two positive number
of mulitplicity one each: r(S) > « > 0. Decompose S to
S1 U S,, where Sy is a maximal semi Frobenius set containing
{z€C, a<lz| <r(S)} If a €S; then S; = . Suppose that
a € Sy. Then S3:=S:N{z € C, |z| = a} is a set, i.e. m(z) =1
for each z € S3. Assume for simplicity of the exposition that
a =1. Let m’ € [1,1) be the greatest divisor of m > 1, entering
in the definition of the Frobenius multiset Sy, such that all m’
roots of 1 are in S3. Let m” := % > 1. Then there exists r € N
coprime with m’ such that one of the following conditions hold.

i. If m” is even then S3 = S4, where Sy consists of all m'r
roots of 1.
ii. If m” is odd then either S3 = S, or S3 = S4 U S5, where

S = Um;r.,ml”fleQn-\/jl((qu2}‘2:1+mj,,)ﬁ).
q,K,)=

Hint: Use the function g in the proof of Theorem 7.9.6, or/and
consult with [Fri78b, Thm 4] and its proof.

Let S = {A1,...,An} C R be a union of Frobenius multiset. Assume
furthermore that Z?:l A; > 0. Show that if n < 4 then there exists a
nonnegative n X n matrix whose eigenvalue multiset if S. Hint: For
n = 3 use Proposition 7.10.5. For n = 4 and the case where S contains

exactly two negative numbers consult with the proof of [LoL78, Thm.
3].

Show that for n > 4 the multiset S := {/2,/2,v/~1, —v/—1,0,...,0}
satisfies all the conditions of Proposition 7.10.2. However there is no
A e RY*™ with the eigenvalue set S.

Let B € R}™™ be a primitive matrix. Show that the matrix A €
RP™*™™ defined (7.10.7) is irreducible for any integer m > 1.

Let B € C™*™. Assume that T is the eigenvalue multiset of B Assume
that A € C™™*™" ig defined by (7.10.7). Let S be the eigenvalue
multiset of A. Show that w € S if and only if w™ € T. Furthermore
the multiplicity of 0 # w € S equals to the multiplicity of w™ in T.
The mulitplicity of 0 € S is m times the multiplicity of 0 € T.

7.11 Cones

Let V be a vector space over C. Then V is a vector space over R, which
we denote by Vg, or simply V when no ambiguity arises. See Problem 1.
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Definition 7.11.1 Let V be a finite dimensional vector space over F =
R,C. A set K C 'V is called a cone if

1.

2.

K+KcCK, ie x+y €K for each x,y € K.

RyK CK, i.e. ax € K for each a € [0,00) and x € K

Assume that K C 'V is a cone. (Note that K is convex set.) Then

1.

ri K, dim K, is the relative interior and the dimension of K, viewed
as a convex set.

. K ={f e V' Rf(x) > o0 for all x € V} is called the conjugate cone,

(in V).

. K is called pointed if KN —K = {0}.

. K is called generating if K—K =V, i.e. anyz € V can be represented

as x —y for some x,y € K.
K is called proper if K is closed, pointed and generating.

For x,y € V we denote: x >X y ifx -y cK; x >Ky ifx>Ky
andx #y; x>y ifx—yeriK.

For x € V we call: x nonnegative relative to K if x >¥ 0; x is
semipositive relative to K if x >X 0; x is positive relative to K if
x € ri K. When there is no ambiguity about the cone K we drop the
term relative to K.

K1 C K is called a subcone of K if Ky is a cone in V. F C K is called
a face of K, if F is a subcone of K and the following condition holds:
Assume that x,y € K and x+y € F. Then x,y € F. dim F, the
dimension of ¥, is called the dimension of F. F = {0},F = K are
called trivial faces, (dim {0} = 0). x > 0 is called an extreme ray if
R.x is a face in K, (of dimension 1). For a set X C K, the face F(X)
generated by X, is the intersections of all faces of K containing X.

Let T € Hom (V,V). Then: T >¥ 0, and T is called nonnegative
with respect to K, if TK C K; T >% 0, and T is called semipositive
with respect to K, if T >X 0 and T # 0; T >¥ 0, and T is called
positive with respect to K, if T(K\{0}) C riK. T >¥ 0 is called
primitive with respect to K, if F is a face of K satisfying TF C F,
i.e. F is T invariant, then F is a trivial face of K. T is called
eventually positive with respect to K if T* >¥ 0 for all integers | >
L(> 1). When there is no ambiguity about the cone K we drop the
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term relative to K. Denote by Hom (V, V)X the set of all T >¥ 0.
For T,S € Hom (V,V) we denote: T >X § = T -8 >K 0,
T>KS «—= T-82K0,T>KS «—= T7-5>K0.

As pointed out in Problem 3, without loss of generality we can discuss only
the cones in real vector spaces. Also, in most of the applications the cones
of interest lie in the real vector spaces. Since most of the results we state
hold for cones over complex vector spaces, we state our results for cones in
real or complex vector spaces, and give a proof only for the real case, when
possible.

Lemma 7.11.2 Let V be a finite dimensional vector space over F =
R,C. Let K be a cone in V. Then V=K —K, i.e. K is generating, if and
only if the interior of K is nonempty, i.e. dim K = dim g'V.

Proof. It is enough to assume that V is an n dimensional vector space
over R. Let k£ = dim K. Then span K is a £ dimensional vector space in V.
Assume that K—K = V. Since K—K C span K we deduce that dim K = n.
Hence K must have an interior.

Assume now that K has an interior. Hence it interior must contain

n linearly independent vectors x,,...,x, which form a basis in V. So
Z?Zl a;x; € K for any ai,...,a, > 0. Since any z € V is of the form
Yoiny zixqis of the form Y7 o ziwi— Y. _(—2:)%; we deduce that K—K =
V. N ' O

Theorem 7.11.3 Let K C 'V be a proper cone over F = R, C, where
dim V € [1,00). Then the following conditions holds.

1. There exists f € K’ which is strictly positive, i.e. Rf(x) > 0 ifx > 0.

2. FEvery x > 0 is a nonnegative linear combination of at most dim gU
extreme rays of K.

3. The conjugate cone K' C V' is proper.

Proof. It is enough to assume that V is a vector space over R. Observe
that for any u >¥ 0 the set I(u) := {x € V, u >¥ x >¥ —u} is a compact
set. Clearly, I(u) is closed. It is left to show that that I(u) is bounded.
Fix anorm || - || on V. Assume to the contrary that there exists a sequence
0 # x,, € C such that lim,, e [|Xm|| = co. Let y, = mxm,m e N.
Since ||ym|| = 1,m € N it follows that there exists a subsequence my, k € N
such that limg o0 Ym, =¥, |ly|l = 1. Since y,, € (=17 u) it follows that

[

y € I(0). Soy € KN—K = {0} which is impossible. Hence I(u) is compact.
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Choose u € ri K. We claim that u is an isolated extreme point of I(u).
Since u € ri K it follows that there exist » > 0 so that u + x € K for each
|x|| < r. Suppose that there exist v,w € I(u) such that tv+ (1 —t)w =u
for some t € (0,1). So v=u—v,,w =u— v, for some v,,w, >X 0. The
equality u = (1 — t)v + tw yields 0 = (1 — t)v, +tw, > (1 —t)v, > 0.
Hence v, = 0. (See Problem 2). Similarly, w, = 0. Hence u is an extreme
point.

We now show that for any x € U such that x >¥ 0, ||x|| < r the point
u — x is not an extreme point of I(u). Indeed, u — 2x,u — Zx € I(u) and
u—x = 2(u-32x)+ 2(u— 2)x. Since u is an isolated extreme point,
Corollary 4.6.10 yields that u is exposed. Hence there exists f € U* such
that f(u) > f(u — x) for any x >¥ 0 satisfying ||x|| < r. So f(x) > o for
any x >K 0 satisfying |x|| < r. Hence f(y) = H%”f(my) > o for any

y >¥ 0. This proves the part 1 of the theorem.

Let C = {x >¥ 0, f(x) = 1}. Since K is closed, it follows that C
is a convex closed set. We claim that C is compact, i.e. bounded. Fix
a norm || - || on U. Assume to the contrary that there exists a sequence
X € C such that lim,,— oo ||Xm|| = co. Let yi = 7=—Xm, m € N. Since

|l¥ml|l = 1,m € N it follows that there exists a subsequence myg, k € N such
that limg 00 Ym, = ¥, ||¥]| = 1. Since K is closed it follows that y >¥ 0.
Note that

f(y)=klgngof(ymk): lim Fomi) _ lim — —=o

hooo il hmoo I, ||

This contradicts the assumption that f is strictly positive on K. Thus C is
a convex compact set. We next observe that dim C = n — 1. First observe
that £f(C — x) = o for any x € C. Hence dim C < n — 1. Observe next
that if f(z) = o and ||z|] < r then u+ 2z € C. Hence dim C =n — 1. Let
w >K 0. Define w, = ﬁw € C. Carathéodory’s theorem claims that w,
is a convex combination of at most n extreme points of C. This proves the
part 2 of the theorem.

Let R := {max|x||, x € C}. Let g € U*,|g|* < %. Then for x € C
lg(x)| < 1. Hence (f +g)(x) > 1—|g(x)| > 0. Thusf+g e K'. Sofisan
interior point of K’. Clearly K’ is a closed and a pointed cone. Hence part
3 of the theorem hold. O

Theorem 7.11.4 Let V be a vector space over F =R, C. Assume that
K C V be a proper cone. Assume that T € Hom (V,V)K. Let S(T) C
C be the eigenvalue multiset of T, (i.e. the root set of the polynomial
det (21 —T).) Then
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1. p(T) € S(T).
2. Let A € S(T)(p(T)). Then index (A, T)) < k :=index (p(T),T).

3. There exists x >¥ 0 such that Tx = p(T)x, and x € (p(T)I —
T)k=v.

4. If T >¥ 0 then p(T) > 0,k = 1,S(T)(p(T)) = {p(T)} and p(A) is
a simple root of the characteristic polynomial of T. (This statement
can hold only if F =R.)

Assume in addition that p(T) = 1. Let P € Hom (V, V) be the spectral
projection, associated with T, on the generalized eigenspace corresponding
to 1. Then

m—1
. k! i k—1p <K
(7.11.1) mh_l}éom E_O T"=(T-D0)""P>"0.

Assume finally that F = R, X\ # 1,|A| = 1 is an eigenvalue of T of index
k. Let P(\) € Hom (V,V) be the spectral projection, associated with T, on
the generalized eigenspace corresponding to . View P(\) = P; + /—1P,
where Py, P, € Hom (V,V). Then

(7.11.2) |F(T = AD)**P(\)y)| < f((T —I)*"*Py) for anyy € K,f ¢ K'.

Proof. Suppose first that p(T') = 0, i.e. T is nilpotent. Then parts 1-2
are trivial. Choose y >¥ 0. Then there exists an integer j € [0,k — 1] so
that 79y >K 0 and 77t'y = 0. Then x := T’y is an eigenvector of A
which lies in K. Since Ax = 0 it follows that A can not be positive.

From now on we assume that p(T) > 0, and without loss of generality
we assume that p(T) = 1. In particular, dim V > 1. Choose a basis
b,,...,b, in V. Assume first that F = R. Then T represented in the basis
b,,...,b, by A = [a;;] € R"*™. Consider the matrix B(z) = (I —zA4)~! =
[bij]7—;—1C(2)"*™. Using the Jordan canonical form of A we deduce that all
the singular points of all b;;(z) are of the form p := § where X is a nonzero
eigenvalue of A. Furthermore, if 0 # A € spec (A), and A has index [ = I(\).
Then for each i, j, b;;(2) may have a pole at 11 of order [ at most, and there
is at least one entry b;;(z), where i = i(\),j = j(A), such that b;;(z) has
a pole of order [ exactly. In particular, for each x,y € R™ the rational
function y ' B(z)x may have a pole of order [ at most p. Furthermore,
there exists x,y € R, x = x(\),y = y(A) such that y" B(z)x has a pole
at p of order I. (See Problem 7.)
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Let K € R" denote the induced cone by K C V. Then K is a proper
cone. Denote by

K :={yeR'y'x>oforalxc K’}

Theorem 7.11.3 implies that K'is a proper cone. Observe next that AK C
K. Clearly, we have the following MacLaurin expansion

(7.11.3)  B(z)= (I —zA)~ Zzw for |z| < ( 7
=0

(7.11.4) y B(z)x = Z(yTAix)zi, for |z| < ﬁ
1=0
Note that y " B(z)x is a rational function. Denote by r(x,y) € (0, 00] the
convergence radius of y " B(z)x. So r(x,y) = oo if and only if y ' B(z)x
is polynomial. Assume first that x € K,y € K. Then the MacLaurin
coefficients of y ' B(z)x are nonnegative. Hence we can apply the Vivanti-
Pringsheim theorem 7.9.2, i.e. r(x,y) is a singular point of y " B(z)x. Hence
T(xly) € spec (A) if 7(x,y) < co. Suppose now that x,y € R™. Since K

and K’ are generating it follows x = x4 —x_, y = y; — y_ for some
x.,x_ €K, y.,y_ K. So

y' B(z)x =y B(z2)xy + y!B(z)x_ -y B(2)xy —y[B(z)x_

Hence
(7.11.5)

T(X7Y) > T(X—Hx—a)’—i—ay_) = min(r(x+,y+),T(X_,y_),r(X_Hy_),r(x_,y+)).

Let A € spec (A),|A\| = p(A), and assume that | = index (A). Choose
x,y such that y = % is a pole of y" B(z)x of order I. Hence we must
have equality in (7.11.5). More presicely, there exists x, € {x4,x_},y, €
{y+,y_} such that r(x,y) = r(x,,y,) and y B(2)x, has a pole of at
w of order {. Vivanti-Pringsheim theorem yields that r(x,,y,) is pole of
order k' > I of y[ B(2)x,. Hence p(A) € spec (A) and index (p(A)) >
k' > 1 = index (\). This proves parts 1-2. Choose A = p(A) that satisfies
the above assumptions. Hence B(z)x, must have at least one coordinate
with a pole at p(A)~1 of order k = index (p(A)). Problem 7 yields that
lim; ~; B(tp(A)~!'x, = u # 0 such that Au = p(A)u, and u € (p(A)I —
A)F=1R™. Use the fact that for z = tp(A)~1, ¢ € (0,1) we have the equality
(7.11.3). So (1—t)*B(tp(A)~1)x, € K for each t € (0,1). Since K is closed
we deduce that u € K. This proves part 3.

The equality (7.11.1) follows from the Tauberian theorem 8 and it ap-
plication to the series (7.11.3).
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Assume now that A >K 0. Observe first that the eigenvector x zk
0, Ax = x satisfies x >K 0,ie. x€r1i K. Next we claim that the dimension
of the eigenspace {y, (A — I)y = 0} is 1. Assume to the contrary that
Ay =y and x,y are linearly independent. Since x(sg) = Ax(s,) >K 0 we
obtain a contradiction. Hence x is a geometrically simple eigenvalue.

Nest we claim that k£ = index (1) = 1. Assume to the contrary that k >
1. Recall that x € (A—I)*"'R". Sox = (A—1I)y. Hence x = (A—1I)(y +
tx). Choose t > 0 big enough so that z =y +tx = t(3y + X) >K 0. Since
x >K 0 it follows that there exists s > 0 such that (A-DNz—rz=x—r2 >K

0. That is Az >K (1+7)z. Hence A"z > (1 +7)"z = (F:4)"z >K 4

A) = % < 1it follows that 0 = limy, .00 (55 4)™2 >K K K

Since p(+— T
0, which is impossible. Hence index (1) = 1.

We now show that if A € spec (A) and |A| = 1 then A = 1. Let J :
{ye K, |lyll. = 1}. Since K is closed it follows that J is compact set. Smce
A >¥ 0 it follows that AJ € ri K. Hence there exists s € (0,1) such that
Ay — sz >K 0 for anyy € J,z € R",|ly||. = 1. In particular, Ay—sy >Ko0
for each y € J. That is (A — sI)J € ri K. Hence (A — sI) >X 0. Note
that (A — s)x = (1 — s)x >K 0. So p(A — sI) = 1 — s. Each eigenvalue
of A— sl is A — s, where A € spec (A). Apply part 1 of the theorem to
deduce that |A —s| <1 —s. Since for any ¢ € S\{1} we must have that
|¢ —s] > |¢] —s =1—s, we obtain that S(A)(1) = {1}, which concludes
the proof of part 4 for F = R.

Assume next that p(T) = p(A) = 1, and k = index (1). (7.11.11) of
Problem 9 yields the equality in (7.11.1). Since any sum in the left-hand
side of (7.11.1) is nonnegative with respect to the cone K it follows that
(A—I)F1P >K 0. Let \; = 1 s0 s; = k, see notation of Problem 7. Recall
that (A — I)*~1P in the basis b,, ..., b, is represented by the component
Z1(k—1) # 0. Hence (A — Nk=1p >Ko.

Assume finally that A € spec (T),|\| = 1, A # 1,index (A\) = k. Let
P()) be the spectral projection on the eigenvalue A\. Then (7.11.11) yields

| m—1
: v rpr . Yk—1 _ k—1
(7.11.6) Jim — ; NT" = N T = ADFLP(N).
Let y € K,f € K. Since f(T"y) > o and |\| = 1 we obtain |[f(\"T"y)| =
f(T"y). The triangle inequahty
- N7 ’r k! — T
r=0 r=o

Let m — oo and use the equalities (7.11.6) and (7.11.1) to deduce (7.11.2).
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We now point out why our results hold for a vector space V over C.
Let T € Hom (V,V) and assume that b,,...,b, is a basis V. Then Vg
has a basis b,,...,b,,v/—1b,,...,v/—1b,. Clearly T induces an operator
T € Hom (Vgr, Vr). Let A € C™*" represents T' in the basis b,,...,b,.
Observe that A = B+ +/—1C, where B,C € R"*". Then T is presented by

the matrix A = g _g ] in the basis b,,...,b,,v—1b,,...,v/—1b,,.

See Problem 10.

Problems

1. Let V be a vector space of dimension n over C, with a basis z,, ..., z,.
Show.

(a) V is a vector space over R of dimension 2n, with a basis
Zy,\/—1%Z4,...,Zn,/—1Z,. We denote this real vector space by
Vg and its dimension dim V.

(b) Let the assumptions of la hold. Then V' can be identified with
(Vgr)* as follows. Each f € V' gives rise to fe (Vg)' by the
formula f(z) = Rf(z). In pa/rtgﬂar, if f,,...,f, form a basis in

—

V' then f1,v/—=1f,, ..., f,,vV/—1f, is a basis in (Vgr)'.
2. Let K be a cone. Show that K is pointed if and only the two inequal-
ities x >X y. y >K x imply that x = y.

3. Let the assumptions of Problem 1 hold. Assume that K C V is a
cone. Denote by Kg the induced cone in Vi. Show

(a
(b
(¢
(d

K is closed if and only if Ky is closed.
K is pointed if and only if Kp is pointed.

K is generating if and only if Ky is generating.

D D T

K is pointed if and only if Kg is pointed.

4. Let U be a real vector space. Denote by U¢ as in Proposition 4.1.2.
Assume that K C U is a cone. Let K¢ := {(x,y), x,y € K}. Show
(a) Kc is a cone in Ug.
(b) K is closed if and only if K¢ is closed.
)
)

(c

(d) K is generating if and only if K¢ is generating.

K is pointed if and only if K¢ is pointed.
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(e) K is proper if and only if K¢ is proper.

5. Let the assumptions of Problem 4 hold. Assume that A € Hom (U, U)¥.
Define A : Ug — Ug by A(x,y) = (Ax, Ay). Show

(a) A € Hom (Ug, Ug)¥e.
(b) det (21 — A) = det (2I — A).
(¢) A is not positive with respect to Kc.

6. Let V be a vector space over F = R, C. Assume that K C V and
A € Hom (V, V)X, Then A* € Hom (V/,V/)K',

7. Let A € C™*™. Assume that S(A) = {A1,..., Ay} is the eigenvalue
multiset of A. Consider the matrix

B(z)=(I—-zA)"" = [bijli;=1 € C(2)"*". Show

(a) Let Zj1,..., Zi(s;—0),t = 1,...,£ be all the matrix components
of A asin §3.1. Then
i. Z;p is the spectral projection of A on \;. (See §3.4.) Fur-
thermore

(TAL7) (A= NI ' Zig = Zyg,—1y fori=1,... L.

(Use (3.1.6).) So Z;(5,—1)C" is a subspace of eigenvectors of
A corresponding to all Jordan blocks of A of order s; and
eigenvalue \;.
ii.
L s;—1
(7.11.8) (I — zA)~ :220 1_MJH
i=1 j=

t 1
A1.9)Hm(1 — )% (I — —A) ' = —Z;s. 1.
(7 9)}%( t) (I 2 A) )\fi Zz(slfl)

(Hint: To show the first equality use (3.4.1) by letting A = %
and divide (3.4.1) by z.)

(b) All the singular points of all b;;(z) are of the form y := § where
A is a nonzero eigenvalue of A. Furthermore, if 0 # X € spec (A),
and A has index { = [()\). Then for each ¢,j b;;(2) may have a
pole at  of order [ at most, and there is at least one entry b;;(z),
where i = i(A),j = j(A), such that b;;(z) has a pole of order !
exactly. Furthermore Suppose furthermore, that for x € C", at
least one of the entries of B(z)x has a pole of order [ at y. Then
lim; 1 (1—t)!B(tu)x =y # 0, Ay = Ay and y € (\[—A)!~*C".



7.11. CONES 453

(c) Let € = (8ixs---,0in) i € (n). For each 0 # X € spec (A) of
index { = [(\) there exists e;,e;, i = i(A),j = j(A) such that
e/ B(z)e; has a pole at 1 of order I exactly.

8. Let k,l € N and consider the rational function

1 = e = S0 ()

(1= pz i=0

i Bk
= N (-1) = =1
mk”()(i) W;;(i)

?

Hint: Use the Riemann sums for the integral fol 2F~1dx to show

. B o=
hm—kg il=1
m—oo N —
1=

SE (e

Under the following assumptions

i. |u] =1,p#1 and I = k. Hint: Recall the identity

B

1:0 =

Show that
1 gkt e
TN Gok—1Smtk— 1( ( )
(k—1ldz 1:0

ii. |g| =1 and I < k. Hint: Sum the absolute values of the
corresponding terms and use part 8a.

iii. |p] < 1. Hint: Use the Cauchy-Hadamard formula to show
that 3751 ()] [l < oc.

9. Let the assumptions of Problem 7 hold.



454 CHAPTER 7. VARIOUS TOPICS

(a) For m > max(s1,...,S¢)
(7.11.10)
m—1 ¢ s;—1 m—1—j .
. — 1
r
r=0 i=1 j=0 r=0

(Use the first m terms of MacLaurin expansion of both sides of
(7.11.8).)

(b) Assume furthermore that p(4) = 1 and k is the maximal index of
all eigenvalues \; satisfying [A\;| = 1. Assume that A = A\, |A\| =
1, and k = index (A1) = s1. Let P(\) = Zjp be the spectral
projection on A and Zy(s,_1) = (A—A)*"1P(A1). Then (7.11.10)
and Problem 8 implies.

p mzl o _
(7.11.11) lim > ONAT=NTHA-ADFTIP(N).
r=0

m—oo m¥

10. Let V be a vector space over C with a basis b,,...,b,. Then Vg
has a basis b,,...,b,,v/—1b,,...,v/—1b,. Let T € Hom (V,V).
Show Clearly T induces an operator T € Hom (Vg, Vg). Let A €
C™*™ represents T in the basis b,,...,b,. Observe that A = B +
V—=1C, where B,C € R™". Then T is presented by the matrix

A= { g _g } in the basis b,,...,b,,v/—1b,,...,\/—1b,

7.12 Historical remarks

§7.1 is standard. §7.2 follows Friedland-Zenger [FrZ84] and [Fri84]. The
results of §7.3 are well known. Theorem 7.3.2 was conjectured by P.R.
Halmos, and proved by several authors: [Ber65, Kat65, Pea66, BeS67]. §7.4
is standard. §7.5 follows the basic notion of separable states in quantum
mechanics as in [Gur03, BeZ06]. The notion of the cross norm is well known
[Sch50]. §7.6 follows some ideas in [Fri08]. §7.7 follows closely [Fri82]. §7.8
follows closely [Fri90]. §7.9 follows [Fri78b]. §7.10 gives a short account
on the inverse eigenvalue problem for nonnegative matrices. Part & of
Proposition 7.10.2 is due to Loewy-London and Johnson [LoL78, Joh81].
Theorem 7.10.8 is due to Boyle-Handelman [BoH91]. Our proof follows the
arguments of Laffey [Lafl12]. Theorem 7.10.10 is due to Friedland [Fri12].
The results of §7.11 are well known, e.g. [BeP79].
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Symbol

1

alb
(aty...,ap)
AT

A*

Afor
Ala, B)

adj A

A~ B
A~.B
A~B
A=B

A
A>0,A>0,A>0
A(D)

A®B

OF_, A
AS(V)
AS(n,D)
AH,,

(®

(CTL

C(D)
CK(D)
C1T
conv S
Cconv;_1 S

Index of symbols

Description

column vector of whose all coordinates are 1
a divides b

g.cd. of ay,...,an

transpose of matrix A
AT for complex-valued matrix A
submatrix of A formed by the rows « and columns
submatrix of A obtained by deleting the rows « and columns 3
adjoint matrix of A
A is left equivalent to B
A is right equivalent to B
A is equivalent to B
A is similar to B
augmented coefficient matrix
nonnegative, nonzero nonnegative and positive matrix
adjacency matrix of digraph D
. . A 0
block diagonal matrix [ 0 B }
block diagonal matrix diag(A, ..., Ax)
all anti self-adjoint operators
all n x n skew-symmetric matrices with entries in D
all n x n skew hermitian matrices
the field of complex numbers
n-dimensional vector space over C
the set of continuous function in D
the set of continuous function in D with &k continuous derivatives
closure of T
all convex combinations of elements in S
all convex combinations of at most j elements in S
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D integral domain

Dg Bezout domain (BD)

Dg Euclidean domain (ED)

Dep elementary divisor domain (EDD)

Da greatest common divisor domain (GCD)
Dp principal ideal domain (PID)

Dy unique factorization domain (UFD)
Dmxn ring of m X n matrices with entries in D

DX Xmg all k-mode m; X --- X my, tensors with entries in D

Dlxy, ..., 2] ring of polynomials in z1, ..., x, with coefficients in D
D=(V,E) digraph with V' vertices and F diedges

De the interior of D

D(p) discriminant of polynomial p

D(x) diagonal matrix with diagonal entries equal to coordinates of x
D(n,D) all n x n diagonal matrices with entries in D

DO(n,D) all n x n diagonal orthogonal matrices with entries in D
DU, all n x n diagonal unitary matrices

Dp .+ the set of n x n diagonal matrices with nonnegative entries
deg p degree of polynomial p

deg v degree of a vertex v

deg;,v,deg,,,v in and out degree of a vertex v

det determinant

dr(A) g.c.d. of all k£ x k minors of A

diag(A) the diagonal matrix with the diagonal entries of A

€4 ((Slia”'v(;ni)—r

ext C the set of extreme points of a convex set C

ex (e™,...,e*) T for x = (2,,...,2,) €C"

n(A) degree of maximal local invariant polynomial of A(z)

F field

Fr(k, V) all orthonormal k-frames in V

GL(n,D) group of n x n invertible matrices in D"*"

Gr(m, V) Grassmannian of m-dimensional subspaces in V
G=(V,E) undirected graph with V vertices and E edges

g.c.d. greatest common divisor

H ring of quaternions

H, all n x n hermitian matrices

H, all n x n nonnegative definite hermitian matrices

H, 1 all n x n nonnegative definite hermitian matrices with trace one
H(Q) ring of analytic functions in  C C”

H, is H({¢}) for ¢ € C"

Hom(N, M) all homomorphisms from N to M

Hom(M) all homomorphisms from M to M

H(A) [ 2o ] for A € Cmxn

irx(A) k-invariant factor of A

index A the multiplicity of A in minimal polynomial of A

index A maximal index of eigenvalues of A on peripheral spectrum
Ker T kernel of homomorphism 7'

K, a complete graph on n vertices

Kn a complete bipartite graph on m and n vertices

Kp(A) number of local invariant polynomials of A(z) of degree p
lem(aq,...,a,) least common mulitplier of aq,...,a,

LT(m,D) all m x m lower triangular matrices with entries in D
A(T) eigenvalue vector of self-adjoint operator T, eigenvalues are decreasing

Ay (1) is (M(T),...,0(T)7T



R(p,q)
Rm,n,k(]F)
Range T
Rank 7
p(A)
sign o

Sl

S2n—1
S(V)
S4(V)
S+1(V)
S, (V)7
Smxn

Sn
S(n,D)
SO(n,D)
SU,

Index of symbols

mulitplicity of eigenvalue X in det (A — AI)

field of meromorphic functions in 2

all positive integers

set {1,...,n} forn e N

all subsets of [n] of cardinality k

a module over D

the dual module of N

all normal operators

all n x n real valued normal matrices

all n x n complex valued normal matrices
nullity of matrix A

nullity of I, ® A — B ® I,,,

norm on matrices

all n x n orthogonal matrices with entries in D
¢-numerical range of A € C"*"

Bauer numerical range

p-numerical range

all n x n doubly stochastic matrices

all n x n symmetric doubly stochastic matrices
principal homogeneous part of polynomial p

all n X n permutation matrices

all n x n matrices of the form (P + PT) where P € P,
the set of probability vectors with n coordinates
the field of real numbers

the set of all nonnegative real numbers

[700, OO]

the rank of a matrix A

rank of [,  A— BT ® I,

¢-numerical radius of A € C"*"

Bauer numerical radius

p-numerical radius

a ring

resultant of polynomials p and ¢

all m x n matrices of at most rank k with entries in F
range of a homomorphism T’

rank of a tensor 7

spectral radius of A

the sign of permutation o

the unit circle |z| = 1 in the complex plane

the 2n — 1 dimensional sphere

all self-adjoint operators acting on IPS V

all self-adjoint nonnegative definite operators
all self-adjoint nonnegative definite operators with trace one
all self-adjoint positive definite operators

all m x n matrices with entries in S

the set of n x n stochastic matrices

all n X n symmetric matrices with entries in D
all n x n special orthogonal matrices with entries in D
all n x n special unitary matrices



Index of symbols

spec (T)

spec T)

peri(

o1(T) > o2(T) > -+

o(A)

o) (T)
T>S,(T=8S)
tr’T

tl“k T

u(v)

UT(m,D)
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spectrum of T

peripheral spectrum of T’

singular values of T'

(01(A), ..+, Tmin(m,n) (A)T for A € Cmxn

(01 (T)7 T O';D(T))T

the group of permutations of [n]

T — S is positive (nonnegative) definite

trace of T

sum of the first k eigenvalues of self-adjoint T’
all unitary operators

all n X n unitary matrices

all m x m upper triangular matrices with entries in D
a vector space

the dual vector space Hom(V,TF)
(dy,...,d,)" for D = diag(dy,...,d,)

(7t DT for 0 <x = (24,...,2,)
(T1Y1, - Tnyn) | for x,y € C"

x (weakly) majorized by y

open and closed intervals spanned by x,y
vector in D™" corresponding to matrix X € D™*"
complex conjugate of z

all integers

all nonnegative integers

cardinality of a set J

tensor product of Vq,..., Vi

k-tensor power of V

a set tensor product of Xq,..., X,
k-symmetric power of V

k-exterior power or wedge product of V

k-decomposble tensor, rank one tensor if each x; is nonzero

k-wedge product

Kronecker tensor product of matrices Ay, ..., Ag
k-th compound matrix of A

the generator of the group ®¥_,e!
the generator of the group AFet4

A;
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adequate,
algebra,
approximation:
low rank,
CUR,
analytic:
local,
variety,
associates,
basis, :
sparse,
standard,
bounded, :
power,
canonical form:
Jordan,
rational,
Cesaro:
convergence,
sequence,
characteristic,
characterization:
convoy,
Courant-Fischer
min-max,
Wielandt,
combination:
convex,
linear,
commuting,
cone:
conjugate,
generating,
pointed,
proper,
connected,
convex:
function,
hull,
set,
coprime,
cycle,

Index

degree,
determinant,
diforest,
dimension,
discriminant,
distribution:
limiting,
stationary,
ditree,
domain, :
Bezout,
elementary divisor (EDD),
Euclidean (ED),
integral,
local-global,
of holomorphy,
principle ideal (PID),
unique factorization (UFD),
edge,
eigenvalue, :
(algebraically) simple,
geometrically simple,
multiplicity,
p-upper multiplicity,
multiset,
eigenvector,
equivalent:
left,
right,
face,
field, :
algebraically closed,
extension,
of quotients,
flag,
forest,
form:
bilinear,
hermitian,
sesquilinear
symmetric,
formula:



Index

Cauchy-Binet

Cauchy-Hadamard,

Cauchy integral,

Lie-Trotter,
Fréchet derivative,
function:

analytic,

concave,

convex,

holomorphic,

log-convex,

meromorphic,

rational,

(strong) Schur’s order preserv-

ing,

spectral,
gradient,
Gram-Schmidt,
graph:
bipartite,
connected,
directed (digraph),
isomorphism,
multidigraph,
primitive (imprimitive) multi-

graph,

simple,

strongly connected,

undirected,
greatest common divisor (g.c.d),
group:

abelian,

general linear,
Gauss’s lemma,
Grassmannian,
half space,
homogeneous,
homomorphism,
hyperplane, :

separated,
ideal,
identity:
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element,
matrix,

Newton,

inverse:
element,
matrix,
Moore-Penrose,

isomorphism,

improper divisors,
index:
of A e Hj"™™",
of A e C"*",
of imprimitivity,
induced stochastic matrix, :
symmetrically,
inequality:
Cauchy-Schwarz,
Golden-Thompson,
Holder,

MacLaurin,

injection,

interval:
closed,
open,

invariant:
determinants,
factor,
local polynomial,
polynomial,
subspace,

inverse eigenvalue problem,

invertible,

irreducible,

kernel,

Kronecker product,

least common multiple (lcm),

majorize, :
weakly,

Markov chain:
homogeneous,
inhomogeneous,
reversible,
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matrix:
adjacency,
adjoint,
adjugate,
augmented,
coeflicient,
companion,
derogatory
diagonal,
doubly stochastic,
eventually nonnegative,
gramimian,
hermitian,
Hessenberg,
Hessian,
identity,
invertible,
irreducible,
Jacobian,
lower triangular,
M ’
nilpotent,
nonderogatory,
nonnegative,
nonnegative definite,
normal,
orthogonal,
permutation,
polynomial,
positive,
positive definite,
primitive,
rank,
reducible,
simple,
skew-symmetric,
special orthogonal,
stochastic,
symmetric,
unimodular,
unitary,
upper triangular,

Index

Z?
minor,
module:
direct sum,
finitely generated,
sheaf of,
subsheaf of,
monomial:
weight,
moment,
norm, :
absolute,
conjugate,
Cross norm,
Ly,
entrywise maximal,
matrix norm,
nuclear norm,
operator norm,
g-Schatten,
semi,
spectral dominant,
spectral norm,
stable,
superstable,
symmetric,
unitary invariant,
normal form:
Frobenius,
Hermite,
Smith,
nullity,
numerical:
range,
¢-range,
radius,
¢-radius,
operators, :
nonnegative,
nonnegative definite,
positive,
positive definite,



Index

operations:
elementary,
column,
row,

orthogonal:
complement,
subspaces,
vectors,

orthonormal vectors,

path,

pencil, :
equivalence,
hermitian,
homogeneous,
regular,
singular,
strict equivalence,

perturbation, :
eigenvalues,

permanent,

pivot,

point:
extremal,
exposed,

polyhedron,

polynomial:
characteristic,
elementary symmetric,
Lagrange-Sylvester,
minimal,
normalized,
primitive,
principle part,

polytope,

prime,

probability:
vector,
set,

product:
exterior,
tensor,
wedge,

projection,
property:

L7
quaternions,
rank,
range,

Rayleigh quotient,
regular:

set,
relative interior,
resolvent,
resultant,
ring, :

commutative,

of functions

polynomials,
Schubert cell,
separable state,
series, :

Fourier,

power,

Puiseux,

Taylor,
set:

balanced,

convex,

Frobenius,

Schur,
sheaf:

coherent,

cohomology,

section,
similarity, :
analytic,
pointwise,
rational,
simultaneous,
singular value,

singular value decomposition (SVD),

singular vector,
spectral radius,
spectrum,
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splits,
stable, :
exponentially,
power,
subspace,
subcone,
subspace, :
Krylov,
multiplicity index of,
subgraph,:
isomorphism problem (SGIP),
submatrix,
submodule,
theorem:
Carathéodory,
Cayley-Hamilton,
Friedland-Karlin,
Hartog,
Kronecker-Capelli,
Perron-Frobenius,
Rellich,
Vivanti-Pringsheim,
Weierstrass preparation,
tensor, :
product,
rank,
trace,
transformation:
adjoint,
anti self-adjoint,
linear,
normal,
self-adjoint,
special unitary,
unitary,
tree,
unimodular,
variation:
eigenvalue,
vector space:
dimension,
finite dimensional,

Index

inner product,
vertex, :

degree,

indegree,

outdegree,
walk, :

closed,
Z€ro:

divisor,

multiplicity,

simple,



