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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.
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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.

He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".
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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.

He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".

His main contribution in studying DNA and proteins, was the
development (with Amir Dembo and Ofer Zeitouni) of the computer
programme BLAST (Basic Local Alignment Search Tool), now the most
frequently used software in computational biology.
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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.

He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".

His main contribution in studying DNA and proteins, was the
development (with Amir Dembo and Ofer Zeitouni) of the computer
programme BLAST (Basic Local Alignment Search Tool), now the most
frequently used software in computational biology.

He had 41 doctoral students. He was widely honored: he was a
member of the National Academy of Science and the American
Academy of Arts and Sciences, and a Foreign Member of the London
Mathematical Society. He was the author of 10 books and more than
450 articles.
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Samuel (Sam) Karlin

Karlin was born in Yanovo, Poland, in 1924. He earned his PhD from
Princeton as a student of Salomon Bochner in 1947, and was on the
faculty at Caltech from 1948 to 1956 before coming to Stanford.

He made fundamental contributions to game theory, mathematical
economics, bioinformatics, probability, evolutionary theory,
biomolecular sequence analysis and a field of matrix study known as
“total positivity".

His main contribution in studying DNA and proteins, was the
development (with Amir Dembo and Ofer Zeitouni) of the computer
programme BLAST (Basic Local Alignment Search Tool), now the most
frequently used software in computational biology.

He had 41 doctoral students. He was widely honored: he was a
member of the National Academy of Science and the American
Academy of Arts and Sciences, and a Foreign Member of the London
Mathematical Society. He was the author of 10 books and more than
450 articles.

He died Dec. 18, 2007 at Stanford Hospital after a massive heart -
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@ Friedland-Karlin results: Old and New
e Motivation from population biology
o Friedland-Karlin 1975
o Wielandt 1950 and Donsker-Varadhan 1975
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Overview

@ Friedland-Karlin results: Old and New
Motivation from population biology
Friedland-Karlin 1975

Wielandt 1950 and Donsker-Varadhan 1975
Log-convexity: Kingman 1961
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Overview

@ Friedland-Karlin results: Old and New

Motivation from population biology

Friedland-Karlin 1975

Wielandt 1950 and Donsker-Varadhan 1975

Log-convexity: Kingman 1961

Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966
and more
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Wielandt 1950 and Donsker-Varadhan 1975

Log-convexity: Kingman 1961

Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966
and more

@ Wireless communication: Friedland-Tan 2008
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Overview

@ Friedland-Karlin results: Old and New

Motivation from population biology

Friedland-Karlin 1975

Wielandt 1950 and Donsker-Varadhan 1975

Log-convexity: Kingman 1961

Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966
and more

@ Wireless communication: Friedland-Tan 2008

o Statement of the problem
o Relaxation problem
o SIR domain

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca




Overview

@ Friedland-Karlin results: Old and New

Motivation from population biology

Friedland-Karlin 1975

Wielandt 1950 and Donsker-Varadhan 1975

Log-convexity: Kingman 1961

Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966
and more

@ Wireless communication: Friedland-Tan 2008

Statement of the problem
Relaxation problem

SIR domain
Approximation methods
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Overview

@ Friedland-Karlin results: Old and New

Motivation from population biology

Friedland-Karlin 1975

Wielandt 1950 and Donsker-Varadhan 1975

Log-convexity: Kingman 1961

Diagonal scaling: Sinkhorn 1964, Brualdi-Parter-Schneider 1966

and more

@ Wireless communication: Friedland-Tan 2008
o Statement of the problem

Relaxation problem

SIR domain

Approximation methods

Direct methods
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures
Migration given by stochastic A = [a;] € RD*”
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0
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Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0

Two possible system of ODE
Either y/ = >y ajfi(y), i=1,....n
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0

Two possible system of ODE
Either y/ = >y ajfi(y), i=1,....n
Oryl = )‘,-(ZI’-L1 ajy)), i=1,...,n
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0

Two possible system of ODE
Either y/ = >y ajfi(y), i=1,....n
Oryl = '7(2,'7:1 ajy)), i=1,...,n

Find conditions where no species are extinct
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0

Two possible system of ODE
Either y/ = >y ajfi(y), i=1,....n
Oryl = )‘,-(ZI’-L1 ajy)), i=1,...,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system

z;=Cz 1,j=1,..,ie z=Cz,j=1,...,
C=DAOr C=AD, D= diag(dy,...,0dn)
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Motivation from population genetics

Population is distributed in n demes, subject to local natural selection
forces and inter-deme migration pressures

Migration given by stochastic A = [a;] € RD*”

Selection of deme i given by x{ = fi(X;), where

f:[0,1] = Ry, £(0) = fi(1) =0, £(0) = d >0

Two possible system of ODE
Either y/ = >y ajfi(y), i=1,....n
Oryl = )‘,-(ZI’-L1 ajy)), i=1,...,n

Find conditions where no species are extinct
Linearize at 0 to get iterative system

z;=Cz 1,j=1,..,ie z=Cz,j=1,...,
C=DAOr C=AD, D= diag(dy,...,0dn)

No species extinct if p(DA) > 1.
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)

AX(A) = p(A)X(A), X(A) = (x1(A), ..., x(A)T >0,

Y(A) A= p(A)Y(A), Y(A) = (11(A),.... yn(A) >0

X(A) o y(A) := (x1(A)y;1(A), ..., xa(A)ya(A)) " -positive probability vector
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)

AX(A) = p(A)X(A), X(A) = (x1(A), ..., x(A)T >0,

Y(A) A= p(A)Y(A), Y(A) = (11(A),.... yn(A) >0

X(A) o y(A) := (x1(A)y;1(A), ..., xa(A)ya(A)) " -positive probability vector

THM 1: For A > 0 irreducible,

d=(di,...,dn) >0,D = D(d) := diag(0dh,...,dn)
p(D(&)A) > p(A)TT7; oY

If A has positive diagonal then equality holds iff D(d) = al,.
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)

AX(A) = p(A)X(A), X(A) = (x1(A), ..., x(A)T >0,

Y(A) A= p(A)Y(A), Y(A) = (11(A),.... yn(A) >0

X(A) o y(A) := (x1(A)y;1(A), ..., xa(A)ya(A)) " -positive probability vector

THM 1: For A > 0 irreducible,

d=(di,...,dn) >0,D = D(d) := diag(0dh,...,dn)
p(D(&)A) > p(A)TT7; oY

If A has positive diagonal then equality holds iff D(d) = al,.

THM 2: mingso >4 Xi(A)yi(A) log (’%)" = log p(A)
Equality if Az = p(A)z
If A has positive diagonal then equality iff Az = p(A)z
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Friedland-Karlin results 1975

A = [aj] € RT"irreducible (/ + A)"~1 > 0, p(A)-spectral radius of A
Perron-Frobenius 1907-1908,09,12: STORY (Paul Cohen)

AX(A) = p(A)X(A), X(A) = (x1(A), ..., x(A)T >0,

Y(A) A= p(A)Y(A), Y(A) = (11(A),.... yn(A) >0

X(A) o y(A) := (x1(A)y;1(A), ..., xa(A)ya(A)) " -positive probability vector

THM 1: For A > 0 irreducible,
d=(di,...,dn) >0,D= D(d) := diag(ds, ..., dn)

p(D(d)A) > p(A) TT7, o/
If A has positive dlagonal then equality holds iff D(d) = al,.

THM 2: mings 3.7 Xi(A)yi(A) log *= (Az)’ = log p(A)
Equality if Az = (A)z
If A has positive diagonal then equality iff Az = p(A)z

COR: mingo -1, Xi(A)yi(A) 22 = p(A)
weighted arithmetic-geometric inequalit
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Sketch of proofs

THM 2: Assume that A has positive diagonal.
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Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors IM:

f(2) = 7y xi(A)yi(A) log L2
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Sketch of proofs

THM 2: Assume that A has positive diagonal.
Restrict z to probab. vectors IM:

f(2) = Sy x(A)yi(A) log L2~

is oo on boundary of Ny,
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Sketch of proofs

THM 2: Assume that A has positive diagonal.

Restrict z to probab. vectors IM:

f(2) = Sy x(A)yi(A) log L2~

is oo on boundary of Ny,

Every critical point in interior Ny is a strict local minimum
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Sketch of proofs

THM 2: Assume that A has positive diagonal.

Restrict z to probab. vectors IM:

f(2) = 31y Xi(A)yi(A) log L2k

is oo on boundary of Ny,

Every critical point in interior Ny is a strict local minimum

Hessian of f in R™ is M-matrix: H(X) = p(B)/ — B, B symmetric positive
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Sketch of proofs

THM 2: Assume that A has positive diagonal.

Restrict z to probab. vectors IM:

f(2) = S7q xi(A)yi(A)log 42

is oo on boundary of Ny,

Every critical point in interior Ny is a strict local minimum

Hessian of f in R™ is M-matrix: H(X) = p(B)/ — B, B symmetric positive
Hence unique critical point x(A) € I, is global minimum
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Sketch of proofs

THM 2: Assume that A has positive diagonal.

Restrict z to probab. vectors IM:

f(2) = S7q xi(A)yi(A)log 42

is oo on boundary of Ny,

Every critical point in interior Ny is a strict local minimum

Hessian of f in R™ is M-matrix: H(X) = p(B)/ — B, B symmetric positive
Hence unique critical point x(A) € I, is global minimum

THM 1: p(DA)x(DA) = DAx(DA) yields

log p(DA) = 74 Xi(A)yi(A)(log 0 + E{5a) >
log p(A) + X211 Xi(A)yi(A) log d;
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Comparison to Wielandt and Donsker-Varadhan
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Comparison to Wielandt and Donsker-Varadhan

minz.o max; 2 = max..o min; Y2: = p(A) Wielandt 1950
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Comparison to Wielandt and Donsker-Varadhan

minz.o max; 24 = max..o min; 2 = p(A) Wielandt 1950
p(D(d)A) > (max; di)p(A)
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Comparison to Wielandt and Donsker-Varadhan

minz.o max; 24 = max..o min; 2 = p(A) Wielandt 1950
p(D(d)A) > (max; di)p(A)

MaX,—(uy,....un)eM, MiNz>0 >, (‘:)'u, = p(A) Donsker-Varadhan 1975
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Comparison to Wielandt and Donsker-Varadhan

min,~o Max; (Az_)’ = MaXz-o MiN; (A,-) p(A) Wielandt 1950

p(D(d)A) > (max; d)p(A)

MaX,—(uy,....un)eM, MiNz>0 >, (Azf)’u = p(A) Donsker-Varadhan 1975

Proof of DV: choose p = x(A) o y(A) use Cor

. A i
p(A) S maXlL:(/.L1,...,/.Ln)€nn mlnz>0 Z? 1 (27) #l
(Az);

. n Az
< MiNgzso MaXy,— (44, u0)eM, 2121 )' fi = Mingsg Max; Z = p(A)
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Comparison to Wielandt and Donsker-Varadhan

min,~o Max; (Az_)' = MaXz-o MiN; (A,-) p(A) Wielandt 1950

p(D(d)A) > (max; d)p(A)

MaX,—(uy,....un)eM, MiNz>0 >, (Azf)’u = p(A) Donsker-Varadhan 1975

Proof of DV: choose p = x(A) o y(A) use Cor

; n (Az);
/)(A) S maxp,:(p1,...,/,l,n)€r|n mInZ>0 ZI 1 (zl-)lﬂl'
i n (Az Az);
< MiNgzso MaXy,— (44, u0)eM, 2121 )' fi = Mingsg Max; ( /) = p(A)
Alternatively z = e¥ = (e, ..., e!)T
(AeY);

s = >4 a;je"~Yi-convex function
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Comparison to Wielandt and Donsker-Varadhan

min,~o Max; (Az_)' = MaXz-o MiN; (A,-) p(A) Wielandt 1950

p(D(d)A) > (max; d)p(A)

MaX,—(uy,....un)eM, MiNz>0 >, (Azf)’u = p(A) Donsker-Varadhan 1975

Proof of DV: choose p = x(A) o y(A) use Cor

; n (Az);
/)(A) S maxp,:(p1,...,/,l,n)€r|n mInZ>0 ZI 1 (zl-)lﬂl'
i n (Az Az);
< MiNgzso MaXy,— (44, u0)eM, 2121 )' fi = Mingsg Max; ( /) = p(A)
Alternatively z = e¥ = (e, ..., e!)T
(AeY);

s = >4 a;je"~Yi-convex function

: n (AeY); : n (AeY);
max,, MiNyegrn Y ;L4 “gor pi = MiNyegrn MaX,, D i q ~ o i
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Convexity of p(A) in diagonal entries
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"

THM (J.E. Cohen 79): p(Ag + D(d)) is a convex function on R/} .
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"
THM (J.E. Cohen 79): p(Ag + D(d)) is a convex function on R/} .

PRF (Friedland 81)
L(d, p) := mingo 37 (Bt D2 =

Zj
n i n Ao2);
SOy i+ mingso Yo7y Loy,
convex in D.
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"
THM (J.E. Cohen 79): p(Ag + D(d)) is a convex function on R/} .

PRF (Friedland 81)
L(d, p) := mingo 37 (Bt D2 =

Zj
n i n Ao2);
SOy i+ mingso Yo7y Loy,
convex in D.

p(D(d) + Ag) = max,en, L(d, 1) convex on R
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"
THM (J.E. Cohen 79): p(Ag + D(d)) is a convex function on R/} .

PRF (Friedland 81)
L(d, p) := mingo 37 (Bt D2 =

Zj
n i n Ao2);
SOy i+ mingso Yo7y Loy,
convex in D.

p(D(d) + Ag) = max,en, L(d, 1) convex on R

THM (Friedland 81): p(D(d)A) is a convex function on R” if A=1is
M-matrix.
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Convexity of p(A) in diagonal entries

Ao =[aj] e RT" @;=0,i=1,...,n,d e R*"
THM (J.E. Cohen 79): p(Ag + D(d)) is a convex function on R/} .

PRF (Friedland 81)
L(d, p) := mingo 37 (Bt D2 =

Zj
n i n Ao2);
SOy i+ mingso Yo7y Loy,
convex in D.

p(D(d) + Ag) = max,en, L(d, 1) convex on R

THM (Friedland 81): p(D(d)A) is a convex function on R” if A=1is
M-matrix.

A'=rl-B,0< B, p(B) <r.
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Log-convexity
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Log-convexity

A nonnegative function f on convex set C ¢ R”
is log-convex if log f is convex on C
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Log-convexity

A nonnegative function f on convex set C ¢ R”
is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power
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Log-convexity

A nonnegative function f on convex set C C R"

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [a;(X)]iL;_,, if each aj log-convex
on C, then p(A(X)) log-convex
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Log-convexity

A nonnegative function f on convex set C C R"

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [a;(X)]iL;_,, if each aj log-convex
on C, then p(A(X)) log-convex

PRF p(A(X)) = limsup,,_, . (trace A(X)™)m
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Log-convexity

A nonnegative function f on convex set C C R"

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [a;(X)]iL;_,, if each aj log-convex
on C, then p(A(X)) log-convex

PRF p(A(X)) = limsup,,_, . (trace A(X)™)m

COR: For A(x) as above, A(Xp) irreducible log p(A(x)) >
log p(A(Xo)) + (p(A(X0))~Y(A(X0)) T (VA(Xo) - (X — X0))X(A(Xo))-
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Log-convexity

A nonnegative function f on convex set C C R"

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [a;(X)]iL;_,, if each aj log-convex
on C, then p(A(X)) log-convex

PRF p(A(X)) = limsup,,_, . (trace A(X)™)m

COR: For A(x) as above, A(Xp) irreducible log p(A(x)) >
log p(A(Xo)) + (p(A(X0))~Y(A(X0)) T (VA(Xo) - (X — X0))X(A(Xo))-

For A(x) := D(e*)A, A > 0 irreducible log p(A(x)) convex on R” and
x" (x(D(e")A) o y(D(e")A)) is the supporting hyperplane of
log p(A(x)) at u
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Log-convexity

A nonnegative function f on convex set C C R"

is log-convex if log f is convex on C

FACT : The set of log-convex functions on C is a cone closed under
multiplication and raising to nonnegative power

THM (J.F.C. Kingman 1961) A(x) = [a;(X)]iL;_,, if each aj log-convex
on C, then p(A(X)) log-convex

PRF p(A(X)) = limsup,,_, . (trace A(X)™)m

COR: For A(x) as above, A(Xp) irreducible log p(A(x)) >
log p(A(Xo)) + (p(A(X0))~Y(A(X0)) T (VA(Xo) - (X — X0))X(A(Xo))-

For A(x) := D(e*)A, A> 0 irreducible log p(A(x)) convex on R" and
x"(x(D(e")A) o y(D(e")A)) is the supporting hyperplane of

log p(A(x)) at u

Weaker than Friedland 81 for inverse of M-matrix
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Rescaling of irreducible matrices with positive diagonal
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Rescaling of irreducible matrices with positive diagonal

THM 3: A € R}*" irreducible 0 < u,v € R". If A has positive diagonal
then there exists 0 < ¢,d € R" s.1.

D(c)AD(d)u =u, v'D(c)AD(d)=v"

c¢,d unique up to ac,a 'd,a> 0
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Rescaling of irreducible matrices with positive diagonal

THM 3: A € R}*" irreducible 0 < u,v € R". If A has positive diagonal
then there exists 0 < ¢,d € R" s.1.

D(c)AD(d)u =u, v'D(c)AD(d)=v"
c¢,d unique up to ac,a 'd,a> 0

PROOF: W = (wy,...,W,) :=UuoV. Then fy(z) := >_7_, w;log (A?f)’ on
M, has unique critical point in interior of M,
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Rescaling of irreducible matrices with positive diagonal

THM 3: A € R}*" irreducible 0 < u,v € R". If A has positive diagonal
then there exists 0 < ¢,d € R" s.1.

D(c)AD(d)u =u, v'D(c)AD(d)=v"
c¢,d unique up to ac,a 'd,a> 0

PROOF: W = (wy,...,W,) :=UuoV. Then fy(z) := >_7_, w;log (A?f)’ on
M, has unique critical point in interior of M,
Equivalently fy(e") is strictly convex on {u € R": 1Tu = 0}.
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Rescaling of irreducible matrices with positive diagonal

THM 3: A € R}*" irreducible 0 < u,v € R". If A has positive diagonal
then there exists 0 < ¢,d € R" s.1.

D(c)AD(d)u =u, v'D(c)AD(d)=v"
c¢,d unique up to ac,a 'd,a> 0
PROOF: W = (wy,...,W,) :=UuoV. Then fy(z) := >_7_, w;log (A?f)’ on

M, has unique critical point in interior of M,
Equivalently fy(e") is strictly convex on {u € R": 1Tu = 0}.

Example 1: A= [ : 3 ] is not a pattern of doubly stochastic matrix
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Rescaling of irreducible matrices with positive diagonal

THM 3: A € R}*" irreducible 0 < u,v € R". If A has positive diagonal
then there exists 0 < ¢,d € R" s.1.

D(c)AD(d)u =u, v'D(c)AD(d)=v"
c¢,d unique up to ac,a 'd,a> 0
PROOF: W = (wy,...,W,) :=UuoV. Then fy(z) := >_7_, w;log (A?f)’ on

M, has unique critical point in interior of M,
Equivalently fy(e") is strictly convex on {u € R": 1Tu = 0}.

Example 1: A= [ : 3 ] is not a pattern of doubly stochastic matrix

0 =
0
many more solutions than in THM 3.

Example 2: A= ] always rescalable to doubly stochastic with
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Fully indecomposable matrices
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]

Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca



Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Use Frobenius-Kénig THM
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Use Frobenius-Kénig THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D;AD, d.s., Dy, D> unique up to scalar rescaling
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Use Frobenius-Kénig THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D;AD, d.s., Dy, D> unique up to scalar rescaling

PRF Ds(PAQ)Ds1 = (Ds(PAQ)Ds)™1 = 1,
i.e. D3PAQD, d.s.
hence (PTD3P)A(QD4QT) d.s.
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Use Frobenius-Kénig THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D;AD, d.s., Dy, D> unique up to scalar rescaling

PRF Ds(PAQ)Ds1 = (Ds(PAQ)Ds)™1 = 1,
i.e. D3PAQD, d.s.
hence (PTD3P)A(QD4QT) d.s.

Contrary to claim in FK75 | do not know how to prove THMS for Fl
matrices
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Fully indecomposable matrices

A € RT*" is fully indecomposable, Fl, if Ahas no s x (n— s) zero
submatrix for some integer s € [1,n — 1]
Brualdi-Parter-Schneider 1966: A Fl iff PAQ irreducible and has
positive diagonal for some permutation matrices P, Q.

Use Frobenius-Kénig THM

THM (BPS66, Sinkhorn-Knopp 67) FI A is diagonally equivalent to
doubly stochastic, i.e D;AD, d.s., Dy, D> unique up to scalar rescaling

PRF Ds(PAQ)Ds1 = (Ds(PAQ)Ds)™1 = 1,
i.e. D3PAQD, d.s.
hence (PTD3P)A(QD4QT) d.s

Contrary to claim in FK75 | do not know how to prove THMS for Fl
matrices

Reason: why f(z) := YL, wjlog *5
minimum in the interior of M,?

(Az)’ blows to co on M, or attains
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Irreducible matrices with zero diagonal entries - FT08
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Irreducible matrices with zero diagonal entries - FT08

THM: 3 A = [g;] € RD*" has positive off-diagonal entries.
0 <u,veR"given.w = (wy,...,Wy) =Uo V. There exists
0<c,decR st

D(c)AD(d)u=u, v'D(c)AD(d)=v"

(SC):if w; <3 ;,;wforeach a;=0
¢, d unique up scalar scaling
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Irreducible matrices with zero diagonal entries - FT08

THM: 3 A = [g;] € RD*" has positive off-diagonal entries.
0 <u,veR"given.w = (wy,...,Wy) =Uo V. There exists
0<c,decR st

D(c)AD(d)u=u, v'D(c)AD(d)=v"

(SC):if w; <3 ;,;wforeach a;=0
¢, d unique up scalar scaling

THM: 4 A = [a;] € R*" has positive off-diagonal entries, 0 < w € Ij.
Assume (SC) Then

Maxzo 3.7 Wi l0g iy, = >oiLq wilog(cidy),
whereu=(1,...,1)T,v=wand ¢, d are given in THM 3.
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Irreducible matrices with zero diagonal entries - FT08

THM: 3 A = [g;] € RD*" has positive off-diagonal entries.
0 <u,veR"given.w = (wy,...,Wy) =Uo V. There exists
0<c,decR st

D(c)AD(d)u=u, v'D(c)AD(d)=v"

(SC):if w; <3 ;,;wforeach a;=0
¢, d unique up scalar scaling

THM: 4 A = [a;] € R*" has positive off-diagonal entries, 0 < w € Ij.
Assume (SC) Then

Maxzo 3.7 Wi l0g iy, = >oiLq wilog(cidy),
whereu=(1,...,1)T,v=wand ¢, d are given in THM 3.

Proof:
iy wilog (Ag(ldl = 32111 Wilog peyabrayy; + iet Wilog(cid)
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Wireless communication- Statement of the problem

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca




Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p:(p17"'7pn)207 ﬁz(p17"'7bﬂ)—r>O)V:(V17"'7VH)T>0
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p:(p17"'7pn)207 §:(517"'7bﬂ)—r>0)V:(V17"'7VH)T>0

Signal-to-Interference Ratio (SIR): ~;(p) := %
j#i 9

gi-amplification, v;~AWGN power, gjip;-interference due to transmitter j
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p:(p17"'7pn)207 §:(517"'7bﬂ)—r>0)V:(V17"'7VH)T>0

Signal-to-Interference Ratio (SIR): ~;(p) := %
j#i 9

gi-amplification, v;~AWGN power, gjip;-interference due to transmitter j

¥(P) = (v1(P); - - -, n(P)) "

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca




Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p: (p17"'7pn) Z 07 ﬁ: (p17"'7bﬂ)—r >0)V:g(z)1_7"'7yn)—r > 0
Signal-to-Interference Ratio (SIR): ~i(p) := m .
gi-amplification, v;-AWGN power, gjpj-interference due to transmitter j

¥(P) = (v1(P); - - -, n(P)) "
dw(y) ==Yy wilog(1+7), v>0, wel,
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p: (p17"'7pn) Z 07 ﬁ: (p17"'7bﬂ)—r >0)V:g(z)1_7"'7yn)—r > 0
Signal-to-Interference Ratio (SIR): ~i(p) := m .
gi-amplification, v;-AWGN power, gjpj-interference due to transmitter j

¥(P) = (v1(P); - - -, n(P)) "
dw(y) ==Yy wilog(1+7), v>0, wel,

Maximizing sum rates in Gaussian interference-limited channel

n
orgfg)(p; w;ilog(1 + ~i(p)) = Orglz)agxp dw(v(p)) = Pw(p*)
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Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p: (p17"'7pn) Z 07 ﬁ: (p17"'7bﬂ)—r >0)V:g(z)1_7"'7yn)—r > 0
Signal-to-Interference Ratio (SIR): ~i(p) := m .
gi-amplification, v;-AWGN power, gjpj-interference due to transmitter j

¥(P) = (v1(P); - - -, n(P)) "
dw(y) ==Yy wilog(1+7), v>0, wel,

Maximizing sum rates in Gaussian interference-limited channel

n
o?f%(ﬁ; w;ilog(1 + ~i(p)) = Orglz)agxp dw(v(p)) = Pw(p*)

Equivalent to maximazing convex function on unbounded convex
domain

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca



Wireless communication- Statement of the problem

n wireless users. Each transmits with power p; € [0, pi],
which can be regulated

p: (p17"'7pn) Z 07 ﬁ: (p17"'7bﬂ)—r >0)V:g(z)1_7"'7yn)—r > 0
Signal-to-Interference Ratio (SIR): ~i(p) := m .
gi-amplification, v;-AWGN power, gjpj-interference due to transmitter j

¥(P) = (v1(P); - - -, n(P)) "
dw(y) ==Yy wilog(1+7), v>0, wel,

Maximizing sum rates in Gaussian interference-limited channel

n
o?f%(ﬁ; w;ilog(1 + ~i(p)) = Orglz)agxp dw(v(p)) = Pw(p*)

Equivalent to maximazing convex function on unbounded convex
domain Use for Approximation and Direct methods
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Relaxation problem
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Relaxation problem

Forz=(zy,...,25) >0letz " :=(z7",...,z;")T

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca




Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T

YP)=po(FP+p) '\ = (5. g)"
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Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T
YP)=Po(Fp+p) im=(g" ... 52"
F = [f;] € RT*" has zero diagonal and f;; = 2L for j #
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Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T
YP)=Po(Fp+p) im=(g" ... 52"
F = [f;] € RT*" has zero diagonal and f;; = 2L for j #

Yns(P) =P o (Fp)~"
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Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T
YP)=Po(Fp+p) im=(g" ... 52"
F = [f;] € RT*" has zero diagonal and f;; = 2L for j #

Yns(P) =P o (Fp)~"

cl>w,rel('7’) = Z/n:1 w;log~;, v >0
obtained by replacing log(1 + t) with smaller log t
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Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T
YP)=Po(Fp+p) im=(g" ... 52"

F = [f;] € RT*" has zero diagonal and f;; = 2L for j #
Vois(P) =P o (Fp)™"

cl>w,rel('7’) = Z/n:1 w;log~;, v >0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
n ,
MaXp>0 (Dw,re/('Yn/s) = MaXp>0 Zi:1 w; log (I-PrI)),-
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Relaxation problem

Forz=(zy,...,2) >0letz " :=(z',...,z;")T

YP)=po(FP+p) '\ = (5. g)"
F = [f;] € RT*" has zero diagonal and f;; = 2L for j #

Yns(P) =P o (Fp)~"

cl>w,rel('7’) = Z/n:1 w;log~;, v >0
obtained by replacing log(1 + t) with smaller log t

Relaxed problem
n ,
MaXp>0 (Dw,re/('Yn/s) = MaXp>0 Zi:1 w; log (I-PrI)),-

Ifz#,wj> w;>0fori=1,...,n
relaxed maximal problem can be solved by THM 4.

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca



SIR domain
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SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

oo

P(y) = (- D()F)(vou) = (D _(D(H)F)™)(v o p)

m=0
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SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

oo

P(y) = (1= D()F) (v o) = (D _(D()F)™)( o )

m=0

COR: PincreasesonTl: P(y) < P(d) ify < éd eT.
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SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

oo

P(y) = (1= D()F) (v o) = (D _(D()F)™)( o )

m=0

COR: PincreasesonTl: P(y) < P(d) ify < éd eT.

COR: p* = (p5,...,p5) " satisfies pf = p; forsomei=1,...,n

Shmuel Friedland Univ. lllinois at Chicago () Eigenvalue inequalities, log-convexity and sca i



SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

oo

P(y) = (1= D()F) (v o) = (D _(D()F)™)( o )

m=0

COR: PincreasesonTl: P(y) < P(d) ify < éd eT.
COR: p* = (p7, .. ,pr) T satisfies p; = p;jforsomei=1,...,n

DEF: [0,p] x R} :={p=(p1,...,pn)" €RY, p <Pi},
e = (61, 0n)"
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SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

P(y) = (1= D()F) (v o) = (D _(D()F)™)( o )
m=0
COR: PincreasesonTl: P(y) < P(d) ify < éd eT.
COR: p* = (p7, .. ,pr) T satisfies p; = p;jforsomei=1,...,n

DEF: [0,p] x R} :={p=(p1,...,pn)" €RY, p <Pi},
e = (61, 0n)"

THM 5: 4([0, pi] x Y1) = {v € R, p(D(7)(F + S pe])) <1}
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SIR domain

CLAIM: T :=~(R7}) :={v € R}, p(D(v)F) < 1}
The inverse map P : I — R/} given

P(y) = (1= D()F) (v o) = (D _(D()F)™)( o )
m=0
COR: Pincreaseson: P(y) < P(d) ify < d eT.

COR: p* = (p5,...,p5) " satisfies pf = p; forsomei=1,...,n

DEF: [0,p] x R} :={p=(p1,...,pn)" €RY, p <Pi},
e = (61, 0n)"

THM 5: 4([0, pi] x Y1) = {v € R, p(D(7)(F + S pe])) <1}

COR~([0,p]) = {v € R, p(D(7)(F + guel)) <1,i=1,....n}
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Restatement of the maximal problem
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Restatement of the maximal problem

0 < v = €°97. New variable x = log v
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Restatement of the maximal problem

0 < v = €°97. New variable x = log v
Hence log~([0, p]) is the closed unbounded closed set D C R"™:

hi(x) := log p(diag(€*)(F + ;ue,-T)) <0, i=1,...,n
i
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Restatement of the maximal problem

0 < v = €°97. New variable x = log v
Hence log~([0, p]) is the closed unbounded closed set D C R"™:

hi(x) := log p(diag(€*)(F + ;ue,-T)) <0, i=1,...,n
i

Since h;j(x) is convex, D convex
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Restatement of the maximal problem

0 < v = €°97. New variable x = log v
Hence log~([0, p]) is the closed unbounded closed set D C R"™:

hi(x) := log p(diag(€*)(F + ;ue,-T)) <0, i=1,...,n
i

Since h;j(x) is convex, D convex
Since log(1 + e') convex, the equivalent maximal problem

n
max ®y(e*) = max > log(1+ %)
j=1

XeD X,hi(x)<0,i=1,...,n <=
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Restatement of the maximal problem

0 < v = €°97. New variable x = log v
Hence log~([0, p]) is the closed unbounded closed set D C R"™:

hi(x) := log p(diag(€*)(F + ;ue,-T)) <0, i=1,...,n
i

Since h;j(x) is convex, D convex
Since log(1 + e') convex, the equivalent maximal problem

n
max Oy (e*) = max log(1 + &7
nas w(€”) x,hi(X)<Ovi:1""’an1: o+l

maximization of convex function on closed unbounded convex set
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Approximation methods-|

Approximation 1:
ForK > 1Dk :={xeD, x>-Kl=-K(1,...,1)T}
consider maxyep, Pw
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Approximation methods-|

Approximation 1:
ForK > 1Dk :={xeD, x>-Kl=-K(1,...,1)T}
consider maxyep, Pw

Approximation 2:
Choose a few boundary points &4,...,&y € D s.t.
hi(&c) =0forje A, c{1,...,nfandk =1,... N.
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Approximation methods-|

Approximation 1:
ForK > 1Dk :={xeD, x>-Kl=-K(1,...,1)T}
consider maxyep, Pw

Approximation 2:

Choose a few boundary points &4,...,&y € D s.t.

hi(&c) =0forje A, c{1,...,nfandk =1,... N.

At each &, one has #.Ay supporting hyperplanes Hj,j € Ak
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Approximation methods-|

Approximation 1:
ForK > 1Dk :={xeD, x>-Kl=-K(1,...,1)T}
consider maxyep, Pw

Approximation 2:

Choose a few boundary points &4,...,&y € D s.t.

hi(&c) =0forje A, c{1,...,nfandk =1,... N.

At each &, one has #.Ay supporting hyperplanes Hj,j € Ak

The supporting hyperplane of hj(x) at {k is Hj x(x) < Hj k(&x)
Hjk(X) = WX, W) = X(D(e*)(F + g pe/)) o y(D(e%)(F + 5 pe))

D(£1,'-'7£N7K) = {X € anl-lj,k(x) < I_I/',k(sk)ui € Akvk € <N>a§ > 7K1}

DKCD(£1a"'7£N1K)
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Approximation methods-|

Approximation 1:
ForK > 1Dk :={xeD, x>-Kl=-K(1,...,1)T}
consider maxyep, Pw

Approximation 2:

Choose a few boundary points &4,...,&y € D s.t.

hi(&c) =0forje A, c{1,...,nfandk =1,... N.

At each &, one has #.Ay supporting hyperplanes Hj,j € Ak

The supporting hyperplane of hj(x) at {k is Hj x(x) < Hj k(&x)

Hjk(X) = WX, W) = X(D(e*)(F + g pe/)) o y(D(e%)(F + 5 pe))

D(£1,'-'7£N7K) = {X € anl-lj,k(x) < I_I/',k(sk)ui € Akvk € <N>a§ > 7K1}

DKCD(£1a"'7£N1K)

MaXyeD(¢,,....e5.K) Sy (€*) > maxyep, Pw(€*)

-----
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Approximation methods-ll

Approximation 3:

max Oy () = max  Ww'x
X€D(&1,.-,€n,K) XED(&1,.-,En,K)

Use Simplex Method or Ellipsoid Algorithm
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Approximation methods-ll

Approximation 3:

max Oy () = max  Ww'x
X€D(&1,.-,€n,K) XED(&1,.-,En,K)

Use Simplex Method or Ellipsoid Algorithm

Choice of &4,...,&N:

Pick a finite number 0 < p1,...,pn € [0,P] = [0, P4] X ... [0, pn]
boundary points
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Approximation methods-ll

Approximation 3:

max Oy () = max  Ww'x

XED(£1 77777 EN?K) XED(£1 ----- ngK)
Use Simplex Method or Ellipsoid Algorithm
Choice of &4,...,&pN:
Pick a finite number 0 < p1,...,pn € [0,P] = [0, P4] X ... [0, pn]
boundary points

E.g., divide [0, p] by a mesh, and choose all boundary points with
positive coordinates

£k = 7(pk) and A all _[ s.t. Pjk = Dj
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Direct methods

Study maxo<p<p Pw(p) = Pw(p*)

If w; = 0 then p; = 0.
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Direct methods
Study maxo<p<p Pw(P) = Pw(pP*)
If w; = 0 then p; = 0.

Assumption 0 < w € I,
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Direct methods

Study maxo<p<p Pw(P) = Pw(pP*)
If w; =0 then p; = 0.
Assumption 0 < w € I,

Local minimum conditions at 0 # p* € 9]0, p]
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Direct methods

Study maxo<p<p Pw(P) = Pw(P*)

If w; = 0 then p; = 0.

Assumption 0 < w € I,

Local minimum conditions at 0 # p* € 9]0, p]

1. 90w(p*) =010 < pr < By
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Direct methods

Study maxo<p<p Pw(P) = Pw(P*)

If w; = 0 then p; = 0.

Assumption 0 < w € I,

Local minimum conditions at 0 # p* € 9]0, p]
1. 0idw(p*) =01if 0 < pf < B

2. 8,'¢w(p*) >0if ,Df = ,l_),'
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Direct methods

Study maxo<p<p Pw(P) = Pw(P*)

If w; = 0 then p; = 0.

Assumption 0 < w € I,

Local minimum conditions at 0 # p* € 9]0, p]
1. 0idw(p*) =01if 0 < pf < B

2. 9%w(p*) > 0 if pf = p;

3. 0iPw(p*) <0ifpf =0
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Direct methods

Study maxo<p<p Pw(P) = Pw(P*)

If w; = 0 then p; = 0.

Assumption 0 < w € I,

Local minimum conditions at 0 # p* € 9]0, p]
1. 0idw(p*) =01if 0 < pf < B

2. 9%w(p*) > 0 if pf = p;

3. 0iPw(p*) <0ifpf =0

Apply gradient methods and their variations
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