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2.2

(1) H is time independent, so Schrédinger’s equation solves to
(1)) = e~ 0 (0)). (1)

H can be diagonalized as H = UAUT, where
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Therefore, (?7) yields
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(2) The observable o, has eigenvalues Ay = 1,Ay = —1 with eigenvectors
A1) = (1,0)T,|A2) = (0,1)T. Thus,

o tw tw
6(6)) = sin = |\1) + cos = [Aa),

so the probability of observing +1 at time ¢ is sin?(tw/2).

(3) The observalbe o, has eigenvalues \; = 1, Ay = —1 with eigenvectors
M) = -2(1,1D)7,|\) = (1, -1)T. Thus, if we have
V2 V2
[9(t)) = c1|h1) + c2|A), (2)



then |c1|? is the probability of observing +1 at time ¢. (??) is simply
a system of 2 equations in c1, co, which can be solved trivially to yield
1 = (sin%’ + cos %J) /+/2. Thus, the probability of observing +1 at

time ¢ is
(.t tw\® 1 tw 1
ler|? = 5 <sin;d + cos ;) =3 (1 + QSin?wcos ;) = 5(1—|—sin(tw)).
2.4

First assume p is pure. Then by theorem 2.1, p? = p, so
tr p2 =trp=1.

Now assume tr p2 = 1. Let Ay > ... > A\, > 0 be the eigenvalues of p.
Note that they are all nonnegative real numbers since p is Hermitian and
positive semidefinite. Then )\% > ... > )\% > 0 are the eigenvalues of p2.
Thus, we have

trop=M+...+ A, =1 (3)
and

trp® =M+ N =1, (4)
Subtracting (??) from (?7), we get

n

D> A=) =0. (5)

=1

Observe that since trp = 1, we have 0 < \; < 1 for all . Thus, each term
in (??) is nonnegative. Since they sum to 0, we conclude \; € {0,1} for all
i. But by (?7), exactly one of the A; (namely, A1) must be 1 and the rest 0;
therefore, the eigendecomposition of p is

p = Z)\Z‘)\z><)\z’ = Al‘)‘1><)‘1’7
=1

so p is pure.

2.5

Clearly p is hermitian and trp = 1. Its eigenvalues are A\ = Ay = A3 =
(1 —p)/4,2\4 = (1 + 3p)/4, which are all > 0 for any p € [0,1], so p is
positive semidefinite. Therefore, p is a density matrix.



Now assume p > 1/3. Consider p as a 2 x 2 block matrix of 2 x 2 blocks

Pij- Then
1+p

e g 0 0
PPt = (@1 @2) o %p ép 0
P21 P22 0 b) e 12
0o 0 o U
The eigenvalues of pP* are py = g = sz = (1+p)/4, pa = (1 — 3p)/4. Since

p > 1/3, ugy < 0. Thus, we have

4 1
! —pi—1 3p—1_3-5-1
N(p) = izt =1t by —pa—1 3p—1 :

2 2 4 =0
2.7
The density matrix is
0 0 0 0
p=wi=g(o 5 3 of=(n )
0 0 0

Each p;; is a 2 x 2 block. The partial trace over H; is thus

_ (tr(p11) tr(pi2)) _ 1
tri(p) = (tl"(ﬂzl) tf(mz)) =3

2.8

We write

pr = 7100l + Sa) vl

We will use [11), [1)2) as the basis for the new Hilbert space as well. Accord-
ing to (2.53) we get

) = 1) @ i) + L) @ o)

2.9

Unitary transformations map orthonormal vectors to orthonormal vectors.
Thus, Ul¢y) are orthonormal, so |¥') is a purification of p;.



2.10

Observation 1. Let U be unitary and A be Hermitian and positive semidef-
inite. Then B = UAUT is Hermitian and positive semidefinite, and B =
UVAUT.

Proof. Trivially B is Hermitian. A and B are similar, so they have the same
eigenvalues. Thus, B is positive semidefinite since A is.
Now observe that

(UVAUN? = UVAUTUVAUT = UVAVAUT = U AUT = B.

VB is the unique matrix whose square is B, so this proves UvAUT =
VB. O

By observation 77, we have

VU UTUpUNNUp Ut = U/piUTU poUTU /iUt = U /pipa ;i U

Since /p1p2+/p1 is Hermitian and positive semidefinite, again we may apply
observation 77 to get

VTR TTU U Tt = \JUJpipa /510" = Us/pipa/miU.
Finally, U/\/p1p2/p1U T is similar to V/P1p2+4/p1, S0 they have the same

trace.
2.11
p1 is a diagonal matrix, so \/p1 = diag (%, 0,0, \%) and
1 0 01
1{0 0 0 0
1 0 01

To find /B, we first diagonalize it using methods from HW 1:

B =UAU",



where
-1

—_
—_ o O
o = O O
O O = O

0
0
1
and A = %diag(l, 0,0,0). Since A is diagonal, we have vA = % diag(1,0,0,0) =
Vv2A and hence

VB =UVAUT =U(V2MUT = V2UAUT = V2B.

Therefore,



