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Abstract

We introduce two additive invariants of output quantum channels. If the value
of one these invariants is less than 1 then the logarithm of the inverse of its value is
a positive lower bound for the regularized minimum entropy of an output quantum
channel. We give a few examples in which one of these invariants is less than 1. We
also study the special cases where the above both invariants are equal to 1.
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1 Introduction

Denote by Sn(C) the Hilbert space of n × n hermitian matrices, where 〈X, Y 〉 = tr XY .
Denote by Sn,+,1(C) ⊂ Sn,+(C) ⊂ Sn(C) the convex set of positive hermitian matrices of
trace one, and the cone of positive hermitian matrices respectively. A quantum channel is
a completely positive linear transformation τ : Sn(C) → Sm(C):

τ(X) =
l∑

i=1

AiXA∗i , A1, . . . , Al ∈ Cm×n, X ∈ Sn(C), (1.1)

which is trace preserving:
l∑

i=1

A∗i Ai = In, (1.2)

Denote by τ∗ : Sm(C) → Sn(C) the adjoint linear transformation. The minimum entropy
output of a quantum channel τ is defined

H(τ) = min
X∈Sn,+,1(C)

− tr τ(X) log τ(X). (1.3)

If η : Sn′(C) → Sm′(C) is another quantum channel, then it is well known τ⊗η is a quantum
channel, and

H(τ ⊗ η) ≤ H(τ) + H(η). (1.4)

∗This research started during author’s participation in AIM workshop “Geometry and representation
theory of tensors for computer science, statistics and other areas”, July 21-25, 2008.
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Hence the sequence H(⊗pτ), p = 1, . . . , is subadditive. Thus the following limit exists:

Hr(τ) = lim
p→∞

H(⊗pτ)
p

, (1.5)

and is called the regularized minimum entropy of quantum channel. Clearly, Hr(τ) ≤ H(τ).
One of the major open problem of quantum information theory is the additivity con-

jecture, which claims that equality holds in (1.4). This additivity conjecture has several
equivalent forms [8]. If the additivity conjecture holds then Hr(τ) = H(τ), and the compu-
tation of Hr(τ) is relatively simple. There are known cases where the additivity conjecture is
known, see references in [7]. It is also known that the p analog of the additivity conjecture is
wrong [7]. It was shown in [2] that the additivity of the entanglement of subspaces fails over
the real numbers. It was recently shown by Hastings [6] that the additivity conjecture is
false. Hence the computation of Hr(τ) is hard. This is the standard situation in computing
the entropy of Potts models in statistical physics, e.g. [5].

Let

A(τ) :=
l∑

i=1

AiA
∗
i ∈ Sm,+(C). (1.6)

Then log λ1(A(τ)) = log ‖A(τ)‖, where λ1(A) is the maximal eigenvalue of A(τ), is the first
additive invariant of quantum channels, with respect to tensor products. Let σ1(τ) = ‖τ‖ ≥
σ2(τ) ≥ . . . ≥ 0 be the first and the second singular value of the linear transformation
given by τ . Then log σ1(τ) is the second additive invariant. (These two invariants are
incomparable in general, see §3.) The first result of this paper is

Theorem 1.1 Let τ : Sn(C) → Sm(C) be a quantum channel. Assume that
min(λ1(A(τ)), ‖τ‖) < 1. Then

Hr(τ) ≥ max(− log λ1(A(τ)),− log ‖τ‖). (1.7)

In §3 section we give examples where min(λ1(A(τ)), σ1(τ)) < 1. τ is called a unitary
quantum channel if in (1.1) we assume

Ai = tiQi, QiQ
∗
i = Q∗i Qi = In, i = 1, . . . , l, t = (t1, . . . , tl)> ∈ Rl, t>t = 1. (1.8)

In that case λ1(A(τ)) = σ1(τ) = 1. Note the counter example to the additivity conjecture
in [6] is of this form. A quantum channel τ : Sn(C) → Sm(C) is called a bi -quantum channel
if m = n and τ∗ : Sn(C) → Sn(C) is also a quantum channel. That is A(τ) = In and it
follows that σ1(τ) = 1. Note that a unitary quantum channel is a bi-quantum channel. The
second major result of this paper is

Theorem 1.2 Let τ : Sn(C) → Sn(C) be a bi-quantum channel. Then σ1(τ) = 1.
Assume that n ≥ 2 and σ2(τ) < 1. Then

H(τ) ≥ −1
2

log(σ2(τ)2 +
1− σ2(τ)2

n
). (1.9)

Note that (1.9) is nontrivial if σ2(τ) < 1. We show that the condition σ2(τ) < 1 holds for a
generic unitary channel with l ≥ 3.

2 Proof Theorem 1.1

Denote by Πn ⊂ Rn
+ the convex set of probability vectors. For p = (p1, . . . , pn) ∈ Πn we

have

H(p) = −
n∑

i=1

pi log pi =
n∑

i=1

pi log
1
pi
≥ (

n∑

i=1

pi) min
j=1,...,n

log
1
pj

= − log max
j=1,...,n

pj . (2.1)
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For X ∈ Sn(C) denote by λ(A) = (λ1(X), . . . , λn(X)) the eigenvalue set of X, where
λ1(A) ≥ . . . ≥ λn(X). Then u1, . . . ,un is the corresponding orthonormal basis of Cn

consisting of eigenvectors of X Xui = λi(X)ui where u∗i uj = δij for i, j = 1, . . . , n. Ky-Fan
maximal characterization is, e.g. [3],

k∑

j=1

λj(X) = max
x1,...,xk∈Cn,x∗pxq=δpq

k∑

j=1

x∗jXxj =
k∑

j=1

tr(X(xjx∗j )). (2.2)

Hence for x ∈ Cn,x∗x = 1 we have

k∑

j=1

λj(τ(xx∗)) = max
y1,...,yk∈Cm,y∗pyq=δpq

k∑

j=1

tr(τ(xx∗)(yjy∗j )) = (2.3)

max
y1,...,yk∈Cm,y∗pyq=δpq

l,k∑

i,j=1

|y∗j Aix|2 ≤ max
y1,...,yk∈Cm,y∗pyq=δpq

l,k∑

i,j=1

y∗j AiA
∗
i yj =

max
y1,...,yk∈Cm,y∗pyq=δpq

k∑

j=1

y∗jA(τ)yj =
k∑

j=1

λj(A(τ)). (2.4)

Recall that
∑k

j=1 λj(X) is a convex function on Sn(C). As the extreme points of Sn,+,1 are
xx∗,x ∈ Cn,x∗x = 1 we obtain

max
X∈Sn,+,1

k∑

j=1

λj(τ(X)) ≤
k∑

j=1

λj(A(τ)), k = 1, . . . ,m. (2.5)

X ∈ Sn,+,1(C) iff λ(X) ∈ Πn. Hence H(X) := H(λ(X)) ≥ − log λ1(X) for X ∈ Sn,+,1(C).
(2.5) for k = 1 yields that H(τ) ≥ − log λ1(A(τ)).

For C ∈ Rm×n let C = V ΣU> be the singular value decomposition, (SVD), of C.
So U = [u1 . . . un] ∈ Rn×n, V = [v1 . . . vm] ∈ Rm×m be orthogonal, and Σ =
diag(σ1(A), . . . , ) ∈ Rm×n

+ , be a diagonal matrix with nonnegative diagonal entries which
form a nonincreasing sequence. The positive singular values of C are the positive eigen-
values of

√
CC> or

√
C>C. Let σ(C) = (σ1(C), σ2(C), . . . , σl(C))> where σi(C) = 0 if

i > r = rank C. Recall that ‖C‖F :=
√
〈C,C〉 =

√
tr(CC>) =

√∑rank C
i=1 σi(C)2. and

σ1(C) = ‖C‖ = max‖u‖=‖v‖=1 |v>(Cu)|. Thus, for x ∈ Cn,x∗x = 1, we have the inequality

λ1(τ(xx∗)) = max
‖y‖=1

tr((yy∗)τ(xx∗)) = max
〈yy∗,yy∗〉=1

〈τ(xx∗),yy∗〉 ≤ σ1(τ).

Hence
max

X∈Sn,+,1
λ1(τ(X)) ≤ σ1(τ). (2.6)

Combine the above inequalities to deduce H(τ) ≥ max(− log λ1(A(τ)),− log σ1(τ)). The
properties of tensor products imply

H(⊗pτ) ≥ − log λ1(A(⊗pτ)) = − log λ1(⊗pA(τ)) = −p log λ1(A(τ)),
H(⊗pτ) ≥ − log σ1(⊗pτ) = −p log σ1(τ) = −p log ‖τ‖

Hence (1.7) holds.
If λ1(A(τ)) < 1 then the inequality Hr(τ) ≥ − log λ1(A(τ)) can be improved [4, §4].

3 Examples

Proposition 3.1 Let τ be a quantum channel given by (1.1). Then

λ1(A(τ)) ≥ n

m
, σ1(τ) ≥

√
n√
m

. (3.1)
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Hence, λ1(A(τ)), σ1(τ) ≥ 1 for m ≤ n. In particular, if m ≤ n then the condition either
λ1(A(τ)) = 1 or σ1(τ) = 1 holds if and only if m = n and τ∗ is a quantum channel.

Proof. Clearly,

mλ1(A(τ)) ≥
m∑

j=1

λj(A(τ)) = trA(τ) =
l∑

i=1

trAiA
∗
i =

l∑

i=1

tr A∗i Ai = tr In = n.

Hence λ1(A(τ)) ≥ n
m . Clearly, if m = n and A(τ) = In then λ1(A(τ)) = 1 and τ∗ is a

quantum channel. Vice versa if m ≤ n and λ1(A(τ)) = 1 then m = n. Furthermore, all
eigenvalues of A(τ) have to be equal to 1, i.e. A(τ) = In.

Observe that the condition that τ of the form (1.1) is a quantum channel is equivalent
to the condition τ∗(Im) = In. As

σ1(τ) = σ1(τ∗) ≥ ‖τ∗( 1√
m

Im)‖ =
√

n√
m

we deduce that second inequality in (3.1). Suppose that m ≤ n and σ1(τ) = 1. Hence
m = n and σ1(τ∗) = ‖τ∗( 1√

n
In)‖ = 1. So 1√

n
In must be the left and the right singular

vector of τ corresponding to the ‖τ‖. I.e. τ(In) = In, which is equivalent to the condition
that τ∗ is a quantum channel. 2

Example 1. A quantum channel τ : S1(C) → Sm(C) is of the form

τ(x) =
l∑

i=1

aixa∗i , ai ∈ Cm, i = 1, . . . , l,

l∑

i=1

a∗i ai = 1, A(τ) =
l∑

i=1

aia∗i . (3.2)

Note that trA(τ) = 1. Hence λ1(A(τ)) < 1, unless a1, . . . ,al are colinear. (This happens
always if m = 1.) We claim that

σ1(τ) =
√

trA(τ)2. (3.3)

Indeed

max
|x|=1,Y ∈Sm(C),tr(Y 2)=1

| tr τ(x)Y | = max
Y ∈Sm(C),tr(Y 2)=1

| trA(τ)Y | =
√

trA(τ)2.

Hence
λ1(A(τ)) < σ1(τ) < 1 iff a1, . . . ,al are not colinear. (3.4)

If a1, . . . , al are co-linear then λ1(A) = σ1(A) = 1. Note that in this example H(τ) =
H(A(τ)).

Example 2. A quantum channel τ : Sn(C) → S1(C) is of the form

τ(X) =
l∑

i=1

a∗i Xai, ai ∈ Cn, i = 1, . . . , l,

l∑

i=1

aia∗i = In, A(τ) =
l∑

i=1

a∗i ai = n. (3.5)

So λ1(A(τ)) = n ≥ 1. On the other hand

σ1(τ) = max
X∈Sn(C),tr X2=1,|y|=1

| tr(τ(X)y)| = max
X∈Sn(C),tr X2=1

| tr X| = √
n. (3.6)

So for n > 1 λ1(A(τ)) > σ1(τ).

Example 3. A quantum channel of the form (1.1), where m = n and (1.2) holds, is called
a strongly self-adjoint if there exists a permutation π on {1, . . . , l} such that A∗i = Aπ(i) for
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i = 1, . . . , l. So A(τ) = In and λ1(A(τ)) = 1. Note that τ is self-adjoint and τ(In) = In.
Since In is an interior point of Sn,+ it follows that σ1(τ) = 1.

Example 4. Assume τj : Snj
(C) → Smj

(C), j = 1, 2 are two quantum channels. Consider
the quantum channel τ = τ1 ⊗ τ2. Then

log λ1(A(τ)) = log λ1(A(τ1)) + log λ1(A(τ2)), log σ1(τ) = log σ1(τ1) + log σ1(τ2).

Thus, it is possible to have λ1(A(τ)) < 1 without the assumption that both τ1 and τ2 satisfy
the same condition. Combine Example 1 and Example 3 to obtain examples of quantum
channels τ : Sn(C) → Smn(C), where n,m > 1 where λ1(A(τ)) < 1. Similar arguments
apply for σ1(τ).

Example 5. Recall that if B ∈ Cm×n and C ∈ Cp×q then

B ⊕ C =
[

B 0m×q

0p×n C

]
∈ C(m+p)×(n+q).

Assume τj : Snj (C) → Smj (C), j = 1, 2 are two quantum channels given by τj(Xj) =∑lj
i=1 Ai,jXjA

∗
i,j , where Ai,j ∈ Cmj×nj , i = 1, . . . , lj , j = 1, 2. Then τ1⊕ τ2 : Sn1+n2(C) :→

Sm1+m2(C) is defined as follows.

(τ1 ⊕ τ2)(X) =
l1,l2∑

i1=i2=1

(Ai1,1 ⊕Ai2,2)X(A∗i1 ⊕A∗i2,2).

Clearly, τ1 ⊕ τ2 is a quantum channel. Furthermore,

A(τ1 ⊕ τ2) = A(τ1)⊕A(τ2).

Hence
λ1(A(τ1 ⊕ τ2)) = max(λ1(A(τ1)), λ1(A(τ2))). (3.7)

This if λ1(A(τi)) < 1 we get that λ1(A(τ1 ⊕ τ2) < 1.
The formula for σ1(τ1⊕τ2) does not seems to be as simple as (3.7). By viewing Sn1(C)⊕

Sn2(C) as a subspace of Sn1+n2(C) we deduce the inequality

σ1(τ1 ⊕ τ2) ≥ max(σ1(τ1), σ1(τ2)).

Example 6. We first show how to take a neighborhood of a given quantum channel given
by (1.1). View A := (A1, . . . , Al) as a point in (Cm×n)l. Let O(A) ⊂ (Cm×n)l be an open
neighborhood of A such that for any B := (B1, . . . , Bl) ∈ (Cm×n)l the matrix C(B) :=∑l

i=1 B∗
i Bi has positive eigenvalues. Define

B̂ = (B̂1, . . . , B̂l) = (B1C(B)−
1
2 , . . . , BlC(B)−

1
2 ) ∈ (Cm×n)l.

Then τB : Sn(C) → Sm(C) given by

τB(X) =
l∑

i=1

B̂iX(B̂i)∗

is a quantum channel. So if O(A) is a small neighborhood A then τB is in the small
neighborhood of τ . In particular of λ1(A(τ)) < 1 then there exists a small neighborhood
O(A) such that λ1(A(τB)) < 1 for each B ∈ O(A). Similar claim holds if σ1(τ) < 1.
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4 Bi-quantum channels

Proof of Theorem 1.2. Observe first that since τ and τ∗ are quantum channels if follows
that ω := τ∗τ is a self-adjoint quantum channel on Sn(C). As ω preserves the cone of
positive hermitian matrices, ω(In) = In and In is an interior point of Sn,+(C), the Krein-
Milman theorem, e.g. [1], it follows that 1 is the maximal eigenvalue of ω. Hence σ1(τ) = 1.
Observe next

λ1(τ(xx∗)) ≤ (
n∑

i=1

λi(τ(xx∗))2)
1
2 = ‖τ(xx∗)‖.

We now estimate ‖τ(xx∗)‖ from above, assuming that ‖x‖ = 1. Consider the singular
value decomposition of τ . Here m = n, and assume that U1, . . . , Un, V1, . . . , Vn ∈ Sn(C) are
the right and left singular vectors of τ corresponding to σ1(τ), . . . , σn(τ). Furthermore we
assume that U1 = V1 = 1√

n
In. Hence

n∑

i=1

λi(τ(xx∗))2 =
rank τ∑

i=1

σi(τ)2| tr Uixx∗|2 ≤ σ1(τ)2| trU1xx∗|2 +
rank τ∑

i=2

σ2(τ)2| tr Uixx∗|2.

Since σ1(τ) = 1 and trU1xx∗ = 1√
n

trxx∗ = 1√
n
, we deduce that

n∑

i=1

λi(τ(xx∗))2 ≤ σ2(τ)2 +
1− σ2(τ)2

n
. (4.1)

So

λ1(τ(xx∗) ≤
√

σ2(τ)2 +
1− σ2(τ)2

n
.

Use the arguments of the proof of Theorem 1.1 to deduce (1.9). 2

Proposition 4.1 Let τi : Sni(C) → Sni(C) be a bi-quantum channel for i = 1, 2. Then
τ1 ⊗ τ2 is a bi-channel. Furthermore

σ2(τ1 ⊗ τ2) = max(σ2(τ1), σ2(τ2)). (4.2)

In particular, if τ : Sn(C) → Sn(C) is a unitary channel and σ2(τ) < 1 then

H(⊗pτ) ≥ −1
2

log(σ2(τ)2 +
1− σ2(τ)2

np
). (4.3)

Proof. Since (τ1 ⊗ τ2)∗ = τ∗1 ⊗ τ∗2 it follows that a tensor product of two bi-quantum
channels is a bi-quantum channel. Since the singular values of τ1 ⊗ τ2 are all possible prod-
ucts of of singular values of τ1 and τ2 we deduce (4.2). Then (4.3) is implied by Theorem
1.2. 2

Lemma 4.2 Consider a unitary channel of the form (1.1) and (1.8), where l ≥ 3,
ti 6= 0, i = 1, . . . , l, Q1 = In, and Q2, . . . , Ql do not have a common nontrivial invariant
subspace. Then σ2(τ) < σ1(τ) = 1.

Proof. Assume that X ∈ Sn,+(C) has rank k ∈ [1, n − 1]. We claim that rank τ(X) >

rank X. Recall that X =
∑k

j=1 xjx∗j , where x1, . . . ,xk ∈ Cn are nonzero orthogonal vectors.
As t21, . . . , t

2
k > 0 we deduce that

τ(X) = t21X +
k∑

j=2

t2jQjXQ∗
j ≥ t21X.
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So rank τ(X) ≥ k. Furthermore rank τ(X) = k if and only Qixj ∈ U := span(x1, . . . ,xk)
for i = 2, . . . , l and j = 1, . . . , k. Since U is not invariant under Q2, . . . , Ql we deduce that
rank τ(X) > k. Clearly, if Y ≥ 0 and rank Y = n then rank τ(Y ) = n.

Observe next that Q∗2, . . . , Q
∗
l do not have a nontrivial common invariant subspace.

Indeed, if V ⊂ Cn was a nontrivial common invariant of Q∗2, . . . , Q
∗
l , then the orthogonal

complement of V will be a nontrivial invariant subspace of Q2, . . . , Ql, which contradicts
our assumption. Hence τ∗(X) > rank X.

Let η = τ∗τ . Thus, rank ηn(Z) = n for any Z 
 0, i.e., ηn maps Sn,+(C)\{0} to the
interior of Sn,+(C). By Krein-Milman theorem, i.e. [1], 1 = λ1(ηn) > λ2(ηn) = σ2(τ)2n. 2

Corollary 4.3 Let τ : Sn(C) → Sn(C) be a generic unitary quantum channel. I.e. τ
of the form (1.1) and (1.8), where l ≥ 3, (t21, . . . , t

2
l )
> is a random probability vector, and

Q1, . . . , Ql are random unitary matrices. Then σ2(τ) < σ1(τ) = 1.

Proof. Let τ1(X) := τ(Q∗
1XQ1). Clearly, the l−1 unitary matrices Q2Q

∗
1, . . . , QlQ

∗
1 are

l− 1 random unitary matrices. Since l− 1 ≥ 2 these l− 1 matrices do not have a nontrivial
common invariant subspace. Lemma 4.2 yields that σ2(τ1) < 1. Clearly, σ2(τ1) = σ2(τ). 2
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