MULTI-DIMENSIONAL CAPACITY,
PRESSURE AND HAUSDORFF DIMENSION

SHMUEL FRIEDLAND*

Abstract. This paper surveys the major techniques and results for multi-dimen-
sional capacity (entropy), topological pressure and Hausdorff dimension for Z%subshifts
of finite type.

1. Introduction. Consider an alphabet on n letters denoted by <
n >:= {1,...,n}. Suppose one has a long linear storage place of length
m >> 1. Then one can store n™ different messages of length m. Hence the
(unrestricted) capacity of our storage device is % = log, n. Consider
now the storage problem with some restrictions. For example n = 2 and
each 1 has to be followed by 2 = 0. (Such a code is called 1-dimensional
(0,1) limited channel.) Then the number messages of length m that can
be stored is u,, and u.,,, m = 1,2, ... is the Fibonacci sequence (starting
from 2). Hence the capacity of this channel is log, 1£Y% = 0.694241914.

Let Z D Z4+ D N be the set of integers, nonnegative integers and
positive integers respectively. Let 1 < d € N. Denote by m the point
(m1,...,mq) in Z% Let m € N? and denote by < m > all lattice points
i= (i1,02,..,%4),i; €< mj >,j = 1,...,d. Assume that our storage device
given by < m >. The number of storage places in < m > is | < m >
lpr 1= mima...mq. We fill this storage place with the elements of < n >.

Without any constraints our storage device can hold n/<™>lrr messages.

. . . . 1 |<m>|pr
Hence the (unrestricted) capacity is again °g2|" ‘ = log, n. Assume
m[,,

now that we have the restriction as above for the alphabet < 2 >, i.e.
we have d-dimensional (0,1) limited channel. That is two distinct points
i,j € Z9 are called neighbors if exactly one of the coordinates of i — j is +1
and the other coordinates of i — j are 0. Then no two 1’s stored in < m >
are neighbors. This time nobody knows the exact formula for the capacity
of this channel. For d = 2 this capacity is known up to the precision of 9
digits 0.587891162. For d = 3 this capacity is known up to the precision of
2 digits 0.524 £+ 0.003. See §6.

The aim of this paper to introduce the reader to the theory of multi-
dimensional capacity (mdc) in the broad sense. This subject arose first in
statistical mechanics under the name Ising model in 1920’s. Since then it
was studied extensively in physics literature. In mathematics this subject
goes by the name Z%SOFT (subshifts of finite type). This paper is di-
vided to three parts. The first part §2-§6 deal with the basic notions of
7Z2-SOFT and the computational aspects of mdc (entropy in physcis and
mathematics). The second part of the paper §7-8§9 deals with the notions
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of (topological) pressure and Hausdorff dimension. Pressure is a more gen-
eral notion than entropy, as the pressure of the potential ¢ = 0 reduces to
entropy. A maximal characterization for the pressure shows the probabilis-
tic aspect of the pressure. In particular the (Kolmogorov-Sinai) entropy
of an invariant measure, which can be traced back to Shannon, appears
in this maximal characterization. The Hausdorff dimension is intimately
connected with the discrete version of Lyapunov exponent. The last part of
the paper §10 consists of brief collection of needed facts about nonnegative
matrices that are very useful in this area.

This paper is somewhat in between a survey paper and a research
article. We wanted to give a clear exposition of main ideas and results
in this area. In doing so we also improved and generalized some known
results. The reader interested only in mcd can read only §2-§6 and §10.
The more thorough reader is invited to look through §7-§9. When reading
the first time about Z%SOFT one feels that the notation is quite heavy
and cumbersome. It seems that this feeling is part of the subject since it
is indeed complicated.

We now give a brief nontechnical summary of the contents of this
paper. We point out the new results of this paper. §2 summarize briefly the
main results of 1-dimensional SOFT, referred in the literature as Z-SOFT
(biinifinite) and Z,-SOFT (infinite in one direction). It is well known that
(Z) Z+-SOFT can be coded as (bi)infinite walk on a given directed graph
T. Then the combinatorial entropy hcen (one dimensional capacity) is the
exponential growth of paths of length m on I'. (In statistical mechanics
sometimes e’*<em is called the entropy of the system.) The periodic entropy
hper is the limsup of the density of the periodic paths on I' of length m. The
mathematical entropy is the density of the paths of length m on ' which can
be extended to (bi)infinite paths on I'. Clearly hye, < h < heor. The main
result in 1-dimensional SOFT is Theorem 2.8: hper = h = heom = log p(T'),
where p(T') is the spectral radius of T.

§3 introduces the reader to the theory of Z%SOFT type. A SOFT
S c< n >2% is called decidable if there exists a box < m >C N such
that either one can not fill < m > with any allowable configuration ( <=
S = () or there exists a periodic allowable configuration on < m >. (A
periodic configuration can be considered as an allowable configuration on
the d-dimensional torus T™ = Z4%/(m1Z x ...xm4Z). Note that any periodic
configuration can be extended to an allowable configuration in Z%.) The
important result of Berger [Ber] claims that there are Z2SOFT which
are not decidable. This is the first result that demonstrates the intrinsic
difference between 1-dimensional and multidimensional theory of SOFT.
Next we recall the result of [Fr2] that h = hcom. We also observe that any
Z2-SOFT can be coded as a matrix SOFT. That is there exist directed
graphs Iy, ...,y such that in each axis direction in Z% the 1-dimensional
SOFT describes an infinite walk on the graph I'y. In the rest of the paper
we assume that S is given as a matrix SOFT.
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In §4 we use this idea to imitate the one dimensional case by consid-
ering a long strip in direction k while the other coordinates are allowed to
vary in some fixed “box” of dimension k— 1. Then one obtains the transfer
matrix, and an upper bound of the entropy in terms of the spectral ra-
dius the corresponding transfer matrix. In view of [Ber] there are no lower
bounds unless we assume additional conditions. We first consider the case
d = 2. Then the main result of §4 is Theorem 4.3. It shows that if either
I'y or T'y are symmetric graph then hj,., = h and h is computable. That
is, we give computable lower and upper bounds on A in terms of spectral
radii of transfer matrices which converge to h. Theorem 4.3 is an improve-
ment of [Fr2] following the techniques of Calkin-Wilf [CaW] for a special
Sc<2>?,

In §5 we continue the study of mcd mainly for d > 2. Theorem 5.2 (new
result) shows that one can improve the upper bounds on the entropy if we
assume that some of the graphs of I'y,...,I'y are symmetric. Theorem 5.5
(new) gives lower bounds on h under the condition that T'; is symmetric.
In particular we reprove the result in [Fr2] that if all but one graphs in
I'4,...,I'q are symmetric than hye, = h and h is computable.

In §6 we give three examples of SOFT occuring in statistical mechanics
and information theory. The first one is the residual entropy of the square
ice. The second example is d-dimensional (0, 1) limited channel discussed in
the beginning of the Introduction. The third example is the d-dimensional
dimer problem.

§7 discusses the invariant measures, the subadditive functions on Zi—
SOFT and Kingman’s [Kin] subergodic theorem, which is very useful in
this area.

88 we introduce a nonadditive topological pressure. It is a generaliza-
tion of the standard topological pressure, which was introduced by Ruelle
[Rue]. Here we follow the ideas and results in [Fal] and [Fr3]. In particular
we state our version of the maximum principle for the topological pressure
[Rue] and [Mis], which involve the entropy of invariant measure.

§9 discusses the Young formula [You] for the Hausdorff dimension using
a version of a discrete Lyapunov exponent. §7—§9 is Zi version of our results
for Z-SOFT in [Fr3] and most of the major results are stated here for the
first time.

§10 consists of brief collection of needed facts about nonnegative ma-
trices that are very useful in this area.

Finally let us mention that we omitted the algebraic part of the sub-
ject: abelian Markov groups. This subject is well described in by K.
Schmidt [Sc].

2. One dimensional capacity. Let < n >= {1,...,n} be an alpha-
bet on n letters. A word of length m in this alphabet is of the form
a = ay...G,, where a; €< n >, i = 1,...,m. We will identify a with
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a sequence (a;)7*. Equivalently a can be viewed as map from the set
< m >= {1,...,m} to the alphabet < n >, ie. a(i) = a;, i = 1,...,m.
Let

<n>":={a: a:<m>=3<n>},

be the set of all maps from < m > to < n >, i.e. the set of all words of
length m in the alphabet < n >. Clearly # < n ><™>= n™. Hence the
m-th capacity (density) of the all words of length m in this alphabet is

(2.1) h =logn

(Here we assume that log is the logarithm on basis e.) Let
Om i=log# <n ><">=mlogn, m=1,..,.

Then §,, is an additive sequence:

6P+11 :6P+6q7 paq:1727---

Hence ‘%’" is the m-th capacity.
It is convenient to consider an infinite word a = ajas... = (a;)ien
or a biinfnite word @ = ...a_japa;... = (a;);cz in the alphabet < n >,

i.e. a; €< n > for each i. Equivalently each a can be viewed as maps
a:N—=<n>anda:Z —<n > respectively. Let

<n>N={a: a:N-o<n>},
<n>t={a: a:Z-<n>},

be the set of infinite and biinfinite words on the alphabet < n > respec-
tively. In mathematical terminology < n >N and < n >% are called one
sided shift and two sided shift (on n letters) respectively. Shift o is the
following simple transformation of the given sequence, which is obtained
by shifting to the “left” the given sequence:

g:<n>Ns<n >N, U((ai)ieN) = (ai+1)ieNa
o:<n>la<n >t o((ai)icz) = (aiv1)icz-

Note that the action of ¢ on a one sided shift results in a loss of the
information (the first coordinate is dropped). On the two sided shift o acts
as invertible transformation o~!((a;)icz) = (ai—1)icz. Let k € N. Then
o is the composition of ¢ k times, which act either on < n >N or < n >Z.
(o* shifts k-times to the left a given sequence.) o~ is the composition of
o~ k times, which acts on < n >Z.

The origin of the action of o on < n >% (or more precisely Z? action)
can be traced to Ising model in statistical mechanics [Kel, 1.2.2]. View
Z as a discrete subset (lattice) of the real line R. Place at each i € Z a
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particle which has either spin down a; = 1 or a spin up a; = 2. Thus any
a €< 2 >Z (called a state) corresponds to an arrangement of a countable
number of particles on Z with the corresponding positions of spins. This
state a depends on a choice of the “origin”, which is located at the particle
in the place 0. If we move the origin to the place k € Z then the new state
corresponds to the state o*(a).

It is convenient to introduce metrics on < n >N and < n >%. Let
dp :<n > x <n>—R; be the Hamming metric on < n >:

dp(i,i) =0, 1e<n>,
dp(i,j) =1, i#£je<n>.
Then
dp(ai, b;
d(a,b) = %a a = (a;)ien; b = (bi)ien €< n >N,
ieN
dp(a;, b;
d(a,b) =} % a = (ai)iez,b = (bi)icz €< n >" .
icZ

It is straightforward to show that < n >N and < n >% are compact spaces.
That is a sequence a', a?, ... in these spaces converges if and only if it con-
verges coordinatewise. Clearly the shift is a continuous (Lipschitz) trans-
formation

d(o(a), o (b)) < 2d(a,b).

DEFINITION 2.1. A subset S of < n >N or < n >% is called a
subshift if
(a) S is closed set with respect to the metric d;
(b) 0(S) =S. TFor S c< n >Z the condition (b) means that a € S =
o*(a) € S Vk € 7. Thus S is the set of all allowable states and the allowable
states do not dependent on the choice of the origin. S = @) is a subshift.
For k > m let 7, ((a;)¥) = (a;)7. Let 7, :< n >N (< n >%) < n ><m>
be the projection on the coordinates 1,...,m: my,((a;)) = (a;)™,.

LEMMA 2.2. Let S c< n >N (< n >%) be a subshift. Let &, :=
log #mm (S) for m € N, where log0 := —oco. Then the sequence 6y, is
subadditive:

Op + 04 > Opig Vp,geN

(~—oo—oo = —00.) %" is the m-th density of S (522 = —o00). The sequence
%", m =1, ..., converges to h - the entropy of S. Furthermore
(2.2) h<— VmeN

m
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Proof. Tt is enough to consider a subshift of one sided shift. If S =
the lemma is obvious. Assume that S # 0. Let a = (a;);en € S. Then
(a:)Pt € mpy (S), (@)} € mp(S). As oP(a) = (apyi)ien € S it follows that
(@)X, € my(S). Hence #myiq(S) < #mp(S)#my(S) and the sequence

dm, m € Nis a nonnegative subadditive sequence. In particular %", m €N
is a convergent sequence, e.g. [Wal]. The subadditivity of 6m, m € Nyields
that 'if—;‘ < ‘%”. Let p — oo to deduce (2.2). O

DEFINITION 2.3. A subshift S C< n >N (< n >%) is called a sub-
shift of finite type (SOFT) if it is the maximal subshift for the following
condition:

(a) There exists r € N and a subset P (of allowable configurations) of
<n ><" such that 7.(S) C P.

Equivalently, S is a SOFT if there exists a “window” of length r with
an allowable set of configurations P C< n ><"" such that a € S if and
only if any consecutive string of r letters in a belongs to the allowable
configuration P.

EXAMPLE 2.4. Let I C<n > x <n >. Identify I' with a digraph on
n vertices, where the directed edge (i,7) (from i to j) is in the graph if and
only if (i,j) € T. For m € N denote by I'™ and T, the set of all possible

per
walks on T' of length m and the set of all periodic walks on T of period m:

™ = {(a;)"" €< n><"">:  (a;,a;41) €T fori=1,...,m.},

e ={(@)™ €T™: ar =amu}

where T® :=<n >. Let

Y= {(ai)ieN e<n >N (aj,a;41) €T, fori € N},
FZ = {(ai)iez e<n >ZZ (ai,a,-+1) € F, fori e Z},

be the sets of infinite and biinfinite walks on T respectively. Then TN C<
n >N and TZ c< n >Z are SOFT induced by T.

For ' C< n > x < n > denote by A(T') = (a;;)7 the 0 — 1 matrix
induced by I'. That is

a;j =1 < (i,j) €T, a;; =0 < (i,j) ¢T.

Vice versa any 0 — 1 n x n matric A = (a;;)} induces a unique I' C< n >
x < n >. Sometimes the SOFT I'N and I'# are called matriz SOFT.

For any square matrix A = (a;;)7 we denote by p(A) the spectral
radius of A (the maximum value of the absolute values of the eigenvalues
of A.) The Perron-Frobenius theorem claims that if all the entries of A
are nonnnegative then p(A) is an eigenvalue of A (see Appendix). If in
addition A is a 0 — 1 matrix then p(A) is an algebraic integer, i.e. p(4) is a
root of a normalized polynomial (the coefficient of the highest power is 1)
with integer coefficients. For I' C<n > x <n > we let p(I') := p(A(T)) to
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be the spectral radius of I'. Then following lemma is straightforward (see
Appendix):

LEMMA 2.5. LetT C<n > x < n >. Then either p(I') = 0 or
p(T) > 1. Furthermore

p(T) =0 < T™" =0 <= T does not have cycles <= A(T)" = 0.

In particular the SOFT induced by T' is empty if and only if p(T') = 0.
Let S c< n >N (< n >%) be a SOFT given by P c< n ><">. For
m € N let

W™(P):=<n><"> forr >m,
W™(P) := {(a;)]* €< n ><™: (ai):if_l € P,
forj=1,...m—r+1} forr <m,

wm (P) = {(a,-)i"“ S Wm+1(P) D041 Qi1 € P,

per

for i =1,...,m, where a; = a; if i — j is divisible by m},

be all P-allowable words of length m and all P-allowable periodic words of
period m. Note that any word in W2, (P) extends to a unique (bi)infinite

per

m-periodic state in SOFT S induced by P. Let
Om = log #W™(P), dmper = log#Wpe,.(P), meN.

Then %" and 5’"’% is called the m-th capacity and the m-th periodic ca-
pacity respectively. Combine the results of Lemma 2.2 with the arguments
of its proof to deduce:

LEMMA 2.6. Let S c< n >N (< n >%) be a SOFT given by the
allowable configurations P C<n >". Then

Smper < Om < Om, mEN,

The sequence &,,, m € N is subadditive. Hence the sequence %", m €

N converges to the capacity heom. Let hper = limsup,, 6’“’% be the

periodic capacity of S. Then
Om
hper S h S hcom S >
m

for any m € N.

The following lemma shows that any SOFT can be (efficiently) coded
as a matrix SOFT:

LEMMA 2.7. Let S c< n >N (< n >Z) be a SOFT induced by the
set of allowable configurations P C< n ><">, where r > 2. Let N =
#m,_1(P). Then there exists T C< N > x < N > such that there is
one to one correspondence between any word a € W™(P) and b € T~ "+1
for every m > r. Furthermore any a € W2 (P) corresponds to a unique

per
be 'L, and vice versa for any m € N.
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Proof. Label configurations (a;)] ! which can be extended to allowable
configurations (a;)] € P by 1,...,N. Let u,v €< N > correspond to
(a;)77%, (b)7 ™" € m,_1 P respectively. Then (u,v) € T if and only if b; =
a4 fori =1,...,r—2 (for r = 2 this condition is void) and (a;)] € P, where
a, = b,_,. It is straightforward to see that (a;)7* € W™(P) for m > r if
and only if (u;)7" "*? € ™=+ where u; corresponds to (ai)fi;_2 for
j=1..m-r+2

Let a € Wy,.(P). Extend a to the m-periodic state @ = (a;)ien €
S. Then @ induces (u;)*"t* € I, where u; corresponds to (a,»);;r;f‘Q
Similarly any (u;)7"*! € ['pe, induces a unique a € W, (P). O

THEOREM 2.8. Let S c< n >N (< n >%) be a SOFT induced by
the set of allowable configurations P C<n ><">. Let N = #m_1P and
I' C< N > x < N > be the graph induced by P as in the proof of Lemma
2.7. Then

(2.3) hper = h = heom = log p(T).

Proof. In view of Lemma 2.7 it is enough to prove the theorem in the
case P=T C<n>x <n > Let1l:=(1,..,1) a vector whose all
coordinates are equal to 1. It is straightforward to show (see Appendix)

(2.4) #I™ = 1AD)™1T, #I'™_ =tr A(D)™,

per

where tr B is the trace of the square matrix B. It is known (see Appendix)

1
lim —logl1A™ 11T =logp(A),

m—o0 M

(2.5) lim sup(tr A™)= = p(A),

m—o0

A= (aij)?, and Q5 > 0 for ,i,j = 1, ey T

Hence heom = hper = log p(A(T")). Combine these results with the last
inequality of Lemma 2.6 to deduce (2.3). O

COROLLARY 2.9. Let S < n >N (< n >%) be a SOFT. Then either
S =0 or S contains a periodic state.

3. Multi-dimensional capacity. Let 2 < d € N. Denote

e; = (015,.-,04), 3 =1,...,d, (the standard basis in R?)

m = (myq,...,mq) € Z% and m| = [mq|+...+|mq|, |m|p = |m4]...|mal,
m<n < m; <n;, i=1,..d,

<m>=<m > X..Xx <mg>forme N,

View a map a: < m > — < n > as (a;)ic<m>- (Sometimes we denote
this map by (a;)®,.) Then < n ><™> is the set of all such maps a.

Furthermore < n >N and < n >Z° is the set of all maps from N? and Z¢
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to < m > respectively. That is < n >N and < n >Z* are one sided and two
sided d-shifts consisting of the sequences (a;)jene and (ai) ez respectively.
A shift o : N* 5 N¢ or 0 : Z% — Z? is defined as

0;((a1)) = (Gite;), J=1,-.d.

Note that o1, ...,04 are commuting transformations on N? and Z? respec-
tively. On Z< each o; is an invertible transformation.
Define metrics on N? and Z?

d i) bi
d(a,b) = Z M; a = (ai)iene, b = (bi)iene €< n >Nd,

2li|
ieNd
d i;bi
d(a,b) = ) % a = (a1)ieza b = (bi)icza €< n >2°
iczd

Then < n >N and < n >Z° are compact spaces. A sequence a!,a?, ... in
these spaces converges if and only if it converges coordinatewise. Clearly
each o is a continuous (Lipschitz) transformation. For k = (k1,...,kq) €
Z4 let o = of*...0%¢ be the composition of o}, ...,0%4. Then o* is well
defined on N? and Z¢. For k € Z? the map o* is well defined on Z<.
DEFINITION 3.1. A subset S of < n SN or < n 2 s called a
subshift if
(a) S is closed set with respect to the metric d;
() 05(S) = S for I=1,...,d. For S C<n >%* S is the set of all allowable
states which do not dependent on the choice of the origin. For k > m € N¢
let T ((ai)ick) = (@i)iccms. Let mm i< n >N (< n >Z%) < p ><m>
be the projection on the coordinates 1 to m: mm({a;i)) = (a;)ic<m>-
LEMMA 3.2. Let S c< n >N (<n >Zd)~be a subshift. Let Om =
log #7m(S) for m € N¢. Then the sequence dm is subadditive in each
coordinate of m:

(3.1) bp + dpiges > Opt(pita)es YP= (P1,..pa) EN* g€ Zy, i=1,...d.

bm ) . 5 )
[my U the m-th density of S. The sequence Tme, converges to h - the

entropy of S as each m; — oo. Furthermore

(3.2) h < Om Vm € N.
[m|p

Proof. Let m = (my,...,mq) € N¢ and assume that m # 1,i.e. m; > 1
for some i €< d >. View < m > as a box in R? of dimensions my, ..., mq.
Divide the box < m > to two boxes by the hyperplane x; = ¢, where £ € N
and £ < m;. Then the dimension of the smaller box is p = (p1,---, Pd),
where p; = m; for all j # ¢, and the dimension of the bigger box is
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p + qe;, where m; = 2p; + q for some ¢ > 0. As in the proof of Lemma, 2.2
#H#Tm(S) < #7p(S)#Tptqe; (S) and (3.1) follows.

For a nonempty strict subset 7 of < d > and m = (my,...,my) € N
denote

T = <d> \T={q1,q2;---;q1)}; ]-Sql <---<std, pzd_#TJ
mT = (mq1 9 mlha seey mqp)a
mit = (M1, ooy Mg, Mg ey mg) € N1 m = (m{i},mi), for i e<d>,
'™ = (Tg,---Tg,)-
Observe next that Al ;= il—"; is a subadditive sequence in each coor-
dinate of m{%t € N¢—! for a fixed value of m; € N. Fix m{?. Then 5m is
a subadditive sequence in m; € N. Hence lim,,, , Upntil m; = Qi
exists and &, < QY m; for any m; € N. Clearly, the sequence
@01, mi? € Ne1 is a subadditive sequence in each coordinate of mti}.
Continue this (contraction) process to deduce the lemma. O

For S =< n >N (< n >%") 6 = |m|,,logn, which is an additive
sequence in each coordinate of m € N, and h = logn.

DEFINITION 3.3. A subshift S C< n >N (< n >%%) is called a
subshift of finite type (SOFT) if it is mazimal subshift for the following
condition:

(a) There exists v € N and a subset P (of allowable configurations) of
<n ><*> such that 7(S) C P.

Equivalently, S is a SOFT if there exists a “window” of dimension r
with an allowable set of configurations P C< n ><*> such that a € S if
and only if any consecutive “box” of letters of dimension r in a belongs to
the allowable configuration P.

ExamMpPLE 3.4. LetTq,...T'y C< n > x < n > and denote I’ =
(T1,...,Tq). Form e Z% (N*) let T™ (Tp3,) C< n >™F1 be the set of all
sequences (a;) €< n >™F1 such that the following condition holds:

(a) Fiz k €< d > and let m = (mq,...,mg) = (mik my) Fiz ptkt e<
mt* + 11 > Nt and let p = (pl*},pr) € N4, Then the sequence
(a(p{k}’gk))Z:;”kH belongs to T} (T7i) (for each k €< d >.)
Let TN" (TZ%) be the set of all sequences (a:)jene ((ai)icza) such that
for each k €< d > and each pt*t € Ni—1 (plk} € 79-1) the sequence
d
(a(ptr1 o)) pren ((@(pir1 p,))prez) belongs to Y (TZ). Then TN c<n >N
d
and T7" c< n >% are SOFT induced by T.
The above SOFT is called matrix SOFT. Let S c< n >N (< n >Z7)

be a SOFT given by P C<n ><*>. For m € N¢ let
W™(P):=<n><"> forr £m,
Wm(P) — {(al)lm €< p ><m>. (ai);'i-jj—l cP
for1<j<m-r+1} forr<m,
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W (P) := {(a:)T €e W™(P) : (1) € P,

for j €< m > where a; = a; if my|ir—ji for each k €< d >},

be all P-allowable words of dimension m and all P-allowable periodic words
of period m. Note that any word in W2 (P) extends to a unique (bi)infinite

per

m-periodic state in SOFT & induced by P. Let

Om :=log #Wm(P)a 6m,peT = log #W;:zlr (P)7 m e N

Then hflﬁ and ‘T‘r“nf;: is called the m-th capacity and the m-th periodic ca-
pacity respectively. Combine the results of Lemma 3.2 with the arguments
of its proof to deduce:

LeEMMA 3.5. Let S c< n >N (< n >%%) be a SOFT given by the

allowable configurations P C<n >". Then

(sm,per S 6m S 6m; m € Nd-

The sequence 6m, m € N¢ is subadditive in each coordinate. Hence the
sequence \iﬁ’ m € N converges to the capacity heom. Let hper =

dm,per

lim sup,, o0 Tl be the periodic capacity of S. Then

é
hper S h S hcom S —ma
[m|p,

for any m € N¢.

A simple argument yields [Fr2, Thm 1.3]:

LEMMA 3.6. Let S c< n >N (< n >%%) be a SOFT given by
Pc<n>T. ThenS=0 < W™(P) =0 for some m € NZ.

DEFINITION 3.7. Let S c< n >N° (< n >%%) be a SOFT given by
P Cc< n >". Then S is called a decidable SOFT if one of the following
conditions hold:

(a) There exists m € N¢ such that W™(P) = {).
(b) There exists m € N? such that W)e.(P) # 0 (hence S #0).

Corollary 2.9 implies that for d = 1 any SOFT is decidable. For d = 2,
and hence for any d > 2, there are SOFT which are not decidable [Ber]
and [Rob]. That is there exist nonempty multi-dimensional SOFT which
do not contain a periodic state. This is a first example which shows that
the theory of multi-dimensional SOFT is much more complicated then one
dimensional SOFT.

THEOREM 3.8. [Fr2, Thm 2.5] Let S < n >N (< n >%%) be SOFT.
Then h = heom,-

In this paper we refer to h = h¢op, as the multi-dimensional capacity
(mdc) of the given SOFT. In mathematics h is called the entropy of S. In
statistical mechanics e” is called the entropy of the given SOFT.
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Note that if S is undecidable SOFT then
hper = =00 < 0 < h = heom-

(Compare that with (2.3).)

LEMMA 3.9. Let S c< n >N (< n >%%) be a SOFT induced by the
set of allowable configurations P C<n ><*>, wherer > 21. Let N = #P.
Then there exists T = (I'1,....,Tq) T C< N > x < N >, i =1,...,d
such that there is one to one correspondence between any word a € W™ (P)
and b € T™ 1 for every m > r + 1. Moreover there is one to one
correspondence between S and N (FZd). Furthermore any a € Wyg,.(P)
corresponds to a unique b € I''% . and vice versa for any m € N.

Proof. Label allowable configurations (a;)} € P by 1,...,N. Let u,v €
< N > correspond to (a;)i, (bi)1 € P. Then for each k €< d > the edge
(u,v) € Ty if and only b; = aite, for i €< r —ep >. It is straightforward
to see that (a;){* € W™(P) for m > r+1 if and only if (u;)~ "+ € ™
4;":';_1 for j e< m —r >. Clearly the any
(a)iena ((ai)ieza) € S gives rise to a unique (uj)jens € TV ((43)5ez4) €
T and vise versa.

Let a € W™ (P). Extend a to the m-periodic state @ = (aj)ijene €

where u; corresponds to (a;)

per
S. Then @ induces (u;)™' € T, where u; corresponds to (ai)ir:jkl.
Similarly any (u;)7*"" € ', induces a unique a € W™,.(P). O

Note that the coding of a multi-dimensional SOFT as a matrix SOFT
given in Lemma 3.9 is less efficient that the coding of 1-dimensional SOFT
given by Lemma 2.7.

4. Estimates of mdc in terms of spectral radii I. From now
and until the end of the paper we assume that S C< n >N (< n >Z%
is a matrix SOFT type given by I' = (I'q,...,T'4) with d > 1 unless stated
otherwise.

DEFINITION 4.1. For k €< d > and m{*} € N¢-1 Jet T(k,m{¥}) C
(DU m O plhym™ 1™ 40 1o graph on the vertices (DF}H)m -1t
such that the edge

((Dstr3 )itrerccmitr > (G143 )ity ccmisrs) € F(k,m{k})

if and only (b;1y, c;01) € Ty, for each itk e< mibt >, Let T, (K, m{*}) C
(F{k});}éik} X (F{k})géik} be the graph on the vertices (F{k});,‘;ik} such that

the edge
((bs0)50 e <o 41155 (G101 i0r ccmrr 41005 ) € Tper (k, mtFY)
if and only (byry,cixy) € Ty for each it e< mikt 4 1182 > Denote

by p(T(k, m{*)) and p(T e (k, mi*})) the spectral radii of T'(k, m{*}) and
Tper (k, mi%) respectively.
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That is I'(k, m*H)N (T(k, m{*})?%) is the 1-dimensional SOFT gen-
erated by the “strip” in direction k with the basis of dimension mi*},
which is an allowable configuration with respect to T'. Tpe,(k, m{#HN
(Tper (k, mi*1)Z) is the 1-dimensional SOFT generated by the “strip” in
direction k with the m{*}-periodic basis of dimension mt*} + 1{*¥} which
is an allowable configuration with respect to I'. Note that we can view

. . {k}
each m{*¥} periodic configuration (bs(x; )it} ccmirry11kt> € (Fiﬁ})m as

(e} _q4kr . .
m* -1 which has a periodic

. . 1!
extension to a configuration (byx1 )it cemitt 410> € (T¥)™ . Thus

(by abuse of notation) we view (I‘{k});’;{rk} and Ty, (k, m%¥}) as subsets of

(F{k})m{k}_l{k} and T'(k,m{*}) respectively. In statistical mechanics the
matrix A(T'(k,m%#})) is called the transfer matrix.

LEMMA 4.2. Let S c< n >N (< n >%%) be a SOFT given by
T = (T1,...,T%). Let 6m, Omper, m € N? be defined as in Lemma 3.5.
Then

a configuration (bi(i1 )it ccmirys € (TTF})

lim Lm{k}’m'“)
Mp—00 my

= log p(T'(k, m*1)),
(4.1) 5
lim sup ~ELAPE 1o p(T,, (K, m ).

my—00 mg

The sequence log p(T (k, m{*})) is subadditve in m{*} € N*=1 for each k €
k
<d>and h < log p(L(k,m*))) for each m*}* € N*=1 . Furthermore

[mik}],,
1 T {k}
i  0epLEmT) _
mik}—o0 im ik},
4 log p(Tper (k, m{*}))
er 7m
lim sup 08P p{k} = hper-
mik} 500 |m |P7‘

Proof. Since 6y, is a subadditive we deduce (as in the proof of Lemma
3.2) that the limit of the left-hand side in the first equation of (4.1) exists.
Theorem 2.8 yields that this limit is equal to log p(I'(k, m{#})). Since
is a subadditive sequence it follows that log p(T'(k, m{*})) is a subadditive
sequence. Hence the limit of in the left-hand side of the first equation of
(4.2) exists. Use the definition of heom and Theorem 3.8 to deduce the
first equality of (4.2). The subadditivity of log p(T'(k, m{*¥})) yields the

inequality h < W.
Use Theorem 2.8 to deduce that log p(Tper (k, m{¥})) is the density of
periodic paths on the graph T'pe,(k, m{k}). Hence the second equalities of
(4.1-4.2) follow. O
(4.1-4.2) can be viewed as contraction of the first inequality given in
Lemma 3.5 in the direction k. It is not a coincidence that we have only up-

per bounds for the mdc as in Lemmas 3.5 and 4.2 but we do not have lower
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bounds. The undecidability of a general multi-dimensional SOFT implies
that we can not have lower bounds for general multi-dimensional SOFT.
In order to have lower bounds for A one has to assume some conditions on
the SOFT.

Recall that a graph A C< n > x < n > is called symmetric if (u,v) €
A < (v,u) € A. That is any walk on A is reversible. Many SOFT
I = (T4, ...,T'y) in statistical mechanics are given by the nearest neighbor
graph A =T'; = ... = T'y, which is symmetric. We first consider the case
d = 2. In that case for k €< 2 > m{¥ € N,

THEOREM 4.3. Let d = 2 and assume that S C<n >N (< n >%°) is
a SOFT given by T = (T'1,Ts). Suppose that T's is symmetric. Then

) log p(T'(1,p+2g +1) —logp(I'(1,2¢ + 1)) _ . _ 10g p(Tper(1,2m))

4.3
( p 2m

7

for any m,p € N and q € Z . In particular, S # 0 if and only if the graph
I'(1,2) contains a cycle. Finally

(4.4) hper = h.

Proof. We first prove the upper bound of (4.3). The symmetricity of I's
yields the symmetricity of each I'(2,4) and I'per(2,4) for any ¢ € N. Hence
the eigenvalues of the symmetric matrix A(T'(2,4)) are real. As A(T'(2,4))is
nonnegative the Perron-Frobenius theorem yields p(T'(2,4)) is the maxi-
mal eigenvalue of A(I'(2,7)). Assume that £ = 14+ 2m, m € N. Then
all the eigenvalues of A(T'(2,4))?>™ are nonnegative. Thus p(T(2,i))?™ <
tr A(T'(2,i))?>™. Recall that tr A(T'(2,4))?™ is the number of periodic paths
on the graph I'(2,%) of length £ = 1 4+ 2m. Observe next that any periodic
path on I'(2,4) of length £ is a path on I'.,(1,2m) of length i. Thus

IOgP(F(27 l)) < i IOg #Fper(]-a 2m)i_1

) - 2m )

Let ¢ — oo. The first equality of (4.2) implies that the left-hand side of
the above inequality tends to h. Theorem 2.8 implies that the right-hand
side of the above inequality tends to 5—1log p(T'per (1,2m)). This proves the
upper bound of (4.3).

We now prove the lower bound of (4.3). Let i € N, N = #I"""! and
x € RY be a nonzero row vector. Let p € N. As p(T'(2,4))P is the maximal
eigenvalue of the symmetric matrix A(I'(2,¢))P the maximal characteriza-

tion p(T'(2,7))P yields (see Appendix)

xA(T(2,i))PxT
xxT )

p(T(2,9)" >
For g € Z, let x = 1A(T'(2,4))?. Then

1A(D(2,4))P291T

(45) P 2 i s
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Observe next
(4.6) #TO1E0 — 4D(1,0)1 = #0(2,4) ! = 1AT(2,i)) 17,
Hence (4.5) is equivalent to

log p(T'(2,1)) S 1log#T(1,p+2¢+1)"" —log#I'(1,2¢ + 1)"" .

i p i

Let i — oo and use (4.2) and Theorem 2.8 to deduce the left-hand side
of (4.3).

Consider the graph I'(1,2). Let M = #I'5. Suppose first that I'(1,2)
does not have a cycle. Then I'(1,2) = . Hence S = (). Assume now
that I'(1,2) has a cycle of length L. This cycle is (u1,v1), ..., (ur,vr) where
(uj,v;) € To. Here j =1,...,L and ur, = u1, vp = v1. We view this cycle
as a configuration in T(X=11) where u; and v; are in the position (1, )
and (2, j) respectively Since 'y is symmetric we deduce that (uj;,v;,u;) €
I'2. Then (uy,v1,u1), .., (ug,vr,ur) is a cycle in T'(1,3). This cycle is a
configuration in T'#~12) which is (L — 1,2) periodic. Hence this periodic
configuration extends to a periodic state in S, i.e. S # 0.

We now prove the equality hper = h. The second part of (4.2) implies
that for any SOFT given by I' = (I';, ;) we have the equality

O s
111'11 sup % = logp(rper(]-:j))'

i—00

The upper bound of (4.3) yields

lim sup me)ﬁper > h.
i—00 2m
Let m — oo to deduce that hper > h. Use the obvious inequality hpe, < h
(Lemma 3.5) to deduce hper = h. O
The lower bound of (4.3) for ¢ = 0 is given in [Fr2]. The equality
hper = h is due to the author [Fr2, Thm. 3.1]. Use the upper bound in
Lemma 4.2 to deduce the inequality [Fr2, Cor.3.4]

log p(C(1,p+1)) _ log(T(1,1) _, _logp(T(1,p+1))
D P -7 p+1

(4.7 , for any peN.

(Actually, the upper bound in the above inequalities is valid for p = 0.)
Taking in account that log p(T'(1,p)) is a subadditive sequence in p € N
(Lemma 4.2) and the equality T'(1,1) = I'; we obtain that the difference
between the upper and the lower bound in (4.7) satisfies

logp(T(1,p+1)) (10gp(1“(1,p+ 1)) logp(T(1, 1)))
(4.8) p+1 p P

_ _logp(C(L,p+1))  logps) _ logp(Ty) —h _ logp(I')
plp+1) p+1 ~ p - p
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Thus, if S # @ then p(T'(1,2)) > 1, p(T';) > 1 and we deduce that the
right-hand side of (4.8) converges (slowly) to 0 as p — oo.

COROLLARY 4.4. Let S c< n >N (< n >%%) be a SOFT given by
I = (T'1,T2). Assume that either T'y or 'y is symmetric then the mdc of
S is computable. Recall that T'pe,-(1,£€) can be viewed as a subgraph of
I'(1,¢). Hence

(4.9) P(Cper(1,£)) < p(T(1,£)) forany £ €N.

Hence for p = 2m — 1 the upper bound in (4.3) is better then the upper
bound in (4.7). For I'; =T'y = A, where A is a special symmetric graph,
the upper bound in (4.3) is due to Calkin-Wilf [CaW]. It turns out that
the best lower bounds in (4.3) are obtained when p = 1 and q is increasing.
(This is the “opposite” to the lower bound in the inequality (4.7).) See
[CaW, WeB, NaZ] and §6.

5. Estimates of mdc in terms of spectral radii 1. Most of the
results of this section address the case d > 3. We always have an upper

(k)
bound h < % given in Lemma, 4.2. To have improve this upper
or

bound as in (4.3) we need to assume a symmetricity condition on some of
the graphs I';, 1 €< d >.

DEFINITION 5.1. Let I'1,....T4 C< n > x < n > and let T =
(T'1,.,Tq). Leti €< d > and 7 C< d > \{i} be a nonempty subset and
let m = (myq,...,mq) € N¢. Then Ff.f‘per,FT,per(i7m{’}) are the following
subsets of T™,T'(i, m%"}) respectively:

(a) w = (wj)je<mr1> € I, if w € T™ and the configuration w is
periodic in the directions given by 7. That is let j = (j1,...,7d), t =
(t1,-,ta) E<m+1>. Then ws = wy if myljq —tq for each g € 7.
(b) (u,v) € Ty per (i, mi}) if (u,v) € T(i,mi*}) and the configurations

A m{it it

u = (Uit} )it e cmiiz >, ¥ = (Vjti})jtite<miits € (riiym™—1

can be extended to T1?} allowable configurations, which are periodic in the
directions given by 7. That is, let

plh = (m+ e, ik,

qeET

Let 4 = (’u.j{i})j{i}e<p{i}>, v = (’Uj{i})j{i}e<p{i}> where Uj{i} = Ug{i},
Vjtiy = gy for ittt e< plt > if my|j, — t, for each g € T. Then
4,0 € (Dliy<ptd 189>,

THEOREM 5.2. Let d > 2 and assume that S C< n >N (< n >Z%
be a SOFT given by T = (T'1,...,Ty). Let 7 be a strict nonempty subset of
< d>. Assume that T'; is symmetric for each j € 7. Leti €< d > \T,
m = (my,...,mq) € N'. Assume that for each j € T m; is even. Then

log P(Fr,peT (4, m{i}))
|m{i} |pr '

(5.1) h<



CAPACITY, PRESSURE AND HAUSDORFF DIMENSION 17

Proof. We prove the theorem by induction on d. For d = 2 (5.1) is
equivalent to the upper bound of (4.3). Let d > 3 and assume that the
theorem holds for d — 1. Let p € 7. Then I'(p, m{P}) is symmetric. Recall
that

log p(T'(p, m{7}))

h<

|m{p}|pr
(5.2)
_ log p(T(p,m{P}))™»  log p(A(T(p, m{P}))m»)
[m|p [m|p -

Assume that m,, is even. As in the proof of Theorem 4.3 it follows that

p(C(p, miP}))™ < tr A(T(p, miP}))ms

tr A(T(p, m{Ph))me = T %,

(5.3)

m+te,—1
is a path of length m; on the graph T'(;} 1., (4, mi1) of length m;. Hence

Assume first that 7 = {p}. Fix m{"} and let m; vary in N. Then T

 log#Ter o
mlilgloo % - logp(F{P}mer(va{z}))'
Combine the above inequalities to deduce (5.1) for 7 =< p >.
Assume now that p € 7 and 7\{p} # 0. Fix an even m, and con-

sider I‘}"’}Le” for all values of mt?} € N?~'. These configurations gives

rise to the following SOFT S c< N >4-1 (< N >Z7") given by
I'= (Fla Fp larp-i-la Fd)

(a) N = #(T'p)per. That is ¢ €< N > is represented by a periodic path
= (uj);n”+1 of length my in Tp.

u
(b) For £ €< d > \{p} I, c< N > X < N > is the following subgraph.
(u,v) € Ty, u = (uy)]" ™ 0 = ()7 € (T,)p if and only if (u ,v;) €

[yforj=1,..,mp+ 1
Let h be the entropy of S:

m+e,—1 . .
> . log #F{p},per _ . log p(r{p},per (Za m{z}))
h= lm ——F—F——= im .
mir} —o00 |m{1’}|pr mj—o0,j€<d>\{i,p} Hj€<d>\{i,p} m;

Use (5.2-5.3) to deduce h < mip Since I'y is symmetric for each ¢ € 7 it

follows that fq is symmetric for each ¢ € 7/ := 7\{p}. Assume that each
my is even for ¢ € 7'. Then the induction hypothesis yields

log P(fr’ ,per (4, m{i’p}))
|m{i,p} |p,’_

h <
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Hence

log P(fr’,peT (i, mtird))
lmii}|,,

he <
myp

Observe finally that T ., (i, m{%P}) is isomorphic to T'; ., (i, m{}). Then
the above inequality implies (5.1). O

The arguments of the proof of (4.4) yield:

COROLLARY 5.3. [Fr2, Thm 3.1] Let d > 3 and i €< d >. Let
Sc<n>N (<n >Zd) be a SOFT given by T = (T'y,...,T'y). Assume that
T is symmetric for each j €< d > \{i}. Then hper = h.

To give lower bounds for the entropy of SOFT S c< n >N (< n >Z7)
for d > 3 as in Theorem 4.3 we need to define S C<n SN (< 24T
similar to S defined in the proof of Theorem 5.2.

DEFINITION 5.4. Letd > 3 and I'1,....I'y C<n > x < n >. Fix
ie<d>andqe N Lt § c< N >N (<« N >Zd_1) given by
riihe = (Fii}’q, ...,Fz{i}l’q,f‘z{i}l’q, ...,I‘y}’q) which are defined as follows:

(a) N = #ng' That is p €< N > is represented by a path u = (u;)] of
length ¢ — 1 in T';.

(b) For £ e< d > \{i} I‘f}’q C< N > x < N > is the following subgraph.
(u,v) € F?}’q, u = (u;)!,v = (v;)! € 9" if and only if (uj,v;) € Ty for
i=1,..,q.

Let b9 be the entropy of S. For ¢ = 1 let K12t = plib1. (Note that
bt = p{i} .)

THEOREM 5.5. Let d > 3 and assume that S C<n >N (< n >Z) be
a SOFT given by T = (T'q,...,Tq). Leti €< d > and m = (mq,...,mq) €

Ne. Then for each j €< d > \{i} the limit lim,,, 0o % exists an
is denoted by 10g pgiy (, 9. (pgy (G, m) > 0, and pegy (G, mY) =
0= 8 =0.) Assume that T; is symmetric for j €< d > \{i}. Then for

anyp €N and g€ Z,
log p(T(i, (m'7}, p + 2 + 1))

< log p(T(i, (m"7},2g + 1)) + plog psiy (4, miiih,
In particular

RUbp+2e+1 _ p{i}h.20+1 plitp+24¢+1
(5.5) <h ———.
p p+2q+1

Suppose furthermore that T'j is symmetric for each j €< d > \{i}. Then
h is computable.

Proof. Recall that log p(T'(j,m{7})) is subadditive sequence in each
log p(T(j,m'7})
m;

coordinate of m{/}. Hence lim,,, o0 = log pgiy (j, mB3}). If
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S # B then log p(T'(j, m{7}) > 0 and py;y (j, m}) > 1. If p(T(j, mU}) =0
for some m{7} we deduce that S = 0. Thus p(;;(j, m@}) =0 =S = 0.

Assume that T; is symmetric. Then the graph T'(j, m{/}) is symmetric.
Hence p(T'(j,m{/})? is the maximal eigenvalue of A(T'(j,m{7}))?. The
maximal characterization of p(I'(j, m{7}))? yields

A(D(j, mih))pxT
xx T

p(T(G,mihp > =

for any x # 0. Let x = 1A(T'(j, m{7})9. Recall that

LA(D(j, (mUh))aT = g1,

r=(m—1,..,mj_1 —1,,mjy1 —1,...,mqg — 1),

For any ¢ € Z . Hence the above inequality is equivalent to

1 (. mi} [(mb? 2¢+1)-1 @Y pt+2q+1)-1
» g p(C(j, mV7) log # > log # ’
m; m; m;
where (mi/} ¢) := (ma,...,mj—1,€,mjt1,...,mq). Let m; — oo in the

above inequality to obtain (5.4). Divide (5.4) by |[m{%7}|,. and let m; — oo
for each ¢ €< d > \{i,j} to obtain hlidrt+2etl < plib2e+1 4 pp This
proves establishes the left-hand side of (5.5). Recall that

log p(T'(j, (m{%7} p + 29 + 1))

h< -
= ml e (p+ 29+ 1)

Let m, — oo for each ¢ €< d > \{4,;} to deduce the right-hand side of
(5.5). Observe that for ¢ = 0 in (5.5) the difference between lower and the

upper bound is bounded above by hiTJ}' (Note that if rli} = —oo then
S=10)

We now show by induction on d that if d— 1 graphs out of the d graphs
I'1,...,T'g are symmetric then h is computable. For d = 2 the computability
of h follows from Theorem 4.3. Assume that d > 3 and suppose that h is
computable for d—1 dimensional SOFT if d—2 graphs of d—1 given graphs
are symmetric. Assume that each I'; is symmetric for j €< d > \{i}. The
arguments of the proof of Theorem 4.3 yield that S # @ if and only if
(4, (2,...,2)) has a cycle. Assume that I'(4, (2, ...,2)) has a cycle. Consider

the lower and the upper estimates given in (5.5) for ¢ = 0. For each

p € Nthe d—1 subshift given by TUbr = (0{7h? __ plhe plabe  plide)

has at least d — 2 symmetric graphs. Hence the entropy of each At7}? ig

computable by the induction hypothesis. The difference between lower

and upper bounds in (5.5) is bounded above by ’L:Ti}. By the induction

hypothesis hi%} is computable. Hence h is computable. a
Similar lower bounds for h are given in [Fr2, §3].
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6. Examples. EXAMPLE 6.1. The residual entropy of square ice can
be described as the entropy of the following Z2-SOFT: The coloring of the
Z? lattice in three colors, where no two identical colors are adjacent [Lie,

p’169]. The admissible colorings correspond to a SOFTS C<n >ZZ, where
n=3andy =Ty = A is a complete graph on 3 vertices without self loops:

(6.1) A=<3>x<3>\{(11),(22),(33)}

In a brilliant paper Lieb [Lie] computed the periodic entropy S.
3. 4
(6.2) her = 5 log 5 = 043152...

It was shown in [BKW] that for this S hper = heom. Note that A is
a symmetric graph. Hence the equality hper = h(= hcom) follows from
Theorem 4.3. There are just a few cases of SOFT S in statistical mechanics
in which the exact value of the entropy of S is known. Note that h is not
a logarithm of an algebraic integer, as in the case of the entropy of one
dimensional SOFT (Theorem 2.8). (h is a logarithm of u = (%)%, which is
an algebraic number: 27u? = 64.)

We computed several spectral radii which give upper and lower bounds
of h using Lemma 4.2 and (4.3).

p(A) = p(T(1,1)) = p(Tper(1,3)) =2, p(T(1,2)) = p(Tper(1,2)) = 3,
p(T'(1,3)) = 4.561552813, p(Tper(1,4)) = 6.372281326.

Note that #A*~1 = 3.2%=1 for any k € N. That is I'(1,k) has 3 - 2¥—1
vertices. A straightforward argument shows
#AF = #AFTT BN for k> 2, #Aper = 0.

per per

Hence T'per(1, k) is a graph with the number of vertices vy, which we denote
by (ka Uk):

(1,0), (2,6), (3,6), (4,18), (5,30), (6,66).
The lower bound of (4.3) for p =1, ¢ = 0 yields

h > logg = 0.405465108.

The estimate h ~ log% goes back to Pauling [Pau]. For p =2, ¢ = 0 the
lower bound of (4.3) yields

h > 0.4122579570.
For p =0, 1,2 the upper bounds of h in (4.7) are
0.693147181 > 0.549306145 > 0.505887698 > h.
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The upper bounds of h in (4.3) for m = 1,2 are
0.549306145 > 0.462989385 > h.
Note that

log p(Tper(1,3)) _ log2

3 =.0231049060 < h.

That is w does not have to be a an upper bound for h for an
odd k > 1 (contrary to the upper bound in (4.3)).

Physics literature has many asymptotic expansions which estimate the
values of the SOFT related to some models in statistical mechanics. (As we
pointed out before physicists refer to e as the entropy of S. We adjusted
the results of Lieb to our notation.) We already pointed out the Pauling
estimate h = log% for the residual entropy of square ice. A remarkable
estimate using the asymptotic expansions is due to Nagle [Nal] h = 0.432+
0.001.

EXAMPLE 6.2. (0,1) run length limited channel is Z%-SOFT can be
described by the graphs Th = ... = Ty = A C< 2 > X < 2 >, where
A =1{(1,2),(2,1),(2,2)}. (In our notation 2 = 0.) That is each point of
the lattice is filled out by 0 and 1 and no two 1’s are neighbors. Let hg be
the entropy of this Z2-SOFT. In information theory the logarithms are on
base 2. Let hg be the entropy with respect to the basis 2. Note

— hg
47 log2
Theorem 2.8 yields
— 1
i = logy p(A) = log, +2‘/5 — 0.694241914.

The exact value of hy is not known. In fact the aim of the paper [CaW]
was to find good estimates of hy. As we pointed above the inequality (4.3)
was proven in [CaW] for this particular case. The bounds in [CaW] were
calculated with greater precision in [WeB]. In [FoJ] hy was estimated up
to 8 digits. In [NaZ] hs is estimated up to 9 digits:

0.587891161775 < hy < 0.587891161868.

In [NaZ] h3 is estimated to two digits using the inequalities given in the
previous section:

0.5225017411838 < hz < 0.526880847825.

The improvement of these estimates by the methods of §5 needs better
computer ability than available now. Indeed, the upper bound given for hg
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involves the computation of the spectral radius with more that 40 million
elements.

The above two examples follow the following pattern:

DEFINITION 6.3. Let A C<n > x < n > be a given graph. Ford € N
denote by Sq(A) C<n >z (<n >Nd) the SOFT given byTTy = ... =Ty =
A. Let hq(A) be the entropy of Sg(A). Many Z%SOFT in statistical
mechanics are of the form S;(A) where A is a symmetric graph.

PROPOSITION 6.4. Let A C< n > x < n > and consider Sq(A) for
d € N as defined above. Then the entropy sequence {hq(A)} is a decreasing
sequence which converges to hoo(A).

Proof. Let T'(d) = (A, ...,A). Let m = (my,...,mg—1,1) Then T'(d)™~1

—_——

d
is isomorphic to I'(d — 1)™'“~1'" Hence
log #I'(d)™*
m;—o0, jE<d>\{d} ||,

= hd_l(A).

Use the last inequality of Lemma 3.5 to deduce that % > hgq(A).
Hence hg—1(A) > hq(A). O

It is of interest to find he(A) for the two graphs A discussed in the
above two examples. Our last example shows that there are Z%-SOFT in
statistical mechanics which are not of the form S;(A) and they do not have
an obvious symmetricity.

EXAMPLE 6.5. Let d € N. A state 8 is partitioning Z? to dimers
(dominoes) which is obtained by joining some adjacent lattice points
together to form a dimer, such that every element in Z¢ is covered by
one dimer exactly. (Equivalently, o state 0 is a I-factor of the graph on
7.% where the vertices u,v € Z? are joint by an undirected edge (u,v) if
dp(u,v) =1.)

PROPOSITION 6.6. Let d € N. Then the set of dimer partitions of
7% is a Z4-SOFT S; C< 2d >Z° given by T'(d) = (T4, ...,Tq), where each
T; €< 2d > x <2d > is given as follows:

(a) (i,i+d) €T; and (i,5) € T; for j #i+d.
(b) Fork #1i (k,i+d) ¢T;.
(c) Fork #1i, j #i+d (k,j) € T;.

Proof. A dimer in direction of e; is viewed as an edge (i,i + d), where
i is the “left” part of the dimer and ¢ + d is the “right” part of the dimer.
That is if the two positions of the dimer in direction e; is p € Z? and
P + €; then the position p is colored by ¢ and the position p + e; is colored
by i + d. Thus any partition 8 of Z¢ to dimers induces a unique coloring
74 to 2d colors. Vice versa any ¢ € I'2" induces a unique dimer partition
of 7% O

Note that I'; is not symmetric. However, the matrix A(T;) is a diago-
nable rank two matrix with the two nonzero eigenvalues d—1++/(d—1)2+1.
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PROPOSITION 6.7. Let d € N and let hqg be the entropy of the d-
dimensional dimer SOFT given by Sg. Then hg is an increasing sequence.

Proof. Consider all dimer partitions of Z¢ in the directions ey, ...,
eq—1. These dimer partitions give rise to a SOFT S§; C S4. Hence the
entropy of Sy is not more then hq. Clearly, the entropy of Sy is hq_1, i.e.
ha—1 < hq. O

Note that S; has only two states. Hence hy = 0. The dimer problem,
i.e. finding the value hg for d > 1 can be traced to 1930’s. Fowler and
Rushbrooke estimate he =~ 0.29 and hz ~ 0.43. Furthermore they prove
that hq < Llogd [FoR]. Fisher, Kasteleyn and Tempreley (each working
independently of the other two) found [Fis] and [Kas]

1 (=1)f
. he==% ——2L _ =0.201
(6.3) > W;:O Qi) = 029156090

Until today no exact formula is known for hz. Hammersley [Ha2] was the
first one to relate the computation of any hg to permanents. (A permanent
of a square matrix A = (a;;)}’, denoted by perm A, is the sum of all
products (n!) appearing in determinant of A but all the signs are chosen
to be +.) Let m = (my,...,mq) € N? and view < m > as a box in Z¢
of volume |m|p,. Suppose that |m|,, is even. Let P(m) be the number
of partitions on all points in < m > to dimers. (That is consider the
adjacency graph on vertices in < m > and let P(m) be the number of
1-factors of the graph.) It was shown by Hammersley [Hal] that

lim sup log P(m) P(m) = hq.
m— 0o |m|pr

(In our notation #I'(d)™~! > P(m), and if |m/|,, is even and each m; is
big then P(m) is close to #I'(d)™~1.) Since |m|,, is even the adjacency
graph on < m > is bipartite. This bipartite graph can be presented by
0 — 1 matrix A(m) of dimension % Then P(m) = perm A. Let B be a
matrix which obtained from A(m) by changing some entries of A(m) equal
to 1 to —1. Then |det B| < perA, where det B is the determinant of B.
Following the ideas of Fisher [Fis] Hammersley chooses a special matrix B,
whose determinant for d = 2 gives perm A. Replacing perm A by |det B|
Hammersley obtains the lower bound hs > 0.418347. Next Hammersley
relates hg to the famous van der Waerden permanent conjecture as follows.
Let m = (my,...,mq) € N¢ where each m; ie even. Then ['(d)ps, is the set
of all partitions of the torus T™ := Z¢/(m1Z X ... x mgZ) to dimers. The
number of these partitions is equal to perm Aper(m), where A,..(m) is the
adjacency matrix of the bipartite graph corresponding the torus T™. (The
dimension of Ay, (m) is %) Note that each row and column of Ap.,(m)

i

has 2d ones. Hence 55 Ay, (m) is a doubly stochastic matrix. The van der
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Waerden permanent conjecture proved by Egorichev [Ego] and Falikman
[Fan] implies that

k!
(6.4) perm C > Tk >e7*  for any k x k doubly stochastic C.

This weaker form of the van der Waerden conjecture perm C > e~% was
proved by the author in [Frl]. Hence

|m|,,

|m, 2

log perm A e, (m)

|m|pr

-5
The definition of hy and [Hal] yield that

log perm Aper(m)

ha = limm_ oo

|m|pr

Hence
(6.5) ha > S log(2d) — &
. d 2 D) og 2.

Note that for d = 3 this bound gives hz > 0.3958797354 which is worth
then Hammersley’s lower bound for hs. However for d > 4 the lower
estimate (6.5) is better the lower estimates in [Ha2]. To obtain improve
the upper bound hy < {logd given in [FoR] one needs an upper estimate
the permanent of 0 — 1 matrix A,.,(m). An upper bound for a permanent
of 0 — 1 matrix was conjectured by Minc and proved by Bregman [Bre].
From this bound it follows

|m|pr

perm Ape (m) < ((2d)!) 4.

Hence
1
. < — 1
(6.6) ha < 1 log(2d)

(See [Min] for details.) Use Stirling formula for (2d)! for large d to deduce
COROLLARY 6.8. Ford >>1

log d

hy = %log(Qd) - % +o(1) (: %log(Qd) - % + O(T)).

Recently there were significant improvements of the above results. First, a
lower bound on permanents of 0 — 1 matrices containing in each row and
column k ones due to Schrijver [Sch] implies

(2d _ 1)2d—1 |m2|pr
(2d)2d—2 )

(6.7) perm A e (m) > (
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Hence

(6.8) ha > =((2d — 1)log(2d — 1) — (2d — 2) log(2d)).

N | =

In particular
hs > 0.440075842.
Ciucu showed [Ciu] (without using permanents) that
hs < 0.463107.

Finally we mention two heuristic results. The first one is an old result of
Nagle [Na2] hg = 0.44645+0.00005 which uses asymptotic expansions. The
second recent estimate hg = 0.4466 %+ 0.0006 is due to Beichl-Sullivan [BeS]
is based on special Monte Carlo methods to estimate permanents .

7. Subadditive functions on Z‘_il_-SOFT. In what follows we as-

sume that S c< n >N is a nonempty SOFT given by I' = (T'y, ..., T'y). For
each m € N? let

(bi)iene €S : by =aifori e< m >},

(a1)ie<m> €< n > 0 # C((a1)ie<m>)}-

C((a1)ic<m>) is called a cylinder of S corresponding to (a;)ic<m>- C(m) is
the set of all nonempty cylinders of dimension m in S. Note that C(m) C
[rm-1

Let TI be the set of probability measures on the sigma-algebra B C 2°
generated by all cylinders in S. p € II is called o-invariant if u(T) =
w(o; ' (T)) for every T € B and i €< d >. pu € I is called ergodic if p is
o-invariant and for each T € B such that o' (T) = T for all i €< d > one
has u(T) = 0,1. Let II; D II, be the set of o-invariant probability measures
and ergodic measures respectively. For p € II; let h(u) be the entropy of
p € II;. Consult with [Wal] for a good reference on ergodic theory for Z
actions and with [Kre] for Z% actions.

Denote by C(S) the Banach space of continuous functions f: S - R
with the maximal norm [|f||. In what follows we assume that {¥m }mend
is a family of continuous functions on § satisfying the condition

(7.2) |[Ym|| < K|ml,,, for all me N,

Then for each p € II the following sequence

(7.3) i) = ‘f;;;f””)

m e N,
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is bounded by K. A family 1, is called o-subadditive if

"p(ml,...,mj_l,m9+m9',mj+1,...,md) (.CL')
'
(74) S w(ml,...,mj_l,m},mﬂ_l,...,md) (x)+w(m1,...,mj_1,m;’,mj+1,...,md)(Uj JZ’)J
for all my,...,mj_1,m},my,mjr1,..mg €N, j€<d>, z€S.
Assume that v, is o-subadditive and (7.2) holds. It is straightforward to

show that if y € II; then the sequence |m|,.am(p), m € N? is subadditive.
(See the proof of Proposition 7.1.) Hence

(7.5 Jim o (i) = ap).

A celebrated Kingman subergodic theorem [Kin] claims that under the
above conditions

lim
(7.6) m—oco |mlp,

and 0(z) "= a(p), for p € II,.

Ym() uze. 6(x), for any u € II;,

riginally Kingman proved his result for d = 1. The extension to d >
Originally King d hi It for d = 1. Th tension to d > 1
is straightforward as pointed out in the proof of Proposition 7.1.) As
in [Fr3], to each (ai)ic< m> € C(m) we associate a positive real number
¢m((ai)ic<m>). This number can be viewed as the “volume” of the con-
figuration (a;)ic<m>- We assume that the family ¢ satisfies the following
o-subadditivity conditions
M ,...,mjm1,mAmY ;mj,...,ma
¢(m1,---,mj—l7m9+'m;-',mj+1’---:md)((a’(il7---7’id))i1=...=i;=l Y )
ml,...,m-_1,m'-,mj+1,...,md
(77) S (ﬁ(ml,...,mj_l,m;-,mj+1,...,md)((a(il,...,id))ilz,,,:iizl ’ )

M1,..mj,mimy mia ..., mg

+ (b(ml7---7mj—1am_’,"amj-{-la---amd) ((a(il,---Jd))i1:...:i;_l:ij]—m;:ij_,_l:...:id:l)’
for all m;,m} € N and j €< d >. Note that if the left-hand side of the
above inequality is defined then the right-hand side is also defined. One way
to obtain a family of o-subadditive functions is as follows. Let ¢ € C(S).
Define

(7.8) Sm(@)(x):= Y g0 '(x), z€S.
ice<m>

Then

(79) ¢m((ai)i6<m>) = max Sm(q)(x)7

z€C((ai)ie<m>)

satisfies (7.7). If q is a positive function on S then each ¢m((a;i)ic<m>)
defined by (7.8) is positive. Another natural families of ¢ satisfying (7.7)
for Z-SOFT are discussed in [Fr3]. Let {¢m} be defined as follows:

(7.10) ém((ai)ie<m>) = kén<an>§> Pr((ai)ie<k>), (ai)ic<m> € C(m).
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Clearly

(7.11) (zk((ai)ie<k>) < (gm((ai)ie<m>) for ke<m>.

Let Ym, ¥m € C (S) be the unique continuous functions which are constant
on each C((ai)ie<m>) with the value ¢m((ai)ic<m>); dm((@i)ie<m>) re-
spectively.

PROPOSITION 7.1. Let {@¢m }mene be a family of positive o-subadditive
functions. Then the following holds:
(a) The family {¢m}mena is a family of positive o-subadditive functions.
(b) The families {tm}ment and {thm}mena satisfy the condition (7.2).
(c) The functiond:S x S = Ry given by

(z,z) =0,
(z,y) = 1if z and y are not in the same cylinder of dimension 1,

S

and z and y are not in the same cylinder of dimension
(k+1,..,k+1), for some k € N,

i a distance on S.
(d) Forallz € S

1) R Co R C)

m— oo |m|p7‘ m—r00 |m|P7‘,

(e) Let p € II;. Then the limits below exist u a.e. and

(7.14) lim Ym(x) = lim im(x)

m—co |m|p, m—cc |m|p, )
The sequences {Bm mend and {Bm}mene given by
(113)  0< ) i= [ Vendh < fin(t) = [ Gimit, m €N

are subadditive sequences. The sequences {m }mene 0nd {@m }mend given
as in (7.3) converge to the same limit a(u) = a(p). Furthermore

(7.16) a(p) < am(4) < Gm(p), meN.

(f) Let p € Il,. Then p a.e.

(7.17) lim ¥m(2) = lim Yum(@) = a(u).

m—o0 |m|p7. m— oo |m|pr
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Proof. (a) Let m, m', m" be defined as follows

_ ! n
m = (m17 ey Mj—1, 15 + my,Mjt1, "'7md)7

(7.18) m' = (Mg, .., Mj_1, M, Mjy1, -, Ma),
m' = (m17 ...,mj_l,m;-',mj_,_l, ...,md) S Nd

Assume that

Pm((@)ic<m>) = Px((@i)ie<k>), k< m.

Suppose first that k; < mf. Then (7.10) and (7.11) yield the inequalities

qgm((ai)ie<m>) = ¢r((ai)ie<k>) < (gm’((ai)i€<m’>) < &m((ai)ie<m>)-

(Hence equalities hold in the above inequalities.) As each ¢~Sj is positive
we deduce (7.7) holds for ¢m((ai)ic<ms>)- Suppose that k; > mj. Let
ki = ml, kj = kj —mj <m/. Assume that k', k" are defined as m', m"
respectively. Then the o-additivity of ¢ and (7.11) yield

Pm((ai)ic<m>) = ok ((ai)ie<k>)
< dw ((a3)ie<ir) + ¢k”((ai)l((l,...,l,k;+1,1,...,1))

< ém'((ai)ie<m'>) + <73m”((ai)?11,...,1,m;.+1,1,...,1))-
(b) Let

K := max
(a1)€C(1)

$1((a1))-
Then the positivity of ¢ and o-subadditivity imply
0 < ¢m((a1)ie<m>) < [mlprK = 0 < dm((a1)ie<m>) < |mlpr K.
(c) We claim that
(7.19) d(z,y) < max(d(z,2),d(z,y)).

Note that d(z,y) < 1 and equality holds iff x and y are not contained in any
joint cylinder. Hence (7.19) holds if either z, z or z,y are not contained in
any joint cylinder. Suppose that C((ai)ic<(m.....m)>)> C((@i)ie<(j,....j)>)>
C((a3)ic<(k.....»)>) are the longest cylinders containing the pairs (z,y),
(z,2), (2,y) respectively. Clearly, m > min(j,k). Use (7.12) and (7.11)
to obtain (7.19).

(d) Let limsup,, o ’f:‘(i) = a > 0. Then for any ¢ > 0 there exists
N(e) € N so that m < |m|pr(a+€) for m > N(e) := (N(e), ..., N(€)). The
definition of ¢ and (b) yield that

KN (e)

————~> ) for m > N(e).
ming <;<d M;

$m < |mlp, max(a + ¢,
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lm[pr

< a + € for any € > 0. Clearly

lim sup Ym(2) < lim sup ¥m(2)

m—0o0 |m|pr m—o0 |m|pr ’

Hence limsup,,

Hence (7.13) holds.
(e) Suppose first that d = 1. Kingman’s subergodic theorem [Kin] yields
that that p a.e.

lim Ym (@) =¥(z) >0, lim ¥m (@) =T(z) > 0.

m—00 m m— 00 m

Furthermore, ¥ and ¥(z) are o invariant:
U(o(z)) =¥(z), U(o(z)) = ().

Use (d) to deduce ¥(z) = ¥(z) p ae.. Assume now that d > 1. We
prove the existence of the limits in (7.14) by the repeated use of Kingman’s
subergodic theorem as follows. Fix my,...,mq 1 and consider the family
{¥(ms,...,mq) ymaen- As this family is o4-subadditive we deduce that

lim 2 = (x) >0, mid .= (M1, ..y Mg—1)

p-a.e. Note that ¢,,1a1 () is o4 invariant. Observe next that for a fixed
mg the family {:l’/)n_':}m{d}eNd—l is oj-subadditive for j =1, ...,d — 1. Hence
{¥mtar } is o;-subadditive for j = 1,...,d — 1. Continuing this process we
deduce limpm_,oo 22 = U(z) p a.e.. Furthermore, ¥(z) is o; invariant

[m|p,
for j = 1,...,d. Similar claim holds the family . (7.13) yields (7.14).
As p is ¢; invariant for j = 1,...,d the o-subadditivity of ¢ and ¢ imply
the subadditivity of positive sequences Bm and Bp, respectively. Clearly
(7.15) holds. Hence the sequences oy, and dy, converge to a(u) and a(w)
respectively. Clearly (7.16) holds. (7.14) implies the equality a(u) = a(u).
(f) As p is ergodic and ¥(z) is ¢; invariant for j = 1, ...,d we deduce that
¥(z) is a constant function p a.e, which is equal to a(u). O
As [Fr3], for a given family of positive g-subadditive ¢ let

B(¢,t) := {(ai)ie<m> :  C((ai)ic<m>) # 0, dm((ai)ic<m>) < t}, t>0.
(7.20)

Let |B(¢,t)| be the cardinality of B(¢,t). Then the topology induced by
the metric d on S is given by the Tychonoff topology if

(7.21) |B(¢,t)| < oo for all t>0.
In what follows we assume that (7.21) holds. Let

(7.22) k(@) := limsup w.

t—o0
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Then
B(¢,t) C B(¢,t) for all t>0,
(7.23) ( ~) (¢,1)

K(9) < K(9).

8. Topological pressure. Assume that the family {¢¥m}mene C
C(S) satisfies the condition (7.2). Define the topological pressure P(y)
as follows:

Py = . max =) meN,
(a5)ic <rms €C(m) z€C((ai)ie<m>)

(8.1)

log Pm

P(y) := limsup

m—co |m|p’r '

PROPOSITION 8.1. Let S be a nonempty Z4-SOFT of < n >N As-
sume that the family {tm}mene C C(S) satisfies the condition (7.2). Then

—K < P(¢) < K +1logn.

Proof. Since S is nonempty Py, > e~ ™K Hence P(y) > —K.
For S =< n >N |C(m)| = nl™mler. Hence Py < el™rEplmlor and the
proposition follows. O

Let p € II;. Then the entropy of u is given by

(82 h(p=lim——— 3 4(C(ar)icms))10g 1(C((a)iccms))-

m—oco |m
| |pr(ai)ie<m> €C(m)

It is known that h(u) is upper semicontinuous. For a q € C(S) let the
family {Sm(q)} be defined by (7.8). Then the standard topological pressure
P(q) [Rue] is the topological pressure corresponding to the family {Sm(q)}-
Then P(g) has the following maximal characterization [Rue] or [Mis]:

(8.3) P(q) = max h(p) +/qdu= max h(w) +/qdu= h(p*) +/qdu*

for some ergodic p*.
PROPOSITION 8.2. Let the family {¢m}mene C C(S) satisfy the
condition

(8.4) lim

in the mazimal norm of C(S) for some q € C(S). Then P(¢) = P(q).
Proof. Let Pm, Pm(q) be defined by (8.1) for the families {tm} and
{Sm}(g) respectively. Set || “==5=l0)|| = ¢, Then
1

|m|p-

1 1
10g Pm(q) —ém < —— 1og P < ———
[mlp,

| log Pm(q) + €m-
pr
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As limp, 00 €m = 0 we deduce P(¢) = P(q). O

As in [Fr3, Lemma 3.10] it is possible to replace the condition (8.4),
in the maximal norm of C(S) for some g € C(S), by an intrinsic condition.
Let

(8.5) Ci(S) ={feC(S): /fdu =0, for all pell}.

Then C;(S) is a closed subspace of C(S). Let Q(S) := C(S)/C;i(S) be the
quotient space. Then Q(S) induces the following seminorm on C(S):

. = inf —g|| = inf — .
(8.6) [II71ll . 15— gll geg(s)gleaglf(w) g(@)|, [feC(S)
Note that ||| - ||| is the induced norm on Q(S). Furthermore

f(x) — f(o;xz) 1is the zero element in Q(S) for f € C(S)
and i=1,...,d,
Sm(f)

— is the zero element in Q(S) for f € C(S).
[m|,

(8.7)
f(@)

That is, the above trivial cocycles equal to the zero element in Q(S). Let

M={pel(8)": p=aip —aps, pi,p2 €I, a1,a0 € Ry}

Then M = Q(S)*. (For a Banach space B, B* is the Banach space of

the bounded linear functionals on B.) Furthermore, II; can be viewed as a

subset of the unit sphere of Q(S)* with respect to the dual norm to ||| - |||.
THEOREM 8.3. Let {t)m}ment C C(S) be a o-subadditive family that

satisfies the condition (7.2). Then

(a) The equalities (7.3), (7.6) and the first part of the inequality (7.16) hold.

(b) P(y) is characterized by

(8.8) P(¥)= lim P( Yrm )= lim max h(p) + / Yom dp.

m— 00 |m|pr m—oo pu€ll, |m|p7.

(¢) The following inequalities hold:

(8.9) P(1)) SP(IiT ) for all me N,
(8.10) P(y) > sup h(u) + a(w).
pelle

(d) Assume that for any e > 0 there exists N(e) € N such that

lam(p) —a(p)| <€, forall pell

(8.11) and m > N(e) = (N(e), ..., N(e)).

Then equality holds in (8.10).
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(e) Assume that

: Y
12 _ = =0.
(8.12) fim || - = all] =0

m
mosoo | [l

Then P(¢) = P(q) and

(8.13) P(y) = max (1) + o) = h(p*) + a(p®), for some p* € IL.
Proof. (a) The o-subadditivity of {¢m} implies the subadditivity of

the sequence {am}. Hence (7.3) and the first part of the inequality (7.16)

hold. (7.6) follows from the Kingman subergodic theorem, as in the proof

of part (f) of Proposition 7.1.

(b)+(c) The o-subadditivity of {i¢m} yields that the sequence {Pg} is

log-subadditive, i.e. {log P} is subadditive. Hence

pw) < 80m e
= |mly ’
(8.14) log P
lim 2™ = P(y)).
m—co [mp,
Furthermore

Ym(7) < Sm(P1)(z), z€S.

Hence (8.9) holds for m = 1.
Fix k = (ky, ..., kq) € N¢. Let

Ymk := Ymok, mok:= (miki,..., maks), m e N,

Let; =0y, j=1,..,dand @ = (71,...,54). Then the family {m i }men
is o-subadditive family. Let Pmx, m € N? and P (%) be the quantities
defined in (8.1) for the family {tm k}mene and the commuting transfor-
mations o. Furthermore, let Px(¢m k) be the topological pressure for m i
with respect to @. Note that the Markov partition for & are all nonempty
cylinders of dimension k. Hence P« = P; k. Use the second part of (8.14)
to show straightforward [Fr3, §2-3]

Bi(¢) = [klprP(4),

Pe(Y1r) = |k|prp(#
pr

(8.15)
).

(The second equality follows from the maximum principle for the standard
topological pressure.) Hence

Y

() < Bc(¢1x) = |k|”’"P(W
pr

)
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and (8.9) follows. Thus

P(¢) < liminf P(¢—m)

m—oo  [mp,

As {log Py} is a subadditive sequence, for each € > 0 there exists N(e) € N
such that

P() > % —e, k> N(e) = (N(€), s N(€)).

Clearly Px(¢)) < log Py x = log Pc. Hence

PW) > P(2) e, k> N(e).
[K|pr
Thus
P(y) > lim sup P(|:1["1—T)

This establishes the first equality in (8.8). The second equality follows from
the maximal characterization of the topological pressure. The first part of
the inequality (7.16) and the maximal characterization of the topological
pressure imply

(3.16) P(lffﬁ) > sup h(s) + o).

The characterization (8.8) yields (8.10).

(d) The inequality (8.11) combined with (8.8) implies equality in (8.10).
(e) The assumption (8.12) yields that a(u) = [ ¢du, p € II;. Hence a(u)
is continuous on II; with respect to the weak* convergence. Since h(u) is
upper semicontinuous, it follows that sup,cp, h(p) + a(p) is achieved for
some p* € II,. Furthermore (8.11) holds. Use (d) to obtain (8.13). O

9. Hausdorff dimension. For z € S let Pm(z) be the unique cylin-
der C((ai)ic<m>) which contains z. The Shannon-McMillan-Breiman the-
orem for Z4-SOFT [Kre] states:

THEOREM 9.1. Let S be a Z1-SOFT. Let p € I1;. Then p a.e.

(9.1) lim ] !

m—00 mpr|

10g p(Pm(2)) = h(p, ) > 0,
where h(p, x) o-invariant L' function satisfying

(9.2) / B ) = h(j).
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In particular, if p is ergodic then h(u,x) = h(u) p a.e.. Letd: SXS — Ry
be given by (7.10) and (7.12) respectively. (Note that the definition of d in
[Fr3, (0.3)] should be corrected to the definition (7.12).) Let d(¢) be the
Hausdorff dimension of S for the metric d. (See for example [Pes] for a
definition of Hausdorff dimension dimg X of a subset X of a metric space.)
For p €1I let

(¢, p) = dimpgp := XeB,Hﬁfx)zl dimyX,
be the p-Hausdorff dimension of S.

THEOREM 9.2. Let {¢m} be a family of positive functions satisfying
(7.7) and (7.21). Let {¢m} and d : S x S — R, be given by (7.10) and
(7.12) respectively. Then for any ergodic measure p € I, which satisfies
h(p)+a(w) > 0, the u-Hausdorff dimension of S with respect to the metric

d is equal to Zg”;

Proof. For r > 0 let

B(y,r):={z€S: dy,z) <r}.

Assume that Y C S is a Borel set and pu(Y) > 0. Suppose furthermore
that for each y € Y the following inequality holds:

r—0+ logr 0+ logr

Then § < dimgY < § [You]. We claim that

_ logu(B(y,)) _ h(p)
(9.3) rl—l>rg+ logr alp)’

for p-almost all y € S. Observe first that for 0 < r < 1
B(yaT) = Pm(k(r,y))(y)a m(k) = (k7 7k) € Nda
Ym(k(r,y)) (y) > —logr, Ym(k(ry)—1(y) < —logr.

Assume first that o) > 0. Let {¢)mm} be defined as in §7 (before Proposi-
tion 7.1). Combine Shannon-McMillan-Breiman theorem with Proposition
7.1 to obtain

lim 08A(Pm(y)  wae _ hw)

Mmoo b (y) a(p)

The assumption that a(u) > 0 and the definition of the metric d implies

Pun(i) () = By, (y)), re(y) A ek

for p-almost all y. Combine these results to deduce (9.3).
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Suppose that a(u) =0 and h(u) > 0. It is left to show that §(¢, u) =
oc. Fix € > 0 and for each m € N¢ let

Pm,e((ai)ic<m>) = dm((ai)ic<m>) + [mlpre,
Pem,c((ai)ic<m>) = dm((ai)ic<m>) + [m]pre,
Ym,e = Ym + Mlpre,  Yme = Ym + [mlye.

Let d. be the metric induced by the o-additive family {¢m}. Clearly

de(z,y) < d(z,y) for all z,y € S. Furthermore a.(u) = a(u) +€ = e
Hence

h(w)

€

3(p, 1) > 6(¢e, ) =

As € was an arbitrary positive number we deduce that d(¢, u) = co. |

Theorem 9.2 is a generalization of Young’s formula of the y-Hausdorff
dimension of the unstable manifold for a diffeomorphism of a surface. The
quantity a(u) can be viewed as the discrete Lyapunov exponent of the
o-subadditive family {¢m;m} [Fr3]. Use the definition of the p-Hausdorff
dimension and the part (e) of Proposition 7.1 to deduce computable lower
bounds

(94) 3(¢) = (¢ 1) 2 , meIl and meN,
for 6(¢) [Fr3].

PROPOSITION 9.3. Let the assumptions of Theorem 9.2 hold. Let k(¢)
be defined by (7.22). Then &(¢) < k(¢) < k(). B

Proof. In view of the inequality (7.23) it is enough to show k(@) > d(¢).
Consider the “Poincaré” series [Fr3]

) XX eseme, o
meN? (a;)ie <m> €C(m)

Tt is well known that the above series converges for s > k(¢) and diverges

for s < k(¢). Assume that s > k(4). Let u(s) be the value of the sum of
the above series. Hence

e 59((a)iecm@n)>) < u(s).
(a1)ie<m(r)> €C(m(k))

Fix € € (0,1). Let t = —loge. The assumption (7.21) implies the existence
of k >> 1 such that each (ai)ic<m(r)> € C(m(k)) is not in B(¢,t). Hence

U(ai)ie<m(k)> EC(m(k))C((ai)i€<m(k)>)

is a finite cover of & such that the diameter of C((ai)ic<mr)>) is
e~ ?((ai)ie<m®)>) < e, The definition of the s-Hausdorff measure of S-H*(S)
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and the above inequality yields that H*(S) < u(s). Hence 6(¢) < s and
the proposition follows. O

The above proposition is a generalization of [Fr3, Thm 1.14].

THEOREM 9.4. Let {¢m} be a family of positive functions satisfying
(7.7) and (7.21). Let {¢pm} and d : S x S = Ry be given by (7.10) and
(7.12) respectively. Let {t)m} and {t)m} be the induced o-subadditive func-
tions. For t > 0 let P(—ty), P(ty) be the topological pressure associated
with {—tYm}, {—thm} respectively. Then P(—ty) > P(t1)). Suppose that
P(—7¢) < 0. Then 6(¢) < 7. Suppose that there exits a positive function
q € C(S) such that (8.4) holds in the seminorm ||| - ||| ((8-12) holds). Then
there exists an ergodic p* such that 8(¢, u*) = 8(¢), where

(9.6) 3(¢) == sup (¢, ).

€M, h(p)+a(u)>0

Suppose furthermore that (8.4) holds in the mazimal norm in C(S). Then
8(¢) = 6(¢). Furthermore, 6(¢) is the unique solution of the Bowen equa-
tion P(—tq) = 0. In particular, there exists an ergodic p* such that
dimgp* = dimgS.

Proof. As ¢m < thm for all m € N? we deduce that P(—ty)) > P(—ty))
for any ¢t > 0. Suppose that P(—ﬂZ) < 0. The arguments of the proof of
Proposition 9.3 yields that H”(S) = 0. Hence d(¢) < 7.

Suppose that (8.4) holds in the seminorm |||-||| in Q(S). As minzes ¢(x)
=a > 0 and a(p) = [gdp > a, the upper semicontinuity of h(u) implies
the existence of an ergodic p* € II, such that 8(¢, u*) = 6(¢). Assume
furthermore that (8.4) holds in the maximal norm in C(S). Proposition
8.2 implies that P(—ty) = P(—tq). P(—tq) is a strictly decreasing function
for ¢ € [0, 00), such that P(0) > 0 and P(—ooq) = —oo. Hence, there exists
a unique tg € [0, 00) such that P(—toq) = 0. The first part of the theorem
implies that 0(¢) < to. The maximal characterization of P(—toq) and the
equality P(—toq) = 0 yield that to = 6(¢). The inequality 8(¢) > 8(¢)
yields the equalities to = 6(¢) = 6(¢). In particular dimpp* = dimgS. O

10. Appendix: Some results on matrices. In this sections we re-
call well known results in matrices which are used in this paper. Most
of the results can be found in the classical book [Gan] or the modern
book [HoJ]. Let F = R,C. Let || ]| : F* — Ry be a norm. Let
(@1, s Ta)]]2 = (X0, |2i]?)? be the Euclidean norm on F*. Then any
norm ||-|| is equivalent to Euclidean norm. That is there exists 0 < K; < K>
(depending on || - ||) such that

Ki||x||2 < |Ix|| < Ka||x]]2, for all x = (z1,...,x,) € F".

(Hence any two norms are equivalent.) Let M, (F) be the set of n x n
matrices with entries in F. Then any A € M,,(F) can be viewed as a linear
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operator on % xA. The operator norm || - || : M, (F) — R} induced by
[| - ]| on F™ is given by:
xA
jan= sup Pl
x€F~\{0} I[x¢]|

That is ||A]| is vector norm, ||I|| =1 (I the identity matrix) and ||AB|| <
[|Al| |B||. Let AT, A* be the transpose and the conjugate transpose of
A € M,(C). Then ||4]| is equivalent to the Frobenius norm (tr AA*)z.
The spectrum of A-o(A) is the set of distinct eigenvalues of A. Note that
even if A € M,(R) then 0(4) C C. Let p(A) = maxye,(4)|A| be the
spectral radius of A. A € M,(R) is called nonnegative, denoted by A > 0,
if all the entries of A are nonnegative.

PRrOPOSITION 10.1. Let A € M, (C). Let let || - || : Mp(C) = Ry be a
vector norm on M, (C). Then

(10.1) p(A) = lim ||A*||*.
k—o0
In particular for A >0

(10.2) p(A) = lim (14F1%)%.

k—o0

Proof. (10.1) is well known if a given matrix norm is an operator norm,
e.g. [HoJ, Cor.5.6.14]. Since any two vector norms on M, (C) ~ C™ we
deduce (10.1) for any vector norm on M, (C).

Clearly

1Al ==Y lail, A= (ai)? € Mu(O)

i,j=1

is a vector norm. If A > 0 then ||A||; = 1A1T and (10.2) follows from
(10.1). O
Clearly, the first equality of (2.5) follows from (10.2). Let A = (a;;)} >
0. Associate with A the incidence graph I'(4) C<n > X <n >:

(i,j) € T(A) <= ay; >0, forall i,j e<n>.

Clearly, for ' C< n > x < n > we have the equality ['(A(T")) =T.
PROPOSITION 10.2. Let ' C<n > x < n >. Then equalities (2.4)
hold.
Proof. Let A = (a;;)7 € My (C). Form € Nlet A™ = (a{f”)p. It is
straightforward to see that

a;; = E Qjjy Qjygo--- Qi _15,  0,] €SN >

i1yeeerim_1E€<N>
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Let A = A(T'). Then each a;; € {0,1}. Consider the product a;;, @; i, - -
ai,,_.; € {0,1}. It is equal to 1 if and only if the directed path of length m:
i =14 = .. = im_1 = jis in [™. Hence az(;") is the number of directed
paths of length m from i to j in I'. Thus 14(I')™1T = #I'™. Clearly

tr AT)™ = ", a{™. Since a{™ is the number of periodic paths of length

i=1 Yig i

m starting and ending at the vertex i we deduce tr A(I)™ = #I'}%,.. O

We now recall some spectral properties of nonnegative square matrices,
referred as Perron-Frobenius theorem [Gan] or [HoJ]. Let A > 0. Then
p(A) € o(A). If A is not nilpotent then all the eigenvalues of ﬁA on the
unit circle are roots of unity.

PROPOSITION 10.3. Let A > 0. Then p(A) = limsup,,_, . (tr AF)%.

Proof. Clearly tr A¥ < 14F1T. Hence (10.2) yields the inequality
p(A) > limsup,_, . (tr Ak)%. It is left to prove the proposition in case
p(A) > 0. Assume that \q,...,\, are the eigenvalues of A counted with

their multiplicities. Arrange these eigenvalues in the order
P(A) = M = [l = oo = Al > pra| 2 o 2 Al

There exists ¢ € N such that A = p(A)?, i = 1,...,p. Hence

tr A™ = p p(A)™ + Z A
i=p+1

Thus lim, o (tr Amq)m%z = p(A) and the proposition follows. O

Let A = (aij)?,B = (b”)? € M, (R). Then A< B < ai; < by; for
each i,j €< n>. If 0 < A < B then p(4) < p(B).

Proof of Lemma 2.5. Clearly p(I') = 0 if and only if A(T) is nilpo-
tent. This is equivalent to the statement that I' does not have a path of
length greater than n. The last statement is equivalent to the statement
that T' does not have cycles. Assume that I' has a cycle. Let I C T
consist of one cycle. As A(T') < A(T") we obtain that p(I'") < p(I"). It is
straightforward to see that p(I") = 1. O

To estimate h of Z%SOFT it is of importance to find effectively good
and converging estimates of p(T'). This is usually done using Wielandt’s
inequalities (characterization) [Gan] or [HoJ, 8.1.26]. For x = (21, ...,&p) €
R*” we let x > 0 <= =x1,...,2, > 0. Then for any x > 0 and any
A = (a;;)T > 0 we have the estimate

n n
L QiTj L QijTj
(10.3) “min M < p(A) < max M
e<n> T e<n> T

Recall that A > 0 irreducible if T'(A) is a connected graph. A is called
primitive if the A is irreducible and the gcd of all cycles of I'(A4) is 1.
(Equivalently A™ has positive entries for some m € N.) If A is primitive

x(m=1) 4T

than we repeat the estimates (10.3) for z(™) = where a;,—1 > 0
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is a normalizing constant starting with z(®) > 0. Then the upper and
lower bound converge in (10.3) converge fast to p(A4). If A is irreducible
but not primitive than replace A by B = B + I now B is primitive and
p(B) = p(A) + 1. So any lower and upper bounds for p(B) translate easily
to lower and upper bounds for A.

Assume finally that 0 < A = AT, i.e. A is a symmetric and nonnega-
tive (entrywise) matrix. It is known that all the eigenvalues of A are real.
Hence

n
(A7) = SN2 > p(4)*™,

i=1

Then Rayleigh characterization yields that

xAxT
A) = .
p(4) I

In that case one can improve slightly the lower bound of (10.3) for x > 0:

Vi Sy e 3 6
S T ~ie<n> x; '

p(4) >
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