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Abstract

We replace certain edges of a directed graph by chains and consider
the effect on the spectrum of the graph. We show that the spectral
radius decreases monotonically with the expansion and that, for a
strongly connected graph that is not a single cycle, the spectral radius
decreases strictly monotonically with the expansion. We also give a
limiting formula for the spectral radius of the expanded graph when
the lengths of some chains replacing the original edges tend to infin-
ity. Our proofs depend on the construction of auxiliary nonnegative
matrices of the same size and with the same support as the original
adjacency matrix.
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1 Introduction

In [Fri] one of us considered the expansion graph of a (directed) graph, that
is a (directed) graph obtained from a given graph by replacing certain edges
by a chain. In this note we consider the effect of graph expansion on the
spectrum (of the adjacency matrix) of the graph.

We show that the spectral radius decreases monotonically with the expansion
and that, for a strongly connected graph that is not a single cycle, the spec-
tral radius decreases strictly monotonically with the expansion. Moreover, if
all edges are expanded to chains of the same length, there is a simple formula
relating the spectral radius of the original and expanded graphs. The prop-
erty that the spectral radius of the graph decreases with expansion may also
be deduced from [ENV, Lemma 3], where an expansion of a different kind is
considered for nonnegative matrices. The advantage of our approach lies in
the construction of auxiliary nonnegative matrices of the same size and with
the same support as the original (0, 1) adjacency matrix such that for each
nonzero eigenvalue of the expanded graph there is an auxiliary matrix which
has the same eigenvalue. We also give a limiting formula for the spectral
radius of the expanded graph when the lengths of some chains replacing the
original edges tend to infinity.

In this note we consider only directed graphs. Let Γ be a graph with the set
of vertices < n >:= {1, ...., n} and a set of edges E ⊂< n > × < n >. We
denote the adjacency matrix of Γ by Adj(Γ). As usual, the spectrum of a
matrix is the set of its eigenvalues and the spectral radius of a matrix is the
largest absolute value of an eigenvalue. The spectrum and spectral radius
of a matrix A ∈ Cnn are denoted by spec(A) and ρ(A) respectively, and we
write spec(Adj(Γ)) as spec(Γ) and ρ(Adj(Γ)) as ρ(Γ).

Let Γ be a graph. If Γ contains a cycle, Adj(Γ) ≥ Adj(Γ̃) elementwise,
where Γ̃ is the graph obtained from Γ by removing all arcs except those
on the cycle, and hence, by a result of Perron-Frobenius theory which we
use repeatedly, e.g [HJ, Theorem 8.1.18], we have ρ(Γ) ≥ ρ(Γ̃) = 1. If Γ
doesn’t contain a cycle, then Adj(Γ) is permutationally similar to a strictly
triangular matrix and hence ρ(Γ) = 0. In this case, we call Γ an acyclic
graph, otherwise the graph will be called nonacyclic. Expansion graphs of
acyclic graphs are acyclic and our results are trivial for such graphs. Thus
we confine our exposition to nonacyclic graphs Γ.
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2 Auxiliary Matrices

Let w be a function w : E → Z+ of the edge set into the nonnegative integers.
The expansion graph Γw of Γ is obtained by replacing the edge (i, j) by a chain
from i to j with w(i, j) + 1 edges by inserting w(i, j) additional vertices. (If
w(i, j) = 0 then the edge (i, j) is not changed. In particular, Γ0 = Γ).

Definition 2.1 Let Γ be a graph with the set of vertices < n > and edge set
E ⊂< n > × < n >.. Let w : E → Z+. Let 0 6= t ∈ C. Then an auxiliary
matrix Aw(t) ∈ Cnn is defined by

aij(t) = t−w(i,j), (i, j) ∈ E, (1)

aij(t) = 0, (i, j) ∈< n > × < n > \E. (2)

Note that for all functions w of the type considered the matrix Aw(1) is the
adjacency matrix Adj(Γ). Further, for all t 6= 0, A0(t) = Adj(Γ).

Lemma 2.2 Let Γ be a nonacyclic graph with set of vertices < n > and edge
set E ⊂< n > × < n >. Let w : E → Z+. Then

(i) ρ(Aw(t)/t) is a strictly monotonically decreasing function of t in [1,∞).

(ii) There exists a unique τ ≥ 1 such that ρ(Aw(τ)/τ) = 1.

Proof: (i) Let 1 < t′ < t. Since Γw is nonacyclic and Aw(t) ≥ 0 (ele-
mentwise), it follows that 0 ≤ Aw(t) ≤ Aw(t′). By a well-known result
(e.g. [HJ, Theorem 8.1.18]) it follows that ρ(Aw(t)) ≤ ρ(Aw(t′)) and hence
ρ(Aw(t)/t) < ρ(Aw(t′)/t′) .

(ii) We note that ρ(Aw(t)/t) is a continuous function of t in [1,∞). Since
ρ(Aw(1)) = ρ(Γ) ≥ 1, and limt→∞ Aw(t)/t = 0, we deduce that limt→∞ ρ(Aw(t)/t) =
0. Thus (ii) now follows from (i). 2
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3 Spectra

Theorem 3.1 Let Γ be a nonacyclic graph with set of vertices < n > and
edge set E ⊂< n > × < n >. Let w : E → Z+. Let 0 6= τ ∈ C. Then τ is
an eigenvalue of Adj(Γw) if and only if 1 is an eigenvalue of Aw(τ)/τ .

Proof: Let V be the vertex set of Γw. Then the elements of V will be indexed
by the triples (i, j, k), k = 0, . . . , w(i, j) + 1, for (i, j) ∈ E. We identify all
(i, j, 0) ∈ V with i ∈< n > and all (i, j, w(i, j) + 1) ∈ V with j ∈< n >.
Furthermore the chain from i ∈< n > to j ∈< n > in Γw is given by

(i, j, 0) = i → (i, j, 1) → · · · → (i, j, w(i, j)) → (i, j, w(i, j)+1) = j, (i, j) ∈ E.

With each vertex v ∈ V we associate a variable xv. Thus for i, j ∈< n > the
variable xi is identified with x(i,j,0) for all (i, j) ∈ E and the variable xj is
identified with x(i,j,w(i,j)+1) for all (i, j) ∈ E. Denote by |V | the cardinality
of V .

Let B = Adj(Γw). Suppose that τ ∈ spec(B), τ 6= 0 and let τx = Bx, x 6= 0,
where x := (xv)v∈V ∈ C|V |. If w(i, j) ≥ 1, the equation (τx)v = (Bx)v, v ∈ V ,
yields

τx(i,j,k) = x(i,j,k+1), k = 1, ..., w(i, j), (i, j) ∈ E, (3)

Hence

x(i,j,k) = τ−w(i,j)+k−1xj, k = 1, . . . , w(i, j), (4)

and, in particular,
x(i,j,1) = τ−w(i,j)xj, (i, j) ∈ E. (5)

Let z ∈ Cn be given by

zj = xj, j = 1, . . . , n. (6)

Since x 6= 0, we deduce from (4), that z 6= 0.

We observe that the system (τx)i = (Bx)i, i ∈< n > may be written as

τxi =
∑

j,(i,j)∈E

x(i,j,1), i = 1, ..., n, (7)
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and we can combine (5) and (7) to obtain

τxi =
∑

j,(i,j)∈E

τ−w(i,j)xj, i = 1, ..., n. (8)

We now compare (8) and (2.1), and we deduce that

z = (Aw(τ)/τ)z. (9)

Hence 1 ∈ spec(Aw(τ)/τ).

Conversely, assume that z 6= 0 and that z satisfies (9). Define x ∈ Cn by (6),
and extend x to be conformal with B by (4). Then both (3) and (5) hold.
We rewrite (9) in the equivalent form (8), and we use (5) to obtain (7). But
(7) and (3) together imply that Bx = τx. 2

Corollary 3.2 Let Γ be a nonacyclic graph with set of vertices < n > and
edge set E ⊂< n > × < n >. Let w : E → Z+ satisfy w(i, j) = m, for all
(i, j) ∈ E. Let 0 6= τ ∈ C. Then τ ∈ spec(Γw) if and only if τm+1 ∈ spec(Γ).
In particular,

ρ(Γw) = ρ(Γ)
1

m+1 . (10)

Proof: Note that Aw(τ) = τ−mAw(1) = τ−m Adj(Γ). If τ ∈ spec(Aw(τ))
then τm+1 ∈ spec(Γ), and conversely. Hence Theorem 3.1 implies the first
part of the corollary and the second part follows immediately. 2

Remark 3.3 It is possible that 0 ∈ spec(Γw) and 0 6∈ spec(Γ). (See Example
3.8.)

2

Theorem 3.4 Let Γ be a nonacyclic graph with set of vertices < n > and
edge set E ⊂< n > × < n >. Let w : E → Z+. Let τ be the unique solution
in [1,∞) of ρ(Aw(τ)/τ) = 1. Then

ρ(Γw) = ρ(Aw(τ)).
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Proof: By Perron-Frobenius ρ(Aw(τ)) ∈ spec(Aw(τ)), and hence, by Theo-
rem 3.1, τ ∈ spec(Γw). It follows that τ ′ := ρ(Γw) ≥ τ . By Lemma 2.2 we
have ρ(Aw(τ ′)/τ ′) ≤ 1. But, τ ′ ∈ spec(Γw) also yields τ ′ ∈ spec(Aw(τ ′)) by
Theorem 3.1. Using Perron-Frobenius again, we deduce that ρ(Aw(τ ′)/τ ′) ≥
1. It follows that ρ(Aw(τ ′)/τ ′) = 1, and we obtain τ ′ = τ from Lemma 2.2. 2

A graph Γ is strongly connected if there is a path in Γ from every vertex to
every other vertex. Suppose that Γ is strongly connected. Then Adj(Γ) is
irreducible. If Γ consists of a single loopless vertex then clearly Adj(Γ) = [0]
and ρ(Γ) = 0; otherwise Γ is nonacyclic and ρ(Γ) ≥ 1. Further, ρ(Γ) = 1 if
and only if Γ consists of a single cycle, since for nonnegative matrices A,B
with A irreducible, A ≥ B and ρ(A) = ρ(B) imply that A = B, see [HJ,
Theorem 8.4.5].

Theorem 3.5 Let Γ be a nonacyclic graph with vertex set < n > and edge
set E ⊂< n > × < n > respectively. Let w : E → Z+. Then

1 ≤ ρ(Γw) ≤ ρ(Γ). (11)

Suppose also that Γ is strongly connected. Then ρ(Γw) = ρ(Γ) if and only if
either w = 0 or Γ is a cycle. Further, 1 = ρ(Γw) if and only if Γ is a cycle.

Proof: Let t ∈ [1,∞). Since Aw(t)/t ≤ A0(t)/t, we also have ρ(Aw(t)/t) ≤
ρ(A0(t)/t) and (11) follows from Theorem 3.4.

Now let Γ also be strongly connected. If w = 0, obviously ρ(Γw) = ρ(Γ). If
Γ is a cycle, then ρ(Γ) = 1, and it follows from (11) that also ρ(Γw) = 1.

Conversely, suppose that w 6= 0 and that Γ is not a cycle. Then ρ(Aw(1)) =
ρ(Γ) > 1. Note that Adj(Γ) is irreducible and hence so is Aw(t) for t ≥ 1.
Thus for t > 1 we have ρ(Aw(t)/t) < ρ(A0(t)/t) by [HJ, Theorem 8.4.5],
since Aw(t)/t ≤ A0(t)/t but Aw(t)/t 6= A0(t)/t. It follows from Theorem 3.4
that 1 < ρ(Γw) < ρ(Γ).

The last part of the theorem follows from the remarks just preceding it
and the fact that Γw is a cycle if and only if Γ is a cycle. 2

The inequality (11) in Theorem 3.5 may be also derived from [ENV, Lemma
3, part (b)].
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Let E ⊂< n > × < n > and let w, w′ : E → Z+ be nonnegative integer
valued functions on E. Then we write w ≥ w′ if w(i, j) ≥ w′(i, j), for all
(i, j) ∈ E. We have the following corollary to Theorem 3.5.

Corollary 3.6 Let Γ be a nonacyclic graph with vertex set < n > and edge
set E ⊂< n > × < n > respectively. Let w,w′ : E → Z+. Assume that
w′ ≥ w. Then

ρ(Γw) ≥ ρ(Γw′). (12)

Suppose now that Γ is also strongly connected. If Γ is a cycle then ρ(Γw) =
ρ(Γw′). If Γ is not a cycle and w 6= w′ then ρ(Γw) > ρ(Γw′) > 1.

Proof: The graph Γw′ may be obtained from Γw by graph expansion. The
corollary now follows from Theorem 3.5. 2

Corollary 3.7 Let Γ be a nonacyclic graph with vertex set < n > and edge
set E ⊂< n > × < n > respectively. Let w : E → Z+ and suppose that
m′ ≤ w(i, j) ≤ m for all (i, j) ∈ E. Then

ρ(Γ)
1

m+1 ≤ ρ(Γw) ≤ ρ(Γ)
1

m′+1 . (13)

Proof: Immediate by Corollary 3.2 and Corollary 3.6. 2

Example 3.8 Let Γ be the graph with vertex set {1, 2} and edge set E =
{(1, 1), (1, 2), (2, 1)}. Let w : E → Z+ be given by w(1, 1) = 1, w(1, 2) =
0, w(2, 1) = 0, that is, we expand the arc (1, 1) to a chain of length 2 and we
leave the other arcs unchanged. Then

A =

[
1 1
1 0

]
(14)

and

Aw(t) =

[
t−1 1
1 0

]
. (15)
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Note that
√

2 is an eigenvalue of Aw(
√

2), and −√2 is an eigenvalue of
Aw(−√2). But these are precisely the nonzero eigenvalues of

Adj(Γw) =




0 1 1
1 0 0
1 0 0


 (16)

in conformity with Theorem 3.1. Note also that ρ(Γw) =
√

2 < (1+
√

5)/2 =
ρ(Γ), as required by Theorem 3.5 since Γ is strongly connected.

4 Limiting cases

Lemma 4.1 Let Γ be a nonacyclic graph with the set of vertices < n > and
set of edges E. Let F ′ ⊂ E and let Γ′ be the graph with the set of vertices
< n > and set of edges F ′. Let w be a mapping w : E → Z+ such that
w(i, j) = 0, (i, j) ∈ F ′. Then

max(1, ρ(Γ′)) ≤ ρ(Γw) ≤ ρ(Γ). (17)

Proof: We have 1 ≤ ρ(Γw) by Theorem 3.5. Since Adj(Γ′) ≤ Aw(t), t ≥ 1,
we obtain ρ(Γ′) ≤ ρ(Aw(t)) by [HJ, Theorem 8.1.18], and ρ(Γ′) ≤ ρ(Γw)
follows by Theorem 3.4. 2

Definition 4.2 Let Γ be a graph on the set of vertices < n > and the set of
edges E ⊂< n > × < n >. Let wm, m = 1, 2, . . . be an infinite sequence of
mappings wm : E → Z+. Let F be a subset of E and let F ′ = E\F .

(i) Let w̃ be a mapping: E → Z+. We say that the sequence wm, m = 1, 2 . . . ,
coincides with w̃ on F ′ if

wm(i, j) = w̃(i, j) for all (i, j) ∈ F ′ and m = 1, 2, . . . . (18)

(ii) We say that the sequence wm, m = 1, 2 . . ., tends to infinity on F if

lim
m→∞

wm(i, j) = ∞ for all (i, j) ∈ F. (19)

In this terminology, the mapping w considered in Lemma 4.1 coincides
with 0 on F ′.
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Theorem 4.3 Let Γ be a nonacyclic graph on the set of vertices < n >
and the set of edges E ⊂< n > × < n >. Let F be a subset of E and
let F ′ = E\F . Let wm, m = 1, 2, . . . be an infinite sequence of mappings
wm : E → Z+ which coincides with 0 on F ′ and tends to infinity on F . Let
Γ′ be the graph with vertex set < n > and edge set F ′.

(i) If Γ′ is acyclic then
lim

m→∞
ρ(Γwm) = 1. (20)

(ii) If Γ′ is nonacyclic then

lim
m→∞

ρ(Γwm) = ρ(Γ′). (21)

Proof: In view of Lemma 4.1, we have

1 ≤ lim sup
m→∞

ρ(Γwm) ≤ ρ(Γ). (22)

If
lim sup

m→∞
ρ(Γwm) = 1 (23)

then it is immediate that equation (20) holds. Since a graph is either acyclic
or nonacyclic, our result will follow if we prove the following claim:

CLAIM: If
τ := lim sup

m→∞
ρ(Γwm) > 1 (24)

then equation (21) holds and Γ′ is nonacyclic.

Thus we now assume that inequality (24) holds. Let τm = ρ(Γwm), m =
1, 2, . . . . There exists an infinite increasing sequence of integers m(k), k =
1, 2, . . . such that

lim
k→∞

τm(k) = τ. (25)

Let (i, j) ∈ F . Then limk→∞ wm(k)(i, j) = ∞ and, since τm(k) ≥ (1+τ)/2 > 1
for sufficiently large k, it follows that

lim
k→∞

τ
−wm(k)(i,j)

m(k) = 0. (26)

Thus
lim
k→∞

Awm(k)
(τm(k)) = Adj(Γ′). (27)
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By (25) and Theorem 3.4 we now have

τ = lim
k→∞

τm(k) = ρ(Γ′). (28)

But, for t ≥ 1, Awm(t) ≥ Adj(Γ′) and hence τm = ρ(Awm(τwm)) ≥ ρ(Adj(Γ′)).
Hence also

lim inf
m→∞

τm ≥ ρ(Γ′). (29)

We now combine (24), (28), and (29) to obtain (21).

By (21) and the assumption that τ > 1 we have ρ(Γ′) > 1. Hence Γ′ is
nonacyclic. 2

Applying Theorem 4.3 to an expanded graph we immediately obtain:

Corollary 4.4 Let Γ be a nonacyclic graph on the set of vertices < n >
and the set of edges E ⊂< n > × < n >. Let F be a subset of E and
let F ′ = E\F . Let wm, m = 1, 2, . . . be an infinite sequence of mappings
wm : E → Z+ which coincides with a mapping w : E → Z+ on F ′ and tends
to infinity on F . Let Γ′ be the graph with vertex set < n > and edge set F ′.

(i) If Γ′ is acyclic then
lim

m→∞
ρ(Γwm) = 1. (30)

(ii) If Γ′ is nonacyclic then

lim
m→∞

ρ(Γwm) = ρ(Γ′w). (31)

Example 4.5 We use the notation of Corollary 4.4. We let Γ be the com-
plete graph on 2 vertices. Thus A := Adj(Γ) is given by

A =

[
1 1
1 1

]
. (32)

We write the mapping wm in the form of a matrix Wm whose (i, j)- th entry
is wm(i, j), i, j = 1, 2. Let

Wm =

[
1 0
0 m

]
. (33)
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Thus we leave unchanged the arcs (1, 2) and (2, 1), replace the arc (1, 1) by a
chain of length 2 and replace the arc (2, 2) by a sequence of chains of length
m + 1, m = 1, 2, . . .. The matrix Awm(t) is given by

Awm(t) =

[
t−1 1
1 t−m

]
. (34)

The characteristic polynomial of Awm(t)/t is given by

λ2 − (t−2 + t−(m+1))λ− t−2 + t−(m+3) (35)

and we shall now prove that

ρ(Awm(τm)/τm) = 1 (36)

for a unique τm in [1,∞) and that

lim
m→∞

τm =
√

2. (37)

It follows from (35) and (36) that τm is the largest positive solution of

fm(t) := 2t−2 + t−(m+1) − t−(m+3) = 1. (38)

For t ≥ 1

f ′m(t) = −4t−3 − (m + 1)t−(m+2) + (m + 3)t−(m+4) < (39)

−2t−3 − (m + 1)t−(m+2) + (m + 3)t−(m+4) ≤ (40)

−2t−(m+2) − (m + 1)t−(m+2) + (m + 3)t−(m+4) = (41)

−(m + 3)t−(m+2)(1− t−2) < 0. (42)

Since fm(
√

2) > 1 while fm(t) < 1 for large positive t it follows that
τm is the unique solution of (38) in (

√
2,∞). Clearly fm+1(t) < fm(t) in

(1,∞), and hence {τm} is a decreasing sequence in (
√

2,∞). It follows that
τ := limm→∞ τm exists. But by (38), and since τm >

√
2 for all m we have

1 = lim
m→∞

fm(τm) = 2τ−2 (43)

and (37) now follows.
Note that Γ′w is the graph considered in Example 3.8 and that

√
2 is also

the spectral radius of Adj(Γ′w) , the matrix displayed in (16), as required by
Corollary 4.4(ii).

10



Example 4.6 We choose Γ as in Example 4.5 and define the expansion
mapping wm by

Wm =

[
m 0
2m m

]
, (44)

that is we leave the arc (1, 2) unchanged and replace the arcs (1, 1), (2, 2)
and (2, 1) by chains of length m + 1, m + 1 and 2m + 1 respectively. This
time we have

Awm(t) =

[
t−m 1
t−2m t−m

]
. (45)

The characteristic polynomial of Awm(t)/t is λ2−2t−(m+1)λ. Hence ρ(Awm(τm)/τm) =
1 if and only if τm = 21/(m+1) and it follows that

lim
m→∞

τm = 1, (46)

as required by Corollary 4.4(i). But note that

Adj(Γ′) =

[
0 1
0 0

]
(47)

and that therefore ρ(Γ′) = 0.
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