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Abstract

We introduce the notion of a generalized interval exchange φA induced by
a measurable k-partition A = {A1, ..., Ak} of [0, 1). φA can be viewed as the
corresponding restriction of a nondecreasing function fA on R with fA(0) =
0, fA(k) = 1. A is called λ-dense if λ(Ai ∩ (a, b)) > 0 for each i and any
0 ≤ a < b ≤ 1. We show that the 2 − 3 Furstenberg conjecture is invalid if
and only if there are 2 and 3 λ-dense partitions A and B of [0, 1), such that
fA ◦ fB = fB ◦ fA. We give necessary and sufficient conditions for this equality
to hold. We show that for each integer m ≥ 2, such that 3 - 2m + 1, there exist
2 and 3 non λ-dense partitions A and B of [0, 1), corresponding to the interval
exchanges on 2m intervals, for which fA and fB commute.

2000 Mathematical Subject Classification: 37A05, 37A35
Keywords: Generalized interval exchange, entropy, 2-3 conjecture.

1 Introduction

Let Σ the σ-algebra of measurable sets in R with respect to the Lebesgue measure
λ. Let k ∈ N and J ∈ Σ. A := {A1, ..., Ak} is called a partition (or k-partition)
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of J if A1, ..., Ak are pairwise disjoint measurable sets whose union is J . Let I =
[0, 1). Then a k-partition A of I induces the following partition {I1, ..., Ik} of I to
k intervals:

Ij = [βj−1, βj), j = 1, ..., k, β0 = 0, βj =
j∑

i=1

λ(Aj), j = 1, ..., k. (1.1)

A is called regular if λ(Aj) > 0 for j = 1, ..., k. For A ⊂ R let χA(x) be the
characteristic function of A. Then the partition A induces the following generalized
k-interval exchange φA : I → I:

φA : Aj → Ij , φA(x) = βj−1 +
∫ x

0
χAjdλ, x ∈ Aj , j = 1, ..., k. (1.2)

φA : I → I is a measure preserving transformation of (I, Σ(I), λ). If each Aj is a
finite union of intervals then φA is an orientation preserving interval exchange. See
[1] for other generalizations of interval exchange maps.

Let A ⊂ R be the following measurable set induced by A:

A ∩ [m− 1, m) = Ai + m− 1 for m ∈ Z with m ≡ i mod k. (1.3)

Define
fA(x) :=

∫ x

0
χAdλ, x ∈ R. (1.4)

Clearly fA is a continuous nondecreasing function on R with the properties

fA(0) = 0, fA(x + k) = fA(x) + 1, x ∈ R. (1.5)

A measurable set T ⊂ [s, t] is called λ-dense if

λ(T ∩ (a, b)) > 0 for all s ≤ a < b ≤ t.

A is called λ-dense if each Aj is λ-dense in I. Then fA is increasing on R if and only
if A is λ-dense. Assume that fA is increasing on R. Let FA be the inverse function
of fA. Then FA(0) = 0 and FA(1) = k. Furthermore FA = F is expansive:

y − x < F (y)− F (x), for all x < y. (1.6)

Let S1 = R/Z. Then FA induces an expansive orientation preserving k-covering
map F̃A : S1 → S1, which fixes 0 and preserves λ. Furthermore F̃A is λ-invertible.
The λ-inverse of FA is φA. Hence the entropy hλ(φA) is 0 if A is λ-dense. (We
prove that hλ(φA) = 0 for any partition A of I.)
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We show that F̃A is conjugate to the standard k-covering map G̃k, where Gk(x) =
kx, x ∈ R. λ is conjugate to a nonatomic probability measure ω on I whose support
is S1. G̃k preserves ω and G̃k is ω invertible. Vice versa, a nonatomic G̃k-invariant
probability measure, ω whose support is S1 and which is invertible with respect to
ω, is conjugate to F̃A for some λ-dense k-partition A.

Recall the 2− 3 conjecture of Furstenberg [2]. Let ω be a nonatomic probability
measure on S1 which is invariant for G̃2, G̃3. Then ω = λ. Furstenberg showed that
the support of ω is S1. Rudolph [4] proved the 2 − 3 conjecture if either hω(G̃2)
or hω(G̃3) are positive. Thus it is left to consider the 2 − 3 conjecture in the case
hω(G̃2) = hω(G̃3) = 0. This is equivalent to the ω invertibility of G̃2 and G̃3. We
show

Theorem 1.1 The 2 − 3 conjecture is false if and only there exist 2 and 3 λ-
dense partitions A and B of I respectively such that

FA ◦ FB = FB ◦ FA. (1.7)

Clearly the condition (1.7) yields that condition

fA ◦ fB = fB ◦ fA, (1.8)

which in turn implies
φA ◦ φB = φB ◦ φA. (1.9)

We give necessary and sufficient conditions for the equality (1.8) for any 2 and
3-partitions A and B respecitively. A k-partition C is called a k-n-partition if it
is induced by the partition of I to n equal length intervals. (C is not λ-dense.)
Assume that A and B are 2-n and 3-n-partitions of I respectively. Then φA, φB
induce permutation σ, η respectively on the set < n >:= {1, ..., n}. Assume that
(1.8) holds. Then σ and η are two commuting permutations. The equality (1.8)
gives the precise structure of σ and η. We show that for n ≤ 3 there are no regular
2-n and 3-n-partitions for which (1.8) holds. For n = 4 there are unique regular 2-4
and 3-4-partitions which satisfy (1.8)

A = {{[1
4
,
1
2
), [

3
4
, 1)}, {[0, 1

4
), [

1
2
,
3
4
)}}, B = {{[1

2
,
3
4
)}, {[0, 1

4
), [

3
4
, 1)}, {[1

4
,
1
2
)}}.
(1.10)

It is possible to extend this example in a trivial way to any n ≥ 5, by letting σ and
η to fix a few first and last integers in the interval [1, n]. For each integer m ≥ 2,
where 3 - 2m + 1, the maps G2, G3 induce regular 2 − 2m and 3 − 2m partitions
which satisfy (1.8). It seems that the non-validity of the 2− 3 conjecture is closely
related to the existence of other type 2-n and 3-n-partitions which satisfy (1.8).
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We now summarize briefly the contents of the paper. Section 2 is devoted to the
discussion of the connection between k-λ dense partitions and a nonatomic invariant
measure of G̃k whose support is S1. In Section 3 we discuss the map φA for any
k-partition of I. In particular we show that the λ entropy of φA is zero. In Section
4 we discuss the conditions on 2 and 3 partitions A and B of I which satisfy the
condition (1.8). In the last section we discuss the combinatorial conditions on 2-n
and 3-n-partitions of I which satisfy (1.8). In particular we show that the example
(1.10) is the first nontrivial example of 2-4 and 3-4-partitions of I satisfying (1.8).
This example is a particular case of the examples of 2− 2m and 3− 2m partitions
(3 - 2m + 1) satisfying (1.8), induced by the maps G2, G3.

2 Covering maps of S1

Let F : I → R be a continuous function such that F (0) = 0, F (1) = k for some
1 ≤ k ∈ Z. We then extend F to R

F (0) = 0, F (x + 1) = F (x) + k for all x ∈ R. (2.1)

Then F induces the map F̃ : S1 → S1 where the degree of F̃ is k. F̃ is a k-covering
map if and only if F is increasing on R. We call F expansive if (1.6) holds.

Theorem 2.1 Let F : R → R be a continuous increasing function on R satis-
fying (2.1) for an integer k ≥ 2. Assume that F is expansive. Then there exist a
unique continuous increasing function H : R → R satisfying (2.1) with k = 1 such
that

F ◦H = H ◦Gk, (2.2)

where Gk(x) = kx. In particular F̃ is conjugate to G̃k on S1.

Proof. Observe that (2.1) implies that F (j) = jk for j ∈ Z. Let 1 ≤ m ∈ Z and
define F ◦m = F ◦ . . . ◦ F︸ ︷︷ ︸

m

. Then F ◦m(1) = km. Observe that F ◦m is also expansive.

For i ∈ [0, km] ∩ Z let x(i,m) ∈ [0, 1] be the unique solution of F ◦m(x(i,m)) = i.
Clearly, if i = i′k then x(i′,m− 1) = x(i,m). Moreover

0 = x(0,m) < x(1,m) < ... < x(km,m) = 1.

We claim that the set T := ∪∞m=1 ∪km

i=0 {x(i,m)} is dense in I. This is equivalent
to the statement that for any 0 ≤ x < y ≤ 1 there exists x(i,m) such that x <
x(i,m) < y. Assume to the contrary that there exist 0 ≤ x < y ≤ 1 such that
for any m ≥ 1 and i ∈ [0, km] ∩ Z the condition x(i,m) 6∈ (x, y) holds. Hence
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0 < F ◦m(y) − F ◦m(x) < 1, m = 1, ... Choose x′, y′ such that x < x′ < y′ < y. As
F ◦m is expansive

F ◦m(y′)− F ◦m(x′) =
F ◦m(y)− F ◦m(x)− (F ◦m(y)− F ◦m(y′))− (F ◦m(x′)− F ◦m(x)) <

1− ε, ε = (y − y′ + x′ − x) > 0.

Since F is expansive it follows that

0 < F ◦m(y′)− F ◦m(x′) < F ◦(m+1)(y′)− F ◦(m+1)(x′) < 1− ε, m = 0, 1, ...

Hence
lim

m→∞F ◦m(y′)− F ◦m(x′) = a, 0 < a ≤ 1− ε.

Let

pm := bF ◦m(x′)c, um := F ◦m(x′)− pm ∈ [0, 1), vm := F ◦m(y′)− pm, m = 0, 1, ...

Choose a subsequence umj , j = 1, ... which converges to u ∈ I. Then vmj , j = 1, ...
converges to u + a. Observe that

F (v)− F (u) =
lim

j→∞
F (vmj )− F (umj ) = lim

j→∞
F (F ◦mj (y′)− pmj )− F (F ◦mj (x′)− pmj ) =

lim
j→∞

F (F ◦mj (y′))− pmjk − (F (F ◦mj (x′))− pmjk) =

lim
j→∞

F ◦(mj+1)(y′)− F ◦(mj+1)(x′) = a = v − u.

This contradicts the expansiveness of F . Define H on the following dense countable
set S := ∪∞m=1 ∪km

i=0 { i
km }:

H(
i

km
) = x(i,m), i = 0, ..., km, m = 1, ... (2.3)

Note that if i = i′k then H( i
km ) = H( i′

km−1 ) = x(i′,m − 1) = x(i,m). So H is well
defined on S. Furthermore H is an increasing function on S. As S and T are dense
in I H has a unique continuous extension to I. Clearly the function H is increasing
on I with H(0) = 0, H(1) = 1. Extend H to R by (2.1). For i ∈ [0, km] ∩ Z such
that i = j + ijk

m−1 with j ∈ [0,mk−1] ∩ Z, ij ∈ [0, k] ∩ Z we have

H(Gk(
i

km
)) = H(

i

km−1
) = H(

j

km−1
+ ij) = H(

j

km−1
) + ij = x(j, m− 1) + ij .
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Observe next that F (H( i
km )) = F (x(i,m)). We claim that F (x(i,m)) = x(j,m −

1) + ij . Indeed

F ◦(m−1)(x(j,m− 1) + ij) = F ◦(m−1)(x(j, m− 1)) + ijk
m−1 =

j + ijk
m−1 = i = F ◦(m−1)(F (x(i,m)).

Hence (2.2) holds on S. Since S is dense in I (2.2) holds on I. Use the ”periodic”
properties of F, Gk, H to deduce (2.2) on R.

It is left to show that H is unique. Recall that H is the identity map on Z.
Assume that (2.2) holds. Then H ◦G◦m

k = F ◦m ◦H. Clearly

H(G◦m
k (

i

km
)) = H(i) = i = F ◦m(x(i,m)) = F ◦m(H(

i

km
)), i ∈ [0, km] ∩ Z.

Hence H( i
km ) = x(i,m). 2

Theorem 2.2 Let F be a continuous increasing function on R satisfying (2.1)
for an integer k ≥ 2. Let f be the inverse function of F . Then the orientation
preserving k-covering map F̃ : S1 → S1 preserves the Lebesgue measure λ if and
only if there exists k nonnegative measurable functions p1, ..., pk such that

0 <

∫ b

a
pidλ for all 0 ≤ a < b ≤ 1, i = 1, ...k,

k∑

i=1

pi(x) = 1, a.e. in I, (2.4)

f(x + i− 1) =
∫ x

0
pidλ +

i−1∑

j=0

∫ 1

0
pjdλ, p0(x) = 0, x ∈ I, i = 1, ..., k.

In particular, F̃ is λ-preserving and is invertible with respect to λ if and only if
there exists a k-λ-dense partition A = {A1, ..., Ak} of I such that pi = χAi a.e. for
i = 1, ..., k. In this case φA is the λ inverse of F̃ .

Proof. Clearly, for 0 ≤ x < y ≤ 1

F̃−1(x, y) = ∪k
i=1(f(x + i− 1), f(y + i− 1)). (2.5)

Then F̃ is λ-preserving if and only if λ(F̃−1(x, y)) = y−x. Hence for each i ∈< k >

0 < f(y + i − 1) − f(x + i − 1) < y − x. Therefore 0 ≤ df(x+i−1)
dx = pi ≤ 1 for

some measurable function on I for i = 1, ..., k. In particular the last equality of
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(2.4) holds. Since f(x) is increasing in the interval [0, k] we deduce the first equality
of (2.4). The second equality of (2.4) is equivalent to the assumption that F is
λ-preserving.

Vice versa, suppose that we are given k nonnegative measurable function p1, ..., pk

which satisfy the first two conditions of (2.4). Define f : [0, k] → R by the last
condition of (2.4). Then f is an increasing function which maps [0, k] on I. Let
F : I → [0, k] be the inverse of of f . Then F̃ is an orientation preserving k-covering
of S1 which preserves λ. Note that for any set B ⊂ I, which is a finite union of
intervals, the last equality of (2.4) and (2.5) yield

λ(f(B + i− 1)) =
∫

B
pidλ, i = 1, ..., k, λ(B) = λ(F̃−1(B)) =

k∑

i=1

λ(f(B + i− 1)).

(2.6)
Hence the above equalities hold for any measurable set B ⊂ I. Suppose furthermore
that pi(x) = χAi a.e. for some measurable set Ai ⊂ I for i = 1, ..., k. The first two
conditions of (2.4) are equivalent to the assumption that A = {A1, ..., Ak} can be
chosen to be k-λ-dense partition. (2.6) yields

F̃−1(B) =
∫

B
χAidλ, for any measurable set B ⊂ Ai, i ∈< k > . (2.7)

Hence F̃ has the λ inverse φA given by

φA(x) = f(x + i− 1) for x ∈ Ai, i ∈< k > . (2.8)

Assume finally that F̃ preserves λ and F̃ has λ inverse ψ. In particular (2.4)
holds. As F̃−1(x) = ∪k

i=1f(x + i − 1), the existence of ψ implies the partition of I
to k measurable pairwise distinct sets A1, ..., Ak, such that for ψ(x) = f(x + i− 1)
x ∈ Ai. Let B be a measurable subset of Ai. Since F̃ preserves λ the first equality
of (2.6) implies

λ(B) = λ(F̃−1(B)) = λ(ψ(B)) = λ(f(B + i− 1)) =
∫

B
pidλ ≤

∫

B
dλ = λ(B).

Hence pi|B = 1 a.e.. The second condition of (2.4) yields pi = χAi a.e. for i =
1, ..., k. The first condition of (2.4) implies that A = {A1, ..., Ak} is k-λ-dense
partition of I. 2

Theorem 2.2 was inspired by Parry’s paper [3].

Theorem 2.3 Let A = {A1, ..., Ak} be k-λ-dense partition with k ≥ 2. Let fA
be given by (1.4) and FA be the inverse of fA. Then FA is expansive, F̃A is an
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orientation preserving k covering of S1 which preserves λ. The generalized interval
exchange φA given by (1.2) is the λ inverse of F̃A. Furthermore

hλ(F̃A) = hλ(φA) = 0. (2.9)

Proof. Assume that x, y ∈ [j−1, j], j ∈ Z and x < y. Let j ≡ i mod k for some
i ∈< k >. Since A is λ-dense

y − x =
∫ y

x
dλ =

k∑

p=1

∫ y

x
χpdλ >

∫ y

x
χidλ = f(y)− f(x).

Hence F (v) − F (u) > v − u for any v > u. The proof of Theorem 2.2 and the
definitions of fA and φA yield that F̃A is λ preserving and φA is the λ inverse
of F̃A. As FA is expansive by Theorem 2.1 FA is conjugate to Gk. In particular
F̃A is conjugate to G̃k. λ is conjugate to nonatomic probability measure ω, whose
support is I and which is G̃k-invariant. As G̃k has the standard Markov partition
Mi = [ i−1

k , i
k ), i = 1, ..., k, we deduce that F̃A is equivalent to complete Z+ shift

on k symbols. Let M = {H(M1), ..., H(Mk)}) the Markov partition for F̃A. Then
F = ∨∞i=0F̃

−iM is the σ-subalgebra generated by the cylinders, which is equivalent
to the Borel algebra for any nonatomic probability measure ν. Since F̃ is λ invertible
it follows that hλ(F̃ ) = 0 (cf.[6, Cor. 4.18.1]). 2

In the next section we show that for any k-partition A of I hλ(φA) = 0.

Problem 2.4 Let A = {A1, ..., Ak} be k-partition of I. When φA is ergodic?

Corollary 2.5 Let A = {A1, ..., Ap},B = {B1, ..., Bq} be two p, q-λ-dense par-
titions of I with p, q ≥ 2. Then

hλ(φA ◦ φB) = hλ(F̃B ◦ F̃A) = 0. (2.10)

Proof. F := FB◦FA is a continuous increasing expansive function on R satisfying
(2.1) for k = pq. Furthermore F̃ preserves λ. Theorem 2.2 implies that F = FC for
some k-λ-dense partition of I. Hence (2.10) holds. 2

Problem 2.6 Let A = {A1, ..., Ap},B = {B1, ..., Bq} be two p and q-λ dense
partitions of I with p, q ≥ 2. Estimate from above

hλ(φ−1
A ◦ φB) = hλ(φ−1

B ◦ φA). (2.11)

Theorem 2.7 Let F : R→ R be a measurable function satisfying (2.1) a.e. for
some k ∈ Z. Assume that

F ◦Gm = Gm ◦ F, |m| ∈ [2,∞) ∩ Z. (2.12)

Then F = Gk = kx a.e..
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Proof. Let E(x) = F (x) − kx. Then E(x + 1) = E(x) a.e. in R. Let j be a
positive integer. Since F and Gk commute with Gm it follows that E◦Gmj = Gmj◦E.
Hence

mjE(x) = E(mjx) = E(mjx + 1) = E(mj(x +
1

mj
)) = mjE(x +

1
mj

) ⇒

E(x +
1

mj
) = E(x).

Since j is an arbitrary positive integer it follows that E is constant a.e.. The
condition E(mx) = mE(x) yields that E = 0 a.e.. 2

The above theorem is related to a theorem (unpublished) of Jean-Paul Thou-
venot:

Theorem 2.8 Let p, q ∈ Z\{−1, 0, 1} and assume that p and q are multiplica-
tively independent, i.e. p and q are not integer powers of some integer r. Let
T : S1 → S1 be measurable λ-preserving. Assume that T commutes with G̃p and
G̃q. Then T = G̃k for some k ∈ Z∗.
Proof of Theorem 1.1. Suppose first that there exist 2 and 3-λ-dense partitions
A and B of I such that (1.7) holds. Theorem 2.3 yields that FA is expansive.
Theorem 2.1 yields that H−1 ◦ FA ◦ H = G2. Let F := H−1 ◦ FB ◦ H. Then F
is a continuous function on R satisfying (2.1) with k = 3 which commutes with
G2. Theorem 2.7 yields that F = G3. As F̃A, F̃B preserve the Lebesgue measure
λ it follows that G̃2, G̃3 preserve the probability measure ω = (H−1)∗λ, which is
nonnatomic and whose support is I. As F̃A, F̃B are λ-invertible (Theorem 2.3),
G̃2, G̃3 are ω-invertible. Hence ω 6= λ, which contradicts the 2− 3 conjecture.

Assume now that 2− 3 conjecture is false. Then there exists a nonatomic prob-
ability measure ω which is G̃2, G̃3 invariant. According to [2] the support of ω is
I. Rudolph’s theorem [4] claims that hω(G̃2) = hω(G̃3) = 0. Hence G̃2, G̃3 are
ω-invertible (cf.[6, Cor. 4.14.3]). Let

H(x) =
∫ x

0
dω, x ∈ I.

Then H(x) is strictly increasing function on I with H(0) = 0, H(1) = 1. Extend
H to R using (2.1) with k = 1. Let Fk = H ◦Gk ◦H−1, k = 2, 3. Then F2 ◦ F3 =
F3 ◦ F2. Furthermore F̃2, F̃3 preserve λ and are λ invertible. Theorem 2.2 implies
that F2 = FA and F3 = FB for some 2 and 3-λ-dense partitions A and B of I. 2
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3 hλ(φA) = 0

Let F : R→ R is be a nondecreasing function, which may be discontinuous. Then F
has a countable number of point of discontinuities. We will assume the normalization
that F is right continuous. Assume now that F is an increasing function on R
which is not bounded from below and above. Then there exists a unique continuous
nondecreasing function f : R → R, which unbounded from below and above, such
that f ◦F = Id. We call f the inverse of F . Vice versa, if f : R→ R is a continuous
nondecreasing function, which is not bounded from below and above, then there
exists a unique increasing function F : R→ R such that f ◦ F = Id. We call F the
inverse of f .

Let k ∈ N and assume that F is an increasing function on R which is continuous
at the integer points Z and satisfies (2.1). Then we can define a measurable map
F̃ : S1 → S1. We call F̃ an almost k-covering map.

Theorem 3.1 Let F be an increasing function on R continuous on Z and sat-
isfying (2.1) for an integer k ≥ 2. Let f be the inverse function of F . Then almost
k-covering map F̃ : S1 → S1 preserves the Lebesgue measure λ if and only if there
exists k nonnegative measurable functions p1, ..., pk such that

k∑

i=1

pi(x) = 1, a.e. in I,

f(x + i− 1) =
∫ x

0
pidλ +

i−1∑

j=0

∫ 1

0
pjdλ, p0(x) = 0, x ∈ I, i = 1, ..., k.

In particular, F̃ is λ-preserving and is invertible with respect to λ if and only if there
exists a k-partition A = {A1, ..., Ak} of I such that pi = χAi a.e. for i = 1, ..., k. In
this case φA is the λ inverse of F̃ .

The proof of this theorem follows from simple modifications of the proof of Theorem
2.2 and is left to the reader.

Let U, V ∈ Σ. In what follows we use the notation:

U ∼ V ⇐⇒ λ(U∆V ) = 0, U 6∼ V ⇐⇒ λ(U∆V ) > 0.

Let J ⊂ R be an interval of positive Lebesgue measure (open, closed or half open).
Let A = {A1, ..., Ak} and B = {B1, ..., Bm} be two partitions of J . Recall that A and
B are equivalent if there exist permutationa µ :< k >→< k >, ν :< m >→< m >
and positive integer p such that

Aµ(i) ∼ Bν(i), i = 1, ..., p, Aµ(i) ∼ Bν(j)) ∼ ∅ for i > p and j > p.
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Theorem 3.2 Let k ≥ 1 and assume that A = {A1, ..., Ak} is a partition of
I = [0, 1). Let fA be the continuous nondecreasing function defined by (1.3-1.4).
Let FA : R → R be the increasing function which is the inverse of fA. Let F̃A be
almost k-covering of S1 preserving λ and whose λ inverse is φA. Let 0 = β0 ≤
β1 ≤ ... ≤ βk = 1 be defined in (1.1). Let B = {[β0, β1), [β1, β2), ..., [βk−1, βk)} be
a partition of S1 to k intervals. Then the partition Bn := B ∨ φÃB ∨ ... ∨ φn

ÃB
is equivalent to a partition of [0, 1) to intervals Cn := {Jn,1, ..., Jn,`(n)} with the
following properties:
(a) `(0) = k, J0,j = [βj−1, βj), j = 1, ..., k.
(b) Cn is obtained from Cn−1 by subdividing each interval Jn−1,j to a finite number
of subintervals for each n ∈ N.
Then one of the following conditions holds:
(c) The partitions Cn, n = 0, 1, ..., separate points on S1.
(d) The partitions Cn, n = 0, 1, ..., do not separate points on S1. Then there exists
a nonempty countable J with the following properties. For each j ∈ J there exist
mj ∈ N pairwise disjoint open intervals Ij,1, ..., Ij,mj ⊂ S1 of equal length such that
φA acts on {Ij,1, ..., Ij,mj} as an orientation preserving cyclic interval exchange up
to a set of zero measure:

φA(Ij,p) ⊂ Ij,p+1,

Ij,p+1 ∼ φA(Ii,p), p = 1, ..., mj , (Ij,mj+1 = Ii,1), for any j ∈ J , (3.1)
Ij,p ∩ Ij′,p′ = ∅ for any j 6= j′and p ∈< mj >, p′ ∈< mj′ > .

Let X = ∪j∈J ∪mj

p=1 Ij,q. Then the restriction of the partitions Cn, n = 0, 1, ... to
S\X separate the points in S\X.

Hence in both of the cases the measure entropy hλ(φA) equals to zero.

Proof. For k = 1 F̃A = Id and the theorem is trivial. Without a loss of generality
we may assume that k ≥ 2 and λ(Ai) > 0 for i = 1, ..., k.

Let J ⊂ R be an interval. From the definition of fA it follows that fA(J) is
an interval. Let J ⊂ [0, 1). Define Ii = fA(J + i − 1) ∩ [βj−1, βj) for i = 1, ..., k.
Then I1, ..., Ik are pairwise distinct intervals, which may be empty or consisting of
one point. From the definition of φA it follows that φA(J) ∼ ∪k

i=1Ii. Hence Bn

is equivalent to a partition Cn of [0, 1) to disjoint intervals. Furthermore Cn is the
refinement of Cn−1. Hence (a) and (b) hold.

Assume first that the partitions Cn, n = 0, 1, ..., separate points. Hence ∨∞n=0Cn

is equivalent to the Borel σ-algebra on S1 up to sets of zero measure. Therefore
∨∞n=0φ

n
AB is equivalent to the Borel σ-algebra on S1 up to sets of zero measure.

As F̃−1
A = φA we deduce that hλ(F̃A) = 0, e.g. [6, Cor.4.18.1], which implies that

hλ(φA) = 0.
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Assume now that Cn, 0, 1, ..., do not separate points. That is there is at least
one nested set of intervals J1,q1 ⊃ J2,q2 ⊃ ... such that ∩∞i=1J i,qi = K = Ko, Ko =
(a, b), 0 ≤ a < b ≤ 1. Note that for each i ≥ 2 there exists J1

i−1,q1
i−1

such that

Ji,qi\φA(J1
i−1,q1

i−1
) ∼ ∅. Then J1

1,q1
1
⊃ J1

2,q1
2
⊃ ... is nested set of intervals such that

∩∞i=1J
1
i,q1

i
= K1 is a closed interval in S. Clearly λ(K\φA(K1)) = 0. Hence λ(K1) ≥

λ(K), i.e. K1 = K
1
o, K1

o = (a1, b1), 0 ≤ a1 < b1 ≤ 1, b1 − a1 ≥ b− a. Since K and
K1 are intersection of nested sequences of the intervals in the partitions Cn, n = 1, ...,
it follows that either Ko = K1

o or Ko ∩K1
o = ∅. Repeating this argument we obtain

for each integer p ≥ 2 a sequence of nested intervals Jp
1,qp

1
⊃ Jp

2,q2
2
⊃ ... such that

∩∞i=1J
p
i,qp

i
= Kp is a closed interval in S. Furthermore λ(Kp−1\φA(Kp)) = 0. Hence

Kp = K
p
o, Kp

o = (ap, bp), 0 ≤ ap < bp ≤ 1, bp − ap ≥ bp−1 − ap−1 for p = 2, 3, ...,.
Let K = K0. Then for any 0 ≤ r < p either Kr

o = Kp
0 or Kr

o ∩Kp
o = ∅. Consider the

sequence of open intervals K0
o ,K1

o ,K1
o , ... in (0, 1), whose length is a nondecresing

sequence. Then it is impossible that all these open intervals are pairwise disjoint.
So assume that Kr

o ∩Kp
o 6= ∅ for some 0 ≤ r < p. Hence Kr

o = Kp
o . If Kr+1

o = Kr
o

we choose p = r + 1. Otherwise we can assume without loss of generality that
Kj

o 6= Kr
o for j = p − 1, ..., r + 1. Clearly λ(Kj) = λ(Kr), j = p − 1, ..., r + 1.

Therefore up a zero measure φA acts the orientation preserving interval exchange
Kr

o = Kp
o → Kp−1

o → ... → Kr
o of p − r distinct open intervals in (0, 1). Obviuosly

K0
o appears among this p− r intervals.

Clearly all maximal open intervals Ko whose points are not separated by Cn, n =
0, ..., is a countable set of pairwise disjoint intervals of (0, 1). If we group each Ko

with the other p − r − 1 intervals as above, we obtain a countable set J of such
groups as described in the theorem. Let X = ∪j∈J ∪mj

p=1 Ij,q. Then φA(X) = X (up
to zero measure sets). Clearly hλ(φA|X) = 0. Then Y = S1\X is φA invariant set
(up to a set of zero measure). Cn ∩ Y, n = 0, ..., separates the points on Y . The
arguments in the beginning of the proof of the theorem yield that hλ(φA|Y ) = 0.
Hence hλ(φA) = 0.

4 The condition fA ◦ fB = fA ◦ fB

Lemma 4.1 Let A, B be 2 and 3 partitions of I = [0, 1) respectively. Then

fA ◦ fB = fC , fB ◦ fA = fD (4.1)

for some 6-partitions C, D of I. Suppose furthermore that A and B are λ-dense
partitions. Then C and D are λ-dense partitions.

12



Proof. Clearly

f ′A = χA, f ′B = χB,

(fA ◦ fB)′ = χf−1
B (A)χB, (fB ◦ fA)′ = χf−1

A (B)χA,

fA ◦ fB(x + 6) = fA ◦ fB(x) + 1, fB ◦ fA(x + 6) = fB ◦ fA(x) + 1.

Let

Bi,j := {x ∈ Bi : fB(i− 1 + x) ∈ Aj}, for i = 1, 2, 3, j = 1, 2,

Aj,i := {x ∈ Aj : fA(j − 1 + x) ∈ Bi}, for i = 1, 2, 3, j = 1, 2,

(4.2)

We claim that

C := {B1,1, B2,1, B3,1, B1,2, B2,2, B3,2}, D := {A1,1, A2,1, A1,2, A2,2, A1,3, A2,3}
(4.3)

are 6-partitions of I and (4.1) holds. Since B is a partition of I Bi,j ∩ Bp,q = ∅
for i 6= p. As A is a partition of I Bi,j ∩ Bi,p = ∅ for j 6= p. As fB([0, 3]) = [0, 1]
and fB(B ∩ [0, 3]) has measure 1 it follows that C is a 6-partition of I. Similar
arguments show that D is a 6 partition of I. Let C,D ⊂ R be the induced sets by
C, D respectively. The definition of C and a straightforward calculation shows that
(fA ◦ fB)′ = χC . As fA ◦ fB(0) = 0 we deduce the first equality of (4.1). The second
equality of (4.1) follows similarly.

Suppose now that A and B are λ-dense partitions. Then fA and fB are increas-
ing. Hence fA ◦ fB and fB ◦ fA are also increasing. The equalites (4.1) yield that C
and D are λ-dense partitions. 2

For a set A ⊂ R we denote

A(s, t) := A ∩ [s, t], s ≤ t,

A(t) := A ∩ [0, t], 0 ≤ t.

Let A = {A1, ..., Ak} and A′ = {A′1, ..., A′k} be two k-partitions of [0, 1). We say that
A and A′ are strongly equivalent, and denote it by A ∼ B if Ai ∼ A′i for i = 1, ..., k.

Lemma 4.2 Let A and B be 2 and 3 partitions of [0, 1] respectively. Let A,B ∈
Σ be defined by A,B using (1.3) respectively. Then the following are equivalent
(a) (1.8) holds.
(b) The partitions C and D given in (4.3) are both strongly equivalent to the partition

A · B := {A1 ∩B1, A2 ∩B2, A1 ∩B3, A2 ∩B1, A1 ∩B2, A2 ∩B3}. (4.4)
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(c)

A(fB(s), fB(t)) ∼ fB(A(s, t) ∩B(s, t)), for all s ≤ t,

(4.5)
B(fA(s), fA(t)) ∼ fA(A(s, t) ∩B(s, t)), for all s ≤ t.

Proof. Assume (a). Then (4.1) implies that C ∼ D. Furthermore C ∼ D ⊂
A∩B. A straightforward argument yields that A∩B is induced by a partition A·B.
As 1 = λ(C(6)) = λ(A ∩B ∩ [0, 6] we deduce that C ∼ A ∩B and C ∼ D ∼ A · B.

Assume (b). Then (4.1) implies (a).
Assume (a) and (b). Use the definition of C and the condition C ∼ A∩B and to

deduce the first condition in (4.5) with s = 0 and t ≥ 0. Hence the first condition
of (4.5) holds for any 0 ≤ s ≤ t. Use the the condition (1.5) for fB with k = 3 to
deduce the condition of (4.5) for any s ≤ t. The second condition in (4.5) is derived
similarly.

Assume (c). Recall that fB maps any measurable set E ⊂ B to a set E′ of the
same measure. Furthermore the complement of B (Bc) is mapped to a set of zero
measure. Hence

fB(B(t)) ∼ fB([0, t]) = [0, fB(t)] ⇒ λ(A(t) ∩B(t)) = λ(fB(A(t) ∩B(t)).

Similar conditions hold for fA([0, t]). Assume first that (4.5) holds for s = 0 and
any t ≥ 0. Then

fA(fB(t)) = λ(A(fB(t)) = λ(fB(A(t) ∩B(t)) = λ(A(t) ∩B(t)) =
λ(fA(A(t) ∩B(t)) = λ(B(fA(t)) = fB(fA(t)).

Hence (1.8) holds for any t ≥ 0. Since the two functions appearing in (1.8) satisfy
(1.5) we deduce (1.8) for all t ∈ R. 2

It is straightforward to show that the condition (1.8) yields the condition (1.9).
In the next section we show that the condition (1.9) is sometimes weaker than (1.8).
Recall that a (k-)partition A = {A1, ..., Ak} of I is called a regular (k-)partition if
λ(Ai) > 0 for i = 1, ..., k. The following Proposition is straightforward.

Proposition 4.3 Let

A = {[0, t), [t, 1)}, B = {[0, t), ∅, [t, 1)} for t ∈ [0, 1]. (4.6)

Then (1.8) holds. Let A and B be 2 and 3-partitions of I which are not strongly
equivalent to the corresponding two partitions given in (4.6). Assume that (1.8)
holds. Then A and B are regular partitions of I.
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5 Interval exchanges

In this section we consider only partitions of the interval I = [0, 1) induced by the
partition of I to n intervals of equal length 1

n . Let J := {J1, ..., Jn} be a partition
of I to n ≥ 2 half closed intervals of length 1

n arranged in an increasing order. Let
2 ≤ k ≤ n and let Ω1, ...,Ωk be a partition of < n > to k disjoint (possibly empty)
sets. Set

Aj = ∪l∈ΩjJl, j = 1, ..., k.

Then A = {A1, ..., Ak} is called a k-n-partition of I. A is a regular k-n-partition of
I if and only if each Ωj is a nonempty set. Then φA is an interval exchange. φA
induces the following permutation σ :< n >→< n >:

φA(Ji) = Jσ(i), i = 1, ..., n.

σ maps the nonempty set Ωj to the set [γj−1 + 1, γj−1 + |Ωj |]∩Z monotonically for
j = 1, ..., k. Here

γ0 = 0, γj =
j∑

l=1

|Ωl|, j = 1, ..., k.

Any k-n-interval partition A induces a unique regular m-n-interval partition A′ with
1 ≤ m ≤ n, by discarding the empty sets. Clearly, φA = φA′ , that is A and A′
induce the same interval exchange on I. Equivalently, A and A′ induce the same
permutation σ :< n >→< n >. Any permutation σ on < n > we identify with the
ordered set of the elements of < n >:

{i1, i2, ..., in} = {σ−1(1), σ−1(2), ..., σ−1(n)}. (5.1)

It is easy to show that σ given in the above form is iduced by a unique minimal
regular m-n-interval partition, where m is exactly the number of j ≤ n−1 for which
ij > ij+1.

Lemma 5.1 Let A and B be 2-n-interval and 3-n-interval regular partitions of
I respectively. Assume that the condition (1.8) holds. Suppose furthermore that the
induced permutations σ, η fixes either 1 or n. Then there exist 2-(n − 1)-interval
and 3-(n− 1)-interval partitions A′ and B′ satisfying the condition (1.8).

Proof. Since B is a regular 3-n partition of I we obtain that n ≥ 3. Let

Γ1 := {1 ≤ i1 < i2 < ... < ip},
Γ2 = {1 ≤ ip+1 < ip+2 < ... < in},
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1 ≤ p < n, Γ1 ∪ Γ2 =< n >,

∆1 := {1 ≤ j1 < j2 < ... < jq},
∆2 = {1 ≤ jq+1 < jq+2 < ... < jq′},
∆3 = {1 ≤ jq′+1 < jq′+2 < ... < jn},
1 ≤ q < q′ < n, ∆1 ∪∆2 ∪∆3 =< n >,

Ai = ∪m∈Γi [
m− 1

n
,
m

n
), i = 1, 2, Bj = ∪m∈∆j [

m− 1
n

,
m

n
), j = 1, 2, 3.

(5.2)

Assume first that σ, η fix 1. Then i1 = j1 = 1. Let

Γ′1 = {i2 − 1, ..., ip − 1},
Γ′2 = {ip+1 − 1, ..., in − 1},
∆′

1 = {j2 − 1, ..., jq − 1},
∆′

2 = {jq+1 − 1, jq+2 − 1, ..., jq′ − 1},
∆′

3 = {jq′+1 − 1, jq′+2 − 1, ..., jn − 1}.
Let A′,B′ be induced by {Γ′1, Γ′2}, {∆′

1, ∆
′
2,∆

′
3} respectively. A straightforward ar-

gument using Lemma 4.2 shows that

fA ◦ fB = fB ◦ fA ⇒ fA′ ◦ fB′ = fB′ ◦ fA′ . (5.3)

(Another way to deduce the above implication is to collaps each interval [m,m+ 1
n) ⊂

R, m ∈ Z to a point to obtain R. Then (1.8) holds also on R, which is equivalent
to fA′ ◦ fB′ = fB′ ◦ fA′ .)

Assume now that σ, η fix n. Then ip′ = jq′′ = n. Let Γ′2 = Γ2\{n},∆′
3 = ∆3\{n}.

Let A′,B′ be induced by {Γ1, Γ′2}, {∆1,∆2, ∆′
3} respectively. Then (5.3) holds. 2

Lemma 5.2 Let A and B be regular 2-n and 3-n-partitions induced by the reg-
ular 2-n and 3-n-partitions of < n > given in (5.2). Let the partition C = A · B,
given by (4.4), be induced by

Ω1 = Γ1 ∩∆1 = {k1, ...kr11}, r11 ≥ 0,

Ω2 = Γ2 ∩∆2 = {kr11+1, ..., kr22}, r22 ≥ r11,

Ω3 = Γ1 ∩∆3 = {kr22+1, ..., kr13}, r13 ≥ r22,

Ω4 = Γ2 ∩∆1 = {kr13+1, ..., kr21}, r21 ≥ r13,

Ω5 = Γ1 ∩∆2 = {kr21+1, ..., kr12}, r12 ≥ r21,

Ω6 = Γ2 ∩∆3 = {kr12+1, ..., kr23}, n = r23 ≥ r12.

(5.4)
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Assume that (1.8) holds. Then

q = r22 ≤ p = r13 ≤ q′ = r21. (5.5)

ku = iju = jiu , u = 1, ..., n. (5.6)

jr11 ≤ p < jr11+1 ≤ jq,

jq+1 ≤ jp ≤ p < jp+1 ≤ jq′ ,

jq′+1 ≤ jr12 ≤ p < jr12+1,

(5.7)

ir11 ≤ q < ir11+1 ≤ iq ≤ q′ < iq+1 ≤ ip,

ip+1 ≤ iq′ ≤ q < iq′+1 ≤ ir12 ≤ q′ < ir12+1.

(5.8)

If one the below equalities hold

0 = r11, r11 = q, q = p, p = q′, q′ = r12, r12 = n, (5.9)

then the above corresponding inequalities are vacuous.

Proof. Lemma 4.2 yields

fA(A(2) ∩B(2)) = B(1) = B1 ⇒ r22

n
= λ(fA(A(2) ∩B(2))) = λ(B1) =

q

n
,

fA(A(4) ∩B(4)) = B(2) = B1 ∪ (1 + B2) ⇒
r21

n
= λ(fA(A(2) ∩B(2))) = λ(B1) + λ(B2) =

q′

n
,

fB(A(3) ∩B(3)) = A(1) = A1 ⇒ r13

n
= λ(fB(A(3) ∩B(3))) = λ(A1) =

p

n
.

Hence (5.5) holds.
Let σ, η be the permutations of < n > induced by {Γ1, Γ2}, {∆1, ∆2,∆3} re-

spectively. Consider ku,∈ Γi ∩ ∆j for some i ∈< 2 >, j ∈< 3 >. Then ku = il
for l ∈< p > if i = 1 and l > p if i = 2. ku corresponds to the interval
[tu − 1

n , tu] ∈ A(2mij) ∩ B(2mij) for the smallest integer mij ∈< 3 >. Then
fA(A(tu) ∩ B(tu)) = B(fA(tu)) is of total length u

n . So the interval [tu − 1
n , tu)

is mapped on the interval [mij − 1 + ju−1
n , mij − 1 + ju

n ) ∈ mij − 1 + Bmij . Hence
σ(il) = l = ju. This proves the first equality in (5.6). Observe next that ku = jv.
Use the identity fB(A(tu) ∩B(tu)) = A(fB(tu)) to deduce the the equality v = iu.

17



If r11 > 0 then kr11 ∈ Ω1 ⊂ Γ1. As kr11 = ijr11
it follows that jr11 ≤ p. If

q = r22 > r11 then kr11+1 ∈ Ω2 ⊂ Γ2. As kr11+1 = ijr11+1 it follows that jr11+1 > p.
If q = r22 < r13 = p then Ω3 6= ∅. Then kq+1, kp ∈ Γ1. As kq+1) = iq+1, kp = ijp

it follows that jq+1 ≤ jp ≤ p. If p = r13 < r21 = q′ then Ω4 6= ∅. Then kp+1 ∈ Γ2.
As kp+1 = ijp+1 it follows that jp+1 > p. If q′ = r21 < r12 then Ω5 6= ∅. Then
kq′+1, kr12 ∈ Γ1. As kq′+1 = iq′+1, kr12 = ijr12

it follows that jq′+1 ≤ jr12 ≤ p.
If r12 < r23 then Ω6 6= ∅. Then kr12+1 ∈ Γ2. As kr12+1 = ijr12+1 it follows that
jr12+1 > p. These arguments prove (5.7).

Recalling that Ωi is also a subset of the corresponding ∆j and combining the
above arguments with the equality ku = jiu we deduce (5.8). 2

Corollary 5.3 Let the assumptions of Lemma 5.2 hold. Then

q + q′ = 2p, r11 = q − q′ + p, r12 = q′ − q + p,

1 ≤ q < q′ < n, q ≤ p ≤ q′, 2q ≥ p, 3p− 2q ≤ n.

(5.10)

Corollary 5.4 Let A and B be 2-n and 3-n-partitions which are not of the form
(4.6). Assume that n ≤ 3. Then (1.8) does not hold.

Let n = 3 and assume that σ is the cyclic permutation on < 3 >. Let η = σ2.
A straightforward calculation shows that for A = {A1, A2} and B = {B1, B2, B3}:

A1 = {J2, J3}, A2 = {J1}, B1 = J3, B2 = J1, B3 = J2,

φA and φB are inducing the permutations σ and η of < 3 > respectively. Hence
(1.9) holds. In view of Corollary 5.4 (1.8) does not hold.

Lemma 5.5 The following regular 2-4 and 3-4-interval partitions

A = {{J2, J4}, {J1, J3}}, B = {{J3}, {J1, J4}, {J2}} (5.11)

are the unique regular 2-4 and 3-4-interval partitions for which (1.8) holds. The
induced permutations σ, η are cyclic permutation with η = σ−1.

The proof of the lemma is left to the reader. Combine Lemma 5.1 with Lemma
5.5 to obtain:
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Corollary 5.6 Let p, n be nonnegative integers such that 0 ≤ p ≤ n− 4. Then
the following regular 2-n and 3-n-partitions satisfy (1.8):

A :=

{{[0,
p

n
), [

p + 1
n

,
p + 2

n
), [

p + 3
n

,
p + 4

n
)}, {[ p

n
,
p + 1

n
), [

p + 2
n

,
p + 3

n
), [

p + 4
n

, 1)}},
B :=

{{[0,
p

n
), [

p + 2
n

,
p + 3

n
)}, {[ p

n
,
p + 1

n
)}, {[p + 3

n
,
p + 4

n
)}, {[p + 1

n
,
p + 2

n
), [

p + 4
n

, 1)}}.

The corresponding permutations σ, η satisfy η = σ−1.

For n = 2m with m ≥ 2 and 3 - 2m + 1, there exist regular 2 − n and 3 − n
partitions of I, induced by the commuting maps G2, G3, for which (1.8) holds.

Lemma 5.7 Let m ≥ 2 be an integer and assume that 2m + 1 is not divisible
by 3. Let σ1, η1 :< 2m >→< 2m > are given by the maps x → 2x, x → 3x modulo
2m+1 restricted to < 2m >. Then σ1 and η1 commute. Let A2m,B2m be the regular
2− 2m, 3− 2m partitions induced by

Γ1 := {σ1(1), σ1(2), . . . , σ1(m)}, Γ2 := {σ1(m + 1), σ1(m + 2), . . . , σ(2m)},
∆1 = {η1(1), . . . , η1(b2m + 1

3
c)}, ∆2 = {η1(b2m + 1

3
c+ 1), . . . , }, η1(b4m + 2

3
c)},

∆3 = {η1(b4m + 2
3

c+ 1), . . . , η1(2m)}.

Then φA2m ◦ φB2m = φB2m ◦ φA2m.

The proof is left to the reader. Note that

lim
m→∞φA2m(x) =

x

2
= G−1

2 (x), lim
m→∞φB2m(x) =

x

3
= G−1

3 (x).

Thus Lemma 5.7 does not give in the limit a contradiction to the 2-3 conjecture.
We do not know for which m ≥ 3 the converse to Lemma 5.7 holds. That is,

assume that m ≥ 3, 3 - 2m + 1 and A = {A1, A2},B = {B1, B2, B3} are regular
2 − 2m, 3 − 2m partitions. Suppose furthermore that J2m ∈ A1, J1 ∈ A2 and (1.8)
holds. Are A,B equal to A2m,B2m respectively?

Another way to find a counterexample to the 2-3 conjecture is to study the
ergodic measures invariant under G̃2, G̃3, which are supported on a finite number
of points. It is straightforward to show that such measure is equi-distributed on an
orbit of the action of the permutations σ1, η1 given in Lemma 5.7. It seems that this
approach is not straightforward related to the problem of the converse to Lemma
5.7 we discussed above.
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