Counting matchings in graphs with applications to the monomer-dimer models

Shmuel Friedland
Univ. Illinois at Chicago & Berlin Mathematical School

KTH, 16 April, 2008
Overview
Overview

- Matchings in graphs
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for \mathbb{Z}^2, \mathbb{Z}^3
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^2, \mathbb{Z}^3$
- Asymptotic lower and upper matching conjectures
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^2, \mathbb{Z}^3$
- Asymptotic lower and upper matching conjectures
- Plots and results
Overview

- Matchings in graphs
- Number of k-matchings in bipartite graphs as permanents
- Lower and upper bounds on permanents
- Exact lower and upper bounds on k-matchings in 2-regular graphs
- Expected number of k-matchings in r-regular bipartite graphs
- p-matching and total matching entropies in infinite graphs
- Theoretical and computational results for $\mathbb{Z}^2, \mathbb{Z}^3$
- Asymptotic lower and upper matching conjectures
- Plots and results
- Summary and open problems
Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices, 101 edges, 24 dimers, 12 monomers
Matchings
Matchings

- $G = (V, E)$ undirected graph with vertices V, edges E.
Matchings

- $G = (V, E)$ undirected graph with vertices V, edges E.
- matching in G: $M \subseteq E$
 no two edges in M share a common endpoint.
- $G = (V, E)$ undirected graph with vertices V, edges E.
- Matching in G: $M \subseteq E$
 no two edges in M share a common endpoint.
- $e = (u, v) \in M$ is dimer
Matchings

- $G = (V, E)$ undirected graph with vertices V, edges E.
- **matching in G:** $M \subseteq E$
 - no two edges in M share a common endpoint.
- $e = (u, v) \in M$ is **dimer**
- v not covered by M is **monomer**.
Matchings

- $G = (V, E)$ undirected graph with vertices V, edges E.
- matching in G: $M \subseteq E$
 no two edges in M share a common endpoint.
- $e = (u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
G = (V, E) undirected graph with vertices V, edges E.

- matching in G: \(M \subseteq E \)
 - no two edges in M share a common endpoint.
- \(e = (u, v) \in M \) is dimer
- v not covered by M is monomer.
- \(M \) called monomer-dimer cover of G.
- \(M \) is perfect matching \(\iff \) no monomers.
Matchings

- $G = (V, E)$ undirected graph with vertices V, edges E.
- matching in G: $M \subseteq E$
 no two edges in M share a common endpoint.
- $e = (u, v) \in M$ is dimer
- v not covered by M is monomer.
- M called monomer-dimer cover of G.
- M is perfect matching \iff no monomers.
- M is k-matching \iff $\#M = k$.
Generating matching polynomial
Generating matching polynomial

- \(\phi(k, G) \) number of \(k \)-matchings in \(G \), \(\phi(0, G) := 1 \)
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
- roots of $\Phi_G(x)$ nonpositive Heilmann-Lieb 1972.
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
- roots of $\Phi_G(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_1 \cup G_2}(x) = \Phi_{G_1}(x)\Phi_{G_2}(x)$
Generating matching polynomial

- \(\phi(k, G) \) number of \(k \)-matchings in \(G \), \(\phi(0, G) := 1 \)
- \(\Phi_G(x) := \sum_k \phi(k, G)x^k \) matching generating polyn.
- roots of \(\Phi_G(x) \) nonpositive Heilmann-Lieb 1972.
- \(\Phi_{G_1 \cup G_2}(x) = \Phi_{G_1}(x)\Phi_{G_2}(x) \)

Example: \(K_{r,r} \) complete bipartite graph on \(2r \) vertices.

\[
\Phi_{K_{r,r}}(x) = \sum_{k=0}^r \binom{r}{k}^2 k! x^k
\]
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
- roots of $\Phi_G(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_1 \cup G_2}(x) = \Phi_{G_1}(x)\Phi_{G_2}(x)$

Example: $K_{r,r}$ complete bipartite graph on $2r$ vertices.

$$\Phi_{K_{r,r}}(x) = \sum_{k=0}^{r} \binom{r}{k}^2 k! x^k$$

$\mathcal{G}(r, 2n)$ set of r-regular bipartite graphs on $2n$ vertices
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
- roots of $\Phi_G(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_1 \cup G_2}(x) = \Phi_{G_1}(x)\Phi_{G_2}(x)$

Example: $K_{r,r}$ complete bipartite graph on $2r$ vertices.

$$\Phi_{K_{r,r}}(x) = \sum_{k=0}^{r} \binom{r}{k}^2 k! x^k$$

$G(r, 2n)$ set of r-regular bipartite graphs on $2n$ vertices

$qK_{r,r} \in G(r, 2rq)$ a union of q copies of $K_{r,r}$.
Generating matching polynomial

- $\phi(k, G)$ number of k-matchings in G, $\phi(0, G) := 1$
- $\Phi_G(x) := \sum_k \phi(k, G)x^k$ matching generating polyn.
- roots of $\Phi_G(x)$ nonpositive Heilmann-Lieb 1972.
- $\Phi_{G_1 \cup G_2}(x) = \Phi_{G_1}(x)\Phi_{G_2}(x)$

Example: $K_{r,r}$ complete bipartite graph on $2r$ vertices.

$$\Phi_{K_{r,r}}(x) = \sum_{k=0}^{r} \binom{r}{k}^2 k! x^k$$

$\mathcal{G}(r, 2n)$ set of r-regular bipartite graphs on $2n$ vertices

$qK_{r,r} \in \mathcal{G}(r, 2rq)$ a union of q copies of $K_{r,r}$.

$\Phi_{qK_{r,r}} = \Phi_{K_{r,r}}^q$
Notations and definitions
Notations and definitions

\[\langle n \rangle := \{1, 2, \ldots, n - 1, n\} \]
Notations and definitions

- \(\langle n \rangle := \{1, 2, \ldots, n - 1, n\} \)
- For \(A = [a_{ij}]_{i,j}^{n} \in \mathbb{R}^{n \times n} \) permanent of \(A \):

\[
\text{perm} \ A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^{n} a_{i\sigma(i)}
\]
Notations and definitions

- $\langle n \rangle := \{1, 2, \ldots, n - 1, n\}$
- For $A = [a_{ij}]_{i,j} \in \mathbb{R}^{n \times n}$ permanent of A:
 \[\text{perm} A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^{n} a_{i\sigma(i)}\]
- For $C \in \mathbb{R}^{m \times n}$ and $k \in \langle \min(m, n) \rangle$
 \[\text{perm}_k C \text{ is the sum of the permanents of all } k \times k \text{ submatrices of } C\]
Notations and definitions

⟨n⟩ := \{1, 2, \ldots, n – 1, n\}

For \(A = [a_{ij}]_{i,j} \in \mathbb{R}^{n \times n} \) permanent of \(A \):

\[
\text{perm} A = \sum_{\text{all permutations } \sigma \text{ on } ⟨n⟩} \prod_{i=1}^{n} a_{i\sigma(i)}
\]

For \(C \in \mathbb{R}^{m \times n} \) and \(k \in ⟨\min(m, n)⟩ \), \(\text{perm}_k C \) is the sum of the permanents of all \(k \times k \) submatrices of \(C \).

\(A = [a_{ij}] \in \mathbb{R}_+^{n \times n} \) doubly stochastic if
\[
\sum_{j=1}^{n} a_{ij} = 1 = \sum_{j=1}^{n} a_{ji}, \quad i = 1, \ldots, n
\]
Notations and definitions

- $\langle n \rangle := \{1, 2, \ldots, n-1, n\}$
- For $A = [a_{ij}]_{i,j}^n \in \mathbb{R}^{n \times n}$ permanent of A:
 \[
 \text{perm } A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^n a_{i\sigma(i)}
 \]
- For $C \in \mathbb{R}^{m \times n}$ and $k \in \langle \min(m, n) \rangle$
 \[
 \text{perm}_k C \text{ is the sum of the permanents of all } k \times k \text{ submatrices of } C
 \]
- $A = [a_{ij}] \in \mathbb{R}^{n \times n}_+$ doubly stochastic if
 \[
 \sum_{j=1}^n a_{ij} = 1 = \sum_{j=1}^n a_{ji}, \quad i = 1, \ldots, n
 \]
- $\Omega_n \subset \mathbb{R}^{n \times n}_+$ is the set of doubly stochastic matrices
Notations and definitions

- \(\langle n \rangle := \{1, 2, \ldots, n-1, n\} \)
- For \(A = [a_{ij}]_{i,j}^{n} \in \mathbb{R}^{n \times n} \) permanent of \(A \):
 \[
 \text{perm} A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^{n} a_{i \sigma(i)}
 \]
- For \(C \in \mathbb{R}^{m \times n} \) and \(k \in \langle \min(m, n) \rangle \)
 \(\text{perm}_k C \) is the sum of the permanents of all \(k \times k \) submatrices of \(C \)
- \(A = [a_{ij}] \in \mathbb{R}_{+}^{n \times n} \) doubly stochastic if
 \[
 \sum_{j=1}^{n} a_{ij} = 1 = \sum_{j=1}^{n} a_{ji}, \quad i = 1, \ldots, n
 \]
- \(\Omega_n \subset \mathbb{R}_{+}^{n \times n} \) is the set of doubly stochastic matrices
- \(\mathcal{P}_n \subset \Omega_n \) the set of permutation matrices
Notations and definitions

\[\langle n \rangle := \{1, 2, \ldots, n - 1, n\} \]

For \(A = [a_{ij}]_{i,j} \in \mathbb{R}^{n \times n} \) permanent of \(A \):

\[
\text{perm } A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^{n} a_{i\sigma(i)}
\]

For \(C \in \mathbb{R}^{m \times n} \) and \(k \in \langle \min(m, n) \rangle \)

\(\text{perm}_k C \) is the sum of the permanents of all \(k \times k \) submatrices of \(C \)

\(A = [a_{ij}] \in \mathbb{R}^{n \times n}_+ \) doubly stochastic if

\[
\sum_{j=1}^{n} a_{ij} = 1 = \sum_{j=1}^{n} a_{ji}, \quad i = 1, \ldots, n
\]

\(\Omega_n \subset \mathbb{R}^{n \times n}_+ \) is the set of doubly stochastic matrices

\(P_n \subset \Omega_n \) the set of permutation matrices

is the set of the extreme points of \(\Omega_n \)
Notations and definitions

- \(\langle n \rangle := \{1, 2, \ldots, n-1, n\} \)
- For \(A = [a_{ij}]_{i,j}^n \in \mathbb{R}^{n \times n} \) permanent of \(A \):
 \[
 \text{perm } A = \sum_{\text{all permutations } \sigma \text{ on } \langle n \rangle} \prod_{i=1}^{n} a_{i\sigma(i)}
 \]
- For \(C \in \mathbb{R}^{m \times n} \) and \(k \in \langle \min(m, n) \rangle \)
 \(\text{perm}_k C \) is the sum of the permanents of all \(k \times k \) submatrices of \(C \)
- \(A = [a_{ij}] \in \mathbb{R}_+^{n \times n} \) doubly stochastic if
 \[
 \sum_{j=1}^{n} a_{ij} = 1 = \sum_{j=1}^{n} a_{ji}, \quad i = 1, \ldots, n
 \]
- \(\Omega_n \subset \mathbb{R}_+^{n \times n} \) is the set of doubly stochastic matrices
- \(\mathcal{P}_n \subset \Omega_n \) the set of permutation matrices
 is the set of the extreme points of \(\Omega_n \)

Bipartite graphs

Figure: An example of a bipartite graph

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Incidence matrix
Formulas for k-matchings in bipartite graphs
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subseteq V_1 \times V_2,$
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$
represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \#V_1 = m, V_2 = n.$
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$ represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \#V_1 = m, \ V_2 = n.$

Example: Any subgraph of \mathbb{Z}^d is bipartite
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$
represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \#V_1 = m, V_2 = n.$

Example: Any subgraph of \mathbb{Z}^d is bipartite

CLAIM: $\phi(k, G) = \text{perm}_k(B(G)).$
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$
represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \#V_1 = m, V_2 = n.$

Example: Any subgraph of \mathbb{Z}^d is bipartite

CLAIM: $\phi(k, G) = \text{perm}_k(B(G)).$

Prf: Suppose $n = \#V_1 = \#V_2.$

Then permutation $\sigma : \langle n \rangle \to \langle n \rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i\sigma(i)} = 1.$
The number of perfect matchings in G is $\phi(n, G) = \text{perm} B(G).$
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$ represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \# V_1 = m, V_2 = n.$

Example: Any subgraph of \mathbb{Z}^d is bipartite

CLAIM: $\phi(k, G) = \text{perm}_k(B(G))$.

Prf: Suppose $n = \# V_1 = \# V_2.$ Then permutation $\sigma : \langle n \rangle \to \langle n \rangle$ is a perfect match iff $\prod_{i=1}^n b_{i\sigma(i)} = 1.$ The number of perfect matchings in G is $\phi(n, G) = \text{perm} B(G).$ □

For $G = (\langle 2n \rangle, E)$ bipartite $G \in \mathcal{G}(r, 2n) \iff \frac{1}{r} B(G) \in \Omega_n \iff G$ is a disjoint (edge) union of r perfect matchings
Formulas for k-matchings in bipartite graphs

$G = (V, E)$ bipartite $V = V_1 \cup V_2, E \subset V_1 \times V_2,$ represented by $B(G) = B = [b_{ij}]_{i,j=1}^{m \times n} \in \{0, 1\}^{m \times n}, \# V_1 = m, V_2 = n.$

Example: Any subgraph of \mathbb{Z}^d is bipartite

CLAIM: $\phi(k, G) = \text{perm}_k(B(G)).$

Prf: Suppose $n = \# V_1 = \# V_2.$
Then permutation $\sigma : \langle n \rangle \to \langle n \rangle$ is a perfect match iff $\prod_{i=1}^{n} b_{i\sigma(i)} = 1.$
The number of perfect matchings in G is $\phi(n, G) = \text{perm} B(G).$

For $G = (\langle 2n \rangle, E)$ bipartite $G \in \mathcal{G}(r, 2n) \iff \frac{1}{r} B(G) \in \Omega_n \iff G$ is a disjoint (edge) union of r perfect matchings

$$r^k \min_{C \in \Omega_n} \text{perm}_k C \leq \phi(k, G) \text{ for any } G \in \mathcal{G}(r, 2n)$$
van der Waerden and Tverberg conjectures
van der Waerden and Tverberg conjectures

\[J_n = B(K_{n,n}) = [1] \text{ the incidence matrix of the complete bipartite graph } K_{n,n} \text{ on } 2n \text{ vertices} \]
van der Waerden and Tverberg conjectures

\(J_n = B(K_{n,n}) = [1] \) the incidence matrix of the complete bipartite graph \(K_{n,n} \) on \(2n \) vertices

van der Waerden permanent conjecture 1926:

\[
\min_{C \in \Omega_n} \text{perm} \ C = \text{perm} \ \frac{1}{n} J_n \quad (= \frac{n!}{n^n} \approx \sqrt{2\pi n} \ e^{-n})
\]
van der Waerden and Tverberg conjectures

\[J_n = B(K_{n,n}) = [1] \] the incidence matrix of the complete bipartite graph \(K_{n,n} \) on \(2n \) vertices

van der Waerden permanent conjecture 1926:

\[\min_{C \in \Omega_n} \text{perm} \ C = \text{perm} \frac{1}{n} J_n \left(= \frac{n!}{n^n} \approx \sqrt{2\pi n} e^{-n} \right) \]

Tverberg permanent conjecture 1963:

\[\min_{C \in \Omega_n} \text{perm}_k \ C = \text{perm}_k \frac{1}{n} J_n \left(= \binom{n}{k}^2 \frac{k!}{n^k} \right) \]

for all \(k = 1, \ldots, n \).
In 1979 Friedland showed the lower bound $\text{perm } C \geq e^{-n}$ for any $C \in \Omega_n$ following T. Bang’s announcement 1976.
In 1979 Friedland showed the lower bound \(\text{perm } C \geq e^{-n} \) for any \(C \in \Omega_n \) following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in \(d \geq 3 \)-regular bipartite graphs 1968.
In 1979 Friedland showed the lower bound $\text{perm } C \geq e^{-n}$ for any $C \in \Omega_n$ following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.

van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
History

- In 1979 Friedland showed the lower bound $\text{perm } C \geq e^{-n}$ for any $C \in \Omega_n$ following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.
- van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.
- Tverberg conjecture was proved by Friedland 1982.
In 1979 Friedland showed the lower bound \(\text{perm } C \geq e^{-n} \) for any \(C \in \Omega_n \) following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in \(d \geq 3 \)-regular bipartite graphs 1968.

van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

Tverberg conjecture was proved by Friedland 1982.

79 proof is tour de force according to Bang
In 1979 Friedland showed the lower bound \(\text{perm } C \geq e^{-n} \) for any \(C \in \Omega_n \) following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in \(d \geq 3 \)-regular bipartite graphs 1968.

Van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

Tverberg conjecture was proved by Friedland 1982.

79 proof is tour de force according to Bang

81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix.
History

• In 1979 Friedland showed the lower bound $\text{perm } C \geq e^{-n}$ for any $C \in \Omega_n$ following T. Bang's announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in $d \geq 3$-regular bipartite graphs 1968.

• van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

• Tverberg conjecture was proved by Friedland 1982

• 79 proof is tour de force according to Bang

• 81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix

• 82 proof uses methods of 81 proofs with extra ingredients
In 1979 Friedland showed the lower bound \(\text{perm } C \geq e^{-n} \) for any \(C \in \Omega_n \) following T. Bang’s announcement 1976. This settled the conjecture of Erdös-Rényi on the exponential growth of the number of perfect matchings in \(d \geq 3 \)-regular bipartite graphs 1968.

van der Waerden permanent conjecture was proved by Egorichev and Falikman 1981.

Tverberg conjecture was proved by Friedland 1982

79 proof is tour de force according to Bang
81 proofs involve directly (Egorichev) and indirectly (Falikman) use of Alexandroff mixed volume inequalities with the conditions for the extremal matrix
82 proof uses methods of 81 proofs with extra ingredients
There are new simple proofs using nonnegative hyperbolic polynomials e.g. Friedland-Gurvits 2008
Lower matching bounds for 0 – 1 matrices
Lower matching bounds for 0 − 1 matrices

Voorhoeve-1979 ($d = 3$) Schrijver-1998

$$\phi(n, G) \geq \left(\frac{(r - 1)^{r-1}}{rr^{r-2}}\right)^n \quad \text{for} \quad G \in \mathcal{G}(r, 2n)$$
Lower matching bounds for 0 – 1 matrices

Voorhoeve-1979 \((d = 3)\) Schrijver-1998

\[
\phi(n, G) \geq \left(\frac{(r - 1)^{r - 1}}{r^{r - 2}} \right)^n \quad \text{for} \quad G \in \mathcal{G}(r, 2n)
\]

Gurvits 2006: \(A \in \Omega_n\), each column has at most \(r\) nonzero entries:

\[
\text{perm } A \geq \frac{r!}{r^r} \left(\frac{r}{r - 1} \right)^{r(r - 1)} \left(\frac{r - 1}{r} \right)^{(r - 1)n}.
\]
Lower matching bounds for 0–1 matrices

Voorhoeve-1979 ($d = 3$) Schrijver-1998

\[\phi(n, G) \geq \left(\frac{(r-1)^{r-1}}{r^{r-2}} \right)^n \text{ for } G \in \mathcal{G}(r, 2n) \]

Gurvits 2006: $A \in \Omega_n$, each column has at most r nonzero entries:

\[\text{perm } A \geq \frac{r!}{r^r} \left(\frac{r}{r-1} \right)^{r(r-1)} \left(\frac{r-1}{r} \right)^{(r-1)n}. \]

Cor: \[\phi(n, G) \geq \frac{r!}{r^r} \left(\frac{r}{r-1} \right)^{r(r-1)} \left(\frac{(r-1)^{r-1}}{r^{r-2}} \right)^n \]
Lower matching bounds for 0–1 matrices

Voorhoeve-1979 ($d = 3$) Schrijver-1998

\[\phi(n, G) \geq \left(\frac{(r - 1)^{r-1}}{rr^{r-2}} \right)^n \quad \text{for} \quad G \in \mathcal{G}(r, 2n) \]

Gurvits 2006: $A \in \Omega_n$, each column has at most r nonzero entries:

\[\text{perm} \ A \geq \frac{r!}{r^r} \left(\frac{r}{r-1} \right)^{r(r-1)} \left(\frac{r - 1}{r} \right)^{(r-1)n}. \]

Cor: \[\phi(n, G) \geq \frac{r!}{r^r} \left(\frac{r}{r-1} \right)^{r(r-1)} \left(\frac{(r - 1)^{r-1}}{rr^{r-2}} \right)^n \]

Con FKM 2006: \[\phi(k, G) \geq \binom{n}{k}^2 \left(\frac{nr - k}{nr} \right)^{nr-k} \left(\frac{kr}{n} \right)^k, \quad G \in \mathcal{G}(r, 2n) \]
Lower matching bounds for 0–1 matrices

Voorhoeve-1979 ($d = 3$) Schrijver-1998

$$
\phi(n, G) \geq \left(\frac{(r - 1)^{r-1}}{r^{r-2}} \right)^n \quad \text{for} \quad G \in \mathcal{G}(r, 2n)
$$

Gurvits 2006: $A \in \Omega_n$, each column has at most r nonzero entries:

$$
\text{perm } A \geq \frac{r!}{r^r} \left(\frac{r}{r - 1} \right)^{r(r-1)} \left(\frac{r - 1}{r} \right)^{(r-1)n}.
$$

Cor:

$$
\phi(n, G) \geq \frac{r!}{r^r} \left(\frac{r}{r - 1} \right)^{r(r-1)} \left(\frac{(r - 1)^{r-1}}{r^{r-2}} \right)^n
$$

Con FKM 2006:

$$
\phi(k, G) \geq \left(\binom{n}{k} \right)^2 \left(\frac{nr - k}{nr} \right)^{nr-k} \left(\frac{nr}{n} \right)^k, \quad G \in \mathcal{G}(r, 2n)
$$

F-G 2008 showed weaker inequalities
Upper matching bounds for 0–1 matrices
Assume $A \in \{0, 1\}^{n \times n}$.
Upper matching bounds for 0 – 1 matrices

- Assume $A \in \{0, 1\}^{n \times n}$.
- r_i is the i-th row sum of A.
Upper matching bounds for 0 – 1 matrices

- Assume $A \in \{0, 1\}^{n \times n}$.
- r_i is ith row sum of A
- **Bregman 1973**: $\text{perm } A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}}$
Upper matching bounds for 0 – 1 matrices

- Assume $A \in \{0, 1\}^{n \times n}$.
- r_i is i – th row sum of A
- **Bregman 1973**: $\text{perm } A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}}$
- $\phi(qr, G) \leq \phi(qr, qK_{r,r})$ for any $G \in \mathcal{G}(r, 2qr)$
Upper matching bounds for 0 – 1 matrices

- Assume $A \in \{0, 1\}^{n \times n}$.
- r_i is i – th row sum of A
- Bregman 1973: $\text{perm} A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}}$
- $\phi(qr, G) \leq \phi(qr, qK_{r,r})$ for any $G \in \mathcal{G}(r, 2qr)$
- Con FKM 2006: $\phi(k, G) \leq \phi(k, qK_{r,r})$ for any $G \in \mathcal{G}(r, 2qr)$ and $k = 1, \ldots, qr$
Upper matching bounds for $0 - 1$ matrices

- **Assume** $A \in \{0, 1\}^{n \times n}$.
- r_i is the ith row sum of A.
- **Bregman 1973**: $\text{perm } A \leq \prod_{i=1}^{n} (r_i!)^{1/r_i}$
- $\phi(qr, G) \leq \phi(qr, qK_r, r)$ for any $G \in \mathcal{G}(r, 2qr)$
- **Con FKM 2006**: $\phi(k, G) \leq \phi(k, qK_r, r)$ for any $G \in \mathcal{G}(r, 2qr)$ and $k = 1, \ldots, qr$
- $c_4(G)$ - The number of 4-cycles in G
Upper matching bounds for 0 – 1 matrices

- Assume \(A \in \{0, 1\}^{n \times n} \).
- \(r_i \) is \(i \) – th row sum of \(A \).
- Bregman 1973: \(\text{perm} A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}} \)
- \(\phi(qr, G) \leq \phi(qr, qK_{r,r}) \) for any \(G \in \mathcal{G}(r, 2qr) \)
- Con FKM 2006: \(\phi(k, G) \leq \phi(k, qK_{r,r}) \) for any \(G \in \mathcal{G}(r, 2qr) \) and \(k = 1, \ldots, qr \)
- \(c_4(G) \) - The number of 4-cycles in \(G \)
- Thm: For any \(r \)-regular graph \(G = (V, E) \),

\[
c_4(G) \leq \frac{r \# V (r - 1)^2}{2} \frac{4}{4}
\]

Equality iff \(G = qK_{r,r} \)
Upper matching bounds for 0 – 1 matrices

- Assume $A \in \{0, 1\}^{n \times n}$.
- r_i is i–th row sum of A
- Bregman 1973: $\text{perm } A \leq \prod_{i=1}^{n} (r_i!)^{\frac{1}{r_i}}$
- $\phi(qr, G) \leq \phi(qr, qK_{r,r})$ for any $G \in \mathcal{G}(r, 2qr)$
- Con FKM 2006: $\phi(k, G) \leq \phi(k, qK_{r,r})$ for any $G \in \mathcal{G}(r, 2qr)$ and $k = 1, \ldots, qr$
- $c_4(G)$ - The number of 4-cycles in G
- Thm: For any r-regular graph $G = (V, E)$,

$$c_4(G) \leq \frac{r\#V}{2} \frac{(r - 1)^2}{4}$$

Equality iff $G = qK_{r,r}$

- Prf: Any edge in $e \in E$ can be in at most $(r - 1)^2$ different 4-cycles.
An example

Figure: Edge neighborhood of V_2W_2 of 4-regular graph on 8 vertices
$G = (V, E)$ Non-bipartite graph on $2n$ vertices

$$\phi(n, G) \leq \prod_{v \in V} \left(\frac{1}{2 \deg v} \right)^{\frac{1}{2 \deg v}} \left((\deg v)! \right)^{\frac{1}{2 \deg v}}$$

If $\deg v > 0$, $\forall v \in V$ equality holds iff G is a disjoint union of complete balanced bipartite graphs
Exact values for small matchings

For $G \in \mathcal{G}(r, 2n)$
Exact values for small matchings

For $G \in \mathcal{G}(r, 2n)$

1. $\phi(1, G) = nr$
Exact values for small matchings

For $G \in \mathcal{G}(r, 2n)$

1. $\phi(1, G) = nr$

2. $\phi(2, G) = \binom{nr}{2} - 2n\binom{r}{2} = \frac{nr(nr-(2r-1))}{2}$
Exact values for small matchings

For $G \in \mathcal{G}(r, 2n)$

1. $\phi(1, G) = nr$
2. $\phi(2, G) = \frac{nr}{2} - 2n\binom{r}{2} = \frac{nr(nr - (2r - 1))}{2}$
3. $\phi(3, G) = \frac{nr}{3} - 2n\binom{r}{3} - nr(r - 1)^2 - 2n\binom{r}{2}(nr - 2r - (r - 2))$
Exact values for small matchings

For $G \in \mathcal{G}(r, 2n)$

1. $\phi(1, G) = nr$

2. $\phi(2, G) = \binom{nr}{2} - 2n\binom{r}{2} = \frac{nr(nr-(2r-1))}{2}$

3. $\phi(3, G) = \binom{nr}{3} - 2n\binom{r}{3} - nr(r-1)^2 - 2n\binom{r}{2}((nr - 2r - (r - 2))$

4. $\phi(4, G) = p_1(n, r) + c_4(G)$

\[p_1(n, r) = \frac{n^4r^4}{24} + \frac{n^3r^3}{4}(1-2r) + \frac{n^2r^2}{24}(19 - 60r + 52r^2) + nr\left(\frac{5}{4} - 5r + 7r^2 - \frac{7r^3}{2}\right) \]
Exact values for small matchings

For \(G \in \mathcal{G}(r, 2n) \)

1. \(\phi(1, G) = nr \)

2. \(\phi(2, G) = \binom{nr}{2} - 2n\binom{r}{2} = \frac{nr(nr-(2r-1))}{2} \)

3. \(\phi(3, G) = \binom{nr}{3} - 2n\binom{r}{3} - nr(r-1)^2 - 2n\binom{r}{2}(nr-2r-(r-2)) \)

4. \(\phi(4, G) = p_1(n, r) + c_4(G) \)

\[
p_1(n, r) = \frac{n^4 r^4}{24} + \frac{n^3 r^3}{4} (1-2r) + \frac{n^2 r^2}{24} (19 - 60r + 52r^2) + nr \left(\frac{5}{4} - 5r + 7r^2 - \frac{7r^3}{2} \right)
\]

Notation:

\[
f(x) = \sum_{i=0}^{N} a_i x^i \preceq g(x) = \sum_{i=0}^{N} b_i x^i \iff a_i \leq b_i \text{ for } i = 1, \ldots, N.
\]
2-regular graphs
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \to 2 \to \cdots \to n \to 1$
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \to 2 \to \cdots \to n \to 1$
- $K_{2,2} = C_4$
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
2-regular graphs

- \(\Gamma(r, n) \) the set of \(r \)-regular graphs on \(n \)-vertices
- A connected \(G \in \Gamma(2, n) \) is cycle \(C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1 \)
- \(K_{2,2} = C_4 \)
- \(G \in \Gamma(2, n) \) iff \(G \) a union of cycles
- \(G \in \mathcal{G}(2, 2n) \) iff \(G \) union of even cycles
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \to 2 \to \cdots \to n \to 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in G(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[\Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \text{ if } 4 \mid n \]
2-regular graphs

- \(\Gamma(r, n) \) the set of \(r \)-regular graphs on \(n \)-vertices
- A connected \(G \in \Gamma(2, n) \) is cycle \(C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1 \)
- \(K_{2,2} = C_4 \)
- \(G \in \Gamma(2, n) \) iff \(G \) a union of cycles
- \(G \in \mathcal{G}(2, 2n) \) iff \(G \) union of even cycles
- For \(G \in \Gamma(2, n) \):
 \[\Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \quad \text{if} \quad 4 \mid n \]
 \[\Phi_G(x) \preceq \Phi_{\frac{n-5}{4}K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \quad \text{if} \quad 4 \mid n - 1 \]
2-regular graphs

- \(\Gamma(r, n) \) the set of \(r \)-regular graphs on \(n \)-vertices
- A connected \(G \in \Gamma(2, n) \) is cycle \(C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1 \)
- \(K_{2,2} = C_4 \)
- \(G \in \Gamma(2, n) \) iff \(G \) a union of cycles
- \(G \in \mathcal{G}(2, 2n) \) iff \(G \) union of even cycles
- For \(G \in \Gamma(2, n) \):
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \quad \text{if} \quad 4 \mid n
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-5}{4}K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \quad \text{if} \quad 4 \mid n - 1
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-6}{4}K_{2,2} \cup C_6}(x) = \Phi_{C_4}(x)^{\frac{n-6}{4}} \Phi_{C_6}(x) \quad \text{if} \quad 4 \mid n - 2
 \]
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[\Phi_G(x) \preceq \Phi_{\frac{n}{4} K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \text{ if } 4 \mid n \]
 \[\Phi_G(x) \preceq \Phi_{\frac{n-5}{4} K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \text{ if } 4 \mid n - 1 \]
 \[\Phi_G(x) \preceq \Phi_{\frac{n-6}{4} K_{2,2} \cup C_6}(x) = \Phi_{C_4}(x)^{\frac{n-6}{4}} \Phi_{C_6}(x) \text{ if } 4 \mid n - 2 \]
 \[\Phi_G(x) \preceq \Phi_{\frac{n-7}{4} K_{2,2} \cup C_7}(x) = \Phi_{C_4}(x)^{\frac{n-7}{4}} \Phi_{C_7}(x) \text{ if } 4 \mid n - 3, \]
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \to 2 \to \cdots \to n \to 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \text{ if } 4 \mid n
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-5}{4}K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \text{ if } 4 \mid n - 1
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-6}{4}K_{2,2} \cup C_6}(x) = \Phi_{C_4}(x)^{\frac{n-6}{4}} \Phi_{C_6}(x) \text{ if } 4 \mid n - 2
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-7}{4}K_{2,2} \cup C_7}(x) = \Phi_{C_4}(x)^{\frac{n-7}{4}} \Phi_{C_7}(x) \text{ if } 4 \mid n - 3.
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n}{3}K_3}(x) = \Phi_{C_3}(x)^{\frac{n}{3}} \text{ if } 3 \mid n
 \]
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \text{ if } 4|n
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-5}{4}K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \text{ if } 4|n - 1
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-6}{4}K_{2,2} \cup C_6}(x) = \Phi_{C_4}(x)^{\frac{n-6}{4}} \Phi_{C_6}(x) \text{ if } 4|n - 2
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-7}{4}K_{2,2} \cup C_7}(x) = \Phi_{C_4}(x)^{\frac{n-7}{4}} \Phi_{C_7}(x) \text{ if } 4|n - 3
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n}{3}K_3}(x) = \Phi_{C_3}(x)^{\frac{n}{3}} \text{ if } 3|n
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n-4}{3}K_3 \cup C_4}(x) = \Phi_{C_3}(x)^{\frac{n-4}{3}} \Phi_{C_4}(x) \text{ if } 3|n - 1,
 \]
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[\Phi_G(x) \preceq \Phi \left(\frac{n}{4} K_{2,2} \right)(x) = \Phi C_4(x)^{\frac{n}{4}} \text{ if } 4|n \]
 \[\Phi_G(x) \preceq \Phi \left(\frac{n-5}{4} K_{2,2} \cup C_5 \right)(x) = \Phi C_4(x)^{\frac{n-5}{4}} \Phi C_5(x) \text{ if } 4|n - 1 \]
 \[\Phi_G(x) \preceq \Phi \left(\frac{n-6}{4} K_{2,2} \cup C_6 \right)(x) = \Phi C_4(x)^{\frac{n-6}{4}} \Phi C_6(x) \text{ if } 4|n - 2 \]
 \[\Phi_G(x) \preceq \Phi \left(\frac{n-7}{4} K_{2,2} \cup C_7 \right)(x) = \Phi C_4(x)^{\frac{n-7}{4}} \Phi C_7(x) \text{ if } 4|n - 3, \]
 \[\Phi_G(x) \succeq \Phi \left(\frac{n}{3} K_3 \right)(x) = \Phi C_3(x)^{\frac{n}{3}} \text{ if } 3|n \]
 \[\Phi_G(x) \succeq \Phi \left(\frac{n-4}{3} K_3 \cup C_4 \right)(x) = \Phi C_3(x)^{\frac{n-4}{3}} \Phi C_4(x) \text{ if } 3|n - 1, \]
 \[\Phi_G(x) \succeq \Phi \left(\frac{n-5}{3} K_3 \cup C_5 \right)(x) = \Phi C_3(x)^{\frac{n-5}{3}} \Phi C_5(x) \text{ if } 3|n - 2 \]
2-regular graphs

- $\Gamma(r, n)$ the set of r-regular graphs on n-vertices
- A connected $G \in \Gamma(2, n)$ is cycle $C_n : 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$
- $K_{2,2} = C_4$
- $G \in \Gamma(2, n)$ iff G a union of cycles
- $G \in \mathcal{G}(2, 2n)$ iff G union of even cycles
- For $G \in \Gamma(2, n)$:
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n}{4}K_{2,2}}(x) = \Phi_{C_4}(x)^{\frac{n}{4}} \text{ if } 4|n
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-5}{4}K_{2,2} \cup C_5}(x) = \Phi_{C_4}(x)^{\frac{n-5}{4}} \Phi_{C_5}(x) \text{ if } 4|n - 1
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-6}{4}K_{2,2} \cup C_6}(x) = \Phi_{C_4}(x)^{\frac{n-6}{4}} \Phi_{C_6}(x) \text{ if } 4|n - 2
 \]
 \[
 \Phi_G(x) \preceq \Phi_{\frac{n-7}{4}K_{2,2} \cup C_7}(x) = \Phi_{C_4}(x)^{\frac{n-7}{4}} \Phi_{C_7}(x) \text{ if } 4|n - 3,
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n}{3}K_3}(x) = \Phi_{C_3}(x)^{\frac{n}{3}} \text{ if } 3|n
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n-4}{3}K_3 \cup C_4}(x) = \Phi_{C_3}(x)^{\frac{n-4}{3}} \Phi_{C_4}(x) \text{ if } 3|n - 1,
 \]
 \[
 \Phi_G(x) \succeq \Phi_{\frac{n-5}{3}K_3 \cup C_5}(x) = \Phi_{C_3}(x)^{\frac{n-5}{3}} \Phi_{C_5}(x) \text{ if } 3|n - 2
 \]
- If n even G multi-bipartite 2-regular graph then $\Phi_G(x) \succeq \Phi_{C_n}(x)$.
Relations between matching polynomials

- For $0 \leq i \leq j$
 \[\Phi_{C_i}(x)\Phi_{C_j}(x) - \Phi_{C_{i+j}}(x) = (-1)^i x^i \Phi_{C_{j-i}}(x) \]

- P_n path $1 \rightarrow 2 \rightarrow \ldots \rightarrow n$.

- $p_n(x) := \Phi_{P_n}(x)$, $q_n(x) := \Phi_{C_n}(x)$

- $p_k(x) = p_{k-1}(x) + xp_{k-2}(x)$

- $q_k(x) = p_k(x) + xp_{k-2}(x)$

- If $n = 0, 1 \mod 4$
 \[
 p_{n-1} = p_1 p_{n-1} \prec p_3 p_{n-3} \prec \cdots \prec p_{2 \lfloor \frac{n}{4} \rfloor} p_{n-2 \lfloor \frac{n}{4} \rfloor + 1} \prec \\
 p_{2 \lfloor \frac{n}{4} \rfloor} p_{n-2 \lfloor \frac{n}{4} \rfloor} \prec p_{2 \lfloor \frac{n}{4} \rfloor - 2} p_{n-2 \lfloor \frac{n}{4} \rfloor + 2} \prec \cdots \prec p_{2} p_{n-2} \prec p_0 p_n = p_n

 q_{n-1} = q_1 q_{n-1} \prec q_3 q_{n-3} \prec \cdots \prec q_{2 \lfloor \frac{n}{4} \rfloor} q_{n-2 \lfloor \frac{n}{4} \rfloor + 1} \prec \\
 q_{2 \lfloor \frac{n}{4} \rfloor} q_{n-2 \lfloor \frac{n}{4} \rfloor} \prec q_{2 \lfloor \frac{n}{4} \rfloor - 2} q_{n-2 \lfloor \frac{n}{4} \rfloor + 2} \prec \cdots \prec q_2 q_{n-2} \prec q_{n+1}

- Characterization of maximal and minimal matching polynomial graphs in family of graphs with given number of vertices of degrees one and two
Cubic bipartite graphs
Cubic bipartite graphs

\[G(3, 6) = \{ K_{3,3} \} \]
Cubic bipartite graphs

- $G(3, 6) = \{K_{3,3}\}$
- $G(3, 8) = \{Q_3\}$ three dimensional cube
Cubic bipartite graphs

- $G(3, 6) = \{K_{3,3}\}$
- $G(3, 8) = \{Q_3\}$ three dimensional cube
- $G(3, 10) = \{G_1, M_{10}\}$ have incomparable matching polynomials

 \[
 \psi(x, G_1) := 1 + 15x + 75x^2 + 145x^3 + 96x^4 + 12x^5

 \psi(x, M_{10}) := 1 + 15x + 75x^2 + 145x^3 + 95x^4 + 13x^5
 \]
Cubic bipartite graphs

- $G(3, 6) = \{K_{3,3}\}$
- $G(3, 8) = \{Q_3\} \text{ three dimensional cube}$
- $G(3, 10) = \{G_1, M_{10}\} \text{ have incomparable matching polynomials}$
 \[
 \psi(x, G_1) := 1 + 15x + 75x^2 + 145x^3 + 96x^4 + 12x^5
 \]
 \[
 \psi(x, M_{10}) := 1 + 15x + 75x^2 + 145x^3 + 95x^4 + 13x^5
 \]
- For $2n$ from 12 to 24 the extremal graphs, with the maximal $\phi(l, G)$:
 \[
 \frac{2n}{6} K_{3,3} \quad \text{if } 6|2n
 \]
 \[
 \frac{2n-8}{6} K_{3,3} \cup Q_3 \quad \text{if } 6|(2n - 2)
 \]
 \[
 \frac{2n-10}{6} K_{3,3} \cup (G_1 \text{ or } M_{10}) \quad \text{if } 6|(2n - 4)
 \]
Two bipartite 3-regular graphs on 10 vertices

\[M_{10} \]

\[G_1 \]
Expected values of k-matchings
Expected values of k-matchings

- Permutation $\sigma : \langle nr \rangle \rightarrow \langle nr \rangle$ induces $G(\sigma) \in G_{\text{mult}}(r, 2n)$ and vice versa.

$$G(\sigma) = \{ (i, \lceil \frac{\sigma((i-1)r+j)}{r} \rceil) , \ j = 1, \ldots , r , \ i = 1, \ldots , n \} \subset \langle n \rangle \times \langle n \rangle$$

- The number of different σ inducing the same simple G is $(r!)^n$.
Expected values of k-matchings

- Permutation $\sigma : \langle nr \rangle \rightarrow \langle nr \rangle$ induces $G(\sigma) \in G_{\text{mult}}(r, 2n)$ and vice versa
 \[G(\sigma) = \{(i, \lceil \frac{\sigma((i-1)r+j)}{r} \rceil), \ j = 1, \ldots, r, \ i = 1, \ldots, n\} \subset \langle n \rangle \times \langle n \rangle \]
 number of different σ inducing the same simple G is $(r!)^n$

- μ probability measure on $G_{\text{mult}}(r, 2n)$:
 \[\mu(G(\sigma)) = ((nr)!)^{-1} \]
Expected values of k-matchings

- Permutation $\sigma : \langle nr \rangle \rightarrow \langle nr \rangle$ induces $G(\sigma) \in \mathcal{G}_{\text{mult}}(r, 2n)$ and vice versa

 $G(\sigma) = \{(i, \lceil \frac{\sigma((i-1)r+j)}{r} \rceil), \; j = 1, \ldots, r, \; i = 1, \ldots, n\} \subset \langle n \rangle \times \langle n \rangle$

- Number of different σ inducing the same simple G is $(r!)^n$

- μ probability measure on $\mathcal{G}_{\text{mult}}(r, 2n)$:

 $\mu(G(\sigma)) = ((nr)!)^{-1}$

- FKM 06:

 $E(k, n, r) := E(\phi(k, G)) = \binom{n}{k}^2 r^{2k} k!(nr - k!)(nr!)^{-1}$, \quad $k = 1, \ldots, n$
Expected values of k-matchings

- Permutation $\sigma : \langle nr \rangle \to \langle nr \rangle$ induces $G(\sigma) \in G_{\text{mult}}(r, 2n)$ and vice versa

 \[G(\sigma) = \{(i, \lceil \frac{\sigma((i-1)r+j)}{r} \rceil) \}, \ j = 1, \ldots, r, \ i = 1, \ldots, n \} \subset \langle n \rangle \times \langle n \rangle \]

 number of different σ inducing the same simple G is $(r!)^n$

- μ probability measure on $G_{\text{mult}}(r, 2n)$:

 \[\mu(G(\sigma)) = ((nr)!)^{-1} \]

- FKM 06:

 \[E(k, n, r) := E(\phi(k, G)) = (\binom{n}{k})^2 r^{2k} k!(nr - k!)(nr)!^{-1}, \]

 $k = 1, \ldots, n$

- $1 \leq k_l \leq n_l, l = 1, \ldots,$ increasing sequences of integers s.t.

 \[\lim_{l \to \infty} \frac{k_l}{n_l} = p \in [0, 1]. \]

Then

\[\lim_{l \to \infty} \frac{\log E(k_l, n_l, r)}{2n_k} = f(p, r) \]

\[f(p, r) := \frac{1}{2}(p \log r - p \log p - 2(1-p) \log(1-p) + (r-p) \log(1 - \frac{p}{r})) \]
p-matching and total matching entropies
p-matching and total matching entropies

$G = (V, E)$ infinite, degree of each vertex bounded by N,
p-matching and total matching entropies

$G = (V, E)$ infinite, degree of each vertex bounded by N,

$p \in [0, 1]$-matching entropy, (p-dimer entropy) of G

$$h_G(p) = \sup_{\text{on all sequences}} \lim_{l \to \infty} \sup \frac{\log \phi(k_l, G_l)}{\# V_l}$$
p-matching and total matching entropies

$G = (V, E)$ infinite, degree of each vertex bounded by N,

$p \in [0, 1]$-matching entropy, $(p$-dimer entropy$)$ of G

$$h_G(p) = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l}$$

and total matching entropy, (monomer-dimer entropy)

$$h_G = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \sum_{k=0}^{0.5(\# V_l)} \phi(k, G_l)}{\# V_l}$$
p-matching and total matching entropies

$G = (V, E)$ infinite, degree of each vertex bounded by N,

$p \in [0, 1]$-matching entropy, $(p$-dimer entropy) of G

$$h_G(p) = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l}$$

and total matching entropy, (monomer-dimer entropy)

$$h_G = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \sum_{k=0}^{0.5(\# V_l)} \phi(k, G_l)}{\# V_l}$$

$G_l = (E_l, V_l), l \in \mathbb{N}$ a sequence of finite graphs converging to G, and

$$\lim_{l \to \infty} \frac{2k_l}{\# V_l} = p$$
\(p \)-matching and total matching entropies

\[G = (V, E) \text{ infinite, degree of each vertex bounded by } N, \]

\(p \in [0, 1] \)-matching entropy, \((p\text{-dimer entropy})\) of \(G \)

\[h_G(p) = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l} \]

and total matching entropy, \((\text{monomer-dimer entropy})\)

\[h_G = \sup_{\text{on all sequences}} \limsup_{l \to \infty} \frac{\log \sum_{k=0}^{0.5(\# V_l)} \phi(k, G_l)}{\# V_l}, \]

\(G_l = (E_l, V_l), l \in \mathbb{N} \) a sequence of finite graphs converging to \(G \), and

\[\lim_{l \to \infty} \frac{2k_l}{\# V_l} = p \]

\[h_G = \max_{p \in [0,1]} h_G(p) \]
John Michael Hammersley 21.3.1920 - 2.5.2004
Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

- Book: Monte Carlo Methods 1964
 (MCM attributed to Stan Ulam - 1944)
- Self Avoiding Walks and Percolation Theory
Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

- Book: Monte Carlo Methods 1964
 (MCM attributed to Stan Ulam - 1944)
- Self Avoiding Walks and Percolation Theory
- 60’s: $G := \mathbb{Z}^d$ infinite $2d$-regular bipartite graph

\[V_I = \langle s_1, I \rangle \times \langle s_2, I \rangle \times \cdots \times \langle s_d, I \rangle, \]
\[\lim s_{i, I} = \infty, \quad i = 1, \ldots, d \]

Then $h_d(p) := h_G(p)$ same for all sequences
Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

- **Book**: Monte Carlo Methods 1964
 (MCM attributed to Stan Ulam - 1944)
- **Self Avoiding Walks and Percolation Theory**
- **60’s**: \(G := \mathbb{Z}^d \) infinite 2\(d \)-regular bipartite graph

\[
V_l = \langle s_1, l \rangle \times \langle s_2, l \rangle \times \ldots \times \langle s_d, l \rangle, \\
\lim s_{i,l} = \infty, \ i = 1, \ldots, d
\]

Then \(h_d(p) := h_G(p) \) same for all sequences

- \(h_p(d) \) is concave
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 - L. Pauling 1935, Fowler and Rushbrooke 1937
Facts

- $h_d(p) - p$-d-dimensional monomer-dimer entropy

 L. Pauling 1935, Fowler and Rushbrooke 1937

- $h_1(p) = f(p, 2)$
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0,1]} h_d(p)$ - d-monomer-dimer entropy
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0,1]} h_d(p)$ - d-monomer-dimer entropy

$$h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q + 1)^2} = 0.29156090 \ldots$$

Fisher, Kasteleyn 1961
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
- L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0, 1]} h_d(p)$ - d-monomer-dimer entropy

$$h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q + 1)^2} = 0.29156090 \ldots$$

Fisher, Kasteleyn 1961

$h_2(p), \quad p \in [0, 1)$
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 - L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0,1]} h_d(p)$ - d-monomer-dimer entropy

$$h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q + 1)^2} = 0.29156090 \ldots$$

Fisher, Kasteleyn 1961

$h_2(p), \quad p \in [0,1]$

- Baxter 1968 heuristical high precision computations
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0,1]} h_d(p)$ - d-monomer-dimer entropy

$$h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q + 1)^2} = 0.29156090\ldots$$

Fisher, Kasteleyn 1961

$h_2(p), \quad p \in [0, 1)$

- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC
Facts

- $h_d(p)$ - p-dimensional monomer-dimer entropy
 - L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0, 1]} h_d(p)$ - d-monomer-dimer entropy

\[
 h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q + 1)^2} = 0.29156090 \ldots
\]

Fisher, Kasteleyn 1961

$h_2(p), \ p \in [0, 1)$

- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC
- $.66279897(190) \leq h_2 \leq .66279897(2844913) \ F-P \ 2005$
Facts

- $h_d(p)$ - p-d-dimensional monomer-dimer entropy
 - L. Pauling 1935, Fowler and Rushbrooke 1937
- $h_1(p) = f(p, 2)$
- $h_d(1)$ - d-dimer entropy
- $h_d = \max_{p \in [0,1]} h_d(p)$ - d-monomer-dimer entropy
- $h_2(1) = \frac{1}{\pi} \sum_{q=0}^{\infty} \frac{(-1)^q}{(2q+1)^2} = 0.29156090 \ldots$

 Fisher, Kasteleyn 1961

- $h_2(p)$, $p \in [0,1)$
- Baxter 1968 heuristical high precision computations
- Hammersley 70: 2-digits precision using MC
- $0.66279897(190) \leq h_2 \leq 0.66279897(2844913)$ F-P 2005
- Friedland-Peled confirmed Baxter’s computations to be published
Computations of 3-dimensional entropies

Computational methods
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies

- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
Computations of 3-dimensional entropies

Computational methods
- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies
- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
- $h_3(1) \leq 0.463107$ Ciucu 1998
Computations of 3-dimensional entropies

Computational methods
- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies
- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
- $h_3(1) \leq 0.463107$ Ciucu 1998
- $h_3(1) \leq 0.457547$ Lundow 2001 (massive parallel computations)
Computations of 3-dimensional entropies

Computational methods
- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies
- \(h_3(1) \geq 0.440075 \) Schrijver’s lower bound 1998
- \(h_3(1) \leq 0.463107 \) Ciucu 1998
- \(h_3(1) \leq 0.457547 \) Lundow 2001 (massive parallel computations)
- \(h_3 \geq 0.7652789557 \) Friedland-Peled 2005 (Tverberg conjecture)
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies

- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
- $h_3(1) \leq 0.463107$ Ciucu 1998
- $h_3(1) \leq 0.457547$ Lundow 2001 (massive parallel computations)
- $h_3 \geq 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_3 \leq 0.7862023450$ Friedland-Peled 2005
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies

- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
- $h_3(1) \leq 0.463107$ Ciucu 1998
- $h_3(1) \leq 0.457547$ Lundow 2001 (massive parallel computations)
- $h_3 \geq 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_3 \leq 0.7862023450$ Friedland-Peled 2005
- $h_3 \geq 0.7845241927$ Friedland-Gurvits 2008
Computations of 3-dimensional entropies

Computational methods

- Effective computations done by transfer matrices
- Entropies are estimated by upper and lower bounds using the spectral radii of transfer matrices
- Group automorphisms of discrete tori speed up computations

Estimate of 3-dimensional entropies

- $h_3(1) \geq 0.440075$ Schrijver’s lower bound 1998
- $h_3(1) \leq 0.463107$ Ciucu 1998
- $h_3(1) \leq 0.457547$ Lundow 2001 (massive parallel computations)
- $h_3 \geq 0.7652789557$ Friedland-Peled 2005 (Tverberg conjecture)
- $h_3 \leq 0.7862023450$ Friedland-Peled 2005
- $h_3 \geq 0.7845241927$ Friedland-Gurvits 2008
- $h_3 \geq 0.7849602275$ Friedland-Krop-Lundow-Markström accepted JOSS 2008
Asymptotic Lower and Upper Matching conjectures
FKLM 06:

\[G_l = (E_l, V_l) \in \mathcal{G}(r, \# V_l), \; l = 1, 2, \ldots, \; \text{and} \; \lim_{l \to \infty} \frac{2k_l}{\# V_l} = p. \]
FKLM 06:

\[G_l = (E_l, V_l) \in G(r, \# V_l), \ l = 1, 2, \ldots, \ \text{and} \ \lim_{l \to \infty} \frac{2k_l}{\# V_l} = p. \]

\[\text{low}_r(p) := \inf_{\text{all allowable sequences}} \lim_{l \to \infty} \inf \frac{\log \phi(k_l, G_l)}{\# V_l} \]
Asymptotic Lower and Upper Matching conjectures

FKLM 06:

\[G_l = (E_l, V_l) \in \mathcal{G}(r, \#V_l), \ l = 1, 2, \ldots, \text{ and } \lim_{l \to \infty} \frac{2k_l}{\#V_l} = p. \]

\[\text{low}_r(p) := \inf_{\text{all allowable sequences}} \liminf_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\#V_l} \]

ALMC: \(\text{low}_r(p) = f(p, r) \) (For most of the sequences \(\liminf = f(p, r) \))
Asymptotic Lower and Upper Matching conjectures

FKLM 06:

\[G_l = (E_l, V_l) \in \mathcal{G}(r, \# V_l), l = 1, 2, \ldots, \text{ and } \lim_{l \to \infty} \frac{2k_l}{\# V_l} = p. \]

\[\text{low}_r(p) := \inf_{\text{all allowable sequences}} \liminf_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l} \]

ALMC: \(\text{low}_r(p) = f(p, r) \) (For most of the sequences \(\liminf = f(p, r) \))

\[\text{upp}_r(p) := \sup_{\text{all allowable sequences}} \limsup_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l} \]
Asymptotic Lower and Upper Matching conjectures

FKLM 06:

\[G_l = (E_l, V_l) \in \mathcal{G}(r, \# V_l), l = 1, 2, \ldots, \text{ and } \lim_{l \to \infty} \frac{2k_l}{\# V_l} = p. \]

\[\text{low}_r(p) := \inf_{\text{all allowable sequences}} \liminf_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l} \]

ALMC: \(\text{low}_r(p) = f(p, r) \) (For most of the sequences \(\liminf = f(p, r) \))

\[\text{upp}_r(p) := \sup_{\text{all allowable sequences}} \limsup_{l \to \infty} \frac{\log \phi(k_l, G_l)}{\# V_l} \]

AUMC: \(\text{upp}_r(p) = h_{K(r)}(p), K(r) \text{ countable union of } K_{r,r} \)
Asymptotic Lower and Upper Matching conjectures

FKLM 06:

\[G_l = (E_l, V_l) \in \mathcal{G}(r, \# V_l), \ l = 1, 2, \ldots, \] and \(\lim_{l \to \infty} \frac{2k_l}{\# V_l} = p. \)

\[\text{low}_r(p) := \inf \liminf_{l \to \infty} \log \frac{\phi(k_l, G_l)}{\# V_l} \]

ALMC: \(\text{low}_r(p) = f(p, r) \) (For most of the sequences \(\lim \inf = f(p, r) \))

\[\text{upp}_r(p) := \sup \limsup_{l \to \infty} \log \frac{\phi(k_l, G_l)}{\# V_l} \]

AUMC: \(\text{upp}_r(p) = h_{K(r)}(p), \ K(r) \) countable union of \(K_{r,r} \)

\[P_r(t) := \frac{\log \sum_{k=0}^{r} \binom{r}{k}^2 k! e^{2kt}}{2r}, \ t \in \mathbb{R}, \]

\[p(t) := P'_r(t) \in (0, 1), \ h_{K(r)}(p(t)) := P_r(t) - tp(t) \]
Counting matchings in graphs with applications to the monomer-dimer models

Shmuel Friedland
Univ. Illinois at Chicago & Berlin Mathematical School

KTH, 16 April, 2008 26 / 38
Counting matchings in graphs with applications to the monomer-dimer models
Thm: $r \geq 3, s \geq 1$ integers,

$B_n \in \Omega_n, n = 1, 2, \ldots$ each column of B_n has at most r-nonzero entries.

$k_n \in [0, n] \cap \mathbb{N}, n = 1, 2, \ldots, \lim_{n \to \infty} \frac{k_n}{n} = p \in (0, 1]$ then

$$\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq \frac{1}{2} (-p \log p - 2(1 - p) \log(1 - p)) + \frac{1}{2} (r + s - 1) \log(1 - \frac{1}{r + s}) - \frac{1}{2} (s - 1 + p) \log(1 - \frac{1 - p}{s})$$
Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3$, $s \geq 1$ integers,

$B_n \in \Omega_n$, $n = 1, 2, \ldots$ each column of B_n has at most r-nonzero entries.

$k_n \in [0, n] \cap \mathbb{N}$, $n = 1, 2, \ldots$, $\lim_{n \to \infty} \frac{k_n}{n} = p \in (0, 1]$ then

$$\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq \frac{1}{2} (-p \log p - 2(1 - p) \log(1 - p)) +$$

$$\frac{1}{2} (r + s - 1) \log(1 - \frac{1}{r+s}) - \frac{1}{2} (s - 1 + p) \log(1 - \frac{1 - p}{s})$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2n)$
Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,
$B_n \in \Omega_n, n = 1, 2, \ldots$ each column of B_n has at most r-nonzero entries.
$k_n \in [0, n] \cap \mathbb{N}, n = 1, 2, \ldots, \lim_{n \to \infty} \frac{k_n}{n} = p \in (0, 1]$ then

$$\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq \frac{1}{2} \left(-p \log p - 2(1 - p)\log(1 - p) \right) + \frac{1}{2} \left(r + s - 1 \right) \log \left(1 - \frac{1}{r + s} \right) - \frac{1}{2} \left(s - 1 + p \right) \log \left(1 - \frac{1 - p}{s} \right)$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2n)$

• Cor: r-ALMC holds for $p_s = \frac{r}{r+s}, s = 0, 1, \ldots$,
Thm: $r \geq 3, s \geq 1$ integers,
$B_n \in \Omega_n, n = 1, 2, \ldots$ each column of B_n has at most r-nonzero entries.
$k_n \in [0, n] \cap \mathbb{N}, n = 1, 2, \ldots, \lim_{n \to \infty} \frac{k_n}{n} = p \in (0, 1]$ then
\[
\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq \frac{1}{2} (-p \log p - 2(1 - p) \log(1 - p)) + \\
\frac{1}{2}(r + s - 1) \log(1 - \frac{1}{r + s}) - \frac{1}{2}(s - 1 + p) \log(1 - \frac{1 - p}{s})
\]
Prf combines properties positive hyperbolic polynomials, capacity and the measure on $G(r, 2n)$
• Cor: r-ALMC holds for $p_s = \frac{r}{r+s}, s = 0, 1, \ldots,$
• Con: under Thm assumptions
\[
\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq f(r, p) - \frac{p}{2} \log r
\]
Lower asymptotic bounds Friedland-Gurvits 2008

Thm: $r \geq 3, s \geq 1$ integers,

$B_n \in \Omega_n, n = 1, 2, \ldots$ each column of B_n has at most r-nonzero entries.

$k_n \in [0, n] \cap \mathbb{N}, n = 1, 2, \ldots$, $\lim_{n \to \infty} \frac{k_n}{n} = p \in (0, 1)$ then

$$\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq \frac{1}{2} \left(-p \log p - 2(1 - p) \log(1 - p) \right) + \frac{1}{2} \left(r + s - 1 \right) \log(1 - \frac{1}{r + s}) - \frac{1}{2} \left(s - 1 + p \right) \log\left(1 - \frac{1 - p}{s}\right)$$

Prf combines properties positive hyperbolic polynomials, capacity and the measure on $\mathcal{G}(r, 2n)$

Cor: r-ALMC holds for $p_s = \frac{r}{r+s}, s = 0, 1, \ldots$,

Con: under Thm assumptions

$$\liminf_{n \to \infty} \frac{\log \text{perm}_{k_n} B_n}{2n} \geq f(r, p) - \frac{p}{2} \log r$$

For $p_s = \frac{r}{r+s}, s = 0, 1, \ldots$, conjecture holds
Known lower and upper bounds for p-matchings

FKLM accepted JOSS 08:

\[
\text{low}_r(p) \geq \max(\text{low}_{r,1}(p), \text{low}_{r,2}(p))
\]
\[
\text{upp}_r(p) \leq \min(\text{upp}_{r,1}(p), \text{upp}_{r,2}(p))
\]

Lower estimates are based on F-G inequalities and Newton inequalities:

\[
f(x) = x^n + \sum_{i=1}^{n} a_i x^{n-i}
\]

have nonpositive roots then \((\frac{n}{k})^{-1} a_k\) log concave sequence

Upper estimates are based on Bregman inequalities:

\[
\phi(k, G) \leq \binom{n}{k} \frac{(r!)^{\frac{k}{n}} (n!)^{\frac{n-k}{n}}}{(n-k)!}
\]

and

\[
\max_{G \in G_{\text{mult}}(r, 2n)} \phi(k, G) = \binom{n}{k} r^k
\]
Concavity results

\[h_d(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]

concave
Concavity results

\[h_d(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]

concave

Hence \(h_d(p) \) concave - Hammersley
Concavity results

\[h_d(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]
concave

Hence \(h_d(p) \) concave - Hammersley

\[low_r(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]
concave

Hence \(low_r(p) \) concave -
Concavity results

\[h_d(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]

concave

Hence \(h_d(p) \) concave - Hammersley

\[low_r(p) + \frac{1}{2}(p \log p + (1 - p) \log(1 - p)) \]

concave

Hence \(low_r(p) \) concave -

Prf: Newton inequalities
$r = 4$ lower bounds

Figure: $f_l(p, 4)$-red, $\text{low}_{4,1}(p)$-blue, $f(p, 4)$-green
$r = 4$ lower bounds differences

Figure: $\text{low}_{4,1}(p) - f(p, 4)$-black, $\text{low}_{4,2}(p) - f(p, 4)$-blue
$r = 4$ upper bounds

Figure: $h_{K(4)}$-green, $\text{upp}_{4,1}$-blue, $\text{upp}_{4,2}$-orange
Summary
Matches in graphs and their number is a basic concept in graphs.
Matches in graphs and their number is a basic concept in graphs.

Counting k-matching in bipartite graphs is equivalent to computing permanents of $0-1$ matrices.
Matches in graphs and their number is a basic concept in graphs.

Counting k-matching in bipartite graphs is equivalent to computing permanents of $0–1$ matrices.

Estimating matchings in regular bipartite graphs fuses combinatorics and analysis.
Matches in graphs and their number is a basic concept in graphs.

Counting k-matching in bipartite graphs is equivalent to computing permanents of 0 – 1 matrices.

Estimating matchings in regular bipartite graphs fuses combinatorics and analysis.

Generalizing matching concepts to infinite graphs brings in the elements of statistical physics: entropies, the grand partition function, pressure and probability.
Matches in graphs and their number is a basic concept in graphs. Counting k-matching in bipartite graphs is equivalent to computing permanents of $0 - 1$ matrices. Estimating matchings in regular bipartite graphs fuses combinatorics and analysis. Generalizing matching concepts to infinite graphs brings in the elements of statistical physics: entropies, the grand partition function, pressure and probability. Computation of these entropies to a good precision needs massive memory and huge computational power.
Open problems
Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for \(d \geq 3 \) dimer and monomer-dimer entropies in \(\mathbb{Z}^d \).
Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for $d \geq 3$ dimer and monomer-dimer entropies in \mathbb{Z}^d.
- Other lattices as Bethe lattices, i.e. infinite regular trees.
Open problems

- Lower and upper matching conjectures for regular bipartite graphs.
- Asymptotic lower and upper matching conjectures.
- Closed formula or high precision values for $d \geq 3$ dimer and monomer-dimer entropies in \mathbb{Z}^d.
- Other lattices as Bethe lattices, i.e. infinite regular trees
- Non-bipartite graphs
References

References

References

