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Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices,
101 edges, 24 dimers, 12 monomers
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Matchings

G = (V, E) undirected graph with vertices V, edges E.
matchingin G: M CE

no two edges in M share a common endpoint.

e = (u,v) € M is dimer

v not covered by M is monomer.

M called monomer-dimer cover of G.
M is perfect matching <= no monomers.
M is k-matching <— #M =Kk.
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9 ¥g, G, (X) = g, (X)Pg,(X)

Example: K; , complete bipartite graph on 2r vertices.
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k=0
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@ (n):={1,2,....n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haia(i)

all permutations o on (n) i=1

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n

@ Q, C R*"is the set of doubly stochastic matrices
@ P, C Q, the set of permutation matrices
is the set of the extreme points of Q,

Birkhoff-Egervary-Konig theorem (1946-1931-1916)
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Bipartite graphs

Figure: An example of a bipartite graph

V1 Vo V3 Vg

Incidence matrix

PR
R
oor
coor
coor
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CLAIM: ¢(k,G) = perm, (B(G)).

Prf: Suppose n = #V1 = #Vs.

Then permutation o : (n) — (n) is a perfect match iff [T[_; bi,qy = 1.

The number of perfect matchings in G is ¢(n,G) = permB(G). O

For G = ((2n), E) bipartite G € G(r,2n) <= 1B(G) € Qn <
G is a disjoint (edge) union of r perfect matchings

rk mingcq, perm, C < ¢(k, G) for any G € G(r, 2n)
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van der Waerden and Tverberg conjectures

Jn = B(Knn) = [1] the incidence matrix of the complete bipartite graph
Kn,n ON 2n vertices

van der Waerden permanent conjecture 1926:

1 n!
min perm C = perm = J = — ~V2rne™"
min p p n (=5 mne™")

Tverberg permanent conjecture 1963:

min perm, C = perm 1J (= : ZE)
Cean kC=p ki (= (k) ok

forallk =1,...,n
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

KTH, 16 April, 2008 10/38

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix

@ 82 proof uses methods of 81 proofs with extra ingredients

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 10/ 38



@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix

@ 82 proof uses methods of 81 proofs with extra ingredients

@ There are new simple proofs using nonnegative hyperbolic
polynomials e.g. Friedland-Gurvits 2008
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Lower matching bounds for 0 — 1 matrices
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (d = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (d = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (d = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.

oo ey, (r—1) 1
Cor: ¢(n,G) > r—r(m) ( 1)(rr7_2)

n

Con FKM 2006 : ¢(k,G) > <k

Znr —K . oy KE
) DR 6 € otr2n
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (d = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:
r! r r(r—1) I — 1 (r=1)n
permA > = (—) " (=)
rloor 1, (r=21)y-1
Cor: ¢(n,G) > r_r(m)r(r )((rri_l)n

2
Con FKM 2006 : ¢(k,G) > <E) (%)”“"(

%)k, G € g(r,2n)

F-G 2008 showed weaker inequalities
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Upper matching bounds for 0 — 1 matrices
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
@ rjisi —throw sum of A
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",

@ rjisi —throw sum of A
1

@ Bregman 1973: permA < [, (r!")
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
@ rjisi —throw sum of A
1
@ Bregman 1973: permA < [, ()7
@ ¢(qr,G) < ¢(ar,gK; ) forany G € G(r,2qr)
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}™".
@ rjisi —throw sum of A
1
@ Bregman 1973: permA < [, ()7
@ ¢(qr,G) < ¢(ar,gK; ) forany G € G(r,2qr)
@ Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr
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Upper matching bounds for 0 — 1 matrices

Assume A € {0, 1}"*".

ri isi —th row sum of A

o

o(ar,G) < ¢(ar, gk, ) forany G € G(r, 2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

°
°
@ Bregman 1973: permA < [, (r!")
°
°
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Upper matching bounds for 0 — 1 matrices

Assume A € {0,1}"*",

ri isi —th row sum of A

Bregman 1973: permA < H{‘Zl(ri!)%

o(ar,G) < ¢(ar,qK; ) forany G € G(r,2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

@ Thm: For any r-regular graph G = (V,E),

r#V (r — 1)?
2 4

¢ 6 6 6 ¢

C4(G) <

Equality iff G = K
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Upper matching bounds for 0 — 1 matrices

Assume A € {0,1}"*",
ri isi —th row sum of A

o(ar,G) < ¢(ar,qK; ) forany G € G(r,2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

@ Thm: For any r-regular graph G = (V,E),

r#V (r — 1)?
2 4

°
°

1
@ Bregman 1973: permA < [ (r!)"
°
°

C4(G) <

Equality iff G = K
@ Prf: Any edge in e € E can be in at most (r — 1)? different
4-cycles.
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An example

Figure: Edge neighborhood of V,W, of 4- regular graph on 8 vertices

V1 Vo V3 Vg
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Upper perfect matching bounds for general graphs

G = (V,E) Non-bipartite graph on 2n vertices

6(n,G) < [] (degv)n)zes
veVv
If degv > 0,Vv € V equality holds iff G is a disjoint union of complete

balanced bipartite graphs
Kahn-Lévasz unpublished, Friedland 2008-arXiv, Alon-Friedland

2008-arXiv.
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Exact values for small matchings

For G € G(r,2n)
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Exact values for small matchings

For G € G(r,2n)
O #(1,G)=nr
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Exact values for small matchings

For G € G(r,2n)
Q #(1,G)=nr
Q 4(2,G) = (¥) —2n(}) = lor=r=1)
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Exact values for small matchings

For G € G(r,2n)

Q ¢(1,G)=nr

@ #(2,6) = () —2n(p) = "r=F=l

@ 4(3,G)= (%) —2n(§) —nr(r —1)2 —2n(5)(nr — 2r — (r — 2))
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Exact values for small matchings

For G € G(r,2n)
»(1,G) =nr
0(2.6) = (3) - 2n(g) = "r-{zr-1)
$(3,G) = (%) —2n(3) —nr(r —1)> = 2n(5)(nr — 2r — (r — 2))
9 ¢(4vG) - pl(nvr) + C4(G)
pi(n,r) =

0 (1—2r)+ 21 (19 — 60r + 52r2)4nr ( —5r 4+ 7r% — %3)
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Exact values for small matchings

For G € G(r,2n)

$(1,G) =nr

0(2,6) = (¥) ~ 2n(g) = Mor={zr=2)

$(3,G) = (%) —2n(3) —nr(r —1)> = 2n(5)(nr — 2r — (r — 2))
0 ¢(4vG) - pl(nvr) + C4(G)

pi(n,r) =
0 (1—2r)+ 21 (19 — 60r + 52r2)4nr ( —Br +7r% — %3)
Notation:
N
f(x)=> ax' <g(x be =
i=0

a gb,forl_l,...,N.
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2-regular graphs
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 16/ 38



2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1

0 Ko =0Cy

KTH, 16 April, 2008 16/38
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices

@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy

® G €1TI(2,n)iff G a union of cycles

16/38

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008



2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices

@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy

® G €1TI(2,n)iff G a union of cycles

® G € G(2,2n) iff G union of even cycles
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n):

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1

© 6 66 06 0

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008



2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

n-5 .

ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .

ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

n-5 .

ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .

ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .

ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices

Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1

Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n):

PG (X) < Bay,,(x) = b, (X)7 if 4)n
n-5 .

ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .

ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .

ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,

P (X) = Pay,(x) = b, (x)5 if 3[n

© 6 66 06 0
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1TI(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG e€l(2,n):
PG (X) < Bay,,(x) = b, (X)7 if 4)n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
dg(x) = ¢%K3(x) = &¢,(x)3if 3|n
n—4 .
dg(x) = d)%thuc‘l(X) = &¢,(x) 3 O¢,(x)if 3In—1,
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1TI(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG e€l(2,n): )
ds(x) < ¢%K2,2(x) = O, (x)4 if4n

P (X) = Pnsy, ¢, (X) = O, (X)"T Oc, (x) if 4n—1
P (X) X Pasy, i, (X) = O, (X)"7 O, (X) if 4ln — 2

Po(X) = Pary, i, (X) = dc, (X)"7 e, (X) if 4jn — 3,
B (X) = Dag (X) = bc, (x)3 if 3[n

P (X) = Pa_y e, (X) = O, (X)"F D¢, () if 3n—1,

P (X) = Pusy ¢, (X) = D, ()T b (x) if 3)n—2
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1TI(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG e€l(2,n):
ds(x) < ¢%K2,2(x) = O, (x)4 if4n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
dg(x) = ¢%K3(x) = &¢,(x)3if 3|n
n—4 .
dg(x) = d)%thuc‘l(X) = &¢,(x) 3 O¢,(x)if 3In—1,
n-5 .
dg(x) = d>nT_5K3UC5(x) = &¢,(X) 7 O, (x)if 3In—2
If n even G multi-bipartite 2-regular graph then ®g(x) = ®¢, (X).
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Relations between matching polynomials

@ ForO<i<j

P, (x)Pc, (x) — Oc,., (x) = (~1)xidg, (x)
Phnpathl -2 — ... —-n.

Pa(x) = p, (X), Gn(X) == O, (X)

Pk (X) = Pk—1(X) + XPk—2(x)

Ak (X) = Pk (X) + XPi—2(X)

Ifn=0,1mod 4

Pn—1=P1Pn-1 < P3Pn-3 < --- < P2 2j_1Pn—2|2]41 <

P2 2 |Pn—2|2) = P2 2] 2Pn—2|7]4+2 =<+ < P2Pn-2 < PoPn = Pn

© 6 6 ¢ ¢

On-1 = G10n-1 < d30n-3 < -+* <022 _10h2|0]41 <
A2(2)0n—2(2) = Q212 20n—2(2)42 = -+ = 020n-2 < On+1

@ Characterization of maximal and minimal matching polynomial
graphs in family of graphs with given number of vertices of
degrees one and two
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Cubic bipartite graphs
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Cubic bipartite graphs

@ G(3,6) = {Ks3}
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Cubic bipartite graphs

@ G(3,6) = {Kas}
@ G(3,8) = {Qgz} three dimensional cube
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Cubic bipartite graphs

@ G(3,6) = {Kas}
@ G(3,8) = {Qgz} three dimensional cube

® G(3,10) = {G1, M3} have incomparable matching polynomials
(X, Gp) := 1+ 15x + 75x2 + 145x3 4+ 96x* + 12x°
(X, M) := 1 4 15x + 75x2 + 145x3 + 95x*4 4 13x°
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Cubic bipartite graphs

@ G(3,6) = {Kss}

@ G(3,8) = {Q3} three dimensional cube

® G(3,10) = {G1, M3} have incomparable matching polynomials
(X, Gp) := 1+ 15x + 75x2 + 145x3 4+ 96x* + 12x°
(X, M) := 1 4 15x + 75x2 + 145x3 + 95x*4 4 13x°

@ For 2n from 12 to 24 the extremal graphs, with the maximal

o(l,G):

K33 if 6/2n

BKs3U Qs if 6/(2n — 2)
110K 55 (J(G1 or Myg)  if 6(2n — 4)
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Two bipartite 3-regular graphs on 10 vertices
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Expected values of k-matchings
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, (A=) =1, .r,i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):

w(G(0)) = ((nr)h)~*
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):
w(G(a)) = ((nr)H)~*

@ FKM 06:
E(k,n,r) := E(¢(k, G)) = (1)?rZkk!(nr — k)!)(nr)1)~L,
k=1,...,n
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):
w(G(a)) = ((nr)H)~*

@ FKM 06:
E(k,n,r) := E(¢(k, G)) = (1)?rZkk!(nr — k)!)(nr)1)~L,
k=1,...,n

@ 1<k <nj,l=1,.., increasing sequences of integers s.t.
Iim|_)c,oﬁ—'I =p € [0,1]. Then

Jim. 20, = f(p,r)

f(p,r):= 3(plogr —plogp—2(1—p)log(1—p)+(r—p)log(1-2))
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p-matching and total matching entropies
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p-matching and total matching entropies

G = (V, E) infinite, degree of each vertex bounded by N,
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p-matching and total matching entropies

G = (V, E) infinite, degree of each vertex bounded by N,

p € [0, 1]-matching entropy, (p-dimer entropy) of G

he(p)=  sup limsup 299k
onall sequences |—oo #V,
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p-matching and total matching entropies
G =

(V, E) infinite, degree of each vertex bounded by N,

p € [0, 1]-matching entropy, (p-dimer entropy) of G

ho(p)= sup limsup 290G
onall sequences |—oo #V,
and total matching entropy, (monomer-dimer entropy)

05(#V|) k G
hg= sup limsup 1002 = ok, '),
onall sequences | —oo #VI
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p-matching and total matching entropies

G = (V, E) infinite, degree of each vertex bounded by N,

p € [0, 1]-matching entropy, (p-dimer entropy) of G

ho(p)= sup limsup 290G
onall sequences |—oo #V,
and total matching entropy, (monomer-dimer entropy)

05(#V|) k G
hg= sup limsup 1002 = o(k.G1)
onall sequences | —oo #VI

)

G| = (E, V)),l € N a sequence of finite graphs converging to G, and
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p-matching and total matching entropies

G = (V, E) infinite, degree of each vertex bounded by N,

p € [0, 1]-matching entropy, (p-dimer entropy) of G

ho(p)= sup limsup 290G
onall sequences |—oo #V,
and total matching entropy, (monomer-dimer entropy)

05(#V|) k G
hg= sup limsup 1002 = o(k.G1)
onall sequences | —oo #VI

)

G| = (E, V)),l € N a sequence of finite graphs converging to G, and

hg = maxpcpo,11 ha(P)
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Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004
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Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

@ Book: Monte Carlo Methods 1964
(MCM attributed to Stan Ulam - 1944)

@ Self Avoiding Walks and Percolation Theory
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Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

@ Book: Monte Carlo Methods 1964
(MCM attributed to Stan Ulam - 1944)

@ Self Avoiding Walks and Percolation Theory
@ 60's: G := Z9 infinite 2d-regular bipartite graph

Vi = (s1)) X (Sa1) X ... x (Sq,),
Iimsi7| =o0,i=1,...,d

Then hq(p) := hg(p) same for all sequences
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Hammersley’s results

John Michael Hammersley 21.3.1920 - 2.5.2004

@ Book: Monte Carlo Methods 1964
(MCM attributed to Stan Ulam - 1944)
@ Self Avoiding Walks and Percolation Theory

@ 60's: G := Z9 infinite 2d-regular bipartite graph

Vi = (s1)) X (Sa1) X ... x (Sq,),
Iimsi7| =o0,i=1,...,d

Then hq(p) := hg(p) same for all sequences
@ hy(d) is concave
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Facts
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)
@ hy(1) - d-dimer entropy
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@ hy(p) - p-d-dimensional monomer-dimer entropy
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy

9

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy
°

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961
ha(p), p€l0,1)
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy
°

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961

ho(p), p€[0,1)
@ Baxter 1968 heuristical high precision computations
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy

9

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961

ha(p), p€0,1)
@ Baxter 1968 heuristical high precision computations
@ Hammersley 70: 2-digits precision using MC
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy

9

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961

ha(p), p€0,1)
@ Baxter 1968 heuristical high precision computations
@ Hammersley 70: 2-digits precision using MC
@ .66279897(190) < h, < .66279897(2844913) F-P 2005
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@ hy(p) - p-d-dimensional monomer-dimer entropy
L. Pauling 1935, Fowler and Rushbrooke 1937

@ hy(p) =f(p,2)

@ hy(1) - d-dimer entropy

@ hg = maxyco,1) ha(p) - d-monomer-dimer entropy

9

(—1)d
h,(1) Z m 0.29156090 .

Fisher,Kasteleyn 1961

ha(p), p€0,1)
@ Baxter 1968 heuristical high precision computations
@ Hammersley 70: 2-digits precision using MC
@ .66279897(190) < h, < .66279897(2844913) F-P 2005
@ Friedland-Peled confirmed Baxter's computations to be published
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Computations of 3-dimensional entropies

Computational methods
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@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices
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Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

@ h3(1) > 0.440075 Schrijver’s lower bound 1998
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

@ h3(1) > 0.440075 Schrijver’s lower bound 1998

@ h3(1) < 0.463107 Ciucu 1998
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

@ h3(1) > 0.440075 Schrijver’s lower bound 1998
@ h3(1) < 0.463107 Ciucu 1998

<
@ h3(1) < 0.457547 Lundow 2001 (massive parallel computations)
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

@ hz(1) > 0.440075 Schrijver’s lower bound 1998

@ h3(1) < 0.463107 Ciucu 1998

@ h3(1) < 0.457547 Lundow 2001 (massive parallel computations)

@ hz > 0.7652789557 Friedland-Peled 2005 (Tverberg conjecture)

<
<
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

h3(1) > 0.440075 Schrijver’s lower bound 1998

h3(1) < 0.463107 Ciucu 1998

h3(1) < 0.457547 Lundow 2001 (massive parallel computations)
hs > 0.7652789557 Friedland-Peled 2005 (Tverberg conjecture)
hs < .7862023450 Friedland-Peled 2005

<
<
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

h3(1) > 0.440075 Schrijver’s lower bound 1998

h3(1) < 0.463107 Ciucu 1998

h3(1) < 0.457547 Lundow 2001 (massive parallel computations)
hs > 0.7652789557 Friedland-Peled 2005 (Tverberg conjecture)
hs < .7862023450 Friedland-Peled 2005

hy > .7845241927 Friedland-Gurvits 2008

<
<
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Computations of 3-dimensional entropies

Computational methods
@ Effective computations done by transfer matrices

@ Entropies are estimated by upper and lower bounds using the
spectral radii of transfer matrices

@ Group automorphisms of discrete tori speed up computations
Estimate of 3-dimensional entropies

@ hz(1) > 0.440075 Schrijver’s lower bound 1998

h3(1) < 0.463107 Ciucu 1998

h3(1) < 0.457547 Lundow 2001 (massive parallel computations)
hs > 0.7652789557 Friedland-Peled 2005 (Tverberg conjecture)
hs < .7862023450 Friedland-Peled 2005

hy > .7845241927 Friedland-Gurvits 2008

hs > 7849602275 Friedland-Krop-Lundow-Markstrom
accepted JOSS 2008

<
<
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Asymptotic Lower and Upper Matching conjectures
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G, = (E,V)) € G(r,#V)),l =1,2,..., and IimHooz—"I =p.
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G, = (E,V)) € G(r,#V)),l =1,2,..., and IimHooz—"I =p.

|0Wr(p) Tl dlamabgfsequmcslllrﬂcl,gf #V,
ALMC: low; (p) = f(p, r) (For most of the sequences liminf = f(p,r))
upp; (p) := sup lim supw
al alowable sequences 1 —oo #V|

AUMC: upp, (p) = hk(r)(p), K(r) countable union of K;
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

GI = (EIaVI) S g(ra#vl)al = 1,2, ceey and ||rn|*>oo 2_k| =p.
|0Wr(p) Tl dlwabgfsequmcslllrﬂgf #V,
ALMC: low; (p) = f(p, r) (For most of the sequences liminf = f(p,r))
upp; (p) := sup lim supw
al dlowable sequences | —oo #V|

AUMC: upp, (p) = hk(r)(p), K(r) countable union of K;

log St _, (F)?k! ekt
Pe(t) = ng_Oz(rk) 7

p(t) :=Pr(t) € (0,1), hy(ry(p(t)) := Pr(t) —tp(t)
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0.83 h3High
B I
| h3Low
0.6
i AUMC
4 ALMC
0.47 FT
0.21
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Lower asymptotic bounds Friedland-Gurvits 2008
Thm: r > 3,s > 1 integers,

Bn € Q,,n=1,2,... each column of B, has at most r-nonzero entries.
kn € [0,n]NN,n=1,2,...,limh_..% =p € (0,1] then

| B
i inf 2227 20 2 (~plogp — 2(1 — p)log(1 — p)) +

%(r +s—1)log(1 —

1 1-p
r+s)*§(3*1+P)|09(1*T)
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Bn € Q,,n=1,2,... each column of B, has at most r-nonzero entries
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| B
i inf 2227 20 2 (~plogp — 2(1 — p)log(1 — p)) +

%(r +s—1)log(1 —

1 1-p
r+s)*§(3*1+P)|09(1*T)

Prf combines properties positive hyperbolic polynomials, capacity and
the measure on G(r, 2n)
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Lower asymptotic bounds Friedland-Gurvits 2008
Thm: r > 3,s > 1 integers,

Bn € Q,,n=1,2,... each column of B, has at most r-nonzero entries
kn € [0,n]NN,n=1,2,...,limh_..% =p € (0,1] then

| B
i inf 2227 20 2 (~plogp — 2(1 — p)log(1 — p)) +

%(r +s—1)log(1 —

1 1-p
—=(s—1 log(l — ——
) 38~ 1+p)ogl ———)
Prf combines properties positive hyperbolic polynomials, capacity and
the measure on G(r, 2n)

@ Cor: r-ALMC holds for ps = 45,8 =0,1,...,
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Lower asymptotic bounds Friedland-Gurvits 2008
Thm: r > 3,s > 1 integers,

Bn € Q,,n=1,2,... each column of B, has at most r-nonzero entries
kn € [0,n]NN,n=1,2,...,limh_..% =p € (0,1] then

| B
i inf 2227 20 2 (~plogp — 2(1 — p)log(1 — p)) +

%(r +s—1)log(1 —

1 1-p
r+s)*§(3*1+P)|09(1*T)

Prf combines properties positive hyperbolic polynomials, capacity and
the measure on G(r, 2n)

@ Cor: r-ALMC holds for ps = 45,8 =0,1,...,
@ Con: under Thm assumptions

.. _logperm, Bp
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Lower asymptotic bounds Friedland-Gurvits 2008

Thm: r > 3,s > 1 integers,

Bn € Q,,n=1,2,... each column of B, has at most r-nonzero entries.

kn € [0,n]NN,n=1,2,...,limh_..% =p € (0,1] then

| B
i inf 2227 20 2 (~plogp — 2(1 — p)log(1 — p)) +

%(r +s—1)log(1 —

1.1 1-p
r+s)*§(3*1+P)|09(1*T)

Prf combines properties positive hyperbolic polynomials, capacity and
the measure on G(r, 2n)

@ Cor: r-ALMC holds for ps = rJrs,s =0,1,.
@ Con: under Thm assumptions

.. _logperm, Bp
I f——— >f(r,p) — = |
imin o (r,p) — 5 logr

@ Forps =

r+s,s =0,1,..., conjecture holds
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Known lower and upper bounds for p-matchings

FKLM accepted JOSS 08:

low; (p) > max(low; 1(p),low; 2(p))
upp; (P) < min(upp; 1(P), upp; 2(P))

Lower estimates are based on F-G inequalities

and Newton inequalities:

f(x) = x" 4+ 3, a;x"~" have nonpositive roots

then (E)*lak log concave sequence

Upper estimates are based on Bregman inequalities :

ny (r! B n! e
ok, G) < <k)%

and

_ (M) k
max )¢(k,G)_<k>r

Gegmun(hzn
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Concavity results

%]
ha(p) + %(p logp + (1 —p)log(1l —p))

concave
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Concavity results

%]
ha(p) + %(p logp + (1 —p)log(1l —p))

concave

Hence hq(p) concave - Hammersley
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Concavity results

o
1
ha(p) + E(p logp + (1 —p)log(1 - p))
concave

Hence hq(p) concave - Hammersley

1
low (p) + 5 (plogp + (1 — p)log(1 - p))
concave

Hence low, (p) concave -
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Concavity results

o
1
ha(p) + E(p logp + (1 —p)log(1 - p))
concave

Hence hq(p) concave - Hammersley

1
low (p) + 5 (plogp + (1 — p)log(1 - p))
concave

Hence low, (p) concave -

Prf: Newton inequalities
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r = 4 lower bounds

Figure: fl(p, 4)-red, low, 1(p)-blue, f(p,4)-green
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r = 4 lower bounds differences

-0.005 [

-0.015

-0.025

-0.035

Figure: low, 1(p) — f(p, 4)-black, low, 2(p) — f(p, 4)-blue
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r = 4 upper bounds

0.2 0.4 0.6 0.8 1

Figure: hg (4)-green, upp, ;-blue, upp, ,-orange
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Summary
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@ Matches in graphs and their number is a basic concept in graphs.

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 34/38



@ Matches in graphs and their number is a basic concept in graphs.

@ Counting k-matching in bipartite graphs is equivalent to computing
permanents of 0 — 1 matrices.

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 34/38



@ Matches in graphs and their number is a basic concept in graphs.

@ Counting k-matching in bipartite graphs is equivalent to computing
permanents of 0 — 1 matrices.

@ Estimating matchings in regular bipartite graphs fuses
combinatorics and analysis.

Shmuel Friedland Univ. lllinois at Chicago & BCounting matchings in graphs with application KTH, 16 April, 2008 34/38



@ Matches in graphs and their number is a basic concept in graphs.

@ Counting k-matching in bipartite graphs is equivalent to computing
permanents of 0 — 1 matrices.

@ Estimating matchings in regular bipartite graphs fuses
combinatorics and analysis.
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entropies, the grand partition function, pressure and probability.
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@ Matches in graphs and their number is a basic concept in graphs.

@ Counting k-matching in bipartite graphs is equivalent to computing
permanents of 0 — 1 matrices.

@ Estimating matchings in regular bipartite graphs fuses
combinatorics and analysis.

@ Generalizing matching concepts to infinite graphs brings in the
elements of statistical physics:
entropies, the grand partition function, pressure and probability.

@ Computation of these entropies to a good precision needs
massive memory and huge computational power.
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Open problems
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Open problems

@ Lower and upper matching conjectures for regular bipartite
graphs.
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Open problems

@ Lower and upper matching conjectures for regular bipartite
graphs.

@ Asymptotic lower and upper matching conjectures.

@ Closed formula or high precision values for d > 3 dimer and
monomer-dimer entropies in Z¢.

@ Other lattices as Bethe lattices, i.e. infinite regular trees
@ Non-bipartite graphs
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