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Statement of the problem

Data is presented in terms of a matrix

A =


a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

...
...

am,1 am,2 ... am,n

 .
Examples

1 digital picture: 512× 512 matrix of pixels,
2 DNA-microarrays: 60, 000× 30

(rows are genes and columns are experiments),
3 web pages activities:

ai,j -the number of times webpage j was accessed from web page i .

or a tensor

Objective: condense data and store it effectively.
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Least squares & best rank k -matrix approximation

Least Squares: given a1, . . . ,an ∈ Rm find the best approximations
b1, . . . ,bm ∈ Rm lying in the subspace spanned by f1, . . . , fk ∈ Rm

History Gauss (1794) 1809, Legendre 1805, Adrain 1808

SOL: A = [a1 . . . am] = [aij ],B = [b1 . . . bn] ∈ Rm×n,
‖A− B‖2F :=

∑
i,j |aij − bij |2, F = [f1 . . . fk ] ∈ Rm×k ,X ∈ Rk×n

minX∈Rk×n ‖A− FX‖2F achieved for X ? = F †A, B? = FF †A
F †-Moore-Penrose inverse 1920, 1955

Singular Value Decomposition:
In LS find the best r -dimensional subspace
minX∈Rr×n,F∈Rm×r ‖A− FX‖2F achieved for Ar := F ?X ?

History Beltrami 1873, C. Jordan 1874, Sylvester 1889, E. Schmidt
1907, H. Weyl 1912
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Singular Value Decomposition - SVD

A = UΣV>

Σ = diag(σ1, . . . , σmin(m,n)) :=



σ1 0 ... 0
0 σ2 ... 0
...

...
...

...
0 0 ... σn
0 0 ... 0
...

...
...

...


∈ Rm×n

σ1 ≥ . . . ≥ σr > 0 = σi , i > r = rank A
U = [u1 . . .um] ∈ O(m), V = [v1 . . . vn] ∈ O(n)

a† = a−1 if a 6= 0, a† = 0 if a = 0

A† := V diag(σ†1, . . . , σ
†
min(m,n))U

>

Shmuel Friedland Approximations of Matrices and Tensors



Best rank k -approximation

For k ≤ r = rank A: Σk = diag(σ1, . . . , σk ) ∈ Rk×k ,
Uk = [u1 . . .uk ] ∈ Rm×k ,Vk = [v1 . . . vk ] ∈ Rn×k

Ak := Uk ΣkV>k is the best rank k approximation in Frobenius and
operator norm of A

min
B∈R(m,n,k)

||A− B||F = ||A− Ak ||F .

Reduced SVD A = Ur Σr V>r where (r ≥) ν numerical rank of A if∑
i≥ν+1 σ

2
i∑

i≥1 σ
2
i
≈ 0, (0.01).

Aν is a noise reduction of A. Noise reduction has many applications in
image processing, DNA-Microarrays analysis, data compression.
Full SVD: O(mn min(m,n)), k - SVD: O(kmn).

Shmuel Friedland Approximations of Matrices and Tensors



SVD algorithms

I. Kogbetliantz 1955, (modified Jacobi): Bk = UkBk−1V>k
two dimensional SVD reduction operations reducing norm off-diagonal
elements

II. QR algorithm (1961) Uk ,Vk obtained by G-S on Bk−1,B>k−1

III. Lanczo’s algo B0 = UAV> bidiagonal

a. Golub-Kahan-Reinsch 1970- implicit QR to tridiagonal B>k B
b. LAPACK improvement

Allows finding Ak cost O(kmn)
Approximation to smallest singular values and vectors
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Big matrices

Dimensions of A big m,n ≥ 106

Find a good algorithm by reading l rows or columns of A at random
and update the approximations.

Friedland-Kaveh-Niknejad-Zare [2] proposed randomized k -rank
approximation by reading l rows or columns of A at random and
updating the approximations.

The main feature of this algorithm is that each update is a better rank
k -approximation.
Each iteration: ||A− Bt−1||F ≥ ||A− Bt ||F .
Complexity O(kmn).
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CUR approximation-I

From A ∈ Rm×n choose submatrices consisting of p-columns
C ∈ Rm×p and q rows R ∈ Rq×n

A =



a1,1 a1,2 a1,3 ... a1,n
a2,1 a2,2 a2,3 ... a2,n
a3,1 a3,2 a3,3 ... a3,n
a4,1 a4,2 a4,3 ... a4,n

...
...

...
...

am−1,1 am−1,2 am−1,3 ... am−1,n
am,1 am,2 am,3 ... am,n


,

R - red - blue, C - red - magenta.

Approximate A using C,R.
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CUR approximation-II

〈m〉 := {1, . . . ,m}
A = [aij ] ∈ Rm×n, ‖A‖∞,e := maxi∈〈m〉,j∈〈n〉 |aij |
I = {1 ≤ α1 < . . . < αq ≤ m}
J = {1 < β1 < . . . < βp ≤ n}
AIJ := [aij ]i∈I,j∈J ,
R = AI〈n〉 = [aαk j ], k = 1, . . . ,q, j = 1, . . . ,n
C = A〈m〉J = [aiβl ], i = 1, . . . ,m, l = 1, . . . ,p.
The set entries of A read
S := 〈m〉 × 〈n〉\((〈m〉\I)× (〈n〉\J)),
#S = mp + qn − pq
Goal: approximate A by CUR
for appropriately chosen C,R and U ∈ Rp×q.
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CUR-approximation III

Introduced by Goreinov, Tyrtyshnikov and Zmarashkin [7, 8]
Suppose that A,F ∈ Rm×n and rank (A− F ) ≤ p.
Then there exists p rows and columns of A:
R ∈ Rp×n,C ∈ Rm×p

and U ∈ Rp×p such that
||A− CUR||2 ≤ ||F ||2(1 + 2

√
pn + 2

√
pm)

Good choice of C,R,U: Goreinov and Tyrtyshnikov [6]:
µp := maxI⊂〈m〉,J⊂〈n〉,#I=#J=p |det AIJ | > 0
Suppose that
|det AIJ | ≥ δµp, δ ∈ (0,1], I ⊂ 〈m〉, J ⊂ 〈n〉,#I = #J = p.
Then ||A− CA−1

IJ R||∞,e ≤ p+1
δ σp+1(A)
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CUR-approximations: IV

Random A approximation algorithm:
Read at random q rows and p columns of A: R ∈ Rq×n,C ∈ Rm×p

A low rank approximation B = CUR,
for a properly chosen U ∈ Rp×q.
Uopt, corresponding to F := CUoptR and an optimal k -rank
approximation B of F , if needed by updating the approximations.
Complexity O(k2 max(m,n)).
Uopt ∈ arg minU∈Rp×q

∑
(i,j)∈S(ai,j − (CUR)i,j)

2

Average error

Errorav(B) =
( 1

#S
∑

(i,j)∈S(ai,j − b,ij)2) 1
2 .
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CUR-approximations: V

Given A the best choice of U is
Ub ∈ arg minU∈Rp×q ||A− CUR||F
Ub = C†AR†

Complexity: O(pqmn).
In [3] we characterize for r ≤ min(p,q)
Ub,r ∈ arg minU∈Cr (p,q) ||A− CUR||F
Least squares solution
Uopt ∈ arg minU∈Rp×q

∑
(i,j)∈S(ai,j − (CUR)i,j)

2

Example:
Cameraman: n = m = 256, p = q = 80.
Number of variables: pq = 6400.
Number of equations: 2× 256× 80− 6400 = 34,560.

Problems with executing least squares with Matlab:
very long time of execution time and poor precision.
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Nonnegative CUR-approximation

A ≥ 0: entries of A are nonnegative

Uopt ∈ arg min
U∈Rp×q

∑
(i,j)∈S

(ai,j − (CUR)i,j)
2,

subject to constrains: (CUR)i,j ≥ 0, (i , j) ∈ S.
Or

Ub ∈ arg min
U∈Rp×q

||A− CUR||F ,

subject to constrains: (CUR) ≥ 0.

Minimization of strictly convex quadratic function in a convex polytope.
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Algorithm for Ũopt

Thm Uopt = A†I,J .
Suppose that #I = #J = p and AI,J is invertible. Then Uopt = A−1

I,J
is the exact solution of the least square problem

(CUR)I,〈n〉 = AI,〈n〉, (CUR)〈m〉,J = A〈m〉,J ,

back to Goreinov-Tyrtyshnykov.
Instead of finding AI,J with maximum determinant we try several
I ⊂ 〈m〉, J ⊂ 〈n〉,#I = #J = p, from which we chose the best I, J:

AI,J has maximal numerical rank rp,∏rp
i=1 σi(AI,J) is maximal.

Ũopt := A†I,J,rp

AI,J,rp is the best rank rp approximation of AIJ .
A is approximated by CŨoptR.

Shmuel Friedland Approximations of Matrices and Tensors



Extension to tensors: I
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Extensions to 3-tensors: II

A = [ai,j,k ] ∈ Rm×n×` - 3-tensor
given I ⊂ 〈m〉, J ⊂ 〈n〉,K ⊂ 〈`〉 define
R := α〈m〉,J,K = [ai,j,k ]〈m〉,J,K ∈ Rm×(#J·#K ),
C := αI,〈n〉,K ∈ R〈n〉×(#I·#K ),
D := αI,J,〈`〉 ∈ Rl×(#I·#J)

Problem: Find 3-tensor U =∈ R(#J·#K )×(#I·#K )×(#I·#J)

such that A is approximated by the Tucker tensor
V = U ×1 C ×2 R ×3 D
where U is the least squares solution

Uopt ∈ arg min
U∈Rthree tensor

∑
(i,j,k)∈S

(
ai,j,k − (U ×1 C ×2 R ×3 D)i,j,k

)2

S = (〈m〉 × J × K ) ∪ (I × 〈n〉 × K ) ∪ (I × J × 〈`〉)
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Extension to 3-tensors: III

For #I = #J = p, #K = p2, I ⊂ 〈m〉, J ⊂ 〈n〉,K ⊂ 〈`〉
generically there is an exact solution to Uopt ∈ Rp3×p3×p2

obtained by unfolding in third direction:
View A as A ∈ R(mn)×` by identifying
〈m〉 × 〈n〉 ≡ 〈mn〉, I1 = I × J, J1 = K and apply CUR again.

More generally, given #I = p, #J = q, #K = r .
For L = I × J approximate A by A〈m〉,〈n〉,K E†L,KAI,J,〈`〉
Then for each k ∈ K approximate each matrix A〈m〉,〈n〉,{k} by
A〈m〉,J,{k}E

†
I,J,{k}AI,〈n〉,{k}

Symmetric situation for 4-tensors A ∈ Rm×n×l×q.
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Other methods of approximation of tensors

I. HOSVD: Unfolding A ∈ Rm×n×l

in each direction + SVD yields orthonormal bases
[u1 . . .um], [v1, . . . ,vn], [w1 . . .wl ] of Rm,Rn,Rl

A represented by S = [si,j,k ] not diagonal but some good properties
II. Best (r1, r2, r3) (≤ (m,n, l)) approximation
minU∈Gr(r1,Rm),V∈Gr(r2,Rn),W∈Gr(r3,Rl ) ‖A − PU⊗V⊗W(A)‖ =
maxU∈Gr(r1,Rm),V∈Gr(r2,Rn),W∈Gr(r3,Rl ) ‖PU⊗V⊗W(A)‖
Using unfolding + SVD gives iteration algorithm for Uk ,Vk ,Wk updating
one subspace each step ASVD
(1,1,1) EXM: max‖u‖=‖v‖=‖w‖=1

∑
i,j,k ai,j,kuivjwk

Critical point: A× v⊗w = σu,A× u⊗w = σv,A× u⊗ v = σw
Power iterations: A× vk ⊗wk = αkuk+1,A× uk+1 ⊗wk =
βkvk+1,A× uk+1 ⊗ vk+1 = γkwk+1
Modified Jacobi
Modified QR algorithm
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Simulations: Tire I

Figure: Tire image compression (a) original, (b) SVD approximation, (c) CLS
approximation, tmax = 100.

Figure 1 portrays the original image of the Tire picture from the Image
Processing Toolbox of MATLAB, given by a matrix A ∈ R205×232 of rank
205, the image compression given by the SVD (using the MATLAB

function svds) of rank 30 and the image compression given by
Bb = CUbR.
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Simulations: Tire II

The corresponding image compressions given by the approximations
Bopt1 , Bopt2 and B̃opt are displayed respectively in Figure 2. Here,
tmax = 100 and p = q = 30. Note that the number of trials tmax is set to
the large value of 100 for all simulations in order to be able to compare
results for different (small and large) matrices.

Figure: Tire image compression with (a) Bopt1 , (b) Bopt2 , (c) B̃opt , tmax = 100.
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Simulations: Table 1

In Table 1 we present the S-average and total relative errors of the
image data compression. Here, Bb = CUbR, Bopt2 = CUopt2R and
B̃opt = CŨoptR. Table 1 indicates that the less computationally costly
FSVD with Bopt1 , Bopt2 and B̃opt obtains a smaller S-average error than
the more expensive complete least squares solution CLS and the SVD.
On the other hand, CLS and the SVD yield better results in terms of
the total relative error. However, it should be noted that CLS is very
costly and cannot be applied to very large matrices.

rank SAE TRE
Bsvd 30 0.0072 0.0851
Bb 30 0.0162 0.1920

Bopt1 30 1.6613 · 10−26 0.8274
Bopt2 30 3.2886 · 10−29 0.8274
B̃opt 30 1.9317 · 10−29 0.8274

Table: Comparison of rank, S-average error and total relative error.
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Simulations: Cameraman 1

Figure 3 shows the results for the compression of the data for the
original image of a camera man from the Image Processing Toolbox of
MATLAB. This data is a matrix A ∈ R256×256 of rank 253 and the
resulting image compression of rank 69 is derived using the SVD and
the complete least square approximation CLS given by Bb = CUbR.

Figure: Camera man image compression (a) original, (b) SVD approximation,
(c) CLS approximation, tmax = 100.
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Simulations: Cameraman 2

Figure 4 is FSVD approximation Bopt2 = CUopt2R and B̃opt = CŨoptR.
Here tmax = 100 and p = q = 80. Table 2 gives S-average and total
relative errors.

Figure: Camera man image compression. FSVD approximation with (a)
Bopt2 = CUopt2R, (b) B̃opt = CŨoptR. tmax = 100.
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Simulations: Table 2

rank SAE TRE
Bsvd 69 0.0020 0.0426
Bb 80 0.0049 0.0954

Bopt1 − − −
Bopt2 80 3.7614 · 10−27 1.5154
B̃opt 69 7.0114 · 10−4 0.2175

Table: Comparison of rank, S-average error and total relative error.
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Canal at night 1

Figure: Canal image (a) original, (b) SVD approximation, tmax = 100.
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Canal at night 2

Figure: Canal image compression (a) CLS approximation, (b) FSVD with
B̃opt , tmax = 100.
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Conclusions

Fast low rank approximation using CUR approximation of A of
dimension m× n, C ∈ Rm×p, R ∈ Rq×n are submatrices of A U ∈ Rp×q

computable by least squares to fit best the entries of C and R.
Advantage: low complexity O(pq max(m,n)).
Disadvantage: problems with computation time and approximation
error
Drastic numerical improvement when using Ũopt.
Least squares can be straightforward generalized to tensors
Many methods of linear algebra can be adopted to tensors
with partial success
and many open problems
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