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Abstract

In this paper we study the automorphisms of Siegel upper half plane of complex
dimension 3. We give the normal forms and classify the set of fixed points of such
transformations. 1

1 Introduction

This paper is a continuation of our paper [3] and we use its notations. Let Sym(n, C)
be the space on n × n complex symmetric matrices. Let SDn := {Z ∈ Sym(n, C) :
||Z||2 < 1} be the Siegel n-disk. Then SDn = {Z ∈ Sym(n, C) : ||Z||2 ≤ 1} and
∂SDn = {Z ∈ Sym(n, C) : ||Z||2 = 1}. The Shilov boundary of SDn, denoted by
∂nSDn, is USym(n) := Un ∩ Sym(n, C), the set of n × n unitary symmetric matrices.
Let SHn := {Z ∈ Sym(n, C) : Im Z > 0} be the Siegel n-upper half plane. Then
Cl(SHn) is the compactification of SHn which is diffeomorphic to SDn. Then ∂SHn, ∂nSHn

are diffeomorphic to ∂SDn, ∂nSHn respectively. ∂nSHn is the Shilov boundary of SHn.
∂1SD2 := ∂SD2\∂2SD2 and ∂1SH2 := ∂SH2\∂2SH2 are the other strata of ∂SD2 and
∂SH2 respectively. (See [3, §3].)

Recall that the symplectic group Sp(n, R) acts as a group of generalized Möbius trans-
formations on SHn, where the action of M and −M coincide. The action of M ∈ Sp(n, R)
extends continuously to Cl(SHn). Since SDn is homeomorphic to the closed ball, the
Brouwer fixed point theorem implies that M has at least one fixed point in Cl(SHn).
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Sp(n, R) acts on USym(n). The action of a discrete group Γ ⊂ Sp(2, R) on USym(2)
is a three dimensional generalization of the action of the Kleinian group on S2. We believe
that it is interesting and important to study the action of Sp(2, R) and its discrete subgroups
on SH2 and Cl(SH2). This paper is the first step in this program.

The main purpose of this paper is to give a normal form of any element M ∈ Sp(2, R)
under the conjugation in Sp(2, R) and to classify its fixed points. This is done by using
direct computations and some geometric facts of the action of Sp(2, R). It turns out that the
family of different conjugacy classes in Sp(2, R) is much richer then the family of conjugacy
classes of Sp(1, R) = SL(2, R) or SL(2, C). Let

(
a1 b1

c1 d1

)
�
(

a2 b2

c2 d2

)
:=


a1 0 b1 0
0 a2 0 b2

c1 0 d1 0
0 c2 0 d2

 . (1.1)

Clearly, X�Y ∈ Sp(2, R) if and only X, Y ∈ SL(2, R). (From here to the end of this section
we assume that X, Y ∈ SL(2, R).) Then SL(2, R) × SL(2, R) → SL(2, R) � SL(2, R) ⊂
Sp(2, R) is a faithful representation. We show that many (but not all) M ∈ Sp(2, R) are
conjugate (in Sp(2, R)) to X � Y . We characterize M ∈ Sp(2, R) which are conjugate to
X � Y . X � Y act on H×H ⊂ SH2 and its compactification Cl(H)× Cl(H) ⊂ Cl(SH2).
(Note that H = SH1, D = SD1 are the upper half plane and the unit disk respectively.)
If ξ, η ∈ Cl(H) are fixed points of X, Y respectively then ξ × η is a fixed point of X � Y .
We call ξ × η the ordinary fixed point of X � Y . We show that the set of the fixed X � Y
is a set of ordinary fixed points if and only if Y is not conjugate in SL(2, R) to X−1. The
transformation X�X−1 has additional (nonordinary) fixed points, whose structure depends
on the type of X: hyperbolic, parabolic, elliptic or X = ±I2. (See [1] for the definitions and
properties of hyperbolic, parabolic and elliptic transformations for the action of SL(2, R)
on H.)

M ∈ Sp(2, R) is called hyperbolic if all eigenvalues of M lie outside the unit circle.
Hyperbolic transformations were already studied in [3]. They have two distinguished hy-
perbolic fixed points in the Shilov boundary of SH2. One is attracting and one is repelling.
The domain of attraction (repulsion) includes SH2. There are three types of hyperbolic
M : (Ia), (Ib) and (Ic). (Ia) M has real spectrum and is diagonable. Then M is conjugate
to X � Y , where X and Y are hyperbolic. If Y is not conjugate to X−1 then X � Y has
exactly four (ordinary) fixed points in the Shilov boundary. If Y is conjugate to X−1 then
X � Y has two isolated hyperbolic fixed points (attracting and repelling) and a circle S1 of
fixed points all in the Shilov boundary. (Ib) M has two double real eigenvalues and is not
diagonable. Then M has three fixed points in the Shilov boundary. (Ic) M does not have
real eigenvalues. Then M has two fixed points in the Shilov boundary.

For a nonhyperbolic M ∈ Sp(2, R), M 6= ±I4 the set of fixed points is one of the
following types: (a) one or two points; (b) one or two disjoint copies of D; (c) two copies of
D intersecting at one point lying on the boundary of each D; (d) D ×D. We identify the
location of the fixed points for any M ∈ Sp(2, R): either in ∂2SH2, or in ∂1SH2 or in SH2.

There is an overlap between some of our results on the fixed points of the action of ele-
ments M ∈ Sp(2, R) on SH2 and the forms of special representatives of the conjugacy class
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of M in Sp(2, R), and the two papers of Gottschling [4] and [5]. In his papers Gottschling
considered only the fixed points of M ∈ Sp(n, Z) and the forms of special representative of
the conjugacy class M in Sp(n, Z). He was not concerned with the exact location of the
fixed points with respect to the stratification of ∂ Cl(SHn).

We now summarize briefly the contents of our paper. §2 studies the geometry of the
Shilov boundary of SD2. In §3 we give a number of normal forms of M ∈ Sp(2, R), which
depend on the location of a fixed point of M . §4 classifies the set of the fixed points of
M (Theorem 4.1). §5 we discuss the projective presentation of the boundary of SH2. §6
devoted to the proof Theorem 4.1.

Most of the results here were obtained by the first author in his Ph.D. thesis [2] under
the direction of the second author. The first author was supported by an FCT-Praxis XXI
scholarship during his studies at UIC.

2 Geometry of the Shilov boundary of SD2

Let U ∈ Un. Then the spectral decomposition of U is:

U = V DV ∗, V ∈ Un, D = diag(λ1, . . . , λn), λi = e
√
−1θi , θi ∈ R, i = 1, . . . , n. (2.1)

Lemma 2.1 Let U ∈ USym(n). Then in the decomposition (2.1) we can choose V ∈
SO(n, R).

Proof. Assume that λ is an eigenvalue of U of multiplicity k. Without loss of generality
we may assume that λi = λ, i = 1, . . . , k and λj 6= λ, j > k. Assume that U has the spectral
decomposition (2.1). Then the first k columns v1, . . . , vk of V form an orthonormal basis
for the eigenspace of U corresponding to λ. As UT = U = V DV T it follows that v1, . . . , vk

forms also an orthonormal basis of the eigenspace of U corresponding to λ. Hence span
(v1, . . . , vk) has an orthonormal basis ±q1, . . . ,±qk ∈ Rn. By picking a real orthonormal
basis for each eigenspace of U and choosing the signs ± accordingly we deduce the lemma.
2

Lemma 2.2 The map F : Sym(n, R) → USym(n) given by A 7→ e
√
−1A is a surjection.

Proof. Clearly F is into. As any A ∈ Sym(n, R) is of the form A = QT DQ, Q ∈
SO(n, R), D ∈ D(n, R) we obtain that F (A) = QT F (D)Q. Use Lemma 2.1 to deduce the
lemma. 2

For n > 1 F is not a covering map. It can be shown from the proof of Lemma 2.2 that
F fails to be a local homeomorphism at all points where the number of distinct eigenvalues
of F (A) is strictly less than the number of distinct eigenvalues of A. We discuss this fact
for the case n = 2:

Theorem 2.3 USym(2) fibers over the circle, with the fibre F := USym(2)∩SL(2, C),
which is homeomorphic to S2. The gluing homeomorphism of F is given by the involution
map A 7→ −A. The fundamental group of USym(2) is isomorphic to Z.
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Proof. It is straightforward to show that USym(2) is diffeomorphic to the homogeneous
space U2/O(2, R). Hence USym(2) is a compact manifold. We first consider F . Let
Sym0(2, R) be the subspace of all real symmetric matrices of zero trace:

Sym0(2, R) := {A(x) : A(x) =
(

x1 x2

x2 −x1

)
, x = (x1, x2)T ∈ R2}. (2.2)

The proof of Lemma 2.2 implies that the restriction of the map F - F0 : S0(2, R) → F
is onto. A straightforward argument shows that F0 is not a local diffeomorphism at A if
and only if the eigenvalues of A are ±πn, n = 1, . . .. Note that all 2 × 2 real symmetric
matrices with eigenvalues ±πn are mapped by F0 to (−1)nI2. In view of equation (2.2)
we can identify Sym0(2, R) with R2. Let S0,2 be the space obtained from R2 by collapsing
each of the following circles tr(A2(x)) = 2(x2

1 + x2
2) = 2π2n2 to the points ζn for n = 1, . . ..

Then S0,2 is a countable union of the 2-spheres S2
n: π2(n − 1)2 ≤ x2

1 + x2
2 ≤ π2n2 for

n ∈ N, such that the spheres S2
n, S2

n+1 are attached at the point ζn for n ∈ N. S0,2 is a
CW-complex. F0 induces the continuous map F̃0 : S0,2 → F . A straightforward argument
shows that F̃0|S2

n is a homeomorphism for n ∈ N. Hence F is homeomorphic to S2. Given
any B ∈ USym(2), it is of the form λA = −λ(−A), where A ∈ F and λ on the unit circle
S1. For λ = e

√
−1πt, 0 < t < 1 we let the fiber F over λ be identified with the set λF . Two

fibers F over the points 1 and −1 of the circle S1, are identified by the involution A 7→ −A.
Hence USym(2) fibers over the circle T 1 = R/Z with the fibre S2. View T 1 as the upper
half part of S1 where the points 1 and −1 are identified and is denoted by S1

+. The map
A 7→

√
det A ∈ S1

+ gives the projection map P : USym(2) → S1
+. Assume that an image of

a closed path γ starting at I2 under P has a winding number of zero. Then the projections
of γ on S1

+ and F respectively are a closed path on S1
+ starting at 1 and a closed path on

F starting at I2 respectively. The closed path on F is contractible to a constant path at
I2. Since the winding number of P (γ) is zero, the closed path on S1

+ is contractible to a
constant path. Hence the homotopy class of γ is determined by the winding number of P (γ)
on S1

+. That is, the fundamental group of USym(2) is isomorphic to Z. The projection of
a generator of this group on S1

+, F respectively, is a path of length on π on S1
+ from 1 to

−1 and a path from I2 to −I2 on F . 2

Similarly

Proposition 2.4 USym(n) is a compact
(
n+1

2

)
dimensional manifold which fibers over

the circle, with a smooth fiber Fn = USym(n) ∩ SL(n, C) ∼ SUn/SO(n, R).

3 Normal forms in Sp(2, R)

The arguments in the beginning of §1 imply:

Lemma 3.1 Let A ∈ Sp(n, R) act on Cl(SHn). Then A has a fixed point is either in
SHn or its boundary.
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We now restrict our attention to n = 2. Since Sp(2, R) acts transitively on ∂2SH2 and
∂1SH2 it follows that

∂2SH2 = Sp(2, R)(0), (0 = diag(0, 0)), ∂1SH2 = Sp(2, R)(
√
−1 diag(1, 0)). (3.1)

The two components of the finite boundary of SH2 are (see [3, §3]):

fin(∂2SH2) := ∂2SH2 ∩ fin(∂SH2) = Sym(2, R), (3.2)
fin(∂1SH2) := ∂1SH2 ∩ fin(∂SH2) = {Z ∈ Sym(2, C) : Im Z ≥ 0, rank Im Z = 1}.

In §5 we give a description of the infinite boundary of SH2.
For A ∈ GL(n, R) we denote by spec(A) ⊂ C and ρ(A) the spectrum and the spectral

radius of A respectively. ±In 6= A ∈ GL(n, R) is called hyperbolic or elliptic if A does
not have eigenvalues on the unit circle or A has all eigenvalues on the unit circle and A is
similar to a diagonal matrix respectively. A,B ∈ GL(n, R) are called similar if A and B
are conjugate in GL(n, R). Let G be a subgroup of GL(n, R). Then A,B ∈ G are called
conjugate (in G) if A and B are conjugate in G. Recall M ∈ Sp(2, R) if and only if and
only if

M =
(

A B
C D

)
∈ M(4, R), AT C,BT D ∈ Sym(2, R), AT D − CT B = I2. (3.3)

Furthermore
M(Z) := (AZ + B)(CZ + D)−1, Z ∈ SH2. (3.4)

Assume that M ∈ Sp(2, R). As M−1 is similar to MT it follows that the 4 eigenvalues of
M are λ1(M), λ2(M), λ3(M) = λ2(M)−1, λ4(M) = λ1(M)−1 and ρ(M) = |λ1(M)| ≥
|λ2(M)| ≥ 1 ≥ |λ3(M)| ≥ |λ4(M)|. Let M1,M2 ∈ SL(2, R) Then (1.1) implies that
M1�M2 ∈ Sp(2, R). Clearly, M1�M2 = P (M1⊕M2)PT , where P is a permutation matrix
which exchange the second and the third rows. Hence M1 � M2 is similar to M1 ⊕ M2.
Furthermore M1 � M2 is conjugate to M2 � M1 by the symplectic matrix P ⊕ P, P =(

0 1
1 0

)
. Let θ(M1×M2) := M1�M2. Then θ : SL(2, R)×SL(2, R) → Sp(2, R) is a faithful

representation. Recall the well known normal forms of conjugacy classes in SL(2, R) =
Sp(1, R):

Proposition 3.2 Let X ∈ SL(2, R), X 6= ±I2. Then X is conjugate to one and only
one of the following normal forms in SL(2, R):(

1/α 0
0 α

)
, |α| > 1, (3.5)

±
(

1 0
1 1

)
, ±

(
1 0
−1 1

)
, (3.6)(

a b
−b a

)
,

(
a −b
b a

)
, a2 + b2 = 1, b > 0. (3.7)
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Note that the two canonical forms in (3.7) and each of the two corresponding canonical
forms in (3.6) are similar by diag(1,−1) ∈ O(2, R). X ∈ SL(2, R) is called parabolic if X is
conjugate to one of the forms in (3.6). In what follows we give normal forms of M ∈ Sp(2, R)
according to the location of a fixed point of M , the spectrum of M and the conjugacy of M
to X � Y .

Theorem 3.3 Let M ∈ Sp(2, R). Then
I. M is conjugate to (

A 0
C A−T

)
(3.8)

if and only if M has a fixed point in the Shilov boundary of SH2. Furthermore we have the
following forms for each type:

• Type 1. M is hyperbolic. Then M is conjugate to(
A 0
0 A−T

)
. (3.9)

Furthermore
(a) M is conjugate to X�Y with X and Y hyperbolic if an only if M has real spectrum
and M is similar to a diagonal matrix, i.e. A = diag(λ4(M), λ3(M)).

(b) A =
(

λ4(M) 0
1 λ4(M)

)
if an only if M has real spectrum and M is not similar

to a diagonal matrix.
(c) ρ(M)A has the first form of (3.7) if and only if spec(M) ⊂ C\R.

• Type 2. M is conjugate to 
0 1 0 0
−1 2a 0 0
0 δ 2a 1
0 0 −1 0

 , (3.10)

where |a| < 1 and δ = 0,±1.
(a) δ = 0 if and only if M is conjugate to X �X−1, where X is elliptic. (M has two
double nonreal eigenvalues on the unit circle and M is diagonable.)
(b) δ = ±1 if and only M has two nonreal double eigenvalues on the unit circle and
M is not diagonable.

• Type 3. M is conjugate to X � Y where is Y hyperbolic and X is either parabolic or
±I2. (spec(M) is real and contains either 1 or −1 but spec(M) 6⊂ {1,−1}). Equiva-
lently, M is conjugate to

±


1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

 , α 6= ±1, δ = 0,±1. (3.11)
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• Type 4. M is conjugate to X �Y where X and Y are parabolic or ±I2. (spec(M) ⊂
{1,−1} and M is not similar to a Jordan block of order 4). Equivalently M or −M
is conjugate to 

1 0 0 0
0 α 0 0
δ1 0 1 0
0 δ2 0 α

 , α = ±1, δ1, δ2 = 0,±1. (3.12)

( If α = −1 then M is conjugate to one of the above forms.)

• Type 5. M is similar to a Jordan block of order 4 if and only if M is conjugate to
(3.10) with a = ±1 and δ = ±1. (spec(M) = {1}, {−1}.)

II. M has a fixed point in ∂1SH2 if and only if M is conjugate X�Y with the following
two possibilities:

(a) X elliptic or ±I2 and Y hyperbolic, parabolic or ±I2, (spec(M) has two eigenvalues
on the unit circle and two real eigenvalues and either M is diagonable or M has exactly one
Jordan block of order two with the eigenvalue ±1). Equivalently M is conjugate to

a1 0 −c1 0
0 a4 0 0
c1 0 a1 0
0 δ 0 a−1

4

 , a2
1 + c2

1 = 1, δ = 0,±1, (3.13)

where δ can only be nonzero if a4 = ±1.
(b) with Y = X−1 and X parabolic, (spec(M) = {1} , {−1}, and M has two Jordan

blocks of order two).

III. M is conjugate to X � Y , where X and Y are either elliptic or ±I2, if and only if
M has a fixed point inside SH2. (M is either elliptic or ±I4). Equivalently M is conjugate
to 

a1 0 b1 0
0 a2 0 b2

−b1 0 a1 0
0 −b2 0 a2

 , a2
1 + b2

1 = a2
2 + b2

2 = 1. (3.14)

Furthermore, M is conjugate to the form (3.8) if an only if either M is conjugate to X�X−1

with an elliptic X, or M is conjugate to (±I2)� (±I2).

Proof. . According to Lemma 3.1 M has a fixed point ζ ∈ Cl(SH2). Then there exists
T ∈ Sp(2, R) such that T (ζ) ∈ {0,

√
−1 diag(1, 0),

√
−1I2}. Hence M1 = T−1MT has a

fixed point in the set {0,
√
−1 diag(1, 0),

√
−1I2}.

I. M1 has a fixed point 0. Then (3.4) implies that M1 is of the form (3.8).
Type 1. By [3, Prop. 5.4] any hyperbolic M1 is conjugate to the form (3.9), where

the eigenvalues of A are inside the unit disk. Suppose first that spec(M1) ⊂ R. Then
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spec(A) ⊂ R. Furthermore M1 is similar to diagonal matrix if and only if A is similar to a
diagonal matrix. Assume that M is similar to a diagonal matrix. Then A = PA1P

−1, A1 =
diag(λ4(M), λ3(M)), P ∈ GL(2, R) and S−1M1S = A1 ⊕ A−T

1 , S = P ⊕ P−T ∈ Sp(2, R).
Hence M is conjugate to the form (a). Note that the form (a) is equal to X � Y, X =
diag(λ4(M), 1/λ4(M)), Y = diag(λ3(M), 1/λ3(M)). Suppose that M is not similar to a
diagonal matrix. Hence A is not similar to a diagonal matrix. In particular λ3(M) = λ4(M)

and A is similar to
(

λ4(M) 0
1 λ4(M)

)
. Use the above arguments to show that M is

conjugate to the form (b). Assume now that spec(M) ⊂ C\R. Then ρ(M)|λ3(M)| =
ρ(M)|λ4(M)| = 1 and ρ(M)A is similar to the first matrix of (3.7). Use the above arguments
to show that M is conjugate to the form (c).

Type 2. M is not hyperbolic and M does not have real eigenvalues. Then spec(A) ⊂
S1\{1,−1} and M has two nonreal double eigenvalues on S1. Then A = PA1P

−1, A1 =(
0 1
−1 2a

)
and P ∈ GL(2, R). Then M1 = (P ⊕ P−T )−1M(P ⊕ P−T ) ∈ Sp(2, R), where

M1 is of the form (3.8) with A = A1. Let

M2 = R−1M1R =
(

A1 0
C1 A−T

1

)
, R =

(
I2 0
Z I2

)
∈ Sp(2, R) ⇐⇒

Z ∈ Sym(2, R). (3.15)

Choose Z ∈ Sym(2, R) so that the first column of C1 is zero. Since M2 ∈ Sp(2, R) it follows

that C1 =
(

0 x
0 0

)
.

(a) x = 0. Then M2 is in the form (3.10) with δ = 0. Thus M is elliptic with nonreal
double eigenvalues. We claim that in this case M2 is conjugate to X � X−1, where X is
an elliptic matrix of the first form in (3.7) having two distinct eigenvalues of M . Clearly,
A1 = QXQ−1 for some Q ∈ GL(2, R). Then X ⊕X = (Q⊕Q−T )−1M2(Q⊕Q−T ) and

R(X ⊕X)R−1 = X �X−1, R =


1
2 0 1 −1
1
2 0 1 1
0 1

2 1 1
0 − 1

2 1 −1

 ∈ Sp(2, R). (3.16)

(b) x 6= 0. Then conjugate M2 by P ⊕ P−T , where P =
√
|x|I2 to obtain the form

(3.10) with δ = ±1. Clearly M (M2) has two nonreal double eigenvalues on S1 and M (M2)
is not diagonable.

Type 3. M is not hyperbolic, spec(M) ⊂ R and spec(M) 6⊂ {1,−1}. Hence A has
real eigenvalues, and one eigenvalue is equal to ±1 and the other eigenvalue is different
from ±1. By considering −M instead of M if needed, we may assume that spec(A) =
{1, α}, α 6= ±1. Then A = PA1P

−1, A1 = diag(1, α), P ∈ GL(2, R). The matrix
M1 = (P ⊕ P−T )−1M(P ⊕ P−T ) is of the form (3.8) with A = A1. Let M2 be given by
(3.15). Choose Z ∈ Sym(2, R) such that the second column of C1 is equal to zero. Since
M2 ∈ Sp(2, R) it follows that C1 = diag(x, 0). If x = 0 then M is of the from (3.11). If
x 6= 0 conjugate M2 by P ⊕P−T , where P =

√
|x|I2 to obtain the form (3.10) with δ = ±1.
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Assume that M is in the form (3.11). If δ = 0 then M = ±(I2�diag(α, α−1)). If δ = ±1

then M = ±(
(

1 0
±1 1

)
� diag(α, α−1)).

Vice versa, assume that M is conjugate to X �Y where Y is hyperbolic and X is either
±I2 or parabolic. Conjugate X and Y in SL(2, R) to deduce that we may assume that X
and Y are in their canonical forms given by Proposition 3.2. Then X � Y is of the form
(3.11).

Type 4. spec(M) ⊂ {1,−1}. Then spec(A) ⊂ {1,−1}. Assume first that spec(A) =
{1,−1}. Then the above arguments show that M is conjugate to M1 of the (3.8) with
A = A1 = diag(1,−1). Let M2 be given by (3.15). Then one can choose Z ∈ Sym(2, R)
such that C1 = diag(δ1, δ2). Conjugate M2 by P ⊕ P−T where P is a diagonal matrix, to
deduce that we may assume that δ1, δ2 ∈ {0, 1,−1}. Clearly (3.12) is of the form X � Y ,
where spec(X) = {1}, spec(Y ) = {−1}, X is either I2 or in one of the canonical forms in
(3.6) and Y is either −I2 or in one of the canonical forms in (3.6).

Assume now spec(A) = {1}. (If spec(A) = {−1} consider −M .) Assume first that
A = I2. Then C in the form (3.8) is real symmetric. Conjugate by M by Q ⊕ Q, Q ∈
O(2, R) to deduce that C can be chosen a diagonal matrix C = diag(δ1, δ2). Conjugate
again by P ⊕ P−T , where P is a diagonal matrix, to deduce that we may assume that
δ1, δ2 ∈ {0, 1,−1}. Then (3.12) is of the form X � Y , where spec(X) = spec(Y ) = {1}, X
or Y is either I2 or in one of the canonical forms in (3.6).

Vice versa, assume that M is conjugate to X � Y where X and Y are parabolic or ±I2.
By conjugating X and Y to their canonical forms in SL(2, R) we deduce that X � Y is of
the form ±M , where M is given by (3.12).

Assume that A 6= I2. Then A = PA1P
−1, where A1 =

(
0 1
−1 2

)
, P ∈ GL(2, R).

Then M1 = (P ⊕ P−T )−1M(P ⊕ P−T ) is of the form (3.8) with A = A1. The arguments
in the proof of Type 2 form yield that M is conjugate to M2 of the form (3.10) with a = 1

and δ = 0,±1. Assume first that δ = 0. Let X =
(

1 0
1 1

)
. Clearly, A1 = QXQ−1 for some

Q ∈ GL(2, R). Then X ⊕X−T = (Q⊕Q−T )−1M2(Q⊕Q−T ) and

R(X ⊕X−T )R−1 = X �X−1, R =


1
2 0 0 −1
1
2 0 1 1
0 1

2 1 0
0 − 1

2 1 0

 ∈ Sp(2, R). (3.17)

Type 5. It is straightforward to show that in the case δ = ±1, a = ±1 the form (3.10)
is similar to one Jordan block of order 4.

II. M1 has a fixed point L :=
√
−1 diag(1, 0). Let Stab L ⊂ Sp(2, R) be the stabilizer of

L with respect to the action (3.4), i.e. all M of the form (3.3) such that AL+B = L(CL+D).
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A straightforward calculation shows that

M =


a1 a2 −c1 0
0 a4 0 0
c1 c2 a1 0
c3 c4 d3 d4

 . (3.18)

The condition (3.3) yields

a2
1 + c2

1 = 1, a4d4 = 1, c3 = d4(a1c2 − c1a2), d3 = −d4(c1c2 + a1a2). (3.19)

Then

R =
(

I2 0
Z I2

)
∈ Stab L ⇐⇒ Z =

(
0 x
x y

)
. (3.20)

Suppose first that c1 6= 0 in the matrix M given in (3.18). Then it is possible to choose the
entries x, y of Z in R such that M1 := R−1MR is of the form (3.18) with a2 = d3 = 0. The

equalities (3.19) yield that c2 = 0, c3 = 0. Hence M = X �Y , and X =
(

a1 −c1

c1 a1

)
, Y =(

a4 0
c4 a−1

4

)
, where X is elliptic and Y is hyperbolic, parabolic or ±I2. Use the subgroup

θ({I2}×SL(2, R)) ⊂ Sp(2, R) to conjugate Y to its normal form in SL(2, R). Then we have
the form (3.13) with δ = 0,±1. In particular δ 6= 0 if only d4 = ±1.

Assume now that c1 = 0. Then a1 = ±1 is a double eigenvalue of M . The other two
eigenvalues of M are a1, a−1

1 = d4. Observe that the set of all M of the form

Q = P ⊕ P−T , P =
(

1 z
0 1

)
(3.21)

form a subgroup in Stab L. Suppose first that a1 6= a4. Choose Q of the above form to
obtain M1 = Q−1MQ of the form (3.18) with c1 = a2 = d3 = 0. Choose R of the above
form to obtain M2 = R−1M1R of the form (3.18) with c1 = a2 = d3 = c2 = c3 = 0. Then

M2 = X � Y and X = ±I2, Y =
(

a4 0
c4 a−1

4

)
. Bring Y to its normal lower triangular form

with c4 = 0,±1 as in Proposition 3.2.
It is left to discuss the case where a1 = a4 = d4 = ±1. By considering −M we may

assume that a1 = a4 = d4 = 1. As M fixes 0 and its spectrum is {1} we deduce that M is
conjugate either to (I4) or to (I5). The cases (I4) and (I5) of Theorem 4.1 analyze the fixed
points of M of the form (I4) and (I5). (Their proof is independent of the form of M of type
(II).) It is shown that M of type (I5) has one fixed point in the Shilov boundary. Hence
our M is conjugate to one of the forms of (I4). If M is conjugate to X � Y , where either
X = Y = I2 or X(Y ) is parabolic (with eigenvalues 1) and Y (X) = I2 then M is conjugate
to the form (IIa). It is left to consider the case where M is conjugate to X � Y where X
and Y are parabolic with eigenvalues 1. Thus M is either conjugate to either X � X or
X �X−1. The case (I4) of Theorem claims that X �X has one fixed point in the Shilov
boundary, while X �X−1 has many fixed points in ∂1SH2. Hence the case (b) follows.
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III. M fixes the point
√
−1I2. This is a well known case discussed also in [3]. Then

M ∈ K2 = Sp(2, R) ∩ SO(4, R) and M has the form (3.3) with C = −B,D = A, ATB ∈
Sym(2, R) and ATA + BTB = I2. By considering the action on the Siegel disk SD2, The
action of M on SH2 corresponds to the action of M ′ = U ⊕U on SD2, where U = A+ iB is
unitary and fixing the point 0 ∈ SD2. The group that fixes 0 ∈ SD2 is Ũ2 = {T ⊕ T : T ∈
U2}. Since any unitary matrix is unitarily diagonalizable, take V ∈ U2 such that V UV ∗ =
D = diag(λ, µ), |λ| = |µ| = 1. Then V ⊕ V ∈ Ũ2 and (V ⊕ V )(U ⊕ U)(V ∗ ⊕ V T) = D ⊕D.
Hence M is conjugate to

a1 0 b1 0
0 a2 0 b2

−b1 0 a1 0
0 −b2 0 a2

 =
(

a1 b1

−b1 a1

)
�
(

a2 b2

−b2 a2

)
,

where λ = a1 +
√
−1b1, µ = a2 +

√
−1b2, |λ| = |µ| = 1. Thus every element in K2 is

conjugate to X � Y , where X, Y ∈ SL(2, R) are elliptic or ±I2. The case (III) of Theorem
4.1 imply M ∈ K2 has a fixed point on the Shilov boundary of SH2 if and only if either M
is conjugate to X �X−1 with an elliptic X, or M is conjugate to (±I2)� (±I2). 2

Corollary 3.4 An elliptic M ∈ Sp(2, R) fixes a point in SH2.

4 Fixed points: classification

In this section we present the classification of fixed points of M ∈ Sp(2, R). The proofs of
the results will be given in the last section of this paper.

Notice that in case M = X�Y , if ξ is a fixed point for X and η a fixed point for Y , then
ξ× η ∈ Cl(H×H) will be a fixed point for X � Y . If M is equal to T (X � Y )T−1 for some
T ∈ Sp(2, R) we shall refer to T (ξ × η) as an ordinary fixed point. Observe next that the
closure of SH2 is a semi algebraic set in Gr(4, 2, C) - the Grassmannian of two dimensional
subspaces in C4 [3]. M acts on Gr(4, 2, C) as a bihomolorphism. Hence the set of fixed
points of M in Gr(4, 2, C) is a projective variety. Therefore the set of the fixed points of
M in Cl(SH2) is compact semi algebraic set. We shall show that if M 6= ±I4 the set of
fixed points of M in Cl(SH2) is a a closed semi algebraic set which is a finite disjoint union
of sets of the following types: (a) a point; (b) a smooth connected closed one dimensional
manifold - S1; (c) a closed disk D; (d) two copies of D intersecting at one point lying on
the boundaries of each D; (e) D×D.

Theorem 4.1 Let M ∈ Sp(2, R). Then the set of the fixed points of M in Cl(SH2) is
of the following type according to the classification given in Theorem 3.3

• (I1a) If M has four distinct eigenvalues (M is similar to X � Y and X and Y −1 are
not conjugate) then M has four (ordinary) fixed points in the Shilov boundary of SH2.
One point is a hyperbolic attractor and one point is a hyperbolic repeller. If M has two
real double eigenvalues (M is conjugate to X �X−1) then the set of fixed points of M
of consists of one hyperbolic attracting (ordinary) fixed point, one hyperbolic repelling

11



(ordinary) fixed point and (ordinary and nonordinary) fixed set S1, all lying in the
Shilov boundary of SH2.

• (I1b) M has three fixed points in the Shilov boundary of SH2. One point is a hyperbolic
attractor and one point is a hyperbolic repeller.

• (I1c) M has two fixed points in the Shilov boundary of SH2. One point is a hyperbolic
attractor and one point is a hyperbolic repeller.

• (I2) If M is conjugate to X � X−1, where X is elliptic (δ = 0), then M has D
of (ordinary and nonordinary) fixed points. The open disk D lies in SH2 and its
boundary S1 lies in the Shilov boundary. If δ = ±1 then M has one fixed point in the
Shilov boundary.

• (I3) If M is conjugate to X � Y , where X is parabolic ( M is not diagonable), then
M has two (ordinary) fixed points in the Shilov boundary. If M is conjugate to X�Y ,
where X = ±I2, then then the set of (ordinary) fixed points consists of two disjoint
closed disks D. The intersection of each D with ∂2SH2 is S1. Other points of each
D lie in ∂1SH2.

• (I4) M is conjugate to X�Y . If X = Y = ±I2 then M fixes every point of Cl(SH2).
If X = −Y = ±I2 then M fixes exactly D × D, which is the ordinary set of fixed
points. The torus S1 × S1 lies in the Shilov boundary. The two open disjoint three
manifolds S1×D, D×S1 lie in ∂1SH2. The open four manifold D×D lies in SH2.
If X (Y ) is parabolic and Y (X) = ±I2 then D is the set of (ordinary) fixed points
of M . M has exactly S1 fixed points in the Shilov boundary and all other fixed points
are in ∂1SH2. If X and Y are parabolic and Y is not conjugate to X−1 then M has
one (ordinary) fixed point in the Shilov boundary. If Y is conjugate to X−1 then M
fixes exactly two copies of D, which intersect at one point ξ lying in the boundary of
each D. ξ is the ordinary fixed point of M lying in the Shilov boundary. Each copy of
D lies in ∂1SH2, while each S1 lies in the Shilov boundary.

• (I5) M has one fixed point in the Shilov boundary.

• (II) M is conjugate to X � Y .

• (a) X is elliptic. If Y is hyperbolic then M has two (ordinary) fixed points in ∂1SH2.
If Y is parabolic then M has one (ordinary) fixed point in ∂1SH2. If Y = ±I2 then
D is the set of (ordinary) fixed points of M . The open disk D lies in SH2 while its
boundary S1 lies in ∂1SH2. (The case where X = ±I2 is covered by the cases (I3)and
(I4).)

• (b) is covered in (I4).

• (III) If X and Y are elliptic and Y is not conjugate to X−1 then M has one fixed
point in SH2. The case where X and Y are elliptic and Y is conjugate to X−1 is
covered in (I2). The case X (Y ) is elliptic and Y (X) = ±I2 is covered in (IIa) (
X � Y is conjugate to Y �X ). The case where X, Y = ±I2 is covered in (I4).
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Corollary 4.2 Assume that M ∈ Sp(2, R) has a finite number of fixed points in Cl(SH2).
Then all of them lie either in the same stratum of the boundary or inside SH2.

Corollary 4.3 Assume that M ∈ Sp(2, R) is conjugate to X � Y . Then all the fixed
points of M are ordinary fixed points if and only if Y is not conjugate to X−1.

5 The boundary in the projective model

Recall the identification Gr(4, 2, C) with Mf (4, 2, C)/GL(2, C) discussed [3, §2]. We write
A ∈ Mf (4, 2, C) as (U

T
, V

T
)
T
, where U, V ∈ M(2, C). Then

[(UT
1 , V T

1 )T] = [(UT
2 , V T

2 )T] ⇐⇒ (UT
1 , V T

1 )T = (UT
2 , V T

2 )TP, P ∈ GL(2, C). (5.1)

Recall the projective model SPH2 of SH2 in [3, §2].

Proposition 5.1 Every point in the boundary of SPH2 is uniquely presented by one of
the following kind matrices:

(Z, I2)T, (I2,−Z)T, (I2 + Z, I2 − Z)T. (5.2)

In the first kind Z ∈ Sym(2, C) and Im Z singular positive semi definite. The set of the
first kind matrices describes the finite boundary of SH2, which is a semi algebraic set of
dimension 5. In the second kind Z ∈ Sym(2, C), det Z = 0 and Im Z singular positive semi
definite. The set of the second kind matrices is a semi algebraic set of dimension 3. In the
third kind Z ∈ Sym(2, R) with spec(Z) = {1,−1}. The set of the third kind matrices is S1

and it lies in Shilov boundary of SPH2.

Proof. In what follows we let Z = X +
√
−1Y, X, Y ∈ Sym(2, R). Then Z lying

in the finite boundary of SH2 if and only if Y ≥ 0, det Y = 0. Clearly this boundary is
5 dimensional semi algebraic set. Every point Z in this boundary is uniquely presented by
(Z, I2)

T
.

Recall next that Sp(2, R) acts on Gr(4, 2, C) by multiplication from the left. L et

M =
(

0 I
−I 0

)
. Then M(Z) = −Z−1 for any Z ∈ SH2. Recall also that M acts on each

of the boundary stratum of SH2. Assume now that Y ≥ 0 and det Z = 0. Hence det Y = 0.
Assume first that Y = diag(y, 0), y > 0. Then X = diag(x, 0). Hence all such Z are of the
form O

T
(diag(x, 0) +

√
−1 diag(y, 0))O, y ≥ 0, O ∈ SO(2, R). Thus all singular Z lying in

the finite boundary of SH2 is a semi algebraic variety of dimension 3. Hence Q = (Z, I2)T

lies on the boundary of SPH2. Then MQ = (I2,−Z)T lies in the boundary of SPH2. Use
(5.1) to see that [MQ] can not be presented by any first matrix given in (5.2).

Let Q = (UT, V T)T and assume that [Q] is lying on the boundary of SPH2. Suppose
furthermore that [Q] is not presented by either first or second kind of (5.2). Hence det U =
det V = 0. Then [MQ] is not presented by either first or second matrix of (5.2). Recall
the complex symplectic maps Φ2,Φ−1

2 connecting the models SH2 and SD2 [3, §2]. The
infinite part of the boundary Cl(SH2) is the image of {T ∈ ∂SD2 : det (T − I) = 0} by
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Φ−1
1 . It is straightforward to check that the map Z 7→ −Z−1 in SH2 is conjugate by Φ1

to the map W 7→ −W in SD2. Hence [Q] corresponds to the point in the infinite part of
the boundary Cl(SH2), which is the image of {T ∈ ∂SD2 : det (T − I) = det (T + I) = 0}
by Φ−1

2 . That is T ∈ USym(2, C), spec(T ) = {1,−1}. Consider the map W →
√
−1W

in SD2. Then Φ−1
1 (−

√
−1T ) = Y ∈ Sym(2, R), spec(Y ) = {1,−1}. It is straightforward

to show that W →
√
−1W in SD2 is conjugate by Φ−1

2 to Z → N(Z) in SH2, where

N =

( √
2I2
2

−
√

2I2
2√

2I2
2

√
2I2
2

)
. Hence [N−1(Y, I2)T] = [

√
2

2 (I + Y, I − Y )T] = [(I + Y, I − Y )T].

The set of all 2× 2 unitary symmetric matrices with the spectrum {1,−1} is S1. Hence the
third kind matrices in (5.2) with Y ∈ Sym(2, R), spec(Y ) = {1,−1} present faithfully all
boundary points in Cl(SH2) which correspond to T ∈ USym(2), spec(T ) = {1,−1}. All
these points correspond to the points in Shilov boundary of SD2. 2

Sometimes we apply the symplectic transformation M =
(

0 I2

−I2 0

)
to Cl(SPH2) to

get an equivalent presentation of SPH2 and its boundaries. Note that M fixes the boundary
points of the third kind and it maps the boundary points of the second kind to the boundary
points of the first kind (the finite boundary points of SH2) with det Z = 0.

6 Fixed points: proofs

We need the following well known facts whose proof are left to the reader.

Lemma 6.1

1. If Z ∈ Sym(n, C) and Im Z is positive definite then Z is invertible.

2. If A ∈ M(n, R) has a nonreal eigenvalue λ then any eigenvector v associated with λ
can not be real.

3. Let F = R, C. If Z ∈ M(2, F), Z 6= 0, det Z = 0 then there exist two vectors u, v ∈ F2

such that Z = uvT. u, v are uniquely defined up to scalar multiplication. Moreover,
if Z ∈ Sym(2, C) then Z = uuT where u is determined up to sign. If in addition
Im Z ≥ 0 then Z = zvvT, v is real, vTv = 1 and Im z ≥ 0.

4. If Z ∈ Sym(2, R), spec(Z) = {1,−1} then

I + Z = 2uuT, I − Z = 2vvT, u, v ∈ R2, uTu = vTv = 1, uTv = 0.

In particular any boundary point of SPH2 of the the third kind has a unique repre-
sentative of the form (uuT, vvT)T.

Proof of Theorem 4.1.
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(I1) We assume that M is of the form (3.9), where ρ(A) < 1. Then the action of M on
Sym(2, C) is given by

Z 7→ AZAT. (6.3)

As limm→∞Am = 0 it follows that Z = 0 is unique hyperbolic attracting point in Sym(2, C).
Hence [(0, I2)T] is the unique fixed point of the first kind. M acts as follows on the boundary
points of the second kind: [(I2,−Z)T] 7→ [(I2,−A−TZA−1)T]. Hence [(I2, 0)T] is the unique
hyperbolic repelling point of the second kind. See also [3]. We now consider the fixed points
of M of the third kind. According to the last part of Lemma 6.1 the third kind boundary
points are of the form [Q] where Q = (uuT, vvT)T. Then M [Q] = [Q] if and only if there
exists P ∈ GL(2, C), a, b ∈ C∗ such that

Au = au, PTu =
1
a
u, A−Tv = bv, PTv =

1
b
v. (6.4)

(a) Let A = diag(λ4(M), λ3(M)) where λ4(M), λ3(M) ∈ R and |λ4(M)| ≤ |λ3(M)| < 1.
Suppose first that λ3(M) 6= λ4(M), i.e. X is not conjugate to Y −1 (Y ). Since A ∈
Sym(2, R) it follows that u, v are two linearly independent eigenvectors of A. Clearly the
linearly independent eigenvectors of A are the standard basis vectors e1 = (1, 0)T, e2 =
(0, 1)T. Then we have the following two choices corresponding to two points of the third
kind:

u = e1, a = λ4(M), v = e2, b =
1

λ3(M)
, P = diag(

1
λ4(M)

, λ3(M)),

u = e2, a = λ3(M), v = e1, b =
1

λ4(M)
, P = diag(λ4(M),

1
λ3(M)

).

Assume now that λ3(M) = λ4(M) = α. Then A = αI2. Let u, v be an orthonormal basis
of R2. Then a = α, b = 1

α in (6.4). There exists a unique P ∈ Sym(2, R) which satisfies
the two conditions of (6.4). Hence any point of the third kind is a fixed point of M .

(b) u is an eigenvector of A hence u = e2 and a = λ4(M). v is an eigenvector of AT

hence v = e1 and b = 1
λ4

. Then P = diag(λ4(M), 1
λ4(M) ) satisfies (6.4). Thus M one fixed

point of the third kind.
(c) Since A has nonreal eigenvalues A can not have real eigenvectors. Hence the first

equality of (6.4) can not hold. Thus A does not have fixed points of the third kind.
(I2) Assume first that M is conjugate to X � X−1 where X is elliptic. That is M =

diag(A,A−T) and A =
(

0 1
−1 2a

)
, where |a| < 1. Then M acts on Sym(2, C) as in (6.3).

A straightforward calculation shows M fixes the following matrices in Sym(2, C):

Z =
(

z az
az z

)
, z ∈ C. (6.5)

Let z = x +
√
−1y, x, y ∈ R. Then Im Z =

(
y ay
ay y

)
. Hence Im Z > 0 ⇐⇒ Im z > 0,

and Im Z is in the finite boundary of SH2 if and only if y = 0 ⇐⇒ Im Z = 0. Then set
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Im z > 0 is exactly H ∼ D. The set y = 0 corresponds to R which is S1 minus a point at
infinity.

Consider now the fixed points of M of the second kind. A straightforward calculation
show that Z must be of the form (6.5). As det Z = (1− a2)z2 = 0 we obtain a unique point
Z = 0 which lie in the Shilov boundary. The arguments in (I1c) yield that M does not have
fixed points of the third kind. Thus D is the fixed point set of M .

Let A be as above and assume that M =
(

A 0
C A−T

)
, C = ±E and E =

(
0 1
0 0

)
. For

the fixed point of the first kind we have the condition

AZ(CZ + A−T)−1 = Z ⇐⇒ AZ = Z(CZ + A−T). (6.6)

Consider first the case C = E. Suppose first that Z is invertible. Then EZ +A−T is similar
to A. Note that A−T is similar to A. Hence A−T has the same trace and determinant as
A. Clearly

Z =
(

z1 z2

z2 z3

)
, CZ =

(
z2 z3

0 0

)
(6.7)

Hence the trace condition yields z2 = 0. The determinant condition yields that z3 = 0.
Hence Z is singular contrary to our assumption.

Assume now that det Z = 0, Z 6= 0 and Im Z ≥ 0. The third part of Lemma 6.1 implies
that Z = zvvT for some v ∈ R2 and z ∈ C∗. The condition (6.6) implies that Av = αv.
This is impossible as A has no real eigenvalues. Hence [(0, I2)T] is the only fixed point of
M of the first kind. Same results hold if C = −E.

Assume now that [(I2,−Z)T] is a fixed point of the second kind. Then A−TZ−ZA = C,

which is equal to (6.7), yields
(

2az1 + 2z2 z3 − z1

z3 − z1 −2z2 − 2az3

)
=
(

0 ±1
0 0

)
. This system

of equations is unsolvable as 0 = z3 − z1 = ±1.
Assume now that [(uuT, vvT)T] is a fixed point of the third kind. Then AuuT = uuTP

and CuuT+A−TvvT = vvTP , for some P ∈ GL(2, C). The first equation yields that u ∈ R2

is an eigenvector of A which is impossible.
(I3) Let M be of the form (3.8) where A = diag(1, α), C = diag(δ, 0) and α 6= ±1, δ =

0,±1. For fixed points of the first kind we obtain again the equation AZ = Z(CZ + A−T).

With the notation as in (6.7) we get
(

z1 z2

αz2 αz3

)
=
(

δz2
1 + z1 δz1z2 + z2

α
δz1z2 + z2 δz2

2 + z3
α

)
. If

z2 6= 0, we simplify the equations from entries (1,2) and (2,1), canceling z2, obtaining
1 − 1

α = δz1 = α − 1. Hence α2 − 2α + 1 = 0 ⇒ α = 1 contrary to our assumption. So
z2 = 0 and we obtain the conditions: δz2

1 = 0 and α2−1
α z3 = 0. If δ 6= 0 then M has the

unique fixed point with Z = 0. If δ = 0 then z3 = 0 and z1 is a free variable. As Im Z ≥ 0
we get that z1 ∈ H. For z1 ∈ H ∼ D we obtain that Z ∈ ∂1SH2. If z ∈ R then Z is in the
Shilov boundary. Note that H is the closed disk D minus a point.

For fixed points of the second kind we get the equation is AZ − ZA = C. In terms of
the entries of Z we get the conditions 0z1 = δ and z2 = z3 = 0. So we will only have fixed
points if δ = 0. Assume that δ = 0. Again we obtain a set of fixed points of the second
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kind in the boundary of SPH2 equal to a copy of H. Points corresponding to H ∼ D lie in
∂1SH2 while the points corresponding to R lie in the Shilov boundary.

For the fixed points of the third kind [(uuT, vvT)T] we obtain the equation

AuuT = uuTP, CuuT + A−TvvT = vvTP, P ∈ GL(2, C).

Hence either u = e1 = (1, 0)T, v = e2 = (0, 1)T or u = e2, v = e1. The second matrix
equation for the first choice is diag(δ, 1

α ) = diag(0, 1)P . It is only solvable if δ = 0. Assume
δ = 0. Then P = diag(1, 1

α ) satisfies the two matrix equation. This choice for u, v and
P gives one fixed point of the third kind, which is in the Shilov boundary. This fixed
point completes one set of fixed points of the form H to D for the case δ = 0. Assume
the second choice second choice u = e2, v = e1. Then the second matrix equation is
diag(0, 1) = diag(0, 1) P. Both matrix equations are solvable for P = diag(α, 1). Hence M
has a fixed point of the third kind in this case, which is in the Shilov boundary. If δ = 0
this fixed point completes another set H of fixed points to the set D.

(I4) Let M be of the form (3.8) where A = diag(1, α), C = diag(δ1, δ2) and α =
±1, δ1, δ2 = 0,±1. Note that A−T = A, A2 = I2. We first consider the fixed points of
the second kind [(I2,−Z)T], Im Z ≥ 0 allowing Z to be invertible. Then we consider the
fixed points of the first kind [(Z, I2)T], Im Z ≥ 0 and det Z = 0. For fixed points of the
second kind we obtain the equation (C − AZ) = −ZA. Hence δ1 = δ2 = 0. If α = 1 then
M = I4 = I2 � I2. Clearly M fixes Cl(SH2). Note that in this case the ordinary fixed
points of I2 � I2 are Cl(H) × Cl(H). If α = −1 then the fixed points of M are of the
form Z = diag(z1, z2). The condition Im Z ≥ 0 implies that this set is H × H. The set
H×H ∼ D×D lies in SH2. The sets R×H ∼ R×D, H×R ∼ D×R lie in ∂1SH2. The
set R× R lies in the Shilov boundary.

We now consider the fixed point of the first kind Z ∈ SH2, det Z = 0. Recall the
form of Z = zuuT from the the third part of Lemma 6.1. Z satisfies the matrix equation
AZ = Z(CZ +A). Clearly Z = 0 is a solution. Under our assumptions Z = 0 is an ordinary
fixed point of X � Y . We are looking for other solutions. So we assume that z 6= 0. Then
u is an eigenvector of A.

Suppose first that α = −1. Then either u = e1 or u = e2. Suppose first that u = e1.
Then eT

1 Ce1 = 0 ⇒ δ1 = 0. If δ1 = 0 then we get H as the set of fixed points of the form
Z = ze1e

T
1 , z ∈ H. Assume now that u = e2. Then eT

2 Ce2 = 0 ⇒ δ2 = 0. If δ2 = 0 then
we get H as the set of fixed points of the form Z = ze2e

T
2 , z ∈ H. If C = 0 then the set of

the fixed points are two copies of H which intersect at one boundary point z = 0. This set
should be viewed as ∞× (H\{0}) ∪ (H\{0})×∞∪∞×∞ as will be explained later. (We
view the Riemann sphere P as C ∪∞.)

Assume now that α = 1. Then A = I2 and u can be any real vector of length 1. Then
the matrix equation yields utCu = 0. If δ1δ2 = 1 then uTCu = ±1 and we do not have fixed
point for z 6= 0. If δ1δ2 = −1 we have four vectors u = ±w, u = ±Cw, where w = 1√

2
(1, 1)T,

which give rise to two distinct matrices wwT and CwwTC. Then the set of all fixed points
for the corresponding M , which is of the form X �X−1 where X is parabolic, is two copies
of H which intersect at z = 0. If δ1δ2 = 0 and δ2

1 + δ2
2 = 1 then uuT is either e1e

T
1 or e2e

T
2 .

In all these cases the set of fixed point is H. The set H ∼ D lies in ∂1SH2 while the its
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boundary R lies in the Shilov boundary. If C = 0 then all Z = zuuT are fixed.
We now consider the fixed point of the third kind [(uuT, vvT)T]. Then we have two

matrix equations AuuT = uuTP and CuuT + AvvT = vvTP , for some P ∈ GL(2, C). The
first matrix equation yields that u is an eigenvector of A. Since A ∈ Sym(2, R) and uTv = 0
it follows that v is also an eigenvector of A. Then the second matrix equation yields that
Cu = cv for some c ∈ R.

Suppose first that α = −1. Hence either u = e1, v = e2 or u = e2, v = e1. Then
Cu = cv ⇒ Cu = 0. In this case P = A will satisfy the above two matrix equations. Hence
if δ1δ2 = ±1 M will not have fixed points of the third kind. In this case M = X �Y , where
X and Y are parabolic and X is not conjugate to Y −1, M has one ordinary fixed point in
the Shilov boundary.

If δ1δ2 = 0 and δ2
1 + δ2

2 = 1 then M will have exactly one fixed point of the third kind.
In that case the fixed points of M of the first and the third kind form D, with D in ∂1SH2

and S1 in the Shilov boundary. These fixed points are ordinary fixed points of M .
If δ1 = δ2 = 0 then M has two fixed points of the third kind. In that case the set

of all fixed points of M form D × D, where D × D are in SH2, D × S1, S1 × D are in
∂1SH2 and S1 × S1 are in the Shilov boundary. Indeed the fixed set of M of the second

kind is
(

1 0 −z1 0
0 1 0 −z3

)T

, where Im z1 ≥ 0, Im z3 ≥ 0. The fixed singular matrices of

the first kind are
(
− 1

z1
0 1 0

0 − 1
z3

0 1

)T

, where z1, z3 6= 0, Im z1, Im z3 ≥ 0 and either z1

or z3 is ∞. The two fixed points of the third kind are
(

0 0 1 0
0 1 0 0

)T

,

(
1 0 0 0
0 0 0 1

)T

corresponding to the points z1 = ∞, z3 = 0, z1 = 0, z3 = ∞. All the fixed points of M are
ordinary fixed points.

Assume now that α = 1. It is enough to consider the case C 6= 0. Then u can be any
real vector of length 1. If δ1δ2 = 1 then uTCu = ±1 while vTu = 0. The second matrix
equation yields Cu = cv. Hence M does not have any fixed points of the third kind. Thus
if C = ±I2, i.e. M is conjugate to X � Y , where X and Y are parabolic and X and Y −1

are not conjugate, then M has one ordinary fixed point in the Shilov boundary.
If δ1δ2 = −1 then there are two possible solutions for u and v up to a sign: either

u = ±w, v = ±Cw or u = ±Cw, v = ±w (w = 1√
2
(1, 1)T). It is straightforward to check

that in each case there exist P ∈ GL(2, R) which satisfies both matrix equations. Hence M
has two fixed points of the third kind. Thus if δ1 = −δ2 = ±1, i.e. M = X �X−1 and X is
parabolic, then the set of fixed points of M is union of two closed disks D which intersect
at the ordinary fixed point of X � X−1 lying on the boundary of each D. Each D lies in
∂1SH2 and each S1 lies in the Shilov boundary.

If δ1δ2 = 0, δ2
1 + δ2

2 = 1 then Cu = cv ⇒ uTCu = 0 for u equal either ±e1 or ±e2

but not both. In each case Cu = 0. It easily follows that M has exactly one fixed point
of the third kind. In that case, i.e. M = X � I2 or M = I2 �X and X is parabolic with
spec(X) = {1}, the set of fixed points of M is consists of ordinary fixed points D. D lies in
∂1SH2 and S1 lies in the Shilov boundary.
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(I5) M is of the form (3.8) where A =
(

0 1
−1 ±2

)
and C =

(
0 ±1
0 0

)
. As in the proof

of (I4) we first consider all fixed point of the second kind [(I2,−Z)T], where Im Z ≥ 0. For
these points we get the matrix equation C = A−TZ − ZA−1. Note that A−TZ − ZA−1

is skew symmetric while C is not skew symmetric. Hence this matrix equation is not
solvable. We now consider the fixed point of the first kind with Z = zuuT. Then Z
satisfies the matrix equation AZ = Z(CZ + A−T). z = 0 is trivial solution. We now
look for the solutions z 6= 0, Im z ≥ 0. Then u = 1√

2
(1,±1)T is the unique eigenvector

of A corresponding to the eigenvalue λ = ±1. Observe next that uTA−T = λuT. Hence
AZ − ZA−T = 0 ⇒ ZCZ = 0. As uTCu 6= 0 we do not have any nontrivial solution
Z = zuuT. We now consider the two matrix equations for the fixed points of the third kind:
AuuT = uuTP and CuuT + A−TvvT = vvTP , for some P ∈ GL(2, C). Again u must be
the unique eigenvalue of A given above. As vTu = 0 the absolute values of each coordinate
of u and v are 1√

2
. A straightforward calculations shows that CuuT + A−TvvT has always

rank two. Hence the second matrix equation is not solvable. Thus M has one fixed point
in the Shilov boundary.

(IIa) Mbe of the form (3.3) and (3.13). As M = X�Y , where X is elliptic, then c1 6= 0.
Recall that if δ = ±1 then a4 = ±1. The matrix equation for the fixed point of the first
kind is AZ + B = Z(CZ + D):(

a1z1 − c1 a1z2

a4z2 a4z3

)
=
(

c1z
2
1 + δz2

2 + a1z1 c1z1z2 + δz2z3 + z2/a4

c1z1z2 + δz2z3 + a1z2 c1z
2
2 + δz2

3 + z3/a4

)
.

Subtract the equation coming from entry (2,1) from the one coming from entry (1,2) to
get z2(a1 − a4) = z2( 1

a4
− a1). If z2 6= 0 then 2a1 = a4 + 1/a4 ⇒ |a1| ≥ 1 contrary

to our assumption that c1 6= 0. Hence z2 = 0. The equation from entry (1,1) gives us
z1 = ±

√
−1. Since Im Z ≥ 0 we deduce that z1 =

√
−1. Equation from entry (2,2) is

z3(δz3 + a−1
4 − a4) = 0, so either z3 = 0 or δz3 = a4 − a−1

4 . Assume that z3 6= 0. If δ 6= 0
then a4 = ±1 and we obtain that z3 = 0 contrary to our assumption. If δ = 0 then z3 6= 0
is a solution if and only if a4 = ±1, i.e. M = X � (±I2). In this case z3 ∈ H. For z3 ∈ H
Z ∈ SH2 and for z ∈ R Z is in ∂1SH2. If a4 6= ±1 then M has one fixed point of the first
kind Z = diag(

√
−1, 0) ∈ ∂1SH2.

For the fixed points of the second kind of the boundary the equation is C − DZ =

−Z(A−BZ):
(

c1 − a1z1 −a1z2

−z2/a4 δ − z3/a4

)
=
(

−c1z
2
1 − a1z1 −c1z1z2 − a4z2

−c1z1z2 − a1z2 −c1z
2
2 − a4z3

)
.

The equation from the (1,1) entry implies that z1 =
√
−1. Then we can easily conclude

that z2 = 0 from equation (1,2). As the boundary point of the second kind is of the form
Z = zuuT we deduce that z =

√
−1 and u = e1. That is z3 must be equal to 0. The

equation from the (2,2) entry implies that δ = 0, i.e. either Y = ±I2 or Y is hyperbolic.
For the fixed points of the third kind the equations are

AuuT + BvvT = uuTP, CuuT + DvvT = vvTP, for some P ∈ GL(2, C). (6.8)

Hence the two matrices appearing on the left-hand side of each equation have to be rank
one matrices. As u, v is an orthonormal basis for R2 we deduce that the two vectors in each
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pair Au, Bv are linear combinations of u and the vectors Cu, Dv are linear combinations
of v. (By changing the coordinates one can assume that u = e1, v = e2. In that case this
claim is straightforward.) Recall that u = (s, t)T, v = (t,−s)T, s2 + t2 = 1. Clearly Au =
(a1s, a4t)T, Bv = (−c1t, 0)T. Hence t = 0 and we may assume that s = 1. (c1, a4 6= 0.) As
Cu = (c1, 0)T, Dv = (0,−a−1

4 ) we deduce that Cu and Dv are linearly independent. Hence
M does not have a fixed point of the third kind.

We now summarize our results for M = X � Y where X is elliptic. If Y = ±I2 then the
fixed points of M of the first and the second kind form D, where D lies in SH2 and S1 in
∂1SH2. If Y is hyperbolic then M have two fixed points of the first and the second kind in
∂1SH2. If Y is parabolic then M have one fixed point of the first kind in ∂1SH2. All fixed
points are ordinary.

(III) We assume that M is of the form (3.3) and (3.14). M = X � Y where X, Y
are elliptic and X is not conjugate to Y −1. Hence b1, b2 6= 0 and (a1, b1) 6= (a2,−b2). The
matrix equation for the fixed point of the first kind is AZ + B = Z(CZ + D):(

a1z1 + b1 a1z2

a2z2 a2z3 + b2

)
=
(

−b1z
2
1 − b2z

2
2 + a1z1 −b1z1z2 − b2z2z3 + a2z2

−b1z1z2 − b2z2z3 + a1z2 −b1z
2
2 − b2z

2
3 + a2z3

)
.

Subtract the equation coming from entry (2,1) from the one coming from entry (1,2) to get

z2(a1 − a2) = z2(a2 − a1). (6.9)

Suppose first that a1 6= a2. Then z2 = 0, i.e. Z = diag(z1, z3). The equation for entries
(1,1) and (2,2) yield that z1, z2 = ±

√
−1. As Im Z ≥ 0 we deduce that Z =

√
−1I2. Assume

now that a1 = a2. Then b1 = b2. So A = a1I2, B = b1I2, C = −b1I2, D = a1I2. The
matrix equation AZ +B = Z(CZ +D) yield that Z2 = −I2. Then Z is a diagonable matrix
with eigenvalues ±

√
−1. As Z ∈ Sym(2, C), Im Z ≥ 0 we deduce that both eigenvalues of

Z must equal to
√
−1. Hence Z =

√
−1I2.

For the fixed points of the second kind of the boundary the equation is −C + DZ =
Z(A−BZ):(

b1 + a1z1 a1z2

a2z2 b2 + a2z3

)
=
(

−b1z
2
1 − b2z

2
2 + a1z1 −b1z1z2 − b2z2z3 + a2z2

−b1z1z2 − b2z2z3 + a1z2 −b1z
2
2 − b2z

2
3 + a2z3

)
.

Subtract the equation coming from entry (2,1) from the one coming from entry (1,2) to get
(6.9). As before we conclude that the only solution Z ∈ Sym(2, C), Im Z ≥ 0 is Z =

√
−1I2.

This solution is not a boundary point of the second kind.
For the fixed points of the third kind we get the equations (6.8). Note that C = −D

are diagonal invertible while A = D are diagonal. The conditions that Au, Bv are linear
combinations of u and the vectors Cu, Dv are linear combinations of v imply the existence
of c, d ∈ R such that Au = cBv and Av = dBu. Therefore the diagonal matrix B−1A
represented in the basis u, v as a matrix with zero diagonal. Hence the trace of B−1A is
zero, i.e. a1

b1
= −a2

b2
. As (a1, b1) 6= (a2,−b2) we get that a2 = −a1 and b2 = b1. Then

the condition that Bv = b1v is collinear with u contradicts the fact that u, v are linearly
independent. Thus M does not have fixed point of the third kind. Hence M has a unique
ordinary fixed point in SH2 2
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