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Abstract

Consider the polynomial tr (A + tB)m in t for positive hermitian matrices A and
B with m ∈ N. The Bessis-Moussa-Villani conjecture (in the equivalent form of Lieb
and Seiringer) states that this polynomial has nonnegative coefficients only. We prove
that they are at least asymptotically positive, for the nontrivial case of AB 6= 0. More
precisely, we show —once complex-analytically, once combinatorially— that the k-th
coefficient is positive for all integer m ≥ m0, where m0 depends on A, B and k.
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1 Introduction

Some 30 years ago, Bessis, Moussa and Villani (BMV) conjectured [1]1 that for any hermitian
n × n matrices A and B, the function2

µ(t) := tr exp(A − tB)

with t ∈ R is the Laplace transform of a positive measure on [0,∞), provided B is positive3.
Lieb and Seiringer [12] proved that this statement is equivalent to the assertion that, for all
positive integers m and all positive hermitian A and B, the polynomial

tr (A + tB)m =
∑

k tr Sm,k(A,B) tk

has nonnegative coefficients only. Here, the Hurwitz product Sm,k(A,B) [8] equals the sum
of all words in A and B, containing m−k letters A and k letters B. Although the conjecture
is widely expected to be true, there are, by now, only partial results confirming it. Of course,
it is true in some obvious cases: first of all, for commuting A and B which comprises n = 1,
and second [9] for k ≤ 2. For n = 2, the statement follows since there is a common basis
where A and B have nonnegative entries only [12].4 Beyond that, positive results have been
obtained for lower m; at present, the conjecture is proven for m ≤ 13 [10, 8]. This relied
on two main ideas: First, generally, if the conjecture is given for some (m,k), then it holds
for any (m′, k′) with m′ ≤ m, k′ ≤ k and m′ − k′ ≤ m − k [8]. Second, more specifically,
Hägele [7] proposed to write Sm,k(A,B) —up to some cyclic permutations— as a sum of
positive terms. Although not possible for (6, 3) and several other cases [11], he was able to
find such a decomposition for (7, 3), implying the BMV conjecture for m ≤ 7. More refined
methods [10] using computer algebra established the cases (14, 4) and (14, 6), implying the
conjecture for m ≤ 13. Recently, it has been shown that the conjecture is always true for
k = 4 [3], implying it for k = 3. Other results show that one may restrict oneself to the
case of singular matrices A and B when proving the conjecture inductively [8]. Although the
BMV conjecture is still open, it is known that the untraced coefficients Sm,k(A,B) need not
be positive. The easiest example is S6,3(A,B) for appropriate A and B; here, some single
words may even have negative trace [9].

In the present paper we study a different side of the problem. Shifting the focus from
(computer) algebra back to analysis, we are going to investigate the behaviour of the terms
tr Sm,k(A,B) for large instead of small m. Our main result is5

Theorem 1.1 Let A and B be positive hermitian n × n matrices and k ∈ N.
Then there is some m0 ∈ N, such that:

AB = 0 =⇒ tr Sm,k(A,B) = 0 for any integer m 6= k 6= 0.

AB 6= 0 =⇒ tr Sm,k(A,B) > 0 for any integer m ≥ m0.

We are going to prove this theorem in two different ways — once using complex-analysis
methods, once using combinatorics. In the latter case we also give a concrete estimate for

1Originally, in [1], a stronger conjecture has been stated: For any bounded-from-below self-adjoint opera-
tors A and B and any eigenvector ϕ of B, the function 〈ϕ, e−(A+tB)ϕ〉 is the Laplace transform of a positive
measure µ whose support is contained in the convex hull of the spectrum of B. This conjecture, however,
turned out to be wrong as seen by Froissart (see the notes added in proof in [1]; alternatively, see the example
given in [4]). Then, BMV conjectured that, nevertheless, the statement remains valid for the trace.

2tr as an operation is applied before addition and subtraction, but after multiplication and exponentiation.
Therefore, e.g., tr (A + tB)m means tr [(A + tB)m] and tr (CD)3E + f means tr [(CD)3E] + f .

3Positivity of a hermitian matrix B means that 〈x, Bx〉 ≥ 0 for all x ∈ C
n. In particular, 0 is positive.

4The case n = 2 had already been proven for the original BMV conjecture in [1].
5If the dimensions of the matrices 0 and 1 should be clear from the context, we may refrain from specifying

them by writing 0n and 1n, respectively. If we would like to refer more to the linear-operator character, we
will write 1X with X being a linear subspace. So 1Cn is nothing but 1n.
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m0. Let us summarize the main ideas of the proofs. Since the case AB = 0 is trivial, we
may assume AB 6= 0. Moreover, we may assume that A has unit norm.6

For the combinatorial proof observe that, if m increases, the k letters B are getting more
and more sparsely distributed inside the words in Sm,k(A,B). Indeed, most of the terms are
of the form Ai1BAi2 · · ·BAik+1 with rather large iι. These words are approximated by the
positive hermitian matrix (PABPA)k, where PA is the hermitian projector limi→∞ Ai. The
assertion follows unless tr (PAB)k = tr (PABPA)k ≥ 0 vanishes. But, then A = 1n−l ⊕ A′

and B = 0n−l ⊕ B′ for some positive hermitian l × l matrices A′, B′ with 0 < l < n, such
that the proof follows inductively.

For the complex-analytic proof, again by induction, we also may assume tr (PAB)k > 0.
Consider the series

∞
∑

m=k

k

m
tr Sm,k(A,B) τm−k = tr

[

B(1 − τA)−1
]k

=
tr (PAB)k

(1 − τ)k
+

k−1
∑

κ=0

cκ(τ)

(1 − τ)κ
.

Here, each cκ is a rational function vanishing at infinity and having poles only outside the
closed unit disk. Now the proof follows, since the m-th Taylor coefficient of (1 − τ)−κ is a
polynomial in m of degree κ − 1 with positive leading coefficient.

Unfortunately, the dependence of m0 on A and B is crucial for our proofs of the theorem.
Therefore, the full BMV conjecture does not follow directly from the theorem above. Nev-
ertheless, some (admittedly, simple) numerical simulations indicate further structures in the
sequence of tr Sm,k(A,B) for general k. To see them, we should first factor out the trivial
dependencies. In fact, observe that otherwise this term (in general) diverges; we have, e.g.,
tr Sm,k(κ1, λ1) = nκm−kλk

(

m
k

)

. Thus, we will study the normalized quotient

qm,k(A,B) :=
tr Sm,k(A,B)

tr Sm,k(‖A‖1n, ‖B‖1n)
,

as the BMV conjecture is now equivalent to qm,k(A,B) ≥ 0 for all positive hermitian matrices
A and B having norm 1. Since the theorem above tells us that qm,k(A,B) > 0 for sufficiently
large m, the BMV conjecture would now follow if one could establish

Conjecture 1.2 Let A and B be positive hermitian n × n matrices with AB 6= 0.
Then, for any fixed k ∈ N, the sequence

(

qm+k,k(A,B)
)

m∈N

is decreasing.

Despite to the mentioned numerical hints, we have not been able to prove this conjecture
analytically. Nevertheless, we have been able to deduce further properties of qm,k(A,B) for
large m and general k:

Theorem 1.3 Let ε > 0, let A and B be nonzero positive hermitian matrices, and let d be
the dimension of the intersection of the eigenspaces of A and B w.r.t. their
highest eigenvalues. Then there are m0, k0 > 0, such that

qm,k(A,B) >
d

n
− ε for m ≥ m0 and k,m − k ≥ 0

and

qm,k(A,B) <
d

n
+ ε for m ≥ m0 and k,m − k ≥ k0.

6In the main text, we always consider the operator norm. Other norms will be discussed in the context of
Euler-Lagrange equations in the appendix.
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In particular, tr Sm,k(A,B) is strictly positive for all k, provided m is sufficiently large and
the matrices A and B share a common eigenvector w.r.t. the respective maximal nonzero
eigenvalue.

Let us now sketch the idea of the proof for normalized A and B. If d > 0, we may
decompose A and B into A′ ⊕ 1d and B′ ⊕ 1d, respectively, where A′ and B′ are positive
hermitian with ‖A′B′‖ < 1. Since

tr Sm,k(A,B) = tr Sm,k(A
′, B′) + tr Sm,k(1d,1d)

= tr Sm,k(A
′, B′) + d

n
tr Sm,k(1n,1n),

we may assume d = 0, i.e., ‖AB‖ < 1. Moreover, by Theorem 1.1, we may assume that k
and m−k are not too small. Now, the typical element among the Sm,k(A,B) terms contains
a higher and higher number of subwords AB. The norm estimate ‖AB‖ < 1 implies that
qm,k(A,B), hence, the average contribution of a word to Sm,k(A,B) is getting arbitrarily
small.

Our paper is organized as follows: First, for completeness, we collect some simple properties
of normalized positive hermitian matrices. Next, we study properties of certain power series
whose coefficients are Hurwitz products or their traces. Then we use combinatorial methods
to calculate the number of words in A and B containing the subword AB a certain number of
times, and derive estimates for these figures. In Section 5, we prove the theorems announced
above. Finally, in Appendix A, we derive the Euler-Lagrange equations in a slightly more
abstract way than in [8] and extend these results to several norms.

As there will be two ways to prove Theorem 1.1, the reader might want to opt for just
following one of them. For guidance we display the dependencies in the following diagram:

complex analysis combinatorics

Section 2

Section 3 Section 4

Subsection 5.1

Proof of Theorem 1.1: Subsection 5.2 Subsection 5.3

Proof of Theorem 1.3: Subsections 5.4, 5.5

The statements of Section 2 are included mainly for book-keeping and self-containment,
so any reader familiar with matrix analysis might start with the definitions of Section 2 and
then proceed right away with Section 3 or 4.

2 Some Algebra

In this section we review the asymptotic behaviour of powers of positive hermitian matrices
as well as of their products. Most importantly, we will recall that Ai for positive unit-norm
matrices A always tends to the projector7 onto the highest eigenspace (i.e., for the eigen-
value 1); powers of matrix products converge to projectors to common highest eigenspaces.
Moreover, we derive some norm and trace estimates as well as some criteria for the product
of two matrices to vanish.

7Throughout the whole paper, any projector is assumed to be a hermitian projector.
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2.1 Power Limits

Definition 2.1 For any n × n matrix A, define PA := limi→∞ Ai, if the limit exists.

Obviously, we have P1 = 1 and P0 = 0.

Lemma 2.1 Let A be any n × n matrix, such that PA exists. Then we have:
• PA is idempotent;
• APA = PA = PAA;
• PAx = x ⇐⇒ Ax = x, where x ∈ C

n;
• PU−1AU exists for any invertible n × n matrix U , and it equals U−1PAU .

The final statement implies that we often may restrict ourselves to the case of diagonal A,
as long as we investigate PA for hermitian A.

Proof We have

PAPA =
(

limi→∞ Ai
)(

limj→∞ Aj
)

= limi→∞

(

Ai
(

limj→∞ Aj
))

= limi→∞

(

limj→∞ Ai+j
)

= limi→∞ PA = PA

and, similarly, APA = PA = PAA. Now, x = PAx implies

Ax = A(PAx) = (APA)x = PAx = x.

The remaining assertions are obvious. qed

Definition 2.2 Let A be any n × n matrix.
Then I1(A) denotes its eigenspace in C

n for the eigenvalue 1.

Lemma 2.2 If A is hermitian with ‖A‖ ≤ 1 and if −1 is not in the spectrum of A, then
PA exists and is a projector. Moreover, im PA = I1(A).

Proof Consider A in diagonal form and use Lemma 2.1. qed

Lemma 2.3 Let A1 be an n1 ×n1 matrix and A2 be an n2 ×n2 matrix, such that PA1 and
PA2 exist. Then PA1⊕A2 exists and equals PA1 ⊕ PA2 .

Proof Use that (A1 ⊕ A2)
i = Ai

1 ⊕ Ai
2. qed

2.2 Phone Matrices

Definition 2.3 A matrix A is called n-phone iff A is a positive, hermitian n × n matrix
whose largest eigenvalue is 1.

Recall that the norm of a positive hermitian matrix coincides with its largest eigenvalue.

Remark The notion “n-phone” matrix is just an acronym for a “n×n Positive Hermitian
with maximal eigenvalue ONE” matrix.

Lemma 2.4 Any nonzero projector is an n-phone matrix.

Lemma 2.5 For any k ∈ N+ and any n-phone matrix A, we have

(A − PA)k = Ak − PA and ‖A − PA‖k = ‖Ak − PA‖

Proof This follows inductively, using

(A − PA)k+1 = (A − PA)k(A − PA) = (Ak − PA)(A − PA)

= Ak+1 − PAA − AkPA + PAPA = Ak+1 − PA

by Lemma 2.1. The norm equality now follows from ‖Mk‖ = ‖M‖k for any hermitian
matrix M . qed
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2.2.1 Shared Eigenspaces

Lemma 2.6 Let A1, . . . , AN be n-phone matrices and let x ∈ C
n. Then

‖AN · · ·A1x‖ = ‖x‖ ⇐⇒ Aix = x for all i = 1, . . . ,N .

Proof We may assume that x 6= 0. Moreover, the ⇐= direction is trivial. We now prove
the =⇒ statement by induction. Let N = 1 and denote shortly A := A1. Then
there is a unitary U , such that D := UAU∗ is diagonal. Setting y := Ux, we have

‖Dy‖ ≡ ‖UAU∗Ux‖ = ‖Ax‖ = ‖x‖ = ‖Ux‖ ≡ ‖y‖.
Writing D =: diag (d1, . . . , dn) with 0 ≤ dj ≤ 1 and y =: (y1, . . . , yn)T , we find that
Dy = (d1y1, . . . , dnyn)T , whence

∑n
j=1(1 − d2

j )|yj |2 =
∑n

j=1 |yj|2 −
∑n

j=1 d2
j |yj|2 = ‖y‖2 − ‖Dy‖2 = 0.

Since 0 ≤ dj ≤ 1, we have (1 − d2
j)|yj |2 = 0 for all j. Consequently,

(dj = 1 or yj = 0) for all j =⇒ (dj − 1)yj = 0 for all j
=⇒ djyj = yj for all j
=⇒ Dy = y.

Now, Ax = U∗DUU∗y = U∗Dy = U∗y = x.
Next, let N > 1 and assume the assertion to be proven for N − 1. We now have

‖x‖ = ‖ANAN−1 · · ·A1x‖ ≤ ‖AN‖‖AN−1 · · ·A1x‖
= ‖AN−1 · · ·A1x‖ ≤ ‖AN−1‖ · · · ‖A1‖‖x‖ = ‖x‖,

whence ‖AN−1 · · ·A1x‖ = ‖x‖. By induction, Aix = x for all i < N . On the
other hand, this implies ‖ANx‖ = ‖ANAN−1 · · ·A1x‖ = ‖x‖. From the induction
beginning, we get ANx = x as well. qed

Corollary 2.7 For any n-phone matrices A1, . . . , AN we have

I1(A1 · · ·AN ) = I1(A1) ∩ . . . ∩ I1(AN )

and

‖A1 · · ·AN‖ < 1 ⇐⇒ I1(A1 · · ·AN ) = 0
⇐⇒ PA1···AN

exists and equals 0.

Occasionally, we will decompose matrices into direct sums of matrices. When we simply state
that some matrix B equals B1⊕B2, then we tacitly assume that there is some decomposition
of C

n into X1 ⊕ X2
∼= C

dimX1 ⊕ C
dimX2 , such that B|Xi

= Bi : Xi −→ Xi. Furthermore,
note that whenever we decompose several matrices into direct sums, we will always assume
that all these matrices are decomposed w.r.t. one and the same decomposition of C

n.

Lemma 2.8 For any n-phone matrices A1, . . . , AN we have:
1. There are n′ × n′ matrices A′

1, . . . , A
′
N , such that for i = 1, . . . ,N

• Ai = A′
i ⊕ 1d,

• each A′
i is positive hermitian;

• ‖A′
1 · · ·A′

N‖ < 1.
Here, d := dim I1(A1 · · ·AN ) and n′ := n − d.

2. PA1···AN
exists and is the projector to I1(A1 · · ·AN ).

Proof Denote I1(A1 · · ·AN ) ⊆ C
n shortly by X. By Corollary 2.7, each Ai is the identity

when restricted to X. Since each Ai is hermitian, X⊥ is preserved by each Ai.
8

8Let x⊥ ∈ X⊥ and x ∈ X. Then 〈x, Aix
⊥〉 = 〈A∗

i x, x⊥〉 = 〈Aix, x⊥〉 = 〈x, x⊥〉 = 0, hence Aix
⊥ ∈ X⊥.
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Hence, we may decompose each Ai into 1X ⊕A′
i according to C

n = X ⊕X⊥. Here,
A′

i is a positive, hermitian operator on X⊥. (W.l.o.g., we may assume that A′
i is an

n′ × n′ matrix with n′ := n − dim X.) If ‖A′
1 · · ·A′

N‖ was 1, then

1 = ‖A′
1 · · ·A′

N‖ ≤ ‖A′
1‖ · · · ‖A′

N‖ ≤ 1,

and each A′
i would be n-phone. By construction, however, we would then have

I1(A
′
1 · · ·A′

N ) = 0,

whence PA′

1···A
′

N
= 0 and ‖A′

1 · · ·A′
N‖ 6= 1 using Corollary 2.7. Obviously, we have

P1X
= 1X , such that, by Lemma 2.3,

PA1···AN
= P(1X⊕A′

1)···(1X⊕A′

N
) = P1X⊕(A′

1···A
′

N
)

exists and equals P1X
⊕ PA′

1···A
′

N
= 1X ⊕ 0X⊥ . It is, of course, hermitian. qed

Corollary 2.9 I1(A1 · · ·AN ) = I1(PA1···AN
) for any n-phone matrices A1 · · ·AN .

2.2.2 Norms and Traces

Lemma 2.10 Let A,B be n-phone matrices. Then ‖ABiA‖ ≤ ‖ABjA‖ for all i ≥ j.

Proof Let D be the n-phone matrix with B = D2. Then

‖ABiA‖ = ‖(DiA)∗(DiA)‖ = ‖DiA‖2 ≤ ‖Di−j‖2‖DjA‖2 = ‖ABjA‖.
qed

Corollary 2.11 Let A,B be n-phone matrices.
Then ABA = 0 implies ABiA = 0 for any i ∈ N+.

Lemma 2.12 For any n-phone matrices A and B, we have

‖BAB‖k+1 ≤ ‖(AB2)k‖ ≤ ‖BAB‖k−1.

If B is even a projector P , then

‖PAP‖k ≤ ‖(AP )k‖ ≤ ‖PAP‖k−1.

Proof Since BAB = B∗AB is hermitian and positive, we have ‖(BAB)k‖ = ‖BAB‖k for
any k ∈ N. Now observe that

‖BAB‖k+1 = ‖(BAB)k+1‖ = ‖B(AB2)kAB‖
≤ ‖(AB2)k‖ = ‖AB(BAB)k−1B‖
≤ ‖(BAB)k−1‖ = ‖BAB‖k−1,

since ‖A‖ = 1 = ‖B‖ and, similarly,

‖PAP‖k = ‖(PAP )k‖ = ‖P (AP )k‖ ≤ ‖(AP )k‖ = ‖AP (AP )k−1‖
≤ ‖P (AP )k−1‖ = ‖(PAP )k−1‖ = ‖PAP‖k−1,

since P 2 = P and ‖P‖ = 1. qed

Proposition 2.13 Let A and B be n-phone matrices, and let k ∈ N+. Then

AB = 0 ⇐⇒ tr (AB)k = 0 ⇐⇒ ABA = 0.

Proof Let C be an n-phone matrix with A = C2.
• First of all, let tr (AB)k = 0 for some k ∈ N+. Since

tr (AB)k = tr C(CBC)k−1CB = tr (CBC)k
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and since CBC is positive hermitian, we have9 CBC = 0 and ABA = 0.
• Next, ABA = 0 implies (BA)∗BA ≡ AB2A = 0 by Corollary 2.11, whence

‖BA‖2 = ‖(BA)∗BA‖ = 0, implying BA = 0 and AB = 0.
• Finally, of course, AB = 0 implies tr (AB)k = 0. qed

2.2.3 Splitting

Lemma 2.14 Let A and B be n-phone matrices. Then AB = 0 iff there is some 0 < l < n,
some (n − l)-phone matrix A′ and some l-phone matrix B′, such that

A = A′ ⊕ 0l and B = 0n−l ⊕ B′.

Note again, the splitting above means that there is a basis of C
n, such that A and B can be

simultaneously splitted in the way given above.

Proof If A and B can be split in the given way, then AB obviously vanishes. The other
way round, AB = 0 implies BA = 0, hence AB = BA, whence A and B can be
diagonalized simultaneously. Now, the statement is trivial; just note that, e.g., l = 0
is excluded as then B would equal 0n and not being n-phone. qed

Lemma 2.15 Let A be an n-phone matrix and let PA = 1n−l ⊕ 0l for some 0 < l < n.
Then there is some 0 ≤ α < 1 and some l-phone matrix A′, such that A
equals 1n−l ⊕ αA′.

Note that l = 0 is trivial and l = n cannot appear:
• If l = 0, we have PA = 1n, i.e., I1(A) = I1(PA) = C

n and, therefore, A = 1n.
• If l = n, then PA = 0n, whence I1(A) = 0 by Lemma 2.2, i.e., ‖A‖ < 1.

Proof Since 0 < l < n, we have PA =
(

1 0

0 0

)

. Let A =
(

F G∗

G H

)

with positive hermitian
matrices F (of size n − l) and H (of size l). From PAA = PA, we derive F = 1 and
G = 0, whence A = 1n−l ⊕ H. By

1n−l ⊕ 0l = PA = P1n−l⊕H = P1n−l
⊕ PH = 1n−l ⊕ PH ,

we have PH = 0l, whence ‖H‖ < 1, again by Lemma 2.2. Now, define α := ‖H‖
and A′ := α−1H (or A′ = 1l if H = 0l). qed

Corollary 2.16 For any n-phone matrix A, we have ‖A − PA‖ < 1.

Lemma 2.17 Let k ∈ N+, and let A and B be n-phone matrices.
Then we have tr (PAB)k = 0 iff there are 0 ≤ α < 1, 0 < l < n and l-phone
matrices A′ and B′ with

A = 1n−l ⊕ αA′ and B = 0n−l ⊕ B′.

Proof By Proposition 2.13, tr (PAB)k = 0 is equivalent to PAB = 0. Analogously to the
proof of Lemma 2.14, we see that, for PAB = 0, there is a decomposition

PA = 1n−l ⊕ 0l and B = 0n−l ⊕ B′

for some l-phone matrix B′ with 0 < l < n. Now the implication follows from
Lemma 2.15. The other direction is trivial. qed

9tr Dk = 0 implies D = 0 for positive hermitian matrices D.
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2.3 Hurwitz Products

In this subsection, for completeness, we list several properties of Hurwitz products and their
traces. The proofs are simple and therefore omitted. They may also be found in [8].

Definition 2.4 Let m and k be integers, and let A and B be n × n matrices.
Then the Hurwitz product Sm,k(A,B) is the sum of all matrix products
containing exactly m − k factors A and k factors B.

For definiteness, we assume the Hurwitz product to be zero if m, k, or m − k is negative.

Lemma 2.18 The Hurwitz product of any two hermitian n × n matrices is hermitian.
Consequently, its trace is always real.

Lemma 2.19 For any m,k ∈ N and any hermitian n × n matrices A and B, we have

Sm,k(A,B) = ASm−1,k(A,B) + BSm−1,k−1(A,B),
Sm,k(A,B) = Sm−1,k(A,B)A + Sm−1,k−1(A,B)B.

Lemma 2.20 For any m,k ∈ N and any hermitian n × n matrices A and B, we have

(m − k) tr Sm,k(A,B) = m tr ASm−1,k(A,B),
k tr Sm,k(A,B) = m tr BSm−1,k−1(A,B).

Lemma 2.21 Let Ai and Bi be hermitian ni × ni matrices with ni ∈ N for i = 1, 2. Then

Sm,k(A1 ⊕ αA2, B1 ⊕ βB2) = Sm,k(A1, B1) + αm−kβk Sm,k(A2, B2)

for all m,k ∈ N+ with m > k and α, β ∈ C.

3 Some Complex Analysis

To prove Theorem 1.1 using complex-analytic methods we will need to study the behaviour
of

tr
[

B(1− τA)−1
]k

for n-phone matrices A and B. In this section, we provide the necessary statements.

Lemma 3.1 Let A and B be n-phone matrices and let k ∈ N. Then we have

(1 − τA)−1
[

B(1− τA)−1
]k

=
∞
∑

m=0

τm Sm+k,k(A,B)

for all τ ∈ C with |τ | < 1.

Proof Since ‖A‖ = 1 and |τ | < 1,

(1 − τA)−1 =

∞
∑

m=0

τmAm ≡
∞

∑

m=0

τm Sm+0,0(A,B)

converges absolutely and gives the assertion for k = 0. Inductively, we have
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(1 − τA)−1
[

B(1− τA)−1
]k+1

=
∞

∑

m=0

τm Sm+k,k(A,B) B
∞
∑

m′=0

τm′

Am′

=

∞
∑

m,m′=0

τm+m′ (

Sm+k+1,k+1(A,B) − Sm+k,k+1(A,B)A
)

Am′

=

∞
∑

m,m′=0

τm+m′

Sm+k+1,k+1(A,B)Am′ −
∞
∑

m=0, m′=1

τm+m′

Sm+k+1,k+1(A,B)Am′

=
∞
∑

m=0

τmSm+k+1,k+1(A,B),

where we used

Sm+1,k+1(A,B) = Sm,k+1(A,B)A + Sm,k(A,B)B

from Lemma 2.19 in the second step and Sk,k+1(A,B) = 0 in the third one. qed

Corollary 3.2 Let A and B be n-phone matrices and let k ∈ N+. Then we have

tr
[

B(1− τA)−1
]k

=
∞
∑

m=0

τm k

m + k
tr Sm+k,k(A,B)

for all τ ∈ C with |τ | < 1.

Proof Use the relation k tr Sm,k(A,B) = m tr BSm−1,k−1(A,B) in Lemma 2.20 to derive

tr
[

B(1− τA)−1
]k

= tr B (1 − τA)−1
[

B(1− τA)−1
]k−1

=

∞
∑

m=0

τm tr BSm+k−1,k−1(A,B) =

∞
∑

m=0

τm k

m + k
tr Sm+k,k(A,B).

qed

Lemma 3.3 Let k be a positive integer, and let cκ be rational holomorphic functions for
κ = 0, . . . , k − 1. Assume that there is a real r > 1, such that none of the cκ

has a pole for |τ | ≤ r. Finally, let Tk ∈ C have positive real part and define
the analytic function f and its expansion coefficients fm by

f(τ) ≡
∞
∑

m=0

fmτm :=
Tk

(1 − τ)k
+

k−1
∑

κ=0

cκ(τ)

(1 − τ)κ

Then there is an m0 ∈ N, such that Re fm > 0 for all m ≥ m0.

Proof Write f as a Laurent series

f(τ) =
Tk

(1 − τ)k
+

k−1
∑

κ=0

Tκ

(1 − τ)κ
+ F (τ)

around 1 for appropriate Tκ ∈ C and holomorphic F . Then F is again rational and
has no pole for |τ | ≤ r. Consequently, the norm of the m-th Taylor coefficient of
F (τ) can be estimated by C

rm for some constant C ≥ 0. As, by Lemma C.2, the
m-th Taylor coefficient of

1

(1 − τ)κ
=

∞
∑

m=0

(

m + κ − 1

m

)

τm

is a polynomial in m of degree κ − 1 with leading coefficient 1
(κ−1)! , the assertion is

obvious since Re Tk > 0. qed
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4 Some Combinatorics

The ultimate goal of this article is to derive asymptotic properties of tr Sm,k(A,B). Recall
that Sm,k(A,B) equals the sum of all products of matrices where m− k factors equal A and
k factors equal B. The trace of such a single product significantly depends on its “factor
pattern”. For instance, if the substring AB appears l times in the matrix product, then the
trace of the full product cannot exceed n‖AB‖l. To finally estimate the sum of all these
product traces, we need estimates how frequently this pattern appears. This now is a purely
combinatorial problem for words in two letters. To avoid confusion we will denote the letters
by a and b, and return to A and B only later. Let, moreover, 0 ≤ k ≤ m be integers and
denote the set of all words containing exactly m − k letters a and k letters b by Wm,k.

4.1 Counting

Proposition 4.1 Denote by Cm,k,s ⊆ Wm,k the set of words containing exactly s times the
subword ab. Then we have

|Cm,k,s| =

(

m − k

s

)(

k

s

)

and

|Wm,k| =
∑

s

|Cm,k,s| =

(

m

k

)

.

Here, we used the convention that
(

i
j

)

= 0 if j > i.

Proof Let w ∈ Cm,k,s be a word with exactly s subwords ab. Then

w = bj0ai1bj1 · · · aisbjsais+1

for appropriate iι, jι ≥ 1, ι = 1, . . . , s, and j0, is+1 ≥ 0 with i1 + . . . + is+1 = m − k
and j0 + . . . + js = k. Obviously, it is sufficient to prove that there are exactly

(

k
s

)

ways to write k as a sum j0 + j1 + . . . + js of s + 1 integers with j0 ≥ 0 and jι ≥ 1.
In fact, there are

(

k
s

)

possibilities to choose s elements J1 < . . . < Js out of the
k numbers 1, . . . , k. Letting j0 := J1 − 1 and jι := Jι+1 − Jι for 0 < ι < s and
js := k + 1 − Js gives such a decomposition j0 + j1 + . . . + js of k. Since, the other
way round, each such decomposition can be obtained by such Jι, we get the proof.
The second assertion is clear. qed

Lemma 4.2 1. No word in Cm,k,k contains the subword bb, i.e., any word in Cm,k,k can be
written as ai1bai2 · · · aikbaik+1 with iι > 0 and ik+1 ≥ 0.

2. Denote by Dm,k,L ⊆ Cm,k,k the set of those words ai1bai2 · · · aikbaik+1 as
above with iι > L and ik+1 ≥ L for some integer L ≥ 0. Then

|Dm,k,L| = |Cm−(k+1)L,k,k|.

Proof 1. This follows directly from the proof of Proposition 4.1. In fact, let

w = bj0ai1bj1 · · · aikbjkaik+1 ∈ Cm,k,k.

Since j0 + . . . + jk = k and j1, . . . , jk > 0, we have j0 = 0 and j1 = . . . = jk = 1.
2. One easily checks that

ξ : Cm−(k+1)L,k,k −→ Dm,k,L ⊆ Cm,k,k.

ai1bai2 · · · aikbaik+1 7−→ ai1+Lbai2+L · · · aik+Lbaik+1+L

is a bijection. qed
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4.2 Estimates

We will need estimates on how the number of words changes in the event of having a fixed
amount of letters less and how often there are subwords ab. In the first simple lemma, we
will see that the (relative) decrease of the word number while dropping a finite number of
letters a is arbitrarily small provided we had started with a occurring sufficiently often. In
the second lemma, we show that —again for a occurring sufficiently often, i.e., for large m—
the (relative) number of words containing less than k subwords ab can be made arbitrarily
small. Or, in other words, if one of the k letters b appears then it appears “lonely”, i.e., b2

or higher powers typically do not appear.

Lemma 4.3 For 0 < ε < 1, positive integers L and m with m ≥ L(1 + k
ε
), we have

(

m − L

k

)

≥ (1 − ε)

(

m

k

)

.

Proof Use
(

m − L

k

)

=

(

m

k

) L−1
∏

j=0

(

1 − k

m − j

)

≥
(

m

k

) L−1
∏

j=0

(

1 − ε

L

)

≥
(

m

k

)

(1 − ε).

qed

Lemma 4.4 Let 0 < ε < 1 ≤ S and

m >
S3

ε
+ 2S − 1 and k,m − k ≥ S.

Then
S−1
∑

s=0

(

m − k

s

)(

k

s

)

< ε

(

m − k

S

)(

k

S

)

.

Proof Observe that for 0 ≤ s ≤ S ≤ k,m − k and for m as in the lemma

s2

ε
≤ S3

ε
≤ S3

ε
+ 2S − 1 − (2s − 1) < m − 2s + 1

≤ ((m − k) − s)(k − s) + m − 2s + 1 = ((m − k) − s + 1)(k − s + 1).

Using the abbreviation ds :=
(

m−k
s

)(

k
s

)

for all s ∈ N, one immediately checks that

ds−1 =
s2

(m − k − s + 1)(k − s + 1)
ds.

As just seen above, the prefactor is always smaller than ε < 1, whence we get

S−1
∑

s=0

ds ≤
S−1
∑

s=0

dS−1 = SdS−1 =
S3

(m − k − S + 1)(k − S + 1)
dS < ε dS .

qed

5 Proofs of the Main Theorems

5.1 Reduction of Theorem 1.1 to the Case PAB 6= 0

Proposition 5.1 If the assertions of Theorem 1.1 hold for m > k > 0 and for any n-phone
matrices A and B with PAB 6= 0, then Theorem 1.1 is valid in toto.
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Proof For the proof of Theorem 1.1, we may, of course, assume that A and B are n-phone
matrices. Moreover, we may assume that m > k > 0, that n > 1 and that AB 6= 0,
as the other cases are trivial.
Assume now that PAB = 0. Then, by Lemma 2.17, we find some 0 ≤ α < 1 and
some l-phone matrices A′ and B′ with 0 < l < n, such that

A = 1n−l ⊕ αA′ and B = 0n−l ⊕ B′.

Since 0 6= AB = 0n−l ⊕ αA′B′, we have α 6= 0 and A′B′ 6= 0l. Together with

Sm,k(A,B) = Sm,k(1n−l,0n−l) + αm−k Sm,k(A
′, B′) = αm−k Sm,k(A

′, B′)

by Lemma 2.21 and m > k > 0, this implies the assertion by induction. qed

5.2 Complex-Analytic Proof of Theorem 1.1

First we prove our Main Theorem by means of complex analysis without focussing on concrete
estimates.

Proof Theorem 1.1

Let A and B be n-phone matrices. Using Lemmata 2.1 and 2.5, we have

PA(1 − τA)−1 =

∞
∑

m=0

PA τmAm =

∞
∑

m=0

τm PA =
1

1 − τ
PA

and

(1− PA)(1 − τA)−1 =
∞
∑

m=0

(1 − PA) τmAm

=

∞
∑

m=0

τm (Am − PA) =

∞
∑

m=0

τm (A − PA)m.

Observe that (1−PA)(1− τA)−1 is rational and (up to the removable discontinuity
at 1) analytic for |τ | < ‖A − PA‖−1, whereas ‖A − PA‖−1 is strictly larger than 1.
From

B(1 − τA)−1 = B
(

PA + (1 − PA)
)

(1 − τA)−1

=
1

1 − τ
BPA + B(1− PA)(1 − τA)−1,

we derive

tr
[

B(1− τA)−1
]k

=
tr (PAB)k

(1 − τ)k
+

k−1
∑

κ=0

cκ(τ)

(1 − τ)κ
,

whereas each cκ is a rational function vanishing at infinity and having poles only for

|τ | ≥ 1

‖A − PA‖
> 1.

Note that the convergence radius neither decreases if a series is multiplied by a
constant matrix nor is does if the trace is taken on the coefficients. The latter one
is a consequence of |tr C| ≤ n‖C‖ for any n × n matrix C.
Now the assertion follows from Lemma 3.3 together with Corollary 3.2: In fact, we
may assume PAB 6= 0, hence tr PAB > 0, as well as k > 0 by Proposition 5.1, and
we know that any Hurwitz product trace is real by Lemma 2.18. qed
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5.3 Combinatorial Proof of Theorem 1.1

There are two main steps in the study of the asymptotics of tr Sm,k(A,B) for growing m
while k is fixed: First, we estimate how fast the products Al1B · · ·AlkB do approach (PAB)k

depending on a lower bound L to all li. Second, the longer the words are (i.e., for growing
m), all other words (i.e., those with li < L or having substrings b2) get less frequent for fixed
L. This allows us to estimate how fast tr Sm,k(A,B)/tr Sm,k(1,1) approaches tr (PAB)k/n
and, finally, to prove Theorem 1.1.

Lemma 5.2 For any n-phone matrices A and B and for any integers l1, . . . , lk ≥ L > 0,
we have

∣

∣

∣

∣

∣

∣

k
∏

i=1

AliB −
k

∏

i=1

PAB
∣

∣

∣

∣

∣

∣
≤ k ‖A − PA‖L ‖ALB‖k−1.

Proof Observe that for any n × n matrices X1, . . . ,Xk and X, we have (see Lemma C.1)

X1 · · ·Xk = Xk +

k
∑

i=1

Xi−1 (Xi − X) Xi+1 · · ·Xk.

Now, Lemma 2.5 together with Corollary 2.16 implies

∣

∣

∣

∣

∣

∣

k
∏

i=1

AliB −
k

∏

i=1

PAB
∣

∣

∣

∣

∣

∣
≤

k
∑

i=1

‖(PAB)i−1‖ ‖(Ali − PA)B‖ ‖Ali+1B‖ · · · ‖AlkB‖

≤
k

∑

i=1

‖PAB‖i−1 ‖A − PA‖li ‖Ali+1B‖ · · · ‖AlkB‖

≤ ‖A − PA‖L
k

∑

i=1

‖ALB‖i−1 ‖ALB‖k−i

= k ‖A − PA‖L ‖ALB‖k−1

using ‖AlB‖ ≡ ‖Al−LALB‖ ≤ ‖A‖l−L‖ALB‖ = ‖ALB‖ for l ≥ L. qed

In Section 4, we studied words in the two letters a and b. We now define W to be the
homomorphism from Wm,k to the n × n matrices, whereas W (a) := A and W (b) := B. It is
now clear that, e.g., Sm,k(A,B) =

∑

w∈Wm,k
W (w).

Proposition 5.3 Let A and B be n-phone matrices, and let k ∈ N and ε ∈ (0, 1) be fixed.
Choose now some L ∈ N+, such that

k ‖A − PA‖L ‖ALB‖k−1 ≤ ε.

Then, for any m ∈ N with

m ≥
(

1 +
k

ε

)

(

k + kL + L
)

,

we have
∣

∣

∣

tr Sm,k(A,B)

tr Sm,k(1,1)
− tr (PAB)k

n

∣

∣

∣
≤

( tr (PAB)k

n
+ 2

)

ε.

Observe that tr (PAB)k is always nonnegative.

Proof First observe, that ‖A− PA‖ < 1 by Corollary 2.16, whence there exists such an L.
Next, observe that
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|Wm,k \ Dm,k,L| = |Wm,k| − |Dm,k,L|

= |Wm,k| − |Cm−(k+1)L,k,k| (by Lemma 4.2)

=

(

m

k

)

−
(

m − (k + 1)L − k

k

)(

k

k

)

(by Proposition 4.1)

≤
(

m

k

)

− (1 − ε)

(

m

k

)

(by Lemma 4.3)

= ε|Wm,k|.
since m ≥

(

(k+1)L+k
)(

1+ k
ε

)

by assumption. Third, observe that for w ∈ Dm,k,L,
we have

|tr W (w) − tr (PAB)k| ≤ nk ‖A − PA‖L ‖ALB‖k−1 ≤ nε

by Lemma 5.2 and |tr C| ≤ n‖C‖ for any matrix C, whence

∣

∣

∣

∑

w∈Wm,k
tr W (w)

tr Sm,k(1,1)
− tr (PAB)k

n

∣

∣

∣

=
∣

∣

∣

∑

w∈Wm,k

tr W (w) − tr (PAB)k

tr Sm,k(1,1)

∣

∣

∣

≤
∣

∣

∣

∑

w∈Dm,k,L

tr W (w) − tr (PAB)k

tr Sm,k(1,1)

∣

∣

∣
+

∑

w∈Wm,k\Dm,k,L

∣

∣

∣

tr W (w) − tr (PAB)k

tr Sm,k(1,1)

∣

∣

∣

≤ |Dm,k,L|
n|Wm,k|

nε +
|Wm,k| − |Dm,k,L|

n|Wm,k|
(

n + |tr (PAB)k|
)

≤
(

2 +
tr (PAB)k

n

)

ε

using

|Wm,k| =

(

m

k

)

=
∑

w∈Wm,k

1 =
1

n
tr Sm,k(1,1).

qed

Theorem 1.1 is now a corollary:

Proof Theorem 1.1

By Proposition 5.1, we may assume that k > 0 and that A and B are n-phone
matrices with PAB 6= 0 or, equivalently, with tr (PAB)k 6= 0 by Proposition 2.13.
Then there are L > 0 and ε ∈ (0, 1) with

k ‖A − PA‖L ‖ALB‖k−1 ≤ ε <
tr (PAB)k

3n
.

Now, since 0 < tr (PAB)k ≤ n, we have

tr Sm,k(A,B)

tr Sm,k(1,1)
≥ tr (PAB)k

n
−

(tr (PAB)k

n
+ 2

)

ε

>
tr (PAB)k

n
−

(tr (PAB)k

n
+ 2

) tr (PAB)k

3n

=
1

3

tr (PAB)k

n

(

1 − tr (PAB)k

n

)

≥ 0,

provided

m ≥ m0 :=
(

1 +
k

ε

)

(

k + kL + L
)

.
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qed

Remark The proof of Theorem 1.1 above provides us with an explicit estimate for the
value of m0. If A is not a projector and PAB 6= 0, we have tr Sm,k(A,B) > 0 for
all m ≥ m0 with

m0 := (1 + k)
(

1 +
3kn

tr (PAB)k

) (

2 +
ln tr (PAB)k − ln 3kn

ln ‖A − PA‖
)

.

If A is a projector and AB 6= 0, then tr Sm,k(A,B) > 0 for all m ≥ m0 with

m0 := (1 + 2k)
(

1 +
3kn

tr (AB)k

)

.

For PAB = 0, use the decompositions of A and B as in the proof of Proposition
5.1 and then use the expressions above with A and B replaced by A′ and B′,
respectively. (If again PA′B′ = 0, proceed iteratively.) Of course, the estimates
above need not be optimal; if the BMV conjecture was true, m0 would probably
be k unless AB = 0.

5.4 Growing m and Not-too-small k

If ab appears S times in a word in Wm,k, then the corresponding matrix product has at
most norm ‖AB‖S . For growing m, the typical number of alternations between a and b in
a word indeed increases; in particular, it passes the threshold S sooner or later. Therefore,
the normalized trace of Sm,k(A,B) can be estimated by ‖AB‖S up to some ε.

Proposition 5.4 Let 0 < ε < 1 ≤ S for some S ∈ N and

m >
S3

ε
+ 2S − 1 and k,m − k ≥ S.

Then
∣

∣

∣

tr Sm,k(A,B)

tr Sm,k(1,1)

∣

∣

∣
< ε + ‖AB‖S .

Proof First observe that |tr W (w)| ≤ n‖W (w)‖ ≤ n‖AB‖S for any w ∈ Dm,k,s with s ≥ S.
Now, we simply decompose all elements of Wm,k into two sets: one consisting of
all elements containing less then S subwords ab and the other one consisting of all
elements with at least S subwords ab. We get

|tr Sm,k(A,B)| ≤
∑

s<S

∑

w∈Cm,k,s

|tr W (w)| +
∑

s≥S

∑

w∈Cm,k,s

|tr W (w)|

≤
∑

s<S

|Cm,k,s| n +
∑

s≥S

∑

w∈Cm,k,s

n ‖AB‖S

< ε |Cm,k,S | n + |Wm,k| n ‖AB‖S (by Lemma 4.4)

≤ n |Wm,k|(ε + ‖AB‖S)

≤ tr Sm,k(1,1) (ε + ‖AB‖S).

qed

5.5 Asymptotics for Growing m and General k

Since I1(A) ∩ I1(B) = I1(AB) and since Sm,k is homogeneous, Theorem 1.3 follows immedi-
ately from
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Theorem 5.5 For any n-phone matrices A and B, and for any 0 < ε < 1, there are some
m0 ∈ N and some k0 ∈ N, such that for all m ≥ m0

tr Sm,k(A,B)

tr Sm,k(1,1)
>

dim I1(AB)

dim I1(1 · 1)
− ε for all 0 ≤ k ≤ m

and

tr Sm,k(A,B)

tr Sm,k(1,1)
<

dim I1(AB)

dim I1(1 · 1)
+ ε for all k0 ≤ k ≤ m − k0 .

Proof Let us begin with the case ‖AB‖ < 1, i.e., I1(AB) = 0 by Corollary 2.7.
• Choose some positive integer k0, such that

‖AB‖k0 <
ε

2
,

and some m′
0 ∈ N, such that

m′
0 >

2k0
3

ε
+ 2k0 − 1.

Now, Proposition 5.4 implies that
∣

∣

∣

tr Sm,k(A,B)

tr Sm,k(1,1)

∣

∣

∣
< ε

for all m ≥ m′
0 and all k0 ≤ k ≤ m − k0.

• In order to prove the second assertion, invoke Theorem 1.1 to find for each k ∈ N

some integer m′
0(k), such that

tr Sm,k(A,B) ≥ 0 and tr Sm,m−k(A,B) ≡ tr Sm,k(B,A) ≥ 0

for all m ≥ m′
0(k). Defining

m0 := max
k≤k0

{

m′
0(k),m′

0

}

,

we have

tr Sm,k(A,B)

tr Sm,k(1,1)
≥ 0

for all m ≥ m0 and for k ≤ k0 or k ≥ m − k0.
Assume now ‖AB‖ = 1.
• According to Lemma 2.8, we may decompose A and B into A = A′ ⊕ 1d and

B = B′⊕1d with ‖A′B′‖ < 1 for d := dim I1(AB). Using Lemma 2.21, we have

tr Sm,k(A,B) = tr Sm,k(A
′, B′) + tr Sm,k(1d,1d),

and, therefore, as n = dim I1(1 · 1)

tr Sm,k(A,B)

tr Sm,k(1n,1n)
− d

n
=

d

n

tr Sm,k(A
′, B′)

tr Sm,k(1d,1d)
.

− If ‖A′‖‖B′‖ = 1, then A′ and B′ are d-phone matrices with ‖A′B′‖ < 1, such
that we have reduced the first estimate for A and B to the corresponding
estimate for A′ and B′ which has already been established above.

− If ‖A′‖‖B′‖ < 1, then choose k0 ∈ N, such that (‖A′‖‖B′‖)k0 < ε. Then, by
Lemma 2.21, we have

∣

∣

∣

tr Sm,k(A,B)

tr Sm,k(1n,1n)
− d

n

∣

∣

∣
≤ d

n
‖A′‖m−k‖B′‖k < ε

for any m,k ∈ N with m − k ≥ k0 and k ≥ k0.
• Finally, we have to prove
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tr Sm,k(A,B)

tr Sm,k(1,1)
− d

n
=

d

n
‖A′‖m−k‖B′‖k

tr Sm,k

(

A′

‖A′‖ ,
B′

‖B′‖

)

tr Sm,k(1d,1d)
≥ 0

for all m ≥ m0 with an appropriate m0 and k ≤ k0 or k ≥ m − k0. (W.l.o.g.,
we assumed ‖A′‖, ‖B′‖ 6= 0.) This, however, follows from Theorem 1.1 as in the
corresponding case above for ‖AB‖ < 1. qed
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Appendix

A Euler-Lagrange Equations

In the main body of the article, we have always used the operator norm for matrices and
reduced our investigations typically to normalized matrices. In fact, this has been justified
by the homogeneity of Sm,k(·, ·). Nevertheless, there is a full range of other possible norms
that can be taken to normalize the matrices. In [8], e.g., the Frobenius norm has been used
to derive the Euler-Lagrange equations of the BMV conjecture. They yielded, among others,
relations between A2 and ASm−1,k(A,B) in any point where trSm,k is minimal or maximal.
In this appendix we are going to rederive these relations in a slightly more abstract way and
extend them to other norms.

For that purpose, we choose the following Schatten p-norms11

‖A‖p :=
p
√

tr Ap and ‖A‖∞ := ‖A‖
for p ≥ 1 and for positive hermitian A. One immediately sees that ‖A‖∞ = limp→∞ ‖A‖p.
Let us now fix some p ∈ [1,∞]. Moreover, to avoid cumbersome notation, we let n-phone
matrices be positive hermitian matrices having p-norm 1 (instead of to be of operator norm
1 as in the main text). Next, observe that for any matrix-valued functions f and g on R, we
have

d

dx
tr (f + tg)m = m tr

(d(f + tg)

dx
(f + tg)m−1

)

and, by comparison of coefficients,

tr S′
m,k(f, g) = m tr

(

f ′ Sm−1,k(f, g) + g′ Sm−1,k−1(f, g)
)

.

10The present article merges the two original articles [5] (arxiv:0804.3665) by Christian Fleischhack and
[6] (arxiv:0804.3948) by Shmuel Friedland.

11Note, that the Schatten p-norm is actually defined [2] by

h

n
X

i=1

sj(A)p
i 1

p

,

where sj(A), j = 1, . . . , n, are the singular values of A. For positive hermitian matrices, however, our notion
coincides with that definition. As we are interested in the case of positivity only, we may sloppily re-use the
notion p-“norm” for our case. In fact, our definition does not give a norm on the linear space of all n × n

matrices.
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Here, we abbreviate f ′ := df
dx

, etc. We now use two different types of functions for f and g:
on the one hand, we keep the eigenvalues by conjugation with unitary matrices, on the other
hand, we modify them by multiplication with appropriate commuting matrices. Namely, let
first

f(x) := e−xCAexC for C ∈ su(n),

i.e., C∗ = −C and tr C = 0. Then f(0) = A and f ′(0) = [A,C]. Moreover, f(x) is n-phone
for any x and any n-phone A. If now (A,B) is an extremal point for tr Sm,k among the
positive matrices with unit p-norm, then we have for all C ∈ su(n)

0 = tr S′
m,k(f,B)|x=0 = m tr

(

[A,C] Sm−1,k(A,B)
)

.

Since A and Sm−1,k(A,B) are hermitian [8], we get [Sm−1,k(A,B), A] = 0 from Lemma B.1.
Now, secondly, we consider

f(x) :=
AexC

‖AexC‖p
for C ∈ gl(n).

Note that f may fail to be differentiable at x = 0 for p = ∞. In fact, let Eij be the matrix
having entry 1 at position (i, j) and zeros elsewhere. Consider A := E11 +E22 and C := E11.
Then ‖AexC‖ equals ex for x ≥ 0 and 1 for x ≤ 0, which is obviously not differentiable.
In general, the problem arises if the maximal eigenvalue of A is of multiplicity 2 or higher.
Therefore, for the moment, we assume p to be finite. One easily12 checks that

f ′(0) =
1

‖A‖p+1
p

(

AC tr Ap − A tr ApC
)

.

Of course, a priori, it is not clear that f(x) is positive and hermitian, even for small x. But,
if U is some unitary matrix, such that U∗AU (and U∗Sm−1,k(A,B)U) is diagonal, then f
is positive and hermitian for any C = UDU∗ with D being diagonal and real. In fact, the
product of diagonal positive and hermitian matrices has these properties again. If now A
and B are nonzero and again extremal for tr Sm,k among n-phone matrices, then

0 =
‖A‖p+1

p

m
tr S′

m,k(f,B)|x=0

= tr
(

(AC tr Ap − A tr [ApC])Sm−1,k(A,B)
)

= tr
(

Sm−1,k(A,B)A tr [Ap] − Ap tr [Sm−1,k(A,B)A]
)

C .

Since Sm−1,k(A,B) and A commute as seen above and are hermitian, we get

Sm−1,k(A,B)A tr Ap = Ap tr Sm−1,k(A,B)A

from Lemma B.2. Similarly, we can derive

Sm−1,k−1(A,B)B tr Bp = Bp tr Sm−1,k−1(A,B)B.

Altogether we have

Proposition A.1 If 0 < k < m and if tr Sm,k is extremal at (A,B) for the positive hermi-
tian matrices having unit p-norm with 1 ≤ p < ∞, then

Sm−1,k(A,B)A = Ap tr Sm−1,k(A,B)A
Sm−1,k−1(A,B)B = Bp tr Sm−1,k−1(A,B)B .

12Observe that

‖AexC‖′p(0) =
1

p
‖A‖1−p

p

`

‖AexC‖p
p

´

′
(0) =

1

p
‖A‖1−p

p

`

tr (AexC)p
´

′
(0) = ‖A‖1−p

p trA
p
C

and, therefore,

f
′(0) =

1

‖A‖2
p

`

AC‖A‖p − A‖A‖1−p
p trA

p
C

´

=
1

‖A‖p+1
p

`

AC‖A‖p
p − A tr A

p
C

´

.
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The case p = 2 has already been derived by Hillar in [8]. There, the norm equals the Fro-
benius norm. The case p = ∞, i.e., the supnorm case, can be dealt with as for p < ∞ as
far as we derive that A and Sm−1,k(A,B) commute. Assuming now, for simplicity, that A
and Sm−1,k(A,B) are diagonal and ‖A‖ = 1, we see that f(x) := AexC is (at least for small
|x|) n-phone — provided C is diagonal with Cii = 0 for Aii = 1. Then f ′(0) = AC implying
tr ACSm−1,k(A,B) = 0, whence the (i, i) components of Sm−1,k(A,B)A vanish if Aii 6= 1. If
PA has a single nonzero entry, we immediately get Sm−1,k(A,B)A = PA tr Sm−1,k(A,B)A. In
the other case, however, we run into the non-differentiability problem as above. At present,
we are not able to solve this problem.

Nevertheless, we have

Corollary A.2 If 0 < k < m and if tr Sm,k is extremal at (A,B) for the positive hermitian
matrices having unit p-norm with 1 ≤ p < ∞, then

Sm,k(A,B) =
(m − k)Ap + kBp

m
tr Sm,k(A,B) .

The same is true for p = ∞, provided PA and PB have rank 1.

Proof Use the properties of Hurwitz products listed in Subsection 2.3. qed

B Lie Algebra Relations

Lemma B.1 If A and S are hermitian matrices, fulfilling tr [A,C]S = 0 for all C ∈ su(n),
then A and S commute.

Proof Since A and S are hermitian, we have [A,S]∗ = −[A,S] and, anyway, tr [A,S] = 0.
Therefore, [A,S] ∈ su(n). Moreover, tr [S,A]C = tr [A,C]S vanishes by assumption
for any C ∈ su(n). Since su(n) is semisimple, the Killing form (X,Y ) := 1

n
tr (XY )

on su(n) is non-degenerate, giving [S,A] = 0. qed

Lemma B.2 If A and S are hermitian matrices that are diagonal after conjugation with
U and fulfill tr

(

(SA tr AL − AL tr SA)UDU∗
)

= 0 for all diagonal matrices
D, then SA tr AL = AL tr SA.

Proof If A and S are already diagonal, then the assertion is trivial. In fact, letting D be
the matrix having just a single nonzero entry at position (i, i), the trace equation
above means that the (i, i) component of (SA tr AL −AL tr SA) vanishes. Since the
off-diagonal elements are zero anyway, we get the assertion.
In the general case observe that

tr
(

U∗SU U∗AU tr (U∗AU)L − (U∗AU)L tr U∗SU U∗AU
)

D

= tr
(

SA tr AL − AL tr SA
)

UDU∗

reduces this case to the first one. qed

C Simple, But Useful Identities

Lemma C.1 For any n × n matrices Xi and X, we have

X1 · · ·Xk = Xk +

k
∑

i=1

Xi−1 (Xi − X) Xi+1 · · ·Xk.
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Lemma C.2 For any natural number k and for all |τ | < 1, we have

1

(1 − τ)k+1
=

∞
∑

m=0

(

k + m

m

)

τm .
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