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Abstract

Let GL(n, C) ⊃ Un be the group of n× n complex valued invertible matrices and
the subgroup of unitary matrices respectively. In this paper we study Finsler p-metrics
on the homogeneous space Xn = GL(n, C)/Un for p ∈ [1,∞], which are induced by
Schatten p-norms on the tangent bundle of Xn and are invariant under the action of
GL(n, C). We show that for p ∈ (1,∞) the Busemann p-compactification is the visual
compactification. For p = 1,∞ the Busemann p-compactification is not the visual
compactification. We give a complete description of Busemann 1-compactification. 1

1 Introduction

Let GL(n, C) be the group of n × n invertible complex valued matrices. Let M(n, C) be
its Lie algebra of n × n complex valued matrices. For A ∈ M(n, C) denote by σ1(A) ≥
... ≥ σn(A) ≥ 0 the singular values of A. Recall that the Schatten p-norm on M(n, C) is
given by ||A||p = (

∑n
i=1 σi(A)p)

1
p . Denote by Hn ⊃ H+

n , Un ⊂ GL(n, C) be the space
of n × n hermitian matrices, the closed cone of nonnnegative definite hermitian matrices
and the subgroup of unitary matrices respectively. Consider the homogeneous space Xn =
GL(n, C)/Un. Recall that Xn can be identified with H+

n ∩ GL(n, C), which is equal to
eHn := {eA : A ∈ Hn}. Then there exists a unique Finsler p-metric on the tangent bundle
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of Xn, invariant under the action of GL(n, C), which is given by the Schatten p-norm on
TIXn = Hn. We show that the Finsler p-metric on the tangent bundle of Xn induces the
following metric on Xn:

dp(A,B) :=

(
n∑

i=1

| log σi(A−1B)|p
) 1

p

, A, B ∈ Xn, p ∈ [1,∞]. (1.1)

d2 is the classical Riemannian metric on the homogeneous space Xn. All p-metrics are
uniformly Lipschitz equivalent for a fixed value of n. GL(n, C) acts (from the left) as a
subgroup of isometries for each p ∈ [1,∞].

The main object of this paper to consider the Busemann functions and the Buse-
mann compactifications for dp, p ∈ [1,∞] as in [Bal]. One can view the Busemann p-
compactification as a geometric way to add the p-boundary ∂pXn to Xn using the metric
dp, such that the space Xn ∪ ∂pXn is compact with respect to a suitable topology. For
p ∈ (1,∞) the Busemann p-compactification is equivalent to the visual compactification,
i.e. ∂pXn can be identified as the ends of geodesic rays from a fixed point o ∈ Xn. For
p = 1,∞ the Busemann p-compactification is different from the visual compactification. We
give the complete description of ∂1Xn:

View Cn := {x := (x1, ..., xn)T : xi ∈ C, i = 1, ..., n} as inner product space with
standard inner product < x,y >= y∗x. Let Cn = U+⊕U0⊕U− be a nontrivial orthonormal
decomposition of Cn, i.e. dim U0 < n. Note that each decomposition of Cn corresponds to
the flag Cn = U+ ⊕ U0 ⊕ U− ⊃ U0 ⊕ U− ⊃ U−. Let H(U0) be the real space of self-adjoint
operators T : U0 → U0. If dim U0 = 0 then H(U0) has only one element: the complex
number 0. Let (U+,H(U0), U−) := {(U+, T, U−) : T ∈ H(U0)}. If dim U0 = 0 we identify
(U+,H(U0), U−) with (U+, U−). For A ∈ Hn and a set S ⊂ R let PS(A) be the orthogonal
projection on the invariant subspace of A spanned by the eigenvectors of A corresponding
to the eigenvalues in S. If S does not contain an eigenvalue of A then PS(A) = 0. Note
that if A ∈ H+

n then the eigenvalues of A coincide with the singular eigenvalues of A.
We show that a sequence {eAm}∞m=1 ⊂ eHn converges to a point in ∂1Xn if and only if

there exist three nonnegative integers k0 < n, k+, k−, k+ + k− + k0 = n with the following
properties.

lim
m→∞

σi(eAm) = ∞, i = 1, ..., k+,

lim
m→∞

P[σk+ (eAm ),σ1(eAm )](e
Am)Cn = U+,

lim
m→∞

σi(eAm) = 0, i = n− k− + 1, ..., n,

lim
m→∞

P[σn(eAm ),σn−k−+1(eAm )](e
Am)Cn = U−, (1.2)

lim
m→∞

σi(eAm) = σi ∈ (0,∞), i = k+ + 1, ..., k+ + k0,

lim
m→∞

P[σk++k0 (eAm ),σk++1(eAm )](e
Am)Cn = U0,

lim
m→∞

eAm |P[σk++k0 (eAm ),σk++1(eAm )](e
Am)Cn = eT for some T ∈ H(U0).
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Then ∂1Xn is a union of (U+,H(U0), U−) for all possible nontrivial decompositions of Cn.
Let Gr(n, k, C) be the Grassmannian manifold of all k-dimensional subspaces of Cn. Then
compact part of ∂1Xn is ∪n

k=0Gr(n, k, C), which corresponds to all the orthonormal decom-
position Cn = U+ ⊕ U− and dim U+ = k, for k = 0, 1, ..., n.

In [FF1] the authors show that the Busemann 1-compactification of the Siegel upper
half plane given as Sp(n, R)/Kn ⊂ X2n, where Sp(n, R) is the symplectic subgroup of
GL(2n, R) and Kn = Sp(n, R) ∩ U2n, is the classical Satake compactification [Sat] as a
bounded domain [Hel]. It is of interest to extend these results a larger class of symmetric
spaces.

We now survey briefly the contents of this paper. In §2 we discuss briefly the general
setting of the Busemann compactification. As an example we consider the Busemann com-
pactification of Rn with respect to Hölder p-metric. In §3 we show that dp(A,B) defined in
(1.1) is a metric on Xn. In §4 we give describe the Busemann functions corresponding to
the boundary points in ∂pXn which are induced by geodesic rays from I. In §5 we show that
∂pXn is the visual boundary of Xn. In §6 we describe the Busemann 1-compactification of
Xn.

2 Busemann functions and compactifications

A Finsler manifold is a smooth manifold X equipped with a continuous function which
assigns to each point x ∈ X a norm on the tangent space TxX. The integral of the norm
of the tangent vector to a smooth curve γ in X is called the length of γ. The distance
d(x, y) between two points x, y ∈ X is the infimum of the lengths of the curves connecting
x and y. A geodesic is a curve γ which minimizes the distance between any two sufficiently
near points on the curve. A complete geodesic space is a Finsler manifold such that it is a
complete metric space with respect to d and any two points can be connected by a geodesic.
A complete geodesic space is called a Hadamard manifold if any two points are connected
by a unique geodesic.

Let X be a complete geodesic space and locally compact with respect to the metric d.
Then X admits a Busemann compactification defined as ClY in C(X) of the set of functions
Y := {by(x) : y ∈ X} where

by : X → R, by(x) = d(y, x)− d(y, o). (2.1)

Here o is a base point in X (the compactification is independent of the choice of o) and
the topology on C(X) is given by uniform convergence on compact subsets of X. The map
y 7→ by is a homeomorphism of X and Y. Then ∂ ClY := ClY\Y is identified with the
Busemann boundary ∂X [Bal, §II.1]. An unbounded sequence yk, k = 1, . . . is said to
converge to ξ ∈ ∂X if the sequence of functions byk

converges to a function bξ ∈ C(X)
(uniformly on bounded subsets of X).

As an example we consider the Busemann compactification of X = Rn. Fix p ∈ [0,∞]
and assume that the norm on TxRn is given by ||(z1, ..., zn)T||p := (

∑n
i=1 |zi|p)

1
p . Denote by

Rn
p the corresponding Finsler manifold. Then the distance between x,y ∈ Rn

p is given the
Hölder metric δp(x,y) = ||x−y||p. Rn

p is a complete geodesic space which is Hadamard if and
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only if p ∈ (1,∞). Let ∂Rn
p be the Busemann boundary. For y ∈ Rn

p , ξ ∈ ∂Rn
p let by,p, bξ,p

be the corresponding Busemann functions for the distance δp with o = o = (o1, ..., on)T. Set

Sn−1
p := {x ∈ Rn : ||ξ||p = 1}.

Assume first that p ∈ (1,∞). Then

lim
k→∞

yk → ξ ⇐⇒ lim
k→∞

||yk||p = ∞ and lim
k→∞

yk

||yk||p
= ξ.

Let

Qp(ξ,x) := −
n∑

i=1

ξi|ξi|p−2xi, x = (x1, ..., xn)T ∈ Rn, ξ = (ξ1, ..., ξn)T ∈ Rn\{0}. (2.2)

Then
bξ,p(x) = Qp(ξ,x)−Qp(ξ,o), ξ ∈ Sn−1

p , x ∈ Rn, . (2.3)

Hence ∂Rn
p can be identified with Sn−1

p , which is diffeomorphic to the Euclidian sphere
Sn−1

2 .
Let p = 1 and < n >:= {1, 2, . . . , n}. Denote by 2<n> all nonempty subsets of < n >.

Fix α ∈ 2<n>. Then {1,−1}α denotes the set of all possible maps of α to {1,−1}. This set
has cardinality 2|α|, where |α| is the cardinality of the set α. Thus an element ε ∈ {1,−1}α

is a set {εj}j∈α where εj = ±1, j ∈ α. Let R0 be a set consisting of one element and |∅| = 0.

Lemma 2.1 The Busemann boundary Rn with respect to δ1 has the stratification

∂Rn
1 = ∪α∈2<n>{1,−1}α × R|<n>\α| (2.4)

That is, a sequence yk = (y1,k, ..., yn,k)T , k = 1, . . . converges to ξ = {εj}j∈α × (u1, ..., um)T

if the following conditions hold:

α = {α1, ..., αl}, 1 ≤ α1 < . . . < αl ≤ n,

< n > \α = {β1, . . . , βm}, 1 ≤ β1 < β2 < . . . < βm ≤ n, m = n− l,

lim
k→∞

εαiyαi,k = +∞, i = 1, ..., l,

lim
k→∞

yβj ,k = uj , j = 1, ...,m.

(2.5)

For x = (x1, ..., xn)T ∈ Rn and ξ as above let

Q1(ξ,x) := −
l∑

i=1

xαi
εαi

+
m∑

j=1

|uj − xβj
|. (2.6)

Then (2.3) holds for p = 1.
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The proof of the lemma is straightforward. Note that (2.5) implies that the component
{ρj}j∈γ × R|<n>\γ| of the strata {1,−1}γ × R|<n>\γ| is a boundary of {εj}j∈α × R|<n>\α|

if and only if α is a strict subset of γ and εi = ρi for i ∈ α.
The stratification of ∂Rn

∞ is similar to the stratification of ∂Rn
1 . One can also define

the function Q∞(ξ,x) on each strata of ∂Rn
∞ so that (2.3) holds for p = ∞. Note that for

p = 1,∞ ∂Rn
p does not correspond to the visual compactification Sn−1

p .

3 p-metrics on Xn

Let M(m,n, F) be the vector space of m×n matrices over the field F, M(n, F) := M(n, n, F)
be the algebra of n× n matrices and GL(n, F) be the group of invertible matrices. In this
paper F = R, C is either the field of real or complex numbers. Denote by Un, SUn, On and
SOn the groups of n×n unitary, special unitary, real orthogonal and special real orthogonal
matrices respectively. Let A = (apq)n

1 ∈ M(n, C). Then A = (apq)n
1 , AT is transpose of A

and A∗ = A
T
. By the spectrum of A we mean the eigenvalues λ1(A), . . . , λn(A) counted with

their multiplicities and arranged in the following order: Re λ1(A) ≥ · · · ≥ Re λn(A). The
singular values of A are the eigenvalues of (AA∗)

1
2 ∈ H+

n . Set σ(A) := (σ1(A), ..., σn(A))T.
For x = (x1, ..., xn)T ∈ Fn let D(x) = diag(x1, ..., xn) be the diagonal matrix with the
diagonal entries x1, ..., xn. Denote by D(n, F) ⊂ M(n, F) the space of all diagonal matrices
and let D+(n, R) := D(n, R) ∩H+(n, C). Then

A = UΣ(A)V, U, V ∈ Un, Σ(A) = D(σ(A)) (3.1)

is called the singular value decomposition (SVD). (It is also called the Cartan decomposi-
tion.) If A ∈ M(n, R) then the unitary matrices U, V in can be chosen to be orthogonal ma-
trices. Note that ||A||2 = σ1(A) is the l2 norm of A viewed as a linear operator A : Cn → Cn.
Furthermore (AA∗)

1
2 is the unique representative of the coset AUn. Use the singular value

decomposition of A ∈ GL(n, C) to deduce σn−i+1(A−1) = σi(A)−1, i = 1, . . . , n. Observe
next that σi(A) = 1, i = 1, . . . , n ⇐⇒ A is a unitary matrix.

For A ∈ M(m,n, F) and 1 ≤ k ≤ min(m,n) denote by ∧kA the k − th compound
matrix. Note that ∧kA ∈ M(

(
m
k

)
,
(
n
k

)
, F) and the entries of A are all the k × k minors

of A. (∧kA is the representation matrix of the linear transformation from the k exterior
product ∧kFn to ∧kFm induced by A : Fn → Fm.) The map ∧k : GL(n, F) → GL(

(
n
k

)
, F)

is a homomorphism which commutes with the ∗ involution. If A ∈ M(n, C) has complex
eigenvalues λ1(A), . . . , λn(A) then ∧kA has the following eigenvalues and singular values,
and ∧keA has the following eigenvalues respectively:

λi1(A)λi2(A) · · ·λik
(A), σi1(A)σi2(A) · · ·σik

(A), eλi1 (A)+λi2 (A)+···+λik
(A),

1 ≤ i1 < · · · < ik ≤ n. (3.2)

If A ∈ Hn (H+
n ) then ∧kA ∈ H(n

k) (H+

(n
k)

). See for example [HJ].

The following lemma follows straightforward from SVD.
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Lemma 3.1 Let (A,B), (C,D) ∈ Xn ×Xn. Then there exists T ∈ GL(n, C) such that

T (A,B) := (TA, TB) = (C,D) (3.3)

if and only if
Σ(A−1B) = Σ(C−1D). (3.4)

Theorem 3.2 Let p ∈ [1,∞] and assume that A,B ∈ GL(n, C). Let dp(A,B) =
|| log σ(A−1B)||p. Then dp is a metric on the homogeneous space Xn. Xn is a complete, lo-
cally compact, geodesic space with respect to dp. For p ∈ (1,∞) Xn is Hadamard. Moreover,
GL(n, C) acts (from the left) on Xn as a subgroup of isometries for dp.

Proof. Let P ∈ M(n, C). As σi(P ) = σi(PU) = σi(UP ) for any U ∈ Un we deduce
that dp(·, ·) is a nonnegative continuous function defined on Xn ×Xn. It is straightforward
to see that A,B belong to the same left coset of Un if and only if dp(A,B) = 0. It is easy
to check that dp(A,B) = dp(B,A), since σj(A−1B) = σn−j+1(B−1A)−1. We now prove
the triangle inequality. As σ1(P ) = ||P ||2 it follows that σ1(PQ) ≤ σ1(P )σ1(Q) for any
Q ∈ M(n, C). Apply the norm inequality to the k-th compound matrix ∧k(PQ) to deduce

k∏
i=1

σi(PQ) ≤
k∏

i=1

σi(P )
k∏

i=1

σi(Q), k = 1, . . . , n− 1,

n∏
i=1

σi(PQ) =
n∏

i=1

σi(P )
k∏

i=1

σi(Q). (3.5)

The last equality follows from |det P| =
∏n

i=1 σi(P). As A−1C = (A−1B)(B−1C) from the
above inequalities we obtain

k∑
i=1

log σi(A−1C) ≤
k∑

i=1

(
log σi(A−1B) + log σi(B−1C)

)
, k = 1, . . . , n− 1,

n∑
i=1

log σi(A−1C) =
n∑

i=1

(
log σi(A−1B) + log σi(B−1C)

)
. (3.6)

Thus log σ(A−1C) is majorized by log σ(A−1B) + log σ(B−1C). As f(t) = |t|p is a convex
function on R for p ∈ [1,∞), the majorization principle [HLP] yields that

|| log σ(A−1C)||pp ≤ || log σ(A−1B) + log σ(B−1C)||pp, p ∈ [1,∞). (3.7)

Hence

dp(A,C) ≤ || log σ(A−1B) + log σ(B−1C)||p ≤ (3.8)
|| log σ(A−1B)||p + || log σ(B−1C)||p = dp(A,B) + dp(B,C), p ∈ [1,∞).

Use the continuity of p at ∞ to obtain the triangle inequality for p ∈ [1,∞]. It is straight-
forward to show that Xn is complete and locally compact for each dp, 1 ≤ p ≤ ∞. Clearly,
(CA)−1(CB) = A−1B. Hence GL(n, C) acts as a subgroup of isometries on Xn.
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Let C ∈ Hn and consider the one parameter group etC . Then for t1 ≤ t2 dp(et1C , et2C) =
(t2 − t1)||σ(C)||p. Hence this one parameter group describes a geodesic with respect to the
metric dp. Since Xn can be identified with eHn it follows that there exists a geodesic
between I and any B ∈ eHn . As GL(n, C) acts as a subgroup of isometries on Xn it follows
that there is a geodesic between any A,B ∈ Xn. Clearly limt↘0

dp(I,etC)
t = ||σ(C)||p. Since

TIXn = Hn it follows that dp is induced by the unique Finsler p-norm on the tangent bundle
of Xn, which is invariant under the action of GL(n, C) and is given by the Schatten p-norm
on TIXn = Hn. Hence Xn is a complete, locally compact, geodesic space with respect to
dp.

Observe next that dp(eD(x), eD(y)) = ||x − y||p for any x,y ∈ Rn. Hence Rn equipped
with the metric δp is isometric to and eD(n,R) equipped with the metrics dp. Since Rn is not
Hadamard for p = 1,∞ we deduce that Xn is not Hadamard for p = 1,∞.

Let p ∈ (1,∞). We show that there is only one geodesic between A,B ∈ Xn. Use Lemma
3.1 to deduce that we may assume that A = I, B = eD(x) where x = (x1, ..., xn)T ∈ Rn

and x1 ≥ ... ≥ xn. Let C ∈ eHn . Then Σ(C) = eD(log σ(C)). Suppose that

dp(I, C) + dp(C, eD(x)) = dp(I, eD(x)) = ||x||p. (3.9)

Clearly, dp(I, C) = || log σ(C)||p. As |x|p is a strictly convex function (3.9) yields equalities
in all inequalities in (3.6) [HLP] and equalities in all inequalities in (3.8). Since Rn is
a unique geodesic space the second equality in (3.8) yields that log σ(C) = tx for some
t ∈ [0, 1]. Clearly, we have equalities in (3.5) for all k and P = B,Q = B−1eD(x). Consider
first the equality for k = 1:

||eD(x)||2 = ||C||2||C−1eD(x)||2. (3.10)

Let ei = (δ1i, . . . , δni)T for i = 1, ..., n. Then

||eD(x)||2 = ||eD(x)e1||2 = ||C(C−1eD(x)e1)||2 ≤ ||C||2||C−1eD(x)e1||2 ≤ ||C||2||C−1eD(x)||2.

(3.10) yields

||C(C−1eD(x)e1)||2 = ||C||2||C−1eD(x)e1||2, ||C−1eD(x)e1||2 = ||C−1eD(x)||2.

Since C ∈ H+
n , the first equality implies that C−1eD(x)e1 = ex1C−1e1 is an eigenvector of

C corresponding to the largest eigenvalue λ1(C) = σ1(C). A straightforward calculation
shows that Ce1 = λ1(C)e1. Repeat the same argument for k = 2 in the equality in (3.5)
to deduce that e1 ∧ e2 is an eigenvector of C ∧ C for the eigenvalue λ1(C)λ2(C). That is,
the subspace spanned by e1, e2 spanned by the two eigenvectors of C corresponding to the
eigenvalues λ1(C), λ2(C). Hence Be2 = λ2(B)e2. Repeat this argument for k = 3, ..., n
to deduce that Cei = λi(C)ei, i = 1, ..., n. Since log σ(C) = tx, t ∈ [0, 1] we deduce that
B = etD(x), i.e. C is a point on the unique geodesic given above. 2

Corollary 3.3 Let the assumptions of Theorem 3.2 hold. Then

d∞(A,B) = max(| log σ1(A−1B)|, | log σ1(B−1A)|),
d∞(A,B) ≤ dp(A,B) ≤ (n)

1
p d∞(A,B).
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Thus, all the metrics dp are Lipschitz equivalent. It is straightforward to show that
d2(A,B) is a Riemannian metric on Xn.

4 Busemann functions on Xn

In what follows we identify Xn with eHn . Let

Sn,p := {A ∈ Hn : ||A||p = 1}, p ∈ [1,∞]

be the unit ball in Hn centered at 0 with radius 1 in Schatten p-norm. Then any E ∈
eHn\{I} has the unique form E = etA for some A ∈ Sn,p and t > 0. Let

bE,p(C) = dp(C,E)− dp(O,E), E, O, C ∈ eHn , p ∈ [1,∞], (4.1)

be the Busemann p-function with the reference point O. To identify ∂pXn we need to
find the conditions under which the sequence {betmAm ,p} converges, where {Am} ⊂ Sn,p and
limm→∞ tm = ∞. In this section we show that if Am = A, m = 1, ..., then limm→∞betmAm =
bξ,p and we identify the point ξ ∈ ∂pXn.

Recall the spectral decomposition of A ∈ Hn

A = UD(λ(A))U∗, λ(A) = (λ1(A), ..., λn(A))T ∈ Rn, U = (x1, . . . ,xn) ∈ Un. (4.2)

Theorem 4.1 Let 0 6= A ∈ Hn satisfy (4.2) and

λ1(A) = · · · = λj1(A) > λj1+1(A) = · · · = λj2(A) > · · · > λjq−1+1(A) = · · · = λn(A),
j0 = 0 < j1 < · · · < jq = n. (4.3)

Assume that i ∈ [1, q]∩Z and k ∈ [ji−1 + 1, ji]∩Z. Let Vk ⊂ C(n
k) be the subspace spanned

by x1 ∧ x2 ∧ . . .∧ xji−1 ∧ xl1 ∧ xl2 ∧ . . .∧ xlk−ji−1 , where l1, ..., lk−ji−1 range over all indices
satisfying ji−1 + 1 ≤ l1 < . . . < lk−ji−1 ≤ ji. Denote by Pk ∈ M(

(
n
k

)
, C) the orthogonal

projection on Vk for k = 1, . . . , n. Let C ∈ eHn . Set

α0(A,C) = 0, αn(A,C) = log det C−1, αk(A,C) = log ||(∧kC−1)Pk||2, k = 1, ...,n− 1.

Let A ∈ Sn,p and tm, m = 1, . . . , be a sequence of real numbers converging to ∞. Then
betmA,p converges to the Busemann function bξ,p for any p ∈ [1,∞]. More precisely, let
C,O ∈ eHn . Then

bξ,∞(C) = α1(A,C)− α1(A,O), if λ1(A) > −λn(A),
bξ,∞(C) = αn−1(A,C)− αn(A,C)− αn−1(A,O) + αn(A,O), if λ1(A) < −λn(A),
bξ,∞(C) = max(α1(A,C), αn−1(A,C)− αn(A,C))−
max(α1(A,O), αn−1(A,O)− αn(A,O)), if λ1(A) = −λn(A).
bξ,1(C) = αn(A,C)− αn(A,O), if λn(A) > 0,

bξ,1(C) = −αn(A,C) + αn(A,O), if λ1(A) < 0,
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bξ,1(C) = αjk−1(A,C) +
jk∑

i=jk−1+1

|αi(A,C)− αi−1(A,C)|+ αjk
(A,C)− αn(A,C)−

αjk−1(A,O)−
jk∑

i=jk−1+1

|αi(A,O)− αi−1(A,O)| − αjk
(A,O) + αn(A,O), if λjk

(A) = 0,

bξ,1(C) = 2αjk
(A,C)− αn(A,C)− 2αjk

(A,O) + αn(A,O), if λjk
(A) > 0 > λjk+1(A).

for p ∈ (1,∞) bξ,p(B,C) =

(
n∑

i=1

|λi(A)|p)
1−p

p

n∑
i=1

λi(A)|λi(A)|p−2(αi(A,C)− αi−1(A,C)− αi(A,B) + αi−1(A,B)).

To prove the theorem we need the standard perturbation techniques for eigenvalues of
Hermitian matrices, e.g. [?] or [Kat].

Lemma 4.2 Let 0 6= A ∈ Hn satisfy (4.2) and (4.3). Assume that C ∈ eHn . Let
µ1(A,C) ≥ . . . ≥ µj1(A,C) be the eigenvalues of the positive definite matrix F1:

F1 := ((xl)∗C−2xm)j1
l,m=1 ∈ eHj1 , λ(F1) = (µ1(A,C), . . . , µj1(A,C)). (4.4)

Then for t >> 1

log σi(C−1eAt) = tλi(A) +
1
2

log µi(A,C) + O(e−(λ1(A)−λj1+1(A))t) =

tλ1(A) +
1
2

log µi(A,C) + O(e−(λ1(A)−λj1+1(A))t), i = 1, ..., j1. (4.5)

In particular

α1(A,C) = log
√
||F1||2 =

1
2

log µ1(A,C). (4.6)

log σ1(C−1eAt) = tλ1(A) + α1(A,C) + O(e−(λ1(A)−λj1+1(A))t) for t >> 1, (4.7)
j1∑

i=1

log σi(C−1eAt) = t

j1∑
i=1

λi(A) +
1
2

log det F1 + O(e−(λ1(A)−λj1+1(A))t), for t >> 1.

Proof. Consider the positive definite matrix etAC−2etA. By considering the similar
Hermitian matrix U∗etAU(U∗CU)−2U∗etAU we may assume that A = D(λ(A)). Let

E(t) = e−2λ1(A)tetAC−2etA, lim
t→∞

E(t) = E(∞).

Then E(∞) is a nonnegative definite matrix of rank j1, which has a block diagonal form
F1 ⊕ 0. Hence µ1(A,C), ..., µj1(A,C) are the nonzero eigenvalues of E(∞). Clearly

E(t) = E(∞) + O(e−at), a = λ1(A)− λj1+1(A), t >> 1.
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Weyl’s inequalities [HJ] yield

|λi(E(t))− λi(E(∞))| ≤ ||E(t)− E(∞)||2 = O(e−at), i = 1, ..., n.

Clearly
λi(eAtC−2eAt) = e2λ1(A)tλi(E(t)), i = 1, ..., n.

As singular values of C−1etA are the positive square roots of the eigenvalues of etAC−2etA,
from the above arguments we deduce (4.5).

Recall from Theorem 4.1 that α1(A,C) = log ||C−1P1||2 = log ||P1C
−2P1||

1
2
2 . As C1P1

is a rank one matrix we deduce (4.6) and (4.7) follows. 2

Proof of Theorem 4.1. We claim that

log σk(C−1etA) = tλk(A) + αk(A,C)− αk−1(A,C) + Ek(t), lim
t→∞

Ek(t) = 0, k = 1, . . . , n.

(4.8)
As in the proof of Lemma 4.2 we may assume that A = D(λ(A)) and xi = ei, i = 1, ..., n.
For k = 1 (4.8) follows from (4.7). Let k ∈ [max(ji−1, 1) + 1, ji] ∩ Z. Consider ∧ketA for
t > 0. Use (3.2) to deduce that Vk is the eigenspace corresponding to the maximal eigenvalue
et

∑k
l=1 λl(A) of ∧ketA. As A = D(λ(A)) we deduce that limt→∞ e−t

∑k
l=1 λl(A) ∧k etA = Pk.

Apply (4.6) to ∧kC−1 ∧k etA to obtain

log ||∧kC−1∧ketA|| =
k∑

l=1

log σl(C−1etA) = t
k∑

l=1

λi(A)+αk(A,C)+E(k)(t), lim
t→∞

E(k)(t) = 0.

Subtract from the above expression the similar expression for k − 1 to deduce (4.8).
Let p = ∞. Then d∞(C, etmA) = max(| log σ1(C−1etmA)|, | log σn(C−1etmA)|). If−λn(A) <

λ1(A) ⇒ λ1(A) > 0, then for tm >> 1 (4.8) yields

d∞(C, etmA) = log σ1(C−1etmA) = tmλ1(A) + α1(A,C) + E1(tm).

The above equality yields the first case of the formula for bξ,∞. The case λ1(A) < −λn(A)
yields similarly the second case of the formula for bξ,∞. Suppose finally that λ1(A) =
−λn(A). Then

d∞(C, etmA) = max(log σ1(C−1etmA),− log σn(C−1etmA)) =
tmλ1(A) + max(α1(A,C),−αn(A,C) + αn−1(A,C)) + E(tm),

and the last case of the formula for bξ,∞ follows.
Let p = 1. Suppose first that λn(A) > 0. Then (4.8) yields that all singular values of

C−1etmA tend to ∞. Hence

d1(C, etmA) = tm
( n∑

i=1

λi(A)
)

+ αn(A,B) + E(n)(tm),
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and the first case of the formula for bξ,1 follows. The second case of the formula for bξ,1

follows similarly. Suppose next that λjk
(A) = 0. Then all σi(C−1etnA) tend to ∞ for

i ≤ jk−1 (if jk−1 > 0), all σi(C−1etmA) tend to −∞ for i > jk (if jk < n), and all
σi(C−1etmA) are bounded for jk−1 < i ≤ jk. Hence d1(C, etmA) equals to

tm

n∑
i=1

|λi(A)|+ αjk−1(A,C) +
jk∑

i=jk−1+1

|αi(A,C)− αi−1(A,C)|+ αjk
(A,B)− αn(A,C),

and the third case of the formula for bξ,1 follows. Similarly one deduces the last case of the
formula for bξ,1.

Let p ∈ (1,∞). If λi(A) 6= 0 then (4.8) yields:

| log σi(C−1etmA)|p = tpm|λi(A)|p + ptp−1
m

|λi(A)|p

λi(A)
(αi(A,C)− αi−1(A,C)) + o(tp−1

m ).

If λi(A) = 0 then (4.8) yields that | log σi(C−1etmA)|p = O(1). Hence

dp(C, etmA) = (tpm
n∑

i=1

|λi(A)|p + ptp−1
m

n∑
i=1

|λi(A)|p

λi(A)
(αi(A,C)− αi−1(A,C)) + o(tp−1

m ))
1
p =

tm(
n∑

i=1

|λi(A)|p)
1
p + (

n∑
i=1

|λi(A)|p)
1−p

p

n∑
i=1

|λi(A)|p

λi(A)
(αi(A,C)− αi−1(A,C)) + o(1), (4.9)

and the formula for bξ,p follows. 2

5 ∂pXn for p ∈ (1,∞)

Recall that any I 6= B ∈ eHn has a unique form B = etA, A ∈ Sn,p. The visual boundary
∂vXn is identified with Sn,p equipped its standard topology. Furthermore, given a sequence
{tm}∞1 which converges to ∞ and a sequence {Am}∞1 ⊂ Sn,p then the sequence etmAm

converges to a point in ∂vXn,p corresponding to A ∈ Sn,p if and only if limm→∞ Am = A.
See for example Karpelivich [Kar] for the Riemannian case p = 2.

Theorem 5.1 Let p ∈ (1,∞). Then the Busemann p-boundary ∂pXn can be identified
with the visual boundary of Xn.

To prove this theorem we need the following results:

Lemma 5.2 Let 0 6= A ∈ Hn satisfy (4.2) and (4.3). Then for any C ∈ eHn the
following inequalities hold:

k∑
i=1

log λn−i+1(C−1) ≤ αk(A,C) ≤
k∑

i=1

log λi(C−1), k = 1, ..., n− 1,

αn(A,C) =
n∑

i=1

log λi(C−1). (5.1)
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Let k ∈ [1, n − 1] ∩ Z be a fixed integer that satisfies ji−1 < k ≤ ji. Then equality in the
right-hand side inequality of (5.1) holds if and only if the subspace Wji

spanned by x1, ...,xji

contains k linearly independent eigenvectors of C−1 corresponding to the first k-eigenvalues
of C−1. Equality in the left-hand side of (5.1) holds if and only if any k-dimensional subspace
of Wji

is a subspace that spanned by last k-eigenvalues of C−1. Furthermore,

αjk−1+1(A,C)− αjk−1(A,C) ≥ αjk−1+2(A,C)− αjk−1+1(A,C) ≥ . . .

≥ αjk
(A,C)− αjk−1(A,C), k = 1, ..., q. (5.2)

In particular αk(A, I) = 0 for k = 1, ..., n.

Proof. Assume that k = 1. The maximal characterization of λ1(C−2) and the
minimal characterization of λn(C−2) and the definition of F1 in (4.4) yield [?]

λn(C−2) ≤ µj1(A,C) = λj1(F1) ≤ µ1(A,C) = λ1(F1) ≤ λ1(C−2).

Equality in the right-hand side of the above inequality holds if and only if Wj1 contains
an eigenvector of C−2 corresponding to λ1(C−2). Equality λn(C−2) = λ1(F ) yields the
equalities λn(C−2) = λj1(F1) = . . . = λ1(F ). These equalities hold if and only if any
nonzero vector in Wj1 is an eigenvector of C−2 corresponding to λn(C−2). As C−1 is a
positive definite matrix we deduce that λi(C−2) = λi(C−1)2, i = 1, ..., n. Use (4.6) and the
above arguments to deduce the lemma for k = 1. To deduce the lemma for 1 < k < n one
repeats the above arguments for ∧kC−2 = (∧kC−1)2. To deduce the formula for αn(A,C)
observe that ∧nC−2 is a positive number equal det C−2.

The inequalities (5.2) follow from (4.8), (4.3) and the fact that the singular values of any
matrix are arranged in a decreasing order. 2

Proof of Theorem 5.1. Fix p ∈ (1,∞) and O = I. We first show that if A and A′ are two
distinct points in Sn,p then the corresponding induced points ξ, ξ′ ∈ ∂pXn,p are distinct.
Assume to the contrary that ξ = ξ′. The assumption that ξ = ξ′ combined with Theorem
4.1 and Lemma 5.2 yield

n∑
i=1

λi(A)|λi(A)|p−2(αi(A,C)−αi−1(A,C)) =
n∑

i=1

λi(A′)|λi(A′)|p−2(αi(A′, C)−αi−1(A′, C)),

(5.3)
Observe that the sequence {λi(A)|λi(A)|p−2}n

1 is a decreasing sequence. Furthermore

n∑
i=1

λi(A)|λi(A)|p−2(αi(A,C)− αi−1(A,C)) = (5.4)

n−1∑
i=1

αi(A,C)(λi(A)|λi(A)|p−2 − λi+1(A)|λi+1(A)|p−2) + αn(A,C)λn(A)|λn(A)|p−2.

In (5.3) choose C = e−A′
. Then Lemma 5.2 yields αi(A′, C) =

∑i
k=1 λk(A′) for k = 1, ..., n.

Since A′ ∈ Sn,p the right-hand side of (5.3) is equal to 1. Use Lemma 5.2 and (5.4) to deduce
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that the left-hand side of (5.3) is bounded above by
∑n

i=1 λi(A)|λi(A)|p−2λi(A′). Use the
Hölder p-inequality to deduce that the above expression is bounded above by ||A||p||A′||p =
1. Hence λ(A) = λ(A′). Furthermore, the right-hand side inequalities in (5.1) are equalities
for C = e−A′

whenever λi(A) > λi+1(A). Lemma 5.2 for k = ji yields that Wji
is spanned

by the eigenvectors of eA′
corresponding to the first ji eigenvalues of eA′

for i = 1, ..., p− 1.
As λ(A) = λ(A′) we deduce that for each eigenvalue λ = λji

(A) = λji
(A′) the eigenspaces

of A and A′ coincide. Hence A = A′ contrary to our assumption.
Let {Am}∞1 ⊂ Sn,p be a convergent sequence limm→∞ Am = A ∈ Sn,p. Clearly

limm→∞ λ(Am) = λ(A). As A may have multiple eigenvalues, the similar statement for
the eigenspaces of {Am}∞1 is as follows. Assume that A satisfies (4.3). Then the eigenspace
Wji,m, corresponding to the first ji eigenvalues of Am, converges to the eigenspace subspace
Wji

, corresponding to the first ji eigenvalues of A, for i = 1, ..., p. Hence

lim
m→∞

αji
(Am, C) = αji

(A,C), i = 1, ..., p. (5.5)

Let limm→∞ tm = ∞. We have to show that

lim
m→∞

bp(C, etmAm) = bξ,p(C), (5.6)

where ξ is the limit point of the geodesic ray induced by A. Use (4.8), (5.4) and the equality
αn(A,C) = log det C−1 to obtain

bp(C, etmAm) =
n−1∑
l=1

αl(Am, C)(λl(Am)|λl(Am)|p−2 − λl+1(Am)|λl+1(Am)|p−2)

+λn(Am)|λn(Am)|p−2 log det C + o(
1
t
). (5.7)

Observe that all the numbers αl(Am, C) are uniformly bounded for a fixed C ∈ eHn . Con-
sider a summand

αl(Am, C)(λl(Am)|λl(Am)|p−2 − λl+1(Am)|λl+1(Am)|p−2) (5.8)

appearing in (5.7). We claim that this summand converges to

αl(A,C)(λl(A)|λl(A)|p−2 − λl+1(A)|λl+1(A)|p−2).

For l = ji this claim follows from (5.5) and the continuity of λ(A). For l ∈ (ji−1, ji) ∩ Z
(5.8) converges to 0. Hence (5.6) holds. 2

6 ∂1Xn

In this Section we show that the structure of ∂1Xn is similar in principle to that of ∂Rn,1,
but more complicated. In what follows we use the notations of §1. For A ∈ Hn let

U+(A) := U(0,∞)(A), U0(A) := U{0}(A), U−(A) := U(−∞,0)(A).
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Then Cn = U+(A)⊕ U0(A)⊕ U−(A) is an orthonormal decomposition of Cn, with some of
the factors may be trivial. Note that U−(A) is determined by U+(A), U0(A). For A 6= 0 we
denote the above orthonormal decomposition simply as Cn = U+ ⊕ U0 ⊕ U−, dim U0 < n.

Lemma 6.1 The Busemann compactification of the geodesic rays of the form etA, A ∈
Sn,1, t > 0 with respect to the metric d1 depends only on the eigenspaces U+(A), U0(A), U−(A).
Moreover A,A′ ∈ Sn,1 induce the same point ξ ∈ ∂1Xn if and only if the eigenspaces of A,A′

corresponding to positive, zero and negative eigenvalues coincide respectively.

Proof. Consider the formulas for bξ,1 in Theorem 4.1. Recall that αn(A,C) =
log det C−1. Assume first that U0(A) = {0}, i.e. A is nonsingular. Then it is straightforward
to see that the Busemann function depends only on U+(A). Assume now that U0(A) is a
nontrivial subspace. Then bξ,1 is given by the third formula in Theorem 4.1. Clearly,
αjk−1(A,C) depends only on U+(A). The definition of αl(A,C) for l ∈ (jk−1, jk]∩Z depends
on the choice of an orthonormal basis in U+(A) and U0(A). It is straightforward to show that
the values of αl(A,C), l ∈ (jk−1, jk] ∩ Z are independent of the choice of these orthonormal
bases. (Suffices to note that x1 ∧ . . . ∧ xji−1 = ∧ji−1Wji−1 .) Hence bξ,1 depends only on
U+(A), U0(A). It is straightforward to show that different decompositions Cn = U+ ⊕U0 ⊕
U− induce different Busemann functions. (One may take the convenient choice O = I.)
Hence A,A′ induce the same point ξ if and only if the orthogonal decomposition Cn to the
eigenspaces corresponding to positive, zero and negative eigenvalues of A,A′ are identical.
2

Proposition 6.2 Let A ∈ Hn, B ∈ GL(n, C). Then

1
2

log λn(BB∗) ≤ log σ1(BeA)− λ1(A) ≤ 1
2

log λ1(BB∗).

Proof. Consider the matrix E = e−λ1(A)BeA = BeA−λ1(A)I . Then BPB∗ ≤ EE∗ ≤
BB∗, where P := Pλ1(A)(A). Clearly σ1(E)2 = ||EE∗||2 ≤ ||BB∗||2 = λ1(BB∗). Assume
that Pu = u, ||u||2 = 1. Then

σ1(E)2 ≥ ||BPB∗||2 = ||BP ||22 ≥ ||BPu||22 = ||Bu||22 = u∗B∗Bu ≥ λn(B∗B) = λn(BB∗).

2

Theorem 6.3 To each nontrivial orthogonal decomposition Cn = U+⊕U0⊕U−, dim U0 <
n associate the space (U+,H(U0), U−). Then the union of all these spaces with respect to all
nontrivial orthogonal decomposition of Cn can be identified with ∂1Xn. Let {Am}∞1 ⊂ Hn

be an unbounded sequence. Then {eAm}∞1 converges to the point (U+, T, U−), T ∈ H(U0) if
and only if the conditions (1.2) hold.

Proof. Recall that for A ∈ Hn σi(eA) = eλi(A) for i = 1, ..., n. For simplicity of the
exposition we assume that

dim U+ = k+ > 0, dim U0 = k0 > 0, dim U− = k− > 0.
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We claim that for any C ∈ eHn

log σi(C−1eAm) = λi(Am) + O(1), i = 1, ..., n. (6.1)

The case i = 1 follows straightforward from Proposition 6.2. Apply Proposition 6.2 to
∧k(C−1eA) for k > 1 to deduce

∑k
1 log σi(C−1eAm) =

∑k
i=1 λi(Am) + O(1). Hence (6.1)

holds for any sequence {Am}∞1 ∈ Hn. Assume that (1.2) holds. Then

lim
m→∞

σi(C−1eAm) = ∞, i = 1, ..., k+ lim
m→∞

σi(C−1eAm) = −∞, i = n− k− + 1, ..., n.

Let A ∈ Sn,1 such that U+(A) = U+, U0(A) = U0, U−(A) = U−. We claim that

lim
m→∞

k+∑
1

| log σi(C−1eAm)| −
k+∑
1

λi(Am) = αk+(A,C), (6.2)

lim
m→∞

n∑
n−k−+1

| log σi(C−1eAm)|+
n∑

i=n−k−+1

λi(Am) = αn(A,C)− αn−k−(A,C).

The first formula of (6.2) is deduced by considering the norm || ∧k+ C−1 ∧k+ eAm ||2, as in
the proof of Theorem 4.1. One has to notice that the ratio of a nonmaximal eigenvalue
of ∧k+eAm to the maximal eigenvalue eλ1(Am)+...+λk+ (Am) of ∧k+eAm converges to 0. The
second formula of (6.2) is deduced by using the same arguments for the sequence of the
inverse matrices e−AmC.

Assume in addition that for a big enough N

λi(Am) = 0 for i = k+ + 1, ..., k+ + k0 and m > N. (6.3)

Repeat the arguments of the proof of Theorem 4.1 for p = 1 to deduce that {eAm}∞1
converges to ξ, the end of the ray eAt, t > 0. Note that T = 0.

We now consider the general case. Assume that limm→∞ λi(Am) = θi ∈ (a, b) for
i = k+ + 1, ..., k+ = k0 for some a < b. Let

Em := P(a,b)(Am)AmP(a,b)(Am), A′
m := Am − Em, m = 1, ..., .

Note that limm→∞ = E and E|U+⊕U− is the zero operator. Let E|U0 = T ∈ H(U0). Then
the sequence {A′

m}∞1 satisfies (6.3). Clearly AmEm = EmAm. Hence

d1(C, eAm) = d1(e−EmC, eA′
m), beAm ,1(C) = b̂

eA′
m ,1

(e−EmC), m = 1, ...,

where b̂
eA′

m,1 is the Busemann function with respect to the new reference point Om :=
e−EmO. Note that limm→∞ Om = e−EO. The above arguments show that

lim
m→∞

beAm ,1(C) = b̂ξ,1(e−EC), (6.4)

where b̂ξ,1 is the Busemann function of the form given by Lemma 6.1 with respect to the
reference point O′ = e−EO. This shows that any sequence {Am}∞1 ⊂ H(n, C) satisfying the
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conditions (1.2) converges to a boundary point (U+, T, U−). A straightforward argument
shows that two different elements (U+, T, U−), (U ′

+, T ′, U ′
−) induce two different Busemann

functions. Hence the above two points in ∂1Xn are distinct. Given a nontrivial decompo-
sition Cn = U+ ⊕ U0 ⊕ U− and T ∈ H(U0) it is straightforward to construct a sequence
{Am} ∈ Hn which satisfies the conditions (1.2) for the given triple (U+, T, U−). Hence any
allowed triple (U+, T, U0) is in ∂1Xn. Finally, for a given unbounded sequence {eB`} ⊂ eHn

there exists a subsequence {Am}∞1 satisfying the conditions (1.2). Hence all allowable triples
(U+, T, U−) form ∂1Xn and Xn ∪ ∂1Xn is compact. 2
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