MATH 425, Linear Algebra II, Practice Test 1,
February 18, 2010, Instructor: S. Friedland
Name and e-mail address:

No books or notes. Show all your work. Write solutions in the exam booklet without copying the problems. You can use a result (x) of any part of the problem, to show other part of any problem. Unjustified answer yields no credit.

Problem 1.
(a) For \(\mathbf{x} = (x_1, x_2) \mathbf{T}, \mathbf{y} = (y_1, y_2) \mathbf{T} \), let
\[
f(\mathbf{x}, \mathbf{y}) = 2x_1y_1 - 3x_1y_2 - 3x_2y_1 + ky_2y_2.
\]
Find the values of \(k \) for which \(f(\mathbf{x}, \mathbf{y}) \) is an inner product on \(\mathbb{R}^2 \).
(b) Find a basis of the subspace \(U \) of \(\mathbb{R}^4 \) orthogonal to \(\mathbf{x}_1 = (1, -2, 3, 4) \mathbf{T} \) and \(\mathbf{x}_2 = (3, -5, 7, 8) \mathbf{T} \).
(c) Let \(V \) be an inner product space. Assume that \(U \) is a subspace of \(V \), with an orthonormal basis \(u_1, \ldots, u_n \). Let \(\mathbf{v} \in V \). Write down the orthogonal projection \(P_U(\mathbf{v}) \) of \(\mathbf{v} \) on \(U \) in terms of \(\mathbf{v} \) and \(u_1, \ldots, u_n \) and \(\mathbf{v} \). Show that for any \(\mathbf{u} \in U \) one has the inequality \(\| \mathbf{v} - \mathbf{u} \| \geq \| \mathbf{v} - P_U(\mathbf{v}) \| \). Characterize the equality case.

Problem 2. Fit the best possible parabola of the form \(y = ax + bx^2 \) to the data \((-2, 0), (1, 1), (0, -1), (1, 1)\).

Problem 3. Let \(A = [a_{ij}]_{i,j=1}^n \in \mathbb{R}^{n \times n} \). Assume that \(a_{ij} \in (0, 2) \) for \(i, j = 1, \ldots, n \) and \(n \geq 2 \). Show that \(|\det A| \leq 2^n n^2 \). Can equality hold for some matrix \(A \)?

Problem 4. Let \(A = \begin{bmatrix} 1 & 1 - i \\ 1 + i & 0 \end{bmatrix} \). Find the eigenvalues, the corresponding eigenvectors, a unitary \(U \) and a diagonal matrix \(D \) such that \(A = UDU^* \).

Problem 5. Let \(A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 5 & -1 & 4 \\ 0 & -1 & -1 & 1 \\ 3 & 4 & 1 & -2 \end{bmatrix} \). Let \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \) be the eigenvalues \(A \).

1. Find the number of positive, negative and zero eigenvalues of \(A \) without computing the eigenvalues of \(A \).
2. Show that \(\lambda_1 \geq 5 \) and \(-2 \geq \lambda_4 \).
3. Show that \(\lambda_1 \geq 3 + \sqrt{8} \) and \(\lambda_2 \geq 3 - \sqrt{8} \). (Use the eigenvalues of the leading \(2 \times 2 \) matrix and apply eigenvalue characterizations)

Problem 6. Let \(\mathbf{x} = (x_1, \ldots, x_n) \mathbf{T} \in \mathbb{C}^n \). Denote \(\|\mathbf{x}\|_2 := \sqrt{\mathbf{x}^\mathbf{T} \mathbf{x}} \). Let \(A = [a_{ij}]_{i,j=1}^n \in \mathbb{C}^{n \times n} \) and denote by \(r_i := (a_{i1}, \ldots, a_{in}) \mathbf{T} \) the \(i \)-th row of \(A \). Show

1. \((Ax)_i = r_i^\mathbf{T} \mathbf{x} \), \(|(Ax)_i| \leq \|r_i\| \|\mathbf{x}\| \).
2. Let \(M \) be the maximum value of \(\|r_i\|, i = 1, \ldots, n \). Show that \(\|Ax\| \leq \sqrt{nM} \|\mathbf{x}\| \).
3. Let \(\lambda \in \mathbb{C} \) be any eigenvalue of \(A \). Show that \(|\lambda| \leq \sqrt{nM} \).
4. Let \(A \) be the matrix given in Problem 5. Show that \(2\sqrt{46} \geq \lambda_1, \lambda_4 \geq -2\sqrt{46} \). (Apply the inequality in part 3 to \(A \).)