Show all your work. Write solutions in the exam booklet without copying the problems. You can use a result (x) of any part of the problem, to show other part of any problem. **Unjustified** answer yields no credit.

Problem 1.
(a) Find a basis of the subspace \(U \) of \(\mathbb{R}^4 \) orthogonal to \(x_1 = (1, -2, 3, 4)^T \) and \(x_2 = (3, -5, 7, 8)^T \).
(b) Let \(V \) be an inner product space. Assume that \(U \) is a subspace of \(V \), with an orthonormal basis \(u_1, \ldots, u_m \). Let \(v \in V \). Write down the orthogonal projection \(P_U(v) \) of \(v \) on \(U \) in terms of \(v \) and \(u_1, \ldots, u_m \) and \(v \). Show that for any \(u \in U \) one has the inequality \(\|v - u\| \geq \|v - P_U(v)\| \). Characterize the equality case.

Problem 2. Let \(A \in \mathbb{C}^{n \times n} \). Denote by \(R(A) \subseteq \mathbb{C}^m \) the column space of \(A \). Assume that \(b \in \mathbb{C}^m \) but \(b \notin R(A) \).
(a) Show that the system \(Ax = b \) is not solvable.
(b) Let \(x_0 \) be a least square solution: \(A^* Ax_0 = A^* b \). Show that \(Ax_0 \) is the orthogonal projection of \(b \) on \(R(A) \) with respect to the standard inner product in \(\mathbb{R}^m \).
(c) What is the necessary and sufficient condition for \(x_0 \) to be unique?
(d) Assume that the columns of \(A \) are linearly independent. Explain briefly how do you obtain the QR decomposition of \(A \).
(f) Under the assumptions of (d) give a simple formula for \(x_0 \) in terms of \(b, Q, R \).

Problem 3. Let \(A = [a_{ij}]_{i,j=1}^n \in \mathbb{C}^{n \times n} \). Assume that \(|a_{ij}| \leq 2 \) for \(i, j = 1, \ldots, n \) and \(n \geq 2 \). Show that \(|\det A| \leq 2^n n^2 \). Can equality hold for some matrix \(A \)?

Problem 4
(a) Let \(A(a) := \begin{bmatrix} 2 & -a \sqrt{i} \\ -i & 2 \end{bmatrix} \), where \(i = \sqrt{-1} \) and \(a \) is a real number. For which values of \(a \) is \(A \) normal?
(b) Assume that \(A(1) \) is normal. Find a unitary \(U \) and a diagonal \(D \) such that \(A(1) = U D U^* \).
(c) Assume that \(B \in \mathbb{R}^{n \times n} \) is normal. Suppose furthermore that all the eigenvalues of \(B \) are real. Show that \(A \) is symmetric.

Problem 5. Let \(A \in \mathbb{C}^{n \times n} \) be a normal matrix.

1. Is \(A \) diagonalizable? (I.e. \(A \) is similar to a diagonal matrix.) **Justify.**
2. Show that for any polynomial \(p(z) \), \(p(A) \) is a normal matrix. **Justify.**
3. Suppose in addition \(A \) has real entries. Are all eigenvalues of \(A \) have to be real? **Justify.**

Problem 6. Let \(x = (x_1, \ldots, x_n)^T \in \mathbb{C}^n \). Denote \(\|x\|_2 := \sqrt{x^* x} \). Let \(A = [a_{ij}]_{i,j=1}^n \in \mathbb{C}^{n \times n} \) and denote by \(r_i := (a_{i1}, \ldots, a_{in})^T \) the \(i \)-th row of \(A \). Show
 1. \((Ax)_i = r_i^T x \), \(\|Ax\|_1 \leq \|r_i\| \|x\| \).
 2. Let \(M \) be the maximum value of \(\|r_i\|, i = 1, \ldots, n \). Show that \(\|Ax\| \leq \sqrt{n} M \|x\| \).
 3. Let \(\lambda \in \mathbb{C} \) be any eigenvalue of \(A \). Show that \(|\lambda| \leq \sqrt{n} M \).

Problem 7. Recall that \(A \in \mathbb{R}^{n \times n} \) is called a permutation matrix if each row and each column contains one entry equal to 1 and all other entries are zero.
1. Show that the set of all permutation matrices $\Pi_n \subset \mathbb{R}^{n \times n}$ form a group under the product of matrices.

2. Show that this group is isomorphic to the group of permutations S_n by exhibiting an isomorphism $\phi : \Pi_n \to S_n$.

3. Express $\text{sign}(\phi(P))$ in terms of some function of $P \in \Pi_n$.