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Abstract

Let Ag, k € N be a sequence of n xn complex valued matrices which converge
to a matrix A. If A and each Ay is positive then the product %

converges to a rank one matrix positive matrix uw”, where u is a positive

column eigenvector of A. If each Ay is nonsingular and A has exactly one

simple eigenvalue \ of the maximal modulus with the corresponding eigenvector

V=10, AxAr_1..AzA .
u, then eV 10 m, 0, € R converges to a rank one matrix uw™.
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1 Introduction

For F = R, C denote by F", M, (F), GL,(F) the n-dimensional column vector space,
the algebra of n x n matrices and the subgroup of n x n invertible matrices over the
field F. Denote by || - || any vector norm on F™ or on M, (F). Let || - ||2 be the #;
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norm on F" induced by the standard inner product (x,y) := y*x on F" and denote
by || - |2 the induced operator norm on M, (F). Consider an iteration scheme

Xy = ApxXp_1, Xo € Fn, A € Mn(F), k e N. (1.1)

This system is called convergent if x;,k € N is a convergent sequence for each xg €
™. This is equivalent to the convergence of the infinite product ... Az Ar_1...A2A41,
which is defined as the limit of ApAg_1...A2A41 as k — oo. For the stationary case
Ar = A,k € N the necessary and sufficient conditions for convergency are well
known. First, the spectral radius p(A) can not exceed 1. Second, if p(A) = 1,
then 1 is an eigenvalue of A and all its Jordan blocks have size 1. Third all other
eigenvalues \ of A different from 1 satisfy || < 1.

In some instances, as Lyapunov exponents in dynamical systems [11], one inter-
ested if the line spanned by the vector x; converges for all xg # 0 in some homo-
geneous open Zariski set in F™ [2]. If this condition holds we call (1.1) projectively
convergent.

For the stationary case 0 # A = A € M,(C) it is straightforward to show
that (1.1) is projectively convergent if and only if among all the eigenvalues A of A
satisfying |A| = p(A), there is exactly one eigenvalue Ay which has Jordan blocks of
the maximal size. See for example the arguments in [4, Thm 2.2].

A variation of projectively convergent iterations was considered in the literature
for the nonnegative matrices under the name nonhomogeneous matrix products [7],
[12] and [8]. Let Ry := (0,00) and denote by R} C R",M,(Ry) C M,(R) the
cone of positive vectors and the semialgebra of positive matrices. Denote by PR’
and PM,,(Ry) the projective space formed by the rays spanned by x € R’} and
A € M,(Ry). Then PR" has the Hilbert (hyperbolic) metric. Furthermore each
A € M,(Ry) acts on PR, where this action is denoted A - PR} — PR, and
A is a contraction [1]. That is the Lipschitz constant L(A) of A is less than 1.
Let Ay € M,(R4),k € N be a sequence of positive matrices. Then the condition

limy o0 L(Al/\Ak) = 0, which is equivalent to the notion of weak ergodicity of the
products A;... Ay, k € N [12], implies that for each xg € R’} the ray spanned by
Ay...Apxg converges to a fixed ray in PR’} .

Clearly Ag...Aq1,€ M, (R4), k € N is projectively convergent if

lim ApAg_q... A2 Ay _
k—o00 HAkAk—lAZAlH

E, (where ||E|| = 1) (1.2)

and E € M,,(R;). We show that the assumption

lim LA A) =0 (<= lim L(AT..AT) = 0) (1.3)

k—o00



does not imply (1.2).
The aim of this paper is to show

Theorem 1.1 Let Ay, € M, (Ry), k € N be a sequence of positive matrices which
converges to a positive matric A € My, (Ry). Then (1.2) holds. Furthermore

E=uw', uwecR}, Au=p(d)u (1.4)
One can view the above Theorem as an improvement of [12, Thm 3.6].

Theorem 1.2 ! Let Aj, € GL,(C),k € N be a sequence of matrices which con-
verges to a matriz 0 # A € M,(C). Assume furthermore that p(A) > 0 and the
circle {z :€ C, |z| = p(A)} contains exactly one eigenvalue \ of A, which is a
simple root of its characteristic polynomial. Let Au = Au,0 # u € C". Then the
complex line spanned by Ay...A1 € M, (C) converges to the complex line spanned by
uw?! € M,,(C), for some 0 #w € C". Hence for each xq € C" such that w¥xq # 0,
the complex line spanned by Xy, given by (1.1) converges to the complex line spanned
by u.

We now list briefly the contents of the paper. In §2 we recall basic results on the
real and complex projective spaces used in this paper. In §3 we discuss Lipschitz
continuous maps and contractions, and simple conditions for pointwise convergence
of the products of Lipschitzian maps to a constant map. In §4 we prove Theorem
1.1 and use it to prove Theorem 1.2 in the real case. In §5 we prove Theorem 1.2
in the complex case by using directly the results of §3 and Theorem 1.2 in the real
case. In §6 we extend Theorem 1.1 to strictly totally positive matrices (of order
p). We also extend Theorem 1.2 to the case where the limit matrix A, has p simple
eigenvalues Aq, ..., Ap, such that [A\;| > ... > |\,| > 0 and all other eigenvalues of A
lie in [z] < |Ap].

2 Projective spaces

In this section we recall the well known notions and results about projective spaces
used here. Recall that for F = R, C the spaces PF", PM,,(F), PGL,,(FF) are obtained
by identifying the orbits of the action of F* := F\{0} on the nonzero elements
of the corresponding sets. (F* acts by multiplication.) Then PR™,PM,(R) and
PC",PM,,(C) are compact real and complex manifolds respectively. (For the reason
that will be seen later our notation for PF" is slightly different from the standard
notation.) Note that we can view PM,,(F) as isomorphic to PF". For any U C F"

! Acknowledgement A variant of this theorem was suggested by Boris Shapiro.



we denote by U € PF™ the set generated by the orbits of F*(U\{0}). (ﬁ)\} =10.)
A set V. C PF” is called a (projective) variety if V = U, where U is the zero set
of a finite number of homogeneous polynomials over F in F*. H C PF" is called
a hyperplane if H = U, where U is a subspace of F” of codimension 1. V C PF”"
is called a linear space if it is an intersection of a finite number of hyperplanes.
W C PR™ is called Zariski open if W = PF"\V for some variety V.

For x € F"\{0}, A € M, (F)\{0} denote by %X, A the corresponding elements of
PEF™, PM,,(F) respectively. Let A € GL,(F). Then A acts on F™\{0}, so Ax = Az
for any x € F*\{0}. That is A acts on PF”. Let A € M, (F)\{0} Then A acts on
Zariski open set PF"\@.

Since PF™, PM,,(F) are compact for any sequences

X € ]Fn\{O},Ak, Bk S Mn(F)\{O}, ke N

we can find a subsequence k;, [ € N and corresponding x € F™"\{0}, A, B € M,,(F)\{0},
depending on k;,l € N such that

lim %y, =%, lim Ay, = A, lim By, = B.

l—o0 l—o0 l—o0

Note also
Jim Apxp, = Ax = A% if Ax #£0,
Jim Ay By, =AB=AB if AB #0.

The convergence of sequences in PF” and PM,,(F) are equivalent to the following
statement:

Proposition 2.1 Let xj, € F™M\{0}, A, € M,,(F)\{0},k € N. Then sequences
Xk, Ak, k € N converge in PF", PM,,(F) respectively if and only if there exist two
sequences g, vy € {z € C: |z| = 1} NF,k € N such that the sequences ,ukH)’:—’;H,

Vkm, k € N converge in F™,M,,(F) respectively.

Note that for F = R py, v, € {1, —1}. Thus if x, € R}, A}, € M, (R.) it is clear that
in Proposition 2.1 we may assume that u; = v, = 1. Hence for Ay, € M, (Ry), k € N,

A Ay converges in PM,,(R) if and only if (1.2) holds.

Let PR%, PM,,(Ry)(~ }P’Rf) be the set of orbits in R}, M, (R ) under the ac-
tion of Ry (by multiplication). We view PR’} ,PM,, (R ) as corresponding subsets
of PR™,PM,,(R) respectively. Note that PM, (Ry) acts on PR’. Sometime it is

convenient to identify PR’} and PM,(R) with the open set of positive probability
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vectors and the open set of positive matrices whose sum of coordinates is equal to
1 respectively.

Recall the notion of Hilbert (hyperbolic) metric on PR’} [9], which is not equiv-
alent to the metric induced by the standard Riemannian metric on the compact
manifold PR™. Let

d(%,y) = log e X (21, s 20) Ty = (1, oy yn) T € R (2.1)

by
It is straightforward to show that d(-, -) is a metric on PR’ , PR} is a complete sepa-
rable metric space with respect to d(-,-), which has an infinite diameter. Moreover,
Y C PR?} is compact with respect to the above metric if and only if V' is compact

with respect to the standard metric on PR".

3 Convergence of contractions

Let X be a complete metric space with the metric d(-,-). For T': X — X let

L(T) := sup ATz, Ty)

€ 0, 00].
S iy 0

We assume here that a - 0o = 0o -a = oo for any a € Ry and 0- 00 =00-0 = 0.
Note that L(T) = 0 if and only if 7" is a constant operator. For any 7,Q : X — X
L(TQ) < L(T)L(Q). T is called Lipschitz continuous if L(T) < co. T is called a
contraction if L(7T') < 1. Assume that T is a contraction. Then it is well known
that 7" has a unique fixed point ¢. Furthermore the sequence 7°%,i € N converges
pointwise to a constant operator Q : X — {¢}. That is T2z — & for any x € X.

Lemma 3.1 Let T;,1 € N be a sequence of operators on a complete metric space
X. Let Q; :=T115..T;,7 € N be a sequence of operators. Assume that the following
two conditions hold:

lim L(Q;) = 0. (3.1)
1—00
lim sup L(Q;)d(Ti41...Tijx, ) =0, for some z € X. (3.2)

1— 00 ]GN

Then Q;,i € N converges pointwise to a constant operator Q : X — {&} for some

Ee X.



Proof. Since

d(Qitjzr, Qiz) = d(Qi(Tit1... Titjz), Qiz) < L(Qi)d(Tit1... Tiyjw, x) <
2HEL(Qi)d(7}+1---Ti+kl’, )
=

the condition (3.2) implies that Q;z, 7 € N is a Cauchy sequence. Hence lim; o, Q;x =
&. Clearly

d(Qiy, &) < d(Qiy, Qix) + d(Qiz,§) < L(Qy)d(z,y) + d(Qix,§). (3.3)

The condition (3.1) implies the lemma. O

Recall that a metric spaces X has a finite diameter if sup, ,cy d(z,y) < oo.
Clearly any compact metric space has a finite diameter. Note that if X is has a
finite diameter then (3.1) implies (3.2).

Corollary 3.2 Let T;,i € N be a sequence of operators on a complete metric
space X of finite diameter. Let Q; := T1715...T;,1 € N be a sequence of operators.
Assume that the condition (3.1) holds. Then Q;,i € N converges pointwise to a
constant operator Q : X — {&} for some & € X. In particular, if T;,i € N is a
sequence of uniform contractions, i.e. L(T;) < a < 1 for all € N, on a complete
metric space X of finite diameter then (3.1) holds.

A = (aij)7 € Mp(R) is called a nonnegative matrix if a;; > 0,4,5 = 1,...,n.
A is called row allowable (column allowable) if A is nonnegative and AR C R’}
(ATR? C R%) , ie. each row (column) of A contains a positive element. A is
called primitive if A is nonnegative and there is m € N such that A™ € M, (R} ).
From here and to the end of this section we assume that A is row allowable unless
stated otherwise. Then A acts on PR, i.e. A PR — PR’. It is known that
A is Lipschitz continuous and L(A) < 1 [7]. It was shown by Birkhoff [1] that for
A e M,(Ry) A is a contraction. It is known [12] that

1 —\/¥(A)
1+ /o(A4)

For a row allowable nonpositive A ¢(A) =0 <= L(A) = 1. (For a nonnegative

non row allowable A we let ¢(A) = —1 <= L(A) = o0.) Note that L(A) =0

—

. Ak Al
where ¢(A) := min L
i,5,k,1€[1,n] Qi1ajk

L(A) = A = (aij)7 € Mn(R4). (34)

if and only if A is a positive rank one matrix. Thus L(A) = 0 <= L(AT) = 0.
Furthermore if Ay, k € N is a sequence of row allowable matrices then the equivalence
of the two conditions stated in (1.3) holds.



Let Ay = (aij)f;, Br = (bijr)fj=1 € Mn(Ry) for K = N,N +1,... and some
N € N. We say that Ay, Bi,k € N are asymptotically equal, and denote it by
{A} ~ By}, if

L Qiik .

lim —% =1, fori,j=1,...,n.
b 7] ) )

k—o0 bij,k

The following result is known, e.g. [7].

Lemma 3.3 Let A, k € N be a sequence of nonnegative row allowable matrices.
Then limg_,oo L(Ax) = 0 if and only if there exists a sequence of positive rank one
matrices By, € My, (Ry), k € N such that { A} ~ {By}.

Theorem 3.4 Let Ay € M, (R),k € N be a sequence of nonnegative row (col-

umn) allowable matrices. Then limy_, L(Al/\Ak) =0 (limg— oo L(A;CF...A?) =0) if
and only if there exists u € R, vy, € RT, k for k> N such that {A1... Ay} ~ {uv}}
(AT AT} ~ {vuT}).

Proof. Lemma 3.3 implies that if {A4;...4;} ~ {uv}}, where u,v; € R, then
limg 00 L(A1...Ag) = 0. Assume that Ag, k € N are row-allowable and
limg oo L(A1...Ax) = 0. Hence there exists k& € N such that Q = (qij’k);szl =
Aq... Ay, € M,(Ry) for kK > N. Then [7, Thm 1] implies that Q, k € N tends to row
proportionality. That is there exists U = (u;;) € My, (Ry) such that

. qil k .. ..
lim =u;j, t,jandi,j=1,...,n
k—o0 Qi k
learly uj; = 1 and u;; = . As Zbk — Lk Gmbk 3¢ f4]) hat ui; = WimUm;-
Clearly wu;; and Ui e S o Imi e Tk t tollows that wu; Ui Umyj
Jp— . L — Uil
Hence u;; = ujjuij = Wy Let

W= (U1, U, ey tn) " = (U1, ULy e Un1) Ty Ve = (G 12k s Qin k)

and the theorem follows. O

Corollary 3.5 Let A, € M, (R),k € N be a sequence of nonnegative row allow-

able matrices. Assume that limg_, o L(Al/\Ak) = 0. Then A;...Aj : PR} — PR7
converges to a constant operator @ : PR} — {a} for some u € R%.

Since PR’} is not compact under the hyperbolic metric it follows that Corollary 3.5
is a stronger version of Lemma 3.1. We now give an example which shows that the



condition (1.3) for Ay € M, (R;) does not imply (1.2). Let Ay € M, (R4) be a pe-
riodic sequence, i.e. Agi,, = A for all £ € N and some m > 1. Since L(Aml) <
L(Ay)...L(A;) we deduce that (1.3) holds. Assume the normalization p(A,...A;) =
1. Then (Ap,...A1)* — uv?, where A,,..Aju = u,v'A,,..A; = vl vTu =1 for
some u,v € R%}. Then for p € [1,m — 1] N Z limp—o0 Apmip---Amkt1Amp---A1 =
Ap...AluvT. Clearly, we can choose Aj, ..., A, such that (1.2) does not hold.

A special version of the following weak generalization of Theorem 3.4 will be
needed to prove Theorem 1.2 in the complex case. Recall that PC" is a compact
complex manifold. Let d(, ) be the Fubini-Study metric on PC" [6]. Then PC" has
a finite diameter.

Theorem 3.6 Let X C PC" be a compact set with respect to the Fubini-Study
metric d on X and assume that X has a nonempty interior. Let By, € M,,(C), k € N
be a sequence of matrices such that @ NX=0and T, == B : X — X for
each k € N. Let Qi := T1.. Ty, k € N. Assume that limg_,oo L(Qx) = 0. Then
Q. converges converges pointwise to a constant operator @ : X — {W} for some
w € X. Furthermore the limit of any convergent subsequence lim;_, Bﬁkl =

Ce PM,,(C) is of the form v;z\T, where z depends on a subsequence.

Proof. Corollary 3.2 yields that Q, k£ € N converges to a constant operator
Q such that QX = {W}. Assume that lim; ., B;...By, = C € PM,(C). Since X
has an interior, there exists an interior point X € A such that x ¢ ker C. Hence
w = lim,o Qp, (%) = Cx = Cx. Since this result holds for any y in the small

neighborhood of x it follows that C' is a rank one matrix of the form wzT. a

Corollary 5.2 gives a family of examples for which Theorem 3.6 applies.

4 Proof of Theorem 1.1 and Theorem 1.2 for R

To prove Theorems 1.1 and 1.2 we use the following well known fact:

Proposition 4.1 Let X be a compact metric space. Then a sequence xj €
X,k € N converges to £ if and only if from any convergent subsequence x;,,% € N
there exists a subsequence xp,,j € N which converges to &.

Proof of Theorem 1.1. From the definition of ¥(A") in (3.4) it follows that
limy 00 Y(AL) = (AT) € (0,1). Hence L(AT...AT) < L(A])...L(Al) — 0. Theo-
rem 3.4 yields the existence of w,x; € R such that {AT...A}} ~ {wx]}. Hence
{AkAl} ~ {XkWT}.



Let C), := ApAp_1...A2A1, k € N. Assume that C’kl — (. Since PR" is compact
from each subsequence Xj, we can find as subsequence %X;, such that X;, — y where
y € R" is a probability vector. Since {A...A1} ~ {xpw?} it follows that C’li —
ywT = & = ywT.

We first deduce the theorem in the case A is a rank one matrix A = uv?’.
Assume that C’kl — ywT. From the sequence k; pick up a subsequence pq such that
C’pq_l — 2w for some probability vector z. Under the above assumptions

L ' . o
lim C, = lim A, Cp 1 =uvlizw® = uwT.
pg—oo 1 pg—oo 1 HH

Therefore limy,_,o Cj = u/w\T and the theorem follows.

We now consider the general case. Without loss of generality we assume that
the spectral radius of A is equal to 1. Then A™ — uv™, where uTv = 1. Choose
em,m € N a sequence of positive decreasing numbers tending to zero with the
following property:

1
Xi,..,.Xm € Mn(R) and HXZ — AH <€m,t=1,...m= HX1X2Xm — AmH < E

Let Ny, the following increasing sequence: ||Ax — Al|| < €, for each k > N,,. Hence
|Ajim..Aji1 — A™|| < L for any j > Np,.

Let Cy := ApAp_1...A2A1,k € N. Assume that C’kl — y/vv\T First choose a
subsequence {g;} of {k;} such that gj11 —¢; > Njy1 + j + 1, where go = 0. Let
rj = q;j — j for j € N. Note that r; 11 > ¢; + N;j;1. Hence

. 1
|’qu...A7«].+1—A]H < 3, fOI' allj GN

—

From the sequence 7,7 € N choose a subsequence r;,, such that C’rjm — zwT
for a probability vector z € R". Note that since r;,, + j» = g¢j,, it follows that

~

Cq]'m — ywT. On the other hand C’qjm — Aq]

im

Ay, +1Cp; . Our assumptions

yield that the second factor converges to zwT. Our construction yields that the

—

first factor converges to vuT. Hence C‘kl — uw? and the theorem follows in this
case t0o. g

Let A € M,(R) be a primitive matrix. Then A is row and column allow-
able. Furthermore p(A) > 1 and there exists u,v € R”,vTu = 1 such that
Au = p(A)yu,vTA = p(A)vT. Moreover lim,, .o p(A)"™A™ = uv'. The argu-
ments of the proof of Theorem 1.1 yield:



Corollary 4.2 Let Ap,k € N be a sequence of column allowable matrices such
that limy_,oo A = A, where A is a primitive matriz. Then (1.2) and (1.4) hold.

Proof of Theorem 1.2 in the real case. We assume that A € M,,(R), k € N.
Hence limy_o0 A = A € M, (R). Since the nonreal eigenvalues of A come in pairs
z,%, it follows that the unique eigenvalue of A on the circle {z : |z| = p(A4)} is
equal to £p(A). By multiplying each A and A by +p(A)~! we may assume that
p(A) =1 and 1 is an eigenvalue of A. 1 is a simple eigenvalue of the characteristic
polynomial of A and all other eigenvalues of A lie inside the unit disk |z| < 1. By
considering T'A, T~ instead of Aj, and TAT ! instead of A it is enough to prove
the theorem in the case

Ae=e, ATv=v, e=(1,...,D)F, v=(v1,...,0.)T € RY, v1 4+ ...+ v, =1

Indeed, since 1 is a simple root the characteristic polynomial of A, there exists
Q € GL,(R) such that B := QAQ~! = (1) @ B’ for some B’ € M,,_1(R). Hence
Be; = Bel =e; = (1,0,...,0)T We claim that for n > 2 there exists S € GL,(R)
such that

T

Sei=e, STv=e, foranyveR?, elv=1.

The first equation yields that the first column of S is e. The second equation yields
that the last n—1 columns of S orthogonal to v. Pick any n—1 linearly independent
vectors in S, ...,s, € R™ which are orthogonal to v. Then S := (ej,ss,...,s,) €
GL,(R) satisfies the above condition. Now let "= SQ.

Our assumptions yield

lim A™ =ev'.
m—0o0
As in the proof of Theorem 1.1, let us consider first the case A = ev'. As
limg o A = A and A is a positive matrix it follows that Ax € M, (Ry) for k > M.

o —

Theorem 1.1 yields that AﬂM converges to ewg. Hence limy_,oo Ay... A1 = ew™T,
where wT = wg Apr_1...A1. This proves the theorem in this case.

Assume that A # ev'. As limy,—A™ = ev' it follows that there exists m € N
such that A™ € M, (R;). Hence Apym—1---Ap € M, (Ry) for £ > N. Theorem 1.1

yields that limy_,oo Agman...Ant1 — ewg. Hence

—_

lim Akm+j+N---AN+1 = Ajewo =ew,
k—oo

and the theorem follows in this case too. O
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5 Proof of Theorem 1.2 in the complex case.

Since M, (C) ~ C" it follows that PM,(C) ~ PC". Let d; be the Fubini-Study

metric on PM,,(C). Let A € PM,,(C). Then A : P(C”\l;r\A — PC™ is a holomorphic
map.

Lemma 5.1 Let E € M, (C) be rank one matrix with p(E) > 0, ie. E =
vul, ulv #0. Let O, := {Xx € PC": d(x,V) < r} such that O, N ker £ = 0. Then
E: 0, — {¥}. Assume that Ej, € M,(C)\{0},k € N converges to E. Then there
exists N such that Ey, : O, — O, is a sequence of uniform contractions for k > N,
i.e. d(Epx, Exy) < kd(X,¥) for all X,y € O, some k € (0,1) and k > N. Moreover
there exists € > 0, depending on E, v and € (0,1), such that for each B € PM,,(C)
satisfying d (B, E) < € one has B : O, — O, and L(B) < k.

Proof. Clearly Ex = ¢ if uTx # 0. Hence E : O, — {Vv}. Since @
converges ker E it follows that Ek]OT converges uniformly to E |O,. In particular
:0p — O, for k> M.
Let B € M, (C)\{0}. Then for each x € ]P’C"\kerB we can define the local
distortion of B at %:

d(By,
Mo (g R < L dazy<t A

m

§(B,%x) =: lim sup

<> §<>
et

)

For any Y C PC”\@ let
§(B,Y) := sup §(B,x).
x€y

Recall that a set ) is called convex if any two points x,y € Y can be connected by
a geodesic that completely lies in ). It is a standard fact that if ) C PC™\ker B is
a convex set then

d(Bi, Bj) < 8(B,Y)d(%,y) forallx,y e ).

Clearly §(E, %) = 0 for all x € PC"\ker E. As Ej, — E it follows that limy_ . 6(Ej, %) =
0 for all x € IP’(C"\k/er\E. Use this fact and the fact that O, can be covered by a
finite number of convex balls {y : d(y,x) < r(X)},x € O, to deduce the the first
part of the lemma.
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We now deduce the second part of the lemma. Since O, and ker E closed and
disjoint it follows that d(O,,ker E) = 2a > 0. Hence there exists €; such that
d(O,,ker B) > a if di(B, F) < €. It is not difficult to show that

lim max 0(B,0,)=4E,0,)=0.
N0 B.dy (B.B)<t

Hence for € small enough and di(B, E) < € one has d(BO,, EO,) = d(BO,,4) < r
and L(B) = (B, 0,) < k. O

Corollary 5.2 Let E € M,,(C) be a rank one nonnilpotent matriz and let r >
0,k € (0,1) be given as in Lemma 5.1. Let By € M,(C)\{0} and assume that
dy(By, E) < € for each k € N. Then for X = O, the assumptions of Theorem 3.6
hold.

In what follows we use the concepts of the exterior products AiF™ C F() and the
operators A A € M(Z) (F) induced by A € M,,(F). In matrix theory ApA is called
k —th compound matrix, and its entries are given as the k x k minors of A. For any
X1, ..., Xt € F™ the coordinates of x1 A ... A xi € AFG) are (Z) minors of the n X k
matrix (xj...xy) arranged in the lexicographical order. Note any nonzero vector
x1 A ... AX}, represents a unique subspace X = span(xi, ..., Xx) of dimension &, which
is an element of the Grassmannian Gr(k,n,IF). Then y; A ... A yi represents X if
and only if span(xi, ..., xx) = span(yi, ...,yx). See for example [5] for the properties
of the compound matrices and [3] for a concise survey of mulitilinear algebra used
in this paper.

In particular we use the following facts. Let A, B € M,,(C). Then
(a) ANeAB = ALA N B.

(b) Ax1 A ANAXE = AgA(x1 A AXE). If X1, ..., Xy, spans a k-dimensional invariant
subspace of A then x; A...AXxy is an eigenvector of A A. In particular if xq, ..., xy are
k-linearly independent eigenvectors of A corresponding to the eigenvalues A1, ..., Ag
then x; A ... A X is an eigenvector of ApA corresponding to the eigenvalue Aj...\p.
(c) Let A1,..., A\, be the eigenvalues of A counting with their multiplicities. Then
Aip A, forall 1 <4y < ... <4y < n are all (Z) eigenvalues of AL A.

Proof of Theorem 1.2 in the complex case.

By our assumptions the spectral circle {z : |z| = p(A)} contains exactly one
eigenvalue \ of algebraic multiplicity 1. By considering p(A)~!A we may assume
that 1 is a simple algebraic eigenvalue of A, while other eigenvalues of A are in the
open unit disk. Hence limy_,.c A™ = uv',u'v = 1. Let E := vu'. Lemma 5.1
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yields that there exists € > 0 so that for each B € M,,(C) satisfying dy (B, E‘) < e one
has B : O, — O, and L(B,0O,) < % From the arguments of the proof of Theorem

1.1 it follows that there exists m € N, N € Z, such that d; (AEJrl A;&rm, ) < e for
any k> N.

Note that for & > N we have C}, = Aj..A1 = Cnyy1QnN, where Cp ) =
AkAkfl...Ap_;,_lAp,p < k € N and QO =Tif N =0 and QN = Apn.. Ay if
N > 1. Since A; € GL,(C) for j € N to prove the theorem it is enough to
consider the case N = 0. That is we assume that the sequence A Ak tmo1:Or —
O,,k € N is a sequence of uniform contractions on O,. Corollary 3.2 implies that
limy_ 00 é}:mk+j—1’2 = w; for any X € O, and some w; € O, for j =1,....m.

Assume that Cy, — C € PM,,(C), where C' € M,,(C)\{0}. We claim that

lim Akl A =C= zy/\T, for somey,z € C"\{0}. (5.1)

l—o0

Choose a subsequence {pq},en of {k;}ien such that each p, — (j — 1) is divisible by

m for some j € [1,m] N N. Then Theorem 3.6 yields that lim, . Cgpq = w;z".

Hence C = zy ' where y = A7 .. AJ 1W;, where Ag = I.

To prove the theorem it is enough to show that z € span(u) and y € span(w) for
some fixed w € C"\{0}. This is done by converting the complex matrices to the real
matrices of double dimension, taking the second compounds of the corresponding
matrices and using the results of Theorem 1.2 for the real case.

Recall that any linear transformation of C” to itself represented by a matrix L €
M,(C), L = P++/=1Q, P,Q € M,(R) can be presented by L := (g ]§2> This
is done by representlng any z € C" z=x++/—1y, x,y € R" by z:= (xT,y")T
R2". Then Lz = Lz and L1L2 = L,Ly for any L1, Ly € M,(C). Note that one
dimensional subspace span( ) € C", z # 0 corresponds to the two dimensional

subspace span(z, \/7 z) € R?". Assume that \j,..., A\, are the eigenvalues of L
counted with their multiplicities. It is stralghtforward to show A1, A1, ..., A, A, are
the eigenvalues of L counted with their multiplicities. (For a diagonable L the proof
reduces to the case where L € M;(C).) Moreover if L is rank one nonnilpotent then
L is rank two diagonable.

The assumptions of the theorem yield that Ak € GL2n( ), k € Nand limg_. A =
A. Hence /\QA € GL(Qn)( ) and limg_, o AoAy = Ny A. Since A was rank one non-

nilpotent matrix A is a rank two diagonable matrix. Hence A2 A is a rank one matrix

with the eigenvector @ A /—1u corresponding to the eigenvalue |A|? > 0. Thus we

13



can apply real version Theorem 1.2 for the sequence /\szik, k € N. Hence

—

klim NoAp... \g Ay = F, F = (uA v—1u)sT, for somes e ]R(Q;)\{O}.
— 00

o —

Compare that with (5.1) to deduce that /\szva — F. Equivalently /\ngyvT = aF for

some a # 0. This shows that first that z € span(u). Second that y A /=1y = s.
Since s is fixed the one dimensional subspace span(y) does not depend on the con-
vergent subsequence Cy,,l € N. Thus we can choose w to be equal to y for one
convergent subsequence Cy,,l € N. O

6 Finer results

The aim of this section is to consider the convergence of Ag...A1x¢ under the as-
sumptions of Theorems 1.1 and 1.2 when w'xy = 0. In this case we need to pass
to the exterior products. In this section we assume that the vector and operator
norms on F"” and M, (F) for F = R, C are the Iy norms || - ||2.

To extend the results of Theorem 1.1 one needs to recall the notions of strictly
totally positive matrices and (discrete) Tchebyshev systems. See for example [5]
or [10] for the notion of strictly totally positive matrices and [10] for the classical
notion of Tchebyshev systems. We call x1,...,x, € R" a p-Tchebyshev system if
x; € Ry, x3 Axg € Rgf), X1 A LLAXy € RS_”). A vector x € R" is said to have
exactly k-changes of signs, denoted by S(x) = k, if by replacing any zero coordinate
of x by a positive or negative number one obtains a vector y whose coordinates have
exactly k changes of signs. It is straightforward to show that if S(x) =k <n —1,
the there exists a k-Tchebyshev system xi, ..., X such that x; = +x.

Recall that A € M, (R) is called strictly totally positive of order p € [1,n] NZ
(STP,) if N\fA € M(Z)(]RJF) for k = 1,...,p. (Here AfA := A.) That is A and
all its £ < p compounds are positive. The spectrum of A spec A is of the form
{M, s Apt Uspece 1 A. Here A\; > ... > X\, > 0 are p positive real numbers and
spec ,;1 1A C {z € C: |z] < A} ifp <n. (spec, 1A =0.) Each \; is a simple
root of det (zI — A) for ¢ = 1,...,p. Furthermore one can choose the signs of the
eigenvectors of A and AT corresponding to A1, ..., Ay such that they form Tchebyshev
systems:

()

Au; = g, |jug|| =1,S(w) =i—1,i=1,...,p,u; € R:‘_,...,ul AN..Augy € R+p ,
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()

ATVZ‘ =\Nvi, S(vi)=i—1,i=1,....,p, Vi€ RZ’_, s VIA LAYV, E RJF ,
viw =08, i,j=1,..,p. (6.1)

Theorem 6.1 Let A, € M, (R4 ),k € N be a sequence of ST P, matrices which
converge to a STP, matrix A € My, (Ry) for some p € [2,n] satisfying (6.1). Then
there exists a p-Tchebyshev system w1, ..., wy, such that the following conditions hold.
Let Cp, = Ay...A1 for k € N. Then

. Air1(Cy) )
1 ——=0,72=1,...p—1 6.2
R W(oA) ,i=1,.,p—1, (6.2)
A )

lim # —w A AW A LAWY, =1, ., (6.3)

k=00 Hj:l Aj(Ck)
p

Cr =D M(Cr)uikwiy + o[ \p(Ch)))s Wiwsx = b, (6.4)
i1

Cruig = Ni(Co)uig, |[wigll =1, Cfwip = Ni(Cr)wig, (6.5)

(1)

WA Ay, Wig /oo AWy € R+ R

. . T ..
lim v, =w;, lim w;;, =w;, w;u; =405, i,7=1,...,p. (6.6)
k—o00 k—o0

Proof. Assume first the assumptions of Theorem 1.1. Let uy i, wy 1, be as above.
Assume furthermore let |[ujx|| = 1. From the proof of Theorem 1.1 it follows
that up, — u; = u. Let E be defined by (1.2). Then p(EF) = wlu. Hence

21.(Cr) wl Hence (6.3) holds for p = 1. The proof of Theorem 1.1 yields

u
N _
[1CkII [l {[wl]
T

that one has the equality (6.4) for p = 1. Here wi = (wu) 'w.

We now show the theorem for the case p = 2. Let M(n)(R+) 3 By := N Ay —
2
B = noA € My (Ry). As HERL w71 (1.2) yields (6.2) for p = 2. Tet
2 v
Dy := By...B1,k € N. Clearly \(Dg) = M (Ck)A2(Ck) and the corresponding

(3)

Perron eigenvectors of Dy, DkT are upp AUz, Wip A wap € Ri?”. Then Theorem
1.1 applied to By, k € N yields that

Span(ul,ka u2,k> — U2 = Span(ul, UQ) c GI‘<27 n, R),
Span(wl,k7W2,k) — Wy € Gr(2,n,R).

As wlugy =0, |[ugg|| =1 and wy , — wy it follows that span(ug ) — span(uy).
Asujp Augy € Rgf) it follows that up; — ug. Clearly wi € Wa. As w;f’kuLk =
0, W;F U2k = 1 it follows that wy ) — wo, which is the unique vector in Wp

15



T (3)

satisfying the conditions wyu; = 0, W2Tu2 =1. Sowi Awgp — w1 Awg € R}
which is the positive eigenvector of the following rank one matrix

)

u; A UQ(Wl VAN WQ)T . DkT
= 11 .
[y Aaa] [[wi Awal| - koo || D]

FEy =

The above equality is equivalent to (6.3) for i = 2.

Recall that all the eigenvalues of Dy, are of the form Ay, A, p € spec (Cy), where
either A # p or A = p is a multiple eigenvalue of Dy. Thus if |A| > |u| then
A2(Dg) > |p| unless A = A\ (Dg), p = A2(Ck). Combine all these facts to obtain
(6.4) for p = 2.

Assume now that p > 2. By considering the compound matrices A; A, k € N for
i =3,...,p we deduce the rest of theorem as in the case p = 2. O

Assume the assumptions of Theorem 6.1. Let z € R™ and S(z) = p — 1. Since

+z can be completed to a p-Tchebyshev zy, ..., z, it follows that it is impossible that
T

w;z =0 for i =1,...,p. Thus one can estimate the behavior of C/’k\z as k — oo.

Theorem 6.2 Let Ay € GL,(C),k € N. Assume that for k > N the following
conditions satisfied: For p € [1,n] NZ there exists o € (0,1) and:
(a) biorthonormal sets Xq k, ..., Xp g, Y1k, - Ypk € C" such that
Hxi,kH = 17 yzkxj,k = 5@]7 ’Laj = 17 Ry 2 k> N7
dm xp =g, fJuif] =1, m yix = v, viwg = dij, i, =1,...,p.

() Mk, s Ap e € spec (Ay) are simple roots of the characteristic polynomial of Ay,
such that

T .
Akxi,k = )\kai’k, Ak Yik = )\i’ky,-7k, |)\i,k > Ofp‘i—&-l,k‘; 1= 1, ey D, for any k> N,

where A\py1 1 is any eigenvalue of Ay, different from Ay g, ..., \p k. Furthermore, there
exists an operator norm ||| - ||| : M (C) — [0, 00) such that

p
1Ak =D Nisxinyislll < aldpil, k>N (6.7)
=1

Let C, := Ap...A1,k € N. Then there exists Ny > N that for k > Ny the
following conditions hold. Cy, has p simple eigenvalues A1 (Cy), ..., \p(C)) such that
A (Cr)| > ... > |M\p(Ck)|. It is possible to choose the corresponding eigenvectors of
C’k,C’E as Uy j, ..., Up g, Wi g, ..., Wp i, Such that equalities (6.2) - (6.6) hold.
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Proof. We first consider the case p = 1. By considering the matrices )\i}CAk
it is enough to prove the above theorem in the case A;; = 1 for £ > N. Let
Ry == Ap — x1y;,, for k > N. The spectral decomposition of A yields and (6.7)
yields ’

Rpxi = nglvk =0, |[||Rkll| <, k> N. (6.8)

In order to use the arguments of the proof of Theorem 1.1 it is enough to show that
for each m > 1 there exists K(m) such that if j > K(m)

1
[ Ajam-Ajrr —mavi ||| < |a™ + oo (6.9)
Consider the product

T T
Ajpm-Aj1 = (x17j+my1’j+m + Rj+m)...(x17j+1y17j+1 + Rjy1). (6.10)
Expand this product to 2™ terms. The first term in this product is

j+m—1

T T . T . . T
X1j4mY 1 jtm-X1j+1¥1 541 = ( H Y11 X10)X1j+mY 1541
i=j+1

Hence it converges to u;vi as j — oo. Consider the last term in (6.10). Since ||| - |||
is an operator norm

1R B[l < [ Rjpml[]--[[| Ry l] < ™.

It is left to show that that all other 2™ — 2 terms in (6.10) tend to zero. Each of
this term contains either a factor XjHHijHHR]-H or Rj+i+1xj+iYJT+i' Use (6.8)
to deduce

T _ T
Xjtit1yjit1 i = Xjrit1 (Vj+ie1 — Yi+i) Rjvis
T _ ) T
Rjtiv1Xj+i¥jri = Rjviv1(Xj+i — Xjrit1)Yj -

If a term contains more then one of such factors choose the above modification at
one factor exactly. Now estimate the norm of this term by taking the products of
the norms of m factors. It now follows that each of this terms tends to zero. Hence
(6.9) follows. Now we can repeat the arguments of the proof of Theorem 1.2 to
prove the theorem for p = 1.

To prove the theorem for p > 1 we consider the wedge products A; Ag, k € N for
i € [2,p]. The spectral analysis of A; Ay implies that A;Ag, k € N satisfy the above
conditions for p = 1. Use the arguments of the proof of Theorem 6.1 to deduce the
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theorem in this case. O

Assume that R € M,,(C) has a spectral radius p(R) € [0,1) . It is well known

that for any o € (p(R),1) there exists an operator norm ||| - ||| : M, (C) — [0, 00)
such that |||R]|| < a.

Corollary 6.3 Let Ay € GL,(C),k € N. Assume that limg_,,o Ay = A €
M, (C). Suppose furthermore that Ai,...,\, are p simple roots of det (zI — A),
where p(A) = |A1] > ... > |A\p| > 0. Assume furthermore that any other eigenvalue

A € spec A\{\1, ..., \p} satisfies |\| < |\p|. Then Ay, k € N satisfy the assumptions
of Theorem 6.2, where Au; = \ju;, i =1,...,p.
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