A. Observe that for any system \((e) x' = Ax \),
we have \(x' = A e A_{-1} x_{-1} A_{-1} x_0 \). Hence \(A_{0} + p = A_{-1} \).

(1) \(x' = B^J x_0 \). (Take a few examples \(p = 1, 2, 3 \)).
Hence (2) \(x' = A_{0} A_{-1} B^J x_0 \) for \(r = 1, \ldots, p - 1 \).

(a) (2) Hence (0) is stable \(\Rightarrow (1) \) is stable, i.e., \(\rho(B) < 1 \),
which is equivalent to all eigenvalues of \(B \) in the unit disk \(|z| < 1 \). It is equivalent to \(\lim_{j \to \infty} B^j = 0 \). (3)

Suppose (3) holds. Then \(\lim_{j \to \infty} A_{0} A_{-1} \ldots A_{-1} B^j = 0 \)
for \(r = 1, \ldots, p - 1 \). Hence (0) is stable.

(b) Suppose that for each \(x_0 \), \(\lim_{j \to \infty} x_j = 0 \).

By choosing \(x_0 = 0 \), we deduce that (0) is stable convergent if \(\lim_{j \to \infty} A_{0} A_{-1} \ldots A_{-1} = C \).

By taking \(l = p^j \), we get \(A_{p^0} A_{p^{-1}} \ldots A_{1} = B^J \). (4)
Hence (4) \(\lim_{j \to \infty} B^J = C \). i.e., \(B \) is power convergent.

As from (3) + (4), we deduce that \(A_{1} = C \).

Use (2) to deduce that \(\lim_{j \to \infty} A_{p^j} A_{p^{j-1}} \ldots A_{1} = C \).

Implying \(C = A_{0} A_{-1} C A_{-1} C \), continuing in the same manner deduce that recurrent conditions for (0) to be convergent is \(j \to \infty \).
(c) (4) yields that \((0) \) is power bounded. Observe that \(2B^{k} \) is a bounded sequence.

Hence, \(\text{rec. & suff. conditions for power boundedness of } (0) \) is that \(B \) is power bounded.

\[A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \] is \(2^{2} - 4 \text{ z } + 4 = (2 - z)^{2} \)

Since \(A \) is not \(2I \), \(A \) is not diagonalizable. Hence the minimal pol of \(A \) is \((2 - z)^{2} \). \(A \) has three components

\[Z_{1}, Z_{2} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} f(A) = f(2) Z_{1} + f'(2) Z_{2} = f(2) Z_{1} + f'(2) Z_{2} \]

\[Z_{1} = \gamma_{1}(A), \quad Z_{2} = \gamma_{2}(A), \]

\[\gamma_{1}(z) = 1, \quad \gamma_{1}'(z) = 0, \quad \gamma_{2}(z) = 0, \quad \gamma_{2}'(z) = 1 \]

Recall \(\gamma_{j}(z) = a_{j} + b_{j}(z-2) \)

\[\gamma_{1}(z) = 1 \Rightarrow a_{1} = 1, \quad \gamma_{1}'(z) = b_{1} = 0 \Rightarrow \gamma_{1} = 1 \]

\[\gamma_{2}(z) = a_{2} = 0, \quad \gamma_{2}'(z) = b_{2} = 1 \Rightarrow \gamma_{2} = z - 2 \]

\[Z_{1} = I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Z_{2} = A - 2I_{2} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \]

\[A^{100} = f(A) = z^{100} = 2^{100}, \quad f'(z) = 100 z^{99} \]

\[f'(z) = 100 z^{99} \Rightarrow A^{100} = 2^{100} Z_{1} + 100 z^{99} Z_{2} = \]

\[= 2^{99} \begin{bmatrix} z & 0 \\ 0 & z \end{bmatrix} + \begin{bmatrix} -100 & 100 \\ -100 & 100 \end{bmatrix} = 2^{99} \begin{bmatrix} -98 & 100 \\ -100 & 102 \end{bmatrix} \]

\[e^{At} = f(A), \quad f(z) = e^{zt}, \quad f'(z) = z e^{zt}, \quad f(z) = e^{zt}, \quad f'(z) = z e^{zt} \]

\[e^{At} = e^{zt} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = e^{zt} \begin{bmatrix} 1 & 1 \\ -t & 1 + t \end{bmatrix}. \]
2. charpol. $\hat{A} = \begin{bmatrix} 0 & 2 & -1 \\ 0 & -1 & 1 \\ -2 & 2 & 2 \end{bmatrix}$ \Rightarrow $z(z^2 - 2) = z^2(z - 1)$

\[\text{dim ker } A = \text{rank } A \leq A \begin{bmatrix} 0 & 1 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + A \]

So A is rank $A = 2$. Hence the dimension of the eigenspace corresponding to 2 is 1. Thus the JCF of A has 2×2 block $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Thus minpol of A = char pol of A $\lambda_1 = 2$ multiplicity 2 $\lambda_1 = 1$ multiplicity 1.

\[f(A) = f(0)I + f(0)A + f(1)A^2 \]

\[Z_i = \gamma_i(A), \quad Z_{21} = \gamma_{21}(A) \]

\[\gamma_{11} = (a_1 + b_1 z)(z - 1), \quad \gamma_{12} = (a_2 + b_2 z)(z - 1) \]

\[\gamma_{21} = z^2 z \]

\[\gamma_{11}(0) = 1, \quad \gamma_{11}'(0) = 0, \quad \gamma_{11}(1) = 0 \]

\[a_1 = a_1 = -1, \quad b_1 = b_1 + a_1, \quad b_2 = a_2 = -1 \]

\[\gamma_{12}(0) = 0, \quad a_2 = 0, \quad a_3 = 0 \]

\[\gamma_{12} = z(1-z) = z - z^2 \]

\[\gamma_{12}(1) = 0 \]

\[\gamma_{21}(1) = 1 \Rightarrow a_3 = 1 \]

\[\gamma_{21}(0) = \gamma_{21}'(0) = 0 \]

\[\gamma_{21} = z^2 \]

\[A^2 = \begin{bmatrix} 0 & 2 & -1 \\ 0 & -1 & 1 \\ -2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[Z_{11} = I - A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \]

\[Z_{21} = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[Z_{21} = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[Z_{21} = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[Z_{21} = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
So use (1):

\[A^{100} = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \]

\[f(x) = x^{100} \]

\[f(0) = 0, \quad f'(0) = 0, \quad f(1) = 1 \]

\[e^{At} = z_{11} + t z_{12} + e^t z_{21} \]

\[f(x) = e^{xt}, \quad f'(x) = te^{xt} \]

\[f(0) = 1, \quad f'(0) = t, \quad f(1) = e^t \]

\[A = \begin{bmatrix} 2 & 1 & -1 & 0 \\ 0 & 5 & -6 & -1 \\ 0 & 3 & -4 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \]

\[\det (2I - A) = (2 - 2)(2^2 - 2 - 2)(2 + 1) = (2 - 2)(2 - 2)(2 + 1) = (2 - 2)^2(2 + 1), \quad \xi_1 = 2, \quad \xi_2 = -1 \]

\[\text{rank} (A - 2I) = \text{rank} \left(\begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 3 & -6 & -1 \\ 0 & 3 & -6 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

So \(A \) has one linearly independent eigenvector corresponding to 2.

The Jordan blocks of \(A \) correspond to \(2^{2} \), \[
\begin{bmatrix}
2 & 1 \\
0 & 2
\end{bmatrix}
\]

So \((2^{2}) \rightarrow \text{nullity} + 4 \) divides \(\min p(x) \) of \(A \).

\[\text{rank} (A + I) = 3 \]

\[\left(\begin{bmatrix} 3 & 1 & -1 & 0 \\ 0 & 6 & -6 & -1 \\ 0 & 3 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) \sim \left(\begin{bmatrix} 3 & 1 & -1 & 0 \\ 0 & 6 & -6 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) \]

\[\text{rank} (A + I) = 2 \quad \text{null} (A + I) = 4 - 2 = 2, \quad A \text{ has two} \]

linearly independent eigenvectors corresponding to \(\lambda = -1 \).

Hence, there are two Jordan blocks of order 1 corresponding to \(\lambda = -1 \). The JCF of \(A \) is
\[
\begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\]
\[\text{HNn pol of } A \text{ is } \psi(t) = (t-A)^2 \text{ (or) } \]

So \[\psi(A) = \psi(t)\bigg|_{t=A} = \psi'(t) \bigg|_{t=A} = \psi''(t) \bigg|_{t=A} \]

\[\psi_{11} \text{ satisfies } \psi_{11}(2) = 1, \psi_{11}'(2) = 0, \psi_{11}(-1) = 0 \]

\[\psi_{12} \quad \psi_{12}(2) = 0, \psi_{12}'(2) = 1, \psi_{12}(-1) = 0 \]

\[\psi_{21} \quad \psi_{21}(2) = \psi_{21}'(2) = 0, \psi_{21}(-1) = 1 \]

So \[\psi_{i} = (a_i + b_i (t-2)) (t+1) \quad i=1,2 \]

\[\psi_{21} = (t-2) \]

Similar computations yield \[\psi_{12} = \frac{1}{3} (t+1) (2-t) \]

\[\psi_{11} = \frac{1}{q} (3 - (t-2)) (t+1) = \frac{1}{q} (5+t) (2-t) \]

Now compute \[Z_{11} = \psi_{11}(A) = \frac{1}{q} (5I_2 - 4A + A^2) \]

\[Z_{21} = \frac{1}{q} (A - 2I)^2 = \frac{1}{q} (A^2 - 4A + 4I) \]

\[Z_{22} = \frac{1}{3} (A + I) (A - 2I) = \frac{1}{3} (A^2 - A - I) \]

Now use (1) for \[f(t) = e^{100t} e^{2t} \]

Note \(A \in \mathbb{R}^{n \times n} \) is stochastic if \(A \geq 0 \)

(i.e., all entries are nonnegative) and \(A^T = A \)

when \(A = (1, -1)^T \).

So \(A^k \geq 0 \) and \(A^k \cdot 1 = 1 \cdot 1 = 1 \)

Hence \(A^k \) is stochastic for \(k \geq 2 \).
2. Since A^k is stochastic, each entry of A^k is in $[0,1)$. Hence A is power bounded.

3. $A^k = 1, 1\cdot 1, \ldots, 1$ eigenvalue of A with the corresponding eigenvector 1.

4. Since A is power bounded, Theorem 4.5, p. 79, of Math. 425 notes part 3, shows that each Jordan block corresponding to eigenvalue 1 is of order 1.

5. Part 3 of Theorem 4.6 yields that $|\lambda| \leq 1$.

6. Part 2 of Theorem 4.6 yields that if $\lim_{k \to \infty} A^k = B$, then for each eigenvalue λ of A, if $|\lambda| \neq 1$, we must have $|\lambda| < 1$.