Problem 1. Consider the matrix

\[
A = \begin{bmatrix}
-2 & -4 \\
1 & -6
\end{bmatrix}
\]

a. Find the characteristic polynomial.
b. Find the eigenvalues and corresponding linear independent eigenvectors.
c. Find the general solution to the system of differential equations \(\frac{dx}{dt} = Ax \).

Hints for solution: \(\det(A - zI) = (-2 - z)(-6 - z) + 4 = z^2 + 8z + 16 = (z + 4)^2 \).

There one double eigenvalue \(\lambda_1 = \lambda_2 = -4 \).

To find a basis in the eigenvector space we need to find a basis in the null space of \(A + 4I \). It is a vector \((2, 1)^\top\).

Since there is only one eigenvalue and one independent eigenvector, the Jordan canonical form of \(A \) is \[
\begin{bmatrix}
-4 & 1 \\
0 & -4
\end{bmatrix}.
\]

Hence the minimal polynomial of \(A \) is equal to the characteristic polynomial of \(A \): \(\psi(z) = (z + 4)^2 \).

The general solution of system of differential equations is \(e^{At}x_0 \).

Since \(\psi(z) = (z + 4)^2 \), there are two components of \(A \): \(Z_{10}, Z_{11} \).

To find them we need to find the corresponding two Lagrange-Sylvester polynomials, see pages 67-68 of my notes.

\(Z_{10} = \phi_{10}(A), Z_{11} = \phi_{11}(A) \). The polynomial \(\phi_{10}, \phi_{11} \) are of degree 1 at most, (degree of the minimal polynomial minus one). They are characterized by the following data:

\(\phi_{10}(-4) = 1, \phi_{10}'(-4) = 0 \). So \(\phi_{10} = a(z + 4) + b \). Hence \(1 = \phi_{10}(-4) = b \). \(0 = \phi_{10}'(-4) = a \).

a. So \(\phi_{10} = 1 \) and \(Z_{10} = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

Since \(\phi_{11}(-4) = 0 \) it follows that \(\phi_{11}(z) = c(z + 4) \). \(\phi_{11}'(-4) = 1 \Rightarrow c = 1 \). So \(\phi_{11}(z) = z + 4 \) and \(Z_{11} = \phi_{11}(A) = A + 4I = A = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix} \). (4.14) implies \(e^{At} = e^{-4t}Z_{10} + te^{-4t}Z_{11} = e^{-4t}\begin{bmatrix} 1 + 2t & -4t \\ t & 1 - 2t \end{bmatrix} \). So \(x(t) = e^{-4t}\begin{bmatrix} 1 + 2t & -4t \\ t & 1 - 2t \end{bmatrix}(c_1, c_2)^\top \).

Problem 2. Let \(A \in \mathbb{C}^{n \times n} \). Assume that \(A \) has only two linearly independent eigenvectors.

1. Show that \(A \) has a has at most two distinct eigenvalues.

2. Assume that \(n = 3 \). Write down all possible Jordan canonical forms of \(A \).

3. Let \(n = 3 \) and assume that \(A^2 \) is diagonalizable. Suppose that the trace of \(A \) is equal to 3. What is the Jordan canonical form of \(A \)?

Hints for solution: Each Jordan block \(J_k(\lambda) \in \mathbb{C}^{k \times k} \), see page 48 of Math 425 Notes, has exactly one linearly independent eigenvalue. Hence the number of linearly independent eigenvectors of \(A \) is the number of Jordan blocks in the Jordan canonical form (JCF) of \(A \). Hence the given \(A \) has two Jordan blocks in its JCF. Each \(J_k(\lambda) \) has one eigenvalues of multiplicity \(k \). Hence the JCF of \(A \) has at most two distinct eigenvalues, i.e. \(A \) has has at most two distinct eigenvalues.
Suppose that \(n = 3 \). As \(A \) has two Jordan blocks one must be of order 2 and one of order 1. Hence the Jordan canonical form if \(A \) is
\[
B = \begin{bmatrix}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \mu
\end{bmatrix}.
\]

Note that \(A^2 \) is similar to \(B^2 = \begin{bmatrix}
\lambda^2 & 2\lambda & 0 \\
0 & \lambda^2 & 0 \\
0 & 0 & \mu^2
\end{bmatrix} \). It is easy to show that \(C := \begin{bmatrix}
\lambda^2 & 2\lambda \\
0 & \lambda^2
\end{bmatrix} \) has only one eigenvalue \(\lambda^2 \). So \(C \) is diagonalizable, if and only if it similar to a diagonal matrix \(\lambda^2 I_2 \). Any matrix similar to \(cI_2 \) is of the form \(cI_2 \). Hence \(C \) diagonalizable if and only if \(\lambda = 0 \). Now the trace of \(A \) is \(2\lambda + \mu = \mu = 3 \). Hence the JCF of \(A \) is
\[
B = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{bmatrix}.
\]

Problem 3. Let \(A = \begin{bmatrix}
3 & -1 & 1 \\
7 & -5 & 1 \\
6 & -6 & 2
\end{bmatrix} \)

(a) Show that the characteristic and the minimal polynomial of \(A \) are equal to \((z-2)^2(z+4) \).
(b) Find the components of \(A \).
(c) Find the formula for \(A^l \) for any integer \(l \) using the components of \(A \).

Hints for solution:
Expand \(\det(zI - A) \) be the first row and show that it is equal to \((z-2)^2(z+4) \). The minimal polynomial of \(A \) is either \((z-2)(z+4)\) or \((z-2)^2(z+4)\). Show that the product \((A - 2I)(A + 4I) \neq 0 \). For example multiply the first row of \(A - 2I \) by \((-1, -1, 1)\) time the first column of \(A + 4I \) to see that \((1, 1, 1)\) entry of \((A - 2I)(A + 4I) \) different from 0. Hence the minimal polynomial of \(A \) is \((z-2)^2(z+4) \).

There are 3 \(Z \) components of \(A \): \(Z_{10}, Z_{11} \) corresponding to \(z = 2 \) and \(Z_{20} \) corresponding to \(z = -4 \). So \(Z_{10} = \phi_{10}(A), Z_{11} = \phi_{11}(A), Z_{20} = \phi_{20}(A) \). The 3 polynomials \(\phi_{10}, \phi_{11}, \phi_{20} \) are of degree 2 at most.

\(\phi_{10}(2) = 1, \phi_{10}'(2) = 0, \phi_{10}(-4) = 0 \). Hence \(\phi_{10} = (z + 4)(a(z - 2) + b) \). \(1 = \phi_{10}(2) = 6b \to b = \frac{1}{6} \). \(0 = \phi_{10}'(2) = b + 6a \to a = -\frac{1}{36} \). So \(\phi_{10} = \frac{1}{36}(z + 4)(-z + 8) \). So \(Z_{10} = \frac{1}{36}(A + 4I)(-A + 8I) \).

\(\phi_{11}(2) = 0, \phi_{11}'(2) = 1, \phi_{11}(-4) = 0 \). Hence \(\phi_{10} = c(z - 2)(z + 4) \).

\[
1 = \phi_{11}'(2) = 6c \Rightarrow c = \frac{1}{6} \Rightarrow \phi_{11}(z) = \frac{1}{6}(z - 2)(z + 4) \Rightarrow Z_{11} = \frac{1}{6}(A - 2I)(A + 4I).
\]

\(\phi_{20}(2) = 0, \phi_{20}'(2) = 0, \phi_{20}(-4) = 1 \). So \(\phi_{20}(z) = d(z - 2)^2 \). \(1 = \phi_{20}(-4) = d36 \). \(\phi_{20} = \frac{1}{36}(z - 2)^2, Z_{20} = \frac{1}{36}(A - 2I)^2 \).

Use formula (4.3) on page with \(f(z) = z^l \) to deduce that \(A^l = 2^l Z_{10} + l^2 - 1 Z_{11} + (-4)^l Z_{20} \).

Problem 5. Suppose that \(A \in \mathbb{C}^{n \times n} \) and the minimal polynomial of \(A \) is \((z - \alpha)(z - \beta)^2(z - \gamma)^3 \) where \(\alpha, \beta, \gamma \) are three distinct complex numbers.

(a) Write down the general form of the characteristic polynomial of \(A \).
(b) What is the condition for \(A \) to be power stable, i.e. \(\lim_{l \to \infty} A^l = 0 \).
(c) What is the condition for \(A \) to be power convergent, i.e. \(\lim_{l \to \infty} A^l = B \).

Hints for solution:
\[\det(zI - A) = (z - \alpha)^a(z - \beta)^b(z - \gamma)^c \] where \(a, b, c \) are integers satisfying \(a \geq 1, b \geq 2, c \geq 3 \).

Use Theorem 4.5, page 70, to deduce. \(A \) is power stable if and only if \(|\alpha| < 1, |\beta| < 1, |\gamma| < 1 \). \(A \) is power convergent if either \(|\alpha| < 1 \) or \(\alpha = 1 \). (Note that all the Jordan blocks corresponding to \(\alpha \) are of order 1.) Since there is a Jordan block of order 2 corresponding to \(\beta \)
Problem 6. Let \(T : V \to V \) be a linear transformation on a finite dimensional vector space \(V \) over a field \(F \).

a. Let \(U \) be a nontrivial subspace of \(V \), i.e. \(0 < \dim U < \dim V \). Define the quotient space \(\tilde{V} := V/U \) and show that it is a vector space over \(F \) of dimension \(\dim V - \dim U \).

b. Suppose that \(U \) is \(T \)-invariant. Show that \(T \) induces a linear transformation \(\bar{T} : \tilde{V} \to \tilde{V} \).

c. Let \(\psi, \tilde{\psi} \) be the minimal polynomials of \(T, \bar{T} \) respectively. Show that \(\psi \) divides \(\tilde{\psi} \).

Hints for solution: Definition: A quotient space \(\tilde{V} := V/U \) is the set of all cosets \([x] := x + U = \{y \in V : y - x \in U\}\) for any \(x \in V \). If \(\{u_1, \ldots, u_m\} \) is a basis for \(U \) and \(\{v_1, \ldots, v_n\} \) a basis for \(V \) then \([u_{m+1}], \ldots, [u_n]\) is a basis of \(V/U \). Hence \(\dim V/U = \dim V - \dim U \).

Suppose that \(TU \subseteq U \), i.e. \(U \) is invariant under \(T \). Then \(T[x] = T(x + U) = Tx + TU \subseteq Tx + U \). So \([Tx]\) is well defined, i.e. \([Tx] = [Ty]\) for any \(y \in x + U \). Hence \(T \) induces an linear operator on \(V/U \). Define this operator as \(\bar{T} : \tilde{V} \to \tilde{V} \). Since \(\psi(T) = 0 \) it follows that \(\tilde{\psi} = 0 \). Hence the minimal polynomial of \(\bar{T} \) must divide \(\psi \).

Problem 7.

1. Let \(B = [b_{ij}]_{i,j=1}^{n} \in \mathbb{R}^{n \times n} \) be a symmetric matrix. Show that \(\langle x, y \rangle := y^\top B x \) is an inner product on \(\mathbb{R}^n \) if and only if \(B \) is positive definite.

2. \(A \in \mathbb{R}^{n \times n} \). Is \(B = A^\top A \) nonnegative definite? When \(A \) is positive definite? Justify.

3. Let \(A = [a_{ij}]_{i,j=1}^{n} \in \mathbb{R}^{n \times n} \). Assume that \(a_{ij} \in \{0, 2\} \) for \(i, j = 1, \ldots, n \) and \(n \geq 2 \).

Show that \(|\det A| \leq 2^n n^2 \). Can equality hold for some matrix \(A \)?

Hints for solution: Clearly \(y^\top B x \) is a bilinear form for an \(B \in \mathbb{R}^{n \times n} \). If \(B \) is symmetric then \(\langle x, y \rangle = y^\top B x = (y^\top B x)^\top = x^\top B^\top y = x^\top By = \langle x, y \rangle \) is symmetric. Then \(\langle x, x \rangle > 0 \) for any \(x \neq 0 \) if and only if \(x^\top \) \(x > 0 \) for \(x \neq 0 \), i.e. \(B \) is positive definite.

\(B = A^\top A \Rightarrow x^\top A^\top A x = (Ax)^\top (Ax) \geq 0 \). Hence \(B \) is nonnegative definite. \(B \) is positive definite yields that \(Ax = 0 \iff x = 0 \). So the columns of \(A \) are linearly independent, i.e. \(\text{rank } A = n \).

Hadamard’s inequality, page 13 of Math 425 notes, yields that \(|\det A| \) does not exceed the products of the norms of all the columns of \(A \). Since \(a_{ij} \in \{0, 2\} \) the norm of each column is at most \(\sqrt{1 + 4 + \ldots + 4} = \sqrt{4n} = 2\sqrt{n} \). So \(|\det A| \leq (2\sqrt{n})^n = 2^n n^2 \). Equality will hold if and only if the columns are orthogonal to each other. This is impossible since all the columns are positive.

Problem 8. Let \(B = [b_{ij}]_{i,j=1}^{n} \in \mathbb{R}^{n \times n} \) be a real symmetric matrix. Denote by \(A = [a_{ij}]_{i,j=1}^{n-1} \) the real symmetric matrix obtained from \(B \) by deleting the \(j \)-th row and column.

1. Show the Cauchy interlacing inequalities

\[\lambda_i(B) \geq \lambda_i(A) \geq \lambda_{i+1}(B), \quad \text{for } i = 1, \ldots, n-1. \]

2. Show that inequality \(\lambda_1(B) + \lambda_n(A) \leq \lambda_1(A) + b_{jj} \).

Hints for solution: Note that if \(U \) is a subspace of \(\mathbb{R}^n \) orthogonal to \(e_j = (\delta_{1j}, \ldots, \delta_{nj})^\top \), i.e. each vector \(x = (x_1, \ldots, x_n) \) satisfies \(x_i \) then by letting \(y = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)^\top \in \mathbb{R}^{n-1} \) we get \(x^\top B x = y^\top A y \). Theorem 2.36, page 21 yields

\[\lambda_i(B) = \max_{U \subset \mathbb{R}^n, \dim U = i} \min_{0 \neq x \in U} \frac{x^\top B x}{x^\top x} \geq \max_{V \subset \mathbb{R}^{n-1}, \dim V = i} \min_{0 \neq y \in V} \frac{x^\top B x}{x^\top x} = \lambda_i(A). \]

Consider the following equalities and inequalities

\[-\lambda_{n-k+1}(B) = \lambda_k(-B) \geq \lambda_k(-A) = -\lambda_{n-1-k+1}(A) \] to deduce \(\lambda_i(A) \geq \lambda_{i+1}(B) \).
Note that trace $B = b_{11} + \ldots + b_{nn} = \lambda_1(B) + \ldots + \lambda_n(B)$, trace $A = a_{11} + \ldots + a_{(n-1)(n-1)} = \lambda_1(A) + \ldots + \lambda_n(A)$. Also trace B is trace A plus b_{jj}. So $\sum_{k=1}^n \lambda_k(B) = b_{jj} + \sum_{k=1}^{n-1} \lambda_k(A)$. Hence

$$\lambda_1(B) + \lambda_n(B) - (\lambda_1(A) + b_{jj}) = \sum_{k=2}^{n-1} (\lambda_k(A) - \lambda_k(B)) \leq 0.$$

Problem 9. Let $A = [a_{ij}]_{i,j=1}^{n} \in \mathbb{R}^{m \times n}$. Recall that the singular value decomposition of A is given as $A = U \Sigma V^\top$, where $U \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with the nonnegative diagonal entries $\sigma_1(A) \geq \sigma_2(A) \geq \ldots$, which are called the singular values of A. Show

1. $\sigma_1(A) = \max_{\|x\| = 1} \frac{\|Ax\|}{\|x\|}$. Here $\|x\| = \sqrt{x^\top x}$. **Hint:** $\|Ax\|^2 = x^\top A^\top Ax$.

2. Assume that the absolute value of each entry of A is bounded above by a, i.e. $|a_{ij}| \leq a$ for all i, j. Show that $\sigma_1(A) \leq a\sqrt{mn}$. Give an example of A, for which equality holds. **Hint:** Use part 1 and the Cauchy-Schwarz inequality to estimate $|(Ax)_i|$.

3. Let A^\dagger be the Moore-Penrose inverse of A. Assume that rank $A = k$. What is the formula of $\sigma_1(A^\dagger)$ in terms of $\sigma_1(A), \ldots, \sigma_k(A)$? (Justify !)

Hints for solution: The maximum characterization of the the first eigenvalue of $B = A^\top A$, page 232 of Math 320 notes, yields that $\lambda_1(B) = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. Here $\|x\| = \sqrt{x^\top x}$, where x^\top is the $i-$th row of A. Since the absolute value of each element of A is bounded above by a it follows that $\|u_i\| \leq \sqrt{a^2 + \ldots + a^2} = a\sqrt{n}$. Hence $\|Ax\| = \sqrt{(Ax)^2_1 + \ldots + (Ax)^2_m} \leq a\sqrt{n} \|x\|$. The maximal characterization of $\sigma_1(A)$ yields $\sigma_1(A) \leq a\sqrt{mn}$. Take a matrix A whose all entries are equal to a. It is a rank one matrix. $B = A^\top A$ is a rank one matrix with trace mna. B has only positive eigenvalue, which is equal to the trace of B. So $\sigma_1(A)^2 = \lambda_1(B) = mna$.

The reduced SVD of A is $A = U_r \Sigma_r V_r^\top$, see (2.2) page 43 of Math 425 notes. Here Σ_r is the diagonal matrix $\text{diag}(\sigma_1(A), \ldots, \sigma_r(A))$. Then $A^\dagger = V_r \Sigma_r^{-1} U_r^\top$. As $\text{diag}(\sigma_1(A), \ldots, \sigma_r(A))^{-1} = \text{diag}(\frac{1}{\sigma_1(A)}, \ldots, \frac{1}{\sigma_r(A)})$ it follows that $\sigma_i(A^\dagger) = \frac{1}{\sigma_i(A)}$ for $i = 1, \ldots, r$. Hence $\sigma_1(A^\dagger) =$...