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Spectrum Management in Multiuser Cognitive
Wireless Networks: Optimality and Algorithm

Chee Wei Tan, Shmuel Friedland, and Steven H. Low

Abstract—Spectrum management is used to improve perfor-
mance in multiuser communication system, e.g., cognitive radio
or femtocell networks, where multiuser interference can lead
to data rate degradation. We study the nonconvex NP-hard
problem of maximizing a weighted sum rate in a multiuser
Gaussian interference channel by power control subject to affine
power constraints. By exploiting the fact that this problem can
be restated as an optimization problem with constraints that
are spectral radii of specially crafted nonnegative matrices,
we derive necessary and sufficient optimality conditions and
propose a global optimization algorithm based on the outer
approximation method. Central to our techniques is the use of
nonnegative matrix theory, e.g., nonnegative matrix inequalities
and the Perron-Frobenius theorem. We also study an inner
approximation method and a relaxation method that give insights
to special cases. Our techniques and algorithm can be extended to
a multiple carrier system model, e.g., OFDM system or receivers
with interference suppression capability.

Index Terms—Optimization, nonnegative matrix theory, dy-
namic spectrum access, power control, cognitive wireless net-
works.

I. INTRODUCTION

WHEN multiple users transmit simultaneously over the
same frequency band of the wireless medium, the

data rates are affected by multiuser interference. For example,
interference is a major source of performance impairment in
the Code Division Multiple Access (CDMA) cellular network
(see [1], [2]) and the cognitive wireless networks (see [3]–[6]).
How to optimize performance in the presence of interference
is thus an important issue. Power control is often used to
improve the spectral utilization and the system performance,
e.g., maximizing the total data rates of all users [2], [3],
[7]–[9]. We refer to power control techniques that adapt the
spectrum allocation to maximize performance in a multiuser
system as Dynamic Spectrum Management (DSM). There are
many DSM algorithms proposed to maximize the total data
rates of all users in the literature [1]–[4], [10], [11].1

Cognitive radio has recently emerged as a new technology
that can substantially increase spectrum utilization efficiency
by allowing unlicensed (secondary) users to share a com-
mon spectrum with licensed (primary) users so long as the
interference caused is maintained below a certain prescribed
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1Related work in the wireline setting can be found in a Digital Subscriber

Line (DSL) system, where users (twisted-pairs) in a cable binder share a
common spectrum and interfere with one another [10], [11].

level known as the interference temperature [4], [12], [13].
In other words, regulatory constraints can be translated into
power constraints to influence the performance of all users. A
practical approach to obtain achievable rates is to assume and
treat multiuser interference as additive Gaussian noise. This
assumption is relevant to cognitive wireless networks, where
low-complexity coordination is desired for a decentralized
implementation, e.g., when joint decoding of primary and
secondary users is not possible.
Maximizing the weighted sum rate in a multiuser Gaussian

channel where interference is treated as noise is a nonconvex
problem [1], [4], [10], [11]. It is shown to be NP-hard in [10].
The algorithms for this problem in the literature are mostly
based on game theory, e.g., [4], [13], or the Lagrange dual
decomposition [11], [14], [15]. Due to the duality gap, dual
algorithms cannot guarantee finding a global optimal solution.
Moreover, finding a feasible primal solution for a given
feasible dual solution, or vice versa, is difficult. Prohibitive
as it seems, several recent advances have been made by
exploiting the problem structure. The authors in [10] show
that the duality gap is zero when the number of frequency
tones is asymptotically large. Computational algorithms based
on the difference of convex functions are proposed in [9]. Fast
distributed algorithms can be found in [1], [16]–[18] that solve
the problem suboptimally but with performance guarantees
(and optimally under special cases). The authors in [19] use
nonnegative matrix theory to analyze the problem and give a
branch-and-bound algorithm.
This paper is organized as follows. We introduce the system

model in Section II. In Section III, we state the weighted
sum rate maximization problem and present an equivalent
reformulation problem. In Section IV, a further preprocessing
step converts the optimization variable from power to Signal-
to-Interference Ratio (SIR) in logarithmic scale.2 We then
characterize the global optimality conditions, and propose
a global optimization algorithm in a single-carrier model.
In Section V, approximation and relaxation techniques as
well as special cases are presented. In Section VI, numerical
simulations show that the global optimization algorithm is
computationally fast for small-to-medium problem size. In
Section VII, we illustrate how our techniques can be extended
to a multiple carrier model and to include multiuser interfer-
ence suppression. We conclude the paper in Section VIII. All
proofs are found in the appendix.
The following notation is used. Boldface uppercase letters

denote matrices, boldface lowercase letters denote column vec-

2Measurements of power and SIR variable in wireless networks are
typically expressed in decibels (dB), i.e., base-10 logarithmic scale.
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tors, italics denote scalars, and u ≥ v denotes componentwise
inequality between vectors u and v. We also let (By)l denote
the lth element of By. Let x ◦ y denote the Schur product
of the vectors x and y, i.e., x ◦ y = [x1y1, . . . , xLyL]

�
. We

write B ≥ F if Bij ≥ Fij for all i, j. The Perron-Frobenius
eigenvalue of a nonnegative matrix F is denoted as ρ(F), and
the Perron right and left eigenvector of F associated with ρ(F)
are denoted by x(F) ≥ 0 and y(F) ≥ 0 (or, simply x and y,
when the context is clear) respectively. Recall that the Perron-
Frobenius eigenvalue of F is the eigenvalue with the largest
absolute value. Assume that F is a nonnegative irreducible
matrix. Then ρ(F) is simple and positive, and x(F),y(F) > 0
[20]. We will assume the normalization: x(F) ◦ y(F) is a
probability vector. The super-script (·)� denotes transpose.
We denote el as the lth unit coordinate vector and I as the
identity matrix. For any vector γ̃ = (γ̃1, . . . , γ̃L)� ∈ RL, let
eγ̃ = (eγ̃1 , . . . , eγ̃L)�. Let P : X → Y be a mapping from
the space X to the space Y . For a subset Z ⊂ X , we denote
by P (Z) the image of the set Z .

II. SYSTEM MODEL

Consider a multiuser communication system with L users
(logical transmitter/receiver pairs) sharing a common fre-
quency. Each user employs a single-user decoder, i.e., treating
interference as additive Gaussian noise, and has perfect chan-
nel state information at the receiver. We assume that fading
occurs sufficiently slowly in the channel, i.e., flat-fading, so
that the channel can be considered essentially fixed during
transmission. Our system with L users can be modeled by
a Gaussian interference channel having the baseband signal
model:

yl = hllxl +
∑
j �=l

hljxj + zl, (1)

where yl ∈ C1×1 is the received signal of the lth user,
hlj ∈ C1×1 is the channel coefficient between the transmitter
of the jth user and the receiver of the lth user, x ∈ CN×1 is
the transmitted (information carrying) signal vector, and zl’s
are the i.i.d. additive complex Gaussian noise coefficient with
variance nl/2 on each of its real and imaginary components.
The first term on the right-hand side of (1) represents the
desired signal, whereas the second term represents the interfer-
ing signals from other users. At each transmitter, the signal is
constrained by an average power constraint, i.e., E[|xl|2] = pl,
which we assume to be upper bounded by p̄l for all l.
The vector (p1, . . . , pL)

�
is the transmit power vector and

is the optimization variable of interest in this paper. Let G =
[Glj ]Ll,j=1 > 0L×L represents the channel gain, where Glj =
|hlj |2 is the channel gain from the jth transmitter to the lth
receiver, and n = (n1, . . . , nL)� > 0, where nl is the noise
power at the lth receiver. Figure 1(a) shows the system model
with the problem parameters for the 2-user case.
Next, we define a nonnegative matrix F with entries:

Flj =
{

0, if l = j
Glj

Gll
, if l �= j

(2)

and the vector

v =
(

n1

G11
,

n2

G22
, . . . ,

nL

GLL

)�

. (3)

Moreover, we assume that F is irreducible, i.e., each link has
at least an interferer.
Assuming a linear matched-filter receiver, the SIR for the

lth receiver (as a function of powers) is given by:
γl(p) :=

pl∑
j �=l Fljpj + vl

, l = 1, . . . , L. (4)

Note that (4) as a mapping p �→ γ(p) for p =
(p1, . . . , pL)� ≥ 0 can be compactly written as pl/((Fp)l +
vl). Let us denote the vector γ(p) = (γ1(p), . . . , γL(p))�.
Now, (4) is the transformation from power to SIR. We next

give the transformation from SIR to power, which is first
obtained in [21] (also given in [2], Chap. 2).
Lemma 1: Assume that γ(p) is defined by (4). Then

ρ(diag(γ(p))F) < 1. Hence, for γ = γ(p),
p = P (γ) := (I− diag(γ)F)−1 diag(γ)v. (5)

Vice versa, if γ is in the set
Γ := {γ ≥ 0, ρ(diag(γ)F) < 1}, (6)

then p given in (5) is nonnegative. Furthermore, γ(P (p)) =
γ. That is, γ : RL

+ → Γ, and P : Γ → RL
+ are inverse

mappings.
Let γ̄ denote the vector (p̄1/v1, . . . , p̄L/vL)

�
. Then, we have

γ ≤ γ̄ as an implicit constraint.
In wireless networks, transmit power constraints model

resource budget constraints or may be imposed by radio
regulatory body. We assume that all users have individual
power constraints (see (8) in the next section). In addition, un-
like traditional wireless networks, a cognitive network allows
secondary users to transmit provided that the performance
degradation caused to the primary user is null or tolerable
[4]. We assume that interference temperature constraints are
modeled as additional affine constraints that are imposed on
the transmit powers. These constraints are chosen by the
primary users based on their quality of service requirements
[4], [13]. We first consider the problem under individual power
constraints, and then incorporate the interference temperature
affine power constraints in Section IV-B.

III. THE SUM RATE MAXIMIZATION PROBLEM

Under the assumption of single-user decoding, we further
assume that each user employs Gaussian code. In practice,
Gaussian codes can be replaced by finite-order signal con-
stellations such as quadrature-amplitude modulation (QAM)
or other practical coding schemes. Assuming a fixed bit error
rate (BER) at the receiver, the achievable data rate rl of the
lth user can be computed by the Shannon capacity formula
[22]:

log
(

1 +
γl(p)

Γ

)
nats/symbol, (7)

where Γ is the SNR gap to capacity, which is always greater
than 1. In this paper, we absorb (1/Γ) into Gll for all l, and
write the achievable data rate as rl = log(1 + γl(p)).
Let w = (w1, . . . , wL)� ≥ 0 be a given probability vector,

where wl is a weight assigned to the lth link to reflect priority
(a larger weight reflects a higher priority). Denote the set of
feasible powers:

Ω = { p | 0 ≤ p ≤ p̄}. (8)
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Fig. 1. (a) The system model for the 2-user case. (b) Illustrating an achievable
rate region R for a 2-user Gaussian interference-limited channel. The positive
weight vector w is superimposed on the rate region. Given a weight vector
w, the optimal rate vector r� = [r�

1 , r�
2 ] is chosen on the boundary of the

achievable rate region, where a perpendicular line from w (shown as the red
dotted line) intersects with R.

The sum rate maximization problem in a multiuser Gaussian
channel can be stated as [1], [4], [10], [17]:

maximize
∑L

l=1 wlrl =
∑L

l=1 wl log(1 + γl(p))
subject to p ∈ Ω.

(9)

We denote the optimal solution of (9) by p� =
(p�

1, . . . , p
�
L)�. For any feasible p ∈ Ω, we call r =

[r1, . . . , rL], evaluated at p, a feasible rate vector that lies in
the rate region R, which is the set of all feasible rate vectors.
The data rate evaluated at p� is given by r�

l = log(1+γl(p�)).
For the two user case, i.e., L = 2, Figure 1(b) gives the
geometrical illustration of the weighted sum rate maximization
problem in the rate region, i.e., finding r� ∈ R for a given w.
We now state an alternative formulation of (9) given in [19].
Theorem 1: The optimal value in (9) is equal to the optimal

value of the problem:
maximize

∑
l wl log(1 + γl)

subject to ρ(diag(γ)(F + (1/p̄l)ve�l )) ≤ 1 ∀ l,
variables: γl, ∀ l.

(10)

Now, γ� is an optimal solution to (10) if and only if P (γ�)
is an optimal solution to (9). In particular, γ� satisfies

ρ
(
diag(γ�)

(
F + (1/p̄l)ve�i

))
= 1 (11)

for some integer i.
Note that (11) implies that the optimal solution of (9) is such

that p�
i = p̄i for some i. The transformation from SIR to power

in (5) plays a central role in obtaining the constraint set of
(10), which facilitates our algorithm design with nonnegative
matrix theory in Section IV-A. It is also key to proving the
optimality conditions in Section IV. Note that the formulation
given in (10) shows that an optimal solution to (9), p�, is in
general not unique.

IV. GLOBAL OPTIMIZATION

In this section, we show that (10) is equivalent to an
optimization problem that maximizes a convex function on
a closed unbounded domain. For γ = (γ1, . . . , γL)� > 0, let

γ̃ = log γ, (12)
i.e., γ = eγ̃ . Then, (10) is equivalent to:
maximize f(γ̃) =

∑
l wl log(1 + eγ̃l)

subject to log ρ(diag(eγ̃)(F + (1/p̄l)ve�l )) ≤ 0 ∀ l,
variables: γ̃ = (γ̃1, . . . , γ̃n)� ∈ RL.

(13)
Remark 1: Now, for a nonnegative matrix B ∈ RL×L

+ ,
log ρ(exB) is a convex function [23]. Therefore, the constraint

set in (13) is convex. Also, since log(1+eγ̃l) is strictly convex
in γ̃l ∈ R for all l, (13) is a convex maximization problem.
The unboundedness of the convex set in (13) is due to the
identity 0 = e−∞.
We next denote the convex set in (13) by

D({F}) = {γ̃ ∈ RL, log ρ(diag(eγ̃)(F+(1/p̄l)ve�l )) ≤ 0 ∀ l},
(14)

and define the first order derivative function of the objective
function in (13) by

f ′(γ̃) =
(

w1
eγ̃1

1 + eγ̃1
, . . . , wL

eγ̃L

1 + eγ̃L

)�

. (15)

Theorem 2: The optimal value in (13) is achieved only on
the boundary of D({F}). A point γ̃� is an optimal solution
of (13) if and only if the following conditions hold:
f ′(β)

�
(γ̃−β) ≤ 0 ∀ β ∈ {f(β) = f(γ̃�)} and γ̃ ∈ D({F}).

(16)
Now, since D({F}) is unbounded, we need to consider

a small modification to (13) so that numerical methods that
compute the maximum value of convex functions on bounded
closed convex sets can be employed [24]. In particular, we
consider (13) with additional constraints:

D({F}, K) = {γ̃ ∈ D({F}), γ̃ ≥ −K1} (17)
for an arbitrarily large K � 1. Note that D({F}, K) is
compact and convex. The following result in [19] gives the
description of the set D({F}, K).
Lemma 2: Let p = P (e−K1) = (eKI − F)−1v. Then

D({F}, K) ⊆ {γ̃ | log γ(p) ≤ γ̃ ≤ log γ(p̄)}.
For the purpose of algorithm design, we replace the set

D({F}) in Theorem 2 by D({F}, K). Since K can be
made arbitrarily large, a solution in D({F}, K) can be made
arbitrarily close to γ̃� in Theorem 2. In the following, we
propose a global optimization algorithm to find the optimal
value of (13) on the closed bounded set D({F}, K).

A. Outer Approximation Algorithm

We leverage nonnegative matrix theory and the outer ap-
proximation technique in [24], [25] to compute an extreme
point of D({F}, K) in (17) that yields γ̃� in Theorem 2.
Our approach is as follows: The feasible region containing the
optimal extreme point is first embedded inside a compact poly-
hedral convex set. Infeasible regions are then successively re-
moved from this initial polyhedral set. This method generates
a nested sequence of polyhedrons approximating D({F}, K)
from the exterior. It is noteworthy that the computational
performance of this method depends on the choice of this
initial polyhedron, i.e., the method is effective if this initial
polyhedron is a tight fit [24], [25].
To make our problem amenable to outer approximation

and to enable a fast computational algorithm (by finding the
tightest initial polyhedron), we first approximate the convex
set D({F}, K) by a bigger polyhedral convex sets as follows.

• Choose a finite number of points ζ1, . . . , ζM on the
boundary of D({F}, K).

• Let H1(ξ), . . . , HN (ξ), ξ ∈ RL be the N supporting
hyperplanes of D({F}). Note that we can have more
than one supporting hyperplane at ζi, and at most L
supporting hyperplanes. So each ξ ∈ D({F}, K) satisfies
the inequality Hj(ξ) ≤ 0 for j = 1, . . . , N .
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• Define the polytope
D(ζ1, . . . , ζM , K) = {ξ ∈ RL, −K1 ≤ ξ ≤ log γ̄,
Hj(ξ) ≤ 0, j = 1, . . . , N},

(18)
and output this polytope that contains D({F}, K).

Now, using the polytope D(ζ1, . . . , ζM , K), we have
max

γ̃∈D(ζ1,...,ζM ,K)
f(γ̃) ≥ max

γ̃∈D({F},K)
f(γ̃). (19)

Furthermore, since f(γ̃) is strictly convex, the maximum on
the lefthand side in (19) is achieved only at an extreme point
of D(ζ1, . . . , ζM , K). Though solving the lefthand side in
(19), being a multiextremal problem, is still computationally
challenging, it can lead to provably correct solutions under
well-defined conditions.
We now show how to efficiently compute the supporting hy-

perplanes Hj , j = 1, . . . , N for N = L in D(ζ1, . . . , ζM , K).
To do that, we give a characterization of supporting hyper-
planes of D({F}) at a boundary point ζ ∈ ∂D({F}) based
on the Friedland-Karlin inequalities in [26]. An extension of
these inequalities are found in Theorem 6 in Appendix Section
I.
Theorem 3: Let p̄ = (p̄1, . . . p̄L)� > 0 be given. Consider

the convex set (14). Let ζ be a boundary point of ∂D({F}).
Then ζ = log γ(p), where 0 ≤ p = (p1, . . . , pL)� ≤ p̄. The
set B := {l ∈ {1, . . . , L}, pl = p̄l} is nonempty. For each
matrix Bl = (F + (1/p̄l)ve�l )), let η = (η1, . . . , ηL)� ∈ RL

satisfy the condition ρ(eηBl) = 1. Define Hl(ζ) as

Hl(ζ) =
L∑

j=1

xj(Bl)yj(Bl)((ζ)j − ηj). (20)

Then Hl(ζ) ≤ 0, for l ∈ B, are the supporting hyperplanes of
D({F}) at ζ.
We now show how to choose the boundary points

ζ1, . . . , ζM ∈ ∂D({F}) and to compute the supporting
hyperplanes of D({F}) at each ζi. Let p = P (e−K1) =
(p1, . . . , pL)� be defined as in Lemma 2. Choose Mi ≥ 2
equidistant points in each interval [p

i
, p̄i], and define

pji,i =
jipi

+ (Mi − ji)p̄i

Mi
for ji = 1, . . . , Mi, i = 1, . . . , L.

(21)
Let

P =
{

pj1,...,jL = (pj1,1, . . . , pjL,L)�,
min(p̄1 − pj1,1, . . . , p̄L − pjL,L) = 0.

}
That is, pj1,...,jL ∈ P if and only pj1,...,jL ≮ p̄. Then

{ζ1, . . . , ζM} = log γ(P).
The supporting hyperplanes of D({F}) at each ζi are given
by Theorem 3. Thus, we have established the L unique hy-
perplanes Hl(ξ) ≤ 0 for l = 1, . . . , L in D(ζ1, . . . , ζM , K):

Hl(ξ) =
∑

j

(x(F + (1/p̄l)ve�l ) ◦ y(F + (1/p̄l)ve�l ))j(ξ)j

+ log ρ(F + (1/p̄l)ve�l ) ≤ 0, l = 1, . . . , L.
(22)

Based on D(ζ1, . . . , ζL, K) in (22), we propose the fol-
lowing algorithm that computes the optimal solution of (9).

Algorithm 1 (Sum Rate Outer Approximation Algorithm):

• Input. D(ζ1, . . . , ζL, K) with Hl(ξ), ∀ l given in (22).
• Output. Optimal solution p� of (9).

1) Compute the vertices of the enclosing linear polyhedron

D(0), described by the set of constraints:∑
j

(x(F + (1/p̄l)ve�l ) ◦ y(F + (1/p̄l)ve�l ))j γ̃j+

log ρ(F + (1/p̄l)ve�l ) ≤ 0,
(23)

and γ̃l ≥ −K for all l. Let V (0) be the set of vertices
of D(0). Set k = 1 and go to Step 2.

2) Iteration k: Solve the problem:
maximize

∑
l wl log(1 + eγ̃l)

subject to γ̃l ∈ D(k−1) (24)

by selecting max
{∑

l wl log(1 + eγ̃l) : v ∈ V (k−1)
}
.

Let γ̃k be the optimizer to (24).
3) Compute

pk =
(
I− diag(exp(γ̃k))F

)−1

diag(exp(γ̃k))v.

(25)
4) If pk ≤ p̄, stop: γ̃k is the solution to (13) and pk is the
solution to (9). Otherwise, let

Jk = {l : log ρ(diag(exp(γ̃k))(F + (1/p̄l)ve�l ))
= max

1≤j≤L
log ρ(diag(exp(γ̃k))(F + (1/p̄j)ve�j ))}

and choose any jk ∈ Jk.
5) Compute the left eigenvector yjk and right (Perron)
eigenvector xjk of diag(exp(γ̃k))(F + (1/p̄jk)ve�jk ).
Set

Gk
jk(γ̃) = log ρ(diag(exp(γ̃k))(F + (1/p̄jk)ve�jk ))+
[exp(γ̃k)◦ x

jk◦y
jk ]�(γ̃−γ̃k)

ρ(diag(exp(γ̃k))(F+(1/p̄
jk )ve�

jk ))
.

(26)
6) Set D(k) = D(k−1) ∩ {γ̃ : Gk

jk(γ̃) ≤ 0}, V (k) =
{extreme points of D(k)}.

7) Set k ← k + 1. Go to Step 2.

The following result establishes the convergence of pk in
Algorithm 1 to the global optimal solution of (9).
Theorem 4: Every limit point of the sequence

pk =
(
I− diag(exp(γ̃k))F

)−1

diag(exp(γ̃k))v solves (9).
We add the following remarks concerning the implementa-

tion and optimality of Algorithm 1.
Remark 2: At Step 5, the gradient of

log ρ(diag(exp(γ̃))(F + (1/p̄jk)ve�jk )) (given by
[exp(γ̃) ◦ xjk ◦ yjk ]/ρ(diag(exp(γ̃))(F + (1/p̄jk)ve�jk )))
at γ̃k is used to construct the inequality cut given by (26)
that separates γ̃k (infeasible with respect to (13)) from the
feasible constraint set of (13).
Remark 3: A finite number of iterations can be obtained by

replacing the stopping rule at Step 4 with stop if maxl pk
l −

p̄l ≤ ε or stop if log ρ(diag(exp(γ̃k))(F+(1/p̄jk)ve�jk )) ≤ ε,
where ε is a positive error tolerance number.
Remark 4: At Step 6, an online vertex enumeration pro-

cedure (for example, see [24]) can be used to speed up the
computation of the new vertex set V (k).
Remark 5: Note that every limit point of the sequence xjk

for any jk ∈ Jk converges to the limit point of the sequence
pk in Algorithm 1.

B. Spectrum-sharing constraints

Cognitive radio power constraints or interference tempera-
ture can be readily incorporated in our optimization framework
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p ∈ Ω ∈ R
L
+ γ ∈ R

L
+ γ̃ ∈ D({F}) ∈ R

L

γ̃ ∈ D({F}, K) ∈ R
L

(4)/(5) (12)

(29)
approximation

Fig. 2. A summary of the transformation and mapping between the power
p, the SIR γ and the SIR in the natural base logarithm γ̃.

and algorithm by defining an appropriate
Ω = { p | 0 ≤ p ≤ p̄} ∩ { p | Ap ≤ p̄A}, (27)

where A ∈ Rm×n
+ . We also assume that Ω in (27) is such

that the sets { p | Ap ≤ p̄A} and { p | 0 ≤ p ≤ p̄} are
not strictly contained in each other. This implies that p�

l = p̄l

for some l. The set { p | Ap ≤ p̄A} is general enough to
model constraints on the received power of a subset of links
or constraints that limit the interference level.
First, we consider the individual power constraints. At Step

3, a feasible point to (9), p̂k, is easily obtained by using a
projection on to the box constraint [0, p̄]:

p̂k
l = min{pk

l , p̄l} ∀ l. (28)
Using Theorem 4, every limit point of the sequence p̂k solves
(9). Further, it can be shown that the rate vector generated by
p̂k always lies on the boundary of the rate region.
We next turn to the spectrum-sharing constraints given in

(27) by considering the projection of pk onto Ω [27]:
minimize ‖p̂k − pk‖2
subject to p̂k ∈ Ω.

(29)

Theorem 4 can be adapted to show that every limit point of
the sequence p̂k given by (29) solves (9) with Ω in (27).
We summarize the relationship between the sets D({F}),
D({F}, K), established by the transformation (4), (5), (12)
and (29) used in Algorithm 1 in Figure 2.

V. APPROXIMATION AND RELAXATION TECHNIQUES

Although Algorithm 1 can find the optimal solution, it
remains plausible only for small-to-medium problem size
(before the vertex set of the outer approximating polytope
reaches a prohibitive size). We now turn to other techniques
that yield further insights to solving (9).

A. Inner Approximation

We first state the following result in [26, Theorem 3.1] that
can be used to construct an inner approximation of D({F}).
Lemma 3: For any nonnegative matrix F and positive vec-

tor γ,
ρ(diag(γ)F) ≤ max

l
γlρ(F). (30)

Equality is achieved in (30) if and only if γl are equal for all
l.
Applying Lemma 3 to each constraint in (13), a smaller

convex subset of D({F}) (replacing the constraints in (13)
by restricted box constraints) can be easily obtained. Thus, a
restricted problem of (13) and its solution (correspondingly,
that of (9)) is given in the following.

Lemma 4: The optimization problem
maximize

∑
l wl log(1 + eγ̃l)

subject to γ̃ ≤ min
l
− log ρ(F + (1/p̄l)ve

�
l )1.

(31)

has a solution that is an extreme point of D({F}) and is given
by γ̃ = − log ρ(F+(1/p̄i)ve

�
i )1, where i = minl− log ρ(F+

(1/p̄l)ve
�
l ). Then, a feasible power vector to (9) is given by

x(F + (1/p̄i)ve
�
i ) (unique up to a constant).

Remark 6: Interestingly, the inner approximation in (31)
yields the same solution as maximizing the minimum SIR
subject to the individual power constraints (cf. Theorem 2 in
[17]).
We briefly discuss how to enhance Algorithm 1 using the

above result. Inner approximation techniques such as the Poly-
hedral Annexation method (cf. Chapter 6, [24]) can be applied
using the constraint set in Lemma 31 as the initial inner
approximation. In brief, the Polyhedral Annexation method
generates a sequence of expanding polyhedrons contained in
D({F}) that approximates D({F}) from the interior. This
methodology is dual to and complements the outer approx-
imation technique described in Section IV-A. We refer the
readers to [24] on standard global optimization algorithms,
e.g., branch-and-bound techniques, to combine and accelerate
the inner and outer approximation techniques. Interestingly,
the inner approximation given by (31) optimally solves (13)
when the optimal solution of (13) is such that the SIR’s are
all equal (cf. conditions under which the equality in Lemma
3 above and Theorem 6 in the appendix holds).

B. Relaxation

We now turn to a relaxation technique that can solve special
cases of (9). We define the matrix F̃ as

F̃ = F + diag(γ̄)−1. (32)
Lemma 5: Let 0 ≤ p ≤ p̄. Then,

p ≥ diag(γ(p))F̃p, (33)
and

ρ(diag(γ(p))F̃) ≤ 1. (34)

Next, using (34) and the logarithmic change of variable
technique, we consider the following optimization problem:

maximize f(γ̃)
subject to log ρ(diag(eγ̃)F̃ ≤ 0,

γ̃ ≤ log γ̄.
(35)

The following result shows that (35) is a relaxed problem of
(13).
Lemma 6: The optimal value of (35) is not less than the

optimal value of (9). Furthermore, the optimal solution of (35),
γ̃′, satisfies log ρ(diag(eγ̃′

)F̃) = 0.
Lemma 7: If p� = p̄ or p� is such that p�

l = 0 for some l
and p�

j = p̄j for j �= l, then
ρ(diag(γ(p�))F̃) = 1. (36)

Remark 7: Since (35) is a relaxed problem as compared to
(13), both Lemmas 6 and 7 imply that if the optimal solution
of (35), γ′, satisfies P (γ′) ≤ p̄, then P (γ′) is also the optimal
solution of (9).
We obtain the following special case result by combining
Lemma 7 and a result in [7].
Corollary 1 (2-user Sum Rate): When L = 2 and w =

(1
2 , 1

2 )
�
, p� is one of the following three vectors: (P̄1, 0)

�
,
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(0, P̄2)
�
or (P̄1, P̄2)

�
. Furthermore, p� = (P̄1, 0)

�
only if

p̄1p̄2F12F21 − 0.5v1v2 − v1p̄2 ≥ 0, and p� = (0, P̄2)
�
only

if p̄1p̄2F12F21 − 0.5v1v2 − v2p̄1γ2 ≥ 0.
Remark 8: From the above special case, the relaxed prob-

lem (35) is tight when p� is one of the on-off vectors:
(P̄1, 0)

�
, (0, P̄2)

�
and the corresponding necessary condi-

tions in Corollary 1 are met.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the performance of Algorithm 1 in Section IV-A and how
the approximation technique in Section V can be applied in
solving (9) for two users, i.e., L = 2. Consider the channel
gain matrix given by

G =
[

0.73 0.04
0.03 0.89

]
. (37)

Let the maximum power constraint vector be p̄ =
[1.8 100.5]

�
mW and the noise power of each user be 0.1mW.

The weight vector is given by w = x(F+(1/p̄i)ve�i )◦y(F+
(1/p̄i)ve�i ), where i = arg maxl ρ(F + (1/p̄l)ve�l ). We set
ε = 1×10−8 and K = 100 in Algorithm 1. Now, the optimal
solution is achieved at the equal SIR allocation for the two
users (equivalent to maximizing the minimum SIR problem),
where p� = x(F+(1/p̄i)ve�i ) = [1.8000 1.442]

�
mW. Thus,

the optimal sum rate is 2.2336 nats/symbol.
At the first iteration, the vertices of V (0) are

(−100.0, −100.0), (−100.0, 103.6279), (39.4757, −100.0),
(0.9959, 5.1941). The vertex of V (0) having the maximum
objective function value is γ̃1 = (39.4757 − 100.0)
and p1 = [1.909 × 1019 0]

�
. At Step 4, evaluating

each constraint function at γ̃1 = (39.4757 − 100.0),
we have log(diag(γ̃1)(F + (1/p̄1)ve�1 )) = 36.9 and
log(diag(γ̃1)(F + (1/p̄2)ve�2 )) = −33.4. We thus choose
j1 = 1, and a new constraint is obtained at Step 5 as
γ̃1 ≤ 2.5757.
Therefore, we have D1 = D0 ∩ {γ̃ : γ̃1 ≤ 2.5757}

at Step 6. The vertices of D1 are (−100.0, −100.0),
(−100.0, 103.6279), (2.5757, −100.0), (2.5757, 0.8754),
(0.9959, 5.1941). We then proceed to Step 2 to find the
optimal vertex of D1.
After twenty nine more iterations, we arrive at the power

vector p29 = [1.8000 1.442]
�
mW, and maxl p29

l − p̄l =
5.5485 × 10−9, whereupon Algorithm 1 terminates. Figure
3 illustrates the evolution of the approximating polyhedron,
where Figure 3(a) and (b) show the initial enclosing polyhe-
dron D(0) and the polyhedron D(14) at the fourteen iteration,
respectively. We observe that, by the fourteen iteration, D(14)

provides a relatively good approximation to the feasible region
D({F}, K). Figure 4 (a) and (b) illustrates the convergence
of the rate vectors generated by [log(1 + γ1(pk)) log(1 +
γ2(pk))]

�
and [log(1 + γ1(p̂k)) log(1 + γ2(p̂k))]

�
respec-

tively. As shown on Figure 4 (b), the rate vector converges
close to the optimal rate vector by the tenth iteration. Figure
4 also illustrates the optimal rate vector.
Note that the inner approximation technique, i.e., solving

(31) in Lemma 4 yields the optimal solution (solved by
one optimization problem in contrast to a modest number of
optimization problems in Algorithm 1).

TABLE I
A COMPARISON OF THE TYPICAL CONVERGENCE AND COMPLEXITY

STATISTICS OF ALGORITHM 1 WITH THE PROBLEM SIZE. THE CPU TIME
IS COMPUTED BASED ON AN IMPLEMENTATION ON A 64-BIT

SUN/SOLARIS 10 (SUNOS 5.10) COMPUTER.

Problem Maximal number of Number of CPU time
size generated vertices iterations (minutes)

2 15 12 0.062
4 139 760 4.1
6 14022 1238 83
8 283681 1968 468

Next, we repeat our previous experiment but the parameters
p̄ = [100.8 100.5]

�
mW and p̄ = [300.8 300.5]

�
mW are

used instead. Figure 5 (a) and (b) illustrates the convergence
for these two different maximum power constraints respec-
tively. Unlike the previous experiment, the optimal solution
in these two scenarios are such that one user is transmitting
at maximum power and the other user does not transmit. As
illustrated, the rate vector computed by Algorithm 1 already
approaches close to the optimal rate vector by the seventh
iteration, and Algorithm 1 terminates at the twenty-eigth
iteration for both scenarios (with ε = 1× 10−8).
Lastly, we vary the problem size, i.e., the number of users,

and evaluate the number of iterations, the maximal number of
vertices upon exit and the CPU time required to run Algorithm
1 by setting ε = 1 × 10−4. Algorithm 1 is implemented in
Matlab and runs on a 64-bit Sun/Solaris 10 (SunOS 5.10)
computer. Table I compares the average statistics on different
problem size. As illustrated, Algorithm 1 is effective for a
network of small-to-medium size. For a large number of users,
the complexity of enumerating the vertices at Step 2 can grow
prohibitively large as the number of iterations increases.

VII. EXTENSION TO MULTIPLE CARRIERS AND
INTERFERENCE SUPPRESSION RECEIVERS

A. Multiple Carrier Model

In this section, we extend our previous results in Section
III to a multiuser multiple carrier model, where a common
spectrum is divided into K frequency tones. For illustrative
purpose, we assume the standard synchronous orthogonal
frequency-division modulation, where orthogonality among
subchannels of the intended signal and the subchannels of the
interference signal in different frequency tones is maintained.3

Thus, transmissions can be modeled independently on each
tone. The achievable rate at tone k can be modeled as [22]:

log

(
1 +

Gll,kpl,k∑
j �=l Glj,kpj,k + nl,k

)
. (38)

The total data rate for each user is then obtained by adding
its transmitted data rate over all the K tones. The total power
budget of the lth user is constrained (across all K tones) by

K∑
k=1

pl,k ≤ p̄l. (39)

It is easy to see that our previous model in Section II
is a special case of this multiple carrier model assuming
standard synchronous discrete multi-tone (DMT) modulation
when K = 1.

3This is also known as discrete multitone modulation in the DSL context.
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(a) (b)

Fig. 3. Illustration of the convergence of Algorithm 1 in the γ̃ region with (a) the initial polyhedron given by D(0) and (b) the polyhedron D(14) at the
fourteen iteration.
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Fig. 4. Illustration of the convergence of Algorithm 1 in (a) the rate vector generated by pk and in (b) the rate vector generated by p̂k . Only the rate
vectors obtained up to the eleventh iteration are shown.
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Fig. 5. Illustration of the convergence of Algorithm 1 on (a) a rate region with p̄ = [100.8 100.5]
�
and on (b) a rate region with p̄ = [300.8 300.5]

�
.

Only the rate vectors obtained up to the seventh iteration are indicated.
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For brevity of notations, we define p ∈ R
(K×L)
+ as a vector

that stacks the K ×L power allocation lined-up according to
tones of all users. For example, if L = 2 and K = 2, then
p = (p1,1, p1,2, p2,1, p2,2)

�
. Similarly, we define γ ∈ R

(K×L)
+

as the SIR allocation, the matrix F having entries:

Fij,k =

{
0, if i = j, i, j ∈ {1, . . . , L}, k ∈ {1, . . . , K}

Gij,k

Gii,k
, if i �= j, i, j ∈ {1, . . . , L}, k ∈ {1, . . . , K}

(40)
and the vector

v =
(

n1,1

G11,1
,

n1,2

G11,2
, . . . ,

n1,K

G11,K
,

n2,1

G22,1
, . . . ,

nL,K

GLL,K

)�
.

(41)
Note that asynchronous transmission can result in the lth

user at tone k having interference from the power allocation
at neighboring tones of tone k. Hence, in general, F is not
a block diagonal matrix. However, assuming synchronous
transmission of all users, F is block diagonal.
As in the previous, the lth user is given a positive weight

parameter wl to reflect its long-term priority. The problem of
maximizing the weighted sum rate in a Gaussian channel with
K frequency tones is given by:

maxPK
k=1 pl,k≤p̄l ∀ l

L∑
l=1

wl

K∑
k=1

log(1 + γl,k(p)), (42)

where γl,k = Gll,kpl,k/(
∑

j �=l Glj,kpj,k + nl,k). In order to
be consistent with our previous results, we shall consider the
following equivalent problem:

maxP
K
k=1 pl,k≤p̄l ∀ l

L∑
l=1

K∑
k=1

w̃l,k log(1 + γl,k(p)). (43)

where w̃l,k = (wl/K) for all l ∈ {1, . . . , L}, k ∈ {1, . . . , K},
and w̃ ∈ R

(K×L)
+ is a probability vector.

As in Section III, it is instrumental to consider an equivalent
reformulation of (43) in terms of the SIR variable.
Theorem 5: The optimal value of (43) is equal to the

optimal value of the problem:
maximize

∑
l

∑
k w̃lk log(1 + γl,k)

subject to ρ(diag(γ)(F + (1/p̄l)
∑K

k=1 ve�((l−1)×K+k))) ≤ 1
∀ l,

variables: γl,k, ∀ l, ∀ k.
(44)

Now, γ� is an optimal solution of (44) if and only if P (γ�)
is an optimal solution p� of the problem (43). In particular,
any optimal solution γ� satisfies

ρ

(
diag(γ�)

(
F + (1/p̄l)

K∑
k=1

ve�((l−1)×K+k)

))
= 1 (45)

for some integer l ∈ [1, L].
Using Theorem 5, it is straightforward to extend Algorithm

1 in Section IV-A to design optimal spectrum management
schemes for multiple carrier channels.
We add the following brief discussion to get more intuition

on the above theorem. Our techniques are general enough
to deal with asynchronous transmission, where the powers in
neighboring tones interfere with one another. This results in
intercarrier interference (ICI) and tone coupling in (38); as
mentioned earlier, ICI effects can be captured by F in (40),
where the optimal solution to (43) is then characterized by
the spectral radius of an appropriately constructed nonnegative
matrix. This means, the appropriate choice of supporting

hyperplanes permits decoupling of both users and frequency
tones in the SIR domain.

B. Receivers with Interference Suppression

Instead of treating multiuser interference as noise, more
sophisticated receiver techniques can improve the data rate
performance. For example, multiuser detection techniques
that decode and cancel the signals of other users or using
receive beamformers at the user increases the reliability of
decoding the desired signal. The receiver techniques can also
be integrated with the different cognitive spectrum sensing
techniques [4], [5] that adapt the effective channel.
We briefly discuss how some of these different receiver

techniques can be incorporated into our problem formulation
and leave the details for a future work. In general, the various
interference suppression techniques affect the spectra (Perron-
Frobenius eigenvalues and eigenvectors) of the nonnegative
matrices considered in this paper. For example, when multiuser
detection is considered, i.e., user decoding is first ordered
based on the received SNR, the resultant matrix F in (2) is then
upper triangular. When transmit or receive beamformers are
considered, the effective channel gain and cross interference,
i.e., the entries of F, become functions of beamformers. Let
the set F be the set of all possible nonnegative matrices for a
particular receive strategy with interference suppression. One
possible way to optimize overF is to choose the matrix F ∈ F
such that it solves

min
F∈F

max
l

ρ(diag(γ)(F + (1/p̄l)ve
�
l )). (46)

Algorithm 1 can then be used to optimize the power by using
the optimal matrix F that solves (46).

VIII. CONCLUSION

We studied the nonconvex NP-hard problem of weighted
sum rate maximization in a multiuser Gaussian channel that
models a cognitive wireless network with affine power con-
straints, e.g., interference temperature constraints. Using tools
from nonnegative matrix theory, in particular the Perron-
Frobenius Theorem and the Friedland-Karlin inequalities,
we obtained necessary and sufficient conditions to optimal
power allocation and proposed a computationally fast global
optimization algorithm. In particular, we designed an outer
approximation technique that exploits the spectra of specially
crafted nonnegative matrices to accelerate computation. We
also studied an inner approximation method and a relaxed
problem that provided insights to special cases. Our techniques
and algorithm can be extended to the multiple carrier model,
e.g., an OFDM cognitive wireless system, and systems with
receivers having interference suppression capability.
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APPENDIX

A. Proof of Theorem 2

The objective function in (13) is a strictly convex function in
γ̃ ∈ RL. Hence, the optimal value of (13) is achieved exactly
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on an extreme point of the closed unbounded set specified
in (13). It may happen that some coordinate of the extreme
point (optimal solution) are−∞. Since (13) is a strictly convex
maximization problem, the optimality conditions given by (16)
can be obtained (cf. [28]).

B. Proof of Theorem 3

Let p = P (eζ). Since the set B is nonempty, we have
ρ(eζBl) = 1 if and only if pl = p̄l. Hence, ζ lies exactly at
the intersection of the hypersurfaces log ρ(eζBl) = 0, l ∈ B.
Theorem 7 in Appendix Section I implies that the supporting
hyperplanes of D({F}) at ζ are Hl(ξ) ≤ 0 for l ∈ B.

C. Proof of Theorem 4

The proof of convergence of γ̃k to the optimal solution of
(13) by cutting plane methodology can be found in [24]. Since

the map pk =
(
I− diag(exp(γ̃k))F

)−1

diag(exp(γ̃k))v is

bijective, the limit point of pk solves (9). This proves the
theorem.

D. Proof of Lemma 4

Lemma 4 is proved by using the fact that the objective
function in (31) is monotonically increasing and the equality
condition of Lemma 3. Since all users achieve equal SIR
or more precisely, the maximum of the minimum SIR, the
optimal power is given by x(F + (1/p̄l)ve

�
i ), unique up to a

constant (cf. Theorem 2 in [17]).

E. Proof of Lemma 5

Since 0 ≤ pl ≤ p̄l, we have F̃llpl ≤ vl for all l. By the defi-
nition of γ(p) in (4), we have pl = γl(p)

(
vl +

∑
j �=l Fljpj

)
,

which, together with the definition of F̃, we have (33). To
prove that the inequality (34) holds, we note that it is a
consequence of the Wielandt’s characterization of the spectral
radius of an irreducible matrix [20]. Indeed, if p > 0, i.e.,
all the coordinates of p are positive, then γ(p) > 0. Hence,
diag(γ(p)))F̃ is a positive matrix. Then, by the Wielandt’s
max-min characterization of the spectral radius, we have

ρ(diag(γ(p))F̃) ≤ max
l=1,...,L

(diag(γ(p))F̃p)l

pl
≤ 1.

Observe next that if pl = 0, then γ(p)l = 0. So if some of
pl = 0, then ρ(diag(γ(p))F̃) is the spectral radius of the max-
imal positive submatrix of diag(γ(p))F̃. Apply Wielandt’s
characterization to this positive submatrix to deduce (34).

F. Proof of Lemma 6

In view of (34), we see that the optimal value in (35) is
achieved on a bigger set than that in (9). Since f(γ̃) and
log ρ(diag(eγ̃)F̃) increase with γ̃, this proves the lemma.

G. Proof of Lemma 7

The definition of F̃ implies (36) for p� = p̄. Assume now
that p�

l = 0 for some l. Then γl(p�) = 0 for some l. Then, the
lth row of diag(γ(p�))F̃ is zero. Let F(l) be the submatrix
of F obtained by deleting the lth row and column. Let γ(l)

be the vector obtained from γ by deleting the lth coordinate.
Hence, the characteristic polynomial of diag(γ)F, det(xI −
diag(γ)F, is equal to xdet(xI − diag(γ(l))F(l)). Therefore,
ρ(diag(γ)F) = ρ(diag(γ(l))F(l)). Continuing in this manner,
we deduce the lemma.

H. Proof of Corollary 1

The first part of Corollary 1 is a result of [7]. To prove
the second part, we note that, using the mapping in (5),
maximizing w1 log(1 + γ1) + w2 log(1 + γ2) or equivalently,
γ1 + γ2 + γ1γ2, subject to ρ(diag(γ)F̃) = 1 (from (36) in
Lemma 7) is equivalent to the following linear program:
maximize (p̄1p̄2F12F21 − 0.5v1v2)(γ1 + γ2)− v1p̄2γ1

−v2p̄1γ2

subject to γ ≤ γ̄.
(47)

As a linear program with a simple box constraint, (47) has
an optimal solution that is an extreme point. If F is a non-
zero matrix, the solution is (γ̄1, 0)

�
only if p̄1p̄2F12F21 −

0.5v1v2 − v1p̄2 ≥ 0, and (0, γ̄2)
�
only if p̄1p̄2F12F21 −

0.5v1v2− v2p̄1γ2 ≥ 0. Using (5) and focusing on the feasible
solution to (9), Corollary 1 is proved.

I. Results based on Friedland-Karlin inequalities

We state some nonnegative matrix theory results from [26]
and [19] that are used in this paper. The following result
extends [26, Theorem 3.1]:
Theorem 6: Let A ∈ RL×L

+ be an irreducible matrix.
Assume that x(A) = (x1(A), . . . , xL(A))�, y(A) =
(y1(A), . . . , yL(A))� > 0 are the Perron right and left eigen-
vectors of A respectively, normalized such that x(A) ◦ y(A)
is a probability vector. Suppose that γ is a nonnegative vector.
Then

ρ(A)
∏

l

γ
(x(A)◦y(A))l

l ≤ ρ(diag(γ)A). (48)

If γ is a positive vector then equality holds if and only if
all γl are equal. Furthermore, for any positive vector z =
(z1, . . . , zL)�, the following inequality holds:

ρ(A) ≤
L∏

l=1

(
(Az)l

zl

)(x(A)◦y(A))l

. (49)

If A is an irreducible matrix with positive diagonal elements,
then equality holds in (49) if and only if z = tx(A) for some
positive t.
The following result gives an interpretation of the inequality

(48) in terms of the supporting hyperplane of the convex
function log ρ(eξB), where B ∈ RL×L

+ is irreducible and
ξ ∈ RL.
Theorem 7: Let B ∈ RL×L

+ be an irreducible matrix.
Let η = (η1, . . . , ηL)� ∈ RL satisfy the condition
ρ(eηB) = 1. Denote A = eηB and assume that x(A) =
(x1(A), . . . , xL(A))�,y(A) = (y1(A), . . . , yL(A))� > 0
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are the Perron right and left eigenvectors of A respectively,
normalized such that x(A)◦y(A) is a probability vector. Let

H(ξ) =
L∑

l=1

xl(A)yl(A)(ξl − ηl). (50)

Then H(ξ) ≤ 0 is the unique supporting hyperplane to the
convex set log ρ(eξB) ≤ 0 at ξ = η.
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