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Overview

Matchings in graphs

Number of k-matchings in bipartite graphs as permanents

Lower and upper bounds on permanents

Exact lower and upper bounds on k-matchings in 2-regular graphs
Probabilistic methods

Expected number of k-matchings in r-regular bipartite graphs
p-matching and total matching entropies in infinite graphs

Asymptotic lower and upper matching conjectures

e 6 6 ¢ 6 6 ¢ ¢ ¢

Plots and results
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Figure: Matching on the two dimensional grid: Bipartite graph on 60 vertices,
101 edges, 24 dimers, 12 monomers
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Matchings
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Matchings

® G = (V,E) undirected graph with vertices V, edges E.
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Matchings

® G = (V,E) undirected graph with vertices V, edges E.
@ matchinginG: M CE
no two edges in M share a common endpoint.
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Matchings

® G = (V,E) undirected graph with vertices V, edges E.

@ matchinginG: M CE
no two edges in M share a common endpoint.

@ e =(u,v) € M is dimer
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Matchings

® G = (V,E) undirected graph with vertices V, edges E.

@ matchinginG: M CE
no two edges in M share a common endpoint.

@ e =(u,v) € M is dimer
@ v not covered by M is monomer.
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Matchings

® G = (V,E) undirected graph with vertices V, edges E.

@ matchinginG: M CE
no two edges in M share a common endpoint.

@ e =(u,v) € M is dimer
@ v not covered by M is monomer.
@ M called monomer-dimer cover of G.
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Matchings

G = (V, E) undirected graph with vertices V, edges E.
matchingin G: M CE

no two edges in M share a common endpoint.

e = (u,v) € M is dimer

v not covered by M is monomer.
M called monomer-dimer cover of G.

M is perfect matching <= no monomers.

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Matchings

G = (V, E) undirected graph with vertices V, edges E.
matchingin G: M CE

no two edges in M share a common endpoint.

e = (u,v) € M is dimer

v not covered by M is monomer.

M called monomer-dimer cover of G.
M is perfect matching <= no monomers.
M is k-matching <— #M =Kk.
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Generating matching polynomial
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) := 1
@ Og(x) = ok, G)xk matching generating polyn.
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) := 1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.

9 g G, (X) = g, (X)Pg,(X)
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.
9 ¥g, G, (X) = g, (X)Pg,(X)

Example: K; , complete bipartite graph on 2r vertices.

By, (X) = zr: <L)2k!xk

k=0
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.
9 ¥g, G, (X) = g, (X)Pg,(X)

Example: K; , complete bipartite graph on 2r vertices.

By, (X) = zr: <L)2k!xk

k=0
G(r,2n) set of r-regular bipartite graphs on 2n vertices
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.
9 ¥g, G, (X) = g, (X)Pg,(X)

Example: K; , complete bipartite graph on 2r vertices.

By, (X) = zr: <L)2k!xk

k=0
G(r,2n) set of r-regular bipartite graphs on 2n vertices

gK: r € G(r,2rq) a union of q copies of K; .
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Generating matching polynomial

@ ¢(k,G) number of k-matchings in G, ¢(0,G) :=1
@ Og(x) = ok, G)xk matching generating polyn.
@ roots of dg(x) nonpositive Heilmann-Lieb 1972.
9 ¥g, G, (X) = g, (X)Pg,(X)

Example: K; , complete bipartite graph on 2r vertices.

By, (X) = zr: <L)2k!xk

k=0
G(r,2n) set of r-regular bipartite graphs on 2n vertices

gK: r € G(r,2rq) a union of q copies of K; .

—_ Y
d)qu,f - d)Kr,r
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Notations and definitions
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Notations and definitions

o (n):={1,2,...,n—1,n}
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Notations and definitions

@ (n):={1,2,....,.n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haio(i)

all permutations o on (n) i=1
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Notations and definitions

@ (n):={1,2,....,.n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haia(i)

all permutations o on (n) i=1

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of
C
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Notations and definitions

@ (n):={1,2,....,.n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haia(i)

all permutations o on (n) i=1

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n
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Notations and definitions

@ (n):={1,2,....,.n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haia(i)

all permutations o on (n) i=1

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n

@ Q, C R*"is the set of doubly stochastic matrices
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Notations and definitions

o (n):={1,2,. —1,n}
@ ForA= [a”]n € R”X” permanent of A:

permA = Z Ha,a

all permutations o on (n) i=

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n

@ Q, C R*"is the set of doubly stochastic matrices
@ P, C Q, the set of permutation matrices
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Notations and definitions

o (n):={1,2,. —1,n}
@ ForA= [a”]n € R”X” permanent of A:

permA = Z Ha,a

all permutations o on (n) i=

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n

@ Q, C R*"is the set of doubly stochastic matrices
@ P, C Q, the set of permutation matrices
is the set of the extreme points of Q,
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Notations and definitions

@ (n):={1,2,....,.n—1,n}
@ For A = [a;]; € R™" permanent of A:

permA = Z Haia(i)

all permutations o on (n) i=1

@ For C e R™"and k € (min(m,n))
perm, C is the sum of the permanents of all k x k submatrices of

C
@ A = [a;] € R}*" doubly stochastic if
Zj”:laijzlzzj”:laji, izl,...,n

@ Q, C R*"is the set of doubly stochastic matrices
@ P, C Q, the set of permutation matrices
is the set of the extreme points of Q,

Birkhoff-Egervary-Konig-Steinitz theorem (1946-1931-1916-1897)

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Bipartite graphs

Figure: An example of a bipartite graph

Vi V2 V3 Vg

W1 Wo W3 Wy W5
1 1 1 1 1
. . 11000
Representation matrix 11000
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Formulas for k-matchings in bipartite graphs
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,

represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,
represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.

Example: Any subgraph of Z9 is bipartite
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,
represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.
Example: Any subgraph of Z9 is bipartite

CLAIM: ¢(k,G) = perm, (B(G)).
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,
represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.

Example: Any subgraph of Z9 is bipartite
CLAIM: ¢(k,G) = perm, (B(G)).
Prf: Suppose n = #V1 = #Vs.

Then permutation o : {n) — (n) is a perfect match iff [T, Piggiy = 1.
The number of perfect matchings in G is ¢(n,G) = permB(G). O
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,
represented by B(G) = B = [b]"*1] € {0,1}™", #£V; =m,V, =n.

ij=1
Example: Any subgraph of Z9 is bipartite
CLAIM: ¢(k,G) = perm, (B(G)).

Prf: Suppose n = #V1 = #Vs.

Then permutation o : {n) — (n) is a perfect match iff [T, Piggiy = 1.
The number of perfect matchings in G is ¢(n,G) = permB(G). O

Computing ¢(n, G) is #P-complete problem Valiant 1979
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,

represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.
Example: Any subgraph of Z9 is bipartite

CLAIM: ¢(k,G) = perm, (B(G)).

Prf: Suppose n = #V1 = #Vs.
Then permutation o : {n) — (n) is a perfect match iff [T, Piggiy = 1.
The number of perfect matchings in G is ¢(n,G) = permB(G). O

Computing ¢(n, G) is #P-complete problem Valiant 1979
For G = ((2n), E) bipartite G € G(r,2n) <= 1B(G) € Qn <
G is a disjoint (edge) union of r perfect matchings
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Formulas for k-matchings in bipartite graphs

G = (V,E) bipartite V. =V, UVy,E C V1 X Vo,

represented by B(G) = B = [bj]}X] € {0,1}™", #V; =m,V, =n.
Example: Any subgraph of Z9 is bipartite

CLAIM: ¢(k,G) = perm, (B(G)).

Prf: Suppose n = #V1 = #Vs.
Then permutation o : {n) — (n) is a perfect match iff [T, Piggiy = 1.
The number of perfect matchings in G is ¢(n,G) = permB(G). O

Computing ¢(n, G) is #P-complete problem Valiant 1979
For G = ((2n), E) bipartite G € G(r,2n) <= 1B(G) € Qn <
G is a disjoint (edge) union of r perfect matchings

r® minccq, perm, C < ¢(k, G) for any G € G(r, 2n)
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van der Waerden and Tverberg conjectures
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van der Waerden and Tverberg conjectures

Jn = B(Knn) = [1] the incidence matrix of the complete bipartite graph
Kn,n ON 2n vertices
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van der Waerden and Tverberg conjectures

Jn = B(Knn) = [1] the incidence matrix of the complete bipartite graph
Kn,n ON 2n vertices

van der Waerden permanent conjecture 1926:

1 n!
min permC = perm=J, (= — ~ V27rne™"
CEan P n n( nn m )
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van der Waerden and Tverberg conjectures

Jn = B(Knn) = [1] the incidence matrix of the complete bipartite graph
Kn,n ON 2n vertices

van der Waerden permanent conjecture 1926:

1 n!
min perm C = perm = J = — ~V2rne™"
min p p n (=5 mne™")

Tverberg permanent conjecture 1963:

min perm, C = perm 1J (= : ZE)
Cean kC=p ki (= (k) ok

forallk =1,...,n
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History
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix

@ 82 proof uses methods of 81 proofs with extra ingredients
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@ In 1979 Friedland showed the lower bound perm C > e~" for any
C € Q, following T. Bang’s announcement 1976.
This settled the conjecture of Erdés-Rényi on the exponential
growth of the number of perfect matchings in d > 3-regular
bipartite graphs 1968.

@ van der Waerden permanent conjecture was proved by Egorichev
and Falikman 1981.

@ Tverberg conjecture was proved by Friedland 1982

@ 79 proof is tour de force according to Bang

@ 81 proofs involve directly (Egorichev) and indirectly (Falikman) use
of Alexandroff mixed volume inequalities with the conditions for
the extremal matrix

@ 82 proof uses methods of 81 proofs with extra ingredients

@ There are new simple proofs using nonnegative hyperbolic
polynomials e.g. Friedland-Gurvits 2008
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Lower matching bounds for 0 — 1 matrices
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (r = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (r = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (r = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.

oo ey, (r—1) 1
Cor: ¢(n,G) > r—r(m) ( 1)(rr7_2)
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (r = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.

oo ey, (r—1) 1
Cor: ¢(n,G) > r—r(m) ( 1)(rr7_2)

n

Con FKM 2006 : ¢(k,G) > <k

Znr —K . oy KE
) DR 6 € gtr2n
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Lower matching bounds for 0 — 1 matrices

Voorhoeve-1979 (r = 3) Schrijver-1998

#(n,G) > ((rrrigr_l)n for G e g(r,2n)

Gurvits 2006: A € Q,, each column has at most r nonzero entries:

rt — =1 -
permAZ r_r(m)l’(l’ l)(T)(I’ 1)n.

oo ey, (r—1) 1
Cor: ¢(n,G) > r—r(m) ( 1)(rr7_2)

2
Con FKM 2006 : ¢(k,G) > <E) (%)”“"(

%)k, G € g(r,2n)

F-G 2008 showed weaker inequalities
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Upper matching bounds for 0 — 1 matrices
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
@ rjisi —throw sum of A
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",

@ rjisi —throw sum of A
1

@ Bregman 1973: permA < [, (r!")
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Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
@ rjisi —throw sum of A
1
@ Bregman 1973: permA < [, ()7
@ ¢(qr,G) < ¢(ar,gK; ) forany G € G(r,2qr)

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Upper matching bounds for 0 — 1 matrices

@ Assume A € {0,1}"<",
@ rjisi —throw sum of A
1
@ Bregman 1973: permA < [, ()7
@ ¢(qr,G) < ¢(ar,gK; ) forany G € G(r,2qr)

@ Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Upper matching bounds for 0 — 1 matrices

Assume A € {0,1}"*",
ri isi —th row sum of A

o(ar,G) < ¢(ar,qK; ) forany G € G(r,2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

°
°

1
@ Bregman 1973: permA < [ (r!)"
°
°
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Upper matching bounds for 0 — 1 matrices

Assume A € {0,1}"*",

ri isi —th row sum of A

Bregman 1973: permA < H{‘Zl(ri!)%

o(ar,G) < ¢(ar,qK; ) forany G € G(r,2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

@ Thm: For any r-regular graph G = (V,E),

r#V (r — 1)?
2 4

¢ 6 6 6 ¢

C4(G) <

Equality iff G = K
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Upper matching bounds for 0 — 1 matrices

Assume A € {0,1}"*",
ri isi —th row sum of A

o(ar,G) < ¢(ar,qK; ) forany G € G(r,2qr)

Con FKM 2006: ¢(k,G) < ¢(k,qK; ) for any G € G(r,2qr) and
k=1,...,qr

€4(G) - The number of 4-cycles in G

@ Thm: For any r-regular graph G = (V,E),

r#V (r — 1)?
2 4

°
°

1
@ Bregman 1973: permA < [ (r!)"
°
°

C4(G) <

Equality iff G = K
@ Prf: Any edge in e € E can be in at most (r — 1)? different
4-cycles.
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Upper perfect matching bounds for general graphs

G = (V, E) Non-bipartite graph on 2n vertices

¢(n,G) < [ ((degv)n 7
veVv
If degv > 0,Vv € V equality holds iff G is a disjoint union of complete

balanced bipartite graphs
Kahn-Lovasz unpublished, Friedland 2008-arXiv, Alon-Friedland

2008-arXiv, Egorichev 2007
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Exact values for small matchings

For G € G(r,2n)
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Exact values for small matchings

For G € G(r,2n)
O #(1,G)=nr
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Exact values for small matchings

For G € G(r,2n)
Q #(1,G)=nr
Q 4(2,G) = (¥) —2n(}) = rlor=r=1)
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Exact values for small matchings

For G € G(r,2n)

Q ¢(1,G)=nr

@ #(2,6) = (3) —2n(p) = "r=F=l

@ 4(3,G)= (%) —2n(§) —nr(r —1)2 —2n(5)(nr — 2r — (r — 2))
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Exact values for small matchings

For G € G(r,2n)
»(1,G) =nr
0(2.6) = (3) - 2n(g) = "r-{zr-1)
$(3,G) = (%) —2n(3) —nr(r —1)> = 2n(5)(nr — 2r — (r — 2))
9 ¢(4vG) - pl(nvr) + C4(G)
pi(n,r) =

% (1—2r)+ 21 (19 — 60r + 52r2)4nr ( —5r 4+ 7r% — %3)
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Exact values for small matchings

For G € G(r,2n)

$(1,G) =nr

(2,6) = (¥) ~ 2n(g) = Mor={zr=2)

$(3,G) = (%) —2n(3) —nr(r —1)> = 2n(5)(nr — 2r — (r — 2))
0 ¢(4vG) - pl(nvr) + C4(G)

pi(n,r) =
% (1—2r)+ 21 (19 — 60r + 52r2)4nr ( —Br +7r% — %3)
Notation:
N
f(x)=> ax' <g(x be =
i=0

a gb,forl_l,...,N.
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2-regular graphs
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1

0 Ko =0Cy

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices

@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy

® G €1T1(2,n)iff G a union of cycles
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices

@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy

® G €1T1(2,n)iff G a union of cycles

® G € G(2,2n) iff G union of even cycles
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n):

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1

© 6 66 06 0
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2-regular graphs

r(r,n) the set of r-regular graphs on n-vertices
Aconnected G e l(2,n)iscycleCp:1—2—---—>n—1
Koo =Cy

G € I'(2,n) iff G a union of cycles

G € G(2,2n) iff G union of even cycles

For G € I'(2,n): )

ds(x) < ¢%K2,2(x) = O, (x)4 if4n

n-5 .

ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .

ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2

© 6 66 06 0
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1T1(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG el(2,n):
PG (X) < Bay,,(x) = b, (X)7 if 4)n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2

n—-7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1T1(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG el(2,n):
ds(x) < ¢%K2,2(x) = O, (x)4 if4n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
PG (X) = Bay () = D,y (x)3 if 3|
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1T1(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG el(2,n):
PG (X) < Bay,,(x) = b, (X)7 if 4)n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
dg(x) = ¢%K3(x) = &¢,(x)3if 3|n
n—4 .
dg(x) = d)%thuc‘l(X) = &¢,(x) 3 O¢,(x)if 3In—1,
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1T1(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG el(2,n): )
ds(x) < ¢%K2,2(x) = O, (x)4 if4n

P (X) = Pnsy, ¢, (X) = O, (X)"T Oc, (x) if 4n—1
P (X) X Pasy, i, (X) = O, (X)"7 O, (X) if 4ln — 2

Po(X) = Pary, i, (X) = dc, (X)"7 e, (X) if 4jn — 3,
B (X) = Dag (X) = bc, (x)3 if 3[n

P (X) = Pa_y e, (X) = O, (X)"F D¢, () if 3n—1,

P (X) = Pusy ¢, (X) = D, ()T b (x) if 3)n—2
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2-regular graphs

@ [(r,n) the set of r-regular graphs on n-vertices
@ AconnectedG el(2,n)iscycleCp:1—-2—---—>n—1
0 Ko =0Cy
® G €1T1(2,n)iff G a union of cycles
® G € G(2,2n) iff G union of even cycles
@ ForG el(2,n):
ds(x) < ¢%K2,2(x) = O, (x)4 if4n
n-5 .
ds(x) =< d>nT_5K2,2UC5(x) =&, (X) 7 O (x)if 4n—1
n—6 .
ds(x) =< d>nT_eK2,2UC6(x) = &¢,(x) 7 &g (x)if4jn -2
n—-7 .
ds(x) = ¢anK2,2UC7(x) = O, (X) 7 &c,(x)if 4n -3,
dg(x) = ¢%K3(x) = &¢,(x)3if 3|n
n—4 .
dg(x) = d)%thuc‘l(X) = &¢,(x) 3 O¢,(x)if 3In—1,
n-5 .
dg(x) = d>nT_5K3UC5(x) = &¢,(X) 7 O, (x)if 3In—2
If n even G multi-bipartite 2-regular graph then ®g(x) = ®¢, (X).
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Probabilistic Methods |

A= [aij] € Rn+xn, X(A) = [1 /ainij],
x; independent random variables E (x;) = 0,E(x?) = 1
E((detX(A))?) = permA. Godsil-Gutman 1981
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Probabilistic Methods |

A= [aij] € Rn+xn, X(A) = [1 /ainij],
x; independent random variables E (x;) = 0,E(x?) = 1
E((detX(A))?) = permA. Godsil-Gutman 1981

Concentration results
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Probabilistic Methods |

A= [aij] € Rn+xn, X(A) = [1 /ainij],
x; independent random variables E (x;) = 0,E(x?) = 1
E((detX(A))?) = permA. Godsil-Gutman 1981

Concentration results

A. Barvinok 1999 -

1. x;; real Gaussian = det X (A)? with high probability

€ [c" permA, permA] ¢ ~ 0.28

2. x;; complex Gaussian E(|x;j|?) = 1 = | det X (A)|? with high
probability € [c" perm A, permA] ¢ ~ 0.56

3. x;j quaternion Gaussian E (|xj|?) = 1 = | det X (A)[? with high
probability € [c" perm A, permA] ¢ ~ 0.76
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Probabilistic Methods |

A= [aij] € Rn+xn, X(A) = [1 /ainij],
xj independent random variables E (xj) = 0,E(xf) = 1
E((detX(A))?) = permA. Godsil-Gutman 1981

Concentration results

A. Barvinok 1999 -

1. x;; real Gaussian = det X (A)? with high probability

€ [c" permA, permA] ¢ ~ 0.28

2. x;; complex Gaussian E(|x;j|?) = 1 = | det X (A)|? with high
probability € [c" perm A, permA] ¢ ~ 0.56

3. x;j quaternion Gaussian E (|xj|?) = 1 = | det X (A)[? with high
probability € [c" perm A, permA] ¢ ~ 0.76

Friedland-Rider-Zeitouni 2004:
0 < a < aj < b, x; real Gaussian = det X (A)? with high probability
€ [(1 —e&n) permA, permA] e, — 0
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Probabilistic Methods I

FRZ results use concentration for log, detZ (A) = trf(Z (A)),
Z(A) = X(A)TX(A) = 0,f =log, x = logmax(x,e).

or log, detY (A), Y(A) = [x(/i)T XE)A) ]
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Probabilistic Methods I

FRZ results use concentration for log, detZ (A) = trf(Z (A)),
Z(A) = X(A)TX(A) = 0,f =log, x = logmax(x,e).

or log, detY (A), Y(A) = [x(/i)T XE)A) ]

Modifying the approach to non-bipartite graphs
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Probabilistic Methods I

FRZ results use concentration for log, detZ (A) = trf(Z (A)),
Z(A) = X(A)TX(A) = 0,f = log, x = logmax(x, ¢).
B 0 X(A)
orlog_detY (A), Y(A) = [ X(A)T 0 ]
Modifying the approach to non-bipartite graphs
Make each undirected edge (i, j) with weight a; = a;; > 0
to two opposite directed edges with weights +a; to obtain a skew
symmetric matrix
B = [bij] € R(Zn)x(Zn), bii =0
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Probabilistic Methods I

FRZ results use concentration for log, detZ (A) = trf(Z (A)),
Z(A) = X(A)TX(A) = 0,f = log, x = logmax(x, ¢).
B 0 X(A)
orlog_detY (A), Y(A) = [ X(A)T 0 ]
Modifying the approach to non-bipartite graphs
Make each undirected edge (i, j) with weight a; = a;; > 0
to two opposite directed edges with weights +a; to obtain a skew

symmetric matrix
B = [bij] € R(Zn)x(Zn), bii =0

Y (B) = [sign(bij) +/|bij|xij]: Xij = Xji, X12, - - s X(2n—1),(2n) 1.1V
E(xj) = 0,E(xf) =1

E(detY (B)) = haf A -

total weight of weighted matchings in induced graph by A
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Prob. Methods llI-

E(det(vtl + Y (B)) = &g, (t) - the weighted matching polynomial of
G(A).

Thm: Concentration of log det(+/tl + Y (A)) around expected value
log ®g, (t),t > 0 which less log ¢g,, (t)

Liogd(t,G,) < Llog d(t, G,) < Llog &(t, G,,) + min(T2 2l 1 271)
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Prob. Methods llI-

E(det(vtl + Y (B)) = &g, (t) - the weighted matching polynomial of
G(A).

Thm: Concentration of log det(+/tl + Y (A)) around expected value
log ®g, (t),t > 0 which less log ¢g,, (t)

Liogd(t,G,) < Llog d(t, G,) < Llog &(t, G,,) + min(T2 2l 1 271)

Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized
approximation scheme (fpras) to compute permA

A variation of MCMC method using rapidly mixed Markov chains
converging to equilibrium point
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Prob. Methods llI-

E(det(vtl + Y (B)) = &g, (t) - the weighted matching polynomial of
G(A).

Thm: Concentration of log det(+/tl + Y (A)) around expected value
log ®g, (t),t > 0 which less log ¢g,, (t)

Liogd(t,G,) < Llog d(t, G,) < Llog &(t, G,,) + min(T2 2l 1 271)

Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized
approximation scheme (fpras) to compute permA

A variation of MCMC method using rapidly mixed Markov chains
converging to equilibrium point

The proofs do not carry over for nonbipartite graphs
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Prob. Methods llI-

E(det(vtl + Y (B)) = &g, (t) - the weighted matching polynomial of
G(A).

Thm: Concentration of log det(+/tl + Y (A)) around expected value
log ®g, (t),t > 0 which less log ¢g,, (t)

1 5 1 1 5 max ; |aj|

2log ®(t,G,) < =log ®(t,G,,) < =log d(t,G,,) + min(—=-+,1.271)
Jerrum-Sinclair-Vigoda 2004: fully polynomial randomized
approximation scheme (fpras) to compute permA

A variation of MCMC method using rapidly mixed Markov chains
converging to equilibrium point

The proofs do not carry over for nonbipartite graphs

A dichotomy: some #P complete problem have fpras and some do not
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Expected values of k-matchings

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, (A=) =1, .r,i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):

w(G(0)) = ((nr)h)~*
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):
w(G(a)) = ((nr)H)~*

@ FKM 06:
E(k,n,r) := E(¢(k, G)) = (1)?rZkk!(nr — k)!)(nr)1)~L,
k=1,...,n
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Expected values of k-matchings

@ Permutation o : (nr) — (nr) induces G(o) € Gmui(r, 2n)
and vice versa _
G(o) = {(i, [2U=1H ) j =1, v i=1,...,n} C (n) x (n)
number of different ¢ inducing the same simple G is (r!)"

@ 1 probability measure on Guui(r, 2n):
w(G(a)) = ((nr)H)~*

@ FKM 06:
E(k,n,r) := E(¢(k, G)) = (1)?rZkk!(nr — k)!)(nr)1)~L,
k=1,...,n

9 1<k <n|,l=1,.., increasing sequences of integers s.t.
Iim|_)c,oﬁ—'I =p € [0,1]. Then

Jim. 20, = f(p,r)

f(p,r):= 3(plogr —plogp—2(1—p)log(1—p)+(r—p)log(1-2))
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p-matching entropy
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p-matching entropy

G = (V, E) infinite, degree of each vertex bounded by N,
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p-matching entropy

G = (V, E) infinite, degree of each vertex bounded by N,

p € [0, 1]-matching entropy, (p-dimer entropy) of G

he(p) = sup  limsup log ¢(ki, Gi)
on all sequences | —oo #VI

G| = (E, V)),l € N a sequence of finite graphs converging to G, and

lim 2—k'
|—o0 #V| =P
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Asymptotic Lower and Upper Matching conjectures
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G = (E,V)) eg(r,#V)),l =1,2,...,and lim_ ;—'\‘}l =p.
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G = (E,V)) eg(r,#V)),l =1,2,...,and lim_ ;—'\‘}l =p.

_ - log ¢(ki, Gr)
low: (p) = all dlwabgfsequmcslllrﬂégf #V,
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G = (E,V)) eg(r,#V)),l =1,2,...,and lim_ ;—'\‘}l =p.

_ - log ¢(ki, G)
low: (p) = all dlwabgfsequmcslllrﬂégf #V,

ALMC: low,(p) = f(p, r) (For most of the sequences liminf = f(p,r))

Friedland-Gurvits 2008: For 3 <e N and ps = rJrs,s =0,1,...,ALMC
holds

Shmuel Friedland Univ. lllinois at Chicago () Matchings, permanentsand their random appr



Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G = (E,V)) eg(r,#V)),l =1,2,...,and lim_ ;—'\‘}l =p.

_ - log ¢(ki, Gr)
low: (p) = all dlwabgfsequmcslllrﬂégf #V,

ALMC: low,(p) = f(p, r) (For most of the sequences liminf = f(p,r))

Friedland-Gurvits 2008: For 3 <e N and ps = rJrs,s =0,1,...,ALMC
holds | G
upp; (p) = sup lim supM
dl allowable sequences | —oo #VI
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Asymptotic Lower and Upper Matching conjectures

FKLM 06:

G = (E,V)) eg(r,#V)),l =1,2,...,and lim_ ;—'\‘}l =p.

_ - log ¢(ki, Gr)
low: (p) = all dlwabgfsequmcslllrﬂégf #V,

ALMC: low,(p) = f(p, r) (For most of the sequences liminf = f(p,r))

Friedland-Gurvits 2008: For 3 <e N and ps = rJrs,s =0,1,...,ALMC
holds | G
upp; (p) = sup lim supM
dl allowable sequences | —oo #VI

AUMC: upp, (p) = hk(r)(p), K(r) countable union of K;
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