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Abstract. Minimal, strongly proximal actions of locally com-
pact groups on compact spaces, also known as boundary actions,
were introduced by Furstenberg in the study of Lie groups. In
particular, the action of a semi-simple real Lie group G on ho-
mogeneous spaces G/Q where Q ⊂ G is a parabolic subgroup,
are boundary actions. Countable discrete groups admit a wide
variety of boundary actions. In this note we show that if X
is a compact manifold with a faithful boundary action of some
locally compact group H, then (under some mild regularity as-
sumption) the group H, the space X, and the action split into a
direct product of a semi-simple Lie group G acting on G/Q and
a boundary action of a discrete countable group.

1. Introduction

Let G be a locally compact group (hereafter locally compact groups
are always assumed to be second countable). A compact Hausdorff
spaceX with a jointly continuousG-actionG×X → X, (g, x) 7→ g·x,
will be called a G-space. A G-space X is minimal (or the G-action
on X is minimal) if X has no proper closed G-invariant subsets;
equivalently if every G-orbit G · x is dense in X. By Zorn’s lemma
every compact G-space X contains a closed G-invariant set X ′ ⊆ X
which is a minimal G-space.

Given a compact G-space X consider the set P(X) of all Borel
probability measures on X equipped with the weak-* topology in-
duced by continuous functions C(X). Then P(X) is a convex com-
pact subset of the unit ball in C(X)∗, equipped with a continuous
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affine action of G induced by the G-action on X. In dynamics one
often studiesG-spacesX which support an invariant probability mea-
sure, i.e. G-spaces for which the affine G-action on P(X) has a fixed
point. Amenable groups are precisely characterized by the property
that every G-space admits G-invariant probability measures. In this
note we shall be interested in G-spaces X which exhibit an opposite
behavior. More precisely

Definition 1 (Furstenberg, [1]). A compact G-space X is called
strongly proximal if for every probability measure µ ∈ P(X) the
G-orbitG·µ ⊂ P(X) contains Dirac measures δx in its weak-* closure.
A G-space which is minimal and strongly proximal will be called a G-
boundary (we shall also say that the G-action on X is a boundary
action).

By definition X is a G-boundary iff every orbit G · µ in the affine
G-action on P(X) contains the set δX = {δx | x ∈ X} in its closure.
Since δX is the set Ext P(X) of extremal points of P(X), one has

(1) A G-space X is a G-boundary iff the affine G-action on P(X)
admits no proper closed convex invariant subsets.

One can also consider the following more general setup: let E be
a locally convex topological vector space with a continuous affine G-
action, and V ⊂ E be a convex compact G-invariant subset. The
restriction of the affine G-action to V will be called an affine repre-
sentation. An affine G-representation on V is irreducible if V does
not contain G-invariant closed convex proper subsets. The following
basic facts summarize some of the the results and observations made
by Furstenberg who introduced the above notions of boundaries and
affine representations [1], [2] (see also Glasner’s [4]):

(2) An affine G-representation on V ⊂ E is irreducible iff the G-

action on the closure Ext(V ) of the set of all extremal points
of V is a boundary action.

(3) Any quotient of a G-boundary is a G-boundary, i.e. if p :
X → Y is a continuous surjection between G-spaces X and
Y and X is a G-boundary then so is Y .

(4) Given a locally compact group G there exists a unique, up to
isomorphisms, maximal G-boundary B(G) which is univer-
sal in the sense that any G-boundary X can be obtained as a
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quotient pX : B(G) → X with the continuous G-equivariant
surjection pX being uniquely determined. Similarly there
exists a unique maximal irreducible affine G-representation
V (G) which is universal in the sense that for any irreducible
affine G-representationW there exists a unique continuous G-
equivariant affine surjection qW : V (G) → W . It follows that
V (G) = P(B(G)). The universal boundary B(G) is a Haus-
dorff compact space, but in general it need not be metrizable
(resp. V (G) need not be separable).

(5) A locally compact group G is amenable iff B(G) is trivial,
i.e. is a point. More generally, if G is a locally compact
group containing a closed amenable subgroup P so that G/P
is compact, then the universal G-boundary B(G) is a G-
equivariant image of G/P by a unique continuous surjective
map π : G/P → B(G), and every G-boundary X is obtained
as a G-equivariant quotient G/Q where Q ⊇ P is a closed
subgroup. In particular, if G is a connected semi-simple real
Lie group with finite center and no compact factors, then
B(G) = G/P with P = AN being a minimal parabolic, where
G = KAN is the Iwasawa decomposition of G. In this case
B(G) is also known as the Furstenberg boundary.

(6) Let Γ ⊂ G be a lattice in a locally compact group G. Then
the Γ-action on B(G) is a boundary action. However typically
B(G) is not the maximal Γ-boundary.

The purpose of this note is to describe boundary actions of general
locally compact groups G and to address the question to what extent
the structure of a G-boundary X (or B(G)) as a topological space
determines the group G.

2. Statement of the Results

Let X be a compact n-manifold without a boundary, let d be a
metric on X associated with some smooth Riemannian structure and
assume that H is a locally compact group with a continuous action
by homeomorphisms on X. We shall say that this action satisfies the
following property

(Hr) H acts by n
n+2

-Hölder homeomorphisms, or more precisely
that there exists a neighborhood U of the identity in H so
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that for each h ∈ U there is a constant C = C(h) so that

C−1 · d(x, y)
n+2

n ≤ d(h · x, h · y) ≤ C · d(x, y)
n

n+2

(QC) H acts by quasi-conformal maps on X with respect to the
conformal structure defined by a smooth Riemannian metric
on X.

Theorem 2. Let X be a compact n-manifold which is an H-boundary
where H is a locally compact group and let H1 := H/Ker(H →
Homeo (X)). Assume that either (C) n = 1, i.e. X is a circle,
or that the H1-action on X satisfies (Hr), or the H1-action on X
satisfies (QC). Then H1 contains a subgroup H2 of finite index such
that

• The H2-action on X is a boundary action.
• The group H2 is isomorphic to a direct product G×Λ, where Λ

is either trivial or is an infinite discrete countable group, G is
either trivial or is a connected real semi-simple Lie group with
trivial center and no non-trivial compact factors; the index
[H1 : H2] divides |Out (G)|.

• The manifold X is homeomorphic to a direct product of com-
pact spaces Y × Z, where Y is G-boundary (isomorphic to
Y ∼= G/Q) and Z is an Λ-boundary, so that the H2

∼= G×Λ-
action on X ∼= Y × Z corresponds to the G-action on Y =
G/Q and the Λ-action on Z.

Corollary 3. Let H be a locally compact group with a faithful bound-
ary action on a compact manifold X which does not split as a non-
trivial direct product of topological spaces. If the H-action on X
satisfies one of the assumptions (C), (Hr), (QC) above, then

• either H is a discrete infinite countable group, or
• H is a connected semi-simple real Lie group G with trivial

center and no non-trivial compact factors, and as a G-space
X is isomorphic to G/Q where Q ⊆ G is a parabolic subgroup.

The assumptions (C), (Hr), (QC) in the theorem are used to ensure
that the locally compact group H1 satisfies No Small Subgroups
(abbreviated, NSS) property, which means that H1 has a neighbor-
hood U of the identity that does not contain non-trivial subgroups;
or equivalently, that H1 contains a neighborhood U ′ of the identity
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which contains no non-trivial compact subgroups. Real Lie groups
and discrete groups are typical examples of groups with NSS prop-
erty; while p-adic Lie groups and other totally disconnected non-
discrete groups, such as the group of automorphism of a regular tree,
have families of “small subgroups”. However, for groups acting faith-
fully on topological manifolds the following generalization of Hilbert’s
5-th problem is conjectured to hold:

Hilbert-Smith Conjecture. Every locally compact group acting
faithfully by homeomorphisms an a topological manifold has NSS
property.

This conjecture is known to hold in the following cases:

(a) If dimX = 1, i.e. X is a topological circle S1 = R/Z. This fol-
lows from the fact that any compact subgroup of Homeo +(S1)
is conjugate to a subgroup of the rotation group SO(2), which
has NSS property.

(b) Let X be an n-manifold equipped with some Riemannian
metric d. If H ⊂ Homeo (X) is a locally compact group,
such that some neighborhood U of the identity in H consists
of n

n+2
-Hölder homeomorphisms then H has NSS property

(Maleshich [7]).
(c) Let X be a differentiable manifold with a conformal structure

on it and H be a locally compact group acting by quasi-
conformal maps on X, then H has NSS property (Martin
[8]).

Assumptions (C), (Hr) and (QC) correspond to (a), (b) and (c) above.
If/when proved, Hilbert-Smith conjecture will allow to drop these
assumptions in the theorem.

Remarks 4. (i) Observe that for the circle X = S1 the theo-
rem asserts that any locally compact group H acting faith-
fully, minimally and strongly proximally on S1 is either dis-
crete or is isomorphic to either PSL2(R) or to its double cover
PGL2(R), so that the action is continuously conjugate to the
standard projective action of these groups on RP1 ≈ S1.
In fact, in the case of the circle it can be shown that the
only non-discrete locally compact groups with faithful mini-
mal (but not necessarily strongly proximal) actions on S1 are
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PSL2(R), PGL2(R), SO(2) and O(2). However the class of
discrete groups with a faithful boundary action on the circle
is already huge and includes, besides many discrete subgroups
of PSL2(R), Thompson groups and fundamental groups of
many 3-manifolds (see Ghys [4]).

(ii) If one is willing to assume Hilbert-Smith conjecture (or to
apply conditions (Hr) or (QC), when relevant) then one could
deduce from Corollary 3 that

– The only non-discrete locally compact groups with a faith-
ful boundary action on the sphereX = S2 are Isom +(H3)
and its double cover Isom (H3) ∼= Aut (G) (these are the
simple Lie group G = PO(3, 1) ∼= PSL2(C) and its group
of automorphisms) with the action being conjugate to the
standard one, when one identifies the Riemann sphere S2

with the boundary ∂H3 of the hyperbolic 3-space H3.
– The only non-discrete locally compact groups with a faith-

ful boundary action on the projective plane X = RP2 is
SL3(R) with the action being conjugate to the standard
(i.e. projective) one.

– There are no non-discrete locally compact groups with
a faithful boundary action on a compact surface Σg of
genus g ≥ 2.

(iii) For spheres X = Sk one obtains several families of non-
discrete locally compact groups with a faithful boundary ac-
tion on Sk, namely G and its double cover AutG where G is
the following rank-one simple Lie group: G = PO(n, 1) with
k = n − 1, G = PU(n, 1) with k = 2n − 1, G = PSp(n, 1)
with k = 4n− 1, G = F4(−20) with k = 15.

(iv) At the same time one can show that any manifold admits a
variety of boundary actions by a free group F2, so one should
not expect to classify boundary actions of discrete groups even
on nice spaces.

The question of describing non-discrete locally compact groups
with a faithful boundary action on a manifold appeared in the context
of the following
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Problem. Given a discrete finitely generated group Γ describe all
locally compact groups H which admit a cocompact lattice em-
bedding of Γ, i.e. an embedding j : Γ → H with j(Γ) being a
discrete subgroup in H with H/j(Γ) compact.

Observe that any discrete group Γ forms a cocompact lattice in
semi-direct products Γ n K by any compact group K (and any ho-
momorphism Γ → AutK) via the embedding γ 7→ (γ, eK). These
constructions, and their obvious modifications obtain by passing to
finite index subgroups, are ”trivial” examples of cocompact lattice
embeddings. A potentially non-trivial class of examples of cocom-
pact lattice embeddings can be obtained by considering the Cayley
graph XΓ,Σ of Γ with respect to some finite symmetric set Σ of gener-
ators and taking H to be Aut (XΓ,Σ) - the totally disconnected group
of all automorphisms of the Cayley graph XΓ,Σ. In addition funda-
mental groups Γ = π1M of compact locally symmetric manifolds M
have natural cocompact lattice embeddings in the semi-simple Lie
group G = Isom +(M̃), and in direct products H = G×K where K
is an arbitrary compact group.

In [3] cocompact lattice embeddings of Γ in an arbitrary locally
compact group H were classified for fundamental groups Γ = π1M of
compact (and finite volume, in higher rank cases) locally symmetric
manifolds M , i.e. groups Γ which admit lattice embeddings in a semi-
simple Lie group G. In these cases it was proven that, up to finite
index and centers, the natural Γ-embeddings in semi-direct products
ΓnK and G×K (in both cases K is compact) are the only examples
of cocompact lattice embeddings. In particular, for these groups one
always has [Aut (XΓ,Σ) : Γ] <∞.

Recall that Gromov and Thurston [6] proved that in each dimen-
sion n ≥ 4 there exist compact manifoldsM which admit Riemannian
structures of strictly negative curvature, but do not carry a locally
symmetric structure. Very little is known about the structure of the
fundamental groups Γ = π1M of such manifolds, beyond the fact
that these are Gromov hyperbolic groups which do not embed as
cocompact lattices in semi-simple Lie groups. However, assuming
Hilbert-Smith conjecture one would be able to deduce the following:

Corollary 5. Let Γ = π1M be the fundamental group of a compact
manifold M which admits a Riemannian structure of strictly negative
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curvature, but does not admit a locally symmetric one. Let H be a
locally compact group which admits an embedding j : Γ → H with
j(Γ) being a cocompact lattice in H. Then Hilbert-Smith conjecture
implies that Γ is contained in a closed subgroup H0 ⊆ H of finite index
in H, so that H0 is isomorphic to a semi-direct product Γ nK where
K is a compact group. In particular, for any finite symmetric set Σ of
generators for Γ the Cayley graph XΓ,Σ admits at most finite number
of automorphisms, up to translations by Γ, i.e. [Aut (XΓ,Σ) : Γ] <∞.

Remark 6. Consider Γ = π1M as above and let H := Isom (M̃)
where the universal cover M̃ of M is equipped with the lift of some
Riemannian metric on M . In this case it is well known that H is a
locally compact group with NSS property, and therefore H is a dis-
crete group containing Γ as a finite index subgroup. More generally
if (M, g) is a negatively curved manifold, then Isom (M̃) is either dis-
crete or M̃ is a symmetric space in which case Isom (M̃) is a rank-one
simple Lie group.

This note is organized as follows. The proof of Theorem 2 is divided
into two steps: splitting the acting group (section 4) and splitting
the space and the actions (section 5). Application 5 is derived in
section 6. We preface the discussion with a general remark about the
amenable radical.

3. The Amenable Radical

Recall that a locally compact group H is amenable iff every com-
pact H-space X has an H-invariant probability measure or, equiv-
alently, every affine H-representation has a fixed point. Moreover
for this characterization it suffices to consider only compact metric
H-spaces (i.e. separable affine H-representation). We shall use this
opportunity to generalize this fact.

Proposition 7 (The Amenable Radical). Let H be a locally compact
group. Consider the following subgroups of H:

(1) N0 = Ker(H → Homeo (B(H)).

(2) N1 = ∩i∈IKer(H
ρi−→Homeo (Xi)), where {H → Homeo (Xi)}i∈I ,

is the collection of all isomorphism classes of boundary H-
actions on compact metric spaces Xi.
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(3) Nam - the group generated by all closed normal amenable sub-
groups in H.

Then N0 = N1 = Nam is the maximal closed normal amenable sub-
group of H, which can be called the amenable radical of H.

Proof.
Let N be a closed normal amenable subgroup of H and X be a

compact metricH-boundary. Denote by PN ⊆ P(X) the set of all N -
invariant probability measures on X. This is a closed convex subset
of the compact convex set P(X). Since N is amenable PN is non-
empty, and since N is normal PN is an invariant set for the affine
H-action on P(X). As the latter affine H-action is irreducible we
have PN = P(X), and in particular δX ⊂ PN . Hence N acts trivially
on X. This argument applies to all compact (metric) boundary H-
actions X, which means that N ⊆ N1 = ∩i∈IKer(H → Homeo (Xi)).
Hence Nam ⊆ N1.

By the maximality of B(H) we have N1 ⊆ N0 and the latter is a
closed normal subgroup of H. Therefore proving that N0 is amenable
would imply N0 ⊆ Nam and yield the equalities N0 = N1 = Nam.

Assume that N0 is not amenable. Then one can find a continuous
N0-action on some compact metric space M which has no invariant
measures. A standard construction of induction allows to induce
linear or affine representations from a closed subgroup (here N0) to
the larger group H (see Zimmer [11] 4.2 for details). In our case,
consider the space L∞(H/N0, C(M)∗) = L1(H/N0, C(M))∗ with the
weak-* topology, and its convex compact subset W consisting of all
classes of Borel functions µ : H/N0 → P(M), µ : x 7→ µx ∈ P(M),
where µ is identified with µ′ if µx = µ′x for a.e. x ∈ H/N0. Choosing
a measurable cross section σ : H/N0 → H of the projection π : H →
H/N0, one can define a measurable cocycle α : H ×H/N0 → N0 by

α(h, h′N0) = σ(hh′N0)
−1 hσ(h′N0)

and verify that the H-action on W defined by

(h · µ)x = α(h, x) · µx x ∈ H/N0

gives a continuous (!) affine representation of H. Let V ⊆ W be a
minimal H-invariant convex compact set (i.e. an irreducible affine
H-representation). Since N0 acts trivially on B(H), it acts trivially
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in the universal irreducible affine H-representation, and thereby triv-
ially on V . Observe that since N0 is normal in H, for every h ∈ N0

and almost every x ∈ H/N0

h · x = x and α(h, x) = σ(x)−1hσ(x) (3.1)

Fix an µ : H/N0 → P(M) from V . Then for a.e. x ∈ H/N0 the
measure µx ∈ P(M) is fixed by σ(x)−1hσ(x) for a.e. h ∈ N0 (Fu-
bini theorem applied to (3.1)), and therefore by the whole N0. This
contradicts the assumption. Hence N0 is amenable and the proof is
completed.

We shall use the following immediate corollary (explicitly shown
at the beginning of the proof):

Corollary 8. A closed normal amenable subgroup N of a locally
compact group H acts trivially on every H-boundary X.

4. Splitting the group with NSS property

Proposition 9. Let H be a locally compact group with a faithful
boundary action on a compact space X. Assume that H has NSS
property. Then H contains a closed normal subgroup H0 of finite
index in H, which still acts minimally and strongly proximally on
X and is isomorphic to a direct product H0

∼= G × Λ, where G is
either trivial or is a connected semisimple real Lie group with trivial
center and no non-trivial compact factors, and Λ is either trivial or
is an infinite discrete countable group. The index [H : H0] divides
|Out (G)|.
Proof.

Denote by G the connected component of the identity in H. By the
fundamental results of Montgomery and Zippin ([9]), the assumption
thatH has NSS property means that G is a connected Lie group. It is
normal in H and the factor group Λ := H/G is a totally disconnected
locally compact group.

Assume that G is non-trivial. Observe that any closed amenable
characteristic subgroup of G is a closed amenable normal subgroup in
H and therefore is trivial by Corollary 8. Hence G has trivial radical,
trivial center and no compact factors.
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Next observe that H acts on G by conjugation, which gives rise to
a homomorphism

H−→AutG

Recall that AutG contains AdG ∼= G as a finite index subgroup.
Let H0 denote the preimage of G and let Λ = ZH0(G) denote the
centralizer of G in H0. By the definition of H0 for each h ∈ H0 there
is a (unique) gh ∈ G, so that

h−1 g h = g−1
h g gh, (g ∈ G)

which means that H0 = G · Λ, and moreover H0 is (isomorphic to)
the direct product G × Λ. Since Λ is isomorphic to H0 modulo its
connected component of the identity G, the group Λ is totally dis-
connected. At the same time being a closed subgroup of the NSS
group H0, Λ has to be discrete.

Finally observe that a restriction of the boundary H-action on X,
to a finite index subgroup H0 ⊆ H is still a boundary action. (This
is the simplest case of fact (6) from the introduction). Indeed, let
h1 = e, h2, . . . , hn be some representatives of the cosets H/H0, and let
V be a minimal closed convex H0-invariant subset of P(X). Consider
the collection W ⊆ P(X) of all probability measures of the form

µ =
h1µ1 + · · ·+ hnµn

n
where µi ∈ V

Then W is a closed convex H-invariant subset of P(X) and is there-
foreW = P(X). In particular δX ⊆ W . Since δX consists of extremal
points of P(X) we have δX ⊆ V and therefore V = P(X). Thus X
is an H0-boundary.

5. Splitting the space and the action

Theorem 10. Let X be an H-boundary for a locally compact group
H which is a direct product H = G×L of two locally compact groups.
Assume that G can be written as G = K ·P where K ⊆ G is a compact
subgroup and P ⊆ G is a closed amenable subgroup. Then there is a
homeomorphism θ : X → Y × Z, θ(x) = (φ(x), ψ(x)), identifying X
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with a direct product of a G-boundary Y and an L-boundary Z, so
that

θ((g, l) · x) = (g · φ(x), l · ψ(x))

The G-space Y can be identified with G/Q where Q is a closed sub-
group P ⊆ Q ⊆ G.

The assumption G = K · P (for a semi-simple Lie group G this is
the Iwasawa decomposition) is used in the following key Lemma.

Lemma 11. K ⊂ G acts transitively on G-orbits. In particular every
G-orbit G · x ⊂ X is compact.

Proof. Denote by PP ⊆ P(X) the set of all P -invariant probability
measures onX. This is a non-empty convex compact subset of P(X),
which is L-invariant because L commutes with P . Observe that the
set

G · PP = {k · µ ∈ P(X) | k ∈ K,µ ∈ PP}
is a non-empty closed subset of P(X), which is still L-invariant by
commutativity. For every µ ∈ PP the H-orbit H · µ satisfies

H · µ = (G× L) · µ = L · (G · µ) ⊂ L(G · PP ) = G · PP

By definition of boundary actions every Dirac measure δx is contained
in a closure of H · µ ⊂ G · PP , and since the set G · PP is already
closed, we conclude that δX ⊆ G ·PP . Therefore, for every x ∈ X the
G-orbit G · δx intersects PP , i.e. every G-orbit G · x in X contains
a P -fixed point. Since G = K · P the group K acts transitively on
each G-orbit.

Every G-orbit G · x in X can therefore be identified with G/Gx,
where Gx := {g ∈ G | g · x = x} denotes the G-stabilizer of x ∈ X.
Gx are closed subgroup of G.

Proposition 12. All G-stabilizers Gx are conjugate (in G) to each
other.

For the proof of the Proposition we shall need to compare “sizes”
of G-orbits. Since K acts transitively on G-orbits (Lemma 11) every
G-orbit G · x ∼= G/Gx can be viewed as K/Kx where Kx = {k ∈ K |
k ·x = x}. Consider a partial order � between conjugacy classes [K ′]
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of closed subgroups K ′ ⊆ K, with [K ′] � [K ′′] if there exists k ∈ K
so that K ′ ⊆ k−1K ′′k (Thus the orbit G · x is as “large” as G · y if
[Kx] � [Ky]). Observe that

[K ′] � [K ′′] and [K ′′] � [K ′] implies [K ′] = [K ′′].

To see this it suffices to check that if K ′ is a closed subgroup of K
and k ∈ K satisfies k−1K ′k ⊆ K ′ then k−1K ′k = K ′. This is evident
for finite groups and for compact connected Lie groups, and hence
follows for all compact groups which are inverse limits of the former
families of compact groups.

Lemma 13. If xn → x∗ in X and [Kxn ] � [Kxn+1 ] for all n, then
[Kxn ] � [Kx∗ ] for all n.

Proof. Replacing, if necessary, xn-s by yn = kn ·xn with an appropri-
ate kn ∈ K, we can assume that Kyn ⊆ Kyn+1 for all n, and passing
to a convergent subsequence we may assume that yn → y∗ = k · x∗
with k ∈ K. Then Kyn ⊆ Ky∗ for all n in the subsequence, because
for k ∈ Kyn

k · y∗ = k · lim
n→∞

yn = lim
n→∞

k · yn = lim
n→∞

yn = y∗

so that k ∈ Ky∗ , and therefore [Kxn ] = [Kyn ] � [Ky∗ ] = [Kx∗ ]. Since
this applies to any subsequence of the original sequence the lemma
is proved.

Proof of Proposition 12.
Since any sequence inX contains a convergent subsequence Lemma 13
shows that there exist points x ∈ X with maximal stabilizers, i.e.
points x with the property that if [Kx] � [Ky] then [Ky] = [Kx]. Let
x∗ be such a point with a maximal stabilizer Kx∗ and let X∗ = {x ∈
X | [Kx] = [Kx∗ ]}. Then X∗ is a non-empty closed set. Indeed if
xn → y and xn ∈ X∗, then by the last lemma [Kx∗ ] = [Kxn ] � [Ky]
and by the maximality of [Kx∗ ] we have [Kx∗ ] = [Ky], i.e. y ∈ X∗.
Hence X∗ is closed. The set X∗ is clearly G-invariant and also L-
invariant, by commutativity. We conclude that X∗ = X because
H = G×L acts minimally on X. Thus all stabilizers Kx are mutually
conjugate, and therefore all G-stabilizers Gx, x ∈ X, are conjugate
in G.
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Observe, that in the case of a semi-simple Lie group G the proof
of Proposition 12 can be simplified, since stabilizers Gx in G are par-
abolic subgroups and there are only finitely many conjugacy classes
of those in G, and the partial order argument is not needed.

Now let us fix a point o ∈ X and denote Y := G/Go. Proposi-
tion 12 implies that for every x ∈ X there exists gx ∈ G so that
Gx = g−1

x G0gx.

Lemma 14. The map φ : X → Y = G/Go given by φ(x) = gxGo is
a well defined continuous map.

Proof. Assume that for some x ∈ X both g1 and g2 in G satisfy

Gx = g−1
1 Gog1 = g−1

2 Gog2

Then (g1g
−1
2 )−1Go(g1g

−1
2 ) = Go so that g2g

−1
1 · o = o and therefore

g1Go = g2Go ∈ G/Go. Hence φ : X → G/Go is indeed well defined.
To verify continuity of φ, consider xn → x in X. Since G/Go is

compact, upon passing to a subsequence and replacing gxn by gyn

with gxnGo = gynGo, we can assume that gyn → gy in G. Thus
gyn ·xn → gy ·x while g−1

yn
Gogyn ·xn = xn. This means that that every

g ∈ Go satisfies

g · (gyn · xn) = gyn · xn g · (gy · x) = gy · x
which shows that g−1

y Gogy = Gx, i.e. φ(y) = gyGo = gxGo = φ(x),
proving φ(xn) → φ(x).

Lemma 15. For any L-minimal set Z ⊂ X and any G-orbit G · x
the intersection Z ∩G · x consists of at most one point.

Proof. As G and L commute, Gx = Gl·x for all l ∈ L and x ∈ X.
Hence φ(x) is constant on L-orbits. Since φ is continuous (Lemma 14)
it has to be constant on any minimal L-set. On the other hand, on
every G-orbit G ·x = G/Gx the map φ : G/Gx → G/Go is a bijection
(actually homeomorphism). Hence |Z ∩G · x| ≤ 1.
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By Lemma 11 all G-orbits on X are compact and therefore the
projection π : X → X/G is a continuous surjective map between
compact spaces, which is equivariant with respect to the H-action
on X and the well defined L-action on X/G. Hence X/G is an L-
boundary.

Fix an L-minimal set Z ⊆ X. The projection π(Z) ⊆ X/G is a
non-empty closed L-invariant set and therefore π(Z) = X/G by the
minimality of the L-action on X/G. Lemma 15 states that π : Z →
X/G is one-to-one and therefore is an L-equivariant homeomorphism.
Thus for every x ∈ X there is a unique point zx ∈ Z so that π(x) =
π(zx), and therefore there is a g ∈ G so that x = g · zx. The map
Z → gZ given by z 7→ g · z is an L-equivariant homeomorphism, so
that gZ is also an L-minimal set, and the whole space X is a disjoint
union of L-minimal sets gZ.

One can now replace the minimal L-set Z by an appropriate g-
translate, so that the reference point o ∈ X would be in Z. After
this adjustment define the map ψ : X → Z by π(x) = π(ψ(x)), and
observe that for all x ∈ X, g ∈ G, l ∈ L one has

ψ((g, l) · x) = l · ψ(x), φ((g, l) · x) = g · φ(x)

Since the maps ψ : X → Z and φ : X → G/Go are continuous, so is

θ : X → Y × Z, θ(x) = (φ(x), ψ(x))

Finally, by Lemma 15 the map θ is one-to-one. This completes the
proof of Theorem 10.

Theorem 2 now follows from the cited results which guarantee the
NSS property for the faithfully acting group, Proposition 9 and The-
orem 10.

6. Proof of Corollary 5

Let Γ = π1M be a fundamental group of a compact n-manifold
M which admits a negatively curved Riemannian structure, but does
not carry a locally symmetric one, and let j : Γ → H be a cocompact
lattice embedding of Γ in a locally compact group H. Denote by
∂Γ the (ideal) boundary of the hyperbolic group Γ, which can be
identified the (visual) boundary ∂M̃ of the universal cover M̃ of M
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and is, therefore, homeomorphic to the sphere Sn−1. The natural
continuous Γ-action on ∂Γ ∼= Sn−1, which we shall denote by ρ : Γ →
Homeo (∂Γ), is faithful minimal and strongly proximal (in fact Γ acts
as a convergence group on its boundary).

It is shown in [3] (Theorem 3.5) that given an embedding j : Γ → H
as a cocompact lattice, there exists a homomorphism

Ψ = Ψj : H−→Homeo (∂Γ)

so that Ψ ◦ j : Γ → Homeo (∂Γ) coincides with ρ : Γ → Homeo (∂Γ)
and, with respect to the uniform topology on Homeo (∂Γ) the ho-
momorphism Ψ is continuous, has a compact kernel K1 = Ker(Ψ)
and a closed image H1 = Ψ(H) ⊂ Homeo (∂Γ), so that H1 is a lo-
cally compact group which contains ρ(Γ) ∼= Γ as a cocompact lattice.
Therefore H1 acts as a convergence group on ∂Γ ∼= Sn−1, and in
particular Sn−1 is an H1-boundary.

Assuming Hilbert-Smith conjecture H1 satisfies the NSS property.
Since Sn−1 does not split as a non-trivial direct product of spaces, by
Theorem 2 either H1 contains a finite index subgroup H2 isomorphic
to a semi-simple connected Lie group G, or H2 is discrete. (One
could also argue that Gromov hyperbolic groups, such as Γ, cannot
be embedded as a cocompact lattice in a direct product of two non-
compact groups, so for H2 = G × Λ either Λ or G is trivial). The
first possibility, H1 being a semi-simple Lie group, is excluded by the
assumption thatM does not carry any locally symmetric Riemannian
structure. Hence H1 is a discrete countable group, which contains
ρ(Γ) as a cocompact lattice, i.e. as a finite index subgroup. Let
H0 = Ψ−1(ρ(Γ)) and K = K1 ∩H0. We have an exact sequence

1−→K−→H0−→ρ(Γ)−→1

which splits by ρ(Γ)
ρ−1

−→Γ
j−→H0. Hence H0 is isomorphic to a semi-

direct product Γ nK where Γ acts on K by γ : k → j(γ)−1kj(γ).
Now let Σ be a finite symmetric generating set for Γ and let XΓ,Σ

denote the corresponding Cayley graph. H := Aut (XΓ,Σ) is a locally
compact group containing Γ (acting by translations) as a cocompact
lattice. Indeed H/Γ can be identified with a stabilizer Kγ of a vertex
vγ in XΓ,Σ which is a compact group. Hence Γ ⊆ H0 ⊆ H with
[H : H0] < ∞ and H0

∼= Γ n K for some compact normal group
K ⊂ H0. We claim that K has to be finite, so that after passing
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to the kernel H1 of H0 → AutK which still has a finite index in
H = Aut (XΓ,Σ), one would obtain H1 ⊆ Γ. To see that K is finite,
observe that for k ∈ K one has

k(vγ) = k(γ(ve)) = γkγ(ve)

where kγ = γ−1kγ ∈ K. As K is compact, the orbit {k(ve) | k ∈ K}
is bounded, which means that

d(k(vγ), vγ) ≤ D <∞

for some fixedD and all vγ ∈ V := V (XΓ,Σ), k ∈ K. Balls B(v,D) :=
{u ∈ V | d(v, u) ≤ D} have at most N := |Σ|D elements. Since every
k ∈ K together with all its powers belongs to K, it permutes vertices
in each ball B(v,D), and therefore kN ! fixes every v. Hence kN ! = e
for all k ∈ K, i.e. K is finite. The corollary is proved.
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